

U.S. Army Corps of Engineers Baltimore District

FINAL

Site Investigation Fort Monmouth, New Jersey Main Post and Charles Wood Areas

Site Investigation Report

Contract Number DACA31-92-D-0018

Delivery Order 0041/0045/0047

December 1995

Prepared for:

U.S. ARMY CORPS OF ENGINEERS 10 South Howard Street Baltimore, Maryland 21201

95P-4674

PRINTED ON RECYCLED PAPER

Prepared by:

Roy F. Weston, Inc. West Chester, Pennsylvania 19380-1490

FINAL

SITE INVESTIGATION FORT MONMOUTH, NEW JERSEY MAIN POST AND CHARLES WOOD AREAS

Prepared For:

U.S. ARMY CORPS OF ENGINEERS

Baltimore District 10 South Howard Street Baltimore, MD 21201

Under:

Contract DACA31-92-D-0018

Prepared By:

ROY F. WESTON, INC.

1 Weston Way West Chester, PA 19380-1499

December 1995

TABLE OF CONTENTS

Section			<u>Title</u>	Page			
	EXECUTIVE SUMMARY INTRODUCTION						
1							
	1.1	Projec	t Objectives	1-1			
	1.2		y Description	1-2			
		1.2.1	Owner/Operator Information	1-2			
		1.2.2	Location of Fort Monmouth	1-2			
			1.2.2.1 Main Post	1-5			
			1.2.2.2 Charles Wood Area	1-5			
		1.2.3	Mission Statement	1-5			
		1.2.4	History of Fort Monmouth	1-7			
2	EN	VIRON	MENTAL SETTING	2-1			
	2.1	Climat	te	2-1			
	2.2	Topog	raphy	2-1			
		2.2.1	Main Post	2-1			
		2.2.2	Charles Wood	2-2			
	2.3	Surfac	e-Water Drainage and Wetlands	2-2			
		2.3.1	Main Post	2-2			
		2.3.2	Charles Wood	2-5			
	2.4	Soils		2-5			
		2.4.1	Main Post	2-5			
		2.4.2	Charles Wood	2-10			
	2.5	Geolog	gy	2-12			
		2.5.1	Regional Geology	2-12			
		2.5.2	Local Geology	2-12			
	2.6	Hydro	geology	2-14			
	2.7	Vegeta	ation and Wildlife	2-15			
3	INV	ESTIG	ATION ACTIVITIES	3-1			
	3.1	Geoph	ysics	3-1			
		3.1.1	Electromagnetic (EM) Terrain Conductivity Surveying Methods	3-1			
			3.1.1.1 Description	3-1			
			3.1.1.2 Methodology	3-2			
		3.1.2	Magnetic (MAG) Methods	3-3			

Section		•		<u>Title</u>	<u>Page</u>
	,		3.1.2.1,	Description	3-3
			3.1.2.2	Methodology	3-3
		3.1.3	Ground	Penetrating Radar (GPR) Methods	3-4
			3.1.3.1	Description	3-4
	X.		3.1.3.2	Methodology	3-5
,	3.2	Sedim	ent Sampli	ing	3-5
	3.3	Surfac	e-Water Sa	ampling	. 3-7
-	3.4	Surfac	e Soil San	nples	3-9
	3.5	PCB T	ransforme	r Site Sampling	3-10
		3.5.1	General		3-10
		3.5.2	Sample	Collection Procedures	3-13
	3.6	Soil B	orings		3-16
	3.7	Groun	dwater Mo	onitor Well Installation	3-18
		3.7.1	Well De	velopment	3-19
		3.7.2	Well Ab	andonment	3-22
	3.8	Groun	dwater Sar	npling	· `3-23
,	3.9	Tidal 1	Monitoring		3-25
4	RES	SULTS	OF INVE	STIGATION	4.1-1
,	4.1	Comp	arison with	New Jersey Standards and Background	4.1-1
	4.2	Main 1		They sorbey buildings and buckground	4.2-1
	-T.2	4.2.1		und Samples	4.2-1
•		1,2,1	4.2.1.1	Hydrogeologic Interpretation	4.2-5
•		,	4.2.1.2	Soil Sampling Results	4.2-5
			4.2.1.3	Groundwater Sampling Results	4.2-6
			4.2.1.4	Surface-Water Sampling Results	4.2-7
			4.2.1.5	Sediment Sampling Results	4.2-8
		422	Landfill		4.2-15
			4.2.2.1	Site Location	4.2-15
			4.2.2.2	Site History	4.2-15
	,د		4.2.2.3	Sampling Effort	4.2-13
			4.2.2.4	Hydrogeologic Interpretation	4.2-16
	•		4.2.2.5	Groundwater Sampling Results	4.2-10
			4.2.2.6	Surface-Water Sampling Results	4.2-17
	•		4.2.2.7	Tidal Monitoring	4.2-19
			7.2.2.1	ridat monitoring	4.2-21

Section .	<u>Title</u>	<u>Page</u>
	4.2.2.7.1 Conductivity and Salinity Results	4.2-22
	4.2.2.8 Recommendations	4.2-23
4.2.	3 Landfill 3 (M-3)	4.2-33
	4.2.3.1 Site Location	4.2-33
	4.2.3.2 Site History	4.2-33
•	4.2.3.3 Sampling Effort	4.2-33
	4.2.3.4 Geophysical Results	4.2-34
	4.2.3.5 Hydrogeologic Interpretation	4.2-35
•	4.2.3.6 Groundwater Sampling Results	4.2-35
,	4.2.3.7 Surface-Water Sampling Results	4.2-38
1	4.2.3.8 Recommendations	4.2-40
4.2.	4 Landfill 4 (M-4)	4.2-57
	4.2.4.1 Site Location	4.2-57
	4.2.4.2 Site History	4.2-57
	4.2.4.3 Sampling Effort	4.2-57
	4.2.4.4 Hydrogeologic Interpretation	4.2-57
,	4.2.4.5 Groundwater Sampling Results	4.2-58
	4.2.4.6 Recommendations	4.2-60
4.2.:	5 Landfill 5 (M-5)	4.2-63
• ,	4.2.5.1 Site Location	4.2-63
,	4.2.5.2 Site History	4.2-63
	4.2.5.3 Sampling Effort	4.2-63
•	4.2.5.4 Hydrogeologic Interpretation	4.2-64
•	4.2.5.5 Groundwater Sampling Results	4.2-64
	4.2.5.6 Recommendations	4.2-67
4.2.	6 Burning Area (M-6)	4.2-69
	4.2.6.1 Site Location	4.2-69
	4.2.6.2 Site History	4.2-69
	4.2.6.3 Sampling Effort	4.2-69
4.2.	- -	4.2-71
	4.2.7.1 Site Location	4.2-71
	4.2.7.2 Site History	4.2-71
	4.2.7.3 Sampling Effort	4.2-72
	4.2.7.4 Hydrogeologic Interpretation	4.2-72
	4.2.7.5 Groundwater Sampling Results	4.2-73
	4.2.7.6 Tidal Monitoring	4.2-76
•	4.2.7.6.1 Conductivity and Salinity Results	4.2-77

Section .			<u>Title</u>	Page
	•	4.2.7.7	Recommendations	4.2-78
	4.2.8	Landfill	12 (M-12)	4.2-87
		4.2.8.1	Site Location	4.2-87
		4.2.8.2	Site History	4.2-87
		4.2.8.3	Sampling Effort	4.2-87
		4.2.8.4	Geophysical Results	4.2-87
	•	4.2.8.5	Hydrogeologic Interpretation	4.2-89
		4.2.8.6	Groundwater Sampling Results	4.2-89
		4.2.8.7	Tidal Monitoring — Landfill 12 and	
١	•	•	Landfill 14 (M-12 and M-14)	4.2-92
-		J '	4.2.8.7.1 Conductivity and Salinity Results	4.2-93
		4.2.8.8	Recommendations	4.2-93
	4.2.9	Landfill	14 (M-14)	4.2-107
		4.2.9.1	Site Location	4.2-107
		4.2.9.2	Site History	4.2-107
		4.2.9.3	Sampling Effort	4.2-107
		4.2.9.4	Geophysical Results	4.2-108
,		4.2.9.5	Hydrogeologic Interpretation	4.2-108
,		4.2.9.6	Groundwater Sampling Results	4.2-109
		4.2.9.7	Surface-Water Sampling Results	4.2-111
		4.2.9.8	Recommendations	4.2-113
	4.2.10	Water Ta	ank (M-15)	4.2-119
	•	4.2.10.1	Site Location	4.2-119
	•	4.2.10.2	Site History	4.2-119
		4.2.10.3	Sampling Effort	4.2-119
		4.2.10.4	Soil Sampling Results	4.2-119
		4.2.10.5	Recommendations	4.2-121
	4.2.11	Former 1	Pesticide Storage Building (M-16)	4.2-125
t		4.2.11.1	Site Location	4.2-125
		4.2.11.2	Site History —	4.2-125
		4.2.11.3	Sampling Effort	4.2-125
	,	4.2.11.4	Hydrogeologic Interpretation	4.2-126
			Soil Sampling Results	4.2-126
			Groundwater Sampling Results	4.2-129
		4.2.11.7	Recommendations	4.2-131
∵ .	4.2.12	Former 7	Training Area (M-18)	4.2-139
~			Site Location	4.2-139

Section			<u>Title</u>	Page
		4.2.12.2	Site History	4.2-139
•	`	4.2.12.3	Sampling Effort	4.2-139
	•	4.2.12.4	Geophysical Results	4.2-140
		4.2.12.5	Hydrogeologic Interpretation	4.2-141
		4.2.12.6	Soil Sampling Results	4.2-141
1	,	4.2.12.7	Groundwater Sampling Results	4.2-145
		4.2.12.8	Recommendations	4.2-148
	4.2.13	Former 1	Main Post Sanitary Treatment Plant (AOC-3)	4.2-163
	,		Site Location	4.2-163
		4.2.13.2	Site History	4.2-163
		4.2.13.3	Sampling Effort	4.2-163
		4.2.13.4	Soil Sampling Results	4.2-164
		4.2.13.5	Sediment Sampling Results	4.2-166
		4.2.13.6	Recommendations	4.2-168
	4.2.14	Pre-1941	Sanitary Treatment Plant (STP)	4.2-171
		4.2.14.1	Site Location	4.2-171
		4.2.14.2	Site History	4.2-171
` .		4.2.14.3	Sampling Effort	4.2-171
		4.2.14.4	Sediment Sampling Results	4.2-171
		4.2.14.5	Recommendations	4.2-173
	4.2.15	PCB Tra	insformers	4.2-177
-		4.2.15.1	Site Location	4.2-177
		4.2.15.2	Site History	4.2-177
•	·	4.2.15.3	Sampling Effort	4.2-177
		4.2.15.4	PCB Sampling Results	4.2-177
	-	4.2.15.5	Recommendations	4.2-179
. 4	1.3 Charl	es Wood		4.3-1
	4.3.1	Backgrou	und Samples	4.3-1
		4.3.1.1	Hydrogeologic Interpretation	4.3-5
•		4.3.1.2	Soil Sampling Results	4.3-5
		4.3.1.3	Groundwater Sampling Results	4.3-6
		4.3.1.4	Surface-Water Sampling Results	4.3-7
		4.3.1.5	Sediment Sampling Results	4.3-8
	4.3.2	Wastewa	ater Treatment Lime Pit 1 (CW-1)	4.3-13
٠.		4.3.2.1	Site Location	4.3-13
		4.3.2.2	Site History	4.3-13
	· ·	4.3.2.3	Sampling Effort	4.3-14

Section	•		<u>Title</u>	-	Page
		4.3.2.4	Hydrogeologic Interpretation		4.3-14
		4.3.2.5	Soil Sampling Results	•	4.3-15
		4.3.2.6	Groundwater Sampling Results		4.3-18
		4.3.2.7	Recommendations	•	4.3-19
`	4.3.3	Wastewa	ter Treatment Lime Pit 2 (CW-2)		4.3-27
		4.3.3.1	Site Location	٠	4.3-27
		4.3.3.2	Site History		4.3-27
		4.3.3.3	Sampling Effort		4.3-27
•		4.3.3.4	Hydrogeologic Interpretation	`	4.3-28
		4.3.3.5	Soil Sampling Results	•	4.3-29
		4.3.3.6	Groundwater Sampling Results	-	4.3-31
		4.3.3.7	Recommendations		4.3-33
	4.3.4	Landfill	3 (CW-3)		4.3-35
		4.3.4.1	Site Location		4.3-35
		4.3.4.2	Site History		4.3-35
		4.3.4.3	Sampling Effort		4.3-35
		4.3.4.4	Recommendations		4.3-36
-	4.3.5	Debris S	ite (CW-3A)		4.3-39
, .	•	4.3.5.1	Site Location		4.3-39
		4.3.5.2	Site History		4.3-39
		4.3.5.3	Sampling Effort		4.3-39
		4.3.5.4	Geophysical Results	•	4.3-39
•	1	4.3.5.5	Recommendations		4.3-40
	4.3.6	Range (S	small Arms) (CW-4)		4.3-51
		4.3.6.1	Site Location		4.3-51
		4.3.6.2	Site History	_	4.3-51
		4.3.6.3	Sampling Effort		4.3-51
		4.3.6.4	Soil Sampling Results		4.3-52
•		4.3.6.5	Recommendations		4.3-54
	4.3.7	Former S	Sanitary Treatment Plant (CW-5)		4.3-59
		4.3.7.1	Site Location		4.3-59
		4.3.7.2	Site History		4.3-59
•		4.3.7.3	Sampling Effort	•	4.3-59
,		4.3.7.4	Soil Sampling Results	s.	4.3-60
		4.3.7.5	Sediment Sampling Results		4.3-62
•		4.3.7.6	Recommendations	•	4.3-63
	4.3.8	Pesticide	Storage Building T-2044 (CW-6)	1	4.3-65

Section				<u>Title</u>	Page
		··	4.3.8.1	Site Location	4.3-65
	•		4.3.8.2	Site History	4.3-65
			4.3.8.3	Sampling Effort	4.3-66
·			4.3.8.4	Hydrogeologic Interpretation	4.3-66
, .			4.3.8.5	Soil Sampling Results	4.3-67
			4.3.8.6	Groundwater Sampling Results	4.3-69
	.'		4.3.8.7	Recommendations	4.3-71
		4.3.9	Sludge I	Dump (CW-9)	4.3-79
			4.3.9.1	Site Location	4.3-79
			4.3.9.2	Site History	4.3-79
	. ,		4.3.9.3	Sampling Effort	4.3-79
		•	4.3.9.4	Hydrogeologic Interpretation	4.3-80
		`	4.3.9.5	Soil Sampling Results	4.3-80
			4.3.9.6	Groundwater Sampling Results	4.3-83
			4.3.9.7	Recommendations	4.3-85
		4.3.10	Former I	Hazardous Waste Storage Area (AOC-7)	4.3-87
				Site Location	4.3-87
			4.3.10.2	Site History	4.3-87
			4.3.10.3	Sampling Effort	4.3-88
				Soil Sampling Results	4.3-88
				Recommendations	4.3-90
:		4.3.11	PCB Tra	nsformers	4.3-93
			4.3.11.1	Site Location	4.3-93
			4.3.11.2	Site History	4.3-93
		*	4.3.11.3	Sampling Effort	4.3-93
		}		PCB Sampling Results	4.3-93
				Recommendations	4.3-95
,· 5	DA'	ra Qua	LITY	· .	5-1
.7	5.1	Introdu	ction	•	5-1
	5.2	Quality	Control I	Procedures	5-5
•		5.2.1	Field and	1 Laboratory Quality Control Samples	5-5
		5.2.2	Field Ac	· - ·	5-6
		5.2.3		ory Activities	5-7
		•	5.2.3.1	Laboratory Equipment Quality Control	5-7
				Laboratory Data	5-7

Section			<u>Title</u>	Page
	5.3	Data (Quality	5-8
		5.3.1	Data Reporting	5-8
		5.3.2	Data Validation/Usability Review	5-8
		5.3.3	Results of Data Validation/Usability Review	5-9
		5.3.4	Results of Field and Trip Blanks	5-10
		5.3.5	Duplicates	5-16
			5.3.5.1 Groundwater	5-16
			5.3.5.2 Surface Water	5-16
			5.3.5.3 Sediments	5-18
			5.3.5.4 Soils	5-18
	5.4	Tentat	ively Identified Compounds (TICs)	5-18
	5.5	Compa	arison of Analytical Detection Limits and Remediation Standards	5-19
6	CO	NCLUS	IONS AND RECOMMENDATIONS	6-1
	6.1	Main 1	Post	6-1
		6.1.1	Landfill 2 (M-2)	6-1
			6.1.1.1 Conclusions	6-1
			6.1.1.2 Recommendations	6-4
		6.1.2	Landfill 3 (M-3)	6-5
			6.1.2.1 Conclusions	6-5
			6.1.2.2 Recommendations	6-6
		6.1.3	Landfill 4 (M-4)	6-7
			6.1.3.1 Conclusions	6-7
			6.1.3.2 Recommendations	6-7
		6.1.4	Landfill 5 (M-5)	6-8
			6.1.4.1 Conclusions	6-8
			6.1.4.2 Recommendations	6-9
		6.1.5	Landfill 8 (M-8)	6-9
			6.1.5.1 Conclusions	6-10
			6.1.5.2 Recommendations	6-10
		6.1.6	Landfill 12 (M-12)	6-11
			6.1.6.1 Conclusions	6-12
			6.1.6.2 Recommendations	6-12
		6.1.7	Landfill 14 (M-14)	6-12
			6.1.7.1 Conclusions	6-13
			6.1.7.2 Recommendations	6-13

Section .		<u>Title</u>	<u>Page</u>
	6.1.8	Water Tank (M-15)	6-13
	-	6.1.8.1 Conclusions	6-14
		6.1.8.2 Recommendations	6-14
	6.1.9	Former Pesticide Storage Building (M-16)	6-14
•		6.1.9.1 Conclusions	6-14
		6.1.9.2 Recommendations	6-15
	6.1.10	Former Training Areas (M-18)	6-15
•		6.1.10.1 Conclusions	6-15
	-	6.1.10.2 Recommendations	6-16
·	6.1.11	Former Main Post Sanitary Treatment Plant (AOC-3)	6-16
		6.1.11.1 Conclusions	6-17
		6.1.11.2 Recommendations	6-17
	6.1.12	Pre-1941 Sanitary Treatment Plant	6-17
		6.1.12.1 Conclusions	6-17
		6.1.12.2 Recommendations	6-17
•	6.1.13	PCB Transformers — Main Post	6-18
		6.1.13.1 Conclusions	6-18
		6.1.13.2 Recommendations	6-18
6.2	Charles	s Wood	6-19
	6.2.1	Wastewater Treatment Lime Pit 1 (CW-1)	6-19
		6.2.1.1 Conclusions	6-19
		6.2.1.2 Recommendations	6-19
	6.2.2	Wastewater Treatment Lime Pit 2 (CW-2)	6-21
1		6.2.2.1 Conclusions	6-21
, ,-		6.2.2.2 Recommendations	6-22
	6.2.3	Landfill 3 (CW-3)	6-23
	6.2.4	Debris Site (CW-3A)	6-23
•		6.2.4.1 Conclusions	6-23
		6.2.4.2 Recommendations	6-23
	6.2.5	Range (Small Arms) (CW-4)	6-24
	•	6.2.5.1 Conclusions	6-24
		6.2.5.2 Recommendations	6-24
	6.2.6	Former Sanitary Treatment Plant (CW-5)	6-25
		6.2.6.1 Conclusions	6-25
		6.2.6.2 Recommendations	6-25
	6.2.7	Pesticide Storage Building T-2044 (CW-6)	6-25
,		6.2.7.1 Conclusions	6-26

<u>Section</u>		<u>Title</u>	<u>Page</u>
	•	6.2.7.2 Recommendations	6-26
	6.2.8	Sludge Dump (CW-9)	6-26
		6.2.8.1 Conclusions	6-27
		6.2.8.2 Recommendations	6-27
	6.2.9	Former Hazardous Waste Storage Area (AOC-7)	6-27
		6.2.9.1 Conclusions	6-27
		6.2.9.2 Recommendations	_ 6-27
	6.2.10	PCB Transformers — Charles Wood	6-27
		6.2.10.1 Conclusions	- 6-28
•		6.2.10.2 Recommendations	6-28
LIST O	F ACRON	YMS	Acr-1
REFER	ENCES		R-1
APPEN	DIX A —	MAIN POST AND CHARLES WOOD BOREHOLE LOGS AND WELL COMPLETION SUMMARIES	
APPEN	DIX B —	SURVEY DATA	
APPEN	DIX C —	WELL DEVELOPMENT LOGS	
APPEN	DIX D —	SAMPLING RESULTS	
APPEN	DIX E —	TIDAL MONITORING GRAPHS	
APPEN	DIX F —	GPR PROFILES (To be provided at a later date)	

LIST OF FIGURES

Figure No.	<u>Title</u>	Page
1.1-1	Location of Main Post and Charles Wood	1-3
2.3-1	Main Post and Charles Wood Wetlands	2-3
2.4-1	Main Post and Charles Wood Soil Series Map	2-7
3.5-1	Transformer Site Sampling Locations at Building 1220, Main Post	3-14
3.5-2	Transformer Site Sampling Locations at Buildings 2000 and 2018, Charles Wood	3-15
4.2-1	Main Post Site Location Map	4.2-11
4.2-2	Main Post Background Sample Locations	4.2-13
4.2-3	Landfill 2 (M-2) Sampling Locations	4.2-25
4.2-4	Landfill 2 (M-2) Approximate Groundwater Flow Directions	4.2-27
4.2-5	Distribution of Contaminants in Site Groundwater and Surface-Water Samples	4.2-29
4.2-6	Main Post Surface-Water and Sediment Sampling Locations	4.2-31
4.2-7	Landfills 3, 4, and 5 (M-3, M-4, and M-5) Sampling Locations	4.2-43
4.2-8	Magnetometer Survey Total Magnetic Field — Site M-3	4.2-45
4.2-9	Magnetometer Survey Magnetic Gradient — Site M-3	4.2-47
4.2-9A	Representative Radar Profile Depicting Landfill Boundary at Site M-3	4.2-49
4.2-9B	Radar Profile Showing Surface Drum and Hyperbolic Radar Signatures at Site M-3	4.2-51
4.2-10	Landfills 3, 4, and 5 (M-3, M-4, and M-5) Approximate Groundwater Flow Directions	4.2-53
4.2-11	Landfills 3, 4, and 5 (M-3, M-4, and M-5) Distribution of Contaminants in Site Groundwater	4.2-55

LIST OF FIGURES (Continued)

Figure No.	<u>Title</u>	<u>Page</u>
4.2-12	Incinerator (M-7) and Landfill 8 (M-8) Sampling Locations	4.2-81
4.2-13	Incinerator (M-7) and Landfill 8 (M-8) Approximate Groundwater Flow Directions	4.2-83
4.2-14	Incinerator (M-7) and Landfill 8 (M-8) Distribution of Contaminants in Site Groundwater	4.2-85
4.2-15	Landfills 12 (M-12) and 14 (M-14) Sampling Locations	4.2-95
4.2-16	Magnetometer Survey Total Magnetic Field — Site M-12 NE	4.2-97
4.2-17	Magnetometer Survey Magnetic Gradient — Site M-12 NE	4.2-99
4.2-18	Magnetometer Survey Total Magnetic Field — Site M-12 SW	4.2-101
4.2-19	Magnetometer Survey Magnetic Gradient — Site M-12 SW	4.2-103
4.2-20	Landfills 12 (M-12) and 14 (M-14) Approximate Groundwater Flow Directions	4.2-105
4.2-21	Magnetometer Survey Total Magnetic Field — Site M-14	4.2-115
4.2-22	Magnetometer Survey Magnetic Gradient — Site M-14	4.2-117
4.2-23	Water Tank (M-15) Sampling Locations	4.2-123
4.2-24	Water Tank (M-15) Distribution of Contaminants in Site Soil	4.2-124
4.2-25	Former Pesticide Storage Building (M-16) Sampling Locations	4.2-133
4.2-26	Former Pesticide Storage Building (M-16) Approximate Groundwater Flow Directions	4.2-135
4.2-27	Former Pesticide Storage Building (M-16) Distribution of Contaminants in Site Soil	4.2-137
4.2-28	Former Training Area (M-18) Sampling Locations	4.2-151
4.2-29	Electromagnetic Survey Quadrature Component — Site M-18	4.2-153

LIST OF FIGURES (Continued)

Fi	gure No.	<u>Title</u>	Page
	4.2-30	Electromagnetic Survey in Phase Component — Site M-18	4.2-155
	4.2-30A	Radar Profile Depicting Potential UST at Site M-18	4.2-157
	4.2-31	Former Training Area (M-18) Approximate Groundwater Flow Directions	4.2-159
	4.2-32	Former Training Area (M-18) Distribution of Contaminants in Site Soil and Groundwater	4.2-161
	4.2-33	Former Sanitary Treatment Plant (AOC-3) Soil and Sediment Sampling Locations	4.2-169
	4.2-34	Pre-1941 Sanitary Treatment Plant (Distribution of Contaminants in Site Sediment)	4.2-175
	4.2-35	Main Post Transformer Site Sample Locations	4.2-181
	4.3-1	Charles Wood Site Location Map	4.3-9
	4.3-2	Charles Wood Background Sample Locations	4.3-11
	4.3-3	Acid Neutralization Lime Pits (CW-1 and CW-2) Sampling Locations	4.3-21
	4.3-4	Acid Neutralization Lime Pits (CW-1 and CW-2) Approximate Groundwater Flow Directions	4.3-23
	4.3-5	Acid Neutralization Lime Pits (CW-1 and CW-2) Distribution of Contaminants in Site Soil and Groundwater	4.3-25
	4.3-6	Landfills 3 (CW-3) and 3A (CW-3A)	4.3-37
	4.3-7	Electromagnetic Survey Quadrature Component — Site CW-3A	4.3-41
	4.3-8	Electromagnetic Survey in Phase Component — Site CW-3A	4.3-43
	4.3-9)	Magnetometer Survey Total Magnetic Field — Site CW-3A	4.3-45
	4.3-10	Magnetometer Survey Magnetic Gradient — Site CW-3A	4.3-47
	4.3-10A	Radar Profile Showing Subsurface Anomaly at Site CW-3A	4.3-49

LIST OF FIGURES (Continued)

Figure No.	<u>Title</u>	Page
4.3-11	Small Arms Range (CW-4) and Former Sanitary Treatment Plant (CW-5) Sampling Locations	4.3-55
4.3-12	Small Arms Range (CW-4) and Former Sanitary Treatment Plant (CW-5) Distribution of Contaminants in Site Soils	4.3-57
4.3-13	Pesticide Storage Building (CW-6) and Sludge Dump (CW-9) Sampling Locations	4.3-73
4.3-14	Pesticide Storage Building (CW-6) and Sludge Dump (CW-9) Approximate Groundwater Flow Directions	4.3-75
4.3-15	Pesticide Storage Building (CW-6) and Sludge Dump (CW-9) Distribution of Contaminants in Site Soil	4.3-77
4.3-16	Soil Boring Locations — Former Hazardous Waste Storage Area (AOC-7)	4.3-91
4.3-17	Charles Wood Transformer Site Sample Locations	4.3-97
4.3-18	Extent of Remediation at Transformer Site — Building 2000	4.3-99

Table No.	<u>Title</u>	Page
2.5-1	Geologic and Hydrogeologic Units in the New Jersey Coastal Plain	2-13
2.7-1	A Partial List of Trees and Shrubs Found in Monmouth County	2-17
2.7-2	Mammals Found in Monmouth County	2-18
2.7-3	Reptiles and Amphibians Found in Monmouth County	2-19
2.7-4	Endangered Birds and Very Rare Fish Found in Monmouth County	2-20
3.3-1	Summary of Surface-Water Field Parameters	3-8
3.5-1	Sampling at Former PCB Transformer Sites	3-11
3.6-1	Main Post and Charles Wood Soil Sampling Analytical Parameters	3-17
3.7-1	Main Post Well Completion Summary	3-20
3.7-2	Charles Wood Well Completion Summary	3-21
3.8-1	Main Post and Charles Wood Sampling Parameters Table for February and March 1995 Sampling Rounds	3-24
4.1-1	NJDEP Groundwater Quality Criteria — Class II-A and Practical Quantitation Levels — February 1993	4.1-2
4.1-2	NJDEP Soil Cleanup Criteria — February 1994	4.1-6
4.1-3	Surface-Water Quality Standards for Fresh and Saline Waters	4.1-11
4.1-4	Sediment Guidance Values for Detected Contaminants	4.1-15
4.1-5	Potentially Applicable PCB Cleanup Levels	÷ 4.1-16
4.1-6	Main Post — Summary of Site-Specific and Monmouth County Soil and Groundwater Maximum Background Concentrations	4.1-19
4.1-7	Charles Wood — Summary of Site-Specific and Monmouth County Soil and Groundwater Maximum Background Concentrations	4.1-20
4.1-8	Main Post Surface-Water and Sediment Maximum Background Concentrations	4.1-25

LIST OF TABLES (Continued)

Table No.	<u>Title</u>	<u>Page</u>
4.1-9	Charles Wood Surface-Water and Sediment Maximum Background Concentrations	4.1-26
4.2-1	Site Investigation Summary — Main Post	4.2-2
4.2-2	Differences Between the Proposed and Actual Work at Main Post	4.2-4
4.2-3	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-2	4.2-18
4.2-4	Summary of Detected Compounds in Site Surface Water — Total and Soluble — Site M-2	4.2-20
4.2-5	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-3	4.2-36
4.2-6	Summary of Detected Compounds in Site Surface Water — Total and Soluble — Site M-3	4.2-39
4.2-7	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-4	4.2-59
4.2-8	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-5	4.2-65
4.2-9	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-8	4.2-74
4.2-10	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-12	4.2-9 0
4.2-11	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-14	4.2-110
4.2-12	Summary of Detected Compounds in Surface Water — Total and Soluble — Site M-14	4.2-112
4.2-13	Summary of Detected Compounds in Soil — Site M-15	4.2-120
4.2-14	Summary of Detected Compounds in Soil — Site M-16	4.2-127

LIST OF TABLES (Continued)

Table No.	<u>Title</u>	<u>Page</u>
4.2-15	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-16	4.2-130
4.2-16	Summary of Detected Compounds in Soil — Site M-18 (VOCs and TPH Only)	4.2-143
4.2-17	Summary of Detected Compounds in Soils — Site M-18 Sample SB06-A02	4.2-144
4.2-18	Summary of Average Concentrations of Detected Compounds in Groundwater — Site M-18	4.2-146
4.2-19	Summary of Detected Compounds in Soil — Site AOC-3	4.2-165
4.2-20	Summary of Detected Compounds in Sediment — Site AOC-3	4.2-167
4.2-21	Summary of Detected Compounds in Sediment — Site Pre-1941 Sanitary Treatment Plant	4.2-172
4.2-22	Results of Transformer Site Sampling on Main Post	4.2-178
4.3-1	Site Investigation Summary — Charles Wood	4.3-2
4.3-2	Differences Between Proposed and Actual Work at Charles Wood	4.3-4
4.3-3	Summary of Detected Compounds in Soil — Site CW-1	4.3-16
4.3-4	Summary of Average Concentrations of Detected Compounds in Groundwater — Site CW-1	4.3-17
4.3-5	Summary of Detected Compounds in Soil — Site CW-2	4.3-30
4.3-6	Summary of Average Concentrations of Detected Compounds in Groundwater — Site CW-2	4.3-32
4.3-7	Summary of Detected Compounds in Soil — Site CW-4	4.3-53
4.3-8	Summary of Detected Compounds in Soil — Site CW-5	4.3-61
4.3-9	Summary of Detected Compounds in Sediment — Site CW-5	4.3-64

<u> Table No.</u>	<u>Title</u>	<u>Page</u>
4.3-10	Summary of Detected Compounds in Soil — Site CW-6	4.3-68
4.3-11	Summary of Average Concentrations of Detected Compounds in Groundwater — Site CW-6	4.3-70
4.3-12	Summary of Detected Compounds in Soil from Boring Location SB-01 — Site CW-9	4.3-81
4.3-13	Summary of Detected Compounds in Soil from Surface Locations — Site CW-9	4.3-82
4.3-14	Summary of Average Concentrations of Detected Compounds in Groundwater — Site CW-9	4.3-84
4.3-15	Summary of Detected Compounds in Soil — Site AOC-7 (CW-7)	4.3-89
4.3-16	Results of Transformer Site Sampling on Charles Wood	4.3-94
5.1-1	Analytical Methods for Sample Analysis	5-2
5.1-2	Summary of Sample Containers, Volume, Preservation, and Maximum Holding Times	5-3
5.3-1	Main Post Samples Collected	5-11
5.3-2	Charles Wood Samples Collected	5-12
5.3-3	Summary of Field/Rinsate and Trip Blanks	5-13
5.3-4	Duplicate Sample Data Within Given Ranges of Percent Variation	5-17
5.5-1	Compounds for Which the Analytical Detection Limit Exceeds NJDEP Remediation Standards	5-20
6.1-1	Main Post Site Summary and Recommendations	6-2
6.2-1	Charles Wood Site Summary and Recommendations	6-20

EXECUTIVE SUMMARY

BACKGROUND

The U.S. Army Corps of Engineers (USACE), Baltimore District, contracted Roy F. Weston, Inc. (WESTON®) to perform a field investigation at Fort Monmouth, NJ. This investigation was conducted at two separate areas of Fort Monmouth, i.e., the Main Post and Charles Wood. Suspected hazardous waste sites were initially identified at Fort Monmouth in a report prepared by the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) in 1980. This report identified 37 sites with known or suspected waste materials on the Main Post and the two subposts (Charles Wood and Evans Area). A background investigation was conducted of the 37 sites and 8 additional sites that were identified by Fort Monmouth and the New Jersey Department of Environmental Protection (NJDEP). WESTON's recommendations were described in a report titled *Investigation of Suspected Hazardous Waste Sites at Fort Monmouth, New Jersey*. Additional investigations (including sampling and other field work) were recommended at 22 of the sites on the Main Post and Charles Wood areas (WESTON, 1993). NJDEP approved the recommendations on 20 April 1995. Additional investigations were also recommended at the Evans Area, but since the Evans Area will be closed, further investigations there will be completed under the Base Realignment and Closure (BRAC) program.

This report presents the results of field investigation activities that were performed at 13 sites at the Main Post area and 8 sites at the Charles Wood area. Field investigation activities were performed between November 1994 and March 1995. The field investigation activities included surface geophysical investigations, sediment and surface-water sampling, transformer site sampling, surface and subsurface soil sampling, groundwater monitor well installation and sampling, and tidal monitoring. At one site in the Charles Wood area (CW-3) the presence of construction rubble prohibited sample collection as planned. The rubble was removed in June 1995 and exploratory trenches are planned at this site.

The geophysical investigations were performed between 29 November and 15 December 1994 to delineate the landfill boundaries at Main Post areas M-3, M-12, M-14, and M-18, and at

Charles Wood area CW-3A. The sediment and surface-water samples were collected on 1 and 2 December 1994 from locations along Parkers Creek on the Main Post and in a tributary to Wampum Brook on the Charles Wood site. The purpose of collecting the surface-water and sediment samples was to evaluate the potential impact of the areas of concern on sediment and surface water, and to confirm sample results collected as part of a previous investigation. The sampling of eight transformer areas at Main Post and three transformer areas at Charles Wood was conducted on 1 and 2 December 1994. The transformer area sampling consisted of collection of concrete chips and soil samples from areas potentially impacted by leaking transformers.

Subsurface soil samples were collected as part of soil boring and monitor well installation program, which was conducted between 13 December 1994 and 23 January 1995.

Soil borings were completed at the following Main Post sites: M-16, M-18, and AOC-3; and at Charles Wood sites: CW-1, CW-2, CW-4, CW-5, CW-6, CW-9, and AOC-7. A total of 45 shallow groundwater monitor wells were installed and developed at both the Main Post and Charles Wood areas. Additionally, at Landfill 8 (M-8), a total of 11 previously installed wells were abandoned because of suspect well integrity (six 4-in. diameter monitor wells and five 2-in. diameter piezometers).

Groundwater monitor wells were sampled twice. Both rounds of sampling were conducted in conjunction with a 72-hr tidal monitoring study to evaluate the effect of tidal fluctuations on water levels in site monitor wells. Round 1 tidal monitoring was performed on 30 January to 3 February 1995, followed by round 1 of groundwater sampling on 13 to 22 February 1995. Round 2 tidal monitoring was performed on 20 to 24 March 1995, which was preceded by round 2 groundwater sampling on 7 to 15 March 1995. Two existing monitor wells, one at site M-18 on the Main Post, and one at site CW-6 on Charles Wood, were sampled for two rounds in May 1995. The two rounds of groundwater sampling were conducted within 30 days of each other as specified in the *Technical Requirements for Site Remediation* (NJAC 7:26) to provide for averaging the analytical results.

11/29/95

The concentrations were then compared to the NJDEP criteria and then to maximum background concentrations. Background concentrations are based on sampling at on-site background locations and a review of Monmouth County data.

The results of and recommendations for the investigated sites follow.

MAIN POST

<u>M-2</u>: Chlorobenzene concentrations were detected in all three wells indicating a potential upgradient source. Other volatile organic compounds (VOCs) were detected in surface-water samples. Samples will be collected on a long-term basis from existing groundwater and surface-water sampling locations.

M-3: Low chlorobenzene concentrations were detected in one downgradient well. No surface-water concentrations exceeded NJDEP criteria and background. Samples will be collected on a long-term basis from existing groundwater and surface-water sampling locations. Additionally, a partially exposed drum was observed in the northeast corner of the site. The location of the exposed drum will be investigated by excavation.

<u>M-4</u>: One pesticide compound was detected at a concentration just above the NJDEP Groundwater Quality Criteria (GWQC) in the upgradient well in both the routine and duplicate samples. The pesticide was not detected in downgradient monitor wells. Existing monitor wells will be sampled on a long-term basis.

<u>M-5</u>: Tetrachloroethene (PCE) was detected in the upgradient well. Existing monitor wells will be sampled on a long-term basis.

<u>M-8</u>: VOCs were detected in upgradient and downgradient wells. Existing monitor wells will be sampled on a long-term basis.

<u>M-12</u>: Compounds of concern were not detected in groundwater samples collected at the site. Existing monitor wells will be sampled on a long-term basis.

<u>M-14</u>: No compounds of concern were detected in groundwater samples. Compounds of concern were not detected in surface-water samples collected at the site. Existing monitor wells and surface-water sampling locations will be sampled on a long-term basis.

M-15: Pesticides, lead, cadmium, and zinc were detected in soil samples collected near the water tank. Paint chips and affected soil will be removed and confirmation samples will be collected following removal.

M-16: Compounds of concern were not detected in the groundwater samples collected at the site.

Pesticide concentrations were detected in soil samples collected around the former pesticide storage building. The contaminated soil will be excavated in conjunction with confirmatory sampling and the monitor well will be abandoned.

<u>M-18</u>: Semivolatile organic compound (SVOC) concentrations were detected in soil samples collected from one soil boring and pesticides were detected in groundwater samples from one monitor well. Geophysical results indicate an area where anomalous readings may indicate an underground storage tank (UST). Trenching will be performed at the suspected UST location and the SVOC-contaminated soil will be removed at the soil boring location. Additionally, the monitor wells will be sampled on a long-term basis.

AOC-3: Former Main Post Sanitary Treatment Plant (AOC-3): No compounds of concern were identified in soil borings and sediment samples. No additional action will be taken.

<u>STP</u>: <u>Pre-1941 Sanitary Treatment Plant</u>: Metals were detected in a sediment sample at the outfall of the pre-1941 sanitary treatment plant (STP). No further action will be taken because access to the site is restricted.

<u>PCB Transformers—Main Post</u>: Polychlorinated biphenyl (PCB) levels in stained concrete were found to exceed NJDEP criteria in three indoor vaults. PCBs were also detected above applicable

soil standards in the soil beneath one pole-mounted transformer near Building 292. Since the indoor vaults are normally locked and access is restricted, remedial work will be performed when the transformers are removed from service and the stained areas are made accessible. In addition, the soil beneath the former location of the pole-mounted transformer will be resampled to determine the extent of contamination.

CHARLES WOOD AREA

<u>CW-1</u>: Compounds of concern were not detected in soil samples. VOC concentrations were detected in groundwater samples from three of the four wells. The extent of VOC concentrations in groundwater will be investigated by soil-gas survey techniques. The results of the soil-gas survey will be used to locate two additional monitor wells. The new and existing wells will be sampled on a long-term basis.

<u>CW-2</u>: PCB concentrations were detected slightly above the NJDEP Soil Cleanup Criteria (SCC) in one sample from the 7- to 9-ft interval. VOC concentrations were detected in one well in one of the two sampling rounds. The extent of VOC concentrations in groundwater will be investigated by soil-gas survey techniques. The results of the soil-gas survey will be used to locate two additional monitor wells. The new and existing wells will be sampled on a long-term basis.

<u>CW-3</u>: Investigation activities were not conducted as part of this investigation because of construction rubble that was present at the site during the field effort, which prohibited sample collection as planned. The rubble was removed in June 1995, and exploratory trenches are planned to determine if any subsurface debris or soil staining is present.

<u>CW-3A</u>: The results of the geophysical surveys indicated possible buried material at two areas. Exploratory trenching will be conducted at each area to evaluate the nature of the geophysical anomaly.

<u>CW-4</u>: Lead was detected in one soil sample exceeding background concentrations and the NJDEP SCC. Impacted soils will be removed and confirmation samples will be collected at the base of the excavation.

<u>CW-5</u>: No compounds of concern were identified in soil and sediment samples. No further action will be taken.

<u>CW-6</u>: Dieldrin and cadmium were detected in separate soil samples above NJDEP SCC and site background concentrations. The average concentrations of dieldrin and cadmium in surface soil samples collected at CW-6 and CW-9 do not exceed the NJDEP criteria. Benzene was detected in one monitor well. The existing monitor wells will be sampled on a long-term basis.

<u>CW-9</u>: The average concentration of cadmium in surface soil samples at CW-6 and CW-9 does not exceed the NJDEP criteria. No further action will be taken at this site.

AOC-7: No compounds of concern were identified in soil samples. No further action will be taken at this site.

<u>PCB Transformers—Charles Wood</u>: PCBs were detected above NJDEP criteria in soil samples taken near the former location of a transformer pad (see Figure 4.3-18). The contaminated soil will be removed in conjunction with confirmatory sampling.

REPORT ORGANIZATION

Section 1 of this report is the Introduction and describes project objectives, facility information, site descriptions, sampling strategy, and site history. Section 2, Environmental Setting, summarizes environmental conditions such as climate, topography, surface-water drainage, soils, geology, hydrogeology, vegetation, and wildlife. Section 3, Investigation Activities, describes the procedures and methodologies used for the various site investigation activities. Section 4 summarizes the results of the investigation. Section 5 documents the data quality objectives (DQOs) and quality control (QC) procedures. Section 6 presents site-specific conclusions and recommendations. Field investigation data are presented in the appendices. Ground-penetrating

radar (GPR) profiles are contained in a separate volume (Appendix F), and are available upon request.

SECTION 1 INTRODUCTION

1.1 PROJECT OBJECTIVES

The objectives of this investigation are as follows:

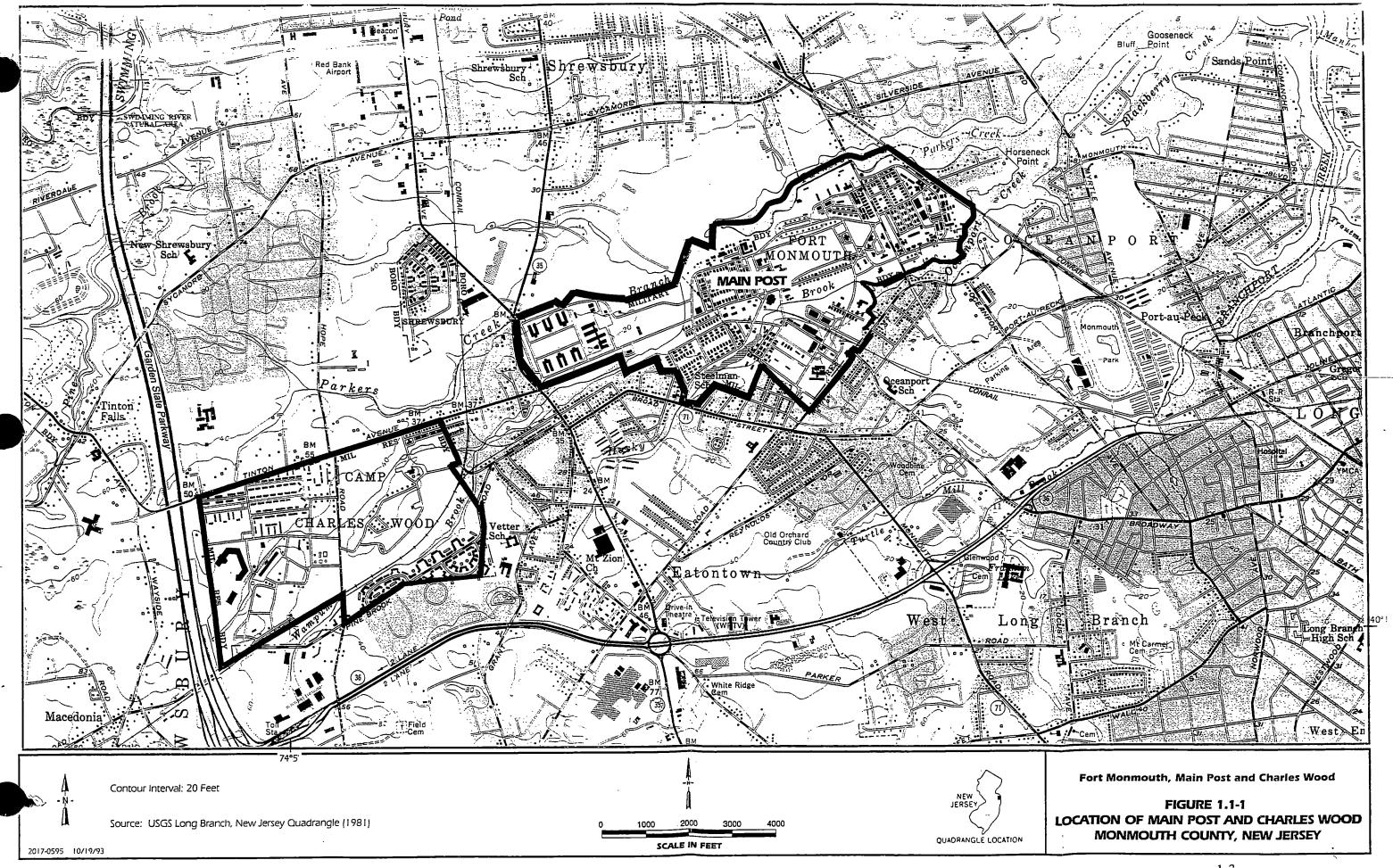
- Perform site investigations to determine if contamination exists, and, if present, to evaluate the extent and degree of contamination at the 22 sites (presented in Figure 1.1-1). These sites were originally identified as potential hazardous waste sites in the Installation Assessment (IA) (USATHAMA, 1980).
- Evaluate the results of the investigation and compare with the following criteria:
 - New Jersey Soil Cleanup Guidance Criteria, 3 February 1994, and winter 1995.
 - NJDEP Groundwater Quality Standards, February 1993.
 - NJDEP Surface-Water Quality Standard, December 1993.
 - Cleanup Standard for Contaminated Sites, New Jersey Administrative Code 7:26D (proposed and withdrawn).
 - NJDEP Sediment Quality Standards, 1991, or marine/estuarine biological effects screening levels (Long et al., 1995).
- Recommend one of four alternatives for each site:
 - 1. No additional investigation or remediation is required.
 - 2. Additional field investigations are necessary.
 - 3. Conduct long-term groundwater and/or surface-water monitoring.
 - 4. Sufficient data exist to proceed with remedial design and interim or final remedial action.

Refer to the Executive Summary for background information regarding this effort.

WESTON performed the investigation activities as set forth in the U.S. Army Corps of Engineers (USACE) Scopes of Work dated 10 August 1994 for Charles Wood and 12 August 1994 for Main Post. Site investigation activities included:

- Planning documents preparation:
 - Chemical Data Acquisition Plan and Field Sampling Plan (CDAP/FSP).
 - Safety, Health and Emergency Response Plan (SHERP).
- Field investigations:
 - Geophysical investigation.
 - Sediment sampling.
 - Surface-water sampling.
 - Surface and subsurface soil sampling.
 - Transformer site sampling.
 - Groundwater well installation and sampling.
 - Tidal monitoring.
- Report preparation:
 - Draft and final site investigation reports.

1.2 FACILITY DESCRIPTION


1.2.1 Owner/Operator Information

Fort Monmouth is a government-owned, government-operated (GOGO) military installation that provides command, administrative, and logistical support for Headquarters, U.S. Army Communications and Electronics Command (CECOM).

1.2.2 Location of Fort Monmouth

Fort Monmouth is located in the central-eastern portion of New Jersey in Monmouth County (see Figure 1.1-1). The installation contains two subposts (Charles Wood Area and Evans Area), in addition to the Main Post, which are located within a 12-mile radius of the Main Post. Descriptions of the Main Post and Charles Wood are presented in the subsections that follow.

The Evans Area will be handled under the Base Realignment and Closure (BRAC) Program and will not be discussed in this report.

1.2.2.1 Main Post

The Main Post (Figure 1.1-1) encompasses an area of approximately 630 acres and is bounded by State Highway 35 to the west, Parkers Creek and Lafetra Creek to the north, the New Jersey Transit Railroad to the east, and a residential neighborhood to the south. The Main Post provides supporting administrative, training, and housing functions as well as many of the community facilities for Fort Monmouth.

1.2.2.2 Charles Wood Area

The Charles Wood Area (Figure 1.1-1), is composed of approximately 511 acres, and is located 1 mile west of the Main Post and is bounded by Tinton Avenue to the north, residential development and Pine Brook Road to the south, and the Garden State Parkway to the west. This area is used primarily for research and development (R&D), and testing, and provides the greatest number of housing units available on-post.

1.2.3 Mission Statement

The primary mission of Fort Monmouth is to provide command, administrative, and logistical support for Headquarters, CECOM. CECOM is a major subordinate command of the U.S. Army Materiel Command (AMC) and is the host tenant. The support provided is used by tenant activities in the performance of R&D, procurement, and production of prototype electronic communication material for use by the U.S. Armed Forces.

The major tenant activities to which Headquarters, CECOM is the host tenant include:

- U.S. Army Laboratory Command (LABCOM)
- U.S. Army Aviation Research and Development Activity (AVRADA)

- U.S. Army Information System Management Agency (ISMA)
- Joint Tactical Communications Office (TRI-TAC)
- U.S. Army Chaplain Board
- U.S. Army Chaplain Center and School (USACHCS)
- U.S. Army Military Preparatory School (USAMPS)
- U.S. Army Medical Department Activities (MEDDAC)
- U.S. Army Dental Activity (DENTAC)
- U.S. Army Audit Agency
- Small Business Administration (SBA)
- U.S. Army Information Systems Command (ISC)
- U.S. Army Special Security Detachment
- 902nd Military Intelligence Group
- U.S. Army Criminal Investigation Command
- U.S. Army Commissary
- U.S. Army Newark District Recruiting Command
- U.S. Army Corps of Engineers (USACE), New York District
- Defense Contract Administration Services Management Area, Springfield District
- Defense Investigation Services (DIS)
- Defense Contract Audit Agency (DCAA)
- 513th Military Intelligence Brigade
- Joint Interface Test Force
- 535th Engineer Detachment
- 54th Ordnance Detachment

1.2.4 History of Fort Monmouth

This subsection presents a history of Fort Monmouth with emphasis on environmentally significant activities. The subsection is based primarily on the books, A Concise History of Fort Monmouth, New Jersey, and Fort Monmouth History and Place Names, 1917-1959.

The Main Post of Fort Monmouth was established on 17 June 1917 as Camp Little Silver. The site of the Main Post had formerly been a horse racetrack, but the track had not been used since 1890. The name of the Camp was changed after 3 months to Camp Alfred Vail. The initial mission of the Camp was to train Signal Corps operators for service in World War I. In the first 19 months of the Camp's existence, 129 semipermanent structures were built, a tent camp was established on the site of a former swamp, and a parade ground was established on the site of a former marsh. A radio laboratory and an airfield were developed in 1918. After the war, Camp Vail was designated as the site of the Signal Corps School, the only training area for Signal Corpsmen in the country. All but four of the World War I structures were demolished by 1924.

In 1925 the facility became a permanent post and its name was changed to Fort Monmouth. The primary mission of Fort Monmouth continued to be Signal Corps training and electronics research. In 1934 the laboratory was consolidated in a new building, Squier Laboratory (Building 283), and research on radios and radar continued. During World War II, the pace of training increased tremendously at Fort Monmouth. The expanded laboratory effort was accomplished by starting laboratories at other Army facilities. Squier Laboratory continued to be the principal laboratory on Main Post until 1954, after which laboratory operations moved to Charles Wood. In 1955 and 1956, 72 World War II wooden structures were demolished to accommodate permanent structures. These new buildings were used for residential, administration, commercial, and recreational purposes. A small number of additional administrative buildings were constructed during the 1970s and 1980s.

Camp Charles Wood was purchased in 1941 by the U.S. Army and opened in 1942. The eastern half of the property was formerly a golf course, and the western half was residential and

farmland. During World War II, the Camp was used for training Signal Corpsmen. Antenna shelters were constructed on 26.5 acres of land and used by the Signal Corps Laboratory for R&D purposes. This operation was placed under the command of the Army Air Force until 1951, when the operation moved to another post. Signal Corps training ceased after World War II.

A new R&D laboratory, the Hexagon (Building 2700), was completed in 1954. Research activities that had formerly been conducted at Squier Laboratory on the Main Post, and some activities from the Evans Area, were transferred to Charles Wood. The laboratory continued to develop electronic equipment. A large amount of residential housing was built from 1953 to 1970. In 1956, 90 World War II wooden structures were razed. The Pulse Power Laboratory was built in the early 1980s.

The document, A Concise History of Fort Monmouth, New Jersey, describes a number of R&D activities that were performed by the laboratories at Fort Monmouth. The document does not generally say where these activities were conducted. A partial list of research activities that were conducted in the Fort Monmouth laboratories includes:

- Radios, including vacuum tubes.
- Radar.
- Field TV cameras.
- Radiation dosimeters.
- Satellite instrumentation.
- Solar batteries.
- Laser communication, range-finding, and relay devices.
- Microelectronics.
- Night vision devices.
- Defibrillator pacemakers.
- Lithium batteries.

SECTION 2 ENVIRONMENTAL SETTING

SECTION 2

ENVIRONMENTAL SETTING

2.1 CLIMATE

The temperate-humid climate of Monmouth County, NJ, is characteristic of the temperate zone of the Mid-Atlantic states. The mean annual temperature for Monmouth County is 53 °F; the summers are generally warm, with an average temperature of 72 °F and a maximum temperature of 103 °F, recorded in July 1954. Winters are moderate, with an average temperature of 33 °F. The winter temperatures rarely drop below 0 °F, although the lowest recorded temperature was -8 °F, recorded at Freehold, NJ in February 1961 (Jablonski and Baumley, 1989).

Precipitation in Monmouth County averages 45.18 inches per year; slightly more than half the total annual precipitation falls between April and September (Jablonski and Baumley, 1989). Thunderstorms generally occur in the summer and may combine high winds with heavy rainfall. Heavy rains have occurred in connection with hurricanes or tropical storms that move northward along the Mid-Atlantic coast. Snow has fallen in Monmouth County in every month between October and April. The average seasonal snowfall is 25 inches, with the greatest amounts falling in December, January, and February (Jablonski and Baumley, 1989).

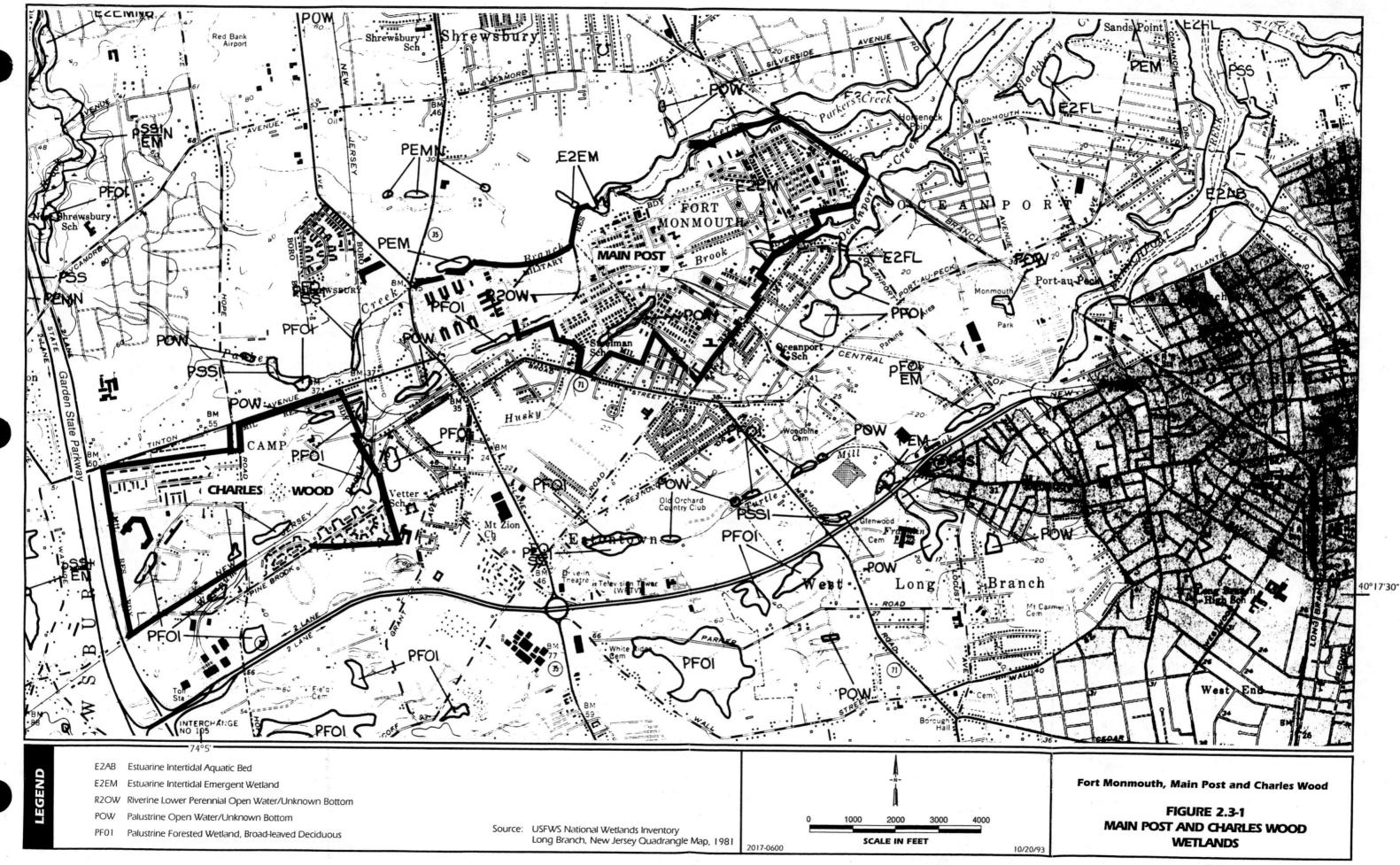
2.2 TOPOGRAPHY

2.2.1 Main Post

The land surface at the Main Post is relatively flat and ranges in elevation from 4 ft above mean sea level (msl) in the east at Oceanport Creek to 32 ft msl at the western end of the post, near Highway 35. The eastern half of the post is generally 10 ft msl in elevation. The greatest elevation is at Landfill 8, located on Parkers Creek, and along Lafetra Creek, Mill Creek, and Husky Brook.

2.2.2 Charles Wood

At Charles Wood the land surface slopes from 72 ft msl in the southwest, to 20 ft msl at the eastern end of the golf course. In general, the southwestern corner of Charles Wood is gently rolling and has the greatest relief.


2.3 SURFACE-WATER DRAINAGE AND WETLANDS

2.3.1 Main Post

Surface-water runoff from the western part of the Main Post flows into Lafetra Creek to the north or into Mill Creek to the south. The names of streams indicated on U.S. Army site maps are used in this report. The USGS map (Figure 1.1-1) shows Lafetra Creek as Parkers Creek Branch and Mill Creek as Wampum Brook. Both Mill Creek and Lafetra Creek originate off-post. Mill Creek flows along the southern boundary of Main Post until it turns north just past the Auto Craft Shop. Mill Creek is channelized and flows past several landfills. Lafetra Creek forms the northern boundary of the Main Post and joins Mill Creek to form Parkers Creek. Parkers Creek flows eastward along the northern boundary and joins Oceanport Creek east of the post. Most of Parkers Creek, Lafetra Creek, and Mill Creek are tidally influenced.

Husky Brook originates off-post and, shortly after it flows onto the post, enters Husky Brook Lake. Surface-water drainage from the southern half of the post flows into Husky Brook and Husky Brook Lake through a series of drainage ditches and outfalls. Husky Brook exits Husky Brook Lake and flows into Oceanport Creek, which forms the southern boundary of the eastern post area. Oceanport Creek and Husky Brook are tidally influenced below Husky Brook Lake.

The U.S. Fish and Wildlife Service (FWS) National Wetland Inventory Long Branch quadrangle maps indicated the presence of wetlands at the Main Post (Figure 2.3-1). Parkers and Oceanport Creeks are classified as estuarine intertidal aquatic beds. The area of Parkers Creek northwest of Building 294 and the part of Oceanport Creek/Husky Brook west of Murray Drive and east of Building 551 are classified as estuarine intertidal emergent wetlands. Lafetra Creek and

Mill Creek are classified as riverine lower perennial open water/unknown bottom. Husky Brook Lake is classified as palustrine open water/unknown bottom.

2.3.2 Charles Wood

The Charles Wood area is drained principally by two unnamed tributaries of Wampum Brook; one tributary flows eastward through the center of the camp, and the other flows along the southern boundary (Figure 1.1-1). East of Charles Wood, Wampum Brook is joined by several other unnamed tributaries before it becomes Wampum Lake. Wampum Lake discharges into Mill Creek, which flows through Main Post. Some runoff from the northwestern part of the golf course flows into Lafetra Creek, which is located just north of Tinton Avenue.

At Charles Wood, several wetland areas were identified on the FWS National Wetland Inventory Long Branch quadrangle map (Figure 2.3-1). The lake on the golf course is classified as palustrine open water/unknown bottom. Several areas along the unnamed tributaries to Wampum Brook are classified palustrine forested wetland, broad-leaved deciduous.

2.4 **SOILS**

2.4.1 Main Post

According to the Monmouth County Soil Survey (MCSS) (Jablonski and Baumley, 1989), much of the Main Post is covered by urban land (developed land with disturbed soils). The following soil series and classification units are mapped in the Main Post area:

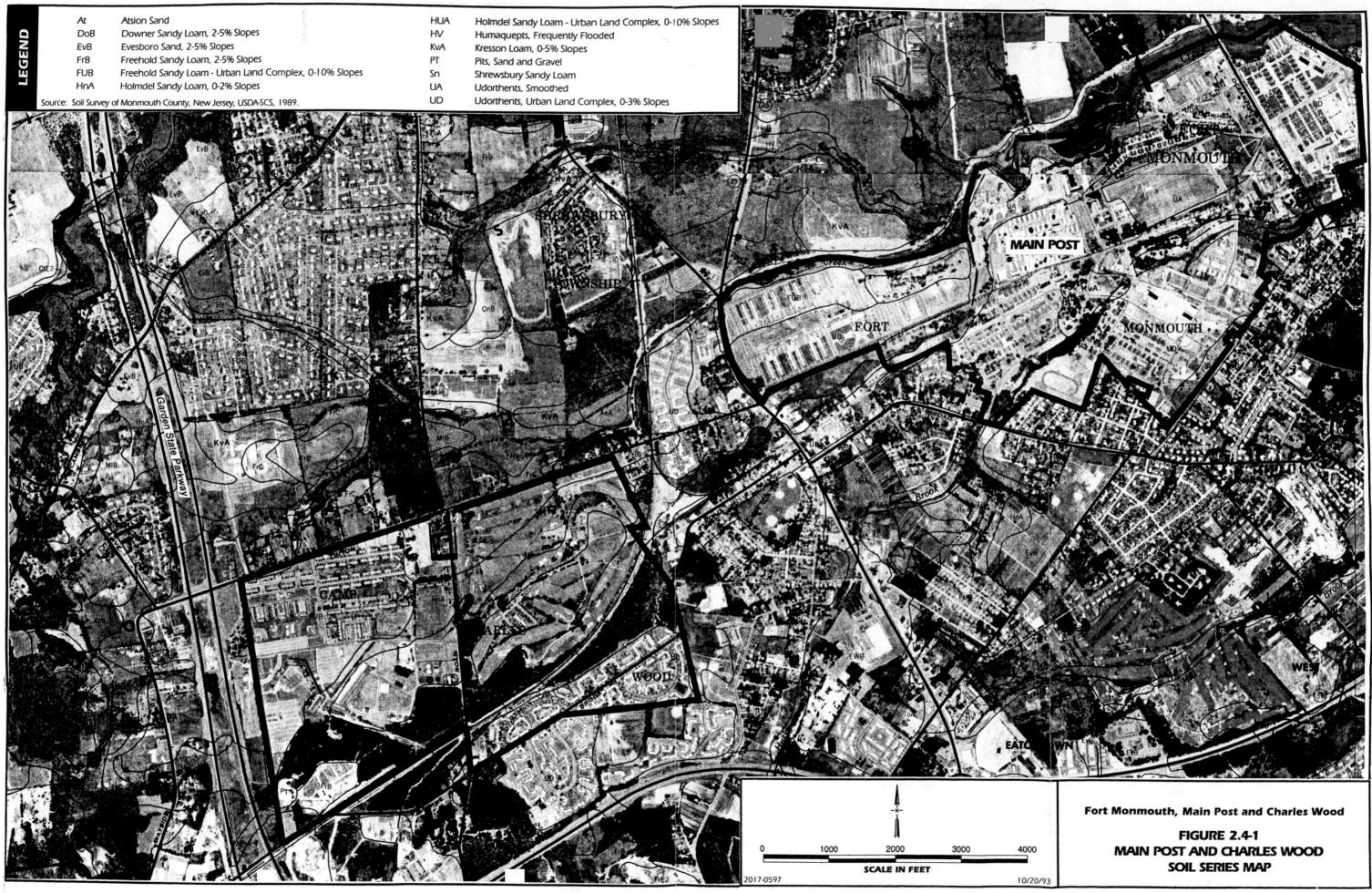

- DoB Downer sandy loam, 2 to 5% slopes
- FrB Freehold sandy loam, 2 to 5% slopes
- FUB Freehold sandy loam urban land complex, 0 to 10% slopes
- HV Humaquepts, frequently flooded
- KvA Kresson loam, 0 to 5% slopes
- UA Udorthents, smoothed
- UD Udorthents urban land complex, 0 to 3% slopes

Figure 2.4-1 illustrates the distribution of these soil series. The Unified Soil Classification (USC) descriptors are shown in parentheses.

Downer series soils are well-drained soils found on uplands and terraces. These soils formed in acid, silty coastal plain sediments. The upper 10 inches are a very friable dark brown sandy loam, which has fine and medium roots and 2% pebbles (sandy silt: SM). The subsoil is 16 inches of strong brown sandy loam with faint clay in bridges between grains, fine and medium roots, and 10% pebbles (sandy silt to sandy clay: SM to SC). The substratum is a strong brown gravelly loamy sand with 35% pebbles, which is strongly acidic (sandy silt to sandy clay to poorly graded sand: SM, SC, SP). Permeability is moderate or moderately rapid in the subsoil and moderately rapid in the substratum, and as a result runoff is slow. The available water capacity is moderate. The seasonal high water table is at a depth of greater than 6 feet. The Downer series is represented on-site by the Downer sandy loam, 2 to 5% slopes (DoB). Downer soils are classified as nonhydric (Jablonski and Baumley, 1989).

Freehold soils are well-drained soils that formed in acid, loamy, coastal plain sediments that, by volume, are 1 to 10% glauconite and are found on uplands. The surface layer is a 9-in. thick, dark yellowish-brown sandy loam (sandy silt, sandy clay, silt, clay: SM, SC, ML, CL). The subsoil is 26 inches thick. The upper 16 inches of the subsoil are dark brown sandy loam and sandy clay loam with some glauconite. The lower 10 inches are brown sandy loam with glauconite. The substratum is yellowish-brown loamy sand with much glauconite to a depth of 70 inches (sandy silt: SM). Permeability is moderate in the subsoil and moderate or moderately rapid in the substratum and surface runoff is medium. The available water capacity is high. Two Freehold soils are found at Main Post: Freehold sandy loam, 2 to 5% slopes (FrB), and the Freehold sandy loam — urban land complex, with 0 to 10% slopes (FUB). Urban land consists of areas covered by impermeable surfaces, such as buildings, roads, and parking lots. The FUB soils were mapped as a complex because Freehold soils and urban land are found in an intricate pattern that made it impractical to map the Freehold soil separately. Freehold soils are classified as nonhydric (Jablonski and Baumley, 1989).

Humaquept soils are somewhat poorly to very poorly drained soils formed in stratified, sandy, or loamy sediments of fluvial origin. These soils are located on the flood plain and are subject to flooding several times a year. Humaquept soils are nearly always hydric. These soils differ in stratification from place-to-place. Typically, the surface layer and subsoil consist of stratified layers of sandy loam, loam, and silt loam (sandy silt, silt: SM, ML). The substratum consists of stratified layers of loamy sand, sandy loam, loam, and silt loam (sandy silt, silty clay, poorly graded sand: SM, SC, SP). In some areas, the stratified layers are gravelly or mucky. Permeability is moderate or moderately rapid in the subsoil and the substratum, and as a result runoff is slow. The available water capacity is high. The apparent seasonal high water table is between the surface and 1.5 feet. Organic matter varies from low to high. The soil is subject to frequent flooding in the early spring and during heavy rainfall (Jablonski and Baumley, 1989).

The Kresson loam is a nearly level to gently sloping, somewhat poorly drained, soil found on low divides and in depressions. The surface layer is dark brown loam, 9 inches thick (silty clay, sandy silt, sandy clay: CL, SM, SC). The first 22 inches of the subsoil are mottled olive-brown clay loam, and below that is a mottled olive-gray clay to a depth of 40 inches. The substratum is mottled, dark grayish-brown stratified sandy loam and sandy clay loam to a depth of 60 inches or more. The permeability of this soil is slow in the subsoil and the substratum. The available water capacity is high. The perched seasonal high water table is at a depth of 1 to 1.5 feet from December to May. Runoff is slow to medium. Organic content is moderate. The soil on-site is found in areas with 2 to 5% slopes (Jablonski and Baumley, 1989).

Udorthent soils have been altered by excavating or filling (Jablonski and Baumley, 1989). In filled areas, these soils consist of loamy material that is more than 20 in. thick. Filled areas include flood plains, tidal marshes, and areas with moderately well-drained to very poorly drained soils. Some Udorthent soils contain concrete, asphalt, metal, or glass. Two Udorthent soils are found at Main Post: Udorthents, smoothed (UA), which may also include old sand and gravel pits that have been smoothed or filled in, and Udorthents — urban land complex, with 0 to 3% slopes (UD).

2.4.2 Charles Wood

The Monmouth County Soil Survey (Jablonski and Baumley, 1989) identified nine soil types at Charles Wood (Figure 2.4-1) as follows:

- At Atsion sand
- EvB Evesboro sand, 2 to 5% slopes
- FrB Freehold sandy loam, 2 to 5% slopes
- FUB Freehold sandy loam urban land complex, 0 to 10% slopes
- HnA Holmdel sandy loam, 0 to 2% slopes
- HUA Holmdel sandy loam urban land complex, 0 to 5% slopes
- PT Pits, sand, and gravel
- Sn Shrewsbury sandy loam
- UD Udorthents urban land complex, 0 to 3% slopes

Freehold and Udorthents soils were previously discussed in Subsection 2.4.1 and are not discussed in this subsection.

The Atsion sand is a nearly level, poorly drained, soil found in depressional areas and on broad flats. The uppermost 2 inches are matted, partly decomposed organic material and roots with 6 inches of black sand below. The subsurface layer is a 14-in. thick grayish-brown sand (sandy silt to poorly graded sand: SM, SP). The subsoil is a dark reddish-brown loamy sand, 18 in. thick, with approximately 10 inches of mottled brown sand in the lower layer (sandy silt, sandy clay to poorly graded sand: SM, SC, SP). The substratum is a mottled yellowish-brown fine sand to a depth of at least 60 inches. Permeability is moderately rapid or rapid in the subsoil and rapid in the substratum. The available water capacity is low. Between November and June the seasonal high water table ranges from the surface to 1 foot (Jablonski and Baumley, 1989).

Evesboro soils are excessively drained soils that developed in acid, sandy, coastal plain sediments located on uplands. These soils have a 4-in. surface layer where the upper 2 inches are matted decomposed organic matter with 2 inches of grayish-brown sand in the lower layer. The subsurface layer is 5 inches of yellowish-brown sand (poorly graded sand to silty sand: SP, SM). The subsoil and substratum are yellowish-brown sand (poorly to well graded sand: SP, SW). Permeability is rapid in the subsoil and substratum. The available water capacity is low. The

seasonal high water table is at a depth of more than 6 feet. Runoff is slow. At Charles Wood, Evesboro soils are represented by the Evesboro sand with 2 to 5% slopes (EvB) (Jablonski and Baumley, 1989).

Holmdel soils are level, moderately well-drained to somewhat poorly drained soils found in depressions and on low divides. The surface layer is a 12-in. thick dark grayish-brown sandy loam (silty sand, sandy silt, sandy clay, clay, silt: SM, SC, CL, ML). The subsoil has two layers: the upper is a yellowish-brown sandy loam, 12-in. thick, and the lower layer is mottled yellowish-brown sandy clay loam to a depth of 38 inches. The substratum is mottled, yellowish-brown and light olive-brown sand and sandy loam to a depth of at least 60 inches (poorly graded sand, clayey sand: SP, SC). Permeability is moderate in the subsoil and the substratum, and the available water capacity is high. The seasonal high water table ranges from 1.5 to 4 feet between December and May. Runoff is slow. Two Holmdel soils are found at Charles Wood: the Holmdel sandy loam, 0 to 2% slopes (HnA), and the Holmdel sandy loam — urban land complex, with 0 to 5% slopes (HUA) (Jablonski and Baumley, 1989).

Soils classified as Pits, sand and gravel, have been excavated for sand and gravel. These areas are sand with varying amounts of gravel. The properties of these soils vary from place-to-place (Jablonski and Baumley, 1989).

The Shrewsbury sandy loam is a level poorly drained soil found in depressions, along drainageways, and on broad flats. The first inch is dark reddish-brown matted, partly decomposed organic material and roots with 8 inches of black sandy loam below. The subsurface layer is a 4-in. thick dark gray sandy loam (sandy silt, sandy clay, silt, clay: SM, SC, ML, CL). The subsoil has a 9-in. thick mottled grayish-brown sandy clay loam and 9 inches of mottled olive-gray sandy clay loam. The substratum is a mottled dark greenish-gray loamy sand (poorly graded sand, silty sand: SP, SM). Permeability is moderately slow or moderate in the subsoil and moderately rapid or rapid in the substratum, and the available water capacity is high. The seasonal high water table is between the surface and a depth of 1 foot from October to June. Runoff is slow and water ponds on the surface (Jablonski and Baumley, 1989).

3

2.5 GEOLOGY

2.5.1 Regional Geology

Monmouth County lies within the New Jersey section of the Atlantic Coastal Plain physiographic province. Main Post and Charles Wood are located in the Outer Coastal Plain subprovince, or the Outer Lowlands.

In general, New Jersey Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, sand, and gravel. These formations typically strike northeast-southwest with a dip ranging from 10 to 60 feet per mile and were deposited on Precambrian and lower Paleozoic rocks (Zapecza, 1989). Coastal Plain sediments, predominantly derived from deltaic, shallow marine, and continental shelf environments, date from the Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment. More than 20 regional geologic units are present within the sediments of the Coastal Plain (Table 2.5-1). Regressive, upward-coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand), while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations). The thicknesses of these units vary greatly (i.e., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from 0 foot at the Fall Line to greater than 6,500 feet in Cape May County (Brown and Zapecza, 1990).

2.5.2 Local Geology

Based on the regional geologic map (Jablonski, 1968), the Cretaceous Age Red Bank and Tinton Sands outcrop at the Main Post. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at a slope of 35 feet per mile. The upper member of the Red Bank sand (Shrewsbury) is a yellowish-gray to reddish-brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica, and glauconite (Jablonski, 1968). The

2-12

 Table 2.5-1 Geologic and Hydrogeologic Units in the New Jersey Coastal Plain

System	Series	Geologic Unit	Lithology	Hydrogeologic Unit		Hydrologic Characteristics
Quaternary Holocen			Sand, silt, and black mud		lifferentiated	Surficial material, often hydraulically connected
		Beach sand and gravel	Sand, quartz, light-colored, medium- to coarse-grained, pebbly			to underlaying aquifers. Locally some units may act as confining beds. Thicker sands
Pleistoce		Cape May Formation		1		are capable of yielding large quantities of water
Tertiary Miocen		Pensauken				
		Formation Bridgeton		Kirk	wood-Cohansev	A major aquifer system. Groundwater occurs
	,	Formation Beacon Hill	Gravel, quartz, light-colored, sandy		fer system	generally under water-table conditions.
	,	Gravel Cohansey Sand				
	:	Containsey Sand	Sand, quartz, light-colored, medium- to coarse-grained, pebbly; local clay beds			٠
,						
		Kirkwood Formation	Sand, quartz, gray and tan, very fine to medium-grained, micaceous, and dark-colored diatomaceous clay			
				Confi	ining bed — — — — —	Thick diatomaceous clay bed occurs along coast and for a short distance inland. A thin water-
					Grande w-b	bearing sand occurs within the middle of this unit
				-	ining bed	A
					tic City foot sand	A major aquifer along the coast.
						Alloway Clay Member or equivalent.
	Eocene	Piney Point Formation	Sand, quartz, and glauconite, fine- to coarse-grained		Piney Point aquifer	Yields moderate quantities of water locally.
		Shark River Formation	Clay, silty and sandy, glauconitic, green, gray, and brown, fine-grained quartz sand	_		Poorly permeable sediments
		Manasquan	The granted quarte saint	peq		
ł	Paleocene	Formation Vincentown	Sand, quartz, gray and green, fine- to coarse-grained,		Vincentown	Yields small to moderate quantities of water in
		Formation	glauconitic, and brown, clayey, very fossiliferous, glauconite and quartz calcarenite	Vincentown aquifer		and near its outcrop area. Poorly permeable sediments.
		Hornerstown Sand	Sand, clayey, glauconitic, dark green, fine- to coarse-grained			` .
<i>Tretaceous</i>	Upper Cretaceous	Tinton Sand	Sand, quartz, and glauconite, brown and gray, fine- to coarse-grained, clayey, micaceous	ı,	Red Bank Sand	Yields small quantities of water in and near its
		Red Bank Sand				outcrop area.
-		Navesink Formation	Sand, clayey, silty, glauconitic, green and black, medium- to coarse-grained			Poorly permeable sediments.
		Mount Laurel Sand	Sand quarty brown and grow fine to coorse grained eligibility	Wenonah-Mount Laurel aquifer		· A major aquifer.
		Wenonah Formation	Sand, very fine to fine-grained, gray and brown, silty, slightly glauconitic			
		Marshalltown Formation	Clay, silty, dark greenish-gray, glauconitic quartz sand		halitown- nah confining bed	A leaky confining bed.
		Englishtown Formation	Sand, quartz, tan and gray, fine- to medium-grained; local clay beds	Englishtown aquifer system		A major aquifer. Two sand units in Monmouth and Ocean Counties.
		Woodbury Clay	Clay, gray and black, micaceous silt	Merci	nantville-	A major confining bed. Locally the Merchantville
	Merchantville Clay, glauconitic, micaceous, gray and black; locally very fine- formation grained quartz and glauconitic sand				lbury ning bed	Formation may contain a thin water-bearing sand.
Ì	` [Magothy Formation	Sand, quartz, light-gray, fine- to coarse-grained; local beds of dark-gray lignitic clay	tan fer	Upper aquifer	A major aquifer system. In the northern Coastal Plain, the upper aquifer is equivalent to the Old
		Raritan Formation	Sand, quartz, light-gray, fine- to coarse-grained; pebbly, arkosic, red, white, and variegated clay	Potomac-Raritan Magothy aquifer	Confining bed Middle aquifer	Bridge aquifer and the middle aquifer is the equivalent of the Farrington aquifer.
	Lower Cretaceous	Potomac/ Group	Alternating clay, silt, sand, and gravel	otom agot	Confining bed	
	UTELACEOUS		•	₹.	Lower aquifer	
Pre- Cretaceous		Bedrock	Precambrian and lower Paleozoic crystalline rocks, metamorphic schist and gneiss; locally Triassic basalt, sandstone, and shale and Jurassic diabase		ck confining	No wells obtain water from these consolidated rocks, except along the Fall Line.

95P-3382 9/26/95 Ac

Adapted from Zapecza, 1989.

lower member (Sandy Hook) is a dark gray to black medium- to fine-grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish-orange or light brown to moderate brown, and from light olive to grayish olive. Glauconite may constitute 60 to 80% of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton sand is often highly oxidized and iron-oxide encrusted (Minard, 1969).

Both the Tinton sand and the Hornerstown sand (or marl) crop out at Charles Wood. The Hornerstown unconformably overlies the Tinton sand and is a dusky-green to grayish-olive or grayish-olive-green clayey glauconitic sand that may oxidize to moderate reddish-brown and dusky red. The percentage of quartz sand ranges from a few percent to 30%. Approximately half of this formation is composed of silt and clay.

The Kirkwood Formation (part of the Kirkwood-Cohansey system) crops out southeast of the Main Post and dips to the southeast at a slope of 20 feet per mile (Jablonski, 1968). The Kirkwood Formation consists of alternating layers of sand and clay. The upper unit is a light gray to yellowish-brown fine-grained quartz sand with quartz nodules and small pebbles. The lower unit is a brown silt in Monmouth County (Jablonski, 1968).

2.6 HYDROGEOLOGY

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region (Meisler et al., 1988). This groundwater region is underlain by undeformed unconsolidated to semiconsolidated sedimentary deposits. The chemistry of the water near the surface is variable with low dissolved solids and high iron concentrations. The water chemistry in areas underlain by glauconitic sediments (such as the Red Bank and Tinton sands) is dominated by calcium, magnesium, and iron. The sediments in the area of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments.

2-14

The water table aquifer at the Main Post area is identified as part of the "composite confining units," or minor aquifers. The minor aquifers include the Navesink Formation, the Red Bank sand, Tinton sand, Hornerstown sand, Vincentown Formation, the Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation.

According to Jablonski (1968), wells drilled in the Red Bank and Tinton sands produce from 2 to 25 gallons per minute (gpm). Water in these upper hydrogeologic units is typically encountered at shallow depths (2 to 9 ft bgs). However, domestic wells are generally screened deeper in these upper hydrogeologic units. The shallow water table conditions in the Tinton and Red Bank sands, and the similar composition of these sands within the Kirkwood Formation, suggest that the Tinton-Red Bank-Kirkwood sequence forms a single, laterally continuous aquifer. Some well owners have reported acidic water that requires treatment to remove iron. Water in this water table aquifer will flow east toward the Atlantic Ocean. Local topography (stream valleys, etc.) will tend to deflect the flow toward local depressions.

Because of the high silt and clay content, the Hornerstown sand most likely serves as an aquitard or aquiclude rather than as an aquifer. Jablonski (1968) reports that localized areas may yield enough water for domestic use.

2.7 <u>VEGETATION AND WILDLIFE</u>

The information in this subsection was originally reported in the Installation Assessment (IA) (USATHAMA, 1980). Information on vegetation and wildlife of the Evans Area is not discussed in this document, but is presented in the IA.

The Fort Monmouth complex (Main Post and Charles Wood areas) lies within the outer Atlantic Coastal Plain, a region characterized by salt marsh wetlands. Both areas of Fort Monmouth have flood plain salt marshes along or within their boundaries. The ecosystem includes marsh grasses (*Phragmites, Spartina, Distichlis,* and *Scerpus*), small mammals, reptiles, amphibians, and migratory waterfowl. Parkers Creek is an ecologically unique area proximal to Fort Monmouth and its subposts. It is designated as a wildlife habitat bordering the Main Post.

⊞

Tables 2.7-1 through 2.7-4 were adapted from Appendix B of the IA report. Appendix B of the IA report also contains a list of vegetation and wildlife found during a survey of the Naval Weapons Station Earle, located approximately 10 miles from Fort Monmouth. Table 2.7-1 lists trees and shrubs found in Monmouth County. Monmouth County mammals are listed in Table 2.7-2, and reptiles and amphibians found in Monmouth County are listed in Table 2.7-4 lists endangered birds and very rare fish in Monmouth County.

The FWS of the U.S. Department of the Interior (DOI) stated in a letter (included as Appendix E of the IA) that there are no federally listed or proposed threatened or endangered flora or fauna on Fort Monmouth. The letter also contains a list of federally endangered and threatened or candidate species in New Jersey. The Office of Natural Lands Management of NJDEP stated in a letter that there was one observance of a New Jersey listed endangered plant, the clustered sedge, in 1992, but there have been no other observances of federal or state rare species. The letter contained a list of rare species in the general vicinity of each area and in Monmouth County.

A Partial List of Trees and Shrubs Found in Monmouth County

	Trees
White ash	Green ash
Big-toothed aspen	Quaking aspen
Atlantic white cedar	Basswood
American beech	Black birch
Gray birch	Black gum
Box elder	Black cherry
American chestnut	Flowering dogwood
Eastern red cedar	American elm
Eastern hemlock	Pignut hickory
Shagbark hickory	American holly
Ironwood	Black locust
Honey locust	Norway maple
Red maple	Silver maple
Red mulberry	White mulberry
Black oak	Swamp white oak
Chestnut oak	White oak
Pin oak	Willow oak
Pitch pine	Red pine
White pine	Sassafras
Black spruce	Norway spruce
Tree-of-heaven	Water tupelo
Black walnut	Black willow
Crack willow	Weeping willow
	Shrubs
Pink azalea	Swamp azalea
Wild azalea	Southern bayberry
Blackberry	Blackhaw
Blueberry	Common buttonbush
Chokeberry	Sand cherry
Coralberry	Large cranberry
Red osier dogwood	Swamp dogwood
Common elderberry	Fetter bush
Hawthorn	Huckleberry
Inkberry	Mountain laurel
Sweet pepperbush	Raspberry
Shadbush	Spicebush
Staghorn sumac	Poison sumac
Winged sumac	Arrowwood viburnum
Winterberry	Witch hazel

2-17

Mammals Found in Monmouth County

Mammals -						
Opossum	Gray fox					
Smokey shrew	Woodchuck					
Least shrew	Eastern chipmunk					
Short-tail shrew	Eastern gray squirrel					
Starnose mole	Red squirrel					
Eastern mole	Southern flying squirrel					
Keen's myotis (bat)	Beaver					
Little brown myotis	White-footed mouse					
Small-footed myotis	House mouse					
Silver-haired bat	Norway rat					
Eastern pipistrel	Southern bog lemming					
Red bat	Boreal redback vole					
Big brown bat	Meadow vole					
Hoary bat	Pine vole					
Raccoon	Muskrat					
Longtail weasel	Meadow jumping mouse					
Mink	Eastern cottontail rabbit					
River otter	New England cottontail*					
Striped skunk	Virginia white-tailed deer					
Red fox	European hare					

^{*}Candidate for Federal List of Endangered Species.

Reptiles and Amphibians Found in Monmouth County

Rep	otiles		
<u>Lizards</u>			
Northern fence	Five-lined skink		
<u>Turtles</u>	Mud salamander*		
Common snapping Wood* Musk Diamond-backed terrapin Eastern box	Bog* Spotted Eastern mud Eastern painted Red-eared		
<u>Snakes</u>			
Eastern smooth earth Northern brown Eastern garter Eastern hognose Northern ringneck Northern black racer Black rat Scarlet Eastern king	Red-bellied Northern water Eastern ribbon Eastern worm Rough green Northern pine* Corn Eastern milk Timber rattler*		
Ampl	nibians		
Toads			
Eastern spadefoot	Fowlers		
Tree Frogs	•		
Spring peeper Pine barrens*	Gray New Jersey chorus		
True Frogs	•		
Cricket Pickerel Northern leopard Bull	Carpenter Green Wood		

^{*}On list of endangered or threatened species or candidate for Federal List of Endangered Species.

Endangered Birds and Very Rare Fish Found in Monmouth County

	Birds
Bald eagle ^{a,b}	Black skimmer ^b
Peregrine falcon ^a	Least tern ^b
Osprey — Fish hawk — Salt marsh ^b	Eskimo curlew — protected by
Coppershawk	U.S. Government
American bittern ^b	
Barred owl ^b	·
Black call ^b	
Bobolink ^b	
Cooper's hawk ^b	
Grasshopper sparrow ^b	
Great blue heron ^b	
Loggerhead shrike ^b	
Merlin ^b	
Northern harrier ^b	,
Pied-billed grebe ^b	
Piping plover ^b	
Red-shouldered hawk ^b	
Roseate tern ^b	
Savannah sparrow ^b	
Short-eared owl ^b	
Upland sand piper ^b	·
Vesper sparrow	
	Fish
Short nose sturgeon	

^aFederal endangered and threatened species.
^bNew Jersey endangered and threatened species.

SECTION 3 INVESTIGATION ACTIVITIES

SECTION 3

INVESTIGATION ACTIVITIES

The site investigation (SI) at Fort Monmouth was performed in accordance with the CDAP (WESTON, 1994). A description of procedures used during the field investigation is provided in the following subsections.

3.1 GEOPHYSICS

A geophysical investigation was performed as part of the site investigation at Fort Monmouth between 29 November 1994 and 15 December 1994. The investigation was performed at locations within the Main Post and Charles Wood areas using electromagnetic (EM) conductivity, magnetometry (MAG), and/or ground penetrating radar (GPR) surveying methods. The objective of the geophysical investigations was to evaluate the location and extent of the known or suspected waste disposal areas at sites M-3, M-12, M-14, M-18, and CW-3A. The geophysical survey data were used to confirm planned subsequent monitor well and soil boring locations at each area.

Prior to the start of the geophysical investigation, a reference grid was established by a licensed surveyor at 20-ft by 100-ft centers to provide surface control for data collected at each site. The survey grid was established based on a local relative coordinate system using existing monuments and was later surveyed to a state-plane coordinate system. All field data collected at the Main Post and Charles Wood sites were referenced to the established grid coordinates.

3.1.1 <u>Electromagnetic (EM) Terrain Conductivity Surveying Methods</u>

3.1.1.1 Description

An EM survey was conducted at sites M-18 and CW-3A on 1 and 8 December 1994, respectively, using a Geonics, Ltd. EM-31[™] terrain conductivity meter. The EM-31 is battery-powered and operates at a frequency of 9.8 kiloHertz (kHz). This system consists of a transmitting coil (primary field source), receiving coil (sensor), phase-sensing circuits, and an

amplifier. A fixed 3.7-meter intercoil spacing is standard for the EM-31. The instrument measures apparent conductivity in units of milliSiemens per meter (mS/m) in materials with true conductivities ranging up to 1,000 mS/m.

The EM-31 was operated in both the quadrature and in-phase components. The quadrature component is sensitive to conductors with low induction numbers (i.e., low conductivity materials). Relative conductivity values associated with in-phase measurements have a greater sensitivity to buried metal objects.

3.1.1.2 Methodology

Prior to conducting each survey, the EM-31 was calibrated in accordance with the instrument operating manual. No anomalies were observed in the calibration data. After calibration was completed, both the quadrature and in-phase components of the EM field were measured at the sites. Conductivity measurements were obtained in the vertical dipole mode of operation for single layer mapping. The effective depth of exploration associated with this mode of operation is approximately 18 feet (McNeill, 1980b).

The EM-31 was operated in a "continuous" mode along pre-established survey grid lines. Measurements were recorded at 5-ft intervals as the operator traversed the line. These measurements were digitally recorded and stored in memory in an Omni Data Logger™. Random quality assurance/quality control (QA/QC) readings were obtained from the EM-31 analog meter and manually recorded in the field notebook. The data in memory were downloaded from the data logger to a field computer. The computer-generated output files were edited and formatted, then compared against the random QA/QC readings recorded in the field logbook. Based on the QA/QC review of the data, no deficiencies were observed in the digitally recorded data.

Conductivity data point postings and contour plots were prepared from the field data using Geosoft[™] contour plotting software. These maps (presented in Section 4) were interpreted initially for cultural features on the surface, such as fences. If it was determined that anomalies could be attributed solely to surface features, the anomalies were disregarded. The contour plots

3-2

11/22/95

were interpreted with regard to site soil characteristics, site-specific geology, and the suspected presence of buried waste materials. The results of the EM survey are presented and discussed in Section 4.

3.1.2 Magnetic (MAG) Methods

3.1.2.1 Description

The MAG survey was conducted at sites M-3, M-12, M-14, and CW-3A on 6 through 8 December 1994, using a GSM-19 Walking Gradiometer/Magnetometer. The instrument operates on the principle that protons or nuclei of hydrogen atoms in a hydrocarbon fluid behave as spinning magnetic dipoles where the protons are aligned or polarized by an induced current. When the current is removed, the natural spin of the proton causes them to precess about the direction of the earth's ambient magnetic field. This precession generates a small signal with a frequency proportional to the intensity of the total magnetic field. Local perturbations (induced magnetization) generated by anthropogenic (i.e., buried ferrous drums) and natural (i.e., magnetic mineral deposits) features add to the intensity of the ambient magnetic field. The magnetometer measures the vector sum of the earth's magnetic field and the anomalous induced magnetic field in standard nanoTesla (nT) units.

3.1.2.2 Methodology

Prior to conducting the survey, a base station magnetometer was established at each site in an area suspected to be representative of background conditions. The purpose of the base station was to monitor diurnal variations in the regional or "ambient" magnetic field during the actual survey. Both the base station and field magnetometers were calibrated and synchronized in accordance with the manufacturer's operating manual. No anomalies were observed in the calibration data. When calibration was completed, both the total field and magnetic gradient were measured at each station point. Additional QA/QC checks included taking readings at several locations periodically over the survey period to verify the repeatability of field results along with a swing sensor test, which was conducted to identify whether any directional bias existed in the instrument.

Consistent with the EM-31 survey, the magnetometer was operated in a "continuous" mode along the same pre-established survey grid lines. In the continuous mode, MAG measurements were recorded on at least 3-ft spacing intervals as the operator traversed the line. The MAG measurements were digitally recorded and stored in memory in the instrument's data logger.

The data in memory were downloaded from both data loggers to a field computer. Diurnal effects were monitored throughout the survey period but were considered to be negligible relative to the overall range of magnetic data. Therefore, postings of the data points and contour plots of both the total magnetic field and magnetic gradients were prepared from the field data using Geosoft™ contour plotting software. Each magnetic anomaly, as defined by a relatively high vertical gradient, was analyzed with respect to cultural features present on the surface, and the potential for buried ferrous material in the subsurface.

3.1.3 Ground Penetrating Radar (GPR) Methods

3.1.3.1 Description

A GPR survey was conducted at site M-18 on 30 November 1994 and at sites M-3, M-12, M-14, and CW-3A on 9 through 15 December 1994 using a Subsurface Interface Radar[™] (SIR) System 10 model. The System 10 is a computer-controlled, multichannel unit that automatically displays, processes, and records cross-sectional color profiles of the subsurface.

The GPR method uses high frequency radio waves to acquire relatively shallow subsurface information. Short pulses of EM energy are radiated downward into the subsurface from a transmitting antenna. A portion of the energy is then reflected back to a receiving antenna, where variations in the reflected signal are continuously processed by a control unit, graphically recorded, and digitally stored on magnetic tape. The amplitude and frequency of the reflected signal are caused by variations in the electrical properties of subsurface materials. These variations may be caused by natural geologic conditions, such as composition, moisture content, salinity, and structure, as well as manmade objects such as utilities, underground storage tanks (USTs), and other buried objects.

The ability of the GPR system to resolve buried targets depends on the physical size and relative electrical contrast of an object/feature with respect to the surrounding materials. Consequently, not every subsurface feature can be identified using the GPR method. Also, since the GPR investigation is a nonintrusive surface electronic testing method, it is not possible to determine the exact description of subsurface anomalies.

3.1.3.2 Methodology

The GPR system was calibrated to site-specific conditions prior to implementation of the survey. To calibrate the system, either the dielectric constant of the survey medium or the depth to a buried object or interface must be known. The GPR system was field calibrated using an averaged dielectric constant for the survey medium. Based on assumed geologic and site conditions a dielectric constant of approximately 5 for the unsaturated unconsolidated soils and 10 for saturated unconsolidated soils was calculated for the materials underlying the sites. QA/QC checks included collecting a duplicate profile at each site to field-verify the repeatability of results.

The GPR survey was referenced to the surface control grid that was previously established at each site. Surveying was accomplished by traversing each area with a 300-megaHertz (MHz) antenna along the same grid lines previously surveyed with the EM and MAG. The product of the GPR survey is a series of real-time subsurface field profiles. The GPR data profiles were processed and interpreted using the GSSI RADAN3 software package. Select color profiles were reproduced in the office from the data tape to enhance subtle features that were not easily recognized on the gray scale of the black-and-white field profiles. These results were integrated with the EM and MAG data and are discussed in Section 4.

3.2 SEDIMENT SAMPLING

Sediment samples were collected by WESTON personnel from seven locations on and in the vicinity of Fort Monmouth on 1 and 2 December 1994. Sediments were sampled from two locations in Parkers Creek on the Main Post and one location in a tributary to Wampum Brook

on the Charles Wood site. Sediments were also collected at two locations upstream from the Main Post, one in Parkers Creek, and one in Mill Creek for background comparisons. Two background samples for Charles Wood were taken in Wampum Brook.

Sediment was collected from the top 3 to 6 inches of the substrate, using either with a stainless-steel trowel or a hand corer, depending on the water depth and compaction of the sediments. A trowel was used in shallow water with loose sediments, whereas a corer was used in deep water with compacted sediments. Sampling was based in areas of fine-grained sediment because some potentially site-related contaminants preferentially adsorb onto fine-grained sediment particles (U.S. EPA, 1982).

At all but one location, sediment samples were submitted for laboratory analysis of the following parameters:

- Target Compound List volatile organic compounds (TCL VOCs).
- TCL semivolatile organic compounds (TCL SVOCs).
- Target Analyte List (TAL) metals.
- Pesticides/polychlorinated biphenyls (PCBs).
- Cyanide.

In accordance with the CDAP, the sediment sample collected at the downstream location in Parkers Creek on the Main Post was only analyzed for TAL metals. This site was a sewage treatment plant in the 1940s, and metals are the only suspected contaminants.

To minimize the potential for volatilizing sediment samples collected for VOC analysis, VOC samples were collected first at each location. The sediment was placed directly into precleaned, prelabeled bottles. Sediment samples collected for all other analyses were then put in a stainless-steel bowl and mixed thoroughly before being transferred to bottles.

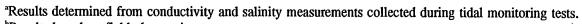
Sediment was collected for an original sample, a duplicate sample, a matrix spike (MS) sample, and a matrix spike duplicate (MSD) sample at the location suspected to have the greatest potential for contamination originating from the site and where the full suite of parameters was being analyzed (MP08, near Landfill 8 in Parkers Creek). After all samples collected for VOC

analysis were prepared at that location, sufficient sediment was collected in the bowl and mixed thoroughly to provide for both the original sample and duplicate samples.

Stainless-steel bowls and trowels, and the hand corer were decontaminated prior to use at each location according to instructions in the *Chemical Data Acquisition Plan for Site Investigation at Fort Monmouth*, *New Jersey* (WESTON, 1994). A laboratory-prepared trip blank was carried throughout the collecting effort for TCL VOC analysis.

After filling, sample bottles were sealed with a signed and dated custody seal, and put into polyethylene bags. Prepared bottles were packed in vermiculite in coolers. Bagged ice was put in the coolers, which were custody sealed and shipped according to U.S. Army Sampling Protocols ER 1110-263 and International Air Transport Association (IATA) regulations for next morning delivery to the laboratory.

3.3 <u>SURFACE-WATER SAMPLING</u>


Surface-water samples were collected from 10 locations on and in the vicinity of Fort Monmouth on 1 December 1994. Table 3.3-1 presents a summary of the surface-water parameters collected at the selected locations prior to sampling.

Surface-water samples were collected from six locations on the Main Post: two from Oceanport Creek, two from Parkers Creek, and two from Mill Creek. Surface water was also collected from both Lafetra Creek and Mill Creek upstream from the Main Post for background comparisons. Both background locations were selected because they are upstream from the head-of-tide and, therefore, were thought to be isolated from releases on the Main Post. Two surface-water samples were also collected on the Charles Wood site from a tributary to Wampum Brook for background comparison.

Surface-water samples were collected directly by submersing laboratory-cleaned sample bottles to a depth of 3 to 6 inches below the surface until completely filled. At locations where surface

Table 3.3-1
Summary of Surface-Water Field Parameters

Location ID	Temperature (°C)	Dissolved Oxygen (mg/L)	pH _.	Conductivity (µmhos)	Water Depth (inches)	Channel Width (feet)	Sediment Type	Tidally Influenced
Main Post					,			
Background)	 , -					,	,
Lafetra Creek	6.5	9.8	7.6	260	12	15	Sand	Noª
Wampum Creek	8.5	9.0	7.6	220	. 12	25	Large cobble	Noa
Lafetra Creek						٠.,		
MP10	6.5	9.6	7.7	270	3	25	Sand	Yesa
MP06	5.0	10.0	7.5	410	5	40	Sand	Yesa
Wampum Brook (MP02)								
SW01	9.0	9.2	8.0	230	12	20	Sand	Noa
SW02	8.5	10.0	7.8	220	12	25	Sand	Noa
Oceanport Creek (MP14)		,				,		
SW01	8.0	10.5	7.6	510	3	20	Sand	Y.es ^a
SW02	8.0	9.4	7.7	980	- 36	20	Sand	Yesa
Charles Wood Background								
CW02	5.0	11.2	8.3	1,000	12	3	Sand, gravel, small cobble	No ^b
CW05	10.0	3.0	7.4	<i></i> 220	3	15	Silty sand, leaf choked	Nob

MK01\RPT:03886076.037\ftmonsi.s3

water was not sufficiently deep, a hole was made in the sediment to facilitate sample collection. Disturbed sediment was allowed to settle before water samples were collected. Clean surgical gloves were worn during surface-water sample collection and when handling sample bottles for shipping. Gloves were changed between sample locations.

Surface water was analyzed for the following parameters:

- TCL VOCs.
- TCL SVOCs.
- TAL total metals (unfiltered).
- TAL soluble metals (filtered).
- Pesticides/PCBs.
- Cyanide.

Samples for soluble metals were filtered with a peristaltic pump through a high capacity 0.45-micron filter.

Surface water was collected for an original sample, a duplicate sample, an MS sample, and an MSD sample at the location suspected to have the greatest potential for contamination originating from the site (sample MP06, near Landfill 6 in Parkers Creek). No equipment was used to collect surface water, so no rinsate blanks were collected.

Filled sample bottles were handled in the same manner as sediment sample bottles (see Subsection 3.2).

3.4 SURFACE SOIL SAMPLES

Surface soil samples were collected by WESTON personnel from 17 locations on and in the vicinity of Fort Monmouth, NJ on 29 and 30 November 1994. Of the surface soil locations, 6 were on the Main Post and 11 were on the Charles Wood site.

Surface soil was collected from within the upper 6 inches with a decontaminated stainless-steel trowel. To minimize the potential for volatilization, surface soil samples submitted for VOC

analysis were collected first at each location, placing the soil directly into laboratory-prepared bottles. Soil samples collected for all other analyses were then put in a decontaminated stainless-steel bowl and mixed thoroughly before being transferred to laboratory-prepared bottles.

At Main Post, the soil from all six sampling locations was analyzed for pesticides/PCBs and TCL SVOCs; the soil from the two locations at site M-15 was also analyzed for TAL metals and cyanide; and the soil from the four locations at site M-16 was also analyzed for TCL VOCs. Of those Charles Wood site locations where soil was analyzed for more than PCBs, all were analyzed for TAL metals and cyanide, and soil from location CW-6 was also analyzed for pesticides, TCL VOCs, and TCL SVOCs.

Rinse blanks submitted for TCL VOC analysis were collected or labeled at a Main Post location (MP-16) and a Charles Wood site location (CW-9). A duplicate soil sample for TAL metals and cyanide analysis was also collected at the Charles Wood site location (CW-9). Sufficient soil was collected at each duplicate sample location and mixed thoroughly in the bowl to provide for both the original and duplicate samples. Handling of soil samples was similar to that of sediment (Subsection 3.2).

3.5 PCB TRANSFORMER SITE SAMPLING

3.5.1 General

Two types of samples were collected (soil samples and concrete chip samples) to determine whether PCB contamination exists at any of the former PCB class transformer locations. Soil samples were taken under the former location of pole-mounted transformers and on each side of a pad-mounted transformer. Concrete chip samples were taken at stained areas on the concrete pads or vault floors. Table 3.5-1 summarizes PCB transformer sampling. All samples were analyzed for PCBs.

Table 3.5-1
Sampling at Former PCB Transformer Sites

Transformer Code	Location	Size (kVA)	Remarks	Description	Sampling
CW010	Building 2276-W side on Bataan Ave., pole	37	Replaced by CW261, CW262, and CW263.	Pole over grass-covered soil. No stain.	Collected soil sample (CWAE-TR01) at pole under former location of transformer.
CW035	Building 2000-NE side, pad	300	Replaced by CW268, CW269, and CW270.	On old approximately 4-ft by 6-ft concrete pad. Dark stains on pad.	Concrete pad had been removed. Collected four soil samples (CW07-TR01 to TR04) downgradient of former pad location (see Figure 3.5-2).
CW039, CW040	Building 2018-S side, pole	25	Replaced by CW265.	Pole over grass-covered soil. No visible stains.	Collected soil samples (CW07-TR05 and TR06) at poles. Because of uncertainty of exact location of former PCB transformers, sampled two pole sites (see Figure 3.5-2).
MP-007	Building 718, pole located approx. 75 ft east of Wilson.	37	Replaced by MP-495.	Pole located over grass-covered soil. No visible stain.	Collected soil sample (MPT4-TR01) at pole under former location of transformer.
MP-062	Building 292-NW side, pole	75	Removed, replaced.	Three on pole replaced by 3 on old pad that is directly under pole. No visible oil stain on pad.	Collected soil sample (MPT5-TR01) at pole under former location of transformer.
MP-104	Building 686-east, pole	37	Replaced by MP-489.	Located over grass-covered soil. No visible stain.	Collected soil sample (MPT6-TR01) at pole under former location of transformer.
MP-124	Building 1220-west side, pad	500	Replaced by MP-493.	On old approximately 8-ft by 10-ft concrete pad. Approximately 1-ft diameter brown stain on west side of pad.	Collected four soil samples and one concrete chip sample from pad (see Figure 3.5-1).
MP-280	Building 1002, indoor vault	750	Replaced by MP-494.	Concrete floor not refurbished; in good condition. Stains visible under front and back of new transformer. Stains may be connected, in which case stain would be about 5 ft in diameter.	Collected concrete sample from stained area under transformer (MPT7-CC01).

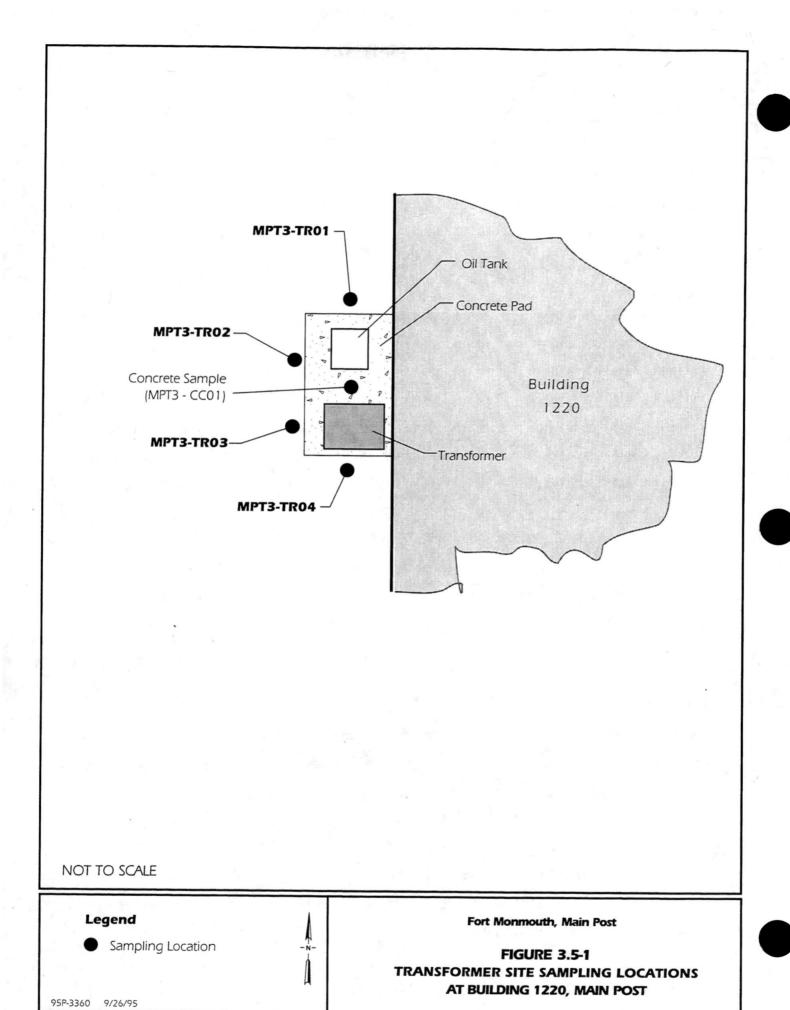
Table 3.5-1

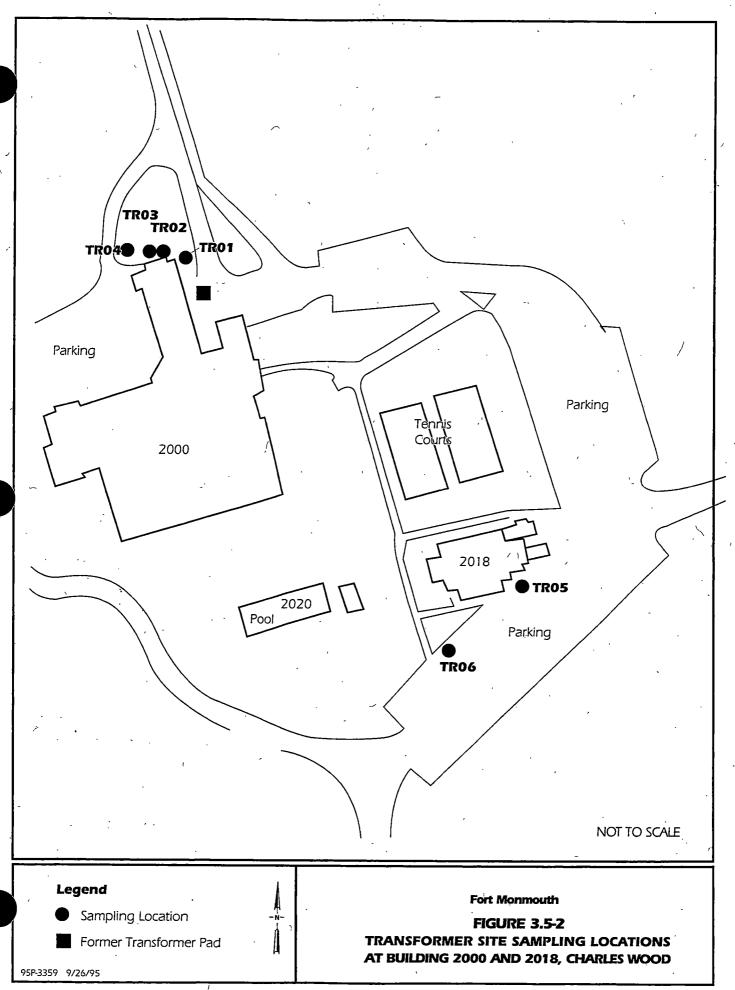
Sampling at Former PCB Transformer Sites (Continued)

Transformer Code	Location	Size (kVA)	Remarks	Description	Sampling
MP-282, MP-283	Building 1004, pole located approx. 50 ft west of corner of Razor and Stephenson	10	Removed, no replacement.	Pole over pavement and grass-covered soil. No visible stain.	Collected soil sample (MPT8-TR01) at pole under former location of transformer.
MP-347, MP-348, MP-349	Building 1208, indoor vault	250	Replaced by MP-496.	Two small stains about 1 ft in diameter, one between MP-347 and MP-348 and one on NE side of MP-349.	Collected concrete sample from stained area (MPT2-CC01).
MP350, MP351, MP352	Building 1209, indoor vault	250	Replaced by MP-499.	Concrete was not refurbished; it is in good condition. Very slight stain, about 1 ft in diameter, between MP-352 and wall.	Collected concrete sample from stained area (MPT1-CC01).

CW — Charles Wood MP — Main Post

3.5.2 Sample Collection Procedures


A soil sample was collected for PCB screening underneath each pole-mounted unit. Four discrete soil samples were taken at the sides of the concrete pad at Building 1220 (Figure 3.5-1). The pad at Building 2000 on Charles Wood had been removed prior to sampling, so four surface soil samples were taken along a natural drainage swale north and west of the former pad location (Figure 3.5-2).


Because a leak from a pole-mounted transformer could have occurred at any point on the transformer, a screening process was performed to detect soil contamination. Soil samples for screening were taken at three points immediately below the location of the pole-mounted transformer and were mixed. The samplers were directed to take a sample at any location with stressed vegetation, but no stressed areas were found. This process increases the likelihood of detecting small areas of contamination. Additional sampling will be conducted at locations where PCBs were detected in the soil at levels above or close to the NJDEP soil criteria.

At each soil sampling location a soil sample from 0 to 6 inches was collected with a stainless-steel scoop and placed in a mixing bowl. Stones and vegetation were removed from the soil matrix, and the remaining soil was mixed in a stainless-steel bowl. The sample was placed in a glass bottle with a Teflon-lined cap. A clean pair of disposable sample gloves was worn by the sampler during collection of each separate sample.

A concrete chip sample was taken in the middle of each stain on the concrete of a pad or vault. An electronic chipping hammer was used to chip the concrete to a depth of up to ½ inch and to pulverize the concrete for analysis. Chips were pulverized as fine as possible to facilitate laboratory extraction and analysis. A clean pair of disposable sample gloves was worn by the sampler during collection of each discrete sample.

Stainless-steel bowls and trowels were used and decontaminated prior to use in accordance with instructions in the CDAP (WESTON, 1994). Trip and field blanks and duplicate samples were prepared and submitted for analysis.

3.6 SOIL BORINGS

Soil borings were drilled at the following Main Post sites: M-16, M-18, and AOC-3; and Charles Wood sites: CW-1, CW-2, CW-4, CW-5, CW-6, CW-9, and AOC-7. The borings were completed to site-specific depths using hollow-stem auger drilling techniques to collect soil samples for laboratory analysis. Site-specific soil samples were analyzed for the parameters listed in Table 3.6-1. Lithologic logs are presented in Appendix A.

The borings were drilled using either 4.25-in. or 8-in. inside diameter (ID) hollow stem augers. Borings that were converted into monitor wells were drilled using the larger auger. Continuous split-spoon samples were collected according to the techniques specified in American Society for Testing and Materials (ASTM) Method 1586. All drilling was conducted by a New Jersey licensed driller.

Soil samples were collected from the soil borings using the following procedures:

- 1. Soil samples submitted for laboratory analysis were collected from borings using a 2-ft long, 2- or 3-in. diameter split spoon.
- 2. After retrieval, the split spoon was opened and immediately scanned with an organic vapor detector as a preliminary assessment of the amount of organic compounds present in the soils. Field screening for headspace was conducted according to the protocols outlined in the NJDEP Field Sampling Procedures Manual, May 1992.
- 3. If required by the site-specific sampling protocol, a portion of the soil sample was taken directly from the split spoon and placed in the sample bottle for VOC analysis to minimize volatilization of the sample. VOC samples were collected from discrete 6-in. intervals prior to organic vapor scanning of the soil samples.
- 4. Samples submitted for laboratory analysis were collected from intervals where high organic vapor monitor (OVM) readings were measured, visible staining was observed, or as specified in Section 4 of the CDAP.
- 5. The remaining sample was then homogenized in a stainless-steel bowl after a lithologic description of the soil sample and other pertinent drilling information was recorded according to the procedures outlined in the NJDEP Field Sampling Procedures Manual, May 1992.

Table 3.6-1

Fort Monmouth - Main Post and Charles Wood
Soil Sampling Analytical Parameters

SITE SAMPLE LOCATION	TCL VOC	TCL SVOC	TCL PEST/ PCB	TAL METALS	TPH	CYANIDE
Main Post						
M-15		X	X	X	····	
M-16	X	X	X			
M-18	X	X*	X	X	Χ,	
AOC-3	X	X	X	X		
Background	X	X	X	X		X
Charles Wood						
CW-1	X	X	\X	X		
CW-2	X	X	X	X		
CW-4	X	X	X	X		1.
CW-5	X	X	X	·		
CW-6	X	X	X	X**		
CW-9	X	X	X	X		
AOC-7	X	X	X	X		
Background	X	X	X	X		X

Notes:

- * = Only sampled SVOCs at SB-06.
- ** = Only sampled at SS-01.

SVOC - Semi-Volatile Organic Compound

PEST - Pesticides

PCB - Polychlorinated biphenyls

TAL - Target Analyte List

TCL - Target Compound List

TPH - Total Petroleum Hydrocarbons

VOC - Volatile Organic Compound

See Table 5.1-1 for analytical methods.

- 6. The soil was then placed in the appropriate sample containers.
- 7. Field QA/QC samples were collected at a frequency of 1 set per 10 samples as specified in the CDAP.

A total of 16 trip blanks, 3 duplicates, and 3 equipment blanks were collected during the soil sampling program. Extra soil for laboratory MS/MSD analysis was also obtained as part of the QA/QC program. One split sample was collected and sent to the USACE New England Division Environmental Laboratory for analysis. Specific sampling protocols were in accordance with the procedures outlined in the CDAP.

After sampling was completed, the shallow borings were allowed to fill by the natural collapse of surrounding soil, and then further backfilled with a cement/bentonite mixture to ground surface. Split spoons and stainless-steel bowls were decontaminated prior to each use according to the procedures specified in the CDAP. Field blanks consisted of chromatography-grade distilled water rinsed over the inside of a decontaminated split spoon and bowl. Field blanks were collected once every 10 soil samples collected per analysis to verify the effectiveness of the decontamination process. All nonsampling, downhole drilling equipment was decontaminated between boring locations at each site, as described in the CDAP. Filled sample bottles were handled in the same manner as sediment sample bottles (Subsection 3.2).

3.7 GROUNDWATER MONITOR WELL INSTALLATION

A total of 45 shallow groundwater monitor wells were installed at both the Main Post and Charles Wood areas between 13 December 1994 and 23 January 1995 in accordance with the procedures and materials specified in the CDAP (December 1994). A total of 29 monitor wells were installed at the Main Post location and 16 monitor wells were installed at Charles Wood (these numbers include background wells). All monitor wells were drilled using an auger-type drilling rig equipped with 8-in. and 4.25-in. ID hollow-stem augers.

Continuous split-spoon samples were collected using ASTM Method 1586. A complete lithologic profile was recorded for each well by the WESTON site geologist from the split-spoon sample.

Monitor wells were installed within the shallow unconfined hydrogeologic water-bearing zone at depths ranging from 14 to 28 ft bgs. The shallow monitor wells were constructed with 4-in. diameter Schedule 40 polyvinyl chloride (PVC) casing and screen. Well screens were placed approximately 2 feet above the noted saturation depth to monitor seasonal fluctuations. However, where saturation was observed in boreholes immediately below ground surface (1 to 4 ft) screens were placed entirely in the saturation zone in order to get the proper sand pack and seal above the slotted screened interval. Screen lengths varied from 10 to 15 feet (screen slot size is 0.01 in.). The annular space around the well screen was filled with sand pack to approximately 1 to 2 feet above the top of the screen. A minimum 2.5- to 3-ft bentonite slurry was placed above the sand pack and a bentonite/cement grout mixture was used to seal the remaining annular space. All wells were secured with a locking steel protective casing. Summaries of well completion specifications for Main Post and Charles Wood are presented in Tables 3.7-1 and 3.7-2, respectively. Individual lithologic logs and well construction summaries are presented in Appendix A.

Well permit numbers and site identification numbers were stamped on the 6-in. diameter steel outer protective casing. The top of the PVC casing and ground surface was surveyed by a New Jersey-licensed surveyor and was referenced in feet above msl. Appendix B presents the survey data for site monitor and stilling wells. All well permit numbers and survey information are also included with each lithologic log and are summarized in Tables 3.7-1 and 3.7-2.

All drilling equipment was decontaminated in accordance with the decontamination procedures described in the CDAP prior to use at each well location. Drill cuttings were spread on the ground near the well location since no OVM readings above background were recorded. Holes, ruts, or divots developed during drilling were backfilled.

3.7.1 Well Development

Following installation, wells were developed according to the procedures described in the CDAP.

The development procedures consisted of manually surging with a PVC surge block for 15 to 30 minutes. After surging, the wells were purged using a PVC bailer to remove any fine particles

3-19

Table 3.7-1
Fort Monmouth - Main Post
Well Completion Summary

Site and	Well	Completion	Surveyed	Surveyed	Total	Total	Screened	Top of	Top of
Location	Permit	Date	GS Elev.	PVC Elev.	Depth	Depth	Interval	Sand Pack	Seal
ID	No.		(Ft. MSL)	(Ft. MSL)	(Ft. BGS)	(Ft. TOIC)	(Ft. BGS)	(Ft. BGS)	(Ft. BGS)
SHIE ME2									
MW-01	2932584	14-Dec-94	19.44	21.04	22.75	24.35	7.00-22.29	5.75	3.75
MW-02	2932585	13-Dec-94	13.36	15.5	17.46	19.6	7.46-17.00	5.46	3.46
MW-03	2932586	13-Dec-94	10.98	12.63	15.6	17.25	5.60-15.14	4.6	2.6
SITE M-3									
MW-04	2932568	5-Jan-95	17.34	19.02	23.72	25.40	8.72-23.26	6.72	3.72
MW-05	2932569	9-Jan-95	11.28	13.30	16.43	18.45	6.43-15.97	4.43	2.43
MW-06	2932570	11-Jan-95	10.25	12.42	15.33	17.50	5.33-14.87	3.33	1.33
SITE M-4									
MW-07	2932571	14-Dec-94	14.83	16.75	16.01	17.93	6.01-15.55	4.01	1.51
MW-08	2932572	13-Dec-94	9.02	10.68	18.64	20.30	3.64-18.18	1.64	0.20
MW-09	2932573	13-Dec-94	7.77	9.69	22.69	24.61	7.69-22.23	5.69	3.19
SPIE M-5						•			
MW-10	2932574	14-Dec-94	5.13	6.91	15.00	16.78	5.00-14.54	3.00	0.80
MW-II	2932575	15-Dec-94	9.77	11.70	15.00	16.93	5.00-14.54	3.00	0.80
SHIP ME8								-	
MW-12	2932560	20-Dec-94	13.47	15.20	15.00	16.73	5.00-14.54	- 3.00	0.50
MW-13	2932560	17-Jan-95	6.02	7.80 .	15.00	16.78	5.00-14.54	3.50	1.00
MW-14	2932562	16-Jan-95	12.88	14.91	15.00	17.03	5.00-14.54	3.00	0.50
MW-15	2932563	17-Jan-95	5.01	7.01	15.00	17.00	5.00-14.54	3.50	1.00
SHARAMER									
MW-16	2932576	4-Jan-95	6.33	8.35	14.50	16.52	4.50-14.01	3.00	0.50
MW-17	2932577	11-Jan-95	5.90	7.87	14.50	16,47	4.50-14.04	3.00	0.50
- MW-18	2932578	II-Jan-95	4.78	6.62	14.50	16.34	4.50-14.04	3.00	0.50
SHIP WELL									
MW-19	2932579	4-Jan-95	7.98	9.68	15.00	16.70	5.00-14.54	3.50	0.50
MW-20	2932580	4-Jan-95	7.43	9.29	14.50	16.36	4.50-14.04	3.00	1.00
MW-21	2932581	4-Jan-95	7.50	9.57	16.00	18.07	6.00-15.54	4.00	1.00
SHIP MATE									
MW-22	2932582	15-Dec-94	5.5	7.25	14.50	16.25	4.50-14.04	3.00	1.00
SHIP MEIS									
MW-24	2932565	12-Jan-95	6.78	8.16	15.00	16.38	5.00-14.54	3.50	1.00
MW-25	2932566	13-Jan-95	6.35	8.28	15.00	16.93	5.00-14.54	3.00	0.50
BACEKCEROJUND									I
MWIB	2932587	9-Jan-95	22.48	24.59	14.00	16.11	4.00-13.54	3.00	0.50
MW2B	2932588	- 6-Jan-95	19.44	20.23	20.00	20.79	19.54-20.00	8.00	5.00
MW3B	2932589	9-Jan-95	19.2	21.09	26.00	27.89	16.00-25.54	14.00	11.00
MW4B	2932567	9-Jan-95	9.78	12.08	15.00	17.30	5.00-14.54	3.00	1.00
MW5B	2932583	11-Jan-95	13.4	15.4	14.50	16.50	4.50-14.04	3.00	1.00

Notes:

All wells were completed as 4 inch PVC single cased wells with 10-slot screen (0.010 -inches) and have a 6-inch diameter outer steel protective casing.

GS - Ground surface

TOIC - Top of Inner Casing

Elev. - Elevation

MSL - Mean Sea Level

Ft - Feet

BGS - Below Ground Surface

j\ftmon\fortmonm\FTWELSUM.XLSFORTM

Table 3.7-2 Fort Monmouth - Charles Wood Well Completion Summary

Site and	Well	Completion	Surveyed	Surveyed	Total	Total	Screened	Top of	Top of
Location	Permit	Date	GS Elev.	PVC Elev.	Depth	Depth	Interval	Sand Pack	Seal
ID	No.		(Ft. MSL)	(Ft. MSL)	(Ft. BGS)	(Ft. TOIC)	(Ft. BGS)	(Ft. BGS)	(Ft. BGS)
SITE CW-1									
MW-26	2932591	19-Dec-94	60.54	62.46	15.00	17.01	5.00-14.54	4.00	2.00 ·
MW-27	2932592	19-Dec-94	60.81	62.56	15.00	16.75	5.00-14.54	4.00	2.00
MW-28	2932593	19-Dec-94	.60.73	62.89	15.00	17.16	5.00-14.54	5.00	0.50
MW-29	2932590	19-Dec-94	60.41	62.44	15.00	17.03	5.00-14.54	3.00	0.50
SITE CW-2									
MW-30	2932594	16-Dec-94	49.47	51.71	16.00	18.24	6.00-15.54	4.00	2.00
MW-31	2932595	16-Dec-94	49.67	51.58	15.00	16.91	5.00-14.54	3.00	1.00
MW-32	2932596	16-Dec-94	49.47	51.38	15.00	16.91	5.00-14.54	3.00	0.80
MW-33	2932597	15-Dec-94	49.18	51.09	15.00	16.91	5.00-14.54	3.00	0.50
SITE CW-6									
MW-34	2932599	3-Jan-95	31.97	33.76	14.50	16.29	4.50-14.04	3.00	1.00
SITE CW-9									
MW-35	2932600	4-Jan-95	29.27	31.43	14.50	16.66	4.50-14.01	3.00	0.50
MW-36	2932601	4-Jan-95	31.22	33.21	14.00	15.99	4.00-13.54	3.00	1.00
BACKGROUND									
MW-6B	2932602	10-Jan-95	35.19	37.37	14.00	16.18	4.00-13.54	3.00	1.00
MW-7B	2932604	10-Jan-95	64.27	- 66.31	15.00	17.04	5.00-14.54	3.00	1.00
MW-8B	2932598	10-Jan-95	47.04	48.9	15.00	16.86	5.00-14.54	3.00	0.50
MW-9B	2932603	23-Jan-95	43.13	45.31	15.00	17.18	5.00-14.54	3.00	1.00
MW-10B	2932605	10-Jan-95	51.36	53.14	14.50	16.28	4.50-14.04	3.00	0.50

All wells were completed as 4-inch PVC single cased wells with 10-slot screen (0.010-inches) and have a 6-inch diameter outer steel protective casing.

Notes:

GS - Ground surface

Elev. - Elevation

Ft - Feet

TOIC - Top of Inner Casing

MSL - Mean Sea Level

BGS - Below Ground Surface

that may have accumulated in the well column and were then purged by bailing or pumping with a submersible pump to remove the fine particles from the sand pack. Monitor wells MW-1, MW-24, MW-25, MW-30 through MW-33, MW-03B, MW-05B, and MW-09B were developed by bailing; all other wells had sufficient yield to sustain pumping. Throughout the development process, the temperature, pH, and specific conductance of the purge water were measured and recorded in the field at a minimum of once per well volume of water removed. The well development sheets are included in Appendix C. Well development continued until moderately low turbidity was visually observed or where well turbidity was believed to be a result of natural conditions after a maximum of 2 hours of purging. However, well development continued after 2 hours of purging at several locations where high turbidity was believed to be a result of inadequate well yields. Consequently, low volumes of water were removed. After a sufficient volume of water was removed and ample time was applied toward well development, development ceased (see Appendix C).

All development equipment was decontaminated prior to use in each well in accordance with the procedures described in the CDAP. Since no OVM readings above background were recorded during development, the purge water was discharged to the ground, as directed in the CDAP.

3.7.2 Well Abandonment

All existing monitor wells and piezometers at Landfill 8 were abandoned in accordance with the requirements specified in the CDAP. Several site reconnaissance efforts were conducted in an effort to locate all of the previously installed monitor wells and piezometers, in or around Landfill 8. A total of 11 wells, six 4-in. monitor wells and five 2-in. piezometers, were identified for abandonment (Figure 4.2-12). Access to the locations was made with the use of an all terrain vehicle (ATV) rig. The wells were abandoned by a New Jersey licensed driller in accordance with the NJDEP procedures for wells screened across an aquifer (unconfined). Abandonment procedures consisted of:

- 1. Recording field observations of well construction details, if available.
- 2. Pulling the outer protective casing out of the ground.

- 3. Cutting the inner PVC casing stick-up off to ground surface.
- 4. Tremie-grouting the well from the bottom of the PVC screen to the ground surface with a cement/bentonite mixture.

3.8 GROUNDWATER SAMPLING

Two groundwater sampling rounds were conducted at the Main Post and Charles Wood areas between 13 through 22 February 1995 and 7 through 15 March 1995. A complete set of depth to water readings at all well locations on the Main Post and Charles Wood areas were collected prior to start of the groundwater sampling round. The full set of depth to water readings and elevations, which are provided in the discussion of site groundwater flow, are presented in Appendix C, Tables C-1 and C-2. The groundwater sampling was conducted in accordance with the NJDEP Field Sampling Procedures Manual (May 1992), as indicated in the CDAP, to ensure that water samples were representative of subsurface conditions. Groundwater samples were collected from the 45 newly installed monitor wells after a minimum of 2 to 3 weeks following well development. Site-specific groundwater samples were analyzed for the constituents presented in Table 3.8-1. Two existing monitor wells were also sampled; one at site M-18 on the Main Post, and one at site CW-6 on Charles Wood.

Prior to sampling, all monitor wells were purged with a variable rate stainless-steel submersible pump at rates between 0.5 and 1.0 gpm. Well yield data collected during well development were used to estimate the purge rate for each well. Prior to well purging, pH, temperature, and specific conductance measurements were recorded to compare to subsequent measurements taken during purging as each well volume was evacuated. Purging was continued until parameters stabilized and a minimum of three well volumes were evacuated. Monitor wells that purged dry were allowed to recover and purged again to remove a minimum of 1.5 well volumes before sampling. Groundwater samples from all wells were collected from the monitor wells using dedicated, disposable Teflon bailers. Groundwater was transferred from the bailers directly into the appropriate sample containers. Sample portions designated for soluble metals analyses were field-filtered. Field QA/QC samples were collected at a frequency of 1 set per 10 samples. A total of seven trip blanks, three duplicates, and seven equipment blanks were collected during

⊞

Table 3.8-1

Fort Monmouth - Main Post and Charles Wood
Sampling Parameters Table for
February & March 1995 Sampling Rounds

SITE SAMPLE LOCATION	TCL VOC (8240)	TCL SVOC	TCL PEST/ PCB	TAL Metals Total	TAL Metals Dissolved	TPH	Cyanide	Sulfate	Ammonia
Main Post									
M-2	X	X	X	X	X		X		
M-3	X	X	X	X	X		X		
M-4	X	X	X	X	X		X		
M-5	X	X	X	X	X		X	X	
M-8	X	X	X	X	X		X	X	X
M-12	X	X	X	X	X		X		
M-14	X	X	X	X	X		X		
M-16	X	X	X						
M-18	X	X	X	X	X	X	1		
Background	X	X	X	X	X		X		
Charles Wood									
CW-1	X	X	X	X	X				
CW-2	X	X	X	X	X				
CW-6	X	X	X						
CW-9	X	X	X	X	X				-
Background	X	X	X	X	X		X		

Notes:

PCB - Polychlorinated biphenyls

PEST - Pesticides

SVOC - Semi-Volatile Organic Compounds

TAL - Target Analyte List

TCL - Target Compound List

TPH - Total Petroleum Hydrocarbons

VOC - Volatile Organic Compound

See table 5.1-1 for analytical methods.

each sampling round. Extra groundwater for laboratory MS/MSD analysis was also obtained as part of the QA/QC program. One split sample per sampling round was collected and sent to the USACE New England Division Environmental Laboratory for analysis. Specific sampling protocols were in accordance with the procedures outlined in the CDAP. Filled sample bottles were handled in the same manner as sediment sample bottles (Subsection 3.2). Appendix D presents the analytical results of the field sampling activities at both the Main Post and Charles Wood areas.

3.9 TIDAL MONITORING

Two 72-hr tidal monitoring tests were conducted in three areas at the Main Post: Landfill 2, Landfill 8, and Landfills 12 and 14. The tests were conducted the week of 30 January through 3 February 1995, prior to the February 1995 groundwater sampling round, and the week of 20 through 24 March following the March 1995 groundwater sampling round in an effort to evaluate the effect of tidal fluctuations on water levels in the monitor wells. A total of four stilling wells were installed; one at Landfill 2, one at Landfill 8, and two at the Landfill 12 and 14 areas.

The stilling wells at Fort Monmouth are temporarily installed measuring points that are used to monitor water-level fluctuations in surface-water bodies (creeks). The stilling wells were installed using a 2-in. diameter, 5-ft long stainless-steel slotted screen with a conical drive shoe. The drive shoe was used to insert the screen approximately 2 to 3 feet into the surface-water sediments. Once the steel screen was secured, a 2-in. diameter, 5-ft long PVC slotted screen was added to the steel screen to ensure that the top of the stilling well was above creek water levels during high tides. The top of the PVC casing was surveyed by a New Jersey-licensed surveyor. The data collected are presented in Appendix B, along with the stream bed elevations. The data were collected from the stilling wells using pressure transducers with an electronic data logger (In-Situ Model SE-1000C) and were then compared to the subsequent site monitor wells to gauge the influence of the tides on water levels in the monitor wells. Water-level fluctuations in the monitor wells were collected using pressure transducers (In-Situ Model SE 1000C) and well sentinels (Model LTM 3000). Appendix E presents the results (hydrographs) and conductivity

and salinity measurements collected during the individual tidal monitoring tests. The stilling wells were located in accordance with the CDAP.

SECTION 4 RESULTS OF INVESTIGATION

RESULTS OF INVESTIGATION

4.1 COMPARISON WITH NEW JERSEY STANDARDS AND BACKGROUND

The results of the sampling effort were evaluated by comparing them with the results of background samples and with NJDEP regulatory standards. In general, for each compound of each environmental sample, the analytical results were compared against the NJDEP regulatory criteria. If the analytical result exceeded the regulatory criteria, then it was compared against the maximum background concentration. Those compounds that exceeded the regulatory standard and established background at a particular site were classified as a compound of concern.

The concentration of each compound was first compared with NJDEP standards. The New Jersey regulatory standards used for this evaluation are summarized in the following paragraphs:

- Groundwater NJAC 7:9-6, Groundwater Quality Standards, establishes groundwater criteria for different classes of groundwater. Class II-A, which is defined as all groundwater that is not classified as one of the other special classes, is the class for groundwater at Fort Monmouth. Table 1 of this regulation presents the regulatory limit as the higher of the groundwater quality criteria and the practical quantitation levels (PQL). The PQL is the lowest concentration that can be reliably measured in a laboratory analysis. These values are presented in Table 4.1-1.
- Soil NJDEP currently uses the Soil Cleanup Criteria (SCC) that have been published as an interim regulation and in the NJDEP publication, Site Remediation News. Criteria have been developed for future residential and nonresidential uses, and potential impacts to groundwater. The residential direct contact soil criteria were used to evaluate soil analytical results. Although soil criteria exist that are based on potential impacts to groundwater, it is more appropriate to use actual groundwater monitoring results, which exist for most of the sites in this investigation. The criteria for residential direct contact and impact to groundwater are presented in Table 4.1-2. They were published in March 1994, except for lead, which was revised in the winter 1995 Site Remediation News.

➂

Table 4.1-1

Ft. Monmouth - Main Post and Charles Wood

NJDEP Groundwater Quality Criteria - Class II - A and Practical Quantitation Levels

February 1993

STANDARD			
ANALYSIS	GROUND WATER	PRACTICAL QUANTITATION	
	QUALITY CRITERIA	LEVELS (PQLs)	AND GW CRITERIA
	(μg/L)	(µg/L)	(µg/L)
1,1,1-Trichloroethane	30	1	30
1,1,2,2-Tetrachloroethane	2	1	2
1,1,2-Trichloroethane	3	. 2	3
1,1-Dichloroethane	70	NA	70
1,1-Dichloroethene	-	-	-
1,2,4-Trichlorobenzene	9	<u> 1</u>	9
1,2-Dichlorobenzene	600	5	600
1,2-Dichloroethane	0.3	2	2
1,2-Dichloroethene (total)		<u>-</u>	•
1,2-Dichloropropane	0.5	1	1
1,3-Dichlorobenzene	600	5	600
1,4-Dichlorobenzene	75	5	75
2,2'-oxybis(1-Chloropropane)	-	-	-
2,4,5-Trichlorophenol	700	10	700
2,4,6-Trichlorophenol	•	<u>-</u>	<u> </u>
2,4-Dichlorophenol	20	10	20 /
2,4-Dimethylphenol	100	20	100
2,4-Dinitrophenol	10	40	40
2,4-Dinitrotoluene	0.05	10	10
2,6-Dinitrotoluene	NA	10	10
2-Butanone		<u> </u>	<u> </u>
2-Chloronaphthalene	-	<u> </u>	<u> </u>
2-Chlorophenol	40	20	40
2-Hexanone	-	-	<u> </u>
2-Methylnaphthalene	-	-	•
2-Methylphenol	-	-	
2-Nitroaniline	-	•	-
2-Nitrophenol	-	-	,
3,3'-Dichlorobenzidine	0.08	60	60
3-Nitroaniline	-	÷	-
4,4'-DDD	0.1	0.04	0.1
4,4'-DDE	0.1	0.04	0.1
4,4'-DDT	0.1	0.06	0.1
4,6-Dinitro-2-methylphenol	-		<u> </u>
4-Bromophenyl-phenylether	-	•	-
4-Chloro-3-methylphenol	NA	20	20
4-Chloroaniline	<u>-</u>		-
4-Chlorophenyl-phenylether	-	-	-
4-Methyl-2-pentanone	400	NA	400
4-Methylphenol	-		-
4-Nitroaniline			
4-Nitrophenol	-	, -	-
Acenaphthene	400	10	400
Acenapthylene	NA	10	" 10
Acetone	700	NA	700
Aldrin	0.002	0.04	0.04
alpha-BHC	0.006	0.02	0.02
alpha-Chlordane	-	•	-

Table 4.1-1

Ft. Monmouth - Main Post and Charles Wood

NJDEP Groundwater Quality Criteria - Class II - A and Practical Quantitation Levels

February 1993

CONTAINADO				
ANALYSIS	CDOUND WAZED	STANDARD		
ANALISIS	GROUND WATER	PRACTICAL QUANTITATION		
	QUALITY CRITERIA	LEVELS (PQLs)	AND GW CRITERIA	
Aluminum	(μ g/L) 200	(µg/L)	(µg/L)	
Anthracene		200	200	
Antimony	2000	10	2000	
Aroclor-1016	2	20	20	
Aroclor-1221	0.43	2	2	
Aroclor-1232	0.43	2	2	
Aroclor-1242	0.43	2	2	
	0.43	2	2	
Aroclor-1248	0.43	2	2 .	
Aroclor-1254 Aroclor-1260	0.43	2	2,	
	0.43	2	2	
Arsenic	0.02	8	8	
Barium	2000	200	, 2000	
Benzene Benze(a) anthropone	0.2	1	1	
Benzo(a)anthracene	0.03	10	10	
Benzo(a)pyrene	0.003	20	20	
Benzo(b)fluoranthene	0.03	2	2	
Benzo(g,h,i)perylene	NA NA	20	20	
Benzo(k)fluoranthene	0.03	2	L .	
Beryllium hete BLIC	0.008	20	20	
beta-BHC	0.2	0.04	0.2	
bis(2-Chloroethoxy) methane	-	-	`-	
bis(2-Chloroethyl) ether	0.03	10	10	
bis(2-Ethylhexyl)phthalate Bromodichloromethane	3	30	30	
	0.3	1	1	
Bromoform	4	0.8	4	
Bromomethane	-	-	-	
Butylbenzylphthalate	100	20	100	
Caumum	4	2	. 4	
Calcium	<u> </u>		<u> </u>	
Carbazole		-		
Carbon Disulfide	-	-	<u> </u>	
Carbon Tetrachloride	0.4	2	2	
Chlordane	0.01	0.5	0.5	
Chlorothono	4	(2	4	
Chioroethane	-	-	-	
Chloroform	6	1	6	
Chloromethane	-	-	· •	
Chromium (total)	100	10	100	
Chrysene	0.03	20	20	
cis-1,3-Dichloropropene	0.2	NA	0.2	
Cobalt	-	<u>-</u>		
Copper	1000	1000	1000	
Cyanide	200	40	200	
delta-BHC	-	-	•	
Di-n-butylphthalate	900	20	900	
Di-n-octyl phthalate	100	NA .	100	
Dibenzo(a,h)anthracene	0.003	20	20 \	
Dibenzofuran	<u>-</u>	-		

Table 4.1-1

Ft. Monmouth - Main Post and Charles Wood

NJDEP Groundwater Quality Criteria - Class II - A and Practical Quantitation Levels

February 1993

	7	STANDARD				
ANALYSIS	GROUND WATER	PRACTICAL QUANTITATION	HIGHER OF POL			
-	QUALITY CRITERIA	LEVELS (PQLs)	AND GW CRITERIA			
	(µg/L)	(µg/L)	(µg/L)			
Dibromochloromethane	10	1	10			
Dieldrin '	0.002	0.03	0.03			
Diethylphthalate	5000	10	5000			
Dimethylphthalate	7000	10	7000			
Endosulfan I	0.4	0.02	0.4			
Endosulfan II	0.4	0.04	0.4			
Endosulfan sulfate	0.4	0.08	0.4			
Endrin	2	0.04	2			
Endrin aldehyde	-		-			
Endrin ketone	-	-				
Ethylbenzene	700	5	700			
Fluoranthene	300	10	300			
Fluorene	300	10	300			
gamma-BHC (Lindane)	0.2	0.2	0.2			
gamma-Chlordane	0.01	0.5	0.5			
Heptachlor	0.008	0.4	0.4			
Heptachlor epoxide	/ 0.004	0.2	0.2			
Hexachlorobenzene	0.02	10	10			
Hexachlorobutadiene	1	1	1			
Hexachlorocyclopentadiene	50	10	50			
Hexachloroethane	0.7	10	10			
Indeno(1,2,3-cd)pyrene	0.03	20	20			
Iron	300	100	300			
Isophorone	100	10	100			
Lead (total)	5	10	10			
Magnesium	-	<u>-</u>	-			
Manganese	50	6	50			
Mercury.	2 .	0,5	2			
Methoxychlor	40	10	40			
Methylene Chloride	2	2	2			
N-Nitrosodi-n-propylamine	0.005	20	20			
N-Nitrosodiphenylamine (1)	7	20	20			
Naphthalene	-	_	- :			
Nickel (soluble salts)	100	10	100			
Nitrobenzene	3	10	10			
Pentachlorophenol	0.3	1	1			
Phenanthrene	NA	10	10			
Phenol	4000	10	4000			
Potassium	-	-	-1000			
Pyrene	200	20	200			
Selenium (total)	50	10	50			
Silver	20	2	20			
Sodium	50000	400	50000			
Styrene	100	5	100			
Tetrachloroethene	0.4	1	1			
Thallium	0.5	10	10			
Toluene	1000	5	1000			
Toxaphene	0.03	3	3			

Table 4.1-1

Ft. Monmouth - Main Post and Charles Wood

NJDEP Groundwater Quality Criteria - Class II - A and Practical Quantitation Levels

February 1993

	STANDARD				
ANALYSIS	GROUND WATER QUALITY CRITERIA (µg/L)	PRACTICAL QUANTITATION LEVELS (PQLs) (μg/L)	HIGHER OF PQL AND GW CRITERIA (µg/L)		
trans-1,3-Dichloropropene	0.2	NA	0.2		
Trichloroethene	1	1	1		
Vanadium	-	-	-		
Vinyl Chloride	0.08	5	5		
Xylene (total)	40	2	40		
Zinc	5000	.30	5000		

⁻⁼ No level established

Table 4.1-2

	STANDARD				
ANALYSIS	RESIDENTIAL DIRECT CONTACT SOIL CLEANUP CRITERIA (mg/kg)	IMPACT TO GROUND WATER SOIL CLEANUP CRITERIA			
1,1,1-Trichloroethane	210	(mg/kg)			
1,1,2,2-Tetrachloroethane	34	50			
1,1,2-Trichloroethane		1.			
	22	1			
1,1-Dichloroethane	570	10(i)			
1,1-Dichloroethene	8	10			
1,2,4-Trichlorobenzene	68	100			
1,2-Dichlorobenzene	5100	50			
1,2-Dichloroethane	6	1			
1,2-Dichloroethene (trans)	1000(d)	- 50			
1,2-Dichloroethene (cis)	79	1(i)			
1,2-Dichloropropane	10	(r)			
1,3-Dichlorobenzene	. 5100	100			
1,4-Dichlorobenzene	570	100			
2,2'-oxybis(1-Chloropropane)	• •	-			
2,4,5-Trichlorophenol	5600	50 ·			
2,4,6-Trichlorophenol	62	10(i)			
2,4-Dichlorophenol	170′	10			
2,4-Dimethylphenol	1100	10			
2,4-Dinitrophenol	110	10			
2,4-Dinitrotoluene	1(1)	10(l)			
2,6-Dinitrotoluene	1(l)	10(l)			
2-Butanone (MEK)	1000 (d)	50			
2-Chloronaphthalene	-	~			
2-Chlorophenol	280	10 (j)			
2-Hexanone	-				
2-Methylnaphthalene		· - · · · · · · · · · · · · · · · · · ·			
2-Methylphenol	2800	(r)			
2-Nitroaniline	-				
2-Nitrophenol					
3,3'-Dichlorobenzidine		100			
3-Nitroaniline		-			
4,4'-DDD	3	50(i)			
4,4'-DDE		50(i)			
4,4'-DDT	2	500(i)			
4,6-Dinitro-2-methylphenol		300(1)			
4-Bromophenyl-phenylether	·				
4-Chloro-3-methylphenol	- 10000(c)	100			
4-Chloroaniline	230	100			
4-Chlorophenyl-phenylether		(r)			
4-Methyl-2-pentanone	1000(4)				
	1000(d)	50			
4-Methylphenol	2800	(r)			
4-Nitroaniline	-	<u> </u>			
4-Nitrophenol	2400				
Acenaphthene	3400	100			
Acenaphthylene		<u>-</u>			
Acetone	1000(d)	100(i)			

Table 4.1-2 (continued)

	STANDARD				
ANALYSIS	RESIDENTIAL DIRECT CONTACT SOIL CLEANUP CRITERIA	IMPACT TO GROUND WATER SOIL CLEANUP CRITERIA			
	(mg/kg)	(mg/kg)			
Aldrin	0.040	50			
alpha-BHC	- 0.070	-			
alpha-Chlordane					
Aluminum		<u> </u>			
Anthracene	10000(c)	100(i)			
Antimony	14	(h)			
Aroclor-1016	0.49	50(i)			
Aroclor-1221	0.49	50(i)			
Aroclor-1232	0.49	50(i)			
Aroclor-1242	0.49	50(i)			
Aroclor-1248	0.49	50(i)			
Aroclor-1254	0.49	50(i)			
Aroclor-1260	0.49	50(i)			
Arsenic	20(e)	(h)			
Barium	700	(h)			
Benzene	3	1			
Benzo(a)anthracene	0,9	500			
Benzo(a)pyrene	0.66(f)	100			
Benzo(b)fluoranthene	0.9	50(i)			
Benzo(g,h,i)perylene	- 1				
Benzo(k)fluoranthene	0.9	500			
Beryllium	1(f)	(h)			
beta-BHC	-	-			
bis(2-Chloroethoxy) methane	-	•			
bis(2-Chloroethyl) ether	0.66(f)	10(j)			
bis(2-Ethylhexyl)phthalate	49	100			
Bromodichloromethane	11(g)	1			
Bromoform	86	1			
Bromomethane	79	1			
Butylbenzylphthalate	1100	100			
Cadmium	1	(h)			
Calcium	-	~			
Carbazole	-				
Carbon Disulfide	<u> </u>	-			
Carbon Tetrachloride	2(k)	1			
Chlorobenzene	37	1			
Chloroethane	•	-			
Chloroform	19(k)	1			
Chloromethane	520	10			
Chromium	-				
Chrysene	9	500			
cis-1,3-Dichloropropene	4	1			
Cobalt	-				
Copper	600(m)	(h)			
Cyanide	1100	(h)			
delta-BHC	-	-			

Table 4.1-2 (continued)

)	STANDARD				
ANALYSIS	RESIDENTIAL DIRECT CONTACT SOIL CLEANUP CRITERIA (mg/kg)				
Di-n-butylphthalate	5700	100			
Di-n-octyl phthalate	1100	100			
Dibenzo(a,h)anthracene	0.66(f)	100(j)			
Dibenzofuran		-			
Dibromochloromethane	110	1			
Dieldrin	0.042	50			
Diethylphthalate	10000(c)	50			
Dimethylphthalate	10000(c)	50			
Endosulfan	340(g)	50 /			
Endosulfan sulfate		-			
Endrin	17	50			
Endrin aldehyde	-	-			
Endrin ketone	-	-			
Ethylbenzene	1000(d)	100			
Fluoranthene	2300	100(i)			
Fluorene	2300	100			
gamma-BHC (Lindane)	0.52	50(j)			
gamma-Chlordane	0.52	-			
Heptachlor	0.15	50(j)			
Heptachlor epoxide	0.13	30()			
Hexachlorobenzene	0.66(f)	100(i)			
Hexachlorobutadiene	1(g)	100(1) 100(g)			
Hexachlorocyclopentadiene	400	100(g)			
Hexachloroethane	6	100			
Indeno(1,2,3-cd)pyrene	0.9	500			
	- 0.9	300			
Iron Isophorone	1100				
Lead	400 1	50(j)			
Magnesium	<u> </u>	(h)			
	<u>-</u>	<u>-</u>			
Manganese	14	(L)			
Mercury Methoxychlor	14 280	(h)			
	49	50(j)			
Methylene Chloride		1(j)			
N-Nitroso-di-n-propylamine	0.66(f)	10()			
N-Nitrosodiphenylamine (1)	140	100			
Naphthalene	230	100			
Nickel	250	(h)			
Nitrobenzene	28	/ 10(i)			
Pentachlorophenol	6	100			
Phenanthrene	10000()				
Phenol	10000(c)	50			
Potassium		-			
Pyrene	1700	100(j)			
Selenium	63	(h)			
Silver	110	(h)			
Sodium	-				

Table 4.1-2 (continued)

	STAND	ARD
ANALYSIS	RESIDENTIAL DIRECT CONTACT	IMPACT TO GROUND WATER
	SOIL CLEANUP CRITERIA (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)
Trichloroethene	23	1
Vanadium	370	· (h)
Vinyl Chloride	2	10(i)
Xylene (total)	410	10
Zinc	1500(m)	(h)

- (c) Health based criterion exceeds the 10000 mg/kg maximum for total organic contaminants.
- (d) Health based criterion exceeds the 1000 mg/kg maximum for total volatile organic contaminants.
- (e) Cleanup standard proposal was based on natural background.
- (f) Health based criterion is lower than analytical limits; cleanup criterion based on practical quantitation level.
- (g) Criterion has been recalculated based on new toxicological data.
- (h) The impact to ground water values for inorganics will be developed based upon site specific chemical and physical parameters.
- (i) Original criterion was incorrectly calculated and has been recalculated.
- (j) Typographical error.
- (k) Criterion based on inhalation exposure pathway which yielded a more stringent criterion than the incidental ingestion exposure pathway.
- (l) New criterion derived using methodology in the basis and background document.
- (m) Criterion based on ecological (phytotoxicity) effects.
- (p) criterion based on the goal that children should be exposed to the minimal amount of lead that is practicable and is reflective of natural background as altered by diffuse anthropogenic pollution. Criterion corresponds to both a median value for urban land which has not been impacted by any local point source of lead and a 90th percentile value for similar suburban land.
- = No level established.
- NJDEP criteria as referenced in Site Remediation News, Winter 1995.
 NJDEP criteria for Total Volatile Organics and Total Organics is 1,000 mg/kg and 10,000 mg/kg, respectively.

- Surface water NJAC 7:9-1, Surface Water Quality Standards, contains surface-water quality criteria for chemicals detected at the Main Post and Charles Wood. Surface water is classified based on the designated uses of the surface water, the biota present, and the type of aquatic system (e.g., freshwater or saltwater). Generally, separate criteria were established for freshwater and saltwater. Although the classifications of some surface waters are defined in the regulation, the surface water at Fort Monmouth has not been classified. Based on observations by field personnel during this investigation, the on-site surface water has been designated as either freshwater or saltwater. The sample-specific designation is discussed in Subsections 4.2 and 4.3. Surface-water criteria are presented in Table 4.1-3.
- <u>Sediment</u> The NJDEP Guidance for Sediment Quality Evaluations (1991), which references National Oceanic and Atmospheric Administration (NOAA) biological effects screening criteria, and ERL guideline values from Long et al. (1995), were used to evaluate sediment concentrations at the Main Post and Charles Wood. The use of these criteria is discussed in Subsection 4.1.2. The sediment quality criteria are presented in Table 4.1-4.
- PCB transformers The proposed NJDEP rule NJAC 7:26D, Cleanup Standards for Contaminated Sites, was used for PCB cleanup criteria in soil and interior surfaces. These criteria are presented in Table 4.1-5.

Two groundwater sampling rounds were conducted at the Main Post and Charles Wood areas. As specified in the NJDEP regulation *Technical Requirements for Site Remediation* (NJAC 7:26E), the results of the two groundwater sampling rounds were averaged since the samples were collected within a 30-day period. The averaged concentrations were compared with the NJDEP criteria and then with the maximum background concentrations. If the concentration in only one of the samples was above the detection limit, then that result was averaged with half of the quantitation limit.

Analytical results that were reported as a "J," i.e., below the quantitation limit but above the method detection limit, were still compared against NJDEP criteria to determine if the criteria were exceeded. The laboratory quantitation limit is the lowest concentration of an analyte determined by a given method in a given matrix that the laboratory feels can be reported with acceptable quantitative error. The method detection limit is the lowest concentration that can be seen for a given analytical method and sample matrix with 99% confidence that the analyte is present. Laboratory quantitation limits are typically about three times the value of the method

Table 4.1-3
Fort Monmouth - Main Post and Charles Wood
Surface Water Quality Standards for Fresh and Saline Waters

	STANDARD			
ANALYSIS	FRESH WATER (µg/L)	SALT WATER (µg/L)		
1,1,1-Trichloroethane	127(h)	- :		
1,1,2,2-Tetrachloroethane	1.72(hcc)	-		
1,1,2-Trichloroethane	13.5(h)	-		
1,1-Dichloroethane	-:			
1,1-Dichloroethene	4.81(h)	 		
1,2,4-Trichlorobenzene	30.6(h)	113(h)		
1,2-Dichlorobenzene	2,520(h)	16,500(h)		
1,2-Dichloroethane	0.291(hc)	99(hc)		
1,2-Dichloroethene (total)	- 0.25 T(110)			
1,2-Dichloropropane		<u> </u>		
1,3-Dichlorobenzene	2,620(h)	22,200(h)		
1,4-Dichlorobenzene	343(h)	3,159(h)		
2,2'-oxybis(1-Chloropropane)		3,139(11)		
2,4,5-Trichlorophenol	2,580(h)	9,790(h)		
2,4,6-Trichlorophenol	2.14(hc)			
2,4-Dichlorophenol		6.53(hc)		
2,4-Dimethylphenol	92.7(h)	794(h)		
2,4-Dinitrophenol	(0.7/L)	14.000(1)		
2,4-Dinitrophenol	69.7(h)	14,000(h)		
	0.11(hc)	9.1(hc)		
2,6-Dinitrotoluene 2-Butanone				
	<u> </u>	-		
2-Chloronaphthalene	-	-		
2-Chlorophenol	122(h)	402(h)		
2-Hexanone	<u> </u>	- , ,		
2-Methylnaphthalene	<u> </u>	<u>-</u>		
2-Methylphenol		-		
2-Nitroaniline	<u>- ' </u>	-		
2-Nitrophenol		-		
3,3'-Dichlorobenzidine	0.0386(hc)	0.0767(hc)		
3-Nitroaniline	<u> </u>	-		
4,4'-DDD	0.000832(hc)	0.000837(hc)		
4,4'-DDE	0.000588(hc)	0.000591(hc)		
4,4'-DDT	1.1(a); 0.0010(c);	0.13(a); 0.0010(c);		
	0.000588(hc)	0.000591(hc)		
4,6-Dinitro-2-methylphenol	-	-		
4-Bromophenyl-phenylether	-	-		
4-Chloro-3-methylphenol	-	-		
4-Chloroaniline	-	-		
4-Chlorophenyl-phenylether		-		
4-Methyl-2-pentanone	-	-		
4-Methylphenol	-	-		
4-Nitroaniline		-		
4-Nitrophenol	-			
Acenaphthene	-	_		
Acenaphthylene	-	*Reserved*		

Table 4.1-3 (continued)

Fort Monmouth - Main Post and Charles Wood Surface Water Quality Standards for Fresh and Saline Waters

		NDARD	
ANALYSIS	FRESH WATER (µg/L)	SALT WATER (µg/L)	
Acetone	-	-	
Aldrin	3.0(a); 0.000135(hc)	1.3(a) 0.000144(hc)	
alpha-BHC	0.00391(hc)	0.0131(hc)	
alpha-Chlordane	2.4(a); 0.0043(c);	0.09(a); 0.0040(c);	
	0.000277(hc)	0.000283(hc)	
Aluminum	-	*Reserved*	
Anthracene	9,570(h)	108,000(h)	
Antimony	12.2(h)	4,300(h)	
Aroclor-1016	.014(c); .000244(hc)	.30(c); .000247(hc)	
Aroclor-1221	.014(c); .000244(hc)	.30(c); .000247(hc)	
Aroclor-1232	.014(c); .000244(hc)	.30(c); .000247(hc)	
Aroclor-1242	.014(c); .000244(hc)	.30(c); .000247(hc)	
Aroclor-1248	.014(c); .000244(hc)	.30(c); .000247(hc)	
Aroclor-1254	.014(c); .000244(hc)	.30(c); .000247(hc)	
Aroclor-1260	.014(c); .000244(hc)	.30(c); .000247(hc)	
Arsenic	0.0170(hc)	0.136(hc)	
Barium	2,000(h)	-	
Benzene	0.150(hc)	71(hc)	
Benzo(a)anthracene	0.0028(hc)	0.031(hc)	
Benzo(a)pyrene	0.0028(hc)	0.031(hc)	
Benzo(b)fluoranthene	0.0028(hc)	0.031(hc)	
Benzo(g,h,i)perylene	- /	*Reserved*	
Benzo(k)fluoranthene	0.0028(hc)	0.031(hc)	
Beryllium		*Reserved*	
beta-BHC	0.137(hcc)	0.460(hcc)	
bis(2-Chloroethoxy) methane	- -	-	
bis(2-Chloroethyl) ether	.0311(hc)	1.4(hc)	
bis(2-Ethylhexyl)phthalate	1.76(hc)	5.92(hc)	
Bromodichloromethane	.266(hc)	22(hc)	
Bromoform	4.38(hc)	360(hc)	
Bromomethane	48.4(h)	4,000(h)	
Butylbenzylphthalate	239(h)	416(h)	
Cadmium	10(h)	-	
Calcium	-	-	
Carbazole	-		
Carbon Disulfide	-		
Carbon Tetrachloride	0.363(hc)	6.31(hc)	
Chlorobenzene	22.0(h)	21,000(h)	
Chloroethane			
Chloroform	5.67(hc)	470(hc)	
Chloromethane	5.7(hc); 470(hc)	*Reserved*	
Chromium	160(h)	3,230(h)	
Chrysene	0.0028(hc)	0.031(hc)	
cis-1,3-Dichloropropene	-		
Cobalt		 	

Table 4.1-3 (continued)

Fort Monmouth - Main Post and Charles Wood Surface Water Quality Standards for Fresh and Saline Waters

	STANDARD			
ANALYSIS	FRESH WATER (µg/L)	SALT WATER (μg/L)		
Copper	-	*Reserved*		
Cyanide	22(a); 5.2(c) 768(h)	1.0(a); 1.0(c); 220,000(h)		
delta-BHC	-	-		
Di-n-butylphthalate	3,530(h)	15,700(h)		
Di-n-octyl phthalate	-	-		
Dibenzo(a,h)anthracene	0.0028(hc)	0.031(hc)		
Dibenzofuran	-	-		
Dibromochloromethane	72.6(h)	- J		
Dieldrin	2.5(a) 0.0019(c);	0.71(a); 0.0019(c);		
` · ·	0.000135(hc)	0.000144(hc)		
Diethylphthalate	21,200(h)	111,000(h)		
Dimethylphthalate	313,000(h)	2,900,000(h)		
Endosulfan I				
Endosulfan II	•	, -		
Endosulfan sulfate	0.93(h)	2.0(h)		
Endrin	0.18(a); 0.0023(c);	0.037(a); 0.0023(c)		
	0.629(h)	0.678(h)		
Endrin aldehyde	0.76(h)	0.081(h)		
Endrin ketone	-			
Ethylbenzene	3,030(h)	27,900(h)		
Fluoranthene	310(h)	393(h)		
Fluorene	1,340(h)			
gamma-BHC (Lindane)	2.0(a); 0.080(c)	0.16(a)		
gamma-Chlordane	-	<u>-</u>		
Heptachlor,	0.52(a); 0.0038(c);	0.053(a); 0.0036(c);		
	0.000208(hc)	0.000214(hc)		
Heptachlor epoxide	0.52(a); 0.0038(c);	0.053(a); 0.0036(c);		
	0.000103(hc)	0.000106(hc)		
Hexachlorobenzene	0.000748(hc)	0.000775(hc)		
Hexachlorobutadiene	6.94(h)			
Hexachlorocyclopentadiene	245(h)	17,000(h)		
Hexachloroethane	2.73(h)	12.4(h)		
Indeno(1,2,3-cd)pyrene	0.0028(hc)	0.031(hc)		
Iron	•	*Reserved*		
Isophorone	552(h)			
Lead	5(h) /			
Magnesium	-	-		
Manganese	100(h)	-		
Mercury	0.144(h)	0.146(h)		
Methoxychlor	0.03(c); 40(h)	0.03(c)		
Methylene Chloride	2.49(hc)	1,600(hc)		
N-Nitroso-di-n-propylamine	-	<u> </u>		
N-Nitrosodiphenylamine (1)	-			
Naphthalene	-			
Nickel	516(h)	3,900(h)		

Table 4.1-3 (continued)

Fort Monmouth - Main Post and Charles Wood Surface Water Quality Standards for Fresh and Saline Waters

	STANDARD			
ANALYSIS	FRESH WATER (µg/L)	SALT WATER (µg/L)		
Nitrobenzene	16.0(h)	1,900(h)		
Pentachlorophenol	e(1.005(pH)-4.830)(a); e(1.005(pH)-5.290)(c); 0.282(c)	13(a); 7.9(c); 8.2(hc)		
Phenanthrene	-	*Reserved*		
Phenol	20,900(h)	4,600,000(h)		
Potassium		-		
Pyrene	797(h)	8,970(h)		
Selenium	10(h)	300(a); 71(c); 6,800(h)		
Silver	164(h)	-		
Sodium	· -	-		
Styrene	-			
Tetrachloroethene	0.388(hc)	4.29(hc)		
Thallium	1.70(h)	6.22(h)		
Toluene	7,440(h)	200,000(h)		
Toxaphene	0.73(a); 0.0002(c); 0.000730(hc)	0.21(a); 0.0002(c); 0.000747(hc)		
trans-1,3-Dichloropropene	.193(hc)	1,700(h)		
Trichloroethene	1.09(hc)	81(hc)		
Vanadium				
Vinyl Chloride	0.0830(hc)	525(hc)		
Xylene (total)				
Zinc	-	*Reserved*		

NOTE: Except as noted, aquatic life criteria followed by an (a) represent acute aquatic life protection criteria as a one-hour average and aquatic life criteria followed by (C) represent chronic aquatic life protection criteria as a four-day average. No exceedance of aquatic life criteria shall be permitted at or above the design flows specified in section N.J.A.C. 7:9B-1.5(c) 2. Criteria followed by an (h) are noncarcinogenic effect-based human health criteria as a 30-day average with no frequency of exceedance at or above the design flows specified in section N.J.A.C. 7:9B-1.5(c)2. Criteria followed by an (hc) are carcinogenic effect-based human health criteria as a 70-year average with no frequency of exceedance at or above the design flows specified in section N.J.A.C. 7:9B-1.5(c)2 and are based on a risk level of one-in-one-million. Criteria followed by an (hcc) are for toxic substances considered to be possible human carcinogens as a 70-year average with no frequency of exceedance at or above the design flows specified in section N.J.A.C. 7:9B-1.5(c)2 and are based on a risk level of one-in-one hundred thousand Criteria followed by and (OL) are organoleptic effect-based criteria and are maximum concentrations.

- = No level established

Table 4.1-4
Fort Monmouth - Main Post and Charles Wood
Sediment Guidance Values for Detected Contaminants

COMPOUND	NJDEP SEDIMENT GUIDANCE ^a (mg/kg)	MARINE/ESTUARINE BIOLOGICAL EFFECTS LEVEL (ERL) ^b (mg/kg)
VOC's (mg/kg)		
Acetone	NLE	NLE
2-Butanone	NLE	NLE
1,2-Dichloroethene (total)	NLE	NLE
Vinyl Chloride	NLE	NLE
SVOCs (mg/kg)		
bis-(2-Ethylhexyl)phthalate	NLE	NLE
Dimethylphthalate	NLE	NLE
Di-n-butylphthalate	NLE	NLE
Di-n-octyl phthalate	NLE	NLE
2,2'-oxybis(1-Chloropropane)	NLE	NLE
PAHs (mg/kg)		
Benzo (a)anthracene	0.23	0.261
Benzo(a)pyrene	0.4	0.43
Benzo (b)fluoranthene	NLE	NLE
Chrysene	0.4	0.984
Fluoranthene	0.6	0.6
Phenanthrene *	0.225, 0.326	0.74
Pyrene	0.35	0.665
PESTICIDES/PCBs (mg/kg)		
4,4'-DDD	0.002	NLE
4,4'-DDE	0.002	0.0022
4,4'-DDT *	0.003, 0.00183	0.00158
Heptachlor epoxide	NLE	NLE
METALS TOTAL (mg/kg)		
Aluminum	NLE	NLE
	33	8.2
Arsenic Barium	NLE	NLE
Beryllium	NLE	NLE
A 1 .	5	1.2
Calcium	- NLE	NLE
Chromium	80	· 81
Cobalt	NLE	NLE
	70	34
Copper	NLE	NLE
Iron Lead	35	46.7
	NLE	NLE
Magnesium Manganese	NLE	NLE
Mercury	0.15	0.15
Nickel	30	20.9
Potassium	NLE	NLE /
Selenium	NLE	NLE
Silver	1	1
Sodium	NLE NLE	NLE
Vanadium	NLE NLE	NLE
Zinc Zinc	120	150

a NJDEP Sediment Guidance (1991), based on NOAA (1990) ER-L guidance. Values provided are for freshwater sediments. Criteria for DDE and DDD are not presented in NJDEP Sediment Quality Evaluations (1991).

b Long et. al (1995).

^{* -} Standards developed using equilibrium partioning approach in accordance with NJDEP Guidance for Sediment Quality Evaluation (1991). Total organic carbon concentrations of 1% assumed based on organic carbon content detected in adjacent sample.

NLE - No Level Established

Potentially Applicable PCB Cleanup Levels

New Jersey (Proposed 7:26D)

- Building interior:
 - Porous surface (from floor to 6 feet): chip sample $< 0.055 \mu g/g$
 - Porous surface (higher than 6 feet): chip sample < 0.11 mg/g
 - Nonporous surface (from floor to 6 feet): wipe sample < 0.27 mg/m² (2.7 mg/100 cm²)
 - Nonporous surface (higher than 6 feet): wipe sample < 0.54 mg/m² (5.4 μg/100 cm²)
- Soil:
 - Surface soil*: Soil sample < 0.49 mg/kg (ppm)
 - Subsurface soil: Soil sample < 100 mg/kg (ppm)

^{*}Surface soil is top 2 feet of soil.

detection limit to ensure the confidence of the value reported. When a concentration is detected below the laboratory quantitation limit but above the method detection limit, the letter "J" is assigned to that concentration. The J indicates that the concentration is estimated due to detection at or below the laboratory quantitation limit (but above the method detection limit). The method detection limits are reported in the summary tables in Section 4 and Appendix D, but the quantitation limits are reported only in Appendix D.

Many of the inorganic compounds in soil and groundwater that were analyzed for occur in nature or commonly exist because of human activities. For example, naturally occurring inorganic compounds are always present in groundwater and soil samples. Lead is generally found at elevated levels near heavily traveled roads because it was formerly used in gasoline. Pesticides and herbicides are commonly found in suburban settings because of past applications of these substances.

The background concentration, therefore, is the concentration of a compound in the environment that occurs naturally or as the result of unrelated base activities. The estimate of background is based on analytical results of sampling at background locations and a review of published material.

There is no generally accepted method for determining the background concentration. For this investigation, a total of 10 groundwater and soil background samples and 2 sediment and surface-water background samples were taken on both Charles Wood and Main Post. Background sampling locations were selected as specified in the document *Investigations of Suspected Hazardous Waste Sites at Fort Monmouth, New Jersey* (WESTON, 1993), which was approved by NJDEP. The U.S. Environmental Protection Agency (EPA) has provided some guidance in its document *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities*. It provides a number of scenarios for comparing groundwater analytical data against background well data. In discussing the tolerance interval method, the document suggests that the groundwater data be compared with the 95% confidence limit for the 95th percentile of the background data; however, the method specified can be strictly applied only when the data have a normal distribution or a log normal distribution. Neither of these is true for the background

data collected at Fort Monmouth. Nonparametric methods that are similar to the tolerance interval method involve simply selecting the data value that is at the 95th percentile of the data set. Since there are 10 data points, the equivalent method for the background samples at Fort Monmouth is to use the maximum background value. Each environmental sample concentration was compared against the maximum value that was measured in the background samples. If a compound was not detected in the background samples, then any measurement above the detection limit for that compound in an environmental sample was considered to be above background. This practice was followed at other New Jersey sites.

An outlier screening was conducted to identify background concentrations that were not consistent with other background concentrations. Based on the screening, outliers were rejected for beryllium, chromium, cobalt, lead, vanadium, and zinc in groundwater on the Main Post, and manganese in soil on Charles Wood.

The Monmouth County and site-specific background concentrations for total metals at Fort Monmouth were determined using literature values and on-site background data. The values in Tables 4.1-6 and 4.1-7 are based on the maximum concentrations of inorganic analytes in background wells and soil borings at Main Post and Charles Wood. These data are compared with the maximum Monmouth County background values, based on published data. The Monmouth County values for soil are from Fields et al., 1992, and the Monmouth County background values for groundwater are from Harriman and Sargent, 1985.

The Monmouth County background concentrations for soils are based on the analyses of samples from the vicinity of Fort Monmouth (see Table 9 and the locations of samples 35 and 36 in Figure 1 in Fields et al., 1992). Sample 36 (Fields et al., 1992) was collected near Charles Wood and sample 35 (Fields et al., 1992) was collected northeast of the Main Post. The site-specific background concentrations are based on samples from the two areas collected during this investigation. Most of the soil samples were from landscaping fill and natural deposits in Fort Monmouth. The screened intervals in the background monitor wells are also in landscaping fill

Table 4.1-6

Fort Monmouth - Main Post

Summary of Site-Specific and Monmouth County

Soil and Groundwater Maximum Background Concentrations

	SOILS		GROUNDWATER	
COMPOUNDS	Site Specific (maximum)	Monmouth County ¹ (maximum)	Site Specific (maximum)	Monmouth County ² (maximum)
SVOC'S	(mg/kg)	(mg/kg)	(µg/L)	(µg/L)
Phenol	0.420 J	-	ND	-
Acenaphthylene	0.041 J	-	ND	
Acenaphthene	0.100 J	<u> </u>	ND	-
Dibenzofuran	0.060 J	-	ND	-
Diethylphthalate	ND		ND	
Fluorene	0.074 J	-	ND	-
Phenanthrene	0.39		ND	-
Anthracene	0.100 J	-	ND	-
Di-n-butylphthalate	2.2 B	-	ND	-
Fluoranthene	0.46	-	ND	-
Pyrene	1.5	-	ND	-
Benzo(a)anthracene	0.65		ND	-
Chrysene	0.65	-	3 J	-
bis(2-Ethylhexyl)phthalate	.19 J	•	5 J	-
Benzo(b)fluoranthene	0.9	-	ND	-
Benzo(k)fluoranthene	0.43	-	ND	-
Benzo(a)pyrene	0.6		ND	-
Indeno(1,2,3-cd)pyrene	0.46	-	ND	-
Dibenzo(a,h)anthracene	0.079 JB	-	ND	-
Benzo(g,h,i)perylene	0.64 B	-	ND	-
PESTICIDE / PCB	(mg/kg)	(mg/kg)	(μg/L)	(µg/L)
Heptachlor epoxide	ND	-	0.041 J	-
4,4-DDD	0.0096 P		ND	-
4,4'-DDE	0.0096 P	-	ND	-
4,4'-DDT	0.11	-	ND	-
METALS TOTAL	(mg/kg)	(mg/kg)	(µg/L)	(μg/L)
Aluminum	15200	NLE	121000	NLE
Antimony	ND	NLE	20.7	NLE
Arsenic	22.9	4.56	89.3	NLE
Barium	32.3	NLE	699	400
Beryllium	2	0.09	2.1	7
Calcium	921	NLE	45400	7300
Cadmium	ND	0.116	9.5	6
Cobalt	2.5	NLE	18.3	NLE
Chromium	269	0.104	191	< 50
Copper	8	6.05	65.6	730
Cyanide	ND	NLE	ND	NLE
Iron	55800	11	431000	27000
Lead	·19.5	25.9	22.7	< 100
Magnesium	7230	NLE	62700	25000
Mercury	ND	NLE	0.26	NLE
Manganese	90.7	59	331	480
Nickel	8.4	3.2	187	NLE
Potassium	15400	NLE	137000	10000
Silver	1.1	0.21	ND	< 10
Sodium	51.6	NLE	21500	197000
Selenium	1.9	0.11	29.6	NLE
Thallium	ND	NLE	5.5	NLE
Vanadium	94.1	1.3	108	NLE
Zinc	81.4	44.6	233	60

ND - Not detected at the quantification limits

NLE - No level established

^{1 -} Sample 35 in Fields et al., 1992

² - From Table 9 in Harriman and Sargent, 1985

⁻ Literature search was not completed for SVOC and Pest/PCB compounds.

Table 4.1-7

Fort Monmouth - Charles Wood

Summary of Site Specific and Monmouth County

Soil and Groundwater Maximum Background Concentrations

	SOILS		GROUNDWATER	
COMPOUNDS	Site	Monmouth	Site	Monmouth
	Specific	County	Specific	County ²
	(maximum)	(maximum)	(maximum)	(maximum)
SVOC'S	(mg/kg)	(mg/kg)		(цд/L)
Phenol	ND	<u>-</u>	ND	-
Acenaphthylene	ND	-	ND	` • · · ·
Acenaphthene	ND	<u> </u>	ND	<u> </u>
Dibenzofuran	ND		ND	<u> </u>
Diethylphthalate	ND		1 J	-
Fluorene Phenanthrene	ND ND	 	ND	<u> </u>
Anthracene	ND ND		ND	
Di-n-butylphthalate	2 B		ND	
Fluoranthene	0.042 J		ND ND	<u> </u>
Pyrene	0.042 J		ND ND	-
Benzo(a)anthracene	0.046 J		ND	<u> </u>
Chrysene	0.048 J		ND	-
bis(2-Ethylhexyl)phthalate	0.083 J		600	-
Benzo(b)fluoranthene	0.078 J		ND	
Benzo(k)fluoranthene	0.041 J		ND	
Benzo(a)pyrene	0.047 J		ND ND	
Indeno(1,2,3-cd)pyrene	ND	-	ND ND	-
Dibenzo(a,h)anthracene	ND		ND	
Benzo(g,h,i)perylene	0.042 J	•	ND	
PESTICIDE / PCB	(mg/kg)	(mg/kg)	(µg/L)	(µg/L)
Heptachlor epoxide	ND	•	ND	-
4,4-DDD	ND	<u> </u>	ND	-
4,4'-DDE	0.071		ND	-
4,4'-DDT	0.053	-	ND	
METALS TOTAL	(mg/kg)	(mg/kg)	(μg/L)	(μg/L)
Aluminum	15700	NLE	8210	NLE
Antimony	ND	NLE	ND	NLE
Arsenic	31.6	10.7	25.1	NLE
Barium	26	NLE	192	400
Beryllium	1.7	0.88	2.8	7
Calcium	653	NLE	8700	~ 7300
Cadmium	· ND	0.135	3.7	6
Cobalt	4.5	NLE	30.6	NLE
Chromium	128	0.14	49.6	< 50
Copper	6.6	7.27	9.8	730
Cyanide	0.41	NLE	ND	NLE
Iron	45500	23.7	19600	27000
Lead	11.1	15.1	7.3	< 100
Magnesium	3960	NLE	7160	25000
Mercury	ND	NLE	ND	NLE
Manganese	48.7	120	232	480
Nickel	8.3	8.3	48.3	NLE
Potassium	10600	NLE	4630	10000
Silver	ND	0.26	ND	< 10
Sodium	56.8	NLE	36400	197000
Selenium	0.85	0.17	3.8	NLE
Thallium	ND	NLE	ND	NLE
Vanadium	59.6	14	28.9	NLE
Zinc	55.6	28.1	133	60

ND - Not detected at the quantification limits

NLE - No level established

^{1 -} Sample 36 in Fields et al., 1992

² - From Table 9 in Harriman and Sargent, 1985

⁻ Literature search was not completed for SVOC and Pest/PCB compounds.

and natural deposits. The Monmouth County and site-specific background concentrations are provided in Tables 4.1-6 and 4.1-7.

Table 4.1-6 summarizes the Monmouth County and site-specific background concentrations for the Main Post area. The background concentrations of metals in soils at the Main Post site are generally below regional concentrations, except for arsenic, chromium, beryllium, selenium, iron, manganese, nickel, zinc, silver, and vanadium.

Nine analytes exceeded maximum Monmouth County values for groundwater in the Main Post area: barium, beryllium, calcium, cadmium, chromium, iron, magnesium, potassium, and zinc (Table 4.1-6).

Table 4.1-7 summarizes the Monmouth County and site-specific background concentrations for the Charles Wood area. The background concentrations in soils at Charles Wood are generally below Monmouth County concentrations, except for arsenic, beryllium, chromium, iron, selenium, vanadium, and zinc.

For the background groundwater concentration established for this investigation, two analytes exceeded the maximum values established for Monmouth County: calcium and zinc (Table 4.1-7). Calcium concentrations in groundwater at Charles Wood are 12% higher than the Monmouth County concentrations. Zinc concentrations are twice as high as the Monmouth County concentrations.

Several factors, both natural and anthropogenic, contribute to the wide range in the concentrations of metals in the soils at the Main Post and Charles Wood areas. The primary natural influence on the chemical characteristics of the overburden at Fort Monmouth is parent material. The parent material is glauconitic quartzose sands of the Tinton and Red Bank sands and their fluvially- and tidally-reworked equivalents. The mineral glauconite is a potassium-, sodium-, calcium-, iron-, aluminum-, magnesium-rich hydrosilicate (Klein et al., 1985). Soils derived from the glauconitic sands contain abundant iron, aluminum, calcium, magnesium, manganese, and potassium (Tedrow, 1986). The tidal sediments probably contained iron and manganese concretions. As

noted by Fields et al. (1992, p. 19), manganese is a highly variable soil constituent. Groundwater flowing through glauconitic formations contains calcium and magnesium (Meisler et al., 1988, p. 215).

An additional natural influence on background groundwater chemistry is saltwater intrusion. As noted in Section 2, the Main Post and Charles Wood areas are underlain by dissected unconsolidated Coastal Plain sediments. The Coastal Plain aquifers are susceptible to saltwater encroachment, particularly near the coast and along tidal rivers and streams (Gill, 1962; Harriman et al., 1989; Harriman and Sargent, 1985).

Saltwater encroaches several miles inland on tidal streams, particularly during periods of low flow (Gill, 1962). Saltwater encroachment will lead to saltwater intrusion into the adjacent aquifers. Husky Brook and Lafetra Creek are tributary estuaries to the estuaries of Oceanport and Parkers Creeks. Saltwater will encroach several miles up these estuaries.

The area of Monmouth County where Fort Monmouth is located is underlain by groundwater with relatively high manganese and iron concentrations. The manganese and iron concentrations reported for eastern Monmouth County in Harriman et al. (1989) range from 110 to 200 μ g/L for manganese and 7,900 to 14,000 μ g/L for iron. These concentrations are reported for the Upper Potomac Raritan-Magothy aquifer, but the concentrations are expected to be comparable in the shallower, lithologically similar Tinton and Red Bank sands.

Anthropogenic influences on the background metals include deposition of airborne dust, and fertilizers, pesticides, and herbicides (Fields et al., 1992). The Fort Monmouth area is located downwind from farms (Jablonski, 1989). Vanadium can be a result of oil burning (Fields et al., 1992, p. 20). Arsenic was a common constituent of herbicides and pesticides in the past.

Concentrations detected in surface-water samples collected at Fort Monmouth (Main Post and Charles Wood) in December 1994 were compared to fresh and saltwater NJDEP Surface Water Standards (NJDEP, 1993). Based on observations by field personnel, sample locations were designated as saltwater if the area was tidally influenced. All surface-water and sediment

sampling locations at the Main Post were determined to be saltwater, with the exception of site M-2 (M2SW-1 and M2SW-2) and background locations (SS-B1 and SS-B2). However, all sampling locations at Charles Wood were designated as freshwater. Detected concentrations were also compared to maximum background concentrations for surface water collected at each site. Because many contaminants are readily sorbed to sediment and particles suspended in the water column, and may significantly augment concentrations of contaminants detected in surface water, total (unfiltered) as well as soluble (filtered) surface-water concentrations were compared to criteria and background. Note, however, that the criteria are developed based on the total concentration in surface-water. Surface-water locations sampled at the Main Post were M-2, M-3, and M-14: background surface-water samples were collected at two areas (SS-B1 and SS-B2). Only background surface-water samples were collected at Charles Wood (CW-2 and CW-5). Surface-water criteria are presented in Table 4.1-4. Maximum background concentrations are presented in Table 4.1-8 for the Main Post and in Table 4.1-9 for Charles Wood.

Concentrations of chemicals detected in freshwater and saltwater sediment samples collected at Fort Monmouth, NJ (Main Post and Charles Wood) in December 1994 were compared to NJDEP freshwater sediment guidance values (NJDEP, 1991), or marine/estuarine biological effects screening levels for saltwater (Long et al., 1995), as well as maximum detected background concentrations detected from each site. Concentrations from two sediment sample locations at the Main Post, AOC-3 and the pre-1941 STP, and one location at Charles Wood, CW-5, were compared to the appropriate sediment criteria and background. Sediment criteria are presented in Table 4.1-4. No background sediment samples were collected at saltwater locations on the Main Post. Maximum background concentrations are presented in Tables 4.1-8 and 4.1-9.

NJDEP sediment guidance values incorporate National Oceanic and Atmospheric Administration (NOAA) sediment guidance values (NOAA, 1990) and NJDEP's equilibrium partitioning (EqP) approach for evaluating toxicity and bioavailability of sediment-bound, nonionic organic chemicals. For this screening evaluation, concentrations in sediment were compared to sediment NOAA Effects Range-Low (ER-L) levels (i.e., the lower 10th percentile of the chemical concentration associated with toxicity) and EqP-based criteria, which are adjusted to reflect site-specific total organic carbon (TOC) content (Table 4.1-4).

Background sediment samples were collected from two areas at the Main Post (SS-B1 and SS-B2), and two areas at Charles Wood (CW-2 and CW-5).

Table 4.1-8
Fort Monmouth - Main Post
Surface Water and Sediment Maximum Background Concentrations

COMPOUND	SEDIMENTS	SURFAC	E WATER
	(mg/kg)	Total	Soluable
VOCs	7		
Acetone	0.47 B	ND	NE
2-Butanone	0.47 B	ND	NE
SVOCs	1	ND	INL
Phenanthrene	0.39 J	ND	l NE
Anthracene	0.39 J	ND	NE NE
Carbazole	0.051 J	ND	· NE
Di-n-butylphthalate	0.26 JB	ND ND	NE NE
Fluoranthene	1.5	ND ND	NE
Pyrene	1.3	ND	NI NI
Benzo(a)anthracene	1.3	ND ND	
Chrysene Chrysene	0.37 J		NE
bis(2-Ethylhexyl)phthalate		ND	NE
	0.43 J	ND	NE
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.8	ND	NE
	1	ND	NE
Benzo(a)pyrene	1.2	ND	ND
Indeno(1,2,3-cd)pyrene	0.7	ND	ND
Dibenzo(a,h)anthracene	0.12 J	ND	ND
Benzo(g,h,i)perylene	0.67	ND	ND
Total Organic Carbon	5.7	ND	ND
PESTICIDES/PCBs			
Heptachlor epoxide	0.014 P	ND	ND
Endosulfan I	0.0024 J	ND	ND
4,4'-DDE	0.0092 J	ND	ND
4,4'-DDD	0.013	ND	ND
4,4'-DDT	0.0057 JP	. ND	NDND
alpha-Chlordane	0.011 P	ND	ND
gamma-Chlordane	0.0092 P	ND	ND
METALS			
Aluminum	9060	748	ND
Arsenic	14.5	2.6	ND
Barium	87.6	44.7	39.4
Beryllium	3.2	ND	ND
Calcium	3180	31600	30900
Cobalt	119	8.1	4.1
Chromium	88.1	7.5	ND
Copper	48.4	3.2	, 4
Iron	61900	6210	405
Mercury	1.7	/ ND	ND
Potassium	10200	5060	4280
Magnesium	3280	5440	5120
Manganese	70.2	113	98.6
Sodium	189	26700	26200
Nickel	131	22.9	16.1
Lead	64.1	10	ND
Selenium	1.7	ND	ND
Vanadium	49.1	5.8	ND
Zinc	162	35.1	23.8
			ND
Cyanide	3.1	ND	

Table 4.1-9
Fort Monmouth - Charles Wood
Surface Water and Sediment Maximum Background Concentrations

COMPOUND	SEDIMENT	SURFACE WATER			
		(Total)	(Soluble)		
SVOCs (mg/kg)					
bis-(2-Ethylhexy)phthalate	0.23 J	1 J	ND		
Di-n-butylphthalate	0.12 J	ND	ND		
PAHs (mg/kg)					
Benzo (a)anthracene	0.09 J	ND	ND		
Benzo (a)pyrene	0.1 J	ND	ND		
Benzo (b)fluoranthene	0.16 J	ND	ND		
Benzo (g,h,i)perylene	0.21 J	ND	ND		
Chrysene	0.14 J	ND	ND		
Fluoranthene	0.12 J	ND	ND		
Indeno (1,2,3-cd)perylene	0.19 J	ND	ND		
Phenanthrene	0.079 J	ND	ND		
Pyrene	0.41 J	ND ·	ND		
PESTICIDES/PCBs (mg/kg)					
4,4'-DDD	0.015 PD	ND	ND		
4,4'-DDE	0.096	. ND	ND		
4,4'-DDT	0.11	ND	ND		
METALS TOTAL (mg/kg)					
Aluminum	6660	265	160		
Antimony	ND	26.8	ND		
Arsenic	5.8	ND	ND		
Barium	45.7	77.1	78.2		
Calcium	2960	22900	24000		
Chromium	36.9	ND	ND		
Cobalt	4.2	2.8	ND		
Copper	24.5	8	10.2		
Iron	19600	715	435		
Lead	142	5.3	65.9		
Magnesium	2560	7050	7390		
Manganese	65.1	97.4	100		
Nickel	11.3	ND	ND		
Potassium	1700	3590	4040		
Selenium	0.68	ND	ND		
Sodium	271	156000	164000		
Vanadium	39.5	ND	ND		
Zinc	126	204	215		

J - Estimated Concentrations

D - Diluted Analysis

P - Percent difference between two columns, the smaller of two is reported

ND - Compound was not detected at or above the quantification limit.

Main Post Background Samples

4.2 MAIN POST

Subsection 4.2 presents a description of each Main Post site, the sampling rationale, and the results of sampling activities. The sites and the sampling effort are summarized in Table 4.2-1. Additional historical information on each site may be obtained from the *Investigation of Suspected Waste Sites at Fort Monmouth*, New Jersey, 1993.

This subsection also summarizes the results of the sediment, surface-water, soil, and groundwater sampling program that was implemented to characterize site conditions on the Main Post, as identified in the WESTON report titled *Site Investigation, Chemical Data Acquisition Plan* (CDAP). A total of 4 sediment and 8 surface-water samples were taken on the Main Post. In addition, a total of 15 soil borings and 29 monitor wells were installed on Main Post sites. Soil and groundwater samples were collected from the borings and monitor wells and were analyzed for compounds determined to be characteristic of the wastes associated with each area, i.e., TCL and TAL analytes (Tables 3.6-1 and 3.8-1).

The field effort was conducted in accordance with the scope and procedures outlined in the CDAP. However, there were slight differences, which are summarized in Table 4.2-2. Appendix D presents the analytical results of the Main Post sampling activities. Detailed information regarding the specific sampling protocols for each site is provided in the subsections that follow. In addition to the results of groundwater and soil analyses, the lithologic descriptions and water-level information are used to provide a hydrogeologic interpretation of the site, where appropriate.

Figure 4.2-1 shows the location of the 13 Main Post sites discussed in this subsection.

4.2.1 Background Samples

The background sample locations were selected prior to the initiation of field activities in areas believed to be unaffected by base activities. These locations were as specified in the

	<u> </u>		<u> </u>		
Site Number	Site Type	Description	Potential Waste/ Contaminants	Previous Sampling Activities*	Investigation Activities
M-2	Landfill	Operated 1964-1968. Currently used for leaf composting and to store wood chips. Debris protrudes from bank of Mill Creek. Was unfenced — covered with soil and gravel from Earle.	Domestic and industrial waste, oil in cans, filters, soot, and building rubble.	NJPDES sampling upstream (SW-1) and downstream (SW-2) on Mill Creek. Detected VOCs, metals, and inorganics.	Installed and sampled 3 monitor wells. Sampled surface water at the NJPDES locations (M2SW-1 and M2SW-2) and a new upstream surface-water location (SS-B1). Analyzed for TCL +30 /TAL/CN. Tidal water-level monitoring.
M-3	Landfill	Operated 1959-1964. Was fenced; had skeet shooting range. Burned wood debris. Had tear gas training in tent. Currently grass-covered; no visible debris.	Domestic and industrial waste. Wood and coal ash from stoves, boiler.	NJPDES sampling locations SS-3, SS-4. Detected VOCs, metals, and inorganics.	Sampled surface water at the NJPDES locations (M10SW-1 and M6SW-1) and upstream surface-water sampling location (SS-B2). Used GPR and magnetics to define extent of landfill. Installed and sampled 3 monitor wells. Analyzed for TCL +30/TAL/CN.
M-4	Landfill	Operated 1956 only. Currently grass-covered; no visible debris.	Building rubble.	None.	Installed and sampled 3 monitor wells. Analyzed for TCL +30/TAL/CN.
M-5	Landfill	Operated 1952-1959. Currently grass-covered; no visible debris.	Domestic and industrial waste.	NJPDES sampling locations SS-5, SS-6. Detected VOCs, metals, and inorganics.	Installed and sampled 2 monitor wells. Analyzed for TCL +30/TAL/CN/sulfate.
М-6	Burning area	Located on Landfill M-3. Operated until 1970s. Burned general trash. Currently no visible contamination.	General trash.	None.	See M-3.
M-8	Landfill	Operated 1962-1981. Currently has leaf- composting operation. Was fenced and controlled during operation.	Domestic and industrial waste including pesticide/herbicide cans, batteries, asbestos, sludge from STP, and miscellaneous chemicals.	Four monitor wells, NJPDES sampling location SS-7.	Abandoned existing wells and piezometers; installed 4 new monitor wells. Analyzed for TCL +30/TAL/CN/NH ₃ /sulfate. Tidal water-level monitoring.
M-12	Landfill	Date of operation unknown. Located across Husky Brook from M-14.	Domestic and industrial waste, automobiles, oil, and building rubble.	NJPDES sampling locations SS-8, SS-9, and SS-10.	Used GPR and magnetics to locate landfill and define boundaries. Installed 3 monitor wells. Analyzed for TCL +30/TAL/CN. Tidal monitoring with M-14.
M-14	Landfill	Operated from 1965-1966. Has NJPDES permit.	Building rubble and dredgings from Husky Brook Lake.	NJPDES sampling upstream and downstream on Husky Brook Creek, SS-8, SS-9, and SS-10.	Used GPR and magnetics in western area. Installed and sampled 3 monitor wells for TCL +30/TAL/CN. Tidal monitoring with M-12. Sampled M14SW-8 and M14SW-9 surface-water locations.

MK01\RPT:03886076.037\ftmonsi.s42

A

Site Investigation Summary — Main Post (Continued)

Site Number	Site Type	Description	Potential Waste/ Contaminants	Previous Sampling Activities*	Investigation Activities
M-15	Water tank	Used for fire-fighting water. Built in 1940s. Paint chips on ground surrounding tank. Stressed vegetation around base of tank.	Lead.	None.	Collected 2 surface soil samples. Analyzed for TCL SVOCs, TAL, and pesticides.
M-16	Former Pesticide Storage Bldg. 498	Misidentified as Bldg. 167 in 1980 report. Building 498 used for pesticide control shop in the 1940s and 1950s: disposal to sink, which discharged to sanitary sewer. No apparent outside disposal.	Pesticides and herbicides.	None.	Collected 4 soil samples from 0 to 6 inches bgs. Installed soil boring and 1 monitor well. Analyzed for TCL +30. Analyzed for TAL in SB-01.
M-18	Former training area	Army Signal School. Diesel and gasoline generators.	Diesel and oil spilled on ground. PAHs, VOCs, TPHs, lead.	None.	Conducted geophysical surveys, completed 9 soil borings, sampled 6 to 12 inches or 12 to 18 inches, stained areas, and/or just above water table. Installed 2 monitor wells in soil borings. Sampled soil for VOCs and TPHs. In addition, sampled for SVOCs and TAL at SB-06 only. Sampled groundwater for TCL +30/TAL/TPHs.
AOC-3	Former sewage treatment plant	Operated 1941-1975. Sludge drying bed located on concrete base. Sludge transported to golf course and landfills. 1935 map shows pistol range on this location.	Heavy metals, cyanide, and pesticides.	Monitor wells installed west of site. Sludge sampled in 1981; no heavy metals detected.	Sampled outfall sediments and 2 soil borings in sludge bed area for TCL + 30/TAL/CN.
New Site, Not Noted in IA Report	Former treatment plant	Operated until 1941. Located approximately where Bldg. 250 is today. Labeled on 1935 map.	Heavy metals.	None.	Sampled outfall sediment for metals.
PCB Trans- formers	Buildings (see Table 4.2-22)	Several transformers in this area were tested for PCBs in 1990. Those with PCBs >500 ppm were removed or remediated.	PCBs	Transformers sampled — several > 500 ppm. See Table 4.2-22.	Sampled PCB transformer locations.

*Results of previous investigation were presented on the report titled Investigation of Suspected Waste Sites at Fort Monmouth, New Jersey (1993).

NATION NAMED IN THE PARTY OF TH

bTCL +30 = Target Compound List; includes volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, and polychlorinated biphenyls (PCBs).

Differences Between the Proposed and Actual Work at Main Post

Site	Differences
M-15	Soil samples from SS-01 and SS-02 were collected and analyzed for TCL SVOCs; however, TCL SVOC analyses were not proposed in the CDAP.
M-16	Soil samples from SB-01 were collected and analyzed for TAL metals; however, TAL metals analyses were not proposed in the CDAP.
M-18	Installed 9 soil borings instead of 12, and 2 monitor wells instead of 3 because marshy conditions made some of the planned sampling locations inaccessible. Sampled one existing monitor well in addition to the 2 newly installed wells. In eight of nine soil borings, no soil staining was observed so no SVOC analysis was performed as per the CDAP.

Investigation of Suspected Waste Sites at Fort Monmouth, New Jersey, 1993, which was approved by NJDEP. Background characterization data were collected to evaluate soil, groundwater, surface water, and sediment in areas of the base considered to be representative of natural materials or upgradient conditions.

Sediment and surface-water samples were taken upgradient of the Main Post on Lafetra Creek and Mill Creek. Five background soil borings, which were converted into monitor wells, were installed and two discrete soil intervals were sampled from each boring. Two rounds of groundwater samples were collected from each location. Soil and groundwater samples were analyzed for the parameters listed in Section 3, Tables 3.6-1 and 3.8-1. Background monitor wells were labeled as "B" wells, i.e., MW-01B. Main Post background locations are shown in Figure 4.2-2 and labeled B-1, B-2, etc. Monitor well MW-01B was installed at background location B-1 and a similar practice was followed at the other background locations.

4.2.1.1 Hydrogeologic Interpretation

The five monitor wells stalled at the Main Post were installed to depths ranging from 14 ft below ground surface (bgs) to 26 ft bgs. Total depths were determined during drilling and were based on the depth at which water was encountered. The lithology and depth to water varied between background locations, as presented on the lithologic logs in Appendix A. Monitor wells were screened across the water table.

4.2.1.2 Soil Sampling Results

As outlined in the CDAP, soil samples were collected from two discrete intervals: 0 to 2 ft bgs and between 2 and 10 ft bgs or to groundwater. Soil-boring depths varied among the background locations, depending on the depth to groundwater. The compounds detected in background soil samples at the specific sampling intervals, with the corresponding sample identifications, are presented in Appendix D. Table 4.1-6 summarizes the maximum concentrations detected in background soil at the Main Post and presents published maximum concentrations for Monmouth County.

VOCs

VOCs were analyzed for but were not detected in Main Post background soil samples.

SVOCs

A total of 19 SVOCs were detected in Main Post background soil samples (Table 4.1-6).

Pesticides/PCBs

Three pesticides (4,4'-DDE, 4,4-DDD, and 4,4'-DDT) were detected above the laboratory quantitation limit in Main Post background soils.

Metals

A total of 19 metals were detected above laboratory quantitation limits in Main Post background soils.

Cyanide

Cyanide was not detected in any of the Main Post background soil samples.

4.2.1.3 Groundwater Sampling Results

Two rounds of groundwater samples were collected at the Main Post. The compounds detected in groundwater samples from the individual sampling rounds, with the corresponding sample identifications, are listed in Appendix D. Table 4.1-6 summarizes the maximum background concentrations detected in groundwater at the Main Post.

VOCs

VOCs were not detected in any of the background samples from the Main Post.

SVOCs

Two SVOCs [bis(2-ethylhexyl) phthalate and chrysene] were detected in concentrations above or below the laboratory quantitation limits. However, bis(2-ethylhexyl) phthalate is a common laboratory contaminant.

Pesticides/PCBs

One pesticide (heptachlor epoxide) was detected in the background groundwater samples in a concentration below the laboratory quantitation limit. PCBs were not detected at the background locations.

Metals

As indicated in Table 4.1-6, 22 metals (total) were detected in concentrations above laboratory quantitation limits in background groundwater at the Main Post.

Cyanide

Cyanide was not detected in the background groundwater at the Main Post.

4.2.1.4 Surface-Water Sampling Results

Two surface-water samples collected at locations upgradient from on-site drainage (SS-B1 and SS-B2) were selected as background samples (Figure 4.2-2). The analytes detected in background surface water and corresponding sample identifications are presented in Appendix D.

Table 4.1-8 summarizes the maximum detected concentrations in total and soluble background surface water at the Main Post.

<u>VOCs</u>

VOCs were analyzed for but not detected in background surface water (total) at the Main Post.

VOC analysis was not performed for the soluble background surface-water samples.

SVOCs

SVOCs were analyzed for but not detected in background surface water (total) at the Main Post. SVOC analysis was not performed for the soluble background surface-water samples.

Metals

A total of 13 metals were detected above laboratory quantitation limits at the Main Post. Similarly, 11 metals were detected above laboratory quantitation limits in the filtered (soluble) background surface-water samples (Table 4.1-8).

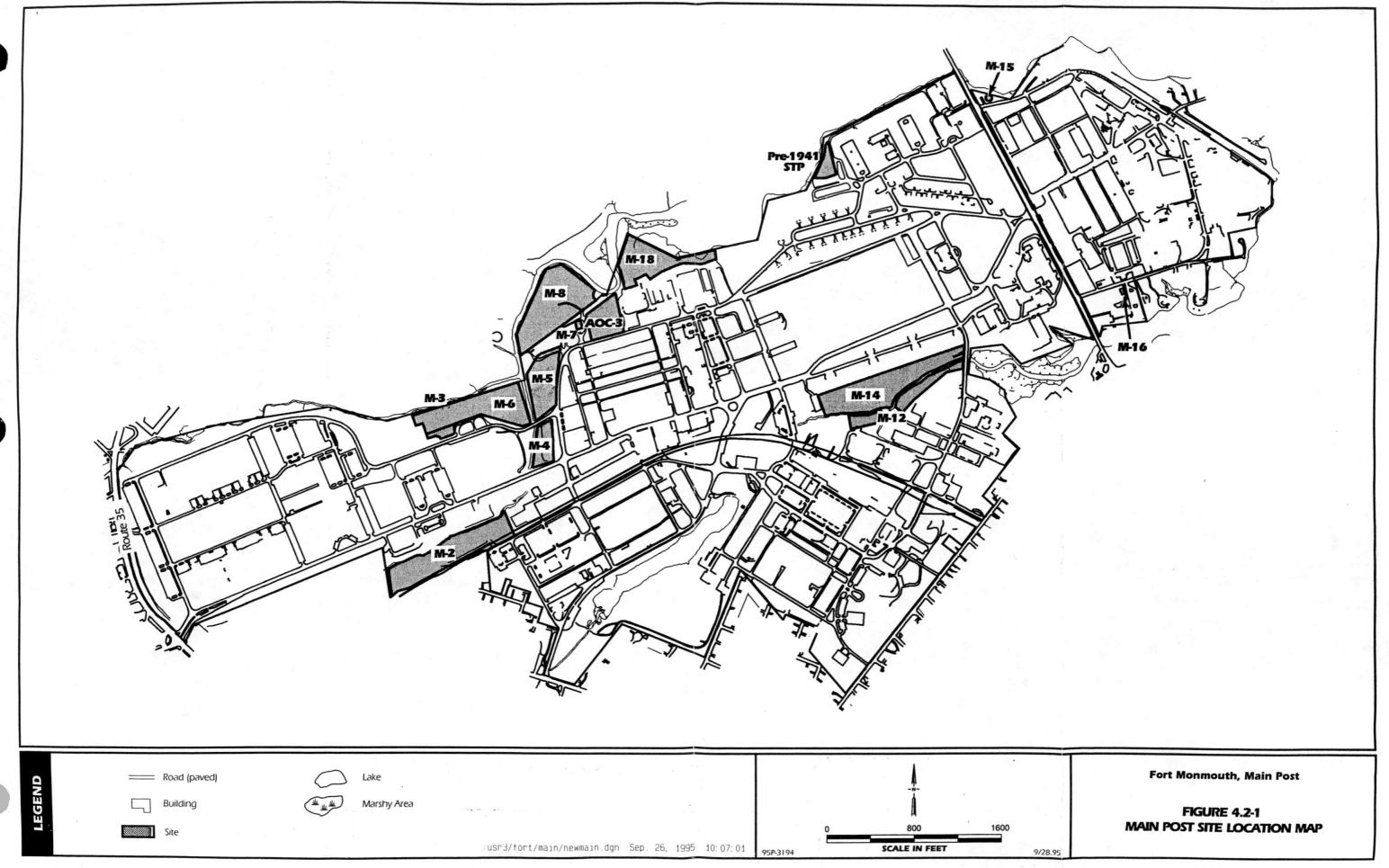
4.2.1.5 Sediment Sampling Results

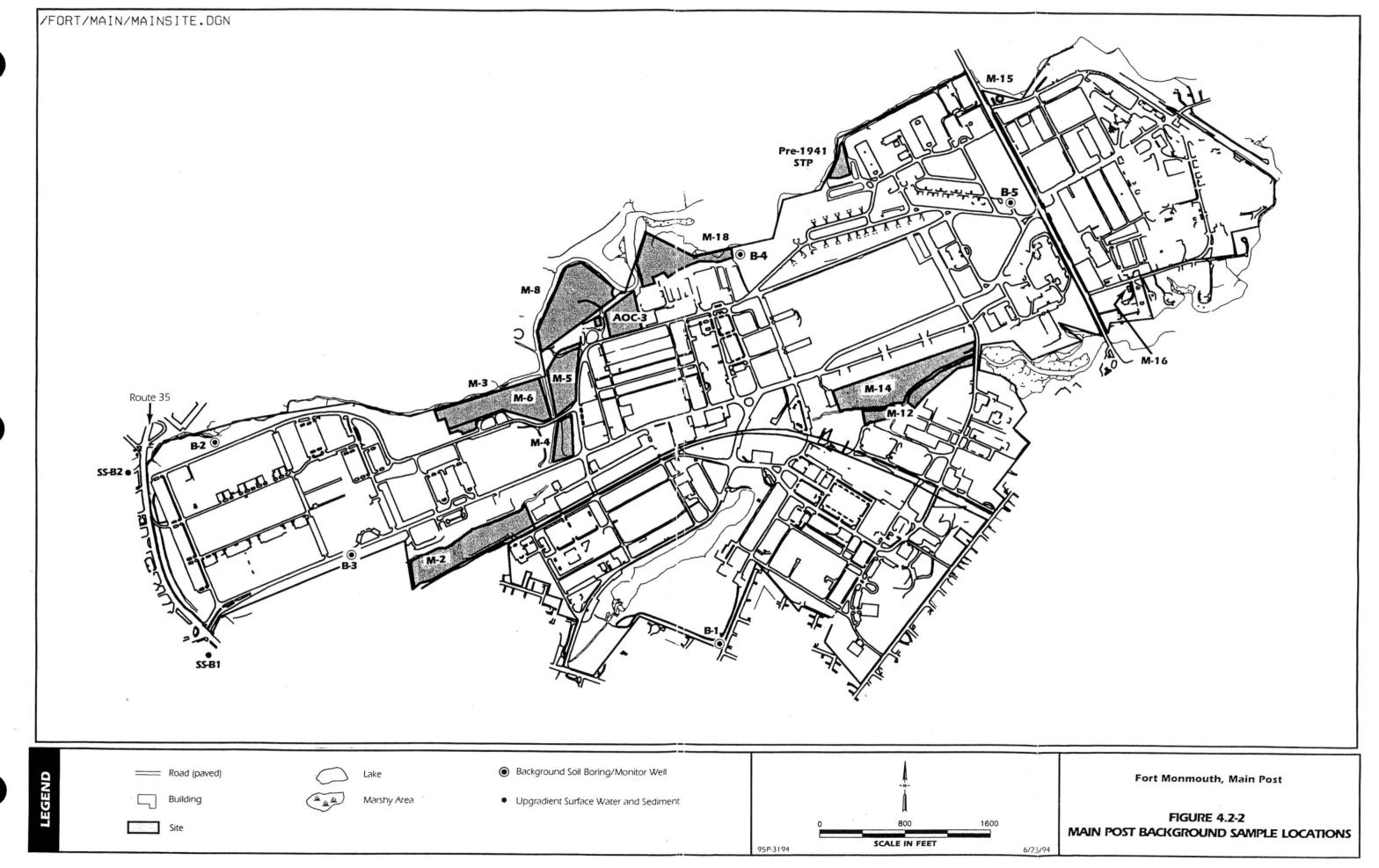
Two sediment sampling locations at the Main Post, SS-B1 and SS-B2, were selected as background because they are located upgradient of on-site drainage (Figure 4.2-2). Analytes detected in background sediment and corresponding sample identifications are presented in Appendix D. Table 4.1-8 summarizes the maximum detected concentrations in background sediment at the Main Post.

VOCs

Four VOCs (acetone, 2-butanone, 1,2-dichloroethene, and vinyl chloride) were detected above the laboratory quantitation limits in Main Post background sediments. However, acetone and 2-butanone are common laboratory contaminants.

SVOCs


One SVOC, di-n-butyl phthalate, was detected in concentrations above the laboratory quantitation limits in Main Post background sediment. Benzo(a)pyrene was the only polyaromatic hydrocarbon (PAH) compound detected in concentrations above the laboratory quantitation limits in Main Post background sediment.


Pesticides

Pesticides were analyzed for but not detected in background sediments at the Main Post.

Metals

A total of 19 metals in background sediment at the Main Post were detected above laboratory quantitation limits (see Table 4.1-8).

Site M-2

4.2.2 Landfill 2 (M-2)

4.2.2.1 Site Location

Landfill 2 (M-2) is located in the southwestern corner of the Main Post, on the south bank of Mill Creek (Figures 4.2-1 and 4.2-3). The approximate area of Landfill 2 is 280,400 ft² (6.5 acres).

4.2.2.2 Site History

MK01\RPT:03886076.037\ftmonsi.s42

According to the Installation Assessment (IA) (USATHAMA, 1980), Landfill 2 was in use between 1964 and 1968. A review of aerial photographs suggests that the landfill was still in use in 1969. The 1969 aerial photograph shows that the western three-quarters of the site is mostly bare ground with abundant wheel tracks; a 50- by 300-ft area in the center of this western area is covered with small piles of debris; vegetation is visible between some of the piles, suggesting that the piles had been there for some time. The eastern quarter of the site is vegetated; a small square building and a steel storage igloo were located near the entrance to the landfill. At present, the Landfill 2 area is used for storage of wood chips.

Materials generally found in Main Post landfills include unwashed pesticide/herbicide cans, batteries, fluorescent tubes, electronic components, garbage, asbestos wrappings from pipes, soot and boiler scale, sludge from sanitary treatment plants (STPs), small quantities of outdated drugs, outdated photographic chemicals in glass bottles, building rubble [including asbestos-containing materials (ACM)], incinerator ash, sand from oil spill cleanups, and other debris (IA). According to the IA, specific wastes known to have been put in Landfill 2 include oil in cans, oil burner filters (with approximately 0.5 liter of oil in each), and soot. The banks along Mill Creek near the west end of Landfill 2 were reportedly covered with building rubble (concrete, cinder blocks, etc.) to stabilize the bank. Metal and concrete protrude from the banks of Mill Creek.

As part of a New Jersey Pollutant Discharge Elimination System (NJPDES) permit (permit No. 0057274), surface-water samples have been taken at two locations in Mill Creek since February 1986. The results are summarized in the recent report (WESTON, 1993). Two VOCs

(tetrachloroethene and trichloroethene) were detected in concentrations above the NJDEP surfacewater criteria.

4.2.2.3 Sampling Effort

To identify the source of the halogenated hydrocarbons (HHCs) detected in surface-water samples collected from a previous investigation (WESTON, 1993), two new surface-water samples (M2SW-1 and M2SW-2) were collected (Figures 4.2-2 and 4.2-3). In addition, three shallow monitor wells (MW-1, MW-2, and MW-3) were installed. Monitor well locations (MW-1 through MW-3) and surface-water locations are presented in Figure 4.2-3. Tidal water-level monitoring was conducted for a minimum of 72 hours in the three monitor wells and at stilling well-1 and stilling well-2 prior to the collection of analytical samples. Two rounds of groundwater samples and one round of surface-water samples were analyzed for TCL +30 parameters (which include VOCs, SVOCs, pesticides, and PCBs), TAL metals, and cyanide.

4.2.2.4 Hydrogeologic Interpretation

Lithologic logs from MW-2 and MW-3 indicate that the lithology consists of a thin soil cover (0.2 ft) underlain by fill material. The components of the filled materials observed in both borings consist of coal and wood fragments, roof shingles, paper, and miscellaneous debris. Natural quartz sand, silt, and clays were intermixed with the manmade materials. Monitor well MW-1, located upgradient of the landfill boundary, indicates a lithology consisting primarily of silty medium-fine-grained sand that overlies a fine-medium-grained sandy silt.

Groundwater saturation was observed at approximately 8 ft bgs at all of the well locations. The three monitor wells were screened across the water table, with total depths of 23, 18, and 16 feet bgs in MW-1, MW-2, and MW-3, respectively. Water-level elevation data, measured on 6 March 1995, indicate that local groundwater flow is north toward Mill Creek (Figure 4.2-4). Based on groundwater elevation measurements, monitor wells MW-2 and MW-3 are downgradient of the M-2 area.

4.2.2.5 Groundwater Sampling Results

Monitor wells at site M-2 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results in groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.2-3 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP Groundwater Quality Criteria (GWQC), and then compares the results to the subsequent site-specific maximum background and/or Monmouth County background concentrations, where appropriate. Figure 4.2-5 presents the locations and averaged concentrations of compounds detected above both the NJDEP GWQC and the background concentrations established for the Main Post.

VOCs

Chlorobenzene was the only VOC detected in site M-2 groundwater (Figure 4.2-5). However, chlorobenzene was detected in concentrations exceeding the NJDEP GWQC from both sampling rounds in MW-2 and MW-3. Chlorobenzene was not detected in the February sampling round in MW-1, but was detected in the March sampling round in exceedance of the NJDEP GWQC.

SVOCs

SVOCs were not detected in site monitor wells above laboratory quantitation limits from either sampling round.

Pesticides/PCBs

Pesticides/PCBs were not detected in site monitor wells from either sampling round.

Metals

As indicated in Table 4.2-3, of the 20 metals detected in site groundwater, only 5 (aluminum, arsenic, iron, manganese, and lead) were found in concentrations exceeding the NJDEP GWQC.

Table 4.2-3 Fort Monmouth - Main Post **Summary of Average Concentrations of Detected** Compounds in Groundwater - Site M-2

COMPOUND METHOD DETEC LIMIT		GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE			
	(µg/L)	QUALITY CRITERIA (µg/L)	CONCENTRATIONS (µg/L)	MW1 2/15/95, 3/8/95 (avg.)	MW2 2/15/95, 3/8/95 (avg.)	MW3 2/15/95, 3/8/95 (avg.)	
VOC's (µg/L)							
Chlorobenzene	2.7	4	ND	17.5	29	10	
SVOCs (µg/L)							
1,4-Dichlorobenzene	4.8	75	ND	ND	3J	ND	
4-Methylphenol	12.9	NLE	ND	, ND	4J	ND	
Naphthalene	8.4	NLE	ND /	ND	3J	ND	
2-Methylnaphthalene	8.7	NLE	ND	ND	2Ј	ND	
METALS TOTAL (μg	g/ L)						
Aluminum	24	200	121000	5355 R	2061.5	1616.5	
Arsenic -	1.9	8*	89.3	8.95	4.325	3.4	
Barium	1.7	2000	699	135	440.5	105.55	
Beryllium	0.9	20*	7 ¹	0.775	ND	ND	
Calcium	10.4	NLE	45400	14150	89350	- 64550	
Cadmium	2.8	4	9.5	ND	2.7	ND	
Cobalt	2.3	NLE	18.3	6.75	3.85	2.5	
Chromium	2.9	100	191	66 R	22.5	15.25	
Copper	1.9	1000	730 ¹	5.3	6.575	5.85	
Iron	^ 6.4 ·	300	431000	15900 R	61250	20450	
Mercury	0.2	2	0.26	ND	0.25	0.195	
Potassium	685	NLE	137000	7195	12000	11150	
Magnesium	18.3	NLE	62700	8315	11400	5570	
Manganese	1.8	50	480¹	78.55	286.5	483.5	
Sodium	30.5	50000 ·	197000 ¹	13100	10390	9170	
Nickel	10.8	`100	187	19.8	ND .	ND	
Lead .	1.1	10*.	22.7	4.4	11.55	14.8	
Selenium	1.5	50	29.6	1.9	ND	ND	
Vanadium	2.3	NLE	108	21.25	13.65	9.7	
Zinc	· 3.8	5000	233	472	47.35	79.3	

Compounds exceeding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL -Practical Quantitation Limit was used as the NJDEP groundwater quality criteria

NLE - No Level Established

ND - Indicates that the compound was not detected at the noted quantification limit

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

¹ - Monmouth County maximum background concentration.

R - Data rejected, URS the Data Validator

However, all five metals, with the exception of iron in MW-2 and manganese in MW-3, were found in concentrations below those determined for both site-specific and Monmouth County background at the Main Post. Although iron was found in samples collected from MW-2 in concentrations greater than the range established in the Monmouth County study, the concentrations were well below the site-specific maximum background concentration established at Main Post. Manganese was found in MW-3 in a concentration only slightly greater than the site-specific and Monmouth County background concentrations. As discussed in Subsection 4.1, groundwater flowing through glauconitic formations contains abundant manganese. In addition, manganese is a common metal found in tidally influenced environments. Therefore, manganese is not identified as a compound of concern.

Cyanide

Cyanide was not detected in site monitor wells from either sampling round.

4.2.2.6 Surface-Water Sampling Results

Figure 4.2-6 presents the Main Post surface-water and sediment sampling locations. Surface-water samples were collected from two locations at M-2: M2SW-1 and M2SW-2 (Figures 4.2-3 and 4.2-6). M2SW-1 is upgradient of M2SW-2. Both samples were determined to be freshwater, based on conductivity data, salinity data, and field observations. Total (unfiltered) and soluble (filtered) concentrations were compared to NJDEP freshwater criteria and background and are presented in Table 4.2-4.

VOCs

Two VOCs (tetrachloroethene and trichloroethene) were found in concentrations in the unfiltered samples greater than the NJDEP freshwater criteria and background at locations SW-1 and SW-2. Figure 4.2-5 presents the locations of the compounds detected above the established criteria and maximum background.

Table 4.2-4 Fort Monmouth - Main Post Summary of Detected Compounds in Site Surface Water Total and Soluble - Site M-2

COMPOUND	METHOD DETECTION	NJDEP SURFACE WATER	MAXIMUM BACKGROUND	MAXIMUM BACKGROUND		TICAL I LING DA		
	LIMIT	CRITERIA* FRESH WATER	CONCENTRATION (TOTAL)	CONCENTRATION (SOLUBLE)	M2 (SW-1	Fotal) SW-2	M2 (S SW-1	oluble) SW-2
VOC's (μg/L)		1						
1,2-Dichloroethene (total)	4.4	592 (h)	ND	ND	3 J	2 Ј	NA	NA
Tetrachloroethene (PCE)	4.0	0.388 (hc)	ND	, ND	5 J	5 J	NA	NA
Trichloroethene ¹	2.0	1.09 (hc)	ND	ND	2 J	2 J	NA	NA
SVOCs (µg/L)								
bis-(2-Ethylhexyl)phthalate	9.7	1.76 (hc)	ND	ND	ND	4 J	NA	NA
METALS TOTAL (µg/L)								
Aluminum	26.7	NLE	748	ND	258	263	ND	ND
Barium	2.1	2000 (h)	44.7	39.4	42.7	47	38.2	41.8
Calcium	12	NLE	31600	30900	18000	19400	17700	19000
Cobalt	2.4	NLE	8.1	4.1	4.5	4.8	4.1	ND
Соррег	2.4	NLE	3.2	4	3.1	2.9	4.2	4.9
Iron	4.7	NLE	6210	405	2760	3020	493	681
Lead	1.6	5 (h)	10	ND	3.1	2.3	7.6	ND
Magnesium	38.2	NLE	5440	5120	2930	2860	2860	3070
Manganese	2.0	NLE	113	98.6	89.9	97.6	86.1	92.8
Nickel	_12.8	516 (h)	22.9	16.1	ND	ND	14.7	ND
Potassium	821	NLE	5060	4280	2840	2860	2860	3180
Sodium	15.4	\ NLE	26700	26200	25400	27500	25200	26900
Zinc	2.8	NLE	35.1	23.8	29.1	19.4	19.4	21.1

 ⁻ Same compound as listed by NJDEP tetrachloroethylene.
 - NJDEP Surface Water Quality Standards (1993).

Compounds detected above NIDEP Surface Water Criteria are noted by bold numbers.

h -Non carcinogen effect-based human health criteria as a 30 day average.

hc Carcinogen effect-based human health criteria as 70 year average.

ND - Indicates that the compound was not detected at the noted quantification limit.

J - Indicates that the concentration value was estimated due to detection at or near the quantification limit.

NLE - No Level Established.

NA - Not Analyzed.

SVOCs

Bis(2-ethylhexyl) phthalate was the only SVOC detected in site M-2 surface water. In addition, the compound was found in a concentration greater than the NJDEP freshwater criteria and background at location SW-2. Bis(2-ethylhexyl) phthalate is a common laboratory contaminant and can be attributed to sampling or laboratory contamination.

Pesticides/PCBs

Pesticides/PCBs were analyzed for but were not detected in site surface water.

Metals

Of the 13 metals detected in site surface water, only one (lead) was found in a concentration greater than the NJDEP freshwater criteria and maximum background. The compound exceeded the criteria in the filtered sample, but was not detected above criteria in the unfiltered sample (Figure 4.2-5).

4.2.2.7 Tidal Monitoring

Appendix E presents hydrographs of the comparisons between the monitor wells (MW-1 though MW-3) and the stilling wells (1 and 2) during the tidal monitoring tests.

Tidal fluctuations in Mill Creek and in site monitor wells were monitored at upstream tidal monitoring station (stilling well-1), downstream tidal monitoring station (stilling well-1), and site monitor wells (MW-1 through MW-3) (Figure 4.2-3). (Hydrographs are presented in Appendix E.) The tidal monitoring stations are approximately 2,400 ft apart. Changes in creek levels at the upstream location were compared to changes in water levels measured at well MW-2, and changes in creek levels at the downstream location were compared to changes in water levels measured at well MW-3. Wells MW-2 and MW-3 are approximately 150 feet from the creek.

Tidal fluctuations in the creek were also compared to water levels measured at well MW-1, approximately 1,100 feet from the creek. Monitor wells were screened below sea level.

The tidal monitoring data collected at Landfill 2 (M-2) suggest that the stream is influenced by incoming tides. Peaks representing the high tides at stilling well-1 and stilling well-2 are observed, but low tide peaks are not apparent because the elevation of the stream bed at Landfill 2 (M-2) is higher than the elevation of sea level at low tide. The streambed elevation is 1.37 feet above mean sea level (ft msl) at stilling well-1 and 1.28 ft msl at stilling well-2. The maximum change in creek stage at Landfill 2 (M-2) was 1.2 feet, and the maximum change in water level in the monitor wells was 0.2 foot.

Data collected from well MW-1 were useful as baseline data during the tidal monitoring study at Landfill 2 (M-2). The data suggest that there is no apparent tidal effect on the water levels at well MW-1 and creek levels measured at stilling well-1 or -2. Well MW-1 is approximately 1,100 feet from the creek and is too distant to be influenced by changing creek stage. Water levels in the water-bearing unit and creek levels declined by about 0.1 foot over the course of the monitoring study in March 1995.

The water levels recorded at MW-2 and MW-3 appear to be tidally influenced (see Appendix E). Water levels measured at both wells respond almost instantaneously to rising creek levels. The peak in water levels measured at both wells occurs approximately 20 to 40 minutes after the peak in creek stage. At both monitoring locations (stilling well-1, MW-2 and stilling well-2, MW-3) water-level peaks at each well are approximately 15% to 20% of the tidal peak in creek levels.

4.2.2.7.1 Conductivity and Salinity Results

Conductivity and salinity were measured in surface-water and groundwater samples at Landfill 2 (M-2) in January and March 1995, and are presented in tables in Appendix E. Measurements were collected at low tide and high tide each month to evaluate the extent of saltwater intrusion at each site. High conductivity and salinity readings indicate salty or brackish water, whereas low readings indicate freshwater.

The data indicate the presence of freshwater in the creek at Landfill 2 (M-2). Specific conductance measured in the creek at Landfill 2 (M-2) is consistently less than 240 µmhos. In addition, salinity measured in the creek at Landfill 2 (M-2) is consistently less than 0.2 parts per thousand (ppth). The results are consistent with the higher streambed elevation at Landfill 2 (M-2) when compared to Landfill 8 (M-8) and Landfills 12 and 14 (M-12, M-14).

Groundwater sampled from monitor wells MW-1 and MW-3 generally exhibits low conductivity and zero salinity, except well MW-2 at Landfill 2 (M-2). The moderate to high specific conductance at well MW-2 at Landfill 2 (M-2) is unexplained, but is likely caused by saltwater intrusion from Parkers Creek.

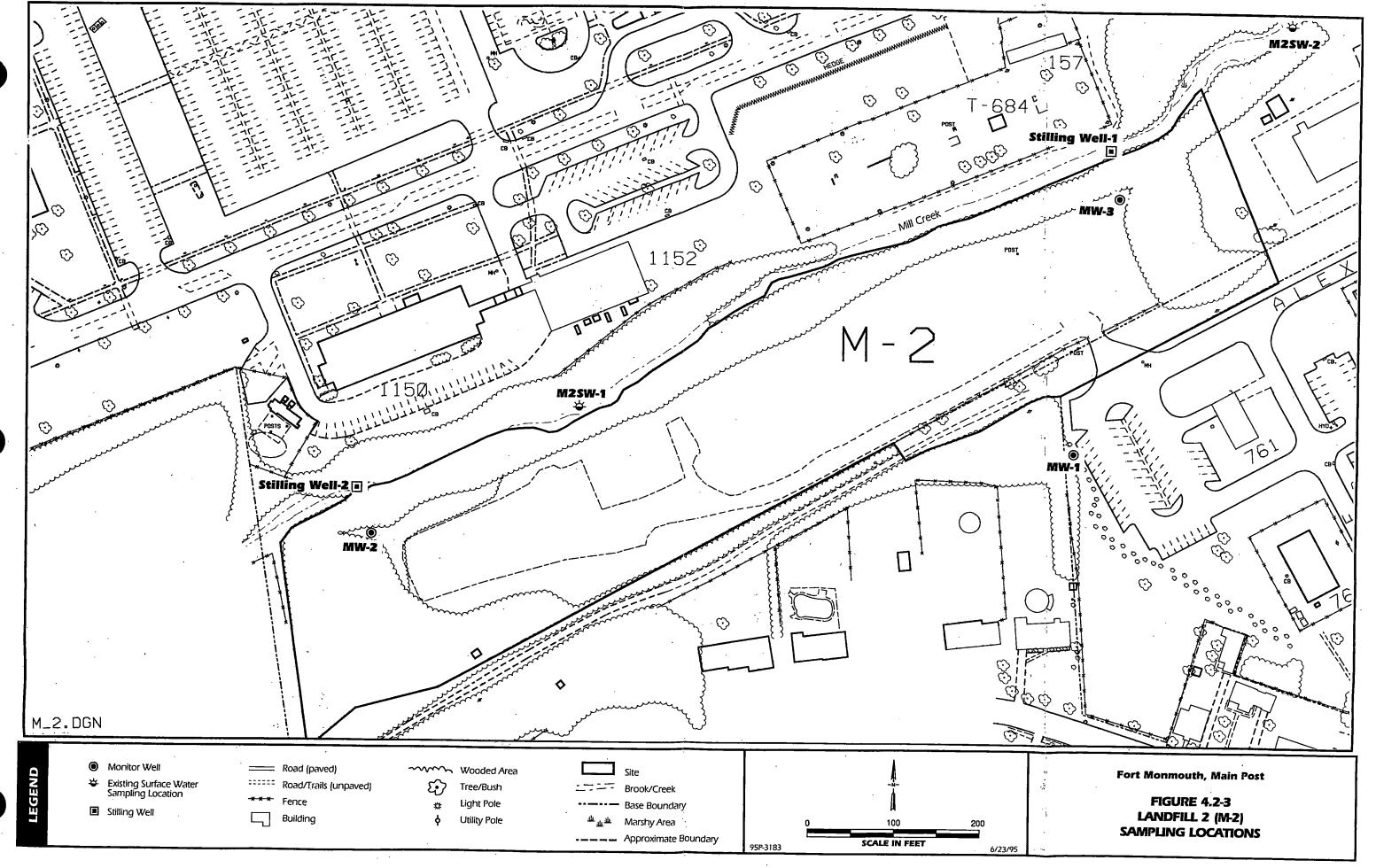
4.2.2.8 Recommendations

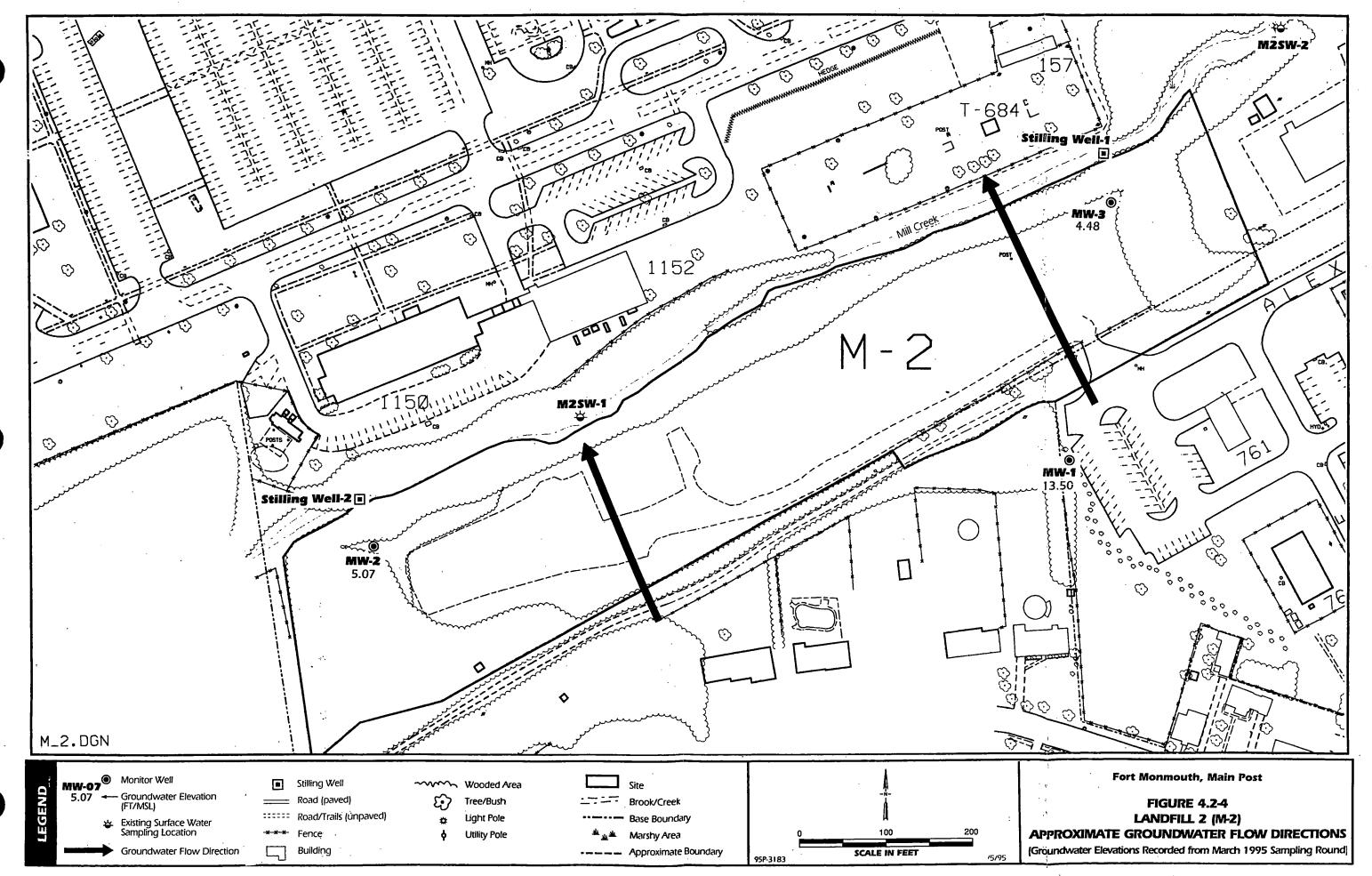
The surface-water sampling results indicate that two VOCs were detected at the two surface-water locations at concentrations greater than NJDEP surface-water criteria, and above maximum background concentrations. In addition, soluble lead was detected at a concentration greater than NJDEP criteria and the maximum background concentrations. Because the site formerly had an NJPDES permit (permit No. 0057274), surface water has been sampled since 1986. The results from the current round of surface-water sampling for VOCs are less than the maximum results from previous rounds.

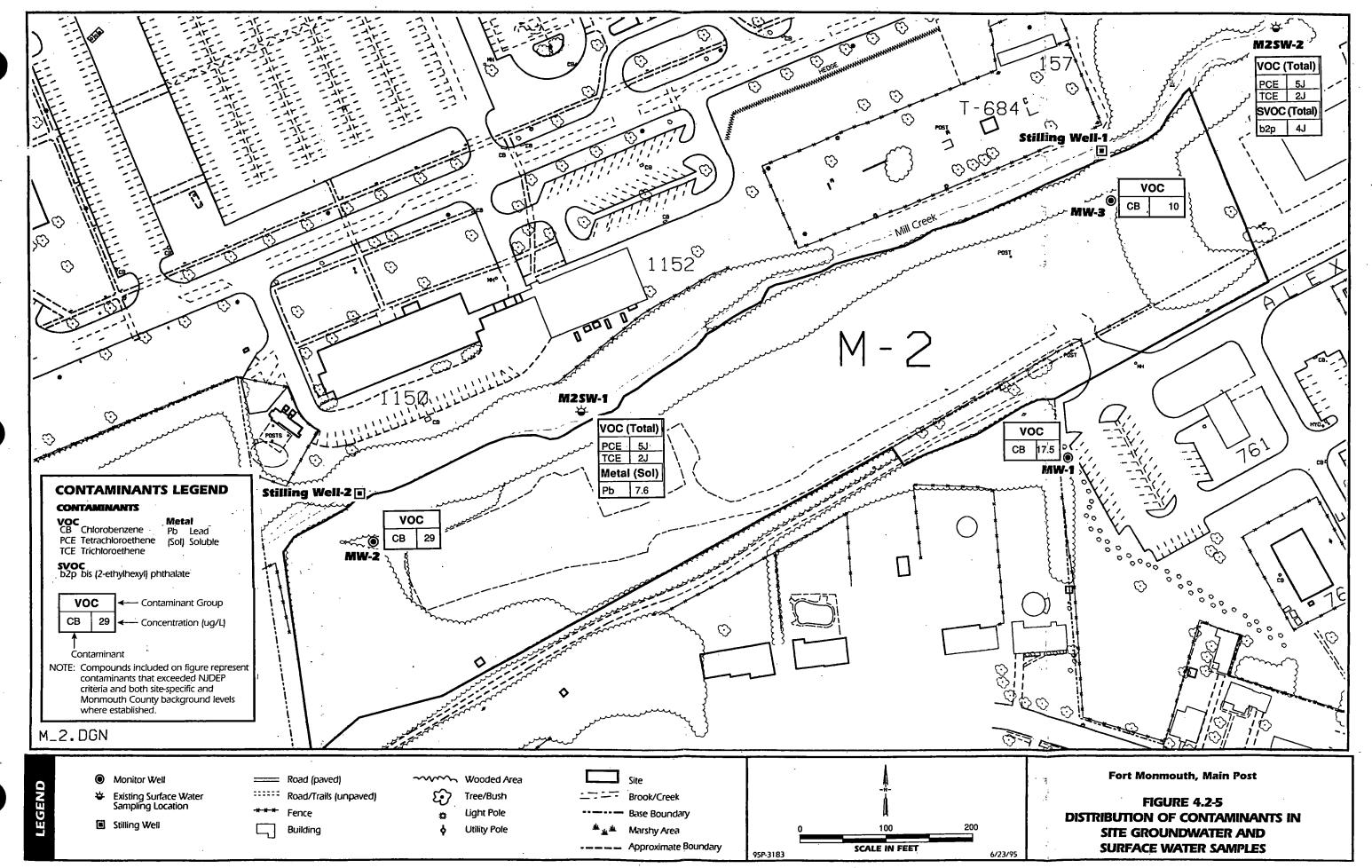
Chlorobenzene was detected in the groundwater at concentrations exceeding the NJDEP GWQC and background in both downgradient monitor wells from both sampling rounds and in the upgradient well during one sampling round.

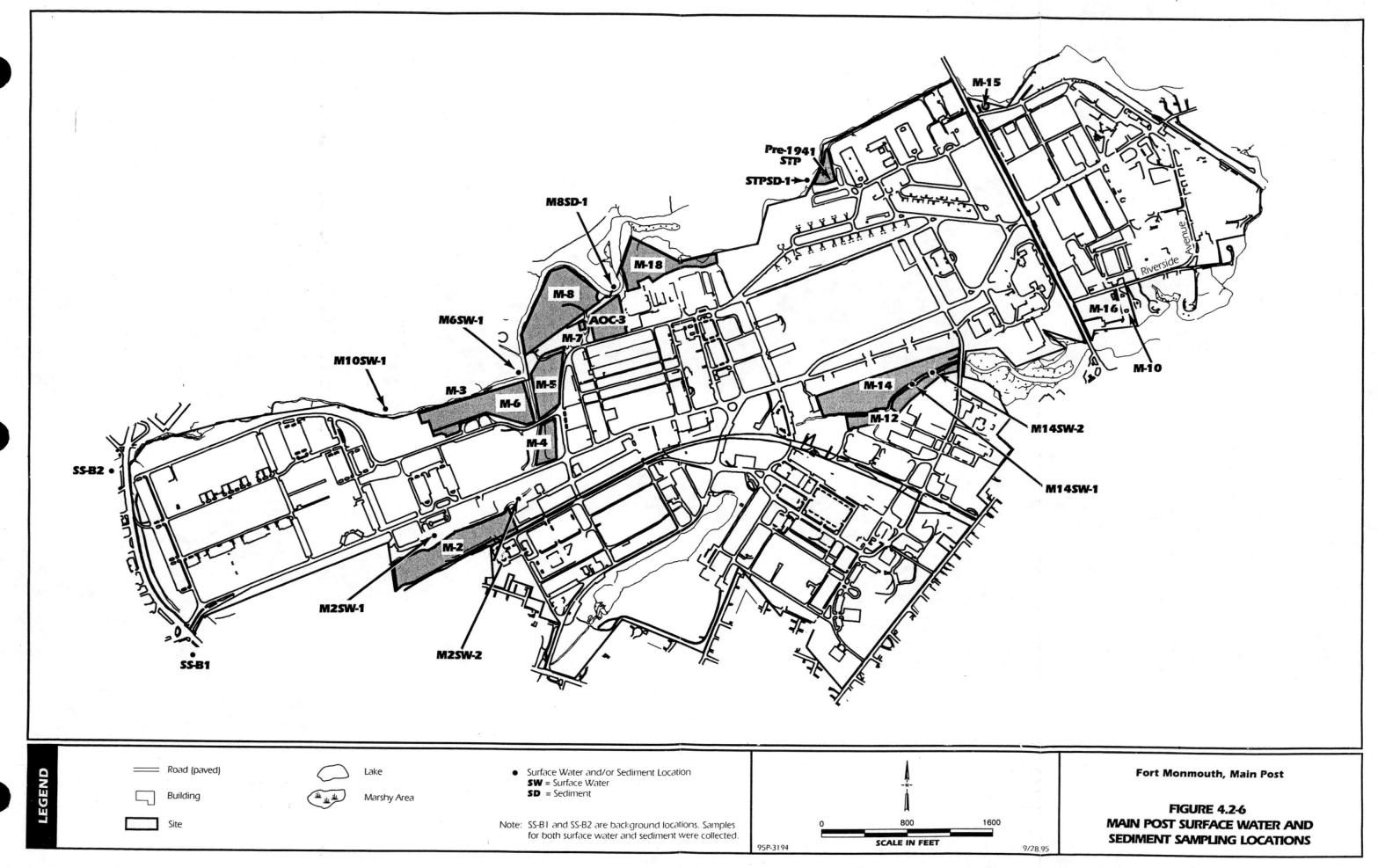
The results of the tidal monitoring indicate that there is no apparent relationship between the changing creek levels and the water levels in upgradient monitor well MW-1; however, a direct relationship was observed between changing creek levels and the water levels in downgradient monitor wells MW-2 and MW-3. Conductivity and salinity results indicate the presence of freshwater in the creek at site M-2. Freshwater was indicated at monitor wells MW-1 and

11/30/95


MW-3. A moderate to high specific conductance was measured at monitor well MW-2, which is unexplained.


Although groundwater sample results at site M-2 exceeded NJDEP criteria for one VOC, and surface-water results were slightly exceeded by two VOCs, immediate remedial action is not required for several reasons. Immediate remedial action is usually based on an immediate threat to human health. At this site, shallow groundwater flows toward and discharges to Mill Creek, as indicated by water-level measurements in site monitor wells. Also, there are no known uses of groundwater at or downgradient of the site. Although there is slight VOC contamination in Mill Creek, there is no use of this water for human consumption. In fact, Mill Creek becomes saline immediately downgradient of site M-2. Therefore, the groundwater and surface waters are not used for drinking water.


In addition, surface-water sampling has been performed at this site since 1986, and since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future. Although downgradient surface-water samples were not taken during this round, previous sampling at site M-8 indicated that NJDEP surface-water criteria were not exceeded for VOCs. Therefore, the only portion of Mill Creek for which NJDEP surface-water criteria are exceeded is the portion between sites M-2 and M-8. All of this portion is on Fort Monmouth property and, therefore, access to it is restricted.


Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, the Fort Monmouth Directorate of Public Works (DPW) proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells, and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

11/30/95

Site M-3

4.2.3 **Landfill 3 (M-3)**

4.2.3.1 Site Location

Landfill 3 (M-3) is located between North Drive and Lafetra Creek in the west-central part of the Main Post. The actual boundaries of the landfill are not clear, but have been approximated in Figure 4.2-7. The approximate area of site M-3 is 257,890 ft² (5.9 acres). Burning Area M-6, which is discussed later, is located within Landfill 3.

4.2.3.2 Site History

According to the IA, Landfill 3 was in use between 1959 and 1964, and was used for general purpose disposal of domestic and industrial wastes. The 1969 aerial photograph shows that, with the exception of a few areas with vehicle tracks, this area was covered with vegetation. At present, the surface is hummocky and covered with grass.

Landfill 3 (M-3) most likely contained materials similar to those generally found in other Main Post landfills. According to long-term Fort Monmouth employees, this landfill also contains wood and coal ash from furnaces and boilers.

As part of an NJPDES permit (permit No. 0057274), surface-water samples have been taken at two locations in Lafetra Creek since February 1986. The results are summarized in the recent report (WESTON, 1993). One VOC (tetrachloroethene) was detected in concentrations above the NJDEP surface-water criteria.

4.2.3.3 Sampling Effort

Surface geophysics surveys were conducted to confirm the location and investigate the extent of the former landfill. First, a magnetometer survey, including both vertical magnetic gradient and total magnetic field, was conducted. After completion of the magnetometer survey, GPR was used in accessible areas to provide additional definition of landfill boundaries.

The source of the HHCs detected in surface-water samples from a previous investigation could not be determined (WESTON, 1993). Therefore, surface-water locations M6SW-1 and M10SW-1 on Lafetra Creek were sampled (Figure 4.2-6). In addition, three monitor well locations (MW-4 through MW-6), as shown in Figure 4.2-7, were installed. The location of monitor well M-6 was slightly adjusted based on the geophysical interpretations. The well was repositioned to monitor groundwater quality downgradient of the exposed drum area. The monitor wells were sampled twice and surface-water locations were sampled once for TCL +30 parameters, TAL metals, and cyanide.

4.2.3.4 Geophysical Results

The magnetometer survey performed at M-3 indicated buried ferrous material, as depicted in Figures 4.2-8 and 4.2-9, within the suspected boundary of the landfill. The total magnetic field contour plot (Figure 4.2-8) shows background readings of approximately 54,000 nT and is represented by the green contour interval. High and low excursions from this value, represented by the violet and blue contour intervals, respectively, reveal anomalous magnetic signatures indicative of buried ferrous objects. The boundary between the background and anomalous magnetic readings is interpreted as the landfill boundary. Cultural features along the north side of the site include buried and overhead power lines and a chainlink fence. These features limited the magnetic data acquisition and anomalous magnetic influences that could be seen on the magnetic gradient plot (shown in Figure 4.2-9). The northern edge of the plot shows these cultural anomalies as a "low" reading from background, and is represented by the blue contour interval.

The GPR survey performed at M-3 confirmed the potential landfill boundary and expanded the geophysical survey underneath the overhead power lines and up to the northern fenceline. The GPR system is not heavily influenced by these types of cultural features like magnetometer methods. A typical radar profile, such as along the 600E traverse, reveals "normal" horizontal reflectors, indicative of nonfill areas, from 100S to approximately 100N (Figure 4.2-9A). Continuing from 65N to 160N the radar waveform becomes very chaotic in nature. This chaotic waveform is typical of buried waste material.

Hyperbolic radar signatures, typical of buried drums, were observed in the vicinity of grid coordinate 160N/800E. This was confirmed visually by observing a partially exposed drum at the surface at approximately 160N/800E. As shown on the radar profile in Figure 4.2-9B, the hyperbolic waveforms are found within chaotic radar reflectors. With the exception of these hyperbolic radar signatures, the geophysical surveys indicate that the waste material is within the suspected landfill boundary. Monitor wells have been installed in appropriate locations to monitor groundwater quality upgradient and downgradient of the site.

4.2.3.5 Hydrogeologic Interpretation

Lithologic logs from MW-5 and MW-6 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by fill material. The components of the filled materials observed in both borings consisted of a black slag material with camera film, rebar, and paper debris. Natural quartz sand, gravel, silt, and clay were intermixed with the manmade materials. MW-4 is located upgradient of the fill locations and consists of tight olive-green silty fine-grained sand with a clay matrix.

Groundwater saturation was observed in the borehole during drilling activities between 8 and 10 ft bgs. Monitor wells were screened across the water table, and total depths varied from approximately 23, 16, and 15 ft bgs in MW-4, MW-5, and MW-6, respectively. Water-level elevation data measured on 6 March 1995, indicate that local groundwater flow is to the north in the direction of Lafetra Creek (Figure 4.2-10). Based on groundwater elevation measurements, monitor wells MW-5 and MW-6 are downgradient of the site M-3 area.

4.2.3.6 Groundwater Sampling Results

Monitor wells at site M-3 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.2-5 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results to subsequent site-specific maximum background and/or Monmouth County background

Table 4.2-5 Fort Monmouth - Main Post **Summary of Average Concentrations of Detected** Compounds in Groundwater - Site M-3

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND		ANALYTICAL RESULTS (µg/L) SAMPLING DATE			
	Livii	QUALITY	CONCENTRATION	MW4	MW5	MW6		
		CRITERIA		2/16/95, 3/8/95				
	(µg/L)	(µg/L)	(µg/L)	(avg.)	(avg.)	(avg.)		
VOC's (µg/L)						V 82		
Chlorobenzene	2.7	4	ND	ND	5 J	ND		
Toluene	2.7	1000	ND	ND	4.5 J	~ 4 J		
SVOCs (µg/L)								
4-Methylphenol	12.9	NLE	ND	ND	4 J	ND		
Naphthalene	8.4	NLE	ND	ND	3 J	ND		
2-Methylnaphthalene	8.7	NLE	ND	ND	1.5 J	ND		
Acenaphthene	6.0	400	ND	ND	2 J	ND		
Fluorene	6.3	300	ND	ND	1.5 J	ND		
Phenanthrene	5.0	NLE	, ND	ND	3 Ј	ND		
Anthracene	4.6	2000	ND	ND	3 J	ND		
Pyrene	5.4	200	ND	ND	3 J	ND `		
bis-(2-Ethylhexyl)phthalate	9.7	30*	100B	ND	ND	4 J)		
Carbazol	4.4	NLE	ND	ND	3 J	ND		
METALS TOTAL (µg/L)								
Aluminum	24.0	200	121000	705	2494	474 -		
Arsenic	1.9	8*	89.3	1.425	2.625	ND		
Barium	1.7	2000	699	47.4	584	124		
Calcium	10.4	NLE	45400	33750	95600	122500		
Cadmium	2.8	4	9.5	ND	2.825	ND		
Cobalt	3.0	NLE	18.3	ND	2.075	ND		
Chromium	2.9	100	191	9.05	20.1	7.75		
Соррег	1.9	1000	730¹	2	22.7	ND		
Iron	6.4	300	431000	2965	89850	20500		
Mercury	0.2	2	0.26	ND	0.365	ND		
Potassium	685	NLE	137000	7825	13300	10300		
Magnesium	18.3	NLE	62700	4590	17950	28800		
Manganese	1.8	50	480¹	34.3	1115	686		
Sodium	30.5	50000	197000¹	13150	15800	34300		
Nickel	10.8	100	187	4	ND	ND		
Lead	1.6	10*	22.7	ND	78.3	21.2		
Vanadium .	2.3	NLE	108	3.3	12	3.625		
Zinc	3.8	5000	233	17.85	234,05	62.05		

Compounds exceding NIDEP groundwater quality criteria are noted by bold numbers NIDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD *PQL - Practical Quantitation Limit was used as the NIDEP groundwater quality criteria.

NLE - No Level Established

ND - Indicates that the compound was not detected at the noted quantification limit

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

1 - Monmouth County maximum background concentration.

concentrations, where appropriate. Figure 4.2-11 presents the locations and average concentrations of compounds detected above the NJDEP GWQC, and above both site-specific and Monmouth County background concentrations established at the Main Post.

VOCs

Although chlorobenzene was detected below the laboratory quantitation limit but above the method detection limit in a sample collected at MW-5 from the March sampling round, the value slightly exceeds the NJDEP GWQC. As discussed in Subsection 4.1, the analytical results that are reported with a "J" are estimated values that are below the quantitation limit but above the method detection limit.

SVOCs

SVOCs were not detected above laboratory quantitation limits in the site monitor wells from either sampling round. The levels of compounds that could be estimated (below the laboratory quantitation limit) were well below the NJDEP GWQC, where established.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells from either sampling round.

Metals

As indicated in Table 4.2-5, of the 18 metals detected in site groundwater, 4 metals (aluminum, iron, manganese, and lead) were found in concentrations exceeding the NJDEP GWQC. However, aluminum and iron were found in concentrations below those determined for site-specific and/or Monmouth County background. Manganese was detected (at MW-5 and MW-6) in concentrations greater than the site-specific and Monmouth County background levels. In addition, lead was found in concentrations greater than those determined for maximum background in MW-5 (Figure 4.2-11), but below background in MW-6. However, lead was not

WINGERS DESIGNERS CONSULTANTS

detected in the filtered sample above NJDEP GWQC. As discussed in Subsection 4.1, groundwater flowing through glauconitic formations contains abundant manganese. In addition, manganese is a common metal found in tidally influenced environments. Therefore, manganese is not identified as a compound of concern. The relatively high sodium concentrations in groundwater samples from site M-3 are from saltwater intrusion from the Parkers Creek estuary via Lafetra Creek.

Cyanide

Cyanide was analyzed for but not detected in the site monitor wells from either sampling round.

4.2.3.7 Surface-Water Sampling Results

Two surface-water samples were collected at M-3: M10SW-1 and M6SW-1 (Figures 4.2-6 and 4.2-7). M10SW-1 is upgradient of M-3 and M6SW-1 is downgradient. Both samples were determined to be saltwater, based on conductivity results and field observations. Total (unfiltered) and soluble (filtered) concentrations were compared to NJDEP saltwater criteria and background and are presented in Table 4.2-6.

VOCs

VOCs were analyzed for but were not detected in site surface-water samples.

SVOCs

SVOCs were analyzed for but were not detected in site surface-water samples.

Pesticides/PCBs

Pesticides/PCBs were analyzed for but were not detected in site surface-water samples.

4.2 - 38

Table 4.2-6 Summary of Detected Compounds in Site Surface Water Total and Soluble - Site M-3

COMPOUND	METHOD DETECTION	NJDEP SURFACE WATER	WATER BACKGROUND CONCENTRATION	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) 12/1/94			
		CRITERIA* SALINE WATER		CONCENTRATION (SOLUBLE)	MP6SW-1 (Total)	MP6SW-1 (Soluble)	M10SW-1 (Total)	M10SW-1 (Soluble)
METALS TOTAL (µg/L)	-1							l
Aluminum	26.7	NLE	748	NĎ	179	ND	69	ND
Barium	2.1	NLE	44.7	39.4	33.3	27.7	34.6	29.1
Calcium	12	NLE	31600	30900	32100	30400	30000	29400
Copper	2.4	NLE	32	4	ND	4.3	ND	3.9
Iron	4.7	NLE	6210	405	2940	465	2180	355
Lead	1.6	NLE	10	ND	4.8	ND	1.6	ND
Magnesium	38.2	NLE	5440	5120	9790	9030	5340	5160
Manganese	2.0	100 (h)	113	98.6	102	94.3	98.7	96.2
Potassium	821	NLE	5060	4280	6260	5840	4320	4280
Selenium	0.9	NLE	ND	ND	1.1	ND	ND.	ND
Sodium	15.4	NLE	26700	26200	56500	52300	18200	17700
Zinc	2.8	NLE	35.1	23.8	12.2	7.8	16	7.9

a - NJDEP Surface Water Quality Standards (1993).
 h -Non carcinogen effect-based human health criteria as a 30 day average.

ND - Indicates that the compound was not detected at the noted quantification limit.

NLE - No Level Established

Compounds dectected above NJDEP Surface Water Criteria are bolded.

Metals

As indicated in Table 4.2-6, of the 12 metals detected in site surface water, only one (manganese, unfiltered) was found in a concentration slightly exceeding the NJDEP surface-water criteria (saline) in sample MP6SW1. However, the concentration of manganese was detected below the maximum background levels established at the Main Post for total metals. In addition, manganese was found in a concentration below the established criteria and background in the filtered sample.

As presented in Table 4.2-6 (soluble), no soluble concentrations of contaminants detected in M6SW-1 surface-water were greater than NJDEP surface-water criteria.

None of the total or soluble concentrations of chemicals detected in M10SW-1 surface water exceeded NJDEP surface-water guidance (Table 4.2-6 total and soluble).

4.2.3.8 Recommendations

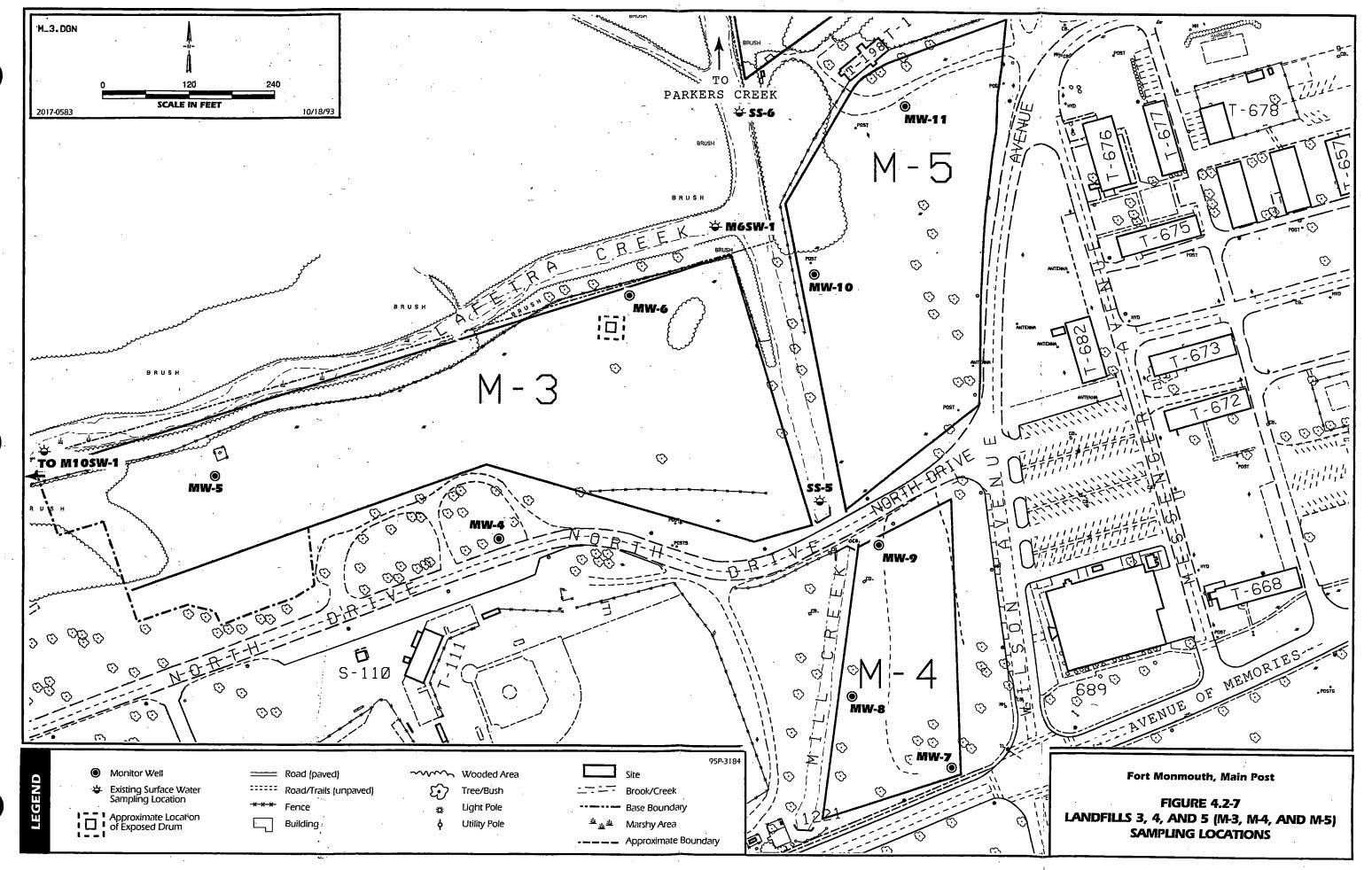
The geophysical surveys indicate that the extent of the identified waste material is within the suspected boundaries of the landfill and the monitor wells have been installed in appropriate locations to monitor shallow groundwater quality upgradient and downgradient of the site. In an isolated area of the site the GPR results indicated hyperbolic radar signatures typical of a buried drum or drums. A partially exposed drum was also observed at this location.

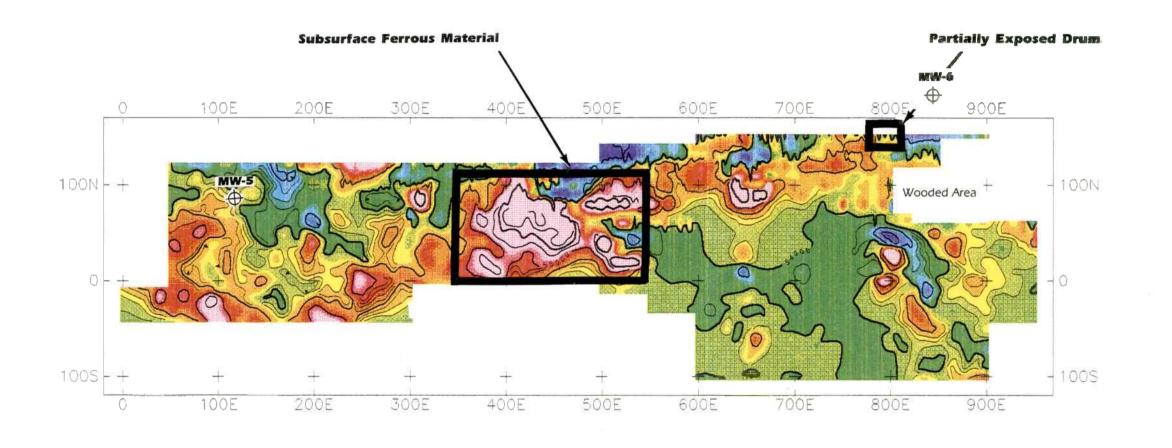
Groundwater quality results indicate that chlorobenzene was detected in one downgradient well below laboratory quantitation limits, but just above NJDEP GWQC and background from one sampling round. Lead was also detected at levels above NJDEP GWQC and background.

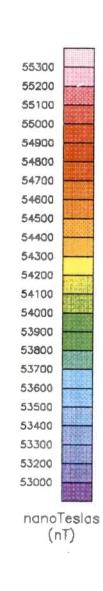
The surface-water quality results indicate that no organic or inorganic concentrations exceeded both NJDEP surface-water criteria and the maximum background concentration. Because the site formerly had an NJPDES permit, surface water has been sampled since 1986. The results from

the current round of surface-water sampling for VOCs are less than the maximum results from previous rounds.

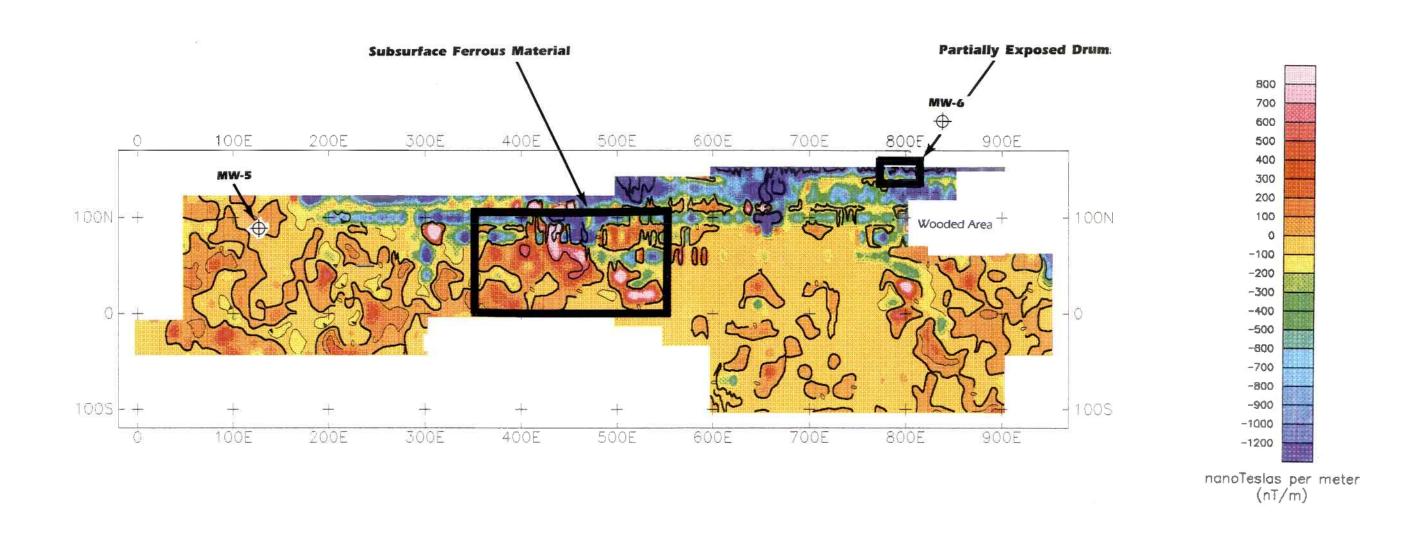
Although NJDEP groundwater criteria were exceeded for one VOC, immediate remedial action is not required for several reasons. First, the measured value for the VOC was below the quantitation limit and just slightly above the GWQC. In addition, the groundwater flows toward Lafetra Creek, and since the water table is higher than the creek bed and groundwater flow tends to follow surface topography, the shallow groundwater probably flows into Lafetra Creek. There are no uses of groundwater between the source and Lafetra Creek. Surface-water samples did not exceed NJDEP surface-water criteria. Therefore, there is no immediate threat to human health.

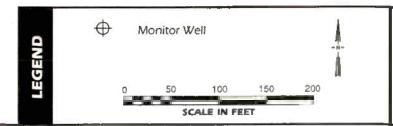

In addition, because surface-water sampling has been performed at this site since 1986, and the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.


Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells, and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be the targeted for the monitoring program.


The partially exposed drum will be excavated. The area immediately around and under the drum will be investigated for additional drums. Any excavated drums will be examined to determine if hazardous materials were present or still exist. The drum and the excavation will be monitored with a photoionization detector (PID). NJDEP will be requested to send a representative to

monitor the excavation. If there is no indication that the drum contained, or still contains, hazardous materials and if elevated readings are not observed on the PID, the excavation will be backfilled and no further action will be taken. If contamination is identified, additional sampling will be conducted in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993).


Monitor Well


G 50 100 150 200

SCALE IN FEET

Fort Monmouth, Main Post Site M-3

FIGURE 4.2-8
MAGNETOMETER SURVEY
TOTAL MAGNETIC FIELD – SITE M-3

Fort Monmouth, Main Post Site M-3

FIGURE 4.2-9
MAGNETOMETER SURVEY
MAGNETIC GRADIENT – SITE M-3

95P-3234 6/27/95

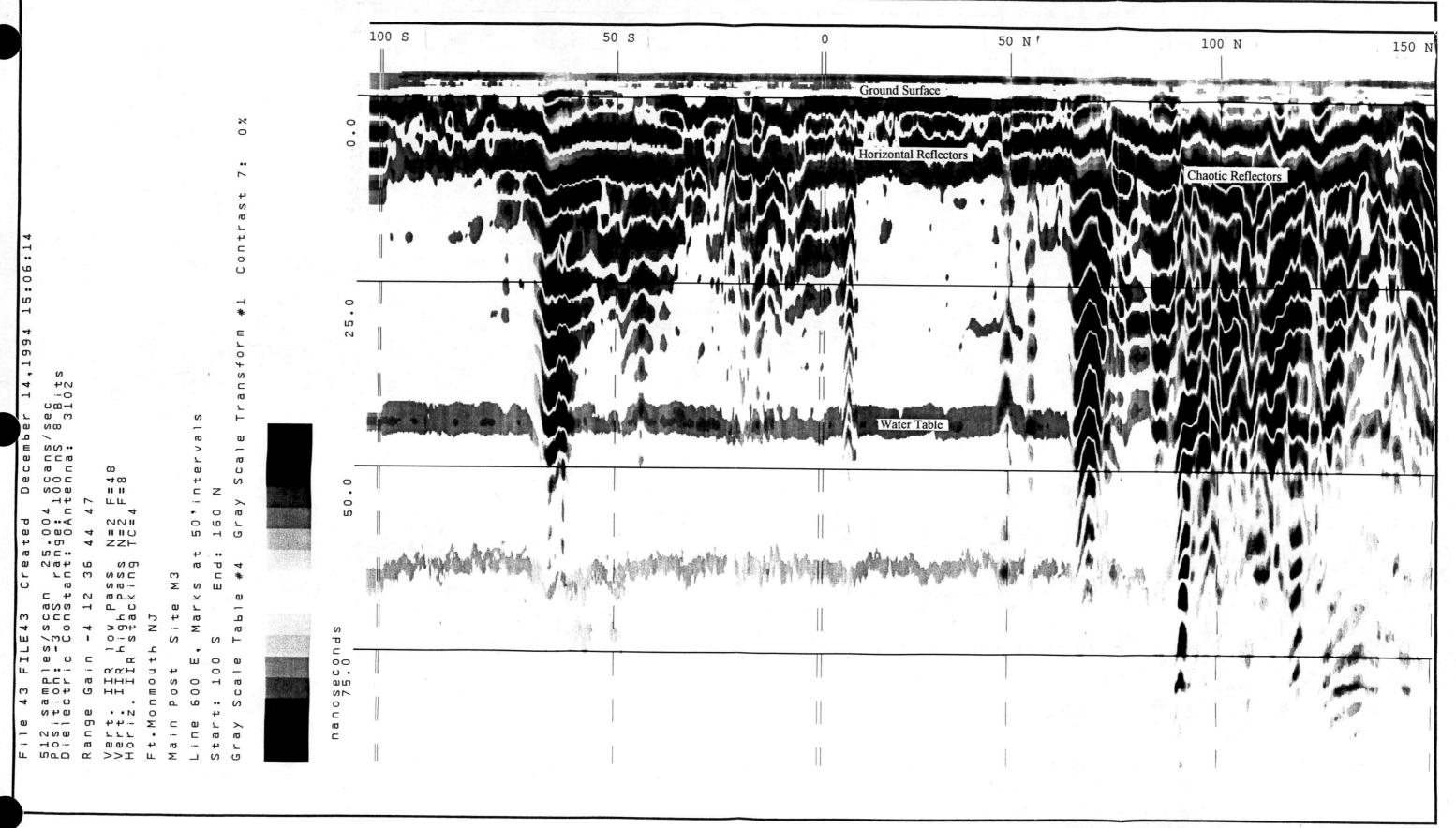
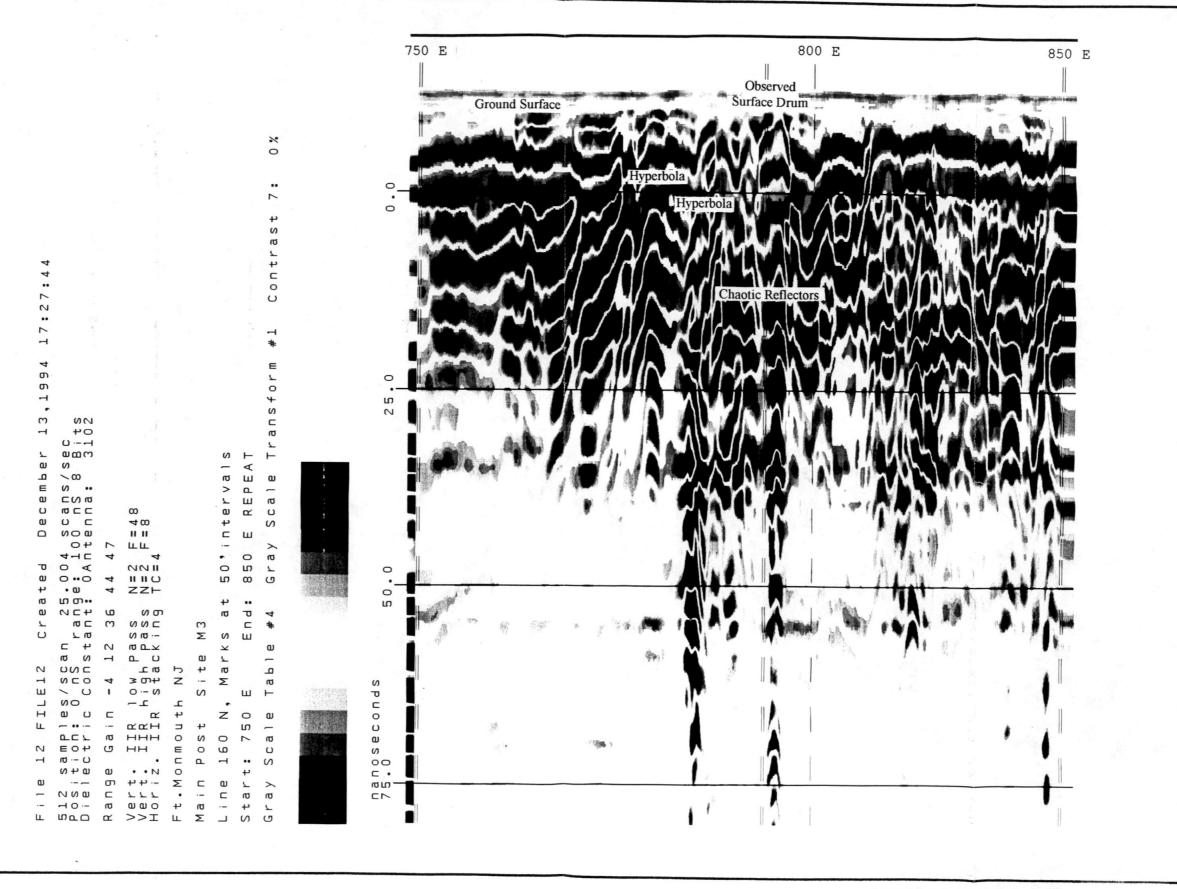
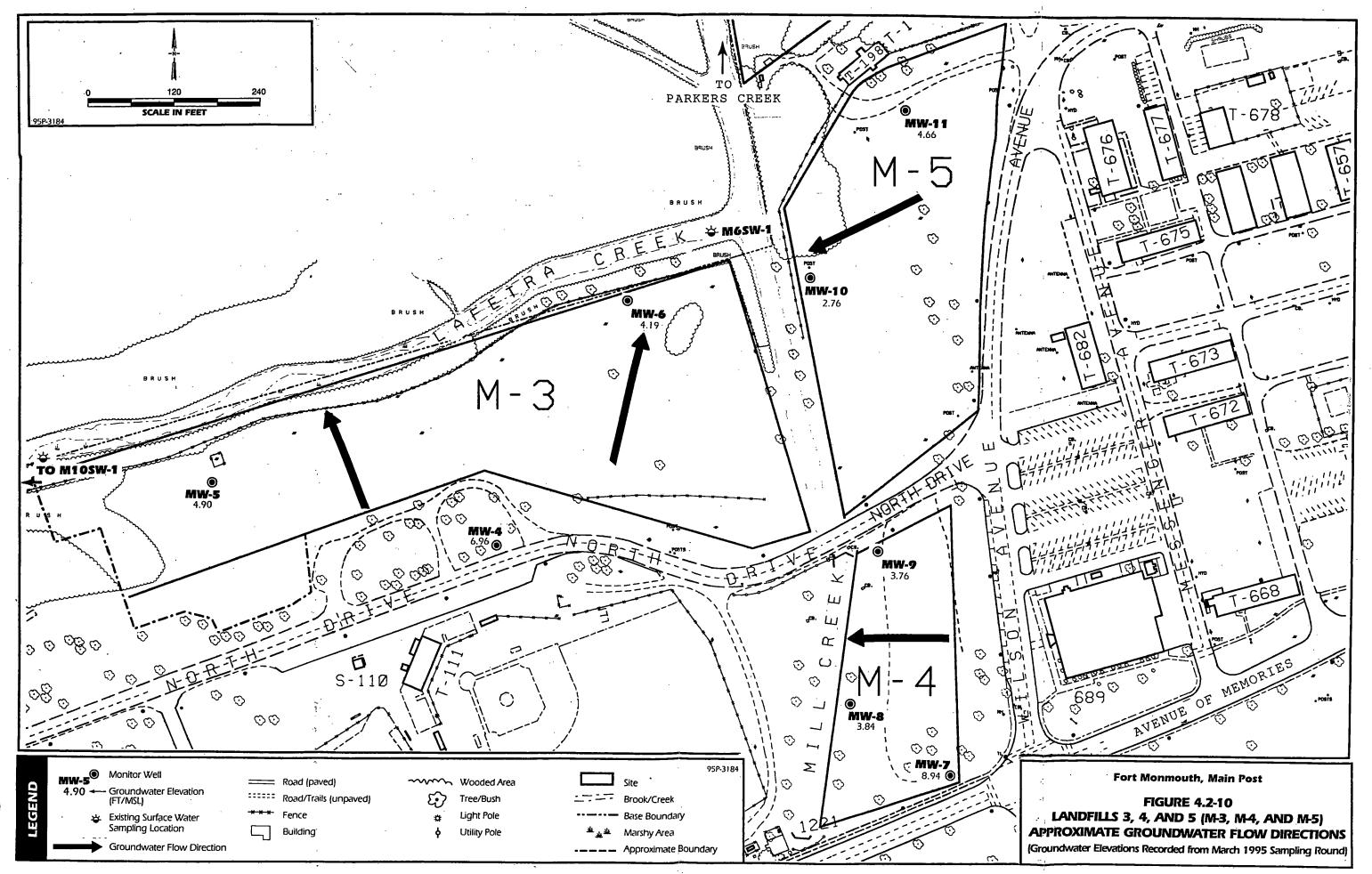
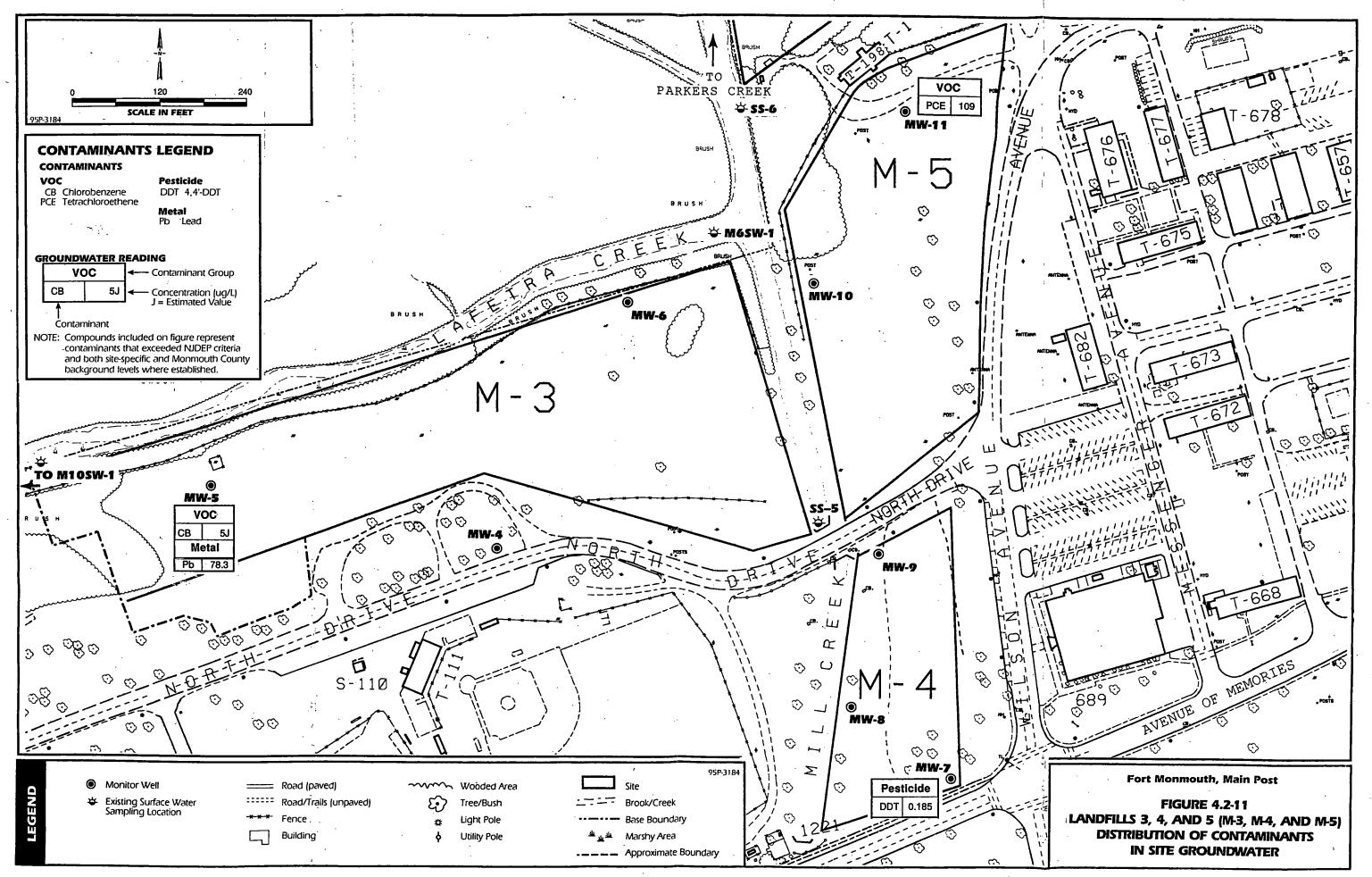





FIGURE 4.2-9A REPRESENTATIVE RADAR PROFILE
DEPICTING LANDFILL BOUNDARY AT SITE M-3

Site M-4

4.2.4 Landfill 4 (M-4)

4.2.4.1 Site Location

Landfill 4 (M-4) is located in the area bounded by the Avenue of Memories to the south, North Drive to the north, Mill Creek to the west, and Wilson Avenue to the east (Figure 4.2-7). The approximate area of site M-4 is 61,800 ft² (1.4 acres).

4.2.4.2 Site History

Landfill 4 was used in 1956 for the disposal of building demolition debris. The 1940 aerial photograph shows a swamp at this location. In the latter part of 1955 and during 1956, 72 World War II buildings were demolished on Main Post (*Concise History; History and Place Names*). Potential contaminants associated with demolition debris include lead from paints and piping and asbestos. At present, the surface is flat and grass covered. There are trees in the southeast corner.

As part of an NJPDES permit, surface-water samples have been taken upstream and downstream of this site on Mill Creek. The results are discussed in Subsection 4.2.2 (site M-2) and 4.2.5 (site M-5).

4.2.4.3 Sampling Effort

Three shallow monitor wells (MW-7 through MW-9) were installed around the landfill, and two rounds of groundwater sampling were conducted to evaluate groundwater quality. Monitor well MW-7 is an upgradient well and monitor wells MW-8 and MW-9 are downgradient wells. The monitor wells were sampled twice for TCL +30 parameters, TAL metals, and cyanide.

4.2.4.4 Hydrogeologic Interpretation

Lithologic logs from MW-8 and MW-9 indicate that the lithology consists of a thin soil cover (0.4 ft) underlain by alternating layers of reworked sand, silt, and broken concrete gravel pieces,

with interbeds of plant-root fragments. Borehole logs from MW-7 indicate a lithology consisting of an orange-olive-brown fine-coarse sand with little silt.

Groundwater saturation was observed at approximately 7 ft bgs at each well location. The three monitor wells were screened across the unconfined water table, at total depths of 16, 18, and 22 ft bgs in MW-7, MW-8, and MW-9, respectively. Water elevation data, measured on 6 March 1995, indicate that local groundwater flow is west toward Mill Creek (Figure 4.2-10). Based on groundwater elevation measurements, monitor wells MW-8 and MW-9 are downgradient of the M-4 area.

4.2.4.5 Groundwater Sampling Results

Monitor wells at site M-4 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.2-7 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results to the subsequent site-specific background and/or Monmouth County background concentrations, where appropriate. Figure 4.2-11 presents the locations and average concentrations of compounds detected above the NJDEP GWQC and the established maximum background concentrations at the Main Post.

VOCs

VOCs were not detected in the site monitor wells from either sampling round.

SVOCs

SVOCs were not detected above laboratory quantitation limits in the site monitor wells from either sampling round. The levels of compounds that could be estimated (below the laboratory quantitation limit) were well below the NJDEP GWOC.

Table 4.2-7
Fort Monmouth - Main Post
Summary of Average Concentrations of Detected
Compounds in Groundwater - Site M-4

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE			
	, as	QUALITY CRITERIA	CONCENTRATION (µg/L)		MW8 2/16/95, 3/8/95 (avg.)	MW9 2/16/95, 3/9/95 (avg.)	
	(µg/L)	(μg/L)	(hg/L)	(4,5.)	1 (4757	[(=-6-)	
SVOC's (µg/L)		20*	5 J	T ND	4 J	ND	
bis-(2-Ethylhexyl)phthalate	9.7	30*] 31	' ND _	1 49	I ND	
Pesticides/PCBs (µg/L)		·		0.00	L 222	J 375	
4,4'-DDT	0.1**	0.1	ND	0.185	ND	ND	
METALS TOTAL (µg/L)							
Aluminum	24.0	200	121000	6550	1605	129.1	
Arsenic	1.9	8*	89.3	5.1	1.525	ND	
Barium	1.7	2000	699	80.95	39.9	57.9	
Beryllium	0.9	20*	71	0.84	ND	ND	
Calcium	10.4	NLE	45400	18800	~ 33100	46500	
Cobalt	3.0	NLE	18.3	4.7	3.3	ND	
Chromium	2.9	100	191	62.55	17.25	4.175	
Copper	1.9	1000	, 730 ¹	5.75	2.5	ND	
Iron	6.4	300	431000	18435	17900	21700	
Potassium	685	NLE	137000	5020	7585	8925	
Magnesium	18.3	NLE	62700	8400	6145	6245	
Manganese	1.8	50	480¹	61.9	110.5	85	
Sodium	30.5	50000	197000¹	50950	9500	10280	
Nickel	10.8	100	187	7.9	ND	ND	
Lead	1.6	10*	22.7	9	7.05	ND	
Vanadium	2.3	NLE	108	34.95	6.95	ND	
Zinc	3.8	5000	233	49.65	31.75	2.43	

Compounds exceeding NIDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL -Practical Quantitation Limit was used as the NJDEP groundwater quality criteria

NLE - No Level Established

ND - Indicates that the compound was not detected at the noted quantification limit

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

^{** -} Method detection limit equals or exceeds NJDEP groundwater quality criteria.

^{1 -} Monmouth County maximum background concentration.

Pesticides/PCBs

One pesticide (4-4'-DDT) was detected in a concentration slightly exceeding the NJDEP GWQC in the upgradient well MW-7 from the February sampling round only (Table 4.2-7). This concentration was confirmed in a duplicate sample collected in MW-7 during the same sampling round. However, pesticides were not detected in a downstream surface-water location (SS-5) collected from a previous investigation (Figures 4.2-7 and 4.2-11). The results of that investigation are presented in WESTON, 1993. PCBs were not detected in the site monitor wells from either sampling round.

Metals 4

As indicated in Table 4.2-7, of the 17 metals detected in site groundwater, 4 metals (aluminum, iron, manganese, and sodium) were found in concentrations exceeding the NJDEP GWQC. However, aluminum, iron, and manganese were found in concentrations below those determined for site-specific and Monmouth County maximum background levels. Although sodium in MW-7 was detected in a concentration greater than the level established as site-specific background, the concentration was well below the Monmouth County maximum background level.

Cyanide

Cyanide was not detected in the site monitor wells from either sampling round.

4.2.4.6 Recommendations

One pesticide compound was detected at a concentration just above the NJDEP GWQC and background in the upgradient well in both the routine and duplicate samples. The pesticide was not detected in downgradient monitor wells, and also was not detected during previous sampling at downgradient location SS-5 (WESTON, 1993).

Although NJDEP groundwater criteria were exceeded for one pesticide, no immediate remedial action is required. The measured value of the pesticide was just slightly above the GWQC. Shallow groundwater flows toward and discharges into Mill Creek, as indicated by water-level measurements in site monitor wells. Also, there are no known uses of groundwater at or downgradient of the site. No surface-water sampling was performed at this site during this project. The surface water was previously sampled downstream but was not analyzed for pesticides. Since Mill Creek flows on Fort Monmouth property between sites M-4 and M-8, access to this stream is restricted. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor well locations are adequately placed to monitor downgradient groundwater, DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Compounds of concern (including pesticides) identified in the first two rounds of sampling would be targeted for the groundwater and surface-water monitoring program.

Site M-5

4.2.5 **Landfill 5 (M-5)**

4.2.5.1 Site Location

Landfill 5 (M-5) is located just north of Landfill 4 in the area bounded by North Drive to the south, an unpaved road south of Building T-198 to the north, Wilson Avenue to the east, and Mill and Parkers Creeks to the west (Figure 4.2-7). The approximate area of site-M-5 is 138,200 ft² (3.2 acres).

4.2.5.2 Site History

According to the IA, Landfill 5 was in use between 1952 and 1959, and was reportedly used for the disposal of automobiles as well as for domestic and industrial wastes similar to those mentioned in Subsection 4.2.2.2. Like Landfill 4, this landfill was also constructed in a former swamp and is presently flat and grass covered.

As part of an NJPDES permit, surface-water samples have been taken at two locations (one upstream on Mill Creek and one downstream on Lafetra Creek) since February 1986. The results are summarized in the recent report (WESTON, 1993). One VOC (tetrachloroethene) was detected in concentrations above the NJDEP surface-water criteria.

4.2.5.3 Sampling Effort

Two shallow monitor wells (MW-10 and MW-11) were installed (Figure 4.2-7), and two rounds of groundwater sampling were conducted in an effort to further evaluate the presence of VOCs, metals, and inorganics detected from samples collected during a previous investigation. Monitor wells MW-10 and MW-11 were sampled twice for TCL +30 parameters, TAL metals, sulfate, and cyanide.

4.2.5.4 Hydrogeologic Interpretation

Borehole logs from MW-10 and MW-11 indicate that the lithology consists of a thin soil cover (0.5 ft) partially underlain by fill and interbedded sand with silt and clay laminae. The components of the fill materials observed in both borings consist of coal, glass, and plastic fragments found interspersed within a silty sand and clay matrix and overlie a dark-green-brown silty/clayey medium-coarse-grained sand with silt and clay laminae.

Groundwater saturation was encountered at approximately 4 ft bgs at both well locations. The two monitor wells were screened across the water table, with total depths of 15 ft bgs. Water-level elevation data, measured on 6 March 1995, indicate that approximate local groundwater flow is west toward Mill Creek (Figure 4.2-10). Based on groundwater elevation measurements, monitor well MW-10 is downgradient of the area under investigation.

4.2.5.5 Groundwater Sampling Results

Monitor wells at site M-5 were sampled for the analytical parameters listed in Table 3.8-1. The compounds detected in groundwater samples from the individual sampling rounds, with the corresponding sample identifications, are listed in Appendix D. Table 4.2-8 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results to the site-specific and Monmouth County maximum background concentrations, where appropriate. Figure 4.2-11 presents the locations and average concentrations of compounds detected above the NJDEP GWQC and the established maximum background concentrations.

VOCs

Tetrachloroethene (PCE) was the only VOC detected in site groundwater. However, the PCE concentrations exceeded the NJDEP GWQC and background from both sampling rounds in MW-11, the upgradient well (Figure 4.2-11). In addition, tetrachloroethene was detected in

Table 4.2-8

Fort Monmouth - Main Post Summary of Average Concentration of Detected Compounds in Groundwater - Site M-5

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE		
	(µg/L)	QUALITY CRITERIA (µg/L)	CONCENTRATION (µg/L)	MW10 2/17/95, 3/9/95 (avg.)	MW11 2/17/95, 3/9/95 (avg.)	
VOC's (µg/L)						
Tetrachloroethene (PCE) ¹	4.0**	1*	ND	ND	109	
SVOCs (µg/L)						
bis-(2-Ethylhexyl)phthalate	9.7	30*	ND	ND	3.5J	
METALS TOTAL (µg/L)						
Aluminum	24	200	121000	155.8	1052.5	
Barium	1.7	2000	699	116	16.05	
Calcium	10.4	NLE	45400	16500	11100	
Chromium	2.9	100	191	3.925	12.9	
Copper	1.9	1000	730 ²	7.05	2.9	
Iron	6.4	300	431000	9205	4685	
Potassium	685	NLE	137000	8850	3305	
Magnesium	18.3	NLE	62700	13550	4220	
Manganese	1.8	50	480 ²	146.5	14.5	
Sodium	30.5	50000	197000 ²	82800	17950	
Lead	1.6	10*	22.7	5.65	2.2	
Vanadium	2.1	NLE	108	1.825	5.85	
Zinc	3.8	5000	233	7.75	173	
OTHER INORGANICS (µg/L)						
Sulfate	5.0	250000	NA	14.8	43.75	

¹ - same compound as listed by NJDEP tetrachloroethylene

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

NLE - No Level Established

ND - Indicates that the compound was not detected above quantification limits

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

NA - Not Analyzed

^{** -} Method detection limit exceeds NJDEP groundwater quality criteria

² - Monmouth County maximum background concentration.

exceedance of the established surface-water criteria in a surface-water sample (SS-6) collected downgradient of site M-5 from a previous investigation.

SVOCs

SVOCs were not detected above laboratory quantitation limits in the site monitor wells from either sampling round. The level of bis(2-ethylhexyl) phthalate that could be estimated below the laboratory quantitation limit was well below the NJDEP GWQC.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells from either sampling round.

Metals

As indicated in Table 4.2-8, of the 13 metals detected in site groundwater, 4 metals (aluminum, iron, manganese, and sodium) were found in concentrations exceeding the NJDEP GWQC. However, aluminum, iron, and manganese were found in concentrations below those determined for site-specific and Monmouth County maximum background levels. Although sodium was detected in a concentration in MW-10 greater than the level established as site-specific background, the concentration was well below the Monmouth County maximum background level.

Cyanide and Sulfate

Cyanide and sulfate were analyzed in site groundwater samples. Cyanide was not detected in the site monitor wells from either sampling round. Sulfate was detected at low levels in MW-10 and MW-11 from both sampling rounds, well below the NJDEP GWOC.

4.2.5.6 Recommendations

PCE was detected in the upgradient well in concentrations exceeding NJDEP GWQC and background from both sampling rounds. Because the site formerly had an NJPDES permit, surface water has been sampled since 1986. During previous investigations, PCE was also detected at downgradient surface-water sampling location SS-6 (WESTON, 1993). Surface water was not sampled at site M-5 during this investigation because the maximum VOC concentrations at this site during previous rounds of sampling were less than the maximum concentrations at site M-2, which is upgradient. For site M-2, the results of the current round of surface-water sampling for VOCs are less than the maximum results from previous rounds.

Although groundwater sample results exceeded NJDEP criteria for one VOC, immediate remedial action is not required. Groundwater flows toward and discharges into Mill Creek and Lafetra Creek, as indicated by water-level measurements in site monitor wells. Also, there are no known uses of groundwater between the source and the streams. No surface-water sampling was performed at this site during this project. Previous sampling rounds have indicated that some VOC concentrations exceed NJDEP surface-water criteria in Mill Creek adjacent to site M-5. However, previous rounds of sampling have indicated that VOC concentrations do not exceed surface-water criteria at site M-8, which is downgradient of site M-5. Therefore, there is little immediate threat to human health.

In addition, since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and

surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

Site M-6

4.2.6 Burning Area (M-6)

4.2.6.1 Site Location

According to interviews with Fort Monmouth personnel, Burning Area M-6 consisted of open-air wood burning in small pits located on Landfill 3. Specific pit locations could not be discerned from aerial photograph review and site reconnaissance.

4.2.6.2 Site History

It is likely that the burning areas on Landfill 3 were used throughout the period when the landfill was in operation, 1959 through 1964. Specific burn areas have not been identified. At present, the surface in the eastern part of Landfill 3 is hummocky and grass covered.

4.2.6.3 Sampling Effort

This site was included in the Landfill 3 (M-3) investigation (see Subsection 4.3.3).

Site M-8

4.2.7 <u>Landfill 8 (M-8)</u>

4.2.7.1 Site Location

Landfill 8 (M-8) is located north of Buildings T-692 and S-697 in a bend of Parkers Creek (Figure 4.2-12). According to the *Phase I Engineering Study and Compliance Plan, Fort Monmouth Solid Waste Landfill* (Cosulich, 1981), a masonry dike was constructed around the landfill perimeter adjacent to Parkers Creek. The area within the dike is 9.5 acres, of which approximately 7.2 acres contain waste material. The approximate area of site M-8 is 315,000 ft² (7.2 acres).

4.2.7.2 Site History

Landfill 8 was operated from 1962 through 1981. In preparation for landfill operations, as mentioned previously, a masonry dike was constructed around the perimeter. According to Cosulich (1981), in the southern part of the landfill area, an approximately 0.9-acre area was excavated to 12 feet below grade prior to filling with solid waste. Waste material was deposited directly on the existing surface over the rest of the site. Cosulich found the bottom of fill to be 3 feet below sea level. The 1969 aerial photographs show an uneven surface with both pit-type disposal and piled-up debris. A number of drums stacked near the entrance just west of the STP are visible in the 1969 photos. The area just west of the stacked drums appears to have randomly strewn drums. In the western half of the site, there were two separate piles of telephone poles. One area in the south-central part of the landfill was used for the disposal of trees and brush.

The photos also show that soil was used to cover the trash. In 1969 part of the area was covered with vegetation.

At present, the landfill is covered with heavy brush and small trees. There is no visible evidence of the drums observed in the 1969 aerial photographs. Four monitor wells and several piezometers of unknown construction were found during the site walkover in 1993.

According to the IA in 1979, materials observed in Landfill 8 and determined from interviews, included unwashed pesticide/herbicide cans, batteries, fluorescent tubes, electronic components, garbage, asbestos wrappings from pipes, soot and boiler scale, sludge from STPs, small quantities of outdated drugs, outdated photographic chemicals in glass bottles, building rubble (including ACM), incinerator ash, sand from oil spill cleanups, and other debris. Cosulich reported that incinerator ash from the classified document incinerator (site M-7) ranging in thickness from 2.5 to 6.5 feet was found along the southern boundary of the landfill. Cosulich also reports that leaves and brush were placed in this landfill. From 1992 through the present, an adjacent area to the southeast of Landfill M-8 has been used for a leaf-composting operation. This operation has an NJDEP permit.

As part of an NJPDES permit, surface-water samples have been taken at two locations in Lafetra Creek since February 1986. The results are summarized in the recent report (WESTON, 1993). No compounds were detected in concentrations above the NJDEP surface-water criteria.

4.2.7.3 Sampling Effort

Because of the poor recovery of the original Landfill 8 monitor wells and the highly turbid conditions in the wells, all existing wells and piezometers were abandoned. Four new monitor wells (MW-12 through MW-15), shown in Figure 4.2-12, were installed and sampled twice for TCL +30 parameters, TAL metals, sulfate, ammonia, and cyanide in an effort to evaluate the impacts of previous site activities on groundwater quality. The new wells were surveyed and tidal water-elevation monitoring was conducted in the four new monitor wells and at stilling well-7 (Figure 4.2-12).

4.2.7.4 Hydrogeologic Interpretation

Lithologic logs from downgradient wells MW-13, MW-14, and MW-15 indicate that the lithology consists of a thin soil cover (0.4 ft) underlain by fill material. The components of the filled materials observed in the borings consisted of large wood chip fragments, amber glass chips, and traces of wires. Natural sandy silt with trace amounts of clay were intermixed with the manmade

materials. Monitor well MW-12, located upgradient of the landfill boundary, indicates a lithology consisting of an orange-brown medium-fine-grained sand with trace amounts of silt and clay.

Groundwater saturation observed during drilling operations ranged from 2 to 8 ft bgs, depending on the proximity to Parkers Creek. Monitor wells were screened across the water table and were drilled to 15 ft bgs at all well locations. Water-level elevation data, measured on 6 March 1995, indicate that local groundwater flow is generally north toward Parkers Creek (Figure 4.2-13). Based on groundwater elevation measurements, monitor wells MW-13, MW-14, and MW-15 are downgradient and MW-12 is upgradient of the area under investigation.

4.2.7.5 Groundwater Sampling Results

Monitor wells at site M-8 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.2-9 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results with the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate. Figure 4.2-14 presents the locations and average concentrations of compounds detected above the NJDEP GWQC and established maximum background at the Main Post.

VOCs

Three VOCs (tetrachloroethene, benzene, and chlorobenzene) were detected in site groundwater in one or both sampling rounds in concentrations exceeding the NJDEP GWQC. Tetrachloroethene was detected in MW-12, the upgradient well, from both sampling rounds. Benzene was detected below the laboratory quantitation limit in MW-15 from both sampling rounds; however, the level is estimated to be above the NJDEP GWQC of 1 µg/L. Chlorobenzene was detected in MW-15 from both sampling rounds and in MW-14 below laboratory quantitation limits, from the March sampling round only. VOC compounds were not detected in MW-13.

Table 4.2-9

Fort Monmouth - Main Post Summary of Average Concentrations of Detected

Compounds in Groundwater - Site M-8

COMPOUND	METHOD DETECTION		MAXIMUM	ANALYTICAL RESULTS (µg/L) SAMPLING DATE				
	LIMIT	GROUNDWATER	BACKGROUND					
		QUALITY	CONCENTRATION		MW13	MW14	MW15	
		CRITERIA		2/17/95, 3/15/95	2/22/95,3/15/95	2/16/95, 3/15/95	2/22/95, 3/15/95	
	(µg/L)	(µg/L)	(µg/L)	(avg.)	(avg.)	(avg.)	(avg.)	
VOC's (µg/L)				1			,	
Tetrachloroethene (PCE)1	4.0**	1*	ND_	47	ND	ND	ND -	
Benzene	3.3**	1*	ND	ND	ND	ND	4.5J	
Chlorobenzene	2.7	4	ND	ND	ND	6.5J	37.5	
Toluene	2.7	1000	ND	ND	ND	4.5J	ND	
SVOCs (µg/L)								
1,4-Dichlorobenzene	4.8	75	ND	ND	ND	3J	4.5J	
1,3-Dichlorobenzene	5.3	600	ND	ND	ND	ND	3.5J	
1,2-Dichlorobenzene	5.7	600	ND	ND	ND	ND	3 J	
Naphthalene	8.4	NLE	ND	ND	, ND	3J	3J_	
2-Methylnaphthalene	8.7	NLE	ND	ND	ND	1 J	1.5J	
Acenaphthene	6.7	400	ND	ND	ND	2Ј	15.5	
Dibenzofuran	6.5	NLE	ND	ND	ND	ND	6J	
Fluorene	6.3	300	ND	ND	ND	ND	8J	
Carbazol	4.4	NLE	ND.	ND	ND	ND	3J	
METALS TOTAL (μg/	L)							
Aluminum	24.0	200	121000	738	512	2350	568	
Arsenic	1.9	8*	89.3	ND	ND	3.75	ND	
Barium	1.7	2000	699	8.8	232	410	269	
Beryllium	0.9	20*	71	ND	ND	0.7	ND	
Calcium	10.4	NLE	45400	8980	157500	159500	336000	
Cadmium	2.8	4	9.5	ND _	ND	2.95	ND	
Cobalt	3.0	NLE	18.3	ND	ND	4.3	ND	
Chromium	2.9	100	191	8.425	4.2	24	4.25	
Copper	1.9	1000	730²	2.6	6.5	5.2	ND	
Iron	6.4	300	431000	2979.5	40000	57350	25800	
Mercury	0.2	2	0.26	- ND	0.36	ND	. ND	
Potassium	685	NLE	137000	2815	19950	65150	35450	
Magnesium	18.3	NLE	62700	2485	63950	77050	74000	
Manganese	1.8	50	480 ²	10.25	655	276	381	
Sodium	30.5	50000	197000²	21550	156050	383500	229000	
Nickel	10.8	100	187	ND	ND	3.5	ND	
Lead	1.6	10*	22.7	0.9	3.25	9.75	2.1	
Vanadium	2.3	NLE	108	6.225	4.7	14.15	7.7	
Zinc	3.8	5000	233	6.55	19.6	53.4	21.1	
OTHER INORGANICS	(μg/L)							
Ammonia as Nitrogen	0.2	500	NA	ND	2.75	36.3	30.25	
Sulfate	5.0	250000	NA	40.9	24.15	11.4	81.35	

^{1 -} same compound as listed by NJDEP tetrachloroethylene

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NIDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NIDEP groundwater quality criteria

NLE - No Level Established

ND - Indicates that the compound was not detected at the noted quantification limit

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

^{** -} Method detection limit exceeds NJDEP groundwater quality criteria.

NA - Not Analyzed

² - Monmouth County maximum background concentrations.

SVOCs

One SVOC (acenaphthene) was detected above the laboratory quantitation limit in monitor well MW-15. Acenaphthene was detected in a concentration well below the NJDEP GWQC.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells from either sampling round.

Metals

As indicated in Table 4.2-9, of the 19 metals detected in site groundwater, 4 metals (aluminum, iron, manganese, and sodium) were found in concentrations exceeding the NJDEP GWQC. However, aluminum was found in concentrations below those determined for site-specific and Monmouth County maximum background levels. Although iron was found in concentrations well below site-specific maximum background levels, iron was detected in concentrations in MW-13 and MW-14 above Monmouth County maximum background levels. The presence of iron in exceedance of the criteria may be attributable to the high concentrations found in site background soils and is not a compound of concern. Manganese in MW-13 and sodium in MW-14 and MW-15 were detected in concentrations greater than both established background levels (Figure 4.2-14). Elevated sodium concentrations may be the result of saline water intrusion into the groundwater. These wells are near the Parkers Creek estuary. Saltwater has invaded the estuary (see Subsection 4.2.7.6.1) and intruded the aquifer monitored by these wells. Sodium is not a compound of concern. As discussed in Subsection 4.1, groundwater flowing through glauconitic formations contains abundant manganese. In addition, manganese is a common metal found in tidally influenced environments. Therefore, manganese is not identified as a compound of concern.

Cyanide, Sulfate, and Ammonia

Cyanide, sulfate, and ammonia as nitrogen were analyzed for in site M-8 groundwater. Cyanide was not detected in the site monitor wells from either sampling round. Sulfate was detected above the laboratory quantitation limit in both sampling rounds in MW-12, MW-13, MW-14, and MW-15. Ammonia as nitrogen was detected above the laboratory quantitation limit in both sampling rounds in MW-13 and MW-15. Ammonia, not detected from the February sampling round in MW-14, was detected in the March sampling round. Sulfate and ammonia were detected well below the NJDEP GWQC.

4.2.7.6 Tidal Monitoring

Tidal fluctuations in Parkers Creek were monitored at one station (stilling well-7) at Landfill 8 (M-8) (Figure 4.2-12). (Hydrographs are presented in Appendix E.) Changes in creek stage were compared to changes in water levels measured at the following monitor wells: MW-12, MW-13, MW-14, and MW-15. Wells MW-13, MW-14, and MW-15 are located within 100 feet of Parkers Creek, and well MW-12 is approximately 1,300 feet from Parkers Creek. The tidal monitoring station at Landfill 8 (M-8) records incoming and outgoing tides, but the lowest tidal effects are subdued. Peaks in creek levels corresponding to high tides are sharp, but peaks in creek levels corresponding to low tides are rounded because the elevation of the stream bed is higher than the elevation of sea level at low tide. The elevation of the stream bed is -1.02 ft msl at stilling well-7. The maximum change in creek levels at Landfill 8 (M-8) was 3.3 feet, and the maximum change in water level in the monitor well was 1.4 feet during the time of study. All site monitor wells were screened below sea level.

Data collected from well MW-12 are useful as baseline data during the tidal monitoring study conducted at Landfill 8 (M-8). There is no apparent relationship between water levels measured at well MW-12 and creek levels measured at stilling well-7. Well MW-12 is approximately 1,300 feet from the creek and is too distant to be influenced by changing creek levels. Water levels in the water-bearing unit and creek levels were slowly declining by about 0.1 foot during the tidal monitoring study in March 1995.

The response of water levels measured at well MW-14 is dampened, indicating a poor to moderate hydraulic connection between the water-bearing unit at MW-14 and the creek levels. The peak in water levels measured at well MW-14 occurs from 60 to 200 minutes after the peak in creek level at stilling well-7, and the water-level peaks at MW-14 are only about 10% of the tidal peak in creek levels.

There is an apparent hydraulic influence between the water-bearing unit at MW-13 and creek levels. Water levels measured at MW-13 respond quickly to high tides recorded in the creek. The response of water levels at MW-13 to low tides in the creek is subdued probably because low tides have less effect on Parkers Creek in the area of MW-13. This is expected because MW-13 is approximately 2,400 feet upstream from stilling well-7, and tidal changes in the creek diminish in the upstream direction, as documented at Landfill 2 (M-2). The ratio of change in water level in the water-bearing unit to change in creek levels was not calculated for this location because of the distance between the well and the tidal monitoring station.

There is an apparent hydraulic connection between the water-bearing unit at MW-15 and creek levels. Water levels measured at well MW-15 respond quickly to rising and falling creek levels. The peak in water levels measured at well MW-15 occurs at approximately the same time as the peak in creek levels at stilling well-7. The response of water levels at MW-15 to low tides in the creek is slightly subdued. At this location (stilling well-7, MW-15) water-level peaks at MW-15 are approximately 30 to 40% of the tidal peak in creek levels.

4.2.7.6.1 Conductivity and Salinity Results

Conductivity and salinity were measured at Parkers Creek and monitor wells (MW-12 through MW-15) at Landfill 8 (M-8) in January and March 1995. Measurements were collected at low tide and high tide each month to evaluate the extent of saltwater intrusion at each site (see Tables E-1 through E-3 in Appendix E).

The results indicate the presence of brackish to salty water in Parkers Creek at Landfill 8 (M-8). Specific conductance measured in Parkers Creek at Landfill 8 (M-8) is consistently greater than

 $2,\!000~\mu mhos.$ In addition, salinity measured in Parkers Creek at Landfill 8 (M-8) is consistently greater than 1.5 ppth.

Groundwater sampled from monitor well MW-12 exhibited low conductivity and zero salinity. Monitor wells MW-13, MW-14, and MW-15 indicate possible brackish to saltwater intrusion in an area of the water-bearing unit close to Parkers Creek.

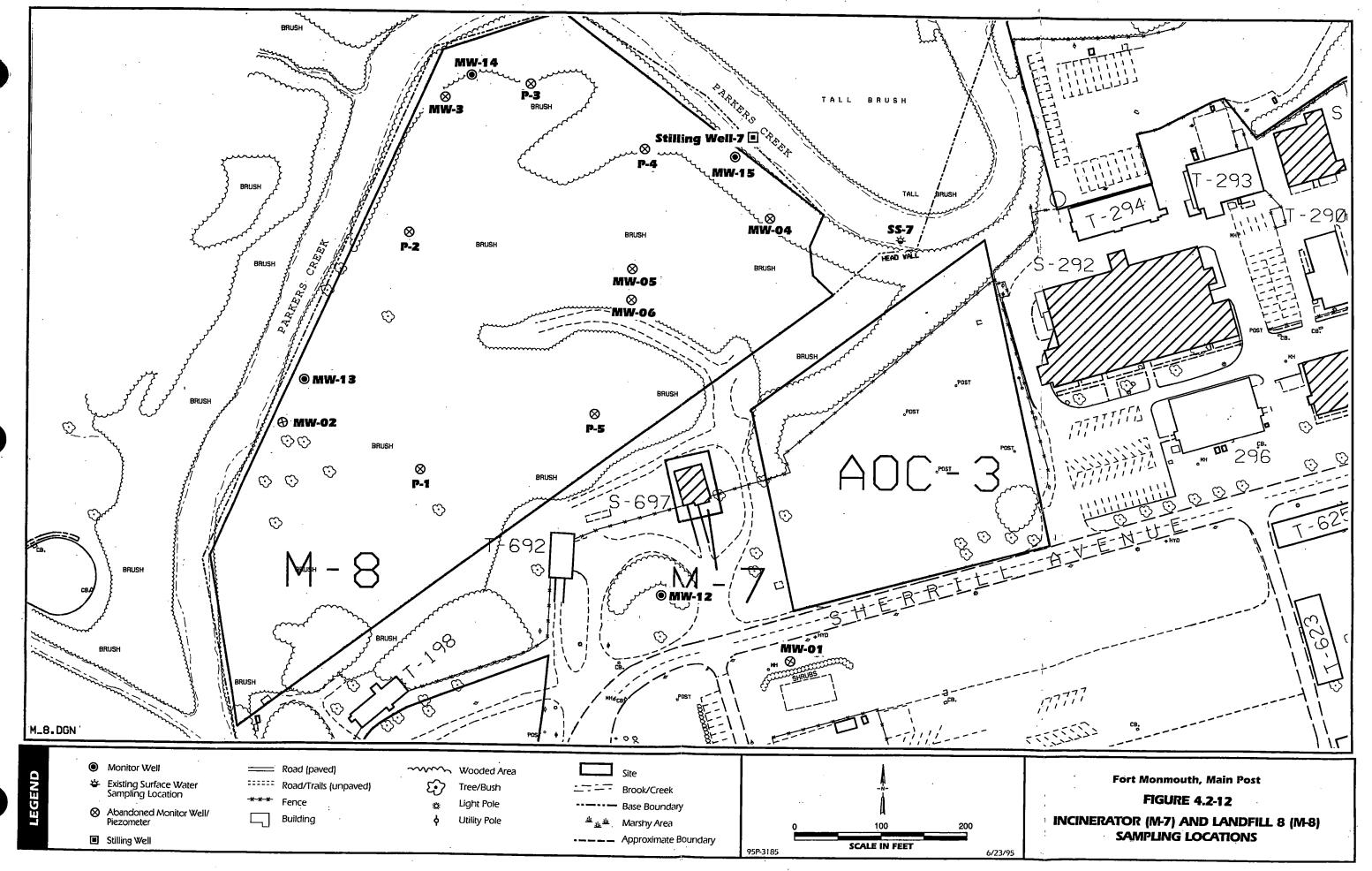
4.2.7.7 Recommendations

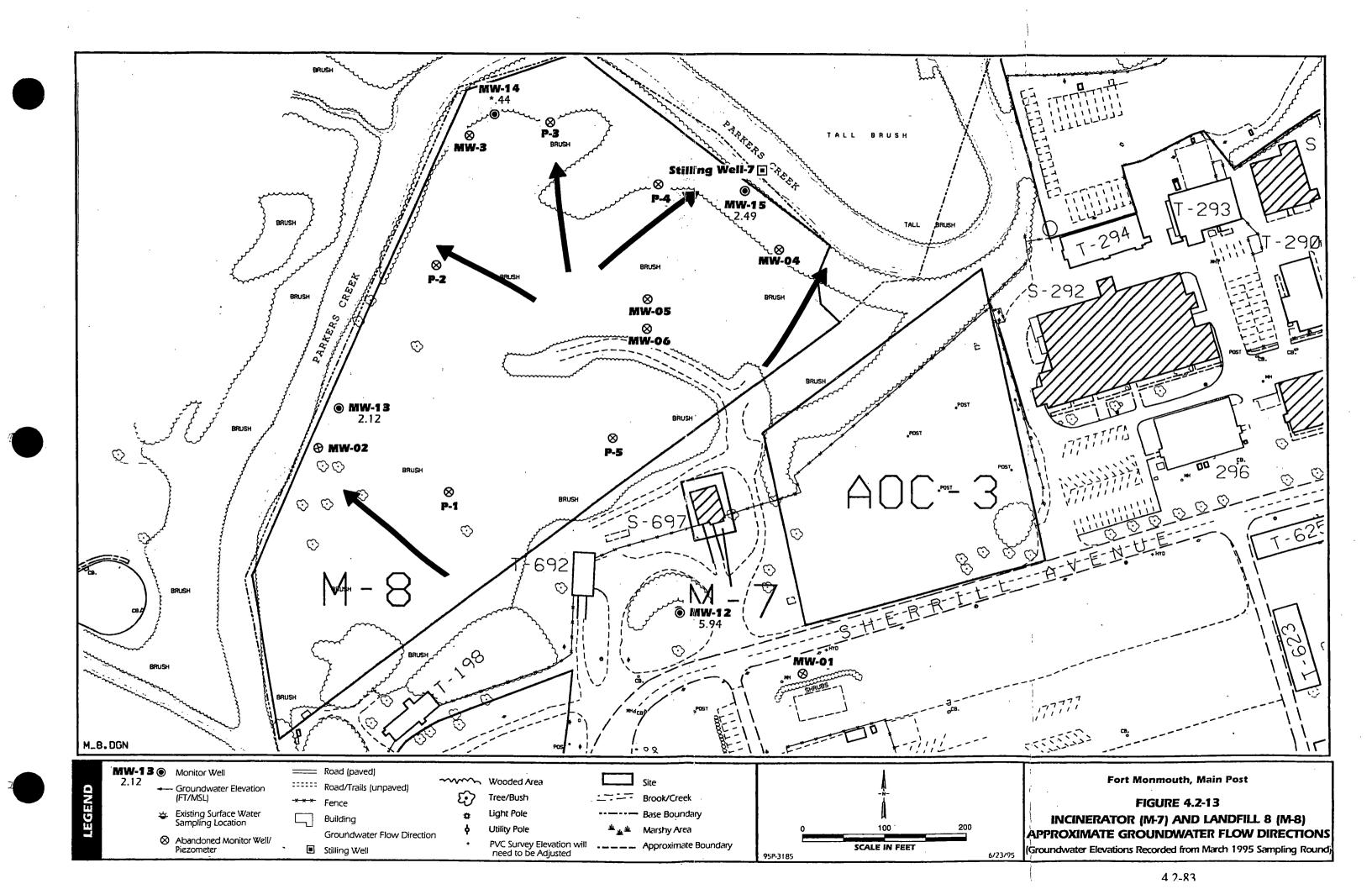
Due to highly turbid conditions and poor water-level recovery of the original monitor wells, all original monitor wells and piezometers were abandoned.

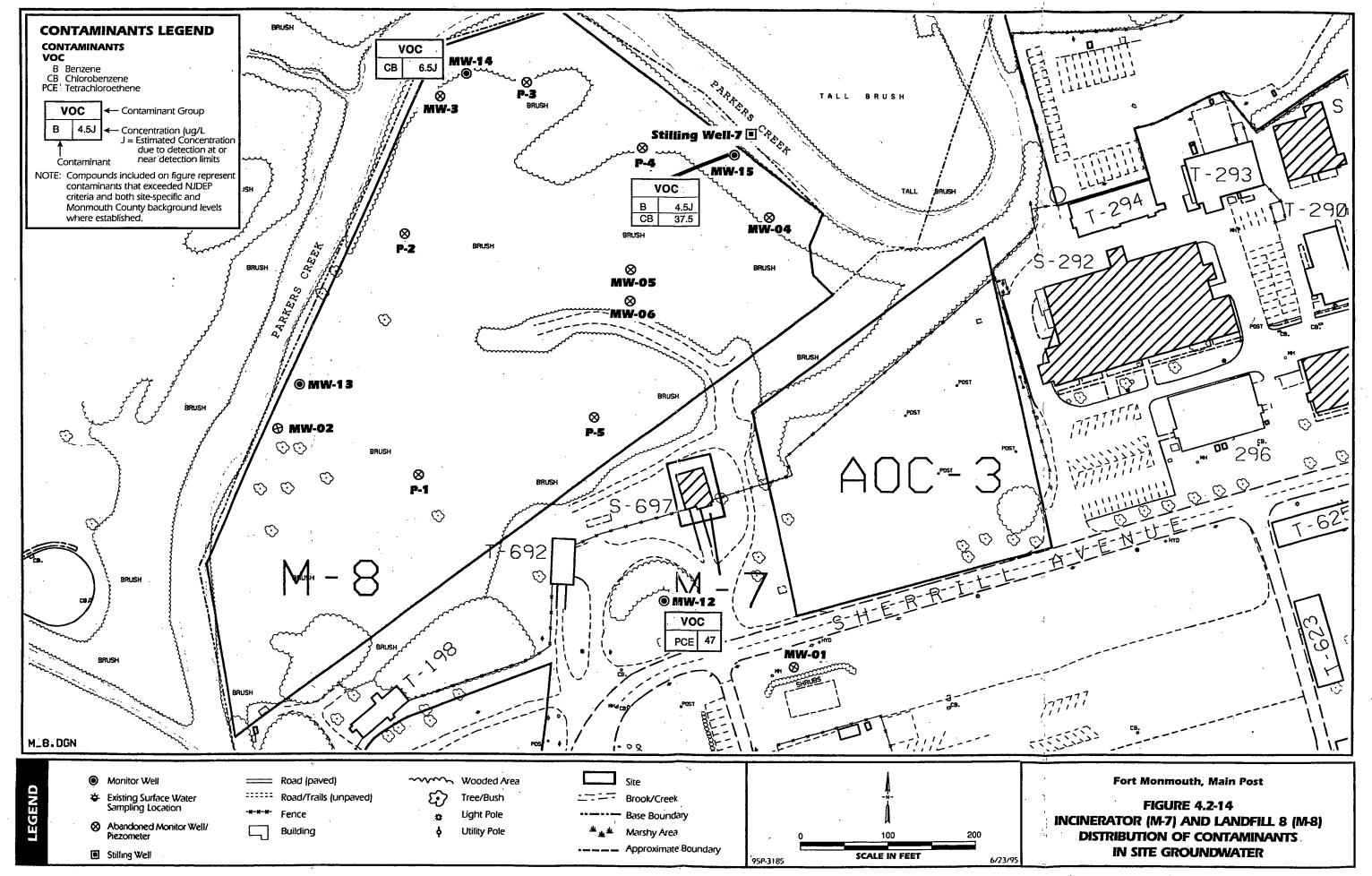
Groundwater sampling results indicate low concentrations of benzene and chlorobenzene were detected in two downgradient monitor wells, and PCE concentrations were detected in the upgradient well (MW-12) exceeding NJDEP GWQC. Additionally, PCE and other VOCs were previously detected in surface-water samples at location SS-7, downstream of site M-8.

Because the site formerly had an NJPDES permit, surface water has been sampled since 1986. However, surface water was not sampled at site M-8 during this investigation because the maximum VOC concentrations at this site during previous rounds of sampling were less than the maximum concentrations at sites M-2 and M-3, which are upstream. The concentrations of VOCs at site M-8 for previous rounds were less than the NJDEP surface-water criteria.

The results of the tidal monitoring indicate that there is no apparent relationship between creek levels and water levels in MW-12 because of its distance from the creek. A poor to moderate relationship was measured between MW-14 and creek levels. A direct relationship was observed between creek levels and MW-13 and MW-15. The conductivity and salinity measurements in Parkers Creek indicate the presence of brackish to salty water at site M-8. Groundwater sampled from MW-12 indicates freshwater. Monitor wells MW-13, MW-14, and MW-15 indicate brackish to salty water in an area of the water-bearing unit close to Parkers Creek.






Although groundwater sample results exceeded NJDEP criteria for three VOCs, immediate remedial action is not required. Shallow groundwater flows toward and discharges to Lafetra Creek, as indicated by water-level measurements in site monitor wells. There are no known uses of groundwater at or downgradient of the site. In fact, groundwater at three of the four monitor wells is brackish and unsuitable for drinking. No surface-water sampling was performed at this site during this project. Previous sampling rounds have indicated that VOC concentrations did not exceed NJDEP surface-water criteria in the stream. Therefore, there is little immediate threat to human health.

In addition, since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

Site M-12

4.2.8 Landfill 12 (M-12)

4.2.8.1 Site Location

Landfill 12 (M-12) is located on the south side of Husky Brook, west of Murphy Drive (Figure 4.2-15). The approximate northwest area of site M-12 is 60,100 ft² (1.4 acres) and the approximate southwest area is 29,200 ft² (0.7 acre).

4.2.8.2 Site History

The period of operation of Landfill 12 is unknown. Landfill 12 most likely contains domestic and industrial wastes similar to that found in other Main Post landfills. This landfill may also have been used for automobile disposal. At present, the southern bank of Husky Brook is flat and grass covered.

4.2.8.3 Sampling Effort

GPR and magnetometer surveys were conducted to locate the landfill boundaries. Three monitor wells, MW-16, MW-17, and MW-18, were installed at the locations shown in Figure 4.2-15. The original locations of monitor wells MW-16 and MW-18 were repositioned during the field investigation activities. Monitor well MW-16 was moved because of possible accessibility problems (the proposed location of the well was inside the locked boat yard parking lot). Monitor well MW-18 was moved based on geophysical interpretations.

These wells were sampled twice for TCL +30 parameters, TAL metals, and cyanide. Tidal monitoring was conducted at the same time as tidal monitoring for Landfill 14.

4.2.8.4 Geophysical Results

The magnetometer survey conducted at the northeast portion of site M-12, i.e., M-12NE, revealed elevated total magnetic field readings located at relative grid coordinates 40N to 70N/335E to 400E and 70N to 80N/175E to 225E. As shown in Figure 4.2-16, the high magnetometer

readings are represented by the violet contour interval and are indicative of buried ferrous material. Another anomalous area indicating ferrous material was revealed at the southwest corner of site M12NE and is located at approximate grid coordinates 0N to 60S/50W to 100E. Cultural features affecting the magnetometer survey are the tower and guy wires centered about coordinate 60N/100E and the chainlink fence to the south of the survey area. As shown in Figure 4.2-17, the magnetic gradient anomalies coincide with the total magnetic field results, also suggesting the presence of buried ferrous material within the suspected landfill boundary.

The GPR survey at M-12NE revealed chaotic radar reflectors throughout the area. These radar waveforms may be indicative of coarse-grained fill material or naturally occurring sands and gravel. However, the radar data collected collaborates the existing magnetometer anomalies at grid coordinates 30N to 70N/335E to 350E and 30N to 70N/390E to 400E, suggesting buried ferrous material within the suspected landfill boundary.

Hyperbolic radar signatures appear traversing the site from approximately 280E to 300E at a depth of 3 ft bgs. These hyperbolic waveforms are interpreted to be an 18-in. diameter drainage pipe that was observed discharging to the stream.

Site M-12SW contained many cultural features scattered throughout the site, including overhead power lines and metallic surface debris, prohibiting total site coverage and producing anomalous magnetic signatures. The magnetometer survey revealed anomalous total magnetic field and gradient anomalies at the northwest portion of the survey area. Located within grid coordinates 0N to 50N and 50E to 120E, the anomalies are probably due to metallic debris observed on the surface. As shown in Figure 4.2-18, total magnetic field anomalies exist at grid coordinates 0N to 20N/140E to 180E and centered about coordinate 10S/200E. The magnetic gradient contour plot (Figure 4.2-19) confirms these anomalous magnetic signatures and reveals smaller discrete high and low gradient readings indicative of buried ferrous material from 10N to 10S and 120E to 240E.

The GPR survey revealed hyperbolic diffraction patterns at 10N/160E and 10S/200E, confirming the presence of the magnetometer anomalies at a depth of approximately 2 ft bgs. These

hyperbolic radar signatures are typical of buried manmade metallic cyclindrical objects such as pipe, utilities, and other metallic objects, as well as naturally occurring cobbles and large gravel. Chaotic radar reflectors were also found at the northeast quadrant of the site within grid coordinates 10N to 50N/250E to 300E. These chaotic waveforms are indicative of coarse-grained materials such as sand and gravel or disturbed subsurface conditions.

The results of the geophysical survey at M-12NE and M-12SW indicate that fill and buried ferrous material are present within the suspected boundaries of the landfill. Monitor wells and surface-water sample locations are positioned to adequately monitor groundwater downgradient of these areas.

4.2.8.5 Hydrogeologic Interpretation

Lithologic logs from the wells installed at M-12 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by fill material. The components of the filled materials observed in the borings consisted of organic debris and coal fragments intermixed with a moderate to poorly sorted olive-green-brown silty medium-fine-grained sand with little clay.

Saturation was observed at approximately 2 ft bgs across the site. The three monitor wells were screened across the water table and set at 14.5 ft bgs. Water-level elevation data, measured on 6 March 1995, prior to the March sampling round, indicate that local groundwater flows north toward Husky Brook (Figure 4.2-20). Based on groundwater elevation measurements, monitor wells MW-17 and MW-18 are located downgradient of the M-12 area.

4.2.8.6 Groundwater Sampling Results

Monitor wells at site M-12 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.2-10 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results

Table 4.2-10

Fort Monmouth - Main Post Summary of Average Concentrations of Detected Compounds in Groundwater - Site M-12

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE			
		QUALITY CRITERIA	CONCENTRATION	MW16 2/20/95, 3/10/95	MW17 2/20/95, 3/10/95	MW18 2/20/95, 3/10/95	
	(µg/L)	(µg/L)	(μg/L)	(avg.)	(avg.)	(avg.)	
SVOCs (µg/L)							
bis-(2-Ethylhexyl)phthalate	9.7	30*	ND	3 J	2Ј	4 J	
METALS TOTAL (µg/L)							
Aluminum	24.0	200	121000	961	173.5	733	
Arsenic	1.9	8*	89.3	4.05	ND	1.475	
Barium	1.7	2000	699	47.1	184	133.5	
Calcium	10.4	NLE	45400	7860	50200	6235	
Cadmium	2.8	4	9.5	2.475	ND	3.4	
Cobalt	3.0	NLE	18.3	2.025	ND	2.675	
Chromium	2.9	100	191	12.025	4.425	7.675	
Copper	1.9	1000	₹730¹	ND	14.1	5.1	
Iron	6.4	300	431000	19650	31250	1795	
Mercury	0.2	2	0.26	0.205	ND	ND	
Potassium	685	NLE	137000	3040	4380	5115	
Magnesium	18.3	NLE	62700	6120	4405	3935	
Manganese	1.8	50	480¹	46.05	256	16.8	
Sodium	30.5	50000	197000¹	17150	10285	21050	
Nickel	10.8	100	187	3.75	ND	7.8	
Lead	1.6	10*	22.7	1.1	1.3	3.1	
Vanadium	2.3	NLE	108	6.35	ND	2.775	
Zinc	3.8	5000	233	20.75	9.6	45.3	

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater criteria

NLE - No Level Established

ND - Indicates that the compound was not detected at noted quantification limit

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

¹ - Monmouth County maximum background concentration.

with the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate.

VOCs

VOCs were not detected in the site monitor wells from either sampling round.

SVOCs

SVOCs were not detected in the site monitor wells above laboratory quantitation limits from either sampling round. The estimated value for bis(2-ethylhexyl) phthalate is below NJDEP GWQC.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells from either sampling round.

Metals

As indicated in Table 4.2-10, of the 18 metals detected in site groundwater, 3 (aluminum, iron, and manganese) were found in concentrations exceeding the NJDEP GWQC. However, all metals were found in concentrations below those determined for site-specific or Monmouth County maximum background levels. Although the concentration of aluminum exceeded the Monmouth County background level in MW-17, the concentration was well below the site-specific background level established at the Main Post.

Cyanide

Cyanide was not detected in the site monitor wells from either sampling round.

4.2.8.7 Tidal Monitoring — Landfill 12 and Landfill 14 (M-12 and M-14)

Tidal fluctuations in Husky Brook were monitored at an upstream tidal monitoring station (stilling well-8) and at a downstream tidal monitoring station (stilling well-9) at Landfills 12 and 14 (Figure 4.2-15). The tidal monitoring stations are approximately 400 feet apart and tidal changes at both stations are similar. Changes in creek levels measured at station stilling well-8 were compared to changes in water levels measured at monitor wells MW-16 through MW-21 (see Appendix E).

Monitor wells MW-17, MW-18, MW-19, and MW-21 are located within 150 feet of the creek, and wells MW-16 and MW-20 are located 150 feet or more from the creek. The tidal monitoring station at Landfills 12 and 14 records high and low tides, but the lowest tidal peaks are slightly subdued. The stream bed elevation at Landfills 12 and 14 is the lowest of the three areas studied and is more affected by low tides. Stream bed elevation is -1.71 ft msl at stilling well-8 and -1.63 ft msl at stilling well-9. The maximum change in creek levels during the study was 3.3 feet. The maximum change in water level in the monitor well was approximately 1.6 feet during the time of study.

Data collected from wells MW-19 and MW-20 are useful as baseline data during the tidal monitoring study conducted at Landfills 12 and 14. There is no apparent relationship between water levels measured at wells MW-19 and MW-20 and creek levels measured at stilling well-8. Well MW-19 is approximately 150 feet from the creek, but is about 1,600 feet upgradient from stilling well-8. Well MW-20 is approximately 700 feet from the creek and is too distant to be influenced by changing creek levels. Water levels in the water-bearing unit and creek levels were fluctuating by less than 0.1 foot during the tidal monitoring study in March 1995.

The response of water levels measured at wells MW-16, MW-17, and MW-18 indicates a poor to moderate degree of hydraulic connection between the water-bearing unit in the area around these wells and the creek levels. There is a small lag time between tidal peaks in the creek and water-level peaks in each of the three wells. The magnitude of water-level changes in these three wells is small, between 5% and 15% of the magnitude of tidal changes in the creek.

There is an apparent hydraulic influence between the water-bearing unit at MW-21 and creek levels. Water-level data from monitor well MW-21 were compared with creek level data from station stilling well-8. The peak in water levels measured at well MW-1 occurs approximately 70 to 120 minutes after the peak in creek levels at stilling well-8, but the ratio of change in water level in the water-bearing unit to change in creek levels at this location (stilling well-8, MW-21) is approximately 40% to 50%. This high ratio indicates a high degree of hydraulic influence.

4.2.8.7.1 Conductivity and Salinity Results

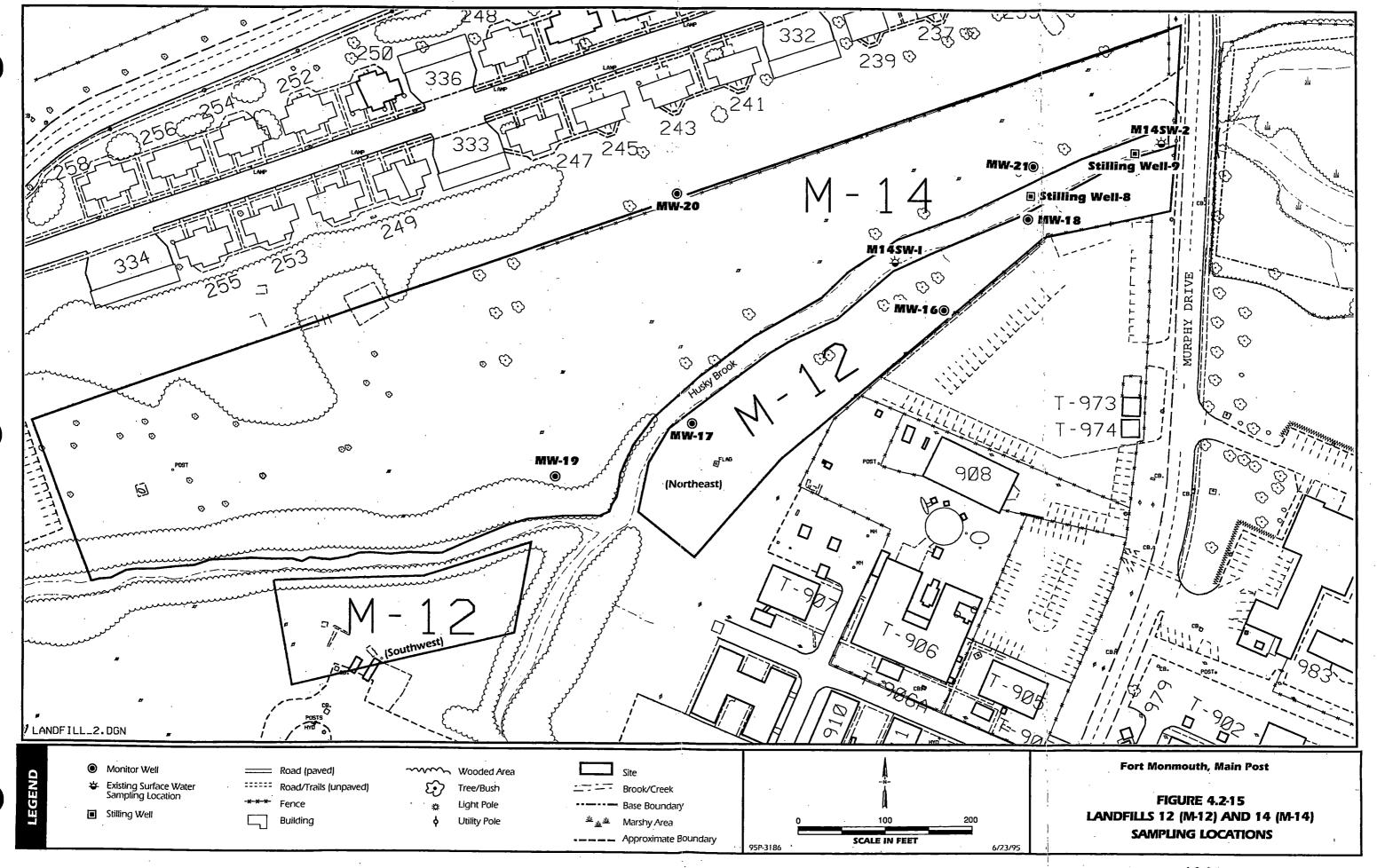
Conductivity and salinity were measured in Husky Brook and in the monitor wells at Landfill 12 (M-12) and Landfill 14 (M-14) in January and March 1995 and are presented in Appendix E. Measurements were collected at low tide and high tide each month to evaluate the extent of saltwater intrusion at each site.

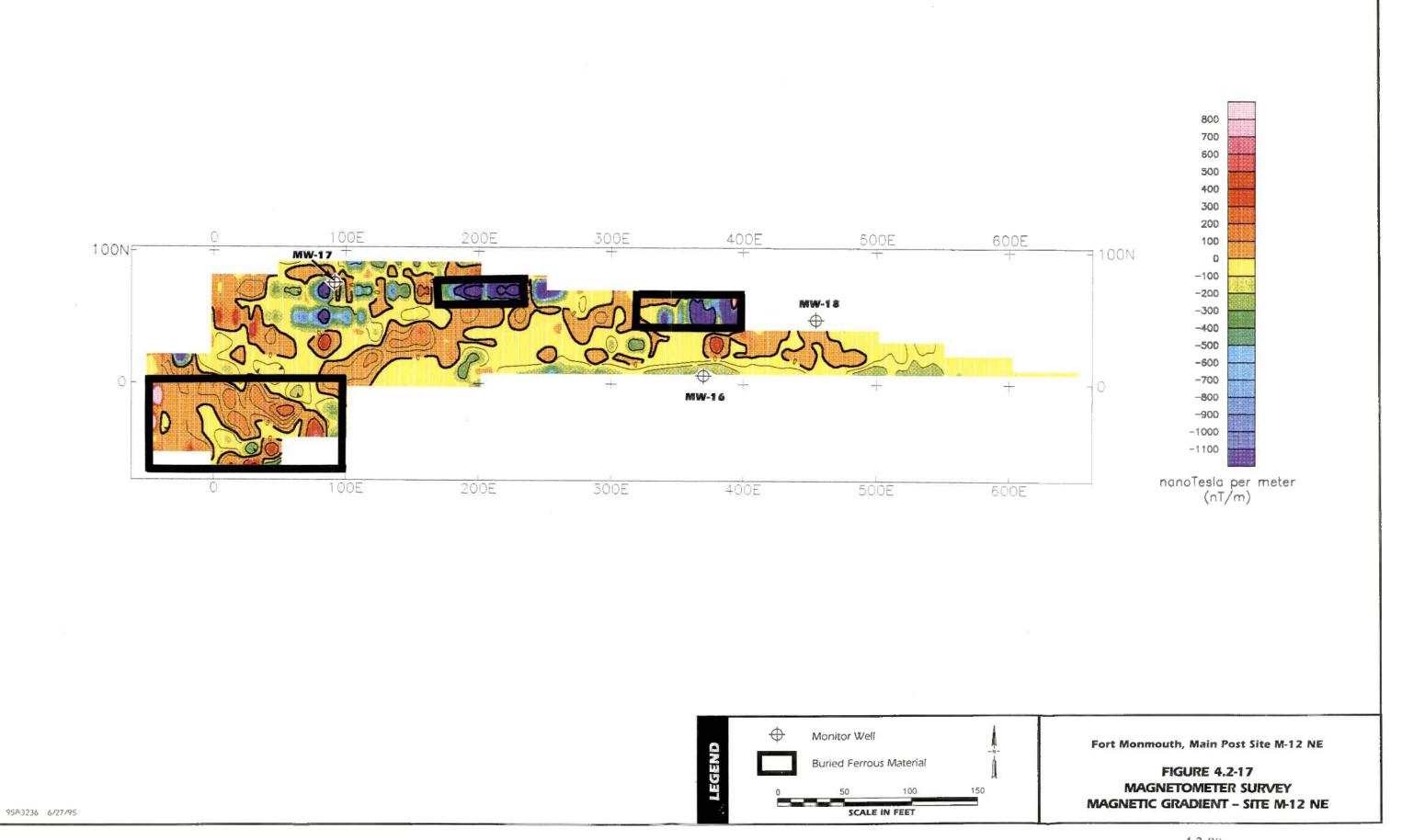
The results indicate the presence of brackish to salty water in Husky Brook at Landfills 12 and 14 (M-12, M-14).

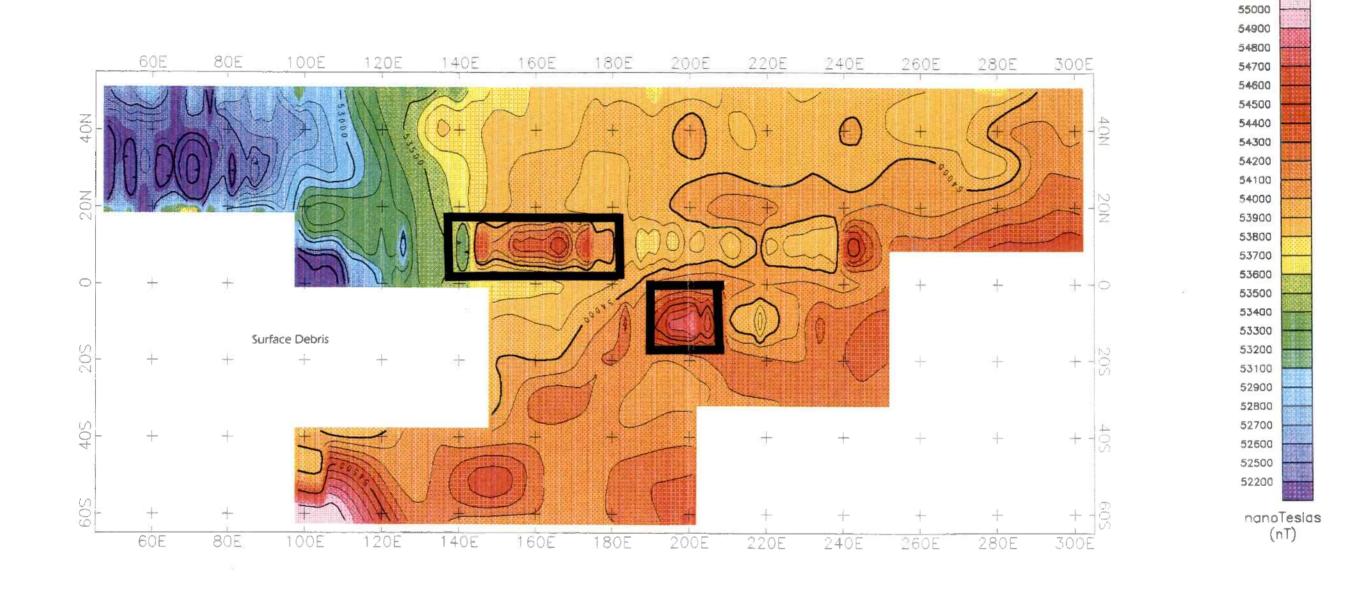
Specific conductance measured in Husky Brook at Landfills 12 and 14 (M-12, M-14) is consistently greater than 2,000 µmhos. In addition, salinity measured in Husky Brook at Landfills 12 and 14 (M-12, M-14) is consistently greater than 1.5 ppth. The results are consistent with the higher streambed elevation at Landfill 2 (M-2) compared to Landfill 8 (M-8) and Landfills 12 and 14 (M-12, M-14).

Groundwater sampled from monitor wells at each location generally exhibit low conductivity and zero salinity.

4.2.8.8 Recommendations


The results of the geophysical surveys indicate that the identified fill and buried ferrous material are present within the suspected boundaries of the landfill. Monitor wells are positioned to adequately monitor groundwater downgradient of these areas.

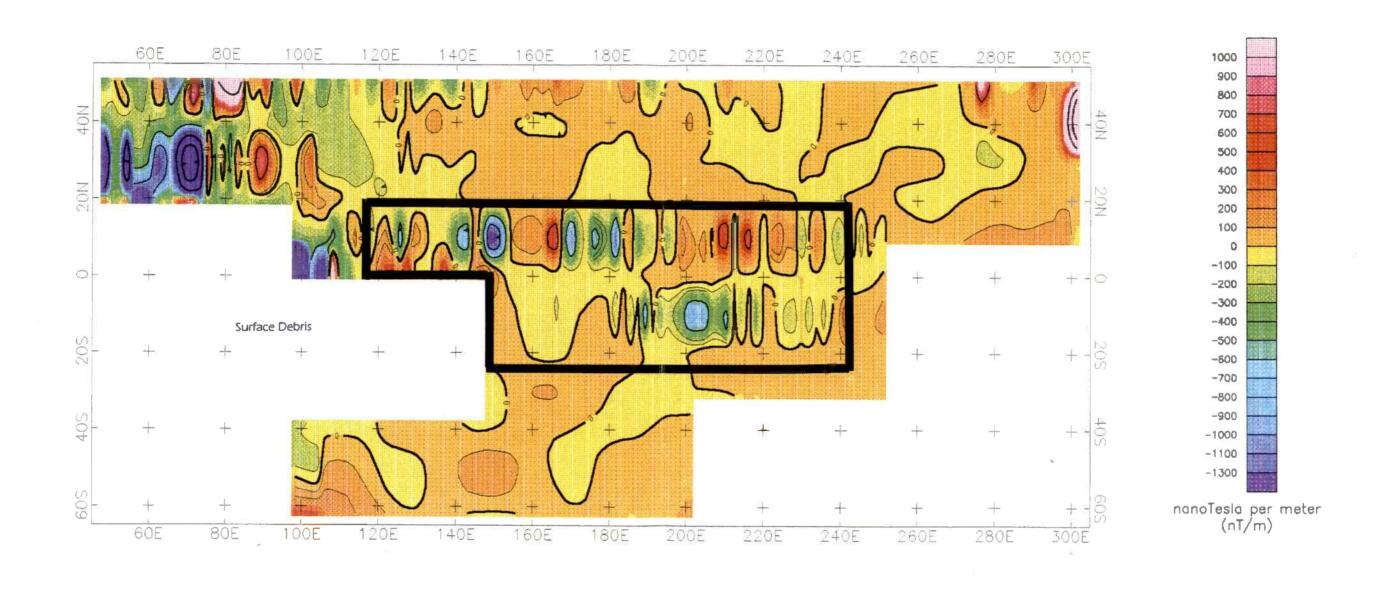

Groundwater sampling results indicate that no compounds of concern exceeded NJDEP GWQC from upgradient and downgradient wells.


The results of the tidal monitoring relate to both sites M-12 and M-14. The data indicate that there is no apparent relationship between creek levels and water levels in MW-19 and MW-20. A poor to moderate relationship was measured between MW-16, MW-17, and MW-18 and creek levels. A direct relationship was observed between creek levels and MW-21. The conductivity and salinity measurements in Husky Brook indicate the presence of brackish to salty water at sites M-12 and M-14. Groundwater sampled from monitor wells at each location indicates freshwater.

Although no compounds of concern were identified at site M-12, because of the site's history of being used as a landfill, DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Contaminants identified in the first two rounds of sampling would be targeted for the monitoring program.

95P-3237 6/27/95

Possible Fill Area Boundary

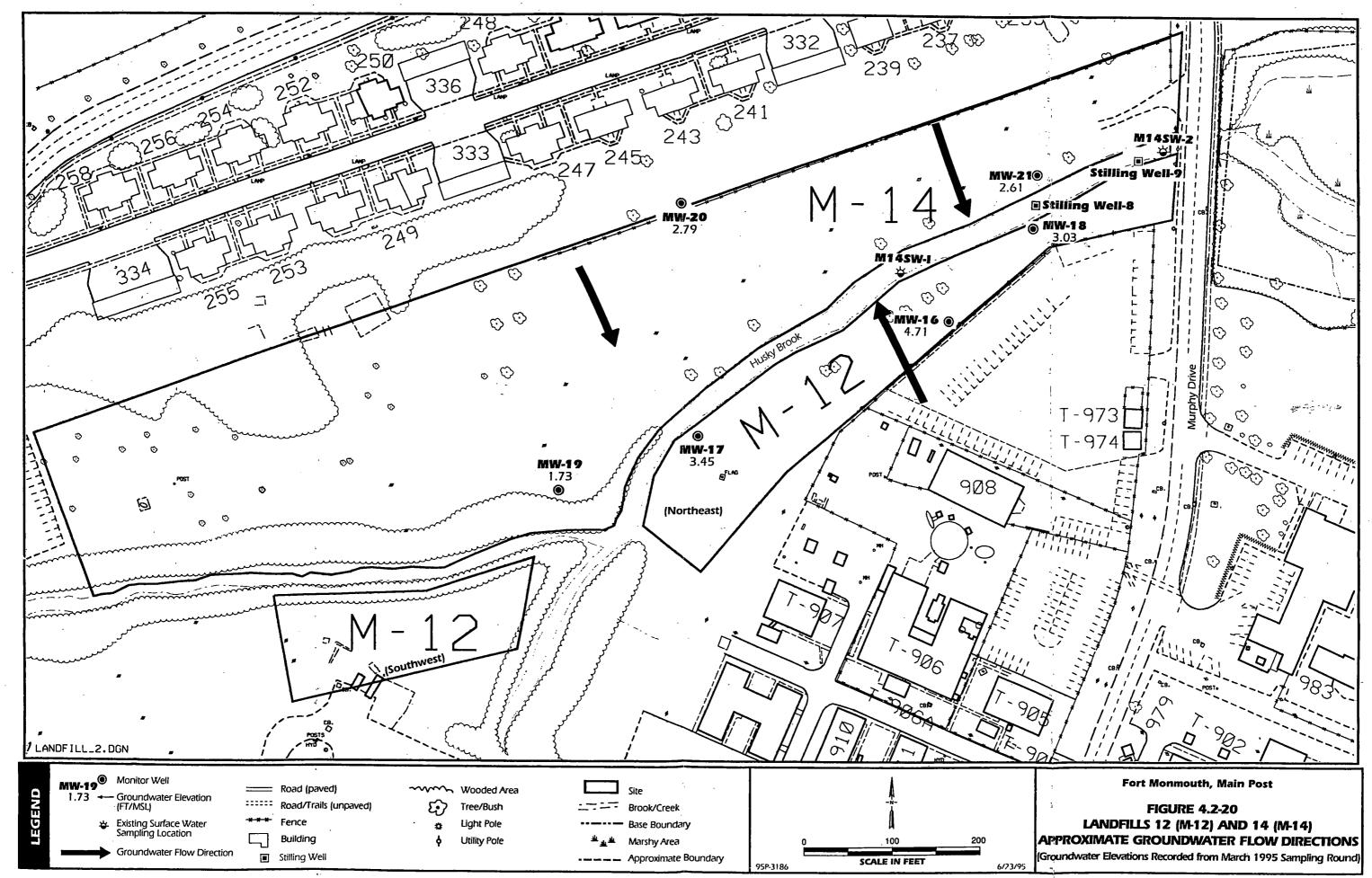

SCALE IN FEET

Fort Monmouth, Main Post Site M-12 SW

FIGURE 4.2-18

MAGNETOMETER SURVEY

TOTAL MAGNETIC FIELD – SITE M-12 SW


Possible Fill Area Boundary

0 10 20 30 40 50

SCALE IN FEET

Fort Monmouth, Main Post Site M-12 SW

FIGURE 4.2-19
MAGNETOMETER SURVEY
MAGNETIC GRADIENT – SITE M-12 SW

Site M-14

4.2.9 Landfill 14 (M-14)

4.2.9 1 Site Location

Landfill 14 (M-14) is located on the north bank of Husky Brook in the area west of Murphy Drive (Figure 4.2-15). This area is north of the suspected location of Landfill 12. The approximate area of site M-14 is 300,000 ft² (6.9 acres).

4.2.9.2 Site History

Both a 1935 Fort Monmouth map and the 1940s aerial photograph show a marshy area in this location. According to the IA, Landfill 14 was used in 1965 and 1966 for the disposal of building rubble that was covered by dredgings from Husky Brook Lake. A figure in Cosulich shows a 1940s-era landfill in the western part of the area. This 1940s landfill may have contained general domestic and industrial wastes similar to that found in other Main Post landfills.

As part of an NJPDES permit, surface-water samples have been taken at two locations in Husky Brook since February 1986. The results are summarized in the recent report (WESTON, 1993). No compounds were detected in concentrations above the NJDEP surface-water criteria.

4.2.9.3 Sampling Effort

GPR and magnetometer surveys were conducted in the western half of this site to ascertain whether the landfill extends into this area. Three monitor wells (MW-19 through MW-21), shown in Figure 4.2-15, were installed and sampled twice for TCL +30 parameters, TAL metals, and cyanide. Tidal monitoring was conducted at the same time as the tidal monitoring at Landfill 12. Surface-water samples were taken at M14SW-1 and M14SW-2.

4.2.9.4 Geophysical Results

The magnetometer survey at site M-14 shows the majority of the site to have background total magnetic field readings of approximately 54,000 nT, as shown on the total magnetic field contour plot in Figure 4.2-21. However, anomalous readings exist at grid coordinates along the 100N traverse from 0E to 700E, 20N/100E, 40N/760E, 40N/810E, and 0 to 90S/300E to 700E. These anomalies, mostly represented by the blue contour interval or approximately 48,000 nT, can be attributed to cultural features such as a buried gas main, a fence, playground apparatus, and overhead power lines, respectively. The magnetic gradient component confirms the total field anomalies as shown in Figure 4.2-22. A smaller discrete anomaly exists at grid coordinate 40N from 420E to 470E, which is indicative of buried ferrous material.

The overhead power lines could be masking the magnetic response that any potential buried ferrous material may have, however, the GPR survey was conducted to identify any subsurface "disturbances" such as metallic fill material. Chaotic radar reflectors, indicative of fill material, coarse-grained soils, or disturbed soils, were found mainly along the treeline at grid coordinates 0 to 60S/150E to 250E, and 75S to 120S/400E to 475E. Chaotic radar reflectors, corresponding to a magnetic gradient anomaly, exist at 0 to 20N/450E to 575E, and are indicative of ferrous material. Hyperbolic radar signatures, identified as the gas main, were revealed along the 100N traverse at a depth of approximately 3 ft bgs.

While magnetometer and GPR anomalies exist throughout the site, a discrete landfill boundary was not identified at site M-14. This may be due in part to the composition of the fill material, as described in the lithologic logs, and the lack of metallic material.

4.2.9.5 Hydrogeologic Interpretation

Lithologic logs from site monitor wells indicate that the lithology consists of a thin soil cover (0.4 ft) underlain by fill material. The components of the filled materials observed in the borings consisted of concrete rubble, charcoal, wood, and glass fragments intermixed with a graygreen silty fine-coarse-grained sand with little clay and gravel.

Groundwater saturation was observed in the boreholes during activities between 4 and 6 ft bgs. The three monitor wells were screened across the water table, with total depths of 14, 15, and 16 ft bgs in MW-19, MW-20, and MW-21, respectively. Water-level elevation data, measured on 6 March 1995, indicate that local groundwater flow is south toward Husky Brook (Figure 4.2-20). Based on groundwater elevation measurements, monitor wells MW-19 and MW-21 are downgradient of the M-14 area.

4.2.9.6 Groundwater Sampling Results

Monitor wells at site M-14 were sampled for the analytical parameters listed in Table 3.8-1. The compounds detected in groundwater samples from the individual sampling rounds, with the corresponding sample identifications, are listed in Appendix D. Table 4.2-11 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results to the subsequent site-specific and Monmouth County maximum background concentration, where appropriate.

VOCs

VOCs were not detected in the site monitor wells from either sampling round.

SVOCs

SVOCs were not detected in the site monitor wells from either sampling round.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells in either sampling round.

Table 4.2-11 Fort Monmouth - Main Post

Summary of Average Concentrations of Detected Compounds in Groundwater - Site M-14

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE			
		QUALITY CRITERIA	CONCENTRATION		MW20 2/22/95, 3/13/95	MW21 2/22/95, 3/9/95	
	(µg/L)	(μg/L)	(µg/L)	(avg.)	(avg.)	(avg.)	
METALS TOTAL (µg/L)							
Aluminum	24.0	200	121000	393	903.5	1380	
Arsenic	- 1.9	8*	89.3	ND	6.3	2.33	
Barium	1.7	2000	699	214.5	48.7	35.2	
Beryllium	0.9	20*	7 ¹	ND	0.245	ND	
Calcium	10.4	NLE	45400	38700	31850	/ 32800	
Cobalt	3.0	NLE ·	18.3	2.03	ND	ND	
Chromium	2.9-	100	191	4.925	9.625	12.65	
Copper	1.9	1000	730¹	8.15	8.3.	2.35	
Iron	6.4	300	431000	41400	7960	5685	
Potassium	685	NLE	137000	4660	5316	7490	
Magnesium	18.3	NLE	62700	5185	4270	4060	
Manganese	1.8	50	- 480 ¹	550.5	199.5	64.45	
Sodium	30.5	50000 .	197000 ¹ .	8815	22600	6700	
Nickel	10.8	100	187	3.35	5.65	ND	
Lead	1.6	10*	22.7	18.75	4.65	3.45	
Vanadium	2.3	NLE	108	ND	6.25	8.75	
Zinc	3.8	5000	233	89.5	14.5	13.5	

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

NLE - No Level Established

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

ND - Indicates that the compound was not detected at the noted quantification limits

¹ - Monmouth County maximum background concentration.

Metals

As indicated in Table 4.2-11, of the 17 metals detected in site groundwater, 4 (aluminum, iron, manganese, and lead) were found in concentrations exceeding the NJDEP GWQC. In addition, manganese was found in a concentration greater than both the site-specific and the Monmouth County maximum background level in MW-19 only. As discussed in Subsection 4.1, groundwater flowing through glauconitic formations contains abundant manganese. In addition, manganese is a common metal found in tidally influenced environments. Therefore, manganese is not identified as a compound of concern. Aluminum and lead were found in concentrations below those determined for site-specific and Monmouth County maximum background levels.

Although the concentration of iron exceeded the Monmouth County background level in MW-19, the concentration was well below the site-specific background level established at the Main Post.

The lower reaches of Husky Brook are tidal. The sodium content of surface water is saline (Subsection 4.2.9.7), suggesting that saltwater has encroached upon this section of Husky Brook. The relatively high sodium content of the monitor wells in the vicinity of Husky Brook is caused by the saltwater encroachment.

Cyanide

Cyanide was not detected in the site monitor wells from either sampling round.

4.2.9.7 Surface-Water Sampling Results

Two surface-water samples, M14SW-1 and M14SW-2 were collected at M-14 (Figure 4.2-15). Both samples were determined to be saltwater based on conductivity and salinity results, and total (unfiltered) and soluble (filtered) concentrations were compared to NJDEP saltwater criteria and background (Table 4.2-12).

Table 4.2-12 Fort Monmouth - Main Post Summary of Detected Compounds in Surface Water Total and Soluble - Site M-14

COMPOUND	METHOD DETECTION	NJDEP SURFACE WATER	MAXIMUM BACKGROUND	MAXIMUM BACKGROUND		ANALYTICAL RESULT SAMPLING DATE - 12/1/1			
	LIMIT	CRITERIA* SALINE WATER	CONCENTRATION (TOTAL)	CONCENTRATION (SOLUBLE)	M14 (SW-1	Total) SW-2	M14 (9 SW-1	Soluble) SW-2	
VOC's (μg/L)								<u> </u>	
1,2-Dichloroethene (total)	4.4	NLE	ND	ND	4 J	5 J	NA	NA	
SVOCs (µg/L)									
bis-(2-Ethylhexyl)phthalate	9.7	5.92 (hc)	ND	ND	ND	2 J	NA	NA	
METALS TOTAL (µg/L)									
Aluminum	26.7	NLE	748	ND	188	205	ND	26.7	
Barium	2.1	` NLE	44.7	39.4	, 30	33.1	27.2	31.2	
Calcium	12	NLE	31600	30900	16200	20400	16300	20300	
Cobalt	2.4	NLE	8.1	4.1	ND.	ND	ND	ND	
Copper	2.4	NLE	3.2	4	2.9	5.3	5.6	4.9	
Iron	4.7	NLE	6210	405	1920	2070	839	999	
Lead	1.6	NLE	. 10	ND	3.4	2.8	3.1	3.2	
Magnesium	38.2	NLE	5440	5120	9770	21400	9540	21600	
Manganese	2.0	100 (h)	113	98.6	65.6	68.4	63.6	66.1	
Nickel	12.8	NLE	22.9	16.1	14.2	ND	ND	ND	
Potassium	821	NLE	5060	4280	4840	8320	4240	8220	
Sodium	15.4	NLE	26700	26200	70100	168000	69100	171000	
Zinc	2.8	NLE	35.1	23.8	23.7	23.4	14.4	13.2	

NA - Not Analyzed.

Compounds decrected above NJDEP Surface Water Criteria are noted by bold numbers.

NJDEP Surface Water Quality Standards (1993).
 h-Non carcinogen effect-based human health criteria as a 30 day average.

he Carcinogen effect-based human health criteria as 70 year average.

ND - Indicates that the compound was not detected at the noted quantification limit.

J - Indicates that the concentration value was estimated due to detection at or near the quantification limit.

NLE - No Level Established

VOCs

VOCs were analyzed for but were not detected above the laboratory quantitation limit in site surface-water samples.

SVOCs

SVOCs were analyzed for but were not detected above the laboratory quantitation limit in site surface-water samples.

Pesticides/PCBs

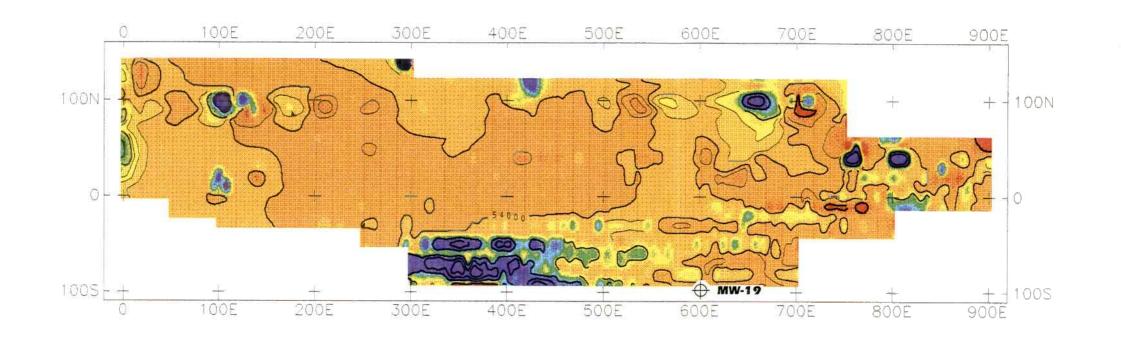
Pesticides/PCBs were analyzed for but were not detected in site surface-water samples.

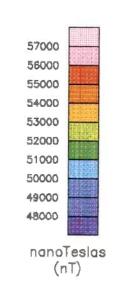
Metals

As indicated in Table 4.2-12, no metals were found in concentrations exceeding the NJDEP surface-water criteria (saline).

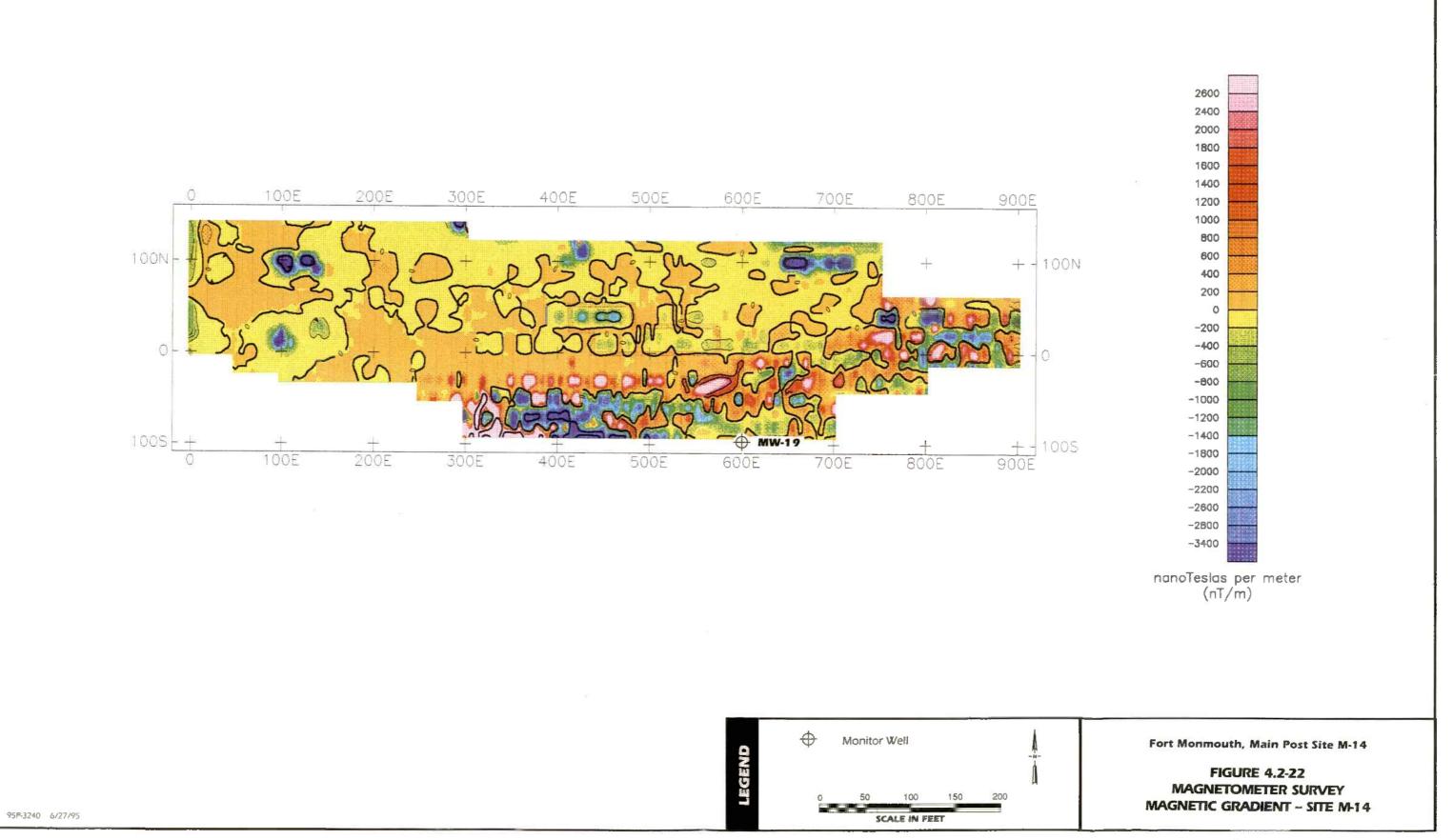
4.2.9.8 Recommendations

The results of the geophysical surveys indicate that fill and some metallic debris exist throughout the site; however, a discrete landfill boundary was not identified at site M-14. This may be due in part to the composition of the fill material and the small amount of subsurface metallic material present at the site.


The groundwater and surface-water sampling results indicate that no compounds of concern were detected above NJDEP GWQC and surface-water criteria.


Tidal monitoring was conducted at site M-12 and site M-14 simultaneously. The results of the tidal monitoring are discussed in Subsection 6.1.6.

Although no compounds of concern were identified at site M-14, because of the site's history of being used as a landfill, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and surface-water samples would be collected from points yet to be determined. Contaminants identified in the first two rounds of sampling would be targeted for the monitoring program.


Monitor Well

0 50 100 150 200

SCALE IN FEET

Fort Monmouth, Main Post Site M-14

FIGURE 4.2-21
MAGNETOMETER SURVEY
TOTAL MAGNETIC FIELD - SITE M-14

Site M-15

4.2.10 Water Tank (M-15)

4.2.10.1 Site Location

The water tank is located on the eastern portion of the Main Post (Figure 4.2-23). The tank is a vertical aboveground tank mounted on a concrete pad. The approximate area of site M-15 is 3,000 ft² (0.07 acre). There are soil patches without vegetation along the eastern circumference of the tank and visible paint chips.

4.2.10.2 Site History

Interviews with site personnel indicate that the tank was constructed in the 1940s and was always used as a water tank. The IA described the site as the "Water Tank," but did not discuss why the tank was identified as a hazardous waste site.

4.2.10.3 Sampling Effort

There is no evidence that the water tank or its contents are potential sources of contamination; however, the stressed vegetation may have been caused by the use of herbicides and the paint chips may contain lead. Therefore, two surface soil samples (0 to 6 inches) were collected, one at the bottom of the grade and one halfway up the grade, and were analyzed for TCL SVOCs, TAL metals, and pesticides (Figure 4.2-23). The SVOCs were analyzed for even though this was not proposed in the original scope of work (CDAP).

4.2.10.4 Soil Sampling Results

Two surface soil samples were collected (0 to 0.5 ft bgs), one at the bottom of the grade and one halfway up the grade, and were analyzed for the parameters listed in Table 3.6-1. The analytical results are listed in Appendix D. Table 4.2-13 compares the detected compounds in site soil with the NJDEP Residential Direct Contact Soil Cleanup Criteria (SCC), and then compares the results to the subsequent site-specific and Monmouth County background levels, where appropriate. In

Table 4.2-13 Fort Monmouth - Main Post

Summary of Detected Compounds In Soils at Site M-15

COMPOUND	METHOD	RESIDENTIAL DIRECT	MAXIMUM	ANALYTICA	I REPORT OF THE PARTY OF THE PA	
	DETECTION	CONTACT SOIL	BACKGROUND	SAMPLE DATE		
	LIMIT	CLEANUP CRITERIA	CONCENTRATION	SS01-A01	SS02-A01	
	(mg/kg)	(mg/kg)	(mg/kg)	11/29/94	11/29/94	
SVOCs (mg/kg) - Sample l			_			
Anthracene	0.152	10,000	0.1 J	0.041 J	ND	
Phenathrene	0.165	NLE	0.39	0.37 J	0.17 J	
Fluoranthene	0.198	2300	0.46	0.53	0.36 J	
Pyrene	0.178	1700	1.5	0.72	0.43	
Benzo(a)anthracene	0.162	0.9	0.65	0.31 J	0.18 J	
Chrysene	0.145	0.9	0.65	0.33 J	0.23 J	
bis(2-Ethylhexyl)phthalate	0.32	49	0.19 J	.069 J	.077 J	
Benzo(b)fluoranthene	0.188	0.9	0.9	0.45	0.35 J	
Benzo(k)fluoranthene	0.205	0.9	0.43	0.13 J	0.110 J	
Benzo(a)pyrene	0.162	0.66	0.6	0.27 J	0.200 J	
Indeno(1,2,3-cd)pyrene	0.234	0.9	0.46	0.16 J	- 0.120 J	
Dibenzo(a,h)anthracene	0.198	0.66	0.079 JB	.041 J	ND	
Benzo(g,h,i)perylene	0.224	NLE	0.64 B	0.16 J	0.11 J	
BECAME (CID) BEST (CID) BEST (CID)	(mg/kg) Sample	Interval (0" to 6" bgs)				
4,4'-DDE	0.0038	2	0.096 P	6.6 CD	1.0 CD	
4,4'-DDT	0.0037	2	.110 D	7.9 CD	1.0 CD	
METALS TOTAL (mg/kg	Sample Interva	l (0" to 6"bgs)				
Aluminum	3.9	NLE	15200	5300	5030	
Arsenic	0.35	20	22.9	8.3	8.9	
Barium	0.17	700	32.3	68.4	101	
Beryllium	0.1	1	2	0.6	0.69	
Calcium	2.2	NLE	921	815	1860	
Cadmium	0.86	1	0.116 ¹	2.9	4.5	
Cobalt	0.71	NLE	2.5	6.1	7.8	
Chromium	1.6	500	269	109	95.5	
Copper	2.2	600	8 .	34	66.5	
Iron	0.58	NLE	55800	33400	37700	
Lead	0.49	400 ²	25.9 ¹	5340	6130	
Magnesium	9.6	NLE	7230	1560	1600	
Manganese	0.18	NLE	90.7	159	187	
Nickel	1.4	250	8.4	8.3	6.9	
Potassium	(12.3-25.8)	NLE	15400	2990	2770	
Sodium	3.8	NLE	51.6	23.4	33.1	
Silver	0.54	110	1.1	1.4	1.5	
Selenium	0.36	63	1.9	0.45	2.1	
Vanadium	0.53	370	94.1	27.5	25.9	
Zinc	0.41	1500	81.4	7750	12800	

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

bgs - Below Ground Surface

- J-Indicates that the concentration value was estimated due to detection at or near the detection limits
- C- Pesticide identification was confirmed by GC/MS
- P The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported
- B Compound was observed in the sample and associated laboratory blank.
- D surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis
- ND Indicates that the compound was not detected at or below the quantification limits
- NLE No Level Established

Note:MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability

¹ Monmouth County maximum background concentration.

² NJDEP criteria are referenced in the Site Remediation News, Winter 1995.

addition, compounds that exceed the SCC are subsequently compared to the impact to groundwater SCC because there were no monitor wells installed at the site.

SVOCs

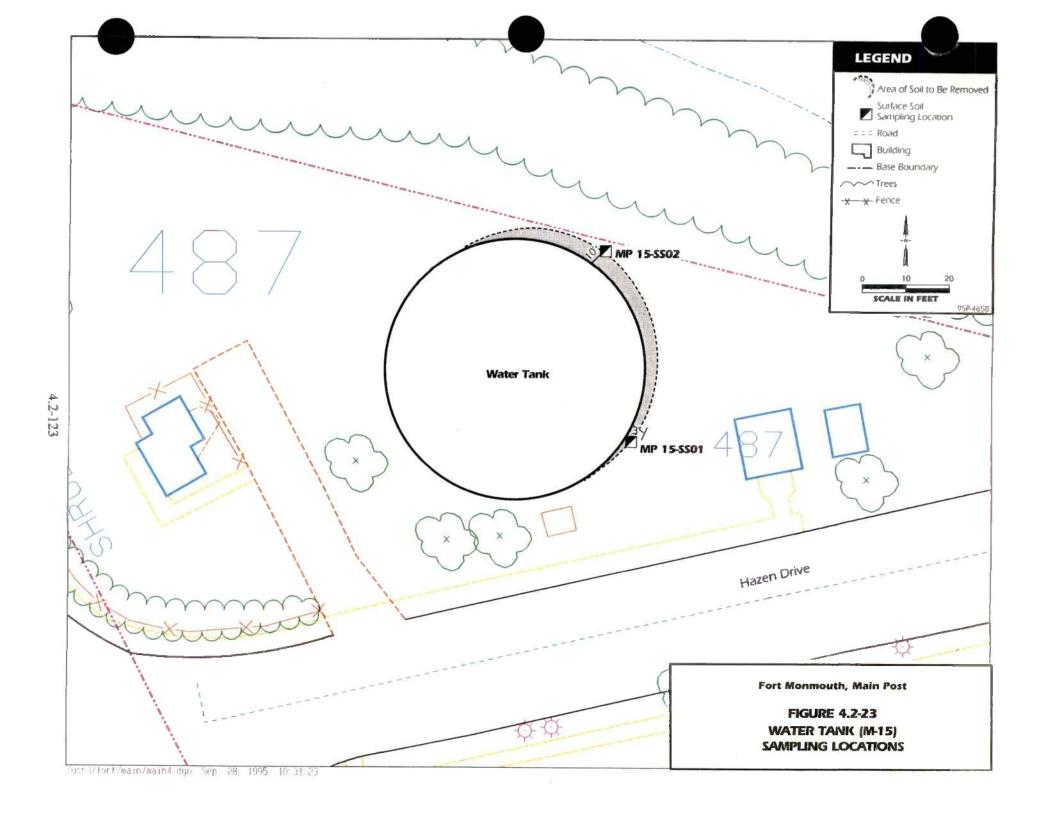
Three SVOCs were detected above laboratory quantitation limits in site soils, but were well below NJDEP SCC. In addition, all other detected compounds with established SCC were found in concentrations below their respective criteria. The detected compounds did not exceed the impact to groundwater SCC.

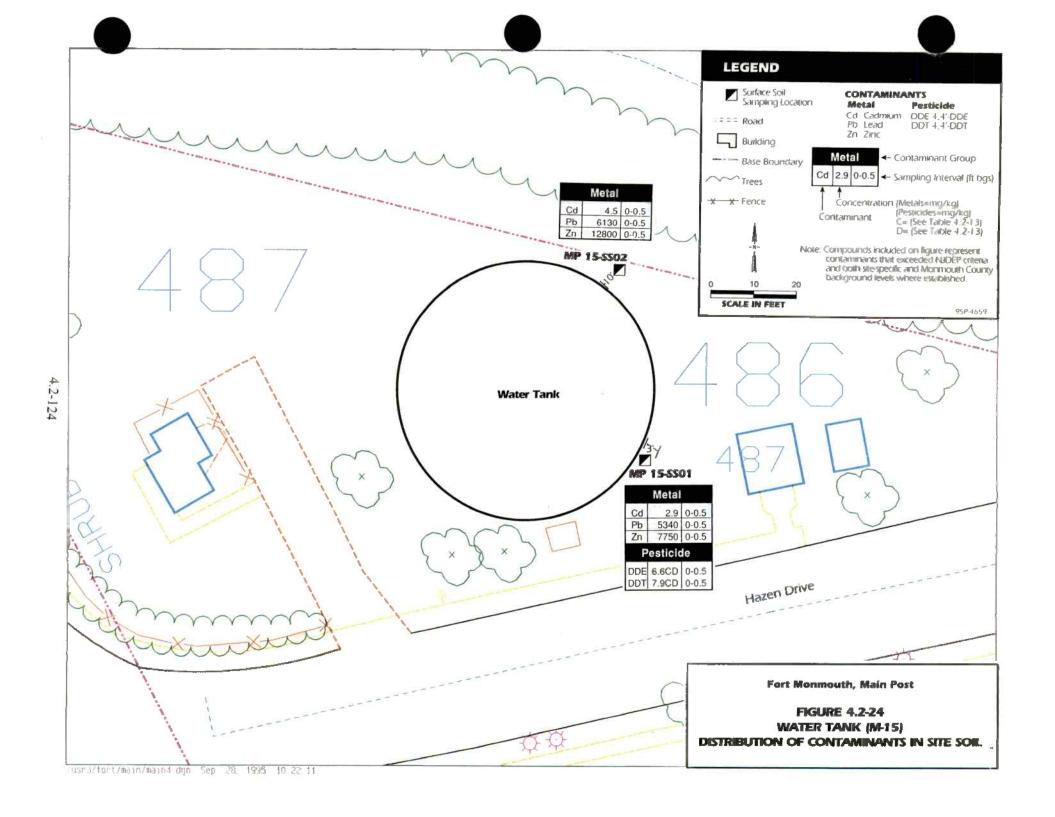
Pesticides/PCBs

Two pesticides (4,4'-DDE and 4,4'-DDT) were detected in concentrations above NJDEP SCC and background in SS-01. The concentrations of 4,4'-DDE and 4,4'-DDT were well below the respective impact to groundwater criteria (Figure 4.2-24). Pesticides were not detected above criteria in SS-02. PCBs were not detected in site surface soil samples.

Metals

As indicated in Table 4.2-13, of the 20 metals detected in site soil, 3 (cadmium, lead, and zinc) were found in concentrations exceeding the NJDEP SCC. In addition, these metals were found in concentrations greater than those determined for site-specific and Monmouth County maximum background at the Main Post. Figure 4.2-24 presents the locations of compounds detected above the SCC and the established maximum background concentrations at the Main Post.


4.2.10.5 Recommendations


Two pesticide compounds and three metals, cadmium, zinc, and lead, were detected in surface soil at levels that exceeded NJDEP SCC and maximum background.

DPW has submitted the necessary documentation to Headquarters, Army Materiel Command/Army Environmental Center (HQAMC/AEC) to obtain the proper funding to remediate the site in FY 1996. Depending on funding availability, the affected soil will be excavated and disposed of in accordance with the applicable regulations. The area of contamination encompasses the perimeter of the tank, about 10 feet at the widest point. The depth of contamination is assumed to be 6 inches. Excavation will be performed in conjunction with confirmatory soil sampling to ensure that NJDEP SCC are achieved. It is estimated that 13 yd³ of soil will be excavated, assuming that soil is excavated to a depth of 6 inches. NJDEP will be requested to send a representative to observe the excavation.

Site M-16

4.2.11 Former Pesticide Storage Building (M-16)

4.2.11.1 Site Location

The former Pesticide Storage Building (M-16) was misidentified as Building 167 in the IA. The building actually used for pesticide storage was Building S-498, which is located on the southside of Riverside Avenue, north of the marina (Figure 4.2-25). The approximate area of site M-16 is $1,400 \text{ ft}^2$ (0.03 acre).

4.2.11.2 Site History

Building S-498 was built in 1939. According to long-term Fort Monmouth employees, this building was used as a pesticide control shop in the 1940s and 1950s, before this function was moved to Building T-65. Building S-498 is currently used for miscellaneous storage. During the 1993 site visit, workers were bricking in the windows. The front of the building has a tile floor and was most likely used for office space. The back wing of the building has a cement floor with a centrally located floor drain. The southeast corner of the floor has sunk 2 to 3 inches, breaking away from the foundation and creating a crack in the area of the door. The cracks and floor drain could have allowed the release of spilled pesticides. Pesticide mixing reportedly took place inside the building with rinse water dumped in a sink that went to the sanitary sewer.

4.2.11.3 Sampling Effort

Four soil samples were collected from 6 to 12 inches bgs from areas that are not paved south of the building and analyzed for TCL +30 parameters (Figure 4.2-25). Soil samples were collected from two discrete intervals in the monitor well boring and analyzed for TCL +30 parameters and TAL metals. TAL metal analysis was not proposed in the CDAP but samples were collected at SB-01. One monitor well (MW-22) was south of Building S-498. Two rounds of groundwater samples from the monitor well were analyzed for TCL +30 parameters. In addition, an attempt was made to determine whether the floor drain discharges to the sanitary sewer at Building S-498. However, because the original floor in the building was reconstructed as a result of past

4.2 - 125

flooding problems, the original drainage line was no longer accessible and, consequently, could not be traced from Building S-498 to the sanitary sewer.

4.2.11.4 Hydrogeologic Interpretation

The lithologic log from MW-22 indicates that the lithology consists of a thin (0.4 ft) soil cover with crushed asphalt (to 2 ft bgs) underlain by interbedded green-brown fine-coarse sandy clay and fine-coarse sand with little clay.

Saturation was observed at 1 ft bgs. Monitor well MW-22 was screened in the saturated zone and was completed to a depth of 14.5 ft bgs. The site-specific groundwater flow direction is estimated to be south toward Oceanport Creek (Figure 4.2-26).

4.2.11.5 Soil Sampling Results

One shallow soil boring (SB-01) was installed in the MW-22 borehole to a depth of 6 ft bgs. Soil samples were collected in the borehole from two discrete intervals, i.e., 0 to 2 ft bgs and 2 to 4 ft bgs. In addition, four surface soil samples were collected from the 0 to 0.5 ft bgs interval. Soil samples were sampled for the analytical parameters listed in Table 3.6-1. The analytical results for site soils are listed in Appendix D. Table 4.2-14 compares detected compounds with the NJDEP SCC, and then compares the results to the subsequent site-specific and Monmouth County maximum background levels, where appropriate.

VOCs

VOCs were not detected in site soils.

SVOCs

Three SVOCs were detected slightly above laboratory quantitation limits in site soils. The compounds were detected well below their respective NJDEP SCC. In addition, SVOCs

Table 4.2-14 (1 of 2) Fort Monmouth - Main Post Summary of Detected Compounds In Soil at Site M-16

COMPOUND	METHOD	RESIDENTIAL DIRECT CONTACT	MAXIMUM BACKGROUND			ANALYTICA	AL RESULTS		
	LIMIT (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)	CONCENTRATION (mg/kg)	SB01-A01 12/15/94 (0-2 ft bgs)	SB01-A02 12/15/94 (2-4 ft bgs)	SS01-A01 11/29/94 (1)	SS02-A01 11/29/94 (1)	SS03-A01 11/29/94 (1)	SS04-A01 11/29/94 (1)
SVOCs (mg/kg)	(mg/kg)	(mg/xg)	(mg/kg)	(0-2 it bgs)	(2-4 it bgs)	(1)	(1)	(1)	(1)
bis(2-ethylhexyl)phthalate	0.32	49	0.19J	ND	0.23J	0.084 J	1.1 J	0.26 Ј	0.64
Phenathrene	0.165	NLE	0.39	0.140 Ј	ND	ND	ND	0.045 J	ND
Di-n-octylphthalate	0.185	1100	ND	ND	ND	0.845	1.1 J	0.26 J	0.64
Fluoranthene	0.198	2300	0.46	0.330 J	ND	0.046 J	ND	0.1 J	0.073 J
Pyrene	0.178	1700	1.5	0.220 J	ND	0.060 J	ND	0.14 J	0.096 J
Benzo(a)anthracene	0.162	0.9	0.65	0.092 J	ND	ND	ND	0.069 J	0.039 J
Chrysene	0.145	9	0.65	0.150 J	ND	ND	ND	0.063 J	0.043 J
Benzo(b)fluoranthene	0.188	0.9	0.9	· 0.150 J	ND	ND	ND	0.12 J	0.065 J
Benzo(k)fluoranthene	0.205	0.9	0.43	0.069 J	ND	ND	ND	ND	ND
Benzo(a)pyrene	0.162	0.66	0.6	0.084 J	0.43	ND	ND	0.575	0.046 J
Indeno(1,2,3-cd)pyrene	0.234	0.9	0.46	0.067 J	ND	ND	ND ·	0.049 J	0.04 J
Benzo(g,h,i)perylene	0.224	NLE	. 0.64 B	0.063 J	ND	ND	ND	ND ·	ND
PESTICIDES AND PCBs	(mg/kg)					-			
Aldrin	0.0021	0.04	ND ·	ND	ND	ND	0.17 C	ND	ND
gamma-BHC (Lindane)	0.0021	0.52	ND	ND .	ND ·	0.0034	0.17	0.0059	ND
Heptachlor	0.0021	0.15	ND	ND	ND	ND	2.5 CD	0.0099	ND
Dieldrin	0.0042	0.042	ND	0.12	ND	, 0.017	2.0 CD	0.21 D	0.37 C
4,4'-DDE	0.0037	2	0.091 D	1 C ·	0.1	0.35 CD	3.5 CD	0.48 CD	0.57 CD
4,4'-DDD	0.0037	3	0.0096 P	1.5 C	0.2	0.13 D	ND	0.22 D	1.7 CD
4,4'-DDT	0.00037	2	0.11 D	.71 C	0.072	1.1 CD	23 CD	2.0 C D	' 1.6 CD
Endrin Ketone	0.0037	NLE	ND	ND	ND	ND	0.092	ND	ND
alpha-Chlordane	0.0018	NLE	ND	0.042	0.0096	0.05	11 CD	~0.2 D	, 0.86 CD
gamma-Chlordane	0.0018	NLE	ND	0.033 P	0.0088 P	0.05	13 CD	0.2 D	0.92 CD

Note: See page (2 of 2) for Table 4.2-14 Text, etc.

Table 4.2-14 (2 of 2) Fort Monmouth - Main Post Summary of Detected Compounds In Soil at Site M-16

COMPOUND		RESIDENTIAL DIRECT CONTACT	MAXIMUM BACKGROUND			ANALYTICA	AL RESULTS		
	LIMIT (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)	CONCENTRATION (mg/kg)	SB01-A01 12/15/94 (0-2 ft bgs)	SB01-A02 12/15/94 (2-4 ft bgs)	SS01-A01 11/29/94 (1)	SS02-A01 11/29/94 (1)	SS03-A01 11/29/94 (1)	SS04-A01 11/29/94 (1)
METALS TOTAL (mg/kg	g)					` /			(-)
Aluminum	3.9	NLE	15200	6840	11900	NA	NA	NA NA	NA
Arsenic	0.35	20	22.9	8.8	16	NA	ŇA	NA NA	NA
Barium	0.17	700	32.3	36.3	29.7	NA	NA	NA	NA
Beryllium	0.1	1	2	0.84	0.8	NA	NA	NA	NA
Calcium	2.2	NLE	921	1500	1200	NA	NA	NA	NA
Cobalt	0.7	NLE	2.5	5.0	2.8	NA	NA	NA	NA
Chromium	1.6	500	269	54.6	59.5	NA	NA	NA	NA
Copper	2.2	600	8	24.2	11.7	NA	NA	NA	NA
Iron	0.58	NLE	55800	21300	36200	NA	NA	NA	NA
Lead	0.4	4003	25.9^{2}	35.3	16.3	NA	NA	NÃ	NA
Magnesium	9.6	NLE	7230	1670	2340	NA	NA	NA	NA
Manganese	0.18	NLE	90.7	74.5	37.7	NA	NA	NA	NA
Nickel	1.4	250	8.4	8.0	5.4	NA	NA	NA	NA
Potassium	(12.3-25.8)	NLE	15400	2990	3660	NA	NA	ΝĀ	NA
Sodium	3.8	NLE	51.6	283	232	NA	NA	NA	NA
Selenium	0.3	63	1.9	0.67	0.96	NA	NA	NA	NA
Vanadium	0.53	370	94.1	37.6	43.5	NA	NA	NA	NA
Zinc	0.41	1500	81.4	93	42.1	NA NA	NA	NA	NA

Compounds exceeding NJDEP cleanup criteria are noted by bold numbers.

- J Indicates that the concentration value was estimated due to detection at or near the detection limits
- C- Pesticide identification was confirmed by GC/MS
- D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis.
- P The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported
- B Compound was observed in the sample and associated laboratory blank
- NA- Not Analyzed Not Proposed; NLE No Levels Established

ND - Indicates that the compound was not detected at or below the quantification limits

ft bgs. - feet below ground surface.

FTMSM16S.XLS

¹⁻VOC's/SVOC's were collected from sample interval 6" to 12" bgs; Pesticide/PCB's were collected from sample interval 0.0" to 6" bgs. Note: Metal analysis was not proposed or analyzed at surface soil locations. Metals analysis was not proposed at SB-01, but was analyzed. Note: MDL's for metal analysis are actually the highest detection limit with potassium given as a range due to high variability.

² Monmouth County maximum background concentration.

³ NJDEP criteria are referenced in the Site Remediation News, Winter 1995.

detected below laboratory quantitation limits were found in levels well below their respective criteria where established.

Pesticides/PCBs

A total of 10 pesticide compounds were detected above laboratory quantitation limits in site soil. Five pesticides (dieldrin, heptachlor, aldrin, 4,4'-DDE, and 4,4'-DDT) were found in concentrations exceeding the NJDEP SCC. Dieldrin was detected in soil boring SB-01 (0 to 2 ft bgs) and in surface soil samples SS-01 through SS-04. Heptachlor, aldrin, 4,4'-DDE, and 4,4'-DDT were detected at or above criteria in SS-01, SS-02, SS-03, and SS-04. None of the pesticides were detected above their respective impact to groundwater criteria. PCBs were not detected in site soil (Figure 4.2-27).

Metals

As indicated in Table 4.2-14, no metals were detected in concentrations above either the NJDEP SCC or established maximum background concentrations at the Main Post.

4.2.11.6 Groundwater Sampling Results

Monitor well MW-22 was sampled for the analytical parameters listed in Table 3.8-1. The compounds detected in groundwater samples from the individual sampling rounds, with the corresponding sample identifications, are listed in Appendix D. Table 4.2-15 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results to the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate.

VOCs

VOCs were not detected in MW-22 from either sampling round.

Table 4.2-15

Fort Monmouth -Main Post Summary of Average Concentrations of Detected Compounds in Groundwater Site M-16

COMPOUND	METHOD DETECTION	NJDEP	MAXIMUM		TCAL RESUL MPLING DA	
	LIMIT	GW QUALITY CRITERIA (µg/L)	BACKGROUND CONCENTRATION (µg/L)	MW22A01 2/17/95	MW22A02 3/9/95	MW22A02 (avg)
SVOCs (µg/L) bis-(2-Ethylhexyl)phthalate	9.7	30*	5.1	ND		0.5 J

Compounds detected above NJDEP standards are noted by bold numbers.

GW - Ground water

NJDEP groundwater quality criteria consist of the higher number between the PQL or the STANDARD.

*PQL - Practical Quantitation Limit was used as the NJDEP groundwater quality criteria

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

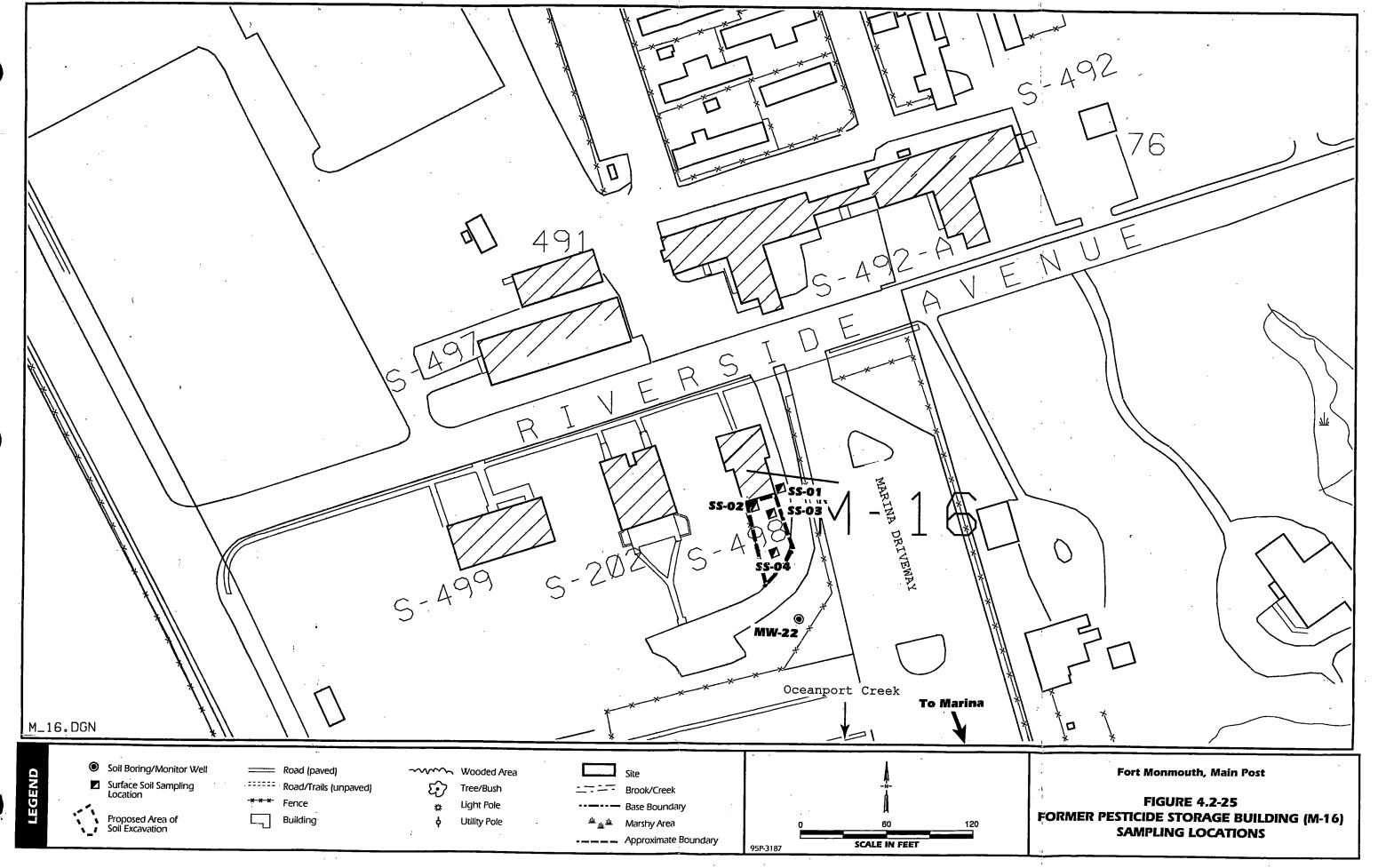
ND - Indicates that the compound was not detected at or below the quantification limits

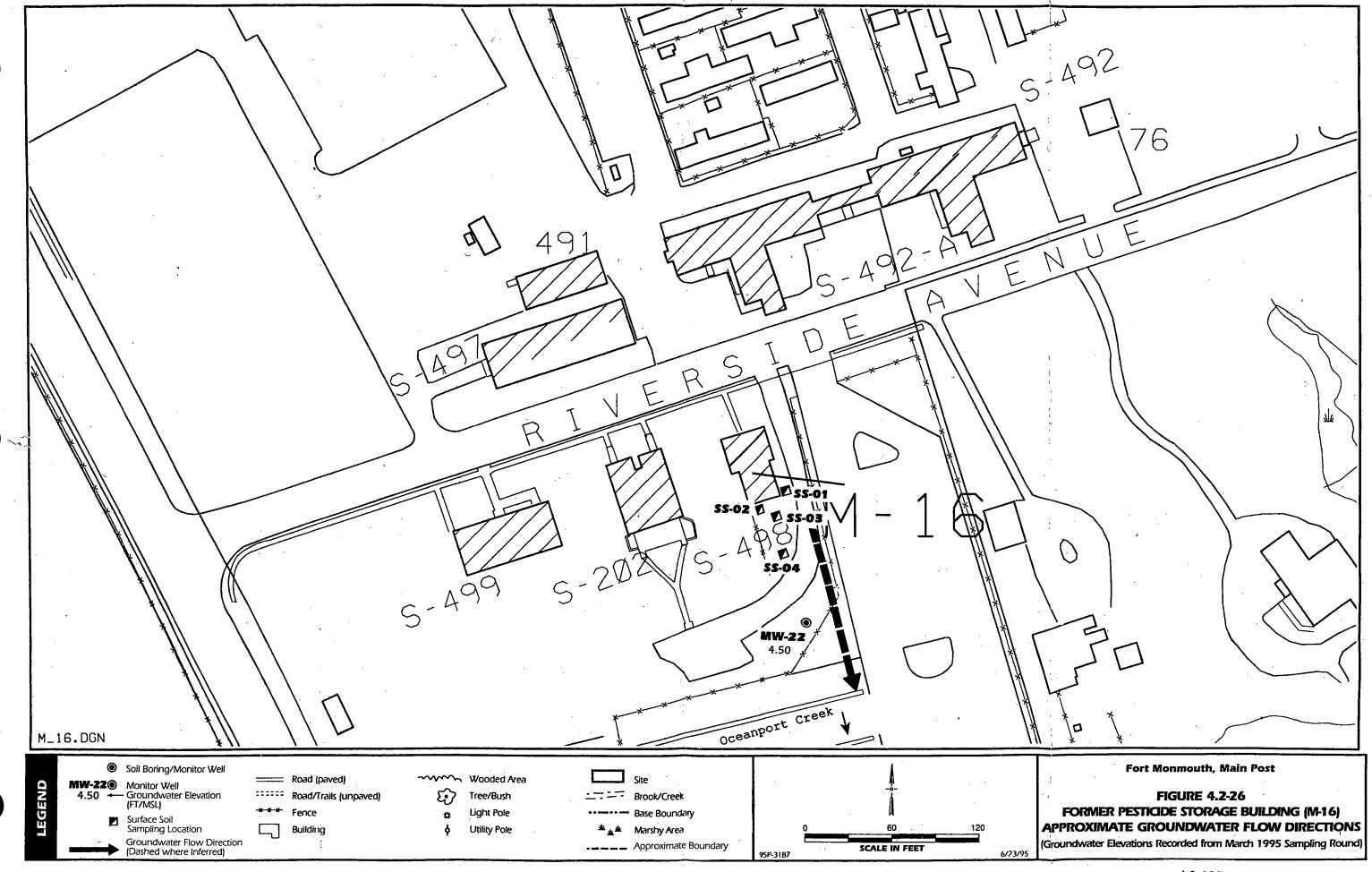
SVOCs

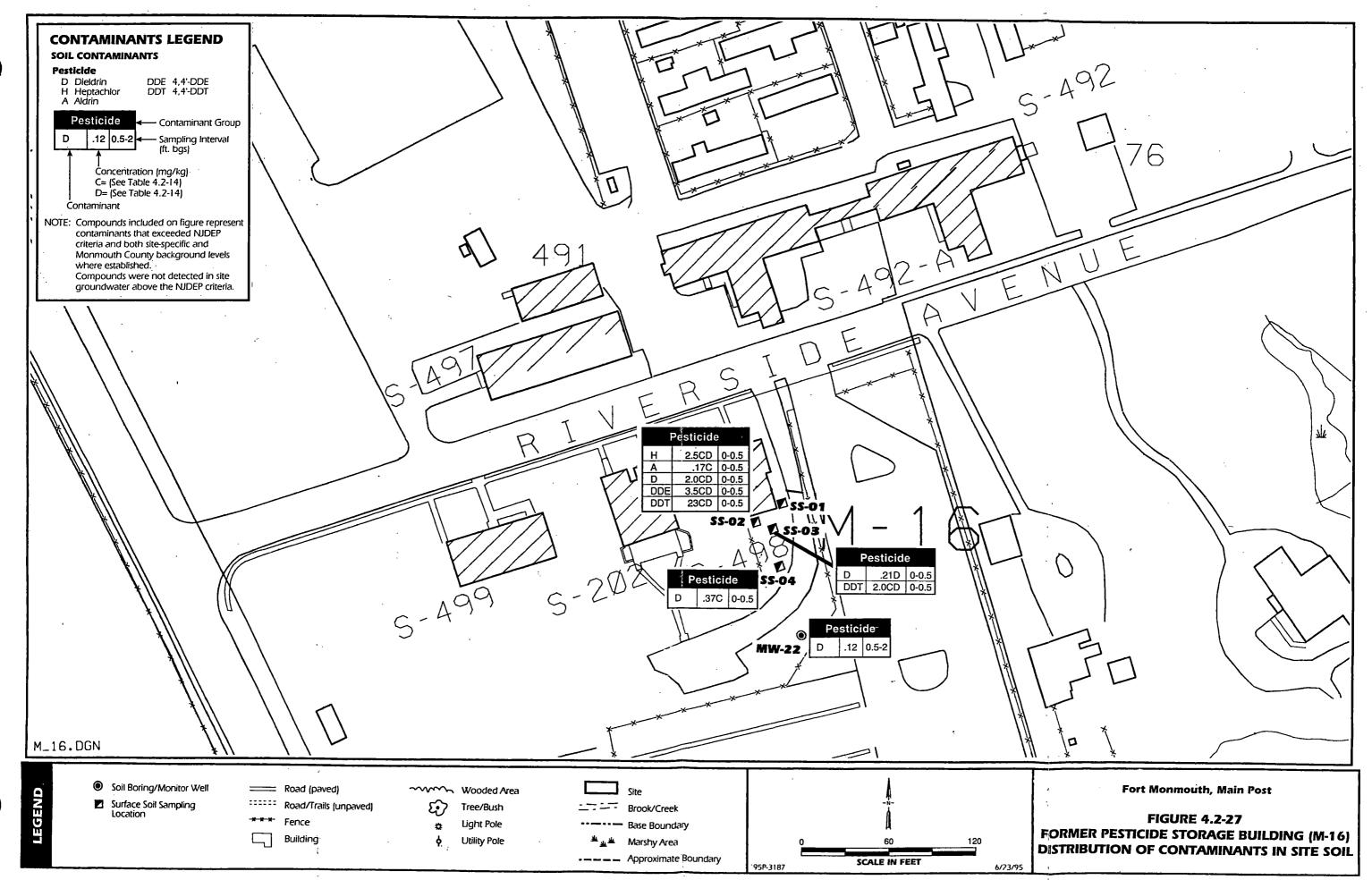
SVOCs were not detected above laboratory quantitation limits in MW-22 from either sampling round. The SVOC bis(2-ethylhexyl) phthalate was detected below the laboratory quantitation limit and well below the NJDEP GWQC.

Pesticides/PCBs

Pesticides/PCBs were not detected in MW-22 from either sampling round.


4.2.11.7 Recommendations


Pesticide compounds were detected at four surface soil sampling locations and in one soil boring sample (0 to 2-foot interval) in concentrations above NJDEP criteria and background.


No compounds of concern were detected in the groundwater above NJDEP criteria.

DPW has submitted the necessary documentation to HQAMC/AEC to obtain the proper funding to remediate the site in FY 1996. Depending on funding availability, the affected soil will be excavated and disposed of in accordance with the applicable regulations. The area of contamination is approximately 50 feet by 20 feet. The depth of contamination is assumed to be 12 inches. Excavation will be conducted in conjunction with confirmatory soil sampling to ensure that NJDEP SCC are achieved. It is estimated that 56 yd³ of soil will be excavated, assuming that soil will be excavated to a depth of 12 inches. NJDEP will be requested to send a representative to observe the excavation.

The site monitor well will be properly abandoned due to the nondetection of compounds of concern in groundwater. The remedial activities proposed will remediate potential source areas of pesticides detected in soil.

Site M-18

4.2.12 Former Training Area (M-18)

4.2.12.1 Site Location

The Army Signal School Training Area (M-18) is located in the northern part of the Main Post, between Parkers Creek to the north and Buildings 283, T-294, T-293, S-289, and S-145 to the south (Figure 4.2-28). The approximate area of site M-18 is 177,300 ft² (4.1 acres).

4.2.12.2 Site History

The Army Signal School Training Area has been used for military training exercises since 1919. Diesel and gasoline generators used to support these field exercises were reported in the IA to have been used 150 meters from Lafetra Creek, although the location shown in Figure 7 of the IA is closer to Parkers Creek. The IA reports that numerous fuel spills occurred in the generator area. A riot control agent was also used in this area for troop protective mask training for a limited period of time. During the 1993 site inspection, military training area exercises were being conducted in the M-18 area. Part of the area is paved. Based on the presence of concrete at the surface, there is a suspected debris disposal area used for the disposal of building rubble in the area north of Building 289.

4.2.12.3 Sampling Effort

GPR and electromagnetic (EM) surveys were conducted to investigate the extent of debris disposal north of Building 289. Nine soil borings in a grid pattern were drilled in this area (Figure 4.2-28). The original scope of work included the installation of 12 soil borings. However, because of difficult drilling locations in marshy areas, the borings were repositioned and fewer borings were installed. Soil samples were analyzed for VOCs and TPHs and were collected from either 6 to 12 inches or 12 to 18 inches below the bottom of the asphalt (to avoid bias from the asphalt that covers about half of this area) and either from intervals with visible staining or from just above the water table. If staining was observed, samples were collected for SVOC analysis. If staining or high HNu, organic vapor analyzer (OVA), or organic vapor monitor (OVM) readings were recorded, a sample was collected for TCL +30 parameters and

TAL metals. Due to soil staining and elevated PID readings at SB-06, TCL +30 parameters and TAL metals were sampled. No evidence of contamination was present at the other soil sampling locations. Monitor wells were installed in two of the borings (MW-24 and MW-25), and two rounds of groundwater samples were collected for TCL +30 parameters, TAL metals, and TPHs. In addition, two rounds of groundwater samples were collected from previously installed monitor well MW-3.

4.2.12.4 Geophysical Results

The EM survey conducted at site M-18 reveals apparent background conductivities in the range of 25 to 40 mS/m, which are represented by the green to yellow color contour intervals as shown in Figure 4.2-29. These conductivities are indicative of silty soils. High conductivity readings exist toward the north and perimeter of the site (70 + mS/m). This is probably due to marsh deposits and partially to cultural features such as the chainlink fence surrounding the site.

Anomalous conductivity signatures located at 0N to 60S/65E to 95E contain both high conductivity and low conductivity (positive and negative) readings. This may be indicative of buried metallic objects or abrupt changes in subsurface materials.

The in-phase component reveals a strong discrete anomaly located at approximately 0N to 10S/80E to 100E (represented by the blue color contours). This anomaly is adjacent to the quadrature anomalies. Also, discrete in-phase anomalies located within grid coordinates 0N to 60N/170E to 250E are indicative of buried metallic objects (Figure 4.2-30). The strongest of these point source anomalies is located at 15N to 25N/180E to 195E. Other discrete anomalies indicative of buried metallic objects are located at 50N/350E, 30N/360E, and on the east side of the fence at 60N/415E.

The GPR survey at site M-18 revealed anomalous radar signatures (including a hyperbolic diffraction pattern) located at 0N to 10S/100E. Figure 4.2-30A shows this anomaly, which coincides with the EM anomaly in Figure 4.2-30 and may be indicative of an underground storage tank (UST) or UST component (i.e., foundation) at a depth of approximately 5 or 6 ft

bgs. The 100E line traverse on Figure 4.2-30A indicates that the suspected UST is approximately 4 feet in length. Figure 4.2-30A reveals that the three areas contain chaotic reflectors, which are indicative of coarse-grained or disturbed subsoil. The areas, centrally located at grid coordinates 50N/250E, 10N/250E, and 50N/350E, coincide with EM anomalies and may contain buried metallic objects. The radar profiles also reveal low amplitude chaotic reflectors, indicative of coarse-grained soils in the area that encompasses low apparent conductivity at the western portion of the site (green contour interval), as shown in Figure 4.2-29.

Although the geophysical survey results indicated areas that may contain buried ferrous material and fill, these areas are within the suspected boundary of the landfill. Monitor wells and soil borings were appropriately located to evaluate subsurface conditions downgradient and within the landfill boundaries.

4.2.12.5 Hydrogeologic Interpretation

Lithologic logs from SB-01 through SB-07 and MW-24 and MW-25 indicate that the lithology consists of fill intermixed with a poorly sorted gray-olive-brown silty fine-coarse-grained sand with trace amounts of clay. The manmade components of the filled materials observed in the borings consisted of asphalt, wood fragments, and roof shingles.

Saturation was observed in monitor wells MW-24 and MW-25 at approximately 6 ft bgs. Both monitor wells were screened across the water table and were completed to 15 ft bgs. Local groundwater flows toward and discharges into Parkers Creek (Figure 4.2-31), as indicated by water-level measurements from site monitor wells and land surface topography. Monitor wells MW-24 and MW-25 are positioned downgradient of the M-18 area.

4.2.12.6 Soil Sampling Results

A total of nine shallow soil borings (Figure 4.2-32) were completed at selected locations at site M-18 to depths ranging from 2 to 10 ft bgs. Two soil borings (SB-24 and SB-25) were completed at the new monitor wells (MW-24 and MW-25) locations. Locations were selected

for seven of the borings based on the results of the geophysical surveys. Soil samples were collected from two discrete intervals (1 to 1.5 ft bgs and 2 to 10 ft bgs, depending on the depth to water), and based on field observations, were sampled for the analytical parameters listed in Table 3.6-1. The analytical results for soils at specific sampling intervals are listed in Appendix D. Tables 4.2-16 and 4.2-17 compare the detected compounds with the NJDEP SCC, and then compare the results with the subsequent site-specific and Monmouth County maximum background levels, where appropriate. Stained soil was observed below ground surface, but in the 0 to 2-ft bgs sampling interval at boring SB-06. In accordance with the work plan, samples were also taken for BNAs (SVOCs), pesticides/PCBs, and metals analysis at this location.

VOCs

VOCs were not detected above the laboratory quantitation limit in site soils. VOCs detected below quantitation limits were well below their respective criteria (Table 4.2-16).

SVOCs

A total of 13 SVOCs were detected above laboratory quantitation limits in SB-06. Four of the compounds [benzo(a)anthracene, chrysene, benzo(k)fluoranthene, and ideno(1,2,3-cd)pyrene] were detected in concentrations above laboratory quantitation limits and above the NJDEP SCC at SB-06 in the 2- to 5-ft bgs sampling interval. In addition, two compounds [benzo(b)fluoranthene and benzo(a)pyrene], detected below laboratory quantitation limits in SB-06, were also found in concentrations exceeding the NJDEP SCC from the 2- to 5-ft bgs sampling interval. All other detected SVOCs were found in concentrations below the established criteria. All six of the compounds that exceeded the NJDEP criteria also exceeded the site and Monmouth County background. Although the SVOCs were found in concentrations above NJDEP SCC and maximum background in SB-06, the concentrations were well below the impact to groundwater SCC. Monitor wells downgradient of this location did not detect these particular SVOCs. Figure 4.2-32 presents the locations of the compounds detected above the NJDEP SCC and the established maximum background levels at the Main Post.

Table 4.2-16 Fort Monmouth - Main Post Summary of Detected Compounds in Soils from Site M-18 (VOC's and TPH only)

	DETECTION	RESIDENTAL DIRECT CONTACT SOIL	BACKGROUND				NALYTICA				
		CLEANUP CRITERIA		1/12/95	1/12/95	1/12/95	1/12/95	1/12/95	1/12/95	1/11/95	1/11/95
V/O/01= /====/1==>	(mg/kg)	(mg/kg)	(mg/kg)	1-1.5 it bgs	2 ft bgs	1-1.5 ft bgs	4-6 ft bgs	1-1.5 ft bgs	4-7.5 ft bgs	1-1.5 ft bg	4-6 ft bgs
VOC's (mg/kg)											
Ethylbenzene	0.0031	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND.
Toluene	0.0027	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene	0.0038	410	ND	ND	ND	ND	ND	ND	ND.	ND	ND
TPH (mg/kg)	26.8	NLE	NA	367	84.9	188	612	6330*	1100*	ND	ND

COMPOUND	METHOD DETECTION	RESIDENTIAL DIRECT CONTACT										
	LIMIT (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)	CONCENTRATION (mg/kg)	1/11/95	1/11/95	1/11/95	1/11/95	1/12/95	1/12/95	1/12/95	SB25-A01 1/13/95 1-1.5 ft bgs	SB25-A02 1/13/95 2-4 ft bgs
VOC's (mg/kg)												
Ethylbenzene	0.0031	. 1000 ′	. ND	ND	ND.	ND	0.002 J	ND	ND	ND	ND	ND
Toluene	0.0027	1000	ND	ND	ND	ND	ND	ND	ND	ND	, ND	0.002 J
Xylene	0.0038	410	ND	ND	ND	ND	0.013 J	ND	ND	ND	ND	0.006 J
TPH (mg/kg)	26.8	NLE	NA	117	ND	221	2300*	29.9	695	993	311	2500*

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

ND - Indicates that the compound was not detected at or below the quantification limits

NA- Not Analyzed

ft bgs. - feet below ground surface.

J - Indicates that the concentration value was estimated due to detection at or near the detection limits

^{*}Quantification limit was increased during analysis for the associated sample

Table 4.2-17

Fort Monmouth - Main Post

Summary of Detected Compounds in Soils from Site M-18 Sample SB06-A02

	1000 - 1 - 1 - 1 - 1			
COMPOUND	METHOD	RESIDENTIAL DIRECT	0.0000000000000000000000000000000000000	ANALYTICAL
	DETECTION		BACKGROUND	RESULTS
	LIMIT	CLEANUP	CONCENTRATION	SB06-A02
		CRITERIA		1/11/95
	(mg/kg)	(mg/kg)	(mg/kg)	2-5 ft bgs
SVOCs (mg/kg)				
Naphthalene	0.277	230	ND	1.2
2-Methylnaphthalene	- 0.287	NLE	ND	0.18 J
Acenaphthene	0.221	3400	0.1 J	52
Dibenzofuran	0.215	NLE	0.06 J	31
Fluorene	0.208	2300	0.074 J	40
Phenanthrene	0.165	NLE	0.39	140
Anthracene	0.152	10000	0.10 J	16
Carbazole	0.145	NLE	ND	4.8 J
Fluoranthene	0.198	2300	0.46	46
Pyrene	0.178	1700	1.5	48
Butylbenzylphthalate	0.175	1100	ND	0.45 J
Benzo(a)anthracene	0.162	0.9	0.65	11
Chrysene	0.145	9	0.65	10
bis(2-Ethylhexyl)phthalate	0.32	49	0.19 J	0.17 J
Benzo(b)fluoranthene	0.188	/ 0.9	0.9	7.6 J
Benzo(k)fluoranthene	0.205	0.9	0.43	2.3
Benzo(a)pyrene	0.162	0.66	0.6	3.8 J
Indeno(1,2,3-cd)pyrene	0.234	0.9	0.46	2.1
Dibenzo(a,h)anthracene	0.198	0.66	0.079 J B	0.45 J
Benzo(g,h,i)perylene	0.224	NLE	0.079 J B	1.5
TPH (mg/kg)	26.8	NLE	NA	2300 .
PESTICIDES AND PCBs (mg	g/kg)			
Heptachlor epoxide	0.0021	NLE	ND	0.030 P
4,4'-DDE	0.0037	2	0.096 P	0.11
4,4'-DDD	0.0037	3	0.096 P	0.46 UX
4,4"-DDT	0.0037	2	0.11 D	0.032
alpha-Chlordane	0.0021	NLE	ND	0.0078
gamma-Chlordane	0.0021	NLE	ND	0.02 P
MIDINALESSIKO IVALE (mg/kg)				
Aluminum	3.9	· NLE	15200	6130
Arsenic	0.35	20	22.9	5.8
Barium	0.17	700	32.3	31
Calcium	2.2	NLE	~ 921 ·	11100
Cobalt	0.71	NLE	2.5	6.3
Chromium	1.60	500	269	35.3
Copper	2.2	600	. 8	218
Iron	0.58	NLE	55800	17700
Lead	0.4	400 ²		127
Magnesium	9.6	NLE	7230	3380
Manganese	0.18	NLE	90.7	168
Mercury	0.49	14	ND	- 0.61
Nickel	1.4	250	8.4	12.6
Potassium	(12.3-25.8)	NLE	15400	2190
Sodium	3.8	- NLE	51.6	181
Selenium	0.3	63	1.9	7 0.78
Vanadium	0.53	- 370	94.1	27.3
Zinc.				
Zinc	0.41	1500	81.4	72.6

Compounds exceeding NJDEP cleanup criteria are noted by bold numbers.

ft bgs - Feet below ground surface

NLE - No Level Established

ND - Indicates that the compound was not detected at or below the quantification limits

J - Indicates that the concentration value was estimated due to detection at or near the detection limits

B - Compound was observed in the samples and associated laboratory blank

NA- Not Analyzed

C- Pesticide identification was confirmed by GC/MS .

P - The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported

U - Compound was not detected at or above the reporting limit.

X - Other specific flags may be required to properly qualify the result.

¹ Monmouth County maximum background concentration,

² NJDEP criteria are referenced in the Site Remediation News, Winter 1995.

Pesticides/PCBs

Five pesticides were detected in concentrations above laboratory quantitation limits in SB-06 from the 2- to 5-ft bgs sampling interval. However, all pesticide compounds were detected below the NJDEP SCC. PCBs were analyzed for but were not detected in any of the boring locations.

Metals

As indicated in Table 4.2-17, metals detected in SB-06 were found in concentrations below the NJDEP SCC.

Total Petroleum Hydrocarbons (TPHs)

TPH concentrations were detected above laboratory quantitation limits in one or both sampling intervals in all but soil boring SB-04 in concentrations ranging from 29.9 milligrams per kilogram (mg/kg) to 6,330 mg/kg.

4.2.12.7 Groundwater Sampling Results

Monitor wells at site M-18 were sampled for the analytical parameters listed in Table 3.8-1. The compounds detected in groundwater samples from the individual sampling rounds, with the corresponding sample identifications, are listed in Appendix D. The existing monitor well, MW-3, was sampled in May 1995. Table 4.2-18 compares the average concentrations from the February and March sampling rounds with the NJDEP GWQC, and then compares the results to the subsequent site-specific and Monmouth County maximum background, where appropriate.

VOCs

Acetone was the only VOC detected in site groundwater samples. Acetone was detected in concentrations below the NJDEP GWQC in groundwater samples collected from MW-24 and

Table 4.2-18

Fort Monmouth - Main Post

Summary of Average Concentrations of Detected Compounds in Groundwater - Site M-18

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE			
	(µg/L)	QUALITY CRITERIA (µg/L)	CONCENTRATION (µg/L)	MW24 2/17/95, 3/10/95 (avg.)	MW25 2/17/95, 3/10/95 (avg.)	MW03 5/10/95, 5/27/95 (avg.)	
VOC's (μg/L)							
Acetone	6.9	700	ND	10 J	12.5	ND	
SVOCs (µg/L)							
4-Methylphenol	12.9	NLE	ND	3.5J	ND	ND ,	
PETROLEUM HYDROCA							
Petroleum Hydrocarbons	0.26	NLE	NA	1.12	0.43	ND	
PESTICIDES/PCBs (µg/L)							
4,4'-DDD	0.97	0.1	0.050 ЛР	0.145P	ND	ND	
METALS TOTAL (μg/L)							
Aluminum	24.0	200	121000	5615	4103	8310	
Arsenic	1.9	8* ~	89.3	16.8	11.4	4.8	
Barium	1.7	2000	699	, 267	92.9	13.7	
Beryllium	0.9	20*	7 ¹	1.65	0.53	0.6	
Calcium	· 10.4 ~	NLE	45400	[~] 747000	169000	5470	
Cadmium	2.8	4	9.5	2.775	3.625	ND	
Cobalt	2.3	NLE	18.3	1.975	1.825	4.1	
Chromium	. 2.9	100	191	48.15	23.2	54.2	
Copper	1.9	1000	730¹	8.45	2.6	2.9	
Iron	6.4	300	431000	40000	28620	39950	
Potassium /	685	NLE	137000	19200	29900	10735	
Magnesium	18.3	NLE	62700	49750	69050	6145	
Manganese	1.8	50	480¹	712	940	38.3	
Sodium	30.5	50000	197000¹	42000	363500	55950	
Nickel	10.8	100	187	6.75	8.35	7.3	
Lead	1.1	10*	. 22.7	34.7	11.2	8.2`	
Selenium	1.5	50	29.6	1.575	ND	ND	
Vanadium	2.3	NLE	108	29.15	24.85	44.8 -	
Zinc	3.8	5000	233	90.75	33.55	88.9	

Compound's exceeding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

NLE - No Level Established

ND - Indicates that the compound was not detected at noted quantification limit

NA - Not analyzed

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

P - The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported.

^{1 -} Monmouth County maximum background concentration.

MW-25. The source of the acetone is not known, however, acetone is a common laboratory contaminant.

SVOCs

One SVOC (4-methylphenol) was detected in MW-24 below the laboratory quantitation limit. SVOCs were not detected in MW-25 or MW-3.

Pesticides/PCBs

One pesticide (4,4'-DDD) was detected in a concentration that slightly exceeds the NJDEP GWQC in MW-24. 4,4'-DDD was detected in concentrations above the criteria in MW-24 from both sampling rounds. PCB compounds were not detected in site monitor wells from either sampling round (Figure 4.2-32).

Metals

As indicated in Table 4.2-18, of the 19 metals detected in site groundwater, only 6 (aluminum, arsenic, iron, manganese, sodium, and lead) were found in concentrations exceeding the NJDEP GWQC. In addition, manganese in MW-24 and MW-25, lead in MW-24, and sodium in MW-25 were found in concentrations greater than those determined for site-specific and Monmouth County maximum background at the Main Post. Lead was not detected in the filtered sample. However, aluminum and arsenic were found in concentrations below both maximum background levels where established. Although iron was detected in concentrations greater than the regional maximum background, iron was detected well below the site-specific background levels in the Main Post and is not a compound of concern. Sodium in MW-3 was found in a concentration greater than the site-specific background, but was well below the Monmouth County level. The elevated sodium levels in MW-25 may be caused by saline water intrusion from the Parkers Creek estuary. Sodium is not a compound of concern (Figure 4.2-32). As discussed in Subsection 4.1, groundwater flowing through glauconitic formations contains abundant

manganese. In addition, manganese is a common metal found in tidally influenced environments. Therefore, manganese is not identified as a compound of concern.

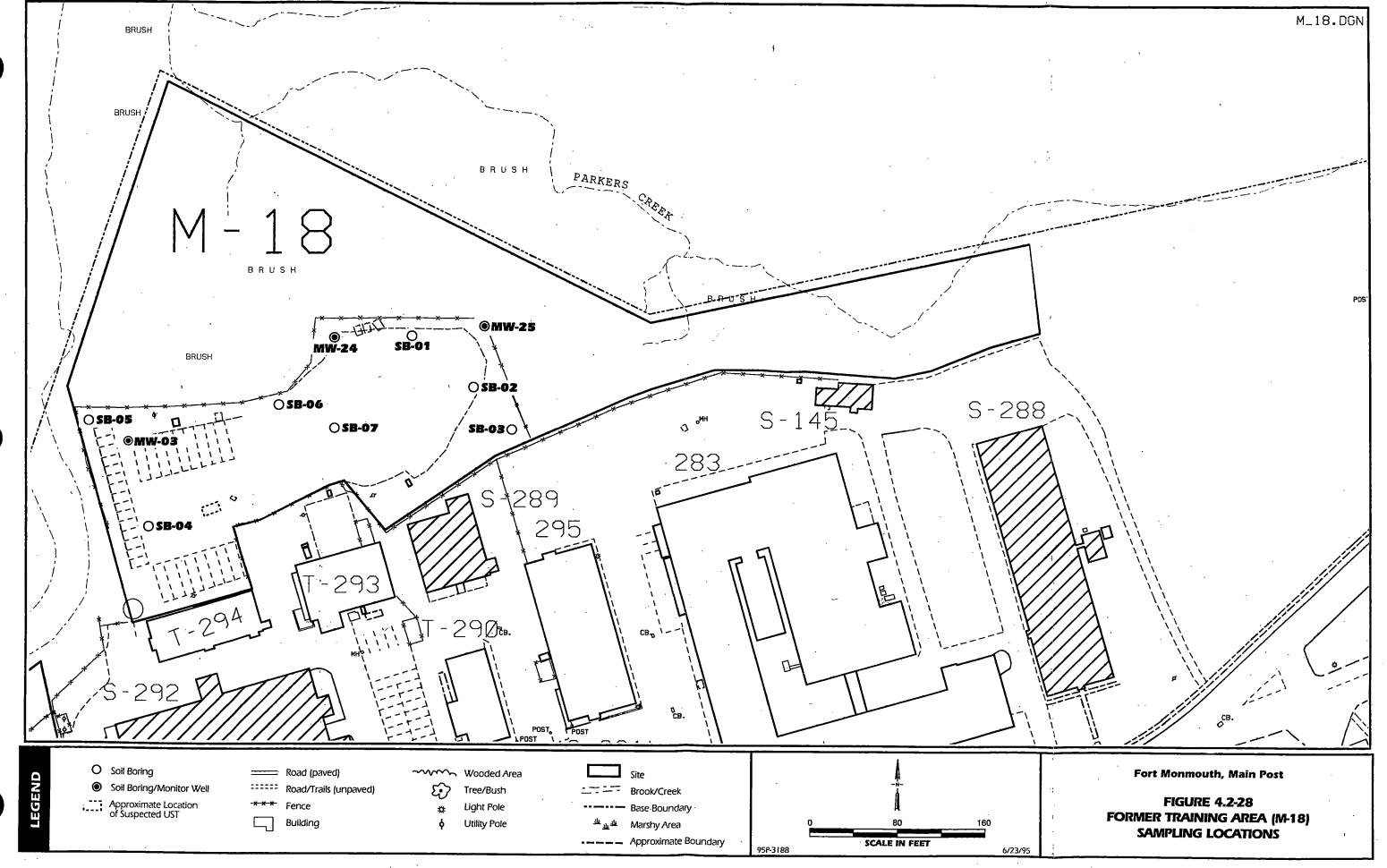
TPHs

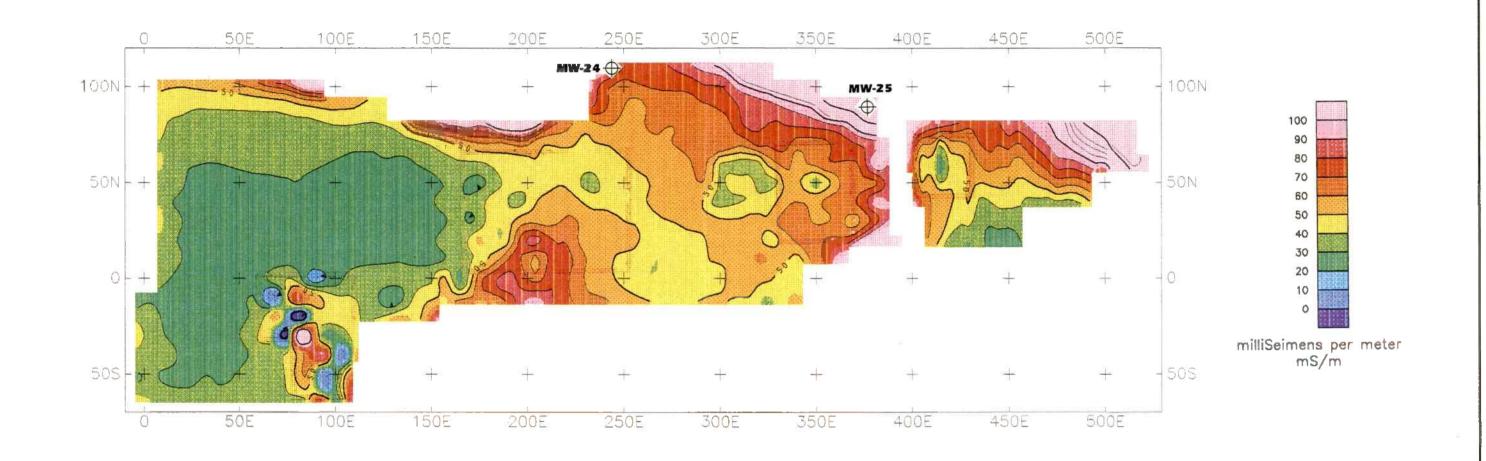
TPH concentrations were detected just above the laboratory quantitation limit in MW-24 and MW-25 from both the February and March sampling rounds.

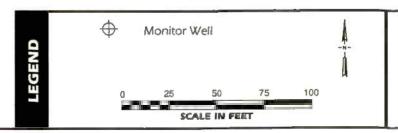
4.2.12.8 Recommendations

The geophysical surveys identified several anomalies indicative of buried waste and fill material within the suspected boundaries of the site M-18 area. One anomaly was indicative of a UST or storage tank component. The geophysical results indicate that soil borings and monitor wells were appropriately located to evaluate subsurface conditions downgradient and within landfill boundaries.

The soil sampling results indicated that six SVOCs were detected at SB-06 in concentrations that exceeded the NJDEP criteria and established background concentrations.

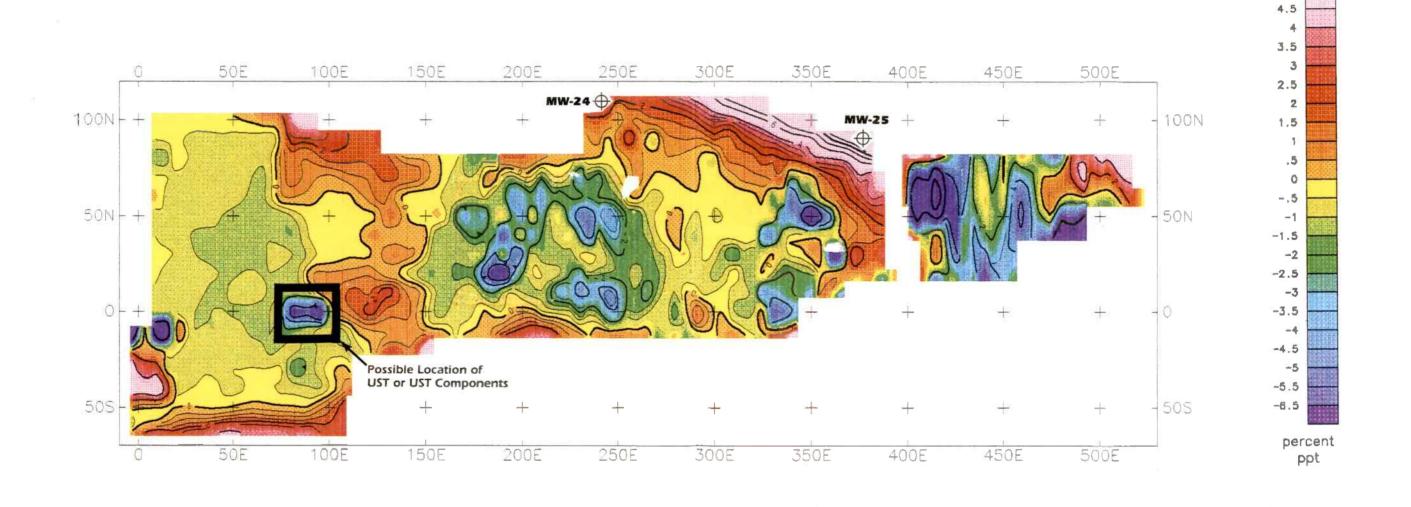

The groundwater sampling results indicate that 4,4-DDD was detected at a concentration just above the NJDEP GWQC in one well (MW-24) from both sampling rounds. Lead was detected in one location above NJDEP GWQC and background. TPH concentrations were also detected just above laboratory quantitation limits in MW-24 and MW-25 in both sampling rounds.

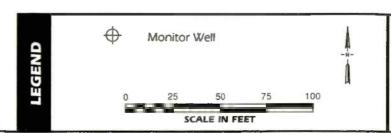

Trenching will be performed at the suspected UST or UST component location to confirm the geophysical results and to excavate if necessary. A PID will be used to conduct field screening during the excavation. The excavation will be performed in conjunction with confirmatory sampling, in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993), if a UST is encountered to ensure that NJDEP SCC are achieved. NJDEP will be requested to send a representative to observe the excavation.



Additionally, soil at soil boring SB-06 will be excavated. If it is determined that the suspected UST is the source of contamination at SB-06, this location will be remediated in conjunction with the UST. Confirmatory sampling will also be conducted.

DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.





Fort Monmouth, Main Post Site M-18

FIGURE 4.2-29
ELECTROMAGNETIC SURVEY
OUADRATURE COMPONENT – SITE M-18

Fort Monmouth, Main Post Site M-18

FIGURE 4.2-30
ELECTROMAGNETIC SURVEY
IN PHASE COMPONENT – SITE M-18

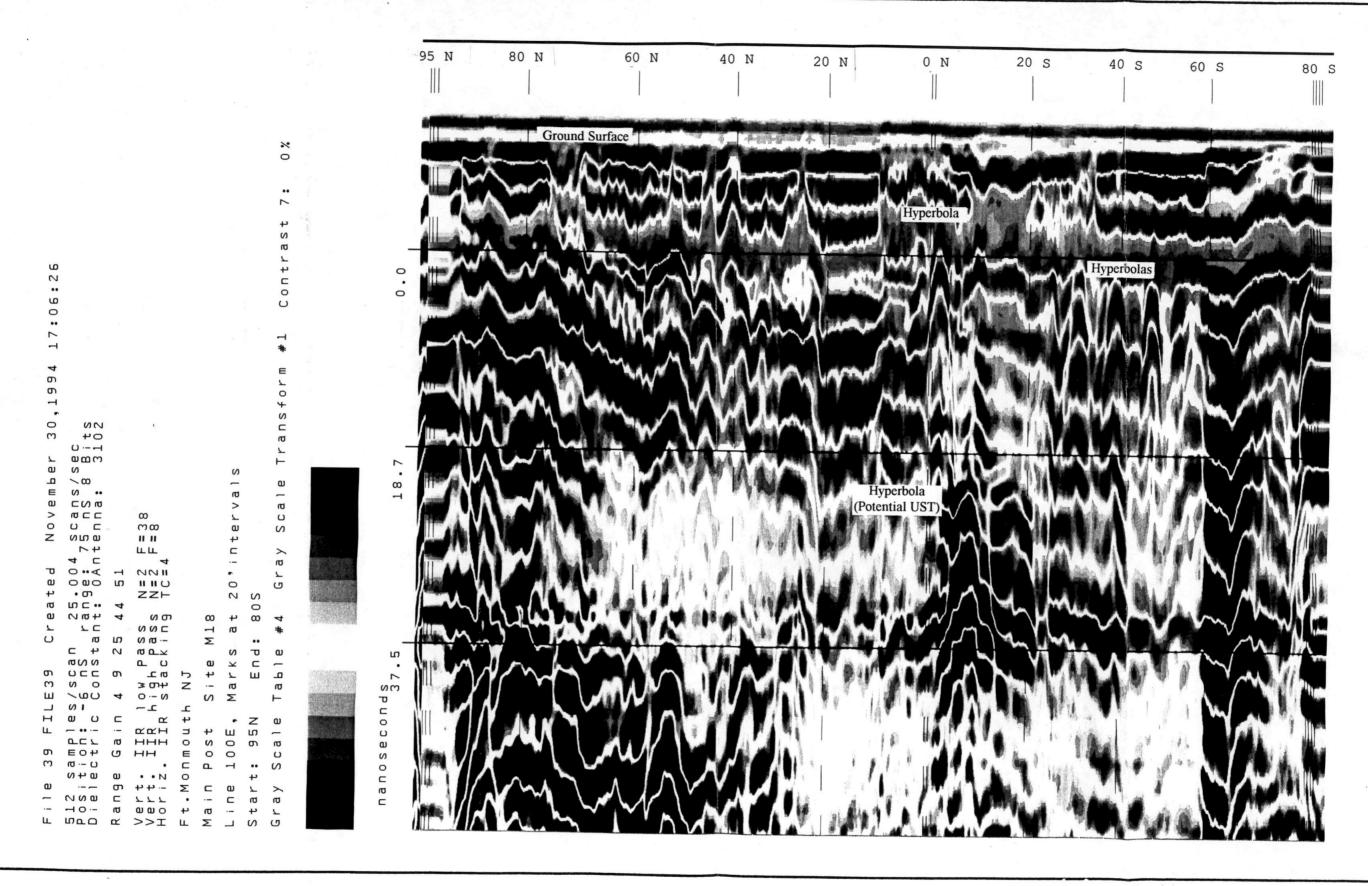
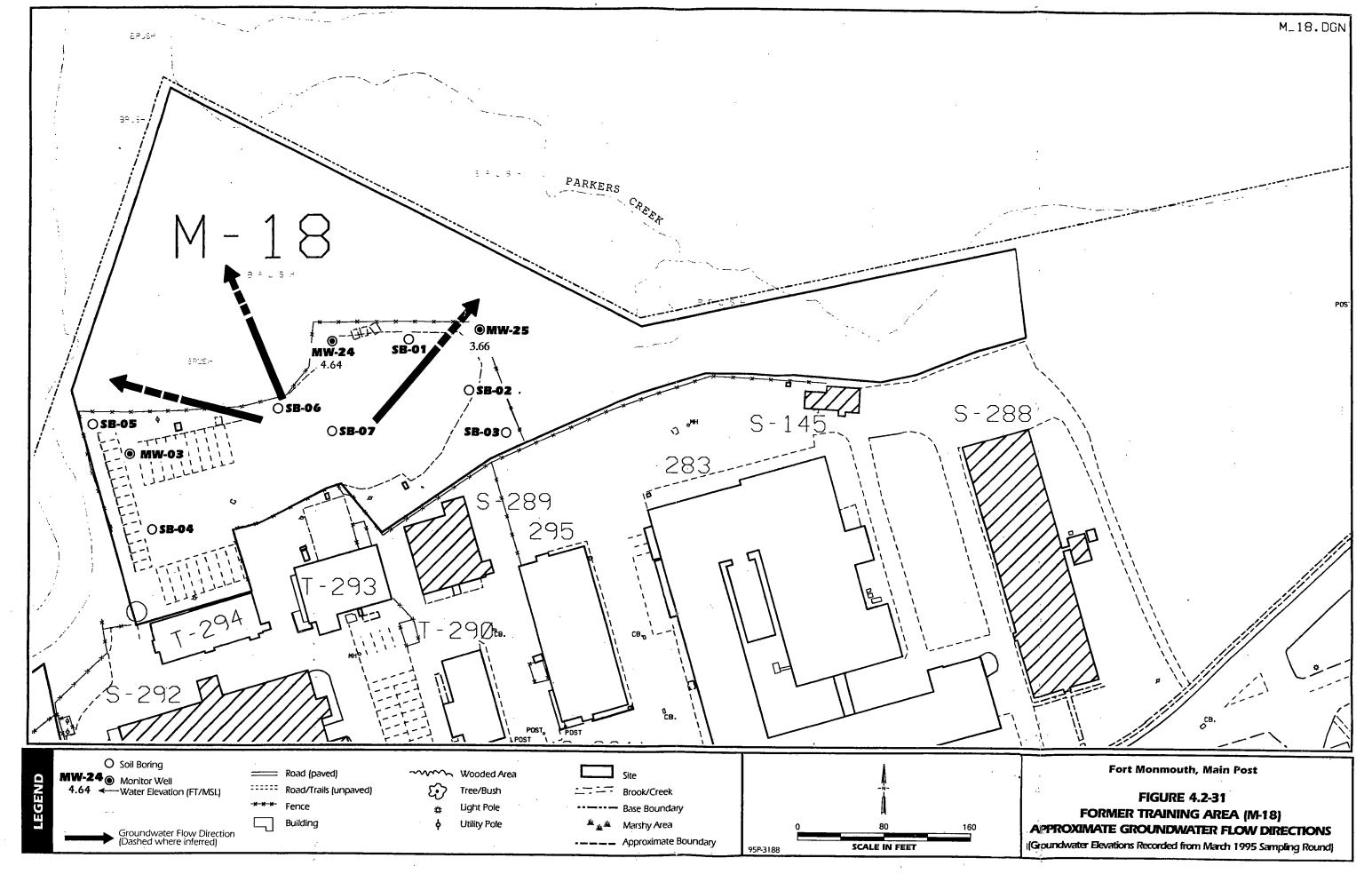
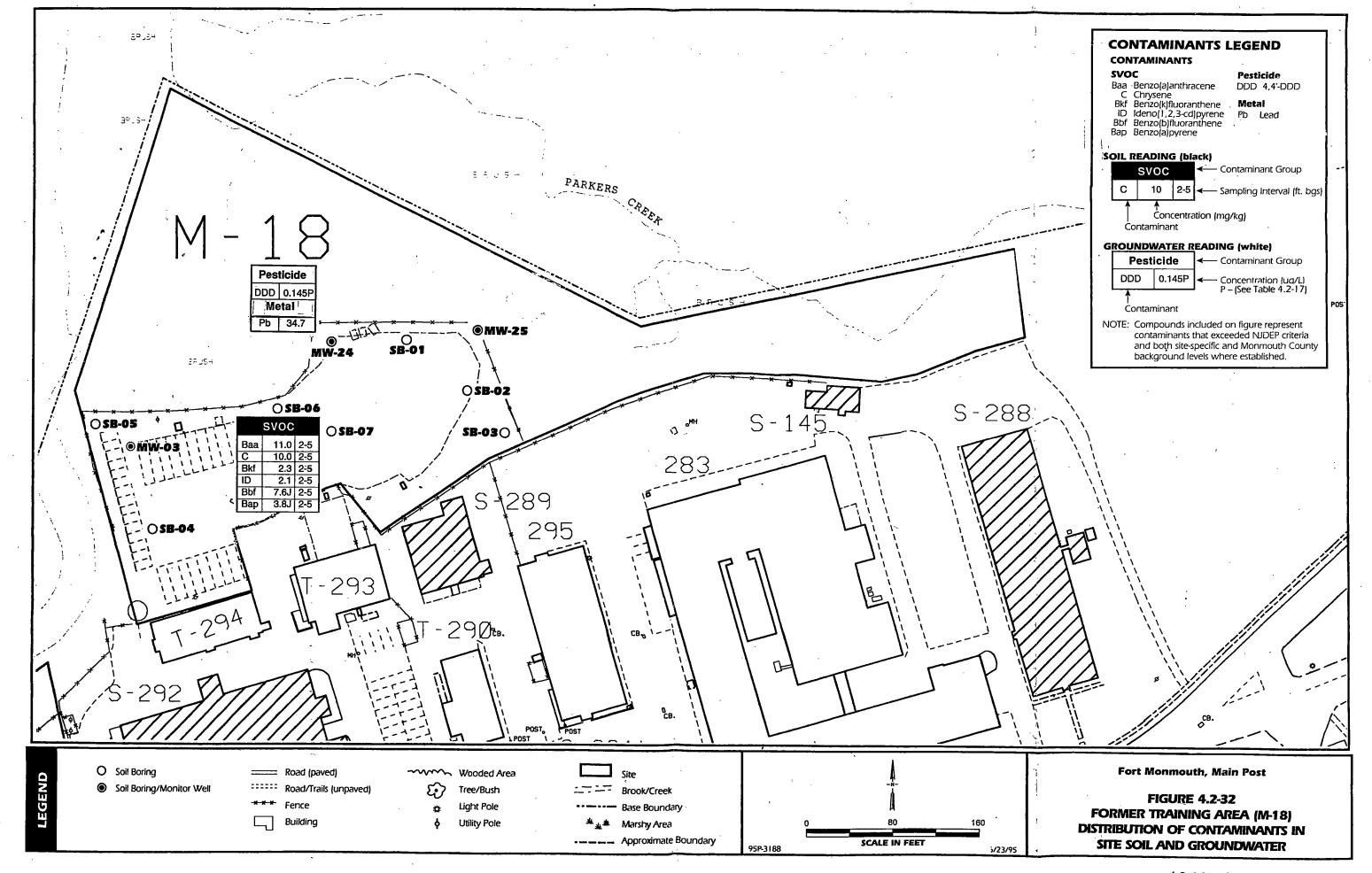




FIGURE 4.2-30A RADAR PROFILE DEPICTING
POTENTIAL UST AT SITE M-18

Site AOC-3

4.2.13 Former Main Post Sanitary Treatment Plant (AOC-3)

4.2.13.1 Site Location

The former Sanitary Treatment Plant (STP, AOC-3) was located on Parkers Creek north of Sherrill Avenue, between Buildings S-292 to the east and S-697 to the west (Figure 4.2-33). The approximate area of site AOC-3 is 96,000 ft² (2.2 acres).

4.2.13.2 Site History

This site was identified by the NJDEP as an area of concern (AOC) in the 8 June 1990 letter. The Main Post STP was built in 1941 to handle 700,000 gallons of sewage per day. As described in the IA, this STP consisted of a bar screen and grit chamber, comminutor, primary and secondary settling tanks, a mixing and aeration tank, and a baffled contact chlorination tank. Effluent from the STP was discharged to Parkers Creek. Sludge was treated in a three-stage anaerobic digester and discharged to underdrained sandbeds for drying. According to the IA and DEH employees, sludge was transported to the Charles Wood golf course and to landfills. This STP was closed on 3 September 1975 when the Main Post sewer system was connected to the Northeast Monmouth County Regional Sewerage Authority (NMCRSA) system. In 1981, all sludges and supernatant liquids were removed from the STP and the facility was cleaned and disinfected. The removal contractor was Modern Transportation Co. of Kearny, New Jersey. The physical facility was demolished in 1983. At present, this area is flat and grass covered.

4.2.13.3 Sampling Effort

Sediments from one location in the Parkers Creek outfall area were analyzed for TCL +30 parameters, TAL metals, and cyanide. Two soil borings were completed in the area of the former sludge-drying beds to identify the original land surface and collect soil samples from an interval just below the original surface for TCL +30 parameters, TAL metals, and cyanide (Figure 4.2-33).

4.2.13.4 Soil Sampling Results

Borings were drilled to depths of 12 ft bgs (depth where saturation was encountered). Samples were collected from one sampling interval (6 to 9.5 ft bgs) and were analyzed for the parameters listed in Table 3.6-1. The analytical results for site soils at specific sampling intervals, with the corresponding sample identifications, are listed in Appendix D. Table 4.2-19 compares the compounds detected in site soils with the NJDEP Residential Direct Contact SCC, and then compares the results to the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate. In addition, compounds were also compared to the impact to groundwater SCC because no monitor wells were installed at the site.

VOCs

VOCs were not detected in site soils from either boring location.

SVOCs

SVOCs were not detected above laboratory quantitation limits in site soils. SVOCs detected below laboratory quantitation limits were found in concentrations well below their respective criteria.

Pesticides/PCBs

Of the six pesticides detected in site soil, none were detected above the NJDEP SCC or the impact to groundwater SCC (Table 4.2-19).

One PCB (Aroclor-1248) was detected in SB-02 above the laboratory quantitation limit. However, Aroclor-1248 was found in a concentration below both the NJDEP residential direct contact and impact to groundwater SCC.

Table 4.2-19 Fort Monmouth - Main Post Summary of Detected Compounds In Soils at Site AOC - 3

COMPOUND	METHOD	RESIDENTIAL	MAXIMUM	ANALYTIC	AL RESULTS
	DETECTION	DIRECT	BACKGROUND		
	LIMIT	CONTACT SOIL	CONCENTRATION	SB01-A02	SB02-A02
		CLEANUP CRITERIA		12/14/94	12/14/94
	(mg/kg)	(mg/kg)	(mg/kg)	(6-9.5 ftbgs)	(6-9.5 ft bgs)
SVOCs (mg/kg)					
Phenanthrene	0.165	NLE	0.39	0.09 J	ND '
Fluoranthene	0.198	2300	0.46	0.11 J	ND
Pyrene	0.178	1700 ₍	1.5	0.15 J	ND
Benzo(a)anthracene	0.162	0.9	0.65	0.077 J	ND
Chrysene	0.145	9	0.65	0.099 J	ND
bis(2-Ethylhexyl)phthalate	0.32	49	0.19 J	0.057 J	0.053 J
Benzo(b)fluoranthene	0.188	0.9	0.9	0.077 J	ND
Benzo(a)pyrene	0.162	0.66	0.6	0.055 J	ND
Indeno(1,2,3-cd)pyrene	0.234	0.9	0.46	0.046 J	ND
Benzo(g,h,i)perylene	0.224	NLE	0.64 B	0.049 J	ND
PESTICIDES AND PCBS (mg/kg)				
4,4'-DDE	0.0037	2	0.096 P	0.044	0.022
4,4'-DDD	0.0037	3	0.096 P	0.024	0.016
4,4'-DDT	0.0037	2	0.11 D	0.035 P	0.085
alpha-Chlordane	0.0017	NLE	ND	ND	0.0052
gamma-Chlordane	0.0017	NLE	ND	ND	0.0035 P
Aroclor-1248	0.036	0.49	ND	ND	0.2 P
METALS FOR AL (mg/kg)					
Aluminum	3.9	NLE	15200	3000	4020
Arsenic	0.35	20	22.9	. 2.8	4.2
Barium	0.17	700	32.3	14.4	12.5
Beryllium	0.10	1	2	0.34	0.63
Calcium	2.2	NLE	921	310	226
Cobalt	0.86	NLE	2.5	0.72	1.5
Chromium	0.71	500	269	39.9	61
Copper	2.2	600	8 .	1.9	1.7
Iron	0.58	NLE	55800	15000	21700
Lead	0.40	400 ²	25.9 ¹	8.3	11.5
Magnesium	9.6	NLE	7230	690	1490
Manganese	0.18	NLE	,90.7	13:8	15.6
Nickel	1.4	250	8.4	. 1.9	3
Potassium	(12.3-25.8)	NLE	15400	1760	4240
Sodium	3.8	NLE	51.6	17.4	18.6
Selenium	0.3	✓ 63	1.9	ND ·	ND .
Vanadium	0.53	370	94.1	28	32.9
Zinc	0.41	1500	81.4	19.1	30.8

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

NLE - No Level Established

ft bgs. - feet below ground surface.

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

ND - Indicates that the compound was not detected at or below the quantification limits

J - Indicates that the concentration value was estimated due to detection at or near the detection limits

P - The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported

D - Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis

¹ Monmouth County maximum background concentration.

¹ NJDEP criteria are referenced in the Site Remediation News, Winter 1995.

Metals

As indicated in Table 4.2-19 all of the metals detected in site soil were found in concentrations below the NJDEP SCC.

Cyanide

Cyanide was not detected in site soils from either soil boring.

4.2.13.5 Sediment Sampling Results

Sample location M8SD-1 appears to be tidally influenced, and based on conductivity results and field observations, was determined to be saltwater.

One sediment sample, M8SD-1, was collected at AOC-3 (Figure 4.2-33). Table 4.2-20 presents a comparison of detected sediment concentrations at sampling location M8SD-1 to marine/ estuarine sediment criteria (Long et al., 1995), and maximum detected background concentrations.

VOCs

2-Butanone was the only VOC detected above the laboratory quantitation limit in a site sediment sample. 2-Butanone is a common laboratory contaminant.

SVOCs

Two SVOCs were detected below the laboratory quantitation limit in site sediment from location M8SD1.

Pesticides/PCBs

Pesticides/PCBs were analyzed for but were not detected in the site sediment sample.

Table 4.2-20

Fort Monmouth - Main Post Summary of Detected Compounds in Sediment Site AOC-3

COMPOUND	METHOD DETECTION LIMIT	MARINE/ESTUARINE BIOLOGICAL EFFECTS LEVEL (ERL)*	MAXIMUM DETECTED BACKGROUND	ANALYTICAL RESULTS
	(mg/kg)	(mg/kg)	CONCENTRATION	M8SD-1 12/1/94
VOC's (mg/kg)	(GE)	[22/2/7
2-Butanone	0.0041	NLE	0.1	0.02
SVOCs (mg/kg)				
Di-n-butylphthalate	0.215	NLE	0.26 JB	0.68 J
2,2'-oxybis(1-Chloropropane)	0.231	NLE	ND	0.061 J
PAHs (mg/kg)				
Benzo(a)pyrene	0.162	0.43	1.2	0.079 J
METALS TOTAL (mg/kg)				
Aluminum	18.1	NLE	9060	. 8830
Arsenic	2.5	8.2	14.5	13.2
Barium	1.4	NLE	87.6	13
Beryllium	1.0	NLE NLE	3.2	1.4
Calcium	8.1	NLE `	3180	1290
Chromium	4.3	81	88.1	74
Cobalt	1.9	NLE	119	5.5
Copper	1.6	34	48.4	3.1
Iron	3.2	NLE	61900	40300
Lead	9.9	46.7	64.1	6.5
Magnesium	25.8	NLE	3280	3670
Manganese	1.4	NLE	70.2	51.7
Nickel	8.7	20.9	131	14 -
Potassium	555	NLE	10200	6640
Selenium	0.56	NLE	1.7	0.42
Sodium	10.4	NLE	189	3090
Vanadium	2.0	NLE	49.1	39.3
Zinc	1.9	150	162	68.8

Compounds detected above NJDEP Sediment Guidance are noted by bold numbers.

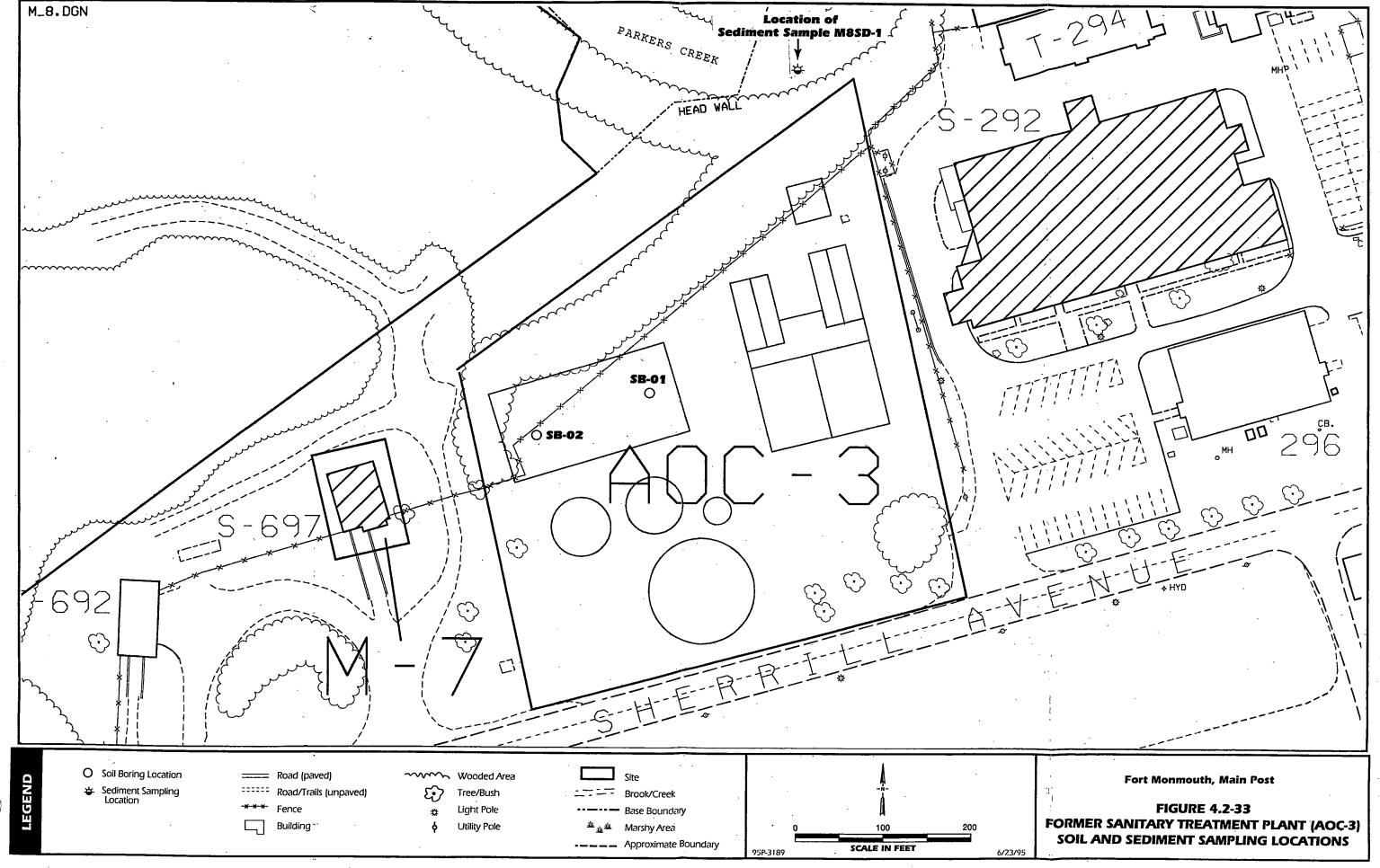
^{*-} Value from Long et al. (1995).

ND - Compound was not detected at or above the quantification limit.

NLE - No Level Established

B - Compound was found in the sample and associated laboratory blank

J - Concentration was estimated due to detection at or below the quantification limit


Metals -

As indicated in Table 4.2-20, of the 18 metals detected above laboratory quantitation limits, only one (arsenic) was found in a concentration slightly exceeding the established criteria. However, the concentration of arsenic was found at a level below the maximum detected background concentration.

4.2.13.6 Recommendations

The results of the soil and sediment sampling indicated that compounds of concern were not detected above the NJDEP criteria and established background concentrations.

No further action will be taken.

Former Sanitary Treatment Plant (STP)

4.2.14 Pre-1941 Sanitary Treatment Plant (STP)

4.2.14.1 Site Location

The pre-1941 STP for the Main Post was located on Parkers Creek in an area north of Allen Avenue in approximately the same location as current Building 259 (Figure 4.2-34). The approximate area of the STP is 130,000 ft² (2.9 acres).

4.2.14.2 Site History

This STP is shown on a 1935 Fort Monmouth map. The date of construction and period of operation are unknown, although the STP presumably operated until the Main Post STP (AOC-3) came on line in 1941.

4.2.14.3 Sampling Effort

The former STP is presented in Figure 4.2-34. Sediment coring was conducted at the former outfall and a sample was collected for TAL metals analysis.

4.2.14.4 Sediment Sample Results

Sediment at the STP was determined to be saltwater based on conductivity results and field observations. Therefore, detected concentrations of contaminants in the STP sediment were compared to marine/estuarine biological effects levels (Long et al., 1995) (Table 4.2-21).

One sediment sample, STPSD-1, was collected at the former STP (Figure 4.2-34).

Metals

As indicated in Table 4.2-21, of the 21 metals detected above laboratory quantitation limits, nine (arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) were found in concentrations exceeding their respective established criteria. In addition, arsenic, cadmium,

Table 4.2-21 Fort Monmouth - Main Post Summary of Detected Compounds in Sediments

Site - Pre-1941 Sanitary Treatment Plant

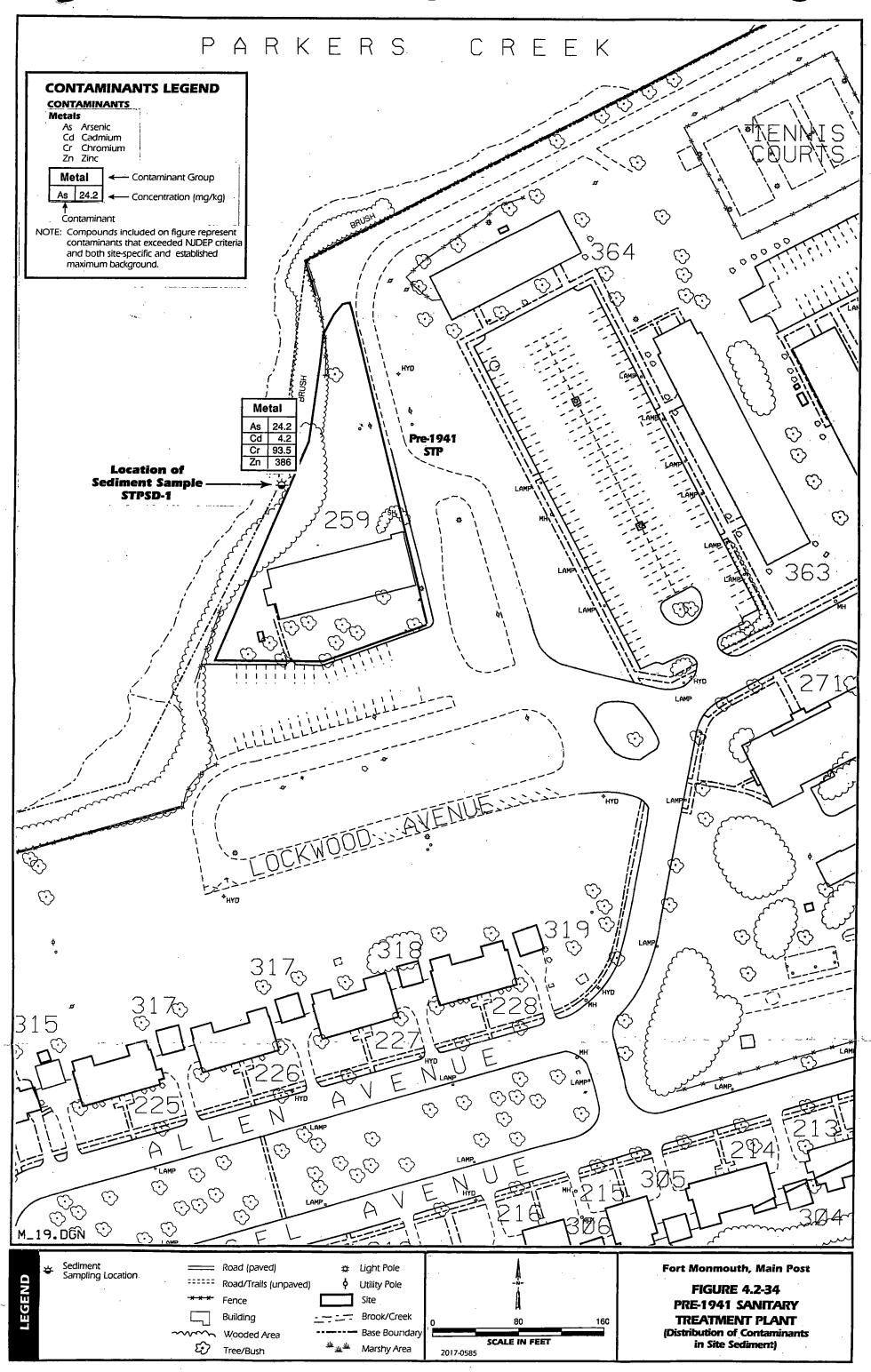
COMPOUND	METHOD DETECTION LIMIT (mg/kg)	MARINE/ESTUARINE BIOLOGICAL EFFECTS LEVEL (ERL) ² (mg/kg)	MAXIMUM DETECTED BACKGROUND CONCENTRATION	ANALYTICAL RESULTS STPSD-1 12/1/94
METALS TOTAL (mg/kg)				
Aluminum_	18.1	NLE_	9060	9240
Arsenic	2.5	8.2	14.5	24.2
Barium	1.4	NLE	87.6	27.6
Beryllium	1.0	NLE	3.2	1.3
Cadmium	2.3	1.2	ND	4.2
Calcium	8.1	NLE	3180	1010
Chromium	4.3	81	88.1	93.5
Cobalt	1.9	NLE	119	13.5
Copper	1.6	34	48.4	35.2
Iron	3.2	NLE	61900	49200
Lead	9.9	46.7	64.1	59
Magnesium	25.8	NLE	3280	3390
Manganese	1.4	NLE	70.2	39.5
Mercury	0.32	0.15	1.7	0.57
Nickel	8.7	20.9	131	26.5
Potassium	555	NLE	10200	6760
Selenium	0.56	NLE	1.7	0.88
Silver	2.1	1	ND	5.2
Sodium	10.4	NLE	189	2330
Vanadium	2.0	NLE	49.1	49.5
Zinc	1.9	150	. 162	386

Compounds detected above NJDEP Sediment Guidance are noted by bold numbers.

^{*-} Value from Long et al. (1995).

ND - Compound was not detected at or above the quantification limit.

NLE - No Level Established



chromium, and zinc were found in concentrations slightly exceeding their respective background concentrations. However, copper, lead, mercury, and nickel were found in concentrations below their respective maximum background levels.

4.2.14.5 Recommendations

Nine metals were detected above NJDEP criteria in the sediment sample collected at the outfall area. In addition, four metals (arsenic, cadmium, chromium, and zinc) exceeded their respective maximum background concentrations. The other five metals were detected below established background concentrations.

Although four metals were detected in sediment at levels exceeding NJDEP criteria and background, in the worst case the criteria were exceeded by a factor of three. Since the samples was taken at the outfall of the STP, the results are believed to be the worst case and the area of contamination is probably small. Access to this portion of Lafetra Creek is restricted although the stream is on the property boundary. The STP has not been used since 1941, and, presumably, the local ecology has reached an equilibrium. Therefore, since remediation would disrupt the ecology of the site, no further action will be taken.

1.2-175

Main Post PCB Transformers

4.2.15 PCB Transformers

4.2.15.1 Site Location

During the 1993 investigation (WESTON, 1993) all locations where PCB transformers had formerly been located were inspected for evidence of spills. Eight sites were identified where a PCB transformer was either formerly located over soil and thus evidence of a spill could not be determined visually, or was formerly located on concrete and there was discoloration in the concrete. These locations are listed in Table 3.5-1. Figure 4.2-35 presents the Main Post transformer site sample locations.

4.2.15.2 Site History

All PCB transformers (contain greater than 500 ppm PCBs) have been removed from Fort Monmouth. However, the former locations of these transformers were not previously investigated for spilled PCBs.

4.2.15.3 Sampling Effort

As discussed in Subsection 3.5, soil samples were taken below pole-mounted transformers and on four sides of an outdoor pad-mounted transformer. Concrete samples were taken from stained areas on outdoor concrete pads or in interior vaults with concrete floors. All samples were analyzed for PCBs.

4.2.15.4 PCB Sampling Results

The results of the PCB transformer sampling are presented in Table 4.2-22. Four of the eight transformers sampled at the Main Post area were found to have PCBs in soil or concrete above applicable cleanup criteria.

All other transformers sampled in the Main Post either had results below detection limits, or had detectable levels of PCBs below applicable cleanup criteria.

Table 4.2-22
Results of Transformer Site Sampling on Main Post

Location (Building No.)	Sample ID	Method Detection Limit (mg/kg)	Medium	NJDEP Cleanup Criteria (mg/kg)	
292	MPT5-TR01	0.24	Soil	0.40	0.60
686	MPT6-TR01	0.045	Soil	0.49 0.49	0.68 0.18
718	MPT4-TR01	0.043	Soil	0.49	0.18
1002	MPT7-CC01	2000*	Concrete	0.055	8400
1004	MPT8-TR01	0.45	Soil	0.49	ND
1208	MPT2-CC01	2000*	Concrete	0.055	19000
1209	MPT1-CC01	400*	Concrete	0.055	1500
1220	MPT3-TR01	0.045	Soil	0.49	ND
1220	MPT3-TR02	0.041	Soil	0.49	ND
-1220	MPT3-TR03	0.047	Soil	0.49	0.06
1220	MPT3-TR04	0.045	Soil	0.49	0.09
1220	MPT3-CC01	0.04	Concrete	0.055	, ND

Compounds exceeding NJDEP cleanup criteria are noted by bold numbers ND - Indicates that the compound was not detected at the quantification limit.

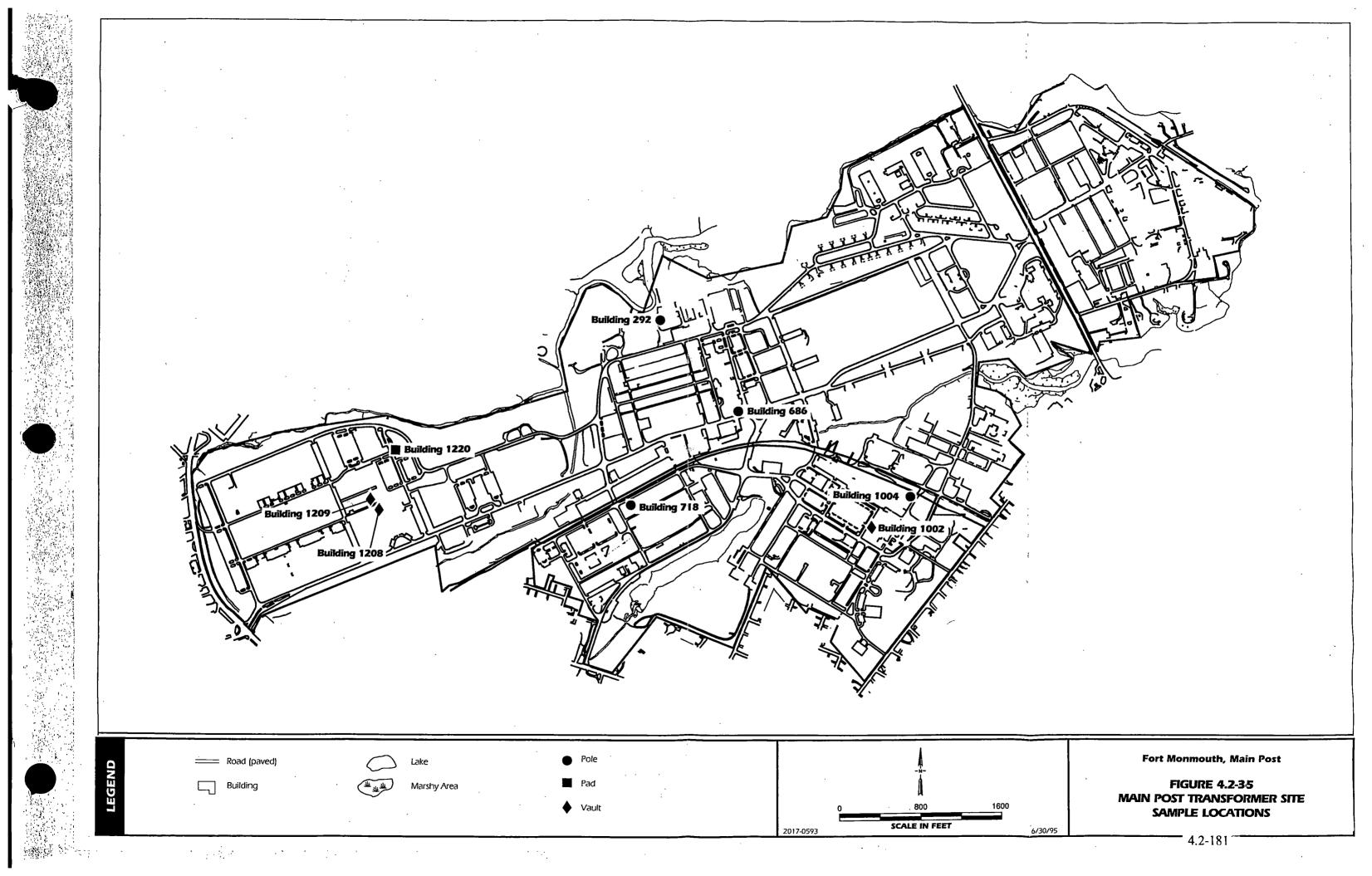
^{* =} Method detection limit unit exceeded the NJDEP criteria.

The following transformer sites had PCBs in soil or concrete above applicable cleanup standards:

- MP-062 (Building 292).
- Indoor transformer vault in Building 1002.
- Indoor transformer vault in Building 1208.
- Indoor transformer vault in Building 1209.

PCBs were detected in soils above applicable soil standards in the soil beneath transformer MP-062, which was a pole-mounted transformer on the northwest side of Building 292. The sample beneath the transformer contained PCBs above the NJDEP SCC.

The concrete samples from visibly stained areas in the indoor transformer vaults in Buildings 1002, 1208, and 1209 each contained PCBs above the proposed indoor surface cleanup criteria of 0.055 mg/kg.


4.2.15.5 Recommendations

PCB levels in stained concrete were found to exceed NJDEP guidance levels in indoor vaults at Buildings 1002, 1208, and 1209. PCBs were also detected above applicable soil standards in the soil beneath transformer MP-062 on the northwest side of Building 292.

Since the indoor vaults are normally locked and are accessible by a very limited number of facility personnel, and the stained concrete cannot be removed without significantly disrupting electrical service, remedial work will be performed when the transformers are removed from service and the stained areas are made accessible. A warning sign will be posted, and workers entering the vaults will be trained to take precautions to prevent contamination.

Because the concentration of PCBs is only slightly above the SCC, additional sampling will be conducted beneath the former location of transformer MP-062 to determine the vertical and horizontal extent of PCBs in soil. The soil sampling will be performed in accordance with the NJDEP *Technical Requirements for Site Remediation* (NJDEP, 1993). Personal protective clothing will be worn accordingly.

11/29/95

Charles Wood Background Samples

4.3 CHARLES WOOD

This subsection presents a description of each Charles Wood site and presents the rationale for the sampling activities. The sites and the sampling effort are summarized in Table 4.3-1. Additional historical information on each site may be obtained from the *Investigation of Suspected Waste Sites at Fort Monmouth*, New Jersey, 1993.

The following subsections summarize the results of the sampling program that was implemented to characterize site conditions as specified in the report titled, Site Investigation, Chemical Data Acquisition Plan (CDAP). Although the field investigation was generally conducted in accordance with the CDAP, minor changes were made. These changes are summarized in Table 4.3-2. A total of 19 soil borings and 16 monitor wells were installed and 3 sediment and 2 surface-water samples were collected in the Charles Wood area. Soil and groundwater samples were collected from the borings and monitor wells and were analyzed for compounds determined to be characteristic of the wastes associated with each area, i.e., TCL and TAL analytes (see Tables 3.6-1 and 3.8-1). Appendix D presents the results of the Charles Wood sampling activities. Detailed information regarding the specific sampling protocols for each site is provided in the following subsections. In addition to the results of groundwater and soil analyses, the lithologic descriptions and water-level information are used to provide a hydrogeologic interpretation of the site where appropriate.

Figure 4.3-1 shows the location of the nine Charles Wood sites discussed in this subsection.

4.3.1 Background Samples

The locations of background sampling locations were selected in areas believed to be unaffected by past base activities. They were identified in the report *The Investigation of Suspected Hazardous Waste Sites at Fort Monmouth*, *New Jersey* (WESTON, 1993), which was approved by NJDEP. The purpose of the collection of background characterization data was to identify levels of chemicals that are naturally occurring.

Table 4.3-1
Site Investigation Summary — Charles Wood

ſ								
	Site Number	Site	Description	Potential Waste/ Contaminants	Past Samples and Analyses	Investigation Activities		
	CHARLES WOOD AREA							
	CW-I	Wastewater treatment (lime pit)	4-m³ tank containing limestone for neutralizing liquid waste from Bldg. 2700. Sludge removal periodically. Acid/base drains not currently used. Pit discharge to sewage system. Limestone was replaced in 1992; contractor took limestone off-site. Built with bldg. around 1952.	Solvents and metals.	Analyzed old limestone. Sludge analyzed; found organics and metals.	Installed 4 soil boring/monitor wells, 1 on each side of pit. Collected soil samples (2 to 3 per boring) from 7 to 9 ft. Analyzed for TCL +30/TAL. Sampled groundwater for same parameters.		
	CW-2	Wastewater treatment (lime pit)	Same as CW-1.	Solvents and metals.	Analyzed old limestone.	Same as CW-1.		
	CW-3, AOC-4	Landfill	Operated during 1940s. Site identified in IA now used for storage of contractor equipment and debris. Site was cleared in mid-1995.	Administrative waste and wood.	None.	Work postponed. Trenching is planned to evaluate subsurface conditions.		
	CW-3A	Landfill	Site in west was used for leaves and small debris, and by off-site dumpers. 1969 aerial photo shows disturbed soil at west site. One partially buried drum found. May have been used for demolition debris.	Unknown.	None.	Used geophysics (magnetics, EM-31, and GPR) to evaluate possible subsurface disposal near Pulse Power Building.		
	CW-4	Range (small arms)	Bldg. 2537. Indoor range. Cleaned and repainted in 1989. Has metal and sand bullet trap and filtered ventilation system. 3-ft diameter bare area to north of building with spent shells and bullet debris. Appears to be clean sand in back of building.	Lead.	None.	Collected 2 soil samples: 1 soil boring and 1 surface soil. Analyzed for TCL +30/TAL/TPH.		
	CW-5, AOC-3	Heavy metals	Former treatment plant. Discharged to stream. Sludge removed from sludge drying bed and plant cleaned, disinfected, and dismantled.	Heavy metals and cyanide.	Sludge analyzed in 1981 — no heavy metals.	Sampled sludge (see CW-9) for metals. Installed 2 soil borings in area of sludge drying beds. Sampled sediment at outfall. Analyzed for TCL +30/TAL/CN.		

Site Investigation Summary — Charles Wood (Continued)

		<u> </u>		· ·	
Site Number	Site	Description	Potential Waste/ Contaminants	Past Samples and Analyses	Investigation Activities
CW-6	Pesticide Storage Building T-2044	Pesticides no longer stored in CW area. Use pesticide contractor. Pesticides were stored in steel igloo on concrete base. Was mixed outside of igloo and Bldg. T-2044.	Pesticides and herbicides.	Soil sampled in 1989 for pesticides. High levels of chlordane (up to 595 mg/kg) and trace amounts of others detected.	2 soil borings and installation of MW by Bldg. T-2044. Sampled soil, new well, and existing well MW-1 for TCL +30. Surface soil sample by ditch (TCL +30/TAL).
CW-9, AOC-3	Sludge dump	Sludge was placed on golf course. Sludge temporarily stored south of Bldg. T-2044. Currently has dark gray soil that had been removed near Hole 1.	Heavy metals.	None.	Installed 2 MWs for TCL +30/TAL. 9 surface soil samples for TAL, 1 soil boring for TCL +30/TAL.
AOC-7	Former hazardous waste storage area	Bldg. 2500 area. Has been used as storage area since 1961. Used as temporary hazardous waste storage area in 1987. Security guard overcome by fumes in 1987. Currently open field, no evidence of contamination.	Solvents, oil, and metals.	None.	Installed 6 soil borings. Analyzed for TCL +30.
PCB Transformers	Buildings	Several transformers in this area. All transformers were tested in 1990 for PCBs. Those with PCBs > 500 ppm were removed or remediated.	PCBs.	Transformers sampled — several >500 ppm. See transformer list.	Sampled PCB transformer locations.

Table 4.3-2

Differences Between Proposed and Actual Work at Charles Wood

Site	Differences
CW-1, CW-2	In accordance with work plan, only one sample was taken per soil boring instead of three because no contamination was detected during field efforts.
CW-3	Site had not been cleared prior to field effort; therefore, no investigation was conducted.
CW-4	Because contaminated soil had not been excavated prior to the field effort, one soil boring was installed instead of three surface soil samples.
CW-6, CW-9	The location of the monitor well was moved from site CW-6 to CW-9 because there was an existing well near the proposed location at CW-6. The existing monitor well at CW-6 was sampled. Surface soil sample SS-01 was analyzed for TAL metals, which was not originally proposed in the CDAP.

A total of five background soil borings, which were converted into monitor wells, were installed and two separate soil intervals were sampled from each boring. Two rounds of groundwater samples were collected from each location. Soil and groundwater samples were analyzed for the parameters listed in Tables 3.6-1 and 3.8-1. Background monitor wells were labeled as "B" wells, i.e., MW-06B. Charles Wood background locations are shown in Figure 4.3-2 and are labeled B-6, B-7, etc. Monitor well MW-06B was installed at background location B-6 and a similar practice was followed at the other background locations. Two background surface-water and sediment samples were also collected (Figure 4.3-2).

4.3.1.1 Hydrogeologic Interpretation

The five background monitor wells installed at the Charles Wood area were installed to depths ranging from 14 ft bgs to 15 ft bgs. Total depths were determined during drilling activities and were based on the depth where groundwater was encountered. The lithology and depth to groundwater varied between background locations, and this information is presented on the lithologic logs in Appendix A.

4.3.1.2 Soil Sampling Results

Soil samples were collected from two discrete intervals: 0 to 2 ft bgs and 2 ft bgs to depth to groundwater. Soil boring depths varied between the background locations, depending on the depth where water was encountered. The analytical results for background soil at specific sampling intervals are presented in Appendix D. Table 4.1-7 summarizes the maximum concentrations detected in background soil at Charles Wood.

VOCs

VOCs were not detected in Charles Wood background soil.

SVOCs

A total 10 SVOCs were detected below laboratory quantitation limits in background soil at the Charles Wood area (Table 4.1-7).

Pesticides/PCBs

Two pesticides (4,4'-DDE and 4,4'-DDT) were detected above the laboratory quantitation limit in background soil at the Charles Wood area.

Metals

As indicated in Table 4.1-7, 19 metals were detected in background soil at the Charles Wood area.

Cyanide

Cyanide was not detected in background soil at the Charles Wood area.

4.3.1.3 Groundwater Sampling Results

Two rounds of groundwater sampling were conducted at Charles Wood. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.1-7 summarizes the maximum background concentrations detected in background water at Charles Wood.

VOCs

VOCs were not detected in Charles Wood background groundwater.

SVOCs

Two SVOCs were detected in background groundwater at Charles Wood (Table 4.1-7).

Pesticides/PCBs

Pesticides/PCBs were not detected in background groundwater at Charles Wood.

Metals

As indicated in Table 4.1-7, 19 total metals were detected in background groundwater at Charles Wood.

4.3.1.4 Surface-Water Sampling Results

Two upgradient surface-water samples, SS-B3 and SS-B4, were selected as background at Charles Wood (Figure 4.3-2). Contaminants detected in background surface water and corresponding sample identifications are presented in Appendix D. Table 4.1-9 summarizes the maximum detected concentrations in total and soluble background surface water at Charles Wood.

VOCs

VOCs were not detected in total background surface water. Soluble background surface-water samples at Charles Wood were analyzed for VOCs.

SVOCs

One SVOC, bis(2-ethylhexyl) phthalate, was detected below laboratory quantitation limits in background surface water (total) at Charles Wood. SVOCs were not analyzed for in soluble background surface-water samples at Charles Wood.

11/30/95

Metals

In total background surface water, 13 metals were detected above laboratory quantitation limits at Charles Wood. Similarly, 11 metals in soluble background surface water were detected above laboratory quantitation limits.

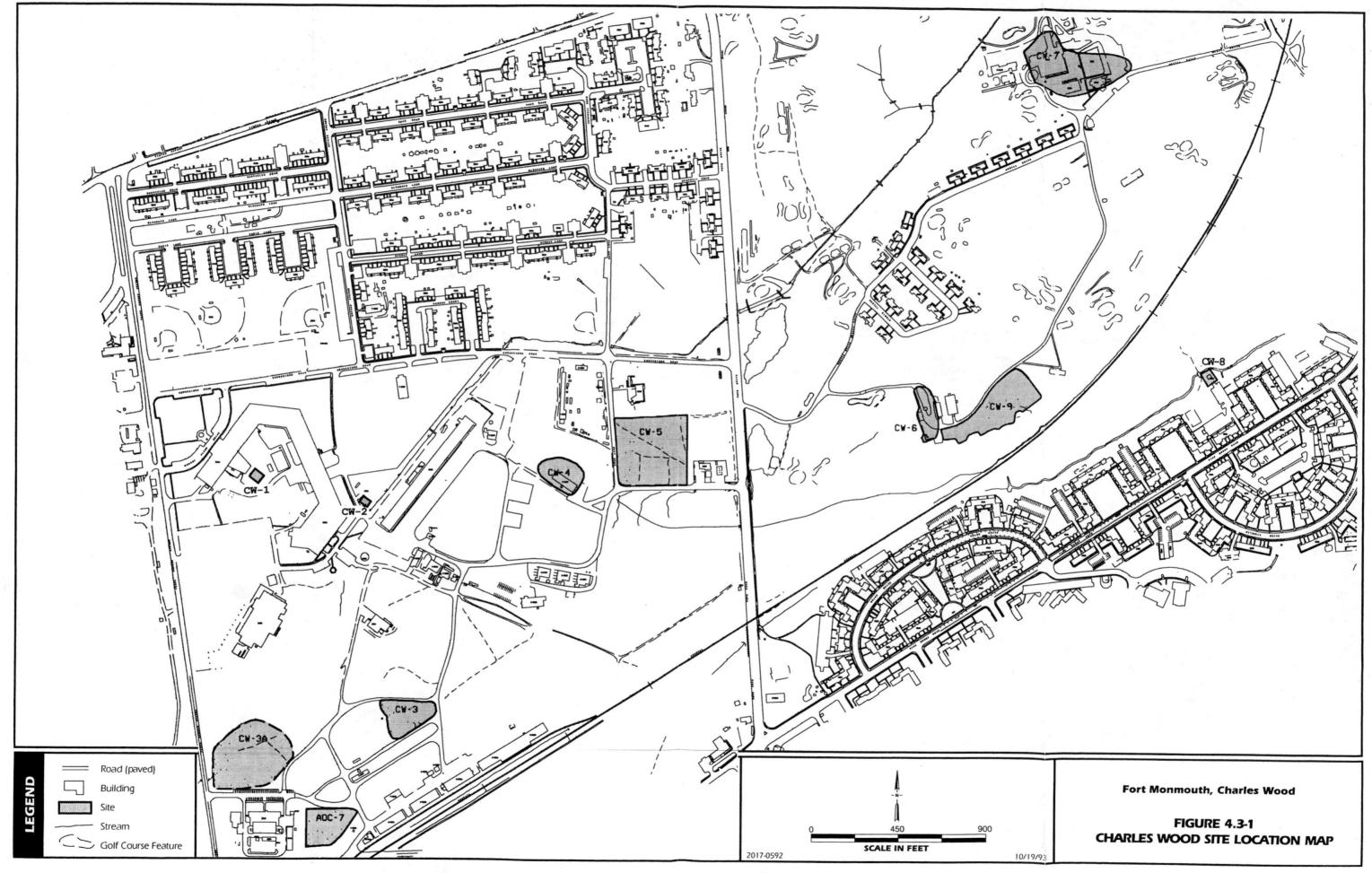
4.3.1.5 Sediment Sampling Results

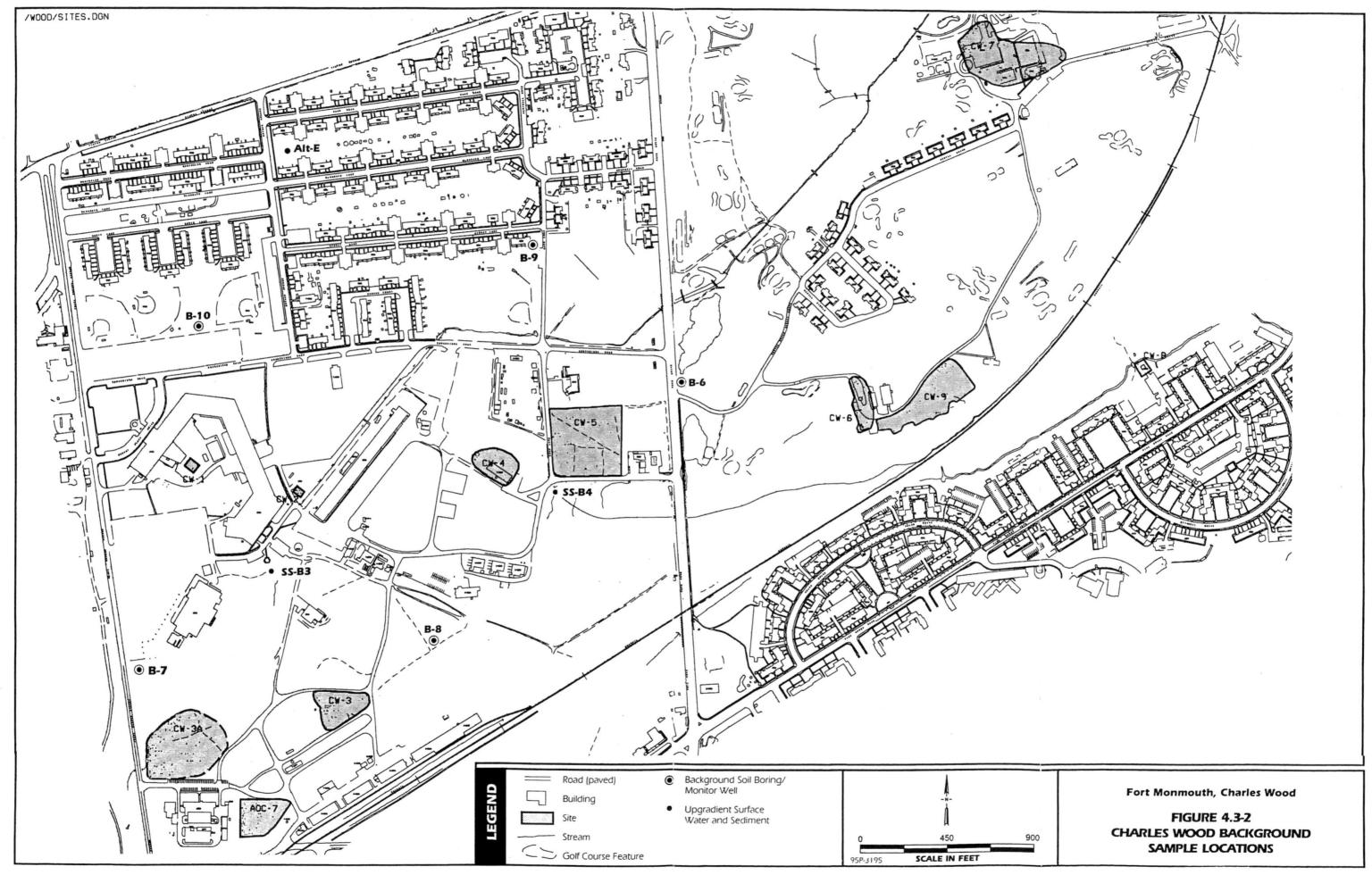
Two upgradient sediment samples, SS-B3 and SS-B4, were selected as background at Charles Wood (Figure 4.3-2). Contaminants detected in background sediment and corresponding sample identifications are presented in Appendix D. Table 4.1-9 summarizes the maximum detected concentrations in background sediment at Charles Wood.

VOCs

VOCs were not detected in background sediment at Charles Wood.

SVOCs


Bis(2-ethylhexyl) phthalate and di-n-butyl phthalate were detected below the laboratory quantitation limits in Charles Wood sediment. Six PAHs were detected below laboratory quantitation limits in Charles Wood sediment.


Pesticides

Three pesticides (4,4'-DDD, 4,4'-DDE, and 4,4'-DDT) were detected in Charles Wood background sediment.

Metals

A total of 17 metals were detected in background sediment at Charles Wood above laboratory quantitation limits.

Site CW-1

4.3.2 Wastewater Treatment Lime Pit 1 (CW-1)

4.3.2.1 Site Location

Wastewater Treatment Lime Pit 1 (CW-1) is located in the central area of the Hexagon Building (Building 2,700) at Charles Wood just east of the west wing of the building (Figure 4.3-3). The approximate area of CW-1 is 2,960 ft² (0.07 acre).

4.3.2.2 Site History

This lime pit (CW-1) was built concurrently with the Hexagon Building; construction was completed in 1952. This is one of two 4-cubic-meter (m³) acid neutralization pits that contain limestone chips; the other pit (CW-2) is discussed in Subsection 4.3.3. Liquid wastes from the north and west wings of the Hexagon Building passed through this pit before being discharged to the sanitary sewer. Chemical wastes of up to 150 m³ per day were generated from the shops and laboratories of the Hexagon Building; this waste output was reduced to 115 m³ per day in June 1978 (USATHAMA, 1980). According to the IA, a licensed waste hauler was hired to dispose of concentrated wastes, such as etching solutions and organic solvents.

Each neutralization pit has a concrete floor and concrete block and mortar walls, and measures 7 ft by 13 ft wide by 8 ft high. The cover is constructed of concrete with a steel access panel. Several wooden baffles divide the pit into sections.

In October 1992, the pit was cleaned out, inspected, and the limestone chips replaced. A vacuum truck was used to remove the sludge and stones from the pit, after which the pit was rinsed with water. All sludge, stones, and rinse water were placed in drums and disposed of as a hazardous waste. At present, laboratory wastes are managed under the installation hazardous waste program, which forbids the discharge of these wastes to the sewer.

4.3.2.3 Sampling Effort

The elevated concentrations of halogenated hydrocarbons (HHCs) found in samples collected during the 1992 cleanout indicates the possibility that solvents were discharged into the lime pits. Neither concrete nor concrete block is an effective barrier to the migration of halogenated solvents. Halogenated solvents may have migrated from the lime pit into surrounding soils and possibly into groundwater. To investigate this potential, a monitor well was proposed for construction on each side of the lime pit (MW-26 through MW-29, shown in Figure 4.3-3); however, the proposed monitor well locations were slightly adjusted to avoid the buried conduit and underground water and acid lines. The wells were positioned accordingly to investigate the potential of halogenated solvent migration from the lime pit into the surrounding soil and groundwater. Continuous split-spoon samples were screened with an HNu or OVM. According to the CDAP, if any VOCs were detected, soil samples were to be collected from 7 to 9 ft bgs, from the interval with the highest instrument readings, and from just above the water table; otherwise, one sample was to be collected from 7 to 9 ft bgs from each boring. Because no elevated OVM readings were recorded, soil samples were collected from the 7 to 9 ft bgs interval only. Soil samples were analyzed for TCL +30 parameters and TAL metals. Two rounds of groundwater sampling were conducted from each well and analyzed for TCL +30 parameters and TAL metals.

4.3.2.4 Hydrogeologic Interpretation

Lithologic logs from monitor well locations MW-26 through MW-29 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by a well sorted olive-orange-brown medium-coarse-grained quartz sand.

Groundwater saturation was observed at approximately 7.5 ft bgs at all well locations. The four monitor wells were screened across the water table and were completed to 15 ft bgs at each location. Water-level elevation data, measured on 6 March 1995, prior to the March 1995 sampling round, indicate that the local groundwater flow direction is northeast, toward the Hexagon Research and Development Building. Based on groundwater elevation measurements,

monitor wells MW-28 and MW-29 are downgradient of the area under investigation (Figure 4.3-4).

4.3.2.5 Soil Sampling Results

Four soil samples, one in each monitor well borehole, were collected between 7 and 9 ft bgs and were analyzed for the parameters listed in Table 3.6-1. The analytical results for site soils, with the corresponding sample identifications, are listed in Appendix D. Table 4.3-3 compares the detected compounds with the NJDEP SCC, and then compares the results with the subsequent site-specific and Monmouth County maximum background limits.

VOCs

VOCs were not detected in site soil.

SYOCs

One SVOC (di-n-butyl phthalate) was detected above laboratory quantitation limits in site soil. However, the concentration of this compound was less than the NJDEP SCC and the maximum site-specific background.

Pesticides/PCBs

Pesticides were not detected above laboratory quantitation limits in site soil. PCBs were not detected in site soil.

Metals

As indicated in Table 4.3-4, all of the metals detected in site soil were found in concentrations below the NJDEP SCC, where established.

Table 4.3-3 Fort Monmouth - Charles Wood **Summary of Detected Compounds** In Soils at Site CW-1

COMPOUND	METHOD DETECTION	RESIDENTIAL DIRECT CONTACT	MAXIMUM ANALYTICAL RI BACKGROUND					
	LIMIT (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)	CONCENTRATION (mg/kg)	SB26-A02 12/19/94 (7-9 ft bgs)	SB27-A02 12/19/94 (7-9 ft bgs)	SB28-A02 12/19/94 (7-9 ft bgs)	SB29-A02 12/19/94 (7-9 ft bgs)	
SVOC's (mg/kg)								
Benzo(b)fluoranthene	0.188	0.9	0.078 J	ND	ND	ND	0.070 J	
Benzo(a)pyrene	0.162	0.66	ND	ND	ND	ND	0.073 J	
bis(2-Ethylhexyl)phthalate	0.32	49	0.17 J	0.075 J	0.090 J	ND	ND	
Di-n-butylphthalate	0.215	5700	2.0 B	0.081	0.086	0.077	0.130	
PESTICIDES/PCBs (mg/kg)								
4,4'-DDE	0.0037	2	0.071	0.0038 J	ND	ND	ND	
METALS TOTAL (mg/kg)								
Aluminum	3.9	NLE	15700	4070	5120	4850	4010	
Arsenic	0.35	20	31.6	4.1	4.5	5.6	2.2	
Barium	0.17	700	26	3.4	4.4	4.2	2.7	
Beryllium	0.10	1	1.7	0.41	0.45	0.84	0.33	
Calcium	2.2	NLE	653	236	283	229	669	
Cobalt	0.71	NLE	4.5	ND	0.73	0.86	ND	
Chromium	1.6	500	128	52.2	71.7	59.7	46.4	
Copper	2.2	600	7.27 ¹	1.8	2	1.1	1.2	
Iron	0.58	NLE	45500	10800	14500	12900	9440	
Lead	0.40	400 ²	15.1 ¹	3.9	5.9	2	3.3	
Potassium	(12.3-25.8)	NLE	10600	2700	3540	3660	2700	
Magnesium	9.6	NLE	3960	960	1310	1310	943	
Manganese	0.18	NLE	120¹	7.2	10.6	8	5.4	
Mercury	0.49	14	ND	ND	ND	0.21	ND	
Sodium	3.8	NLE	56.8	33.4	29.7	20.4	15.5	
Nickel	1.4	250	8.3	1.5	3.1	2.7	1.4	
Vanadium	0.53	370	59.6	28.8	42.4	31.8	26.7	
Zinc	0.41	1500	55.6	12.8	16.2	15.2	11.7	

Compounds detected above NIDEP standards are noted by bold numbers
NLE - No Level Estabished
ND - Indicates that the compound was not detected at or below the quantification limits

the second surface of the second surface I - Indicates that the concentration value was estimated due to detection at or near the quatification limits B- Compound was observed in the sample and associated laboratory blank.

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

 $^{^{1}\,}$ Monmouth County maximum background concentration.

² NJDEP criteria are referenced in the Site Remediation News, Winter 1995.

Table 4.3-4 Fort Monmouth - Charles Wood Summary of Average Concentrations of Detected

Compounds in Groundwater - Site CW-1

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	Al	ANALYTICAL RESULTS (SAMPLING DATE		
	(µg/L)	QUALITY CRITERIA (µg/L)	CONCENTRATION (µg/L)	MW-26 2/21/95, 3/14/95 (avg.)	MW-27 2/21/95, 3/14/95 (avg.)	MW-28 2/21/95, 3/14/95 (avg.)	MW-29 2/21/95, 3/14/95 (avg.)
VOC's (μg/L)	4.5						
1,2-Dichloroethene (total)	4.4	, 10	ND	ND	ND	ND .	235
Trichloroethene (TCE)	2.0**	1	ND .	ND	ND	35.5	885
Tetrachloroethene (PCE)	4.0**	1*	ND	4.5J	ND	ND	ND
SVOCs (µg/L)							
1,2,4 Trichlorobenzene	9.6**	9	ND	ND	ND	ND	4 J
bis-(2Ethylhexyl)phthalate	9.7	30*	600	3.75J	2Ј	1.5J	3Ј
Di-n-butyl phthalate	6.5	900	ND	ND	5.25J	ND	, ND
METALS TOTAL (μg/L)							
Aluminum	24	200	8210	3857.5	5695	3815	2370
Arsenic	1.9	8*	25.1	4.375	4.7	-4	1.625
Barium	1.7	2000	400 ²	98.7	127	53.05	50.8
Beryllium	0.9	20*	7^2	ND	0.72	ND	NĎ
Calcium	10.4	NLE	8700	25350	24100	15050	28350
Cadmium	2.8	4	6^2 –	ND	2.1	ND	ND
Cobalt	2.3	NLE	30.6	9.6	14.5	6.95	4.8
Chromium	2.9	100	49.6	40.575	55.55	28.15	19.7
Copper	1.9	1000	730 ²	4.525	∙5.675	2.675	ND
Iron	6.4	300	27000 ²	7796.65	11295	6185	4555
Potassium	685	NLE	10000 ²	12450	12950	12900	11000
Magnesium	18.3	NLE	25000 ²	9155	13650	4080	5520
Manganese	1.8	50	480 ²	91.15	125	46.35	70.55
Sodium	30.5	50000	197000 ²	64550	71700	18100	29400
Nickel	10.8	(100	48.3	19.8	20.95	8.75	10.1
Lead	1.1	¹ 10*	<100 ²	3.9	8.3	. 3.15	1.425
Vanadium	2.3	NLE	28.9	29.175	36.075	23.9	15.6
Zinc	3.8	5000	133	35.75	29.25	24.85	22.6

¹ - Same compound as listed by NJDEP Tetrachloroethylene

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

ND - Indicates that the compound was not detected at the quantification limit

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

NLE - No Level Established

^{** -} Method detection limit exceeds the NJDEP groundwater quality criteria

²- Monmouth County maximum background concentration

4.3.2.6 Groundwater Sampling Results

Monitor wells at site CW-1 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for the individual sampling rounds are listed in Appendix D. Table 4.3-4 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results with the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate. Figure 4.3-5 presents the locations of the compounds detected above both NJDEP criteria and maximum background.

VOCs

Three VOCs (tetrachloroethene, trichloroethene, and 1,2-dichloroethene) were detected in site groundwater in concentrations exceeding the NJDEP GWQC. Tetrachloroethene was detected below the laboratory quantitation limit in MW-26 in the March sampling round only; however, the concentration exceeded the NJDEP GWQC. Trichloroethene was detected in MW-28 and MW-29 in both sampling rounds. 1,2-Dichloroethene (total) was detected in MW-29 only in both sampling rounds. VOCs were not detected in MW-27. Figure 4.3-5 presents the locations of the averaged concentration of compounds detected above the NJDEP GWQC and the maximum background levels established at Charles Wood.

SVOCs

SVOCs were not detected in the site monitor wells above laboratory quantitation limits and the NJDEP GWQC from either sampling round.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells from either sampling round.

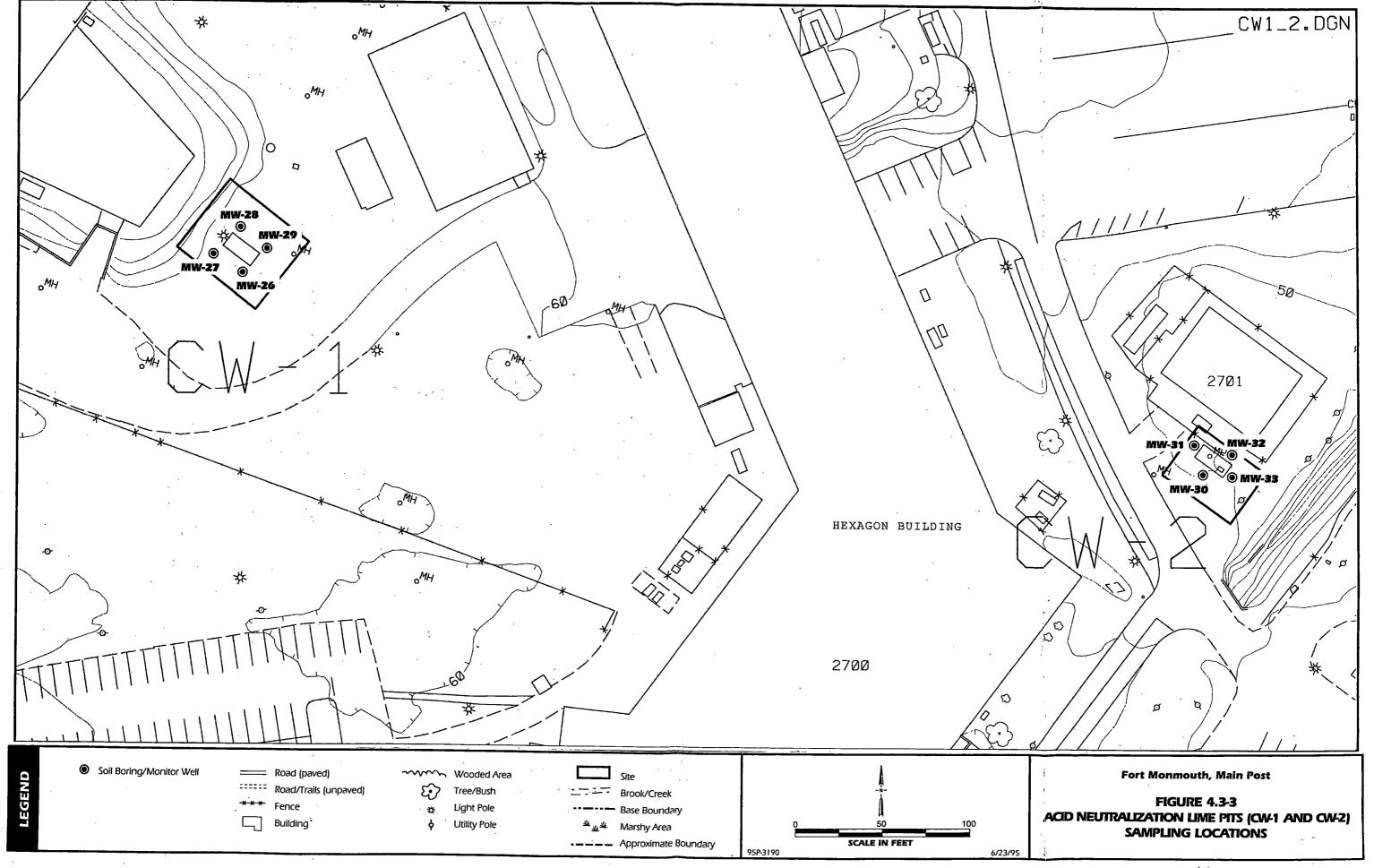
Metals

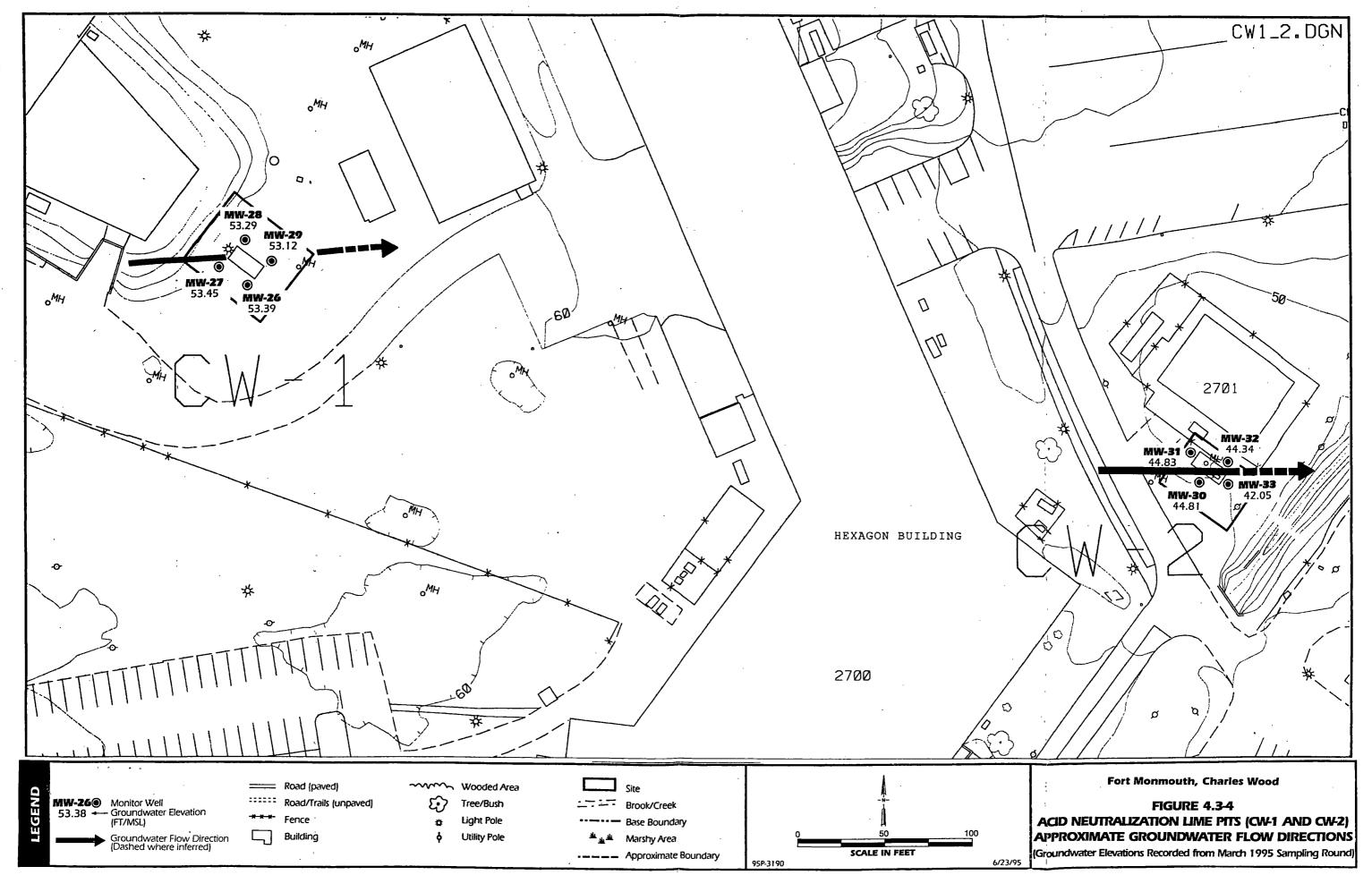
As indicated in Table 4.3-4, of the 18 metals detected in site groundwater, 4 metals (aluminum, iron, manganese, and sodium) were found in concentrations exceeding the NJDEP GWQC; however, aluminum, iron, and manganese were detected in concentrations below the site-specific and Monmouth County maximum background levels. Although sodium was detected in concentrations greater than the site-specific background level, sodium was found in concentrations well below the Monmouth County maximum background level.

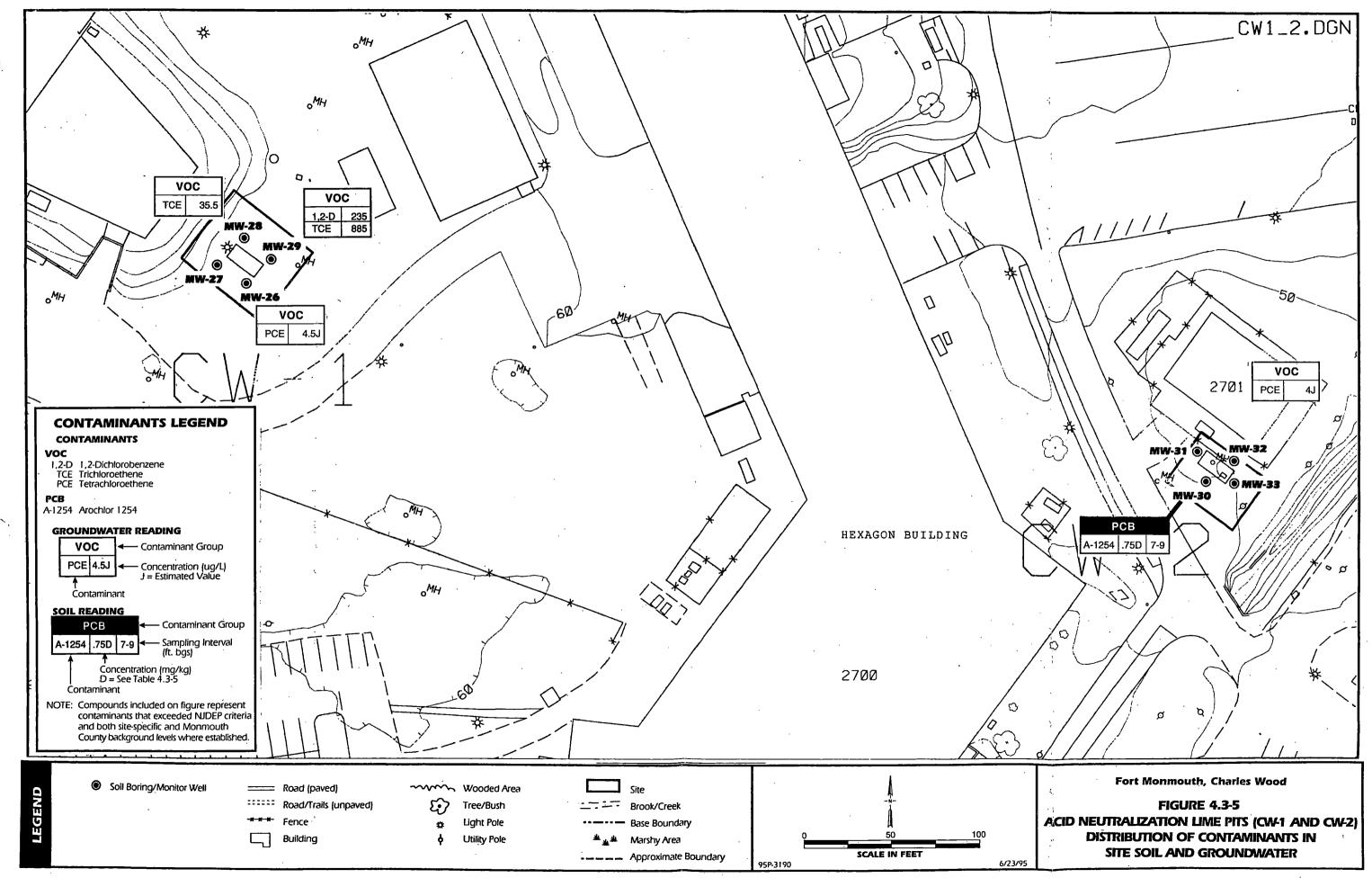
4.3.2.7 Recommendations

The soil sample results indicate that compounds of concern were either not detected or were below laboratory quantitation limits and NJDEP criteria.

The groundwater sampling results indicate that TCE, PCE, and 1,2-dichlorobenzene were detected in the groundwater downgradient of the site at levels that exceeded the NJDEP criteria.


Although NJDEP groundwater criteria were exceeded by three VOCs at this site, immediate remedial action is not required. The probable source of contamination has been eliminated since chemicals are not being disposed of in the pit. The pit was cleaned in October 1992 and the limestone sludge was removed and disposed of as a hazardous waste. Hazardous waste is currently collected for proper disposal off-site and waste is no longer disposed of in the pit. The groundwater is believed to flow toward the headwaters of Wampum Brook, and the shallow groundwater probably flows into Wampum Brook. There is no use of groundwater between the source and Wampum Brook. Surface-water samples were taken in Wampum Brook in the Charles Wood area and Mill Creek (as Wampum Brook is called further to the east) for use as background samples. No VOCs were detected in these samples, therefore, there is no immediate threat to human health.


The extent of VOC concentrations in groundwater will be investigated by soil-gas survey techniques. The soil-gas survey will be performed on an established grid pattern to estimate the



lateral extent of VOCs in the vicinity of the neutralization pit. The results of the soil-gas survey will be used to locate two additional monitor wells at the downgradient edge of the plume. DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and the two newly installed monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

Site CW-2

4.3.3 Wastewater Treatment Lime Pit 2 (CW-2)

4.3.3.1 Site Location

Wastewater Treatment Lime Pit 2 (CW-2) is located southeast of the Hexagon Building (Building 2700) at Charles Wood near an electrical substation (Figure 4.3-3). The approximate area of site CW-2 is 1,751 ft² (0.04 acre).

4.3.3.2 Site History

Like Lime Pit 1, Lime Pit 2 (CW-2) was built concurrently with the Hexagon Building; construction was completed in 1952. Liquid wastes from the east and south wings of the Hexagon Building passed through this pit before being discharged to the sanitary sewer. Additional details, including the estimated quantities of wastes discharged through the lime pits, pit construction, and cleanout and replacement of the limestone, were discussed in Subsection 4.3.2.2.

Unlike Lime Pit 1, during cleanout this pit was found to have received sewage. A dye test was conducted and revealed that toilets from the guard shack and a bathroom for the handicapped near the east entrance were mistakenly connected to this pit. The plumbing has been rerouted to discharge the wastewater from the toilets directly to the sanitary sewer.

In October 1992, the pit was cleaned out, inspected, and the limestone chips replaced. A vacuum truck was used to remove the sludge and stones from the pit, after which the pit was rinsed with water. All sludge, stones, and rinse water were placed in drums and disposed of as a hazardous waste. At present, laboratory wastes are managed under the installation hazardous waste program, which forbids the discharge of these wastes to the sewer.

4.3.3.3 Sampling Effort

As in the case of Lime Pit 1, the elevated concentrations of HHCs in sludge, rinse, and grab samples suggest the possibility that solvents were discharged into the lime pits and that they may

have migrated from the lime pits into surrounding soils and possibly into groundwater. To investigate this potential, a monitor well was constructed on each side of the lime pit (MW-30 through MW-33, shown in Figure 4.3-3). Continuous split-spoon samples were screened with an HNu or OVM. According to the CDAP, if any VOCs were detected, soil samples were to be collected from 7- to 9-ft bgs (near the base of the neutralization pit), from the interval with the highest instrument readings, and from just above the water table; otherwise, one sample was to be collected from the 7- to 9-ft interval of each boring. Because no elevated OVM readings were recorded during borehole activities, one sample from the 7- to 9-ft bgs interval was collected for the required parameters. Soil samples were analyzed for TCL +30 parameters and TAL metals. Two rounds of groundwater samples were collected from each well and analyzed for TCL +30 parameters and TAL metals.

4.3.3.4 Hydrogeologic Interpretation

Lithologic logs from site monitor wells MW-30 and MW-31 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by fill material and reworked natural sediments. The components of the manmade materials consisted of quartz gravel and concrete, wood fragments, and pieces of old electrical conduit. The reworked natural sediments consisted of an interbedded green-gray silty fine-grained sand and green-gray fine-grained sandy silt. Lithologic logs from MW-32 and MW-33 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by shallow fill material and probable natural sediments. The filled material consisted of concrete fragments (to 2 ft bgs). The probable natural sediments consisted of an interbedded olive-gray moderately sorted silty fine-grained sand and a green moderately sorted very micaceous fine-grained sandy silt.

Groundwater saturation was observed between 1 and 8 ft bgs. The four monitor wells were screened across the water table and total depths ranged from 15 to 16 ft bgs. Water-level elevation data, measured on 6 March 1995, prior to the March 1995 sampling round, indicate that local groundwater flow is eastward (Figure 4.3-4). Based on groundwater elevation measurements, monitor wells MW-32 and MW-33 are downgradient of the former lime pit.

4.3.3.5 Soil Sampling Results

Four soil samples, one in each monitor well borehole, were collected and analyzed for the parameters listed in Table 3.6-1. Samples were collected between 7 and 9 ft bgs. The compounds detected in site soils, with the corresponding sample identifications, are listed in Appendix D. Table 4.3-5 compares site soil quality with the NJDEP SCC, and then compares the results with the subsequent site-specific and Monmouth County maximum background levels, where appropriate.

VOCs

Two VOCs (methylene chloride and 2-butanone) were detected in concentrations above laboratory quantitation limits. Methylene chloride and 2-butanone are common laboratory contaminants. Both compounds were detected in concentrations well below the NJDEP SCC.

SVOCs

Eight SVOCs were detected above laboratory quantitation limits in soil borings, but in concentrations below the NJDEP SCC. All SVOCs detected below quantitation limits were found in concentrations below the NJDEP SCC where established.

Pesticides/PCBs

Three pesticides (4,4'-DDE, 4,4'-DDD, and 4,4'-DDT) were detected in concentrations above laboratory quantitation limits, but were well below the NJDEP SCC.

One PCB (Aroclor-1254) in SB-30 was detected slightly above the laboratory quantitation limit as well as the NJDEP SCC (Figure 4.3-5). However, the PCB compound was not detected in groundwater samples from the corresponding well location, MW-30. PCBs were not detected in SB-31, SB-32, and SB-33.

Table 4.3-5 Fort Monmouth - Charles Wood **Summary of Detected Compounds** in Soils from Site CW-2

COMPOUND	METHOD	RESIDENTIAL	MAXIMUM	ANALYTICAL RESULTS			
	DETECTION LIMIT (mg/kg)	DIRECT CONTACT SOIL CLEANUP CRITERIA (mg/kg)	BACKGROUND CONCENTRATION (mg/kg)	SB30-A02 12/16/94 (7-9 ft bgs)	SB31-A02 12/16/94 (7-9 ft bgs)	SB32-A02 12/16/94 (7-9 ft bgs)	SB33-A02 12/16/94 (7-9 ft bgs)
VOC's (mg/kg)							
Methylene Chloride	0.0027	49	-ND	- 0.088	0.086	0.017	ND
2-Butanone	0.0041	1000	ND	ND	0.012 J	0.008 J	ND
SVOCs (mg/kg)							
Napthalene	0.277	230	ND	0.15 J	ND	ND	ND
2-Methylnaphthalene	0.287	NLE	ND	0.1 Ј	ND '	ND	ND
Acenaphthene	0.221	3400	ND	0.17 Ј	ND	ND	ND
Dibenzofuran	0.215	NLE	ND	0.093 J	ND	ND	ND
Fluorene	0.208	2300	ND	0.21 J	ND	ND	ND
Phenanthrene	0.165	NLE	ND	1.3	ND	ND	0.075 J
Anthracene	0.152	10000	ND	0.33 J	ND	ND	ND
Carbazole	0.145	NLE	ND	0.18 J	ND	ND	ND
Fluoranthene	0.198	2300	0.042 J	1.5	ND	ND	0.073 J
Pyrene	0.178	1700	0.048 J	_ 1.1	ND	ND	0.067 J
Benzo(a)anthracene	0.162	0.9	0.046 J	0.69	ND	ND	ND
Chrysene	0.145	9	0.083 J	0.71	ND	ND	0.043 J
bis(2-Ethylhexyl)phthalate	0.32	49	0.170 J	0.16 J	0.1 J	0.059 J	ND
Benzo(b)fluoranthene	0.188	0.9	0.078 J	0.79	ND	ND	ND
Benzo(k)fluoranthene	0.205	0.9	0.041 J	0.28 J	ND	ND	ND
Benzo(a)pyrene	0.162	0.66	0.047 J	0.62	0.13 J	0.053 J	0.094 J
Indeno(1,2,3-cd)pyrene	0.234	0.9	ND	0.37 J	ND	ND	ND
Benzo(g,h,i)perylene	0.224	NLE	0.042 J	0.35 J	ND	ND	ND
Dibenzo(a,h)anthracene	0.198	0.66	ND	.089 J	ND	ŃD	ND
PESTICIDES (mg/kg)							
Aroclor-1254	0.039	0.49	ND	0.75 D	ND	ND	ND
4,4'-DDE	0.0037	2 .	0.071	0.0035 JP	0.0035 J	ND	0.0083 P
4,4'-DDD	0.0037	3	ND	0.012 P	0.0098	0.0073	0.26
4,4'-DDT	0.0037	, 2	0.053	0.062 P	0.0058	ND	0.046
METALS TOTAL (mg/kg)						
Aluminum	3.9	NLE	15700	6450	5430	2920	7310
Arsenic	0.35	20	31.6	5.7	8.5	2.6	⁷ 15.7
Barium	0.17	700	26	36.2	58.6	23.6	326
Beryllium 🔾	0.1	1	1.7	0.58	0.51	0.28	1.5
Calcium	2.2	NLE	653	655	976	502	1270
Cadmium	0.86	1	ND	ND	ND	ND	0.9
Cobalt	0.71	NLE	4.5	0.95	4.2	0.91	5.9
Chromium	1.6	500	128	69.9	48.6	32.2	56.5
Copper	2.2	600	7.271	2.7	2.9	2.7	- 5.5
fron	0.58	NLE	45500	20400	19200	11100	17600
Lead	0.4	400 ²	15.1	8.1	7.5	3.1	5.6
Magnesium	9.6	NLE	3960	1720	1270	776	1880
Manganese	0.18	NLE	1201	25.1	24.8	12.5	35.1
Nickel	1.4	250	8.3	4.9	11.2	2.6	23.2
Potassium	(12.3-25.8)	NLE	10600	4210	2610	1980	3350
Selenium	0.3	63	0.85	0.29	0.7	0.2	4.2
Vanadium	0.53	370	59.6	36.6	29.1	19.4	23.6
Zinc	0.41	1500	55.6	27.8	44.2	19.3	63.9

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

J- Indicates that the concentration value was estimated due to detection at or near the quantification limit

P- The percent difference between the results from two GC cloumns is greater than 25% the lower of the two values is reported

ND - Indicates that the compound was not detected at or below the quantification limits

NLE- No Level Established

ft bgs. - feet below ground surface.

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

¹ Monmouth County maximum background concentrations.

² NJDEP criteria are referenced in Site Remediation News, Winter 1995.

D - Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis.

Metals

As indicated in Table 4.3-5, of the 18 metals detected in site soil, only beryllium in SB-33 was found at a concentration slightly exceeding the NJDEP SCC. Although beryllium was detected in a concentration greater than the established Monmouth County background level, the metal was detected below the site-specific background level.

4.3.3.6 Groundwater Sampling Results

Monitor wells at site CW-2 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.3-6 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results with the site-specific and Monmouth County maximum background levels, where appropriate.

VOCs

Tetrachloroethene was the only VOC detected in site groundwater. The compound was detected in a concentration that was below the quantitation limit but slightly exceeding the NJDEP GWQC from the March sampling round only in MW-32 (Figure 4.3-5). Tetrachloroethene was not detected in MW-32 in the February sampling round.

SVOCs

One SVOC (di-n-butyl phthalate) was detected above the laboratory quantitation limit in MW-31 from the March sampling round. Di-n-butyl phthalate was detected well below the NJDEP GWQC. SVOCs detected below the laboratory quantitation limit were also detected below the NJDEP GWQC.

Table 4.3-6
Fort Monmouth - Charles Wood
Summary of Average Concentrations of Detected
Compounds in Groundwater - Site CW-2

COMPOUND	METHOD DETECTION	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (pg/L) SAMPLING DATE			
	LIMIT	QUALITY CRITERIA			MW31 2/21/95, 3/14/9	MW32 2/21/95, 3/14/95	MW33 2/21/95, 3/14/95
70.0F / 73	(µg/L)	(µg/L)	(µg/L)	(avg.)	(avg.)	(avg.)	(avg.)
VOC's (µg/L)							
Tetrachloroethene (PCE) ¹	2.7**	1*	ND	ND	ND	4J	ND
SVOCs (µg/L)							
1,2,4 Trichlorobenzene	9.6**	9	ND	ND	5J	ND	ND
bis-(2ethylhexyl)phthalate	9.7	30*	600	2J	ND	1.5 J	1.5 J
Di-n-butylphthalate	6.5	900	ND	4J	5.5	43	4J
MEDATES TOTAL CITY D)						
Aluminum	24	200	8210	129	17.65	447.5	676
Arsenic	1.9	8*	/25.1	ND	ND	ND	1.5
Barium	1.7	2000	400¹	233.5	180.5	211	234
Calcium	10.4	NLE	8700	63600	36050	46250	51250
Cobalt	2.3	NLE	30.6	ND	ND	ND	. 2.9
Chromium	2.9	100	49.6	ND	ND	ND	2.15
Copper	1.9	1000	730 ¹	3.8	2.15	2	11.9
Iron	6.4	300	27000 ¹	45750	36350	48950	54450
Potassium	685	NLE	4630	9980	8710	9580	8455
Magnesium	18.3	NLE	25000 ¹	7045	4775	5595	6100
Manganese	1.8	50	480¹	365	222.5	268.5	273
Sodium	30.5	50000	36400	17100	10325	11800	14350
Nickel	10.8	100	48.3	10.65	ND	11.75	2.7
Lead	1.1	10*	<100 ¹	ND	ND	0.7	3.3
Vanadium	2.3	NLE	28.9	ND	ND	3.05	5.15
Zinc	3.8	5000	133	5.7	3.9	13.85	25.6

 $^{^{\}rm 1}\,$ Same compound as listed by NJDEP Tetrachloroethylene

Compounds exceeding NJDEP groundwater quality criteria are noted by bold numbers.

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

NLE - No Level Established

J - Indicates that the concentration value was estimated due to detection at or near the quantitation limits

ND - Indicates that the compound was not detected at or below the quantitation limit

^{**} Method detection limit exceeded NJDEP groundwater quality criteria

^{1 -} Monmouth County maximum background concentrations.

Pesticides/PCBs

Pesticides/PCBs were not detected in the site monitor wells from either sampling round.

Metals

As indicated in Table 4.3-6, of the 16 metals detected in site groundwater, 3 metals (aluminum, iron, and manganese) were found in concentrations exceeding the NJDEP GWQC. In addition, iron was detected in concentrations greater than those determined for site-specific and Monmouth County maximum background at Charles Wood. The presence of iron in exceedence of the NJDEP GWQC may be attributable to the high concentrations of iron present in natural soil found in Monmouth County. Therefore, iron is not identified as a compounds of concern. Although manganese was detected in concentrations above the site-specific background level in MW-30, MW-32, and MW-33, manganese was found in concentrations below the Monmouth County background level. Aluminum was found in concentrations below both the site-specific and Monmouth County maximum background levels.

4.3.3.7 Recommendations

The results of the soil sampling indicate that one PCB compound (Aroclor-1254) was detected in SB-30 at a concentration slightly above the NJDEP SCC. PCB compounds were not detected in the other three soil borings. In addition, PCBs were not detected in groundwater samples in the corresponding well location, MW-30.

Groundwater sampling results indicate that PCE was detected in the groundwater in one of the four wells (MW-32) in one of the two sampling rounds at levels slightly exceeding the NJDEP GWQC.

Although NJDEP groundwater criteria were exceeded by one VOC at this site, immediate remedial action is not required. The source of contamination has been eliminated since chemicals are not being disposed of in the pit. The pit was cleaned in October 1992 and the limestone

sludge was removed and disposed of as a hazardous waste. Hazardous waste is currently collected for proper disposal off-site and waste is no longer disposed of in the pit. Shallow groundwater flows toward and discharges to the headwaters of Wampum Brook, as indicated by water-level measurements from site monitor wells. There are no known uses of groundwater at or downgradient of the site. Surface-water samples were taken in Wampum Brook in the Charles Wood area and Mill Creek (as Wampum Brook is called further to the east) for use as background samples. No VOCs were detected in these samples, therefore, there is no immediate threat to human health.

The extent of PCE concentrations in groundwater will be investigated by soil-gas survey techniques. The soil-gas survey will be performed on an established grid pattern to estimate the lateral extent of VOCs in the vicinity of the neutralization pit. The results of the soil-gas survey will be used to locate two additional monitor wells if necessary. DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and from the two newly installed monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program. When the additional monitor wells are installed, soil samples will be collected for PCB analysis because of the detection of PCBs in a soil sample collected from SB-30.

Site CW-3

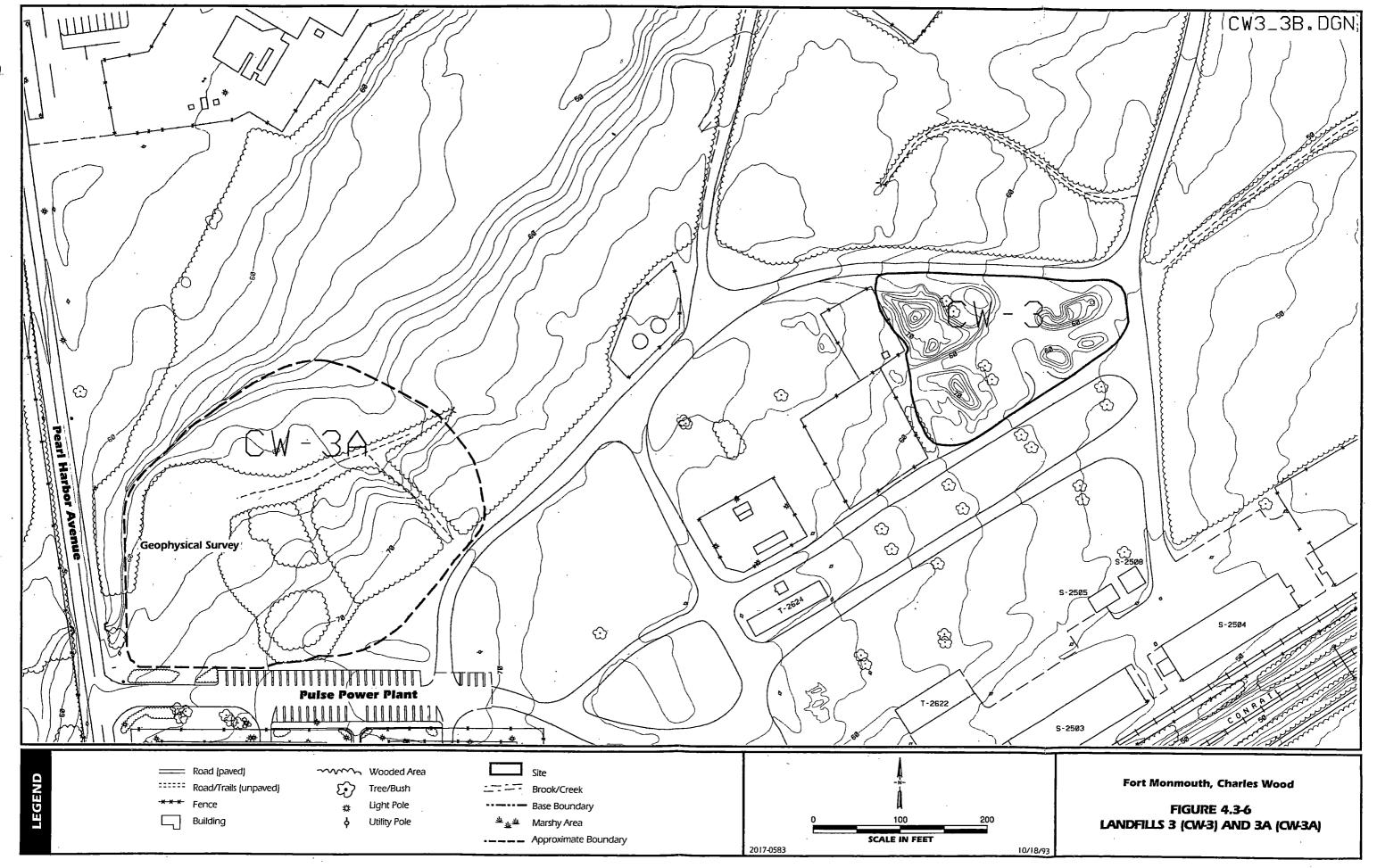
4.3.4 Landfill 3 (CW-3)

4.3.4.1 Site Location

Landfill 3 is located in the southeastern part of Charles Wood (Figure 4.3-6) and has been designated a construction area. The approximate area of Landfill 3 is 39,758 ft² (0.91 acre).

4.3.4.2 Site History

According to the IA, the Army Air Force used this area to dispose of administrative-type wastes and wood in the 1940s. Beginning in 1951, the aerial photographs show a cleared area used for storage. In 1981 and 1986, this area was relatively clear. During the 1993 site visit, the CW-3 area was being used as a construction rubble dump. Material observed included soil piles, brush, concrete, wood demolition debris, wood pallets, metal, and PVC pipe. There is no evidence of a subsurface landfill, and long-term Fort Monmouth employees said that this area was not used as a landfill.


4.3.4.3 Sampling Effort

Landfill 3 is shown in Figure 4.3-6. During the field investigation activities conducted between November 1994 and January 1995 at Fort Monmouth, construction rubble was present at site CW-3. The proposed sampling activities included collecting surface soil samples for TCL +30 parameters and TAL metal analysis if any evidence of soil staining was observed following the removal of the rubble. In addition, if high levels of chemical constituents were found in soils, monitor wells would be installed and sampled twice for TCL +30 parameters and TAL metals. Field sampling activities were postponed until the rubble could be removed. In June 1995, the construction rubble was removed. Exploratory trenches are planned to determine if any subsurface debris or soil staining is evident. However, because the area is believed to not have been used as a landfill, it is not anticipated that subsurface debris and soil staining will be found.

4.3.4.4 Recommendations

Investigation activities were not conducted as part of this investigation because of construction rubble that was present at the site during the field effort, which prohibited sample collection as planned. The rubble was removed and properly disposed of in June 1995 and exploratory trenches are planned to determine if any subsurface debris or soil staining is present. Field screening will be performed during excavation using a PID. NJDEP will be requested to send a representative to observe the investigation. In the absence of any elevated PID readings or evidence of subsurface debris, the excavation will be backfilled and no further action will be taken. If contamination is identified, then sampling will be conducted in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993). Soil sample analytes will be collected and analyzed for the full range of contaminants.

Site CW-3A

4.3.5 Debris Site (CW-3A)

4.3.5.1 Site Location

Debris Site CW-3A is located west of the CW-3 area, north of Pulse Power, Building 2707 (Figure 4.3-6). The approximate area of site CW-3A is 116,000 ft² (2.6 acres).

4.3.5.2 Site History

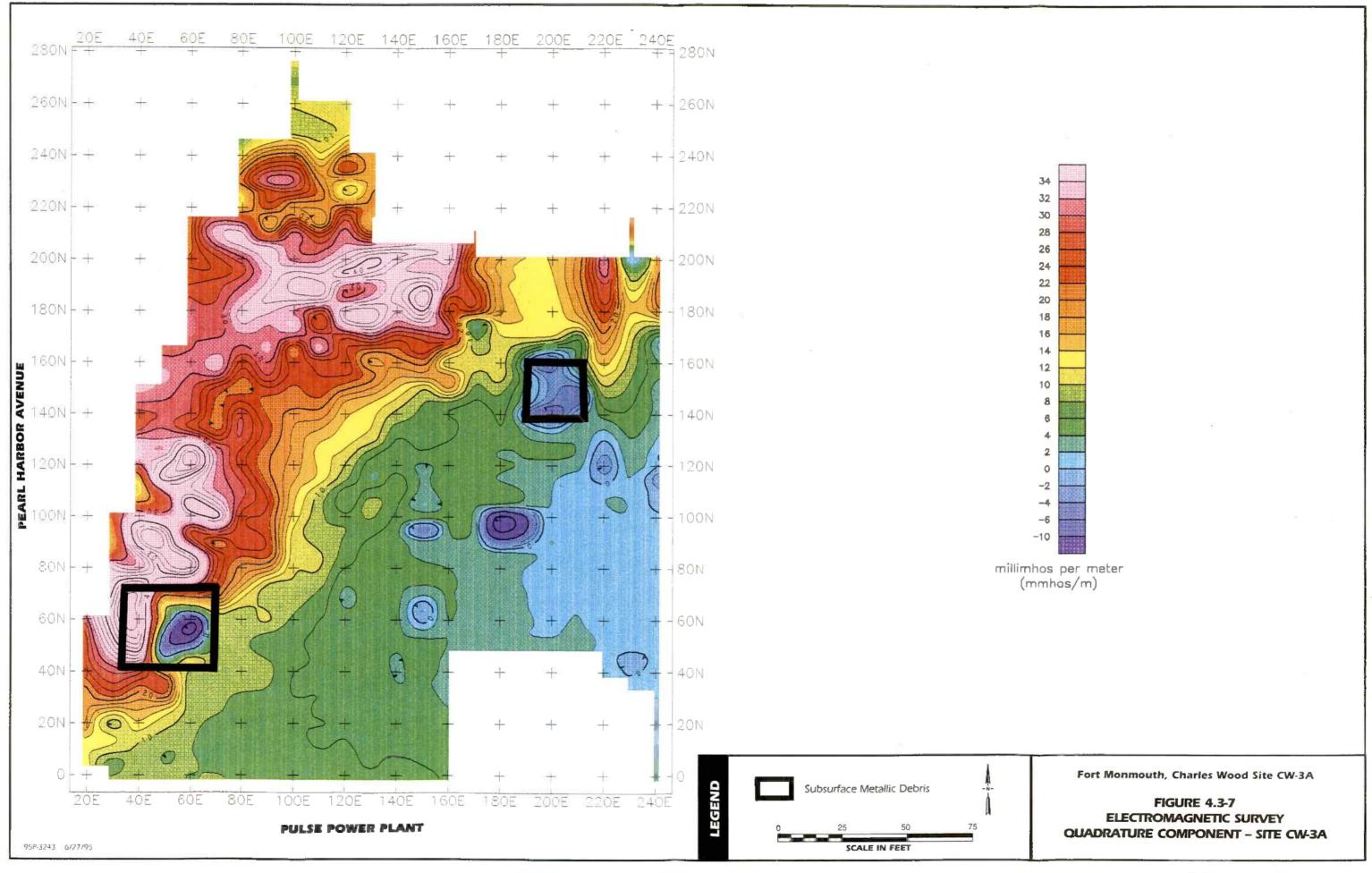
According to long-term Fort Monmouth employees, the area north of Pulse Power was used as a disposal area. The 1957 aerial photograph shows the CW-3A area with bare ground. According to Fort Monmouth History and Place Names, 1917-1959, 90 buildings at Charles Wood were razed in late 1955 and during 1956. It is possible that the demolition debris from these buildings was placed in this area. In the 1974 aerial photo, a steel igloo is visible on this area. By 1986, the western part of this area had not revegetated. During the 1993 site visit, some small debris was observed in the woods.

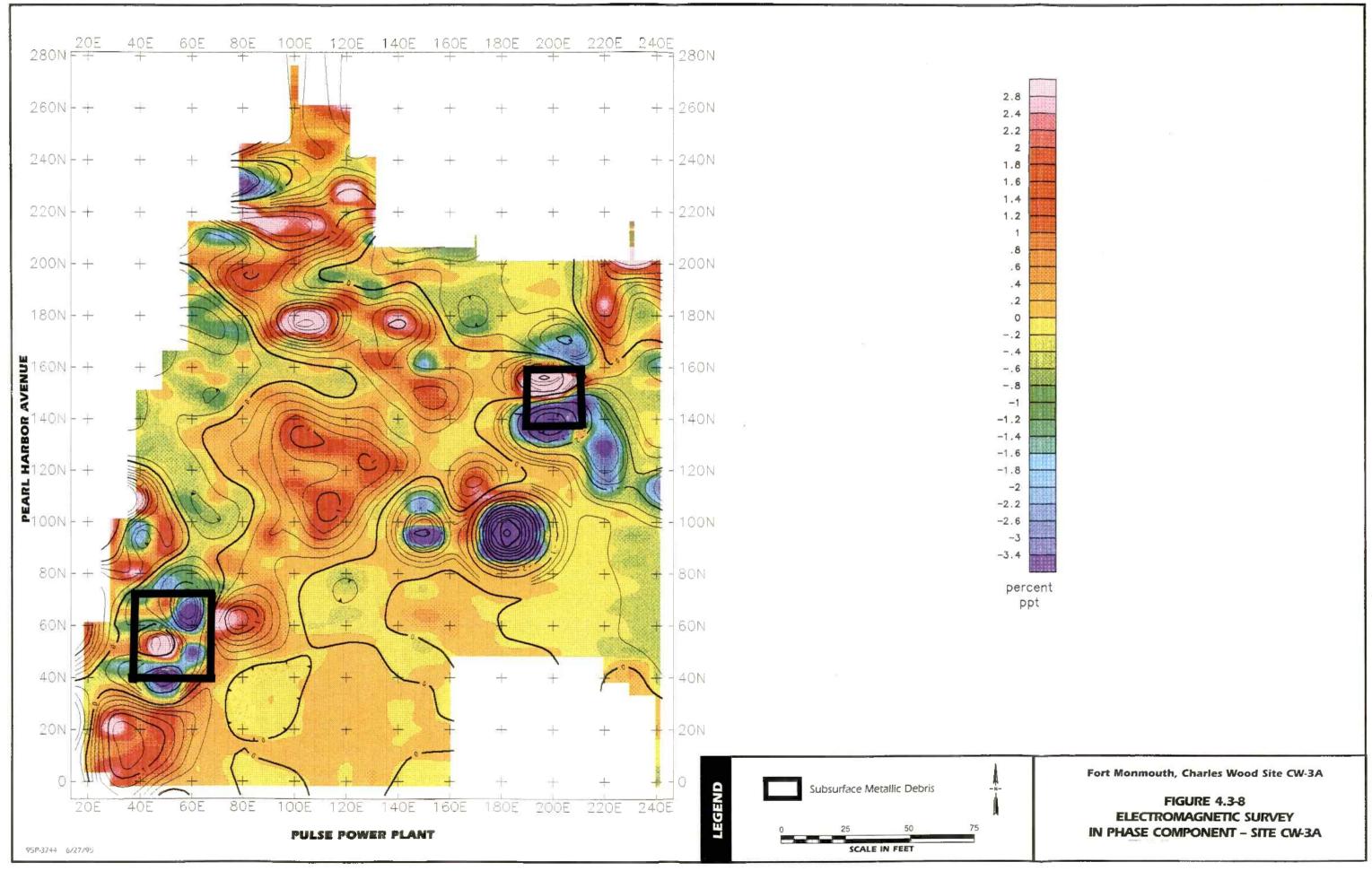
4.3.5.3 Sampling Effort

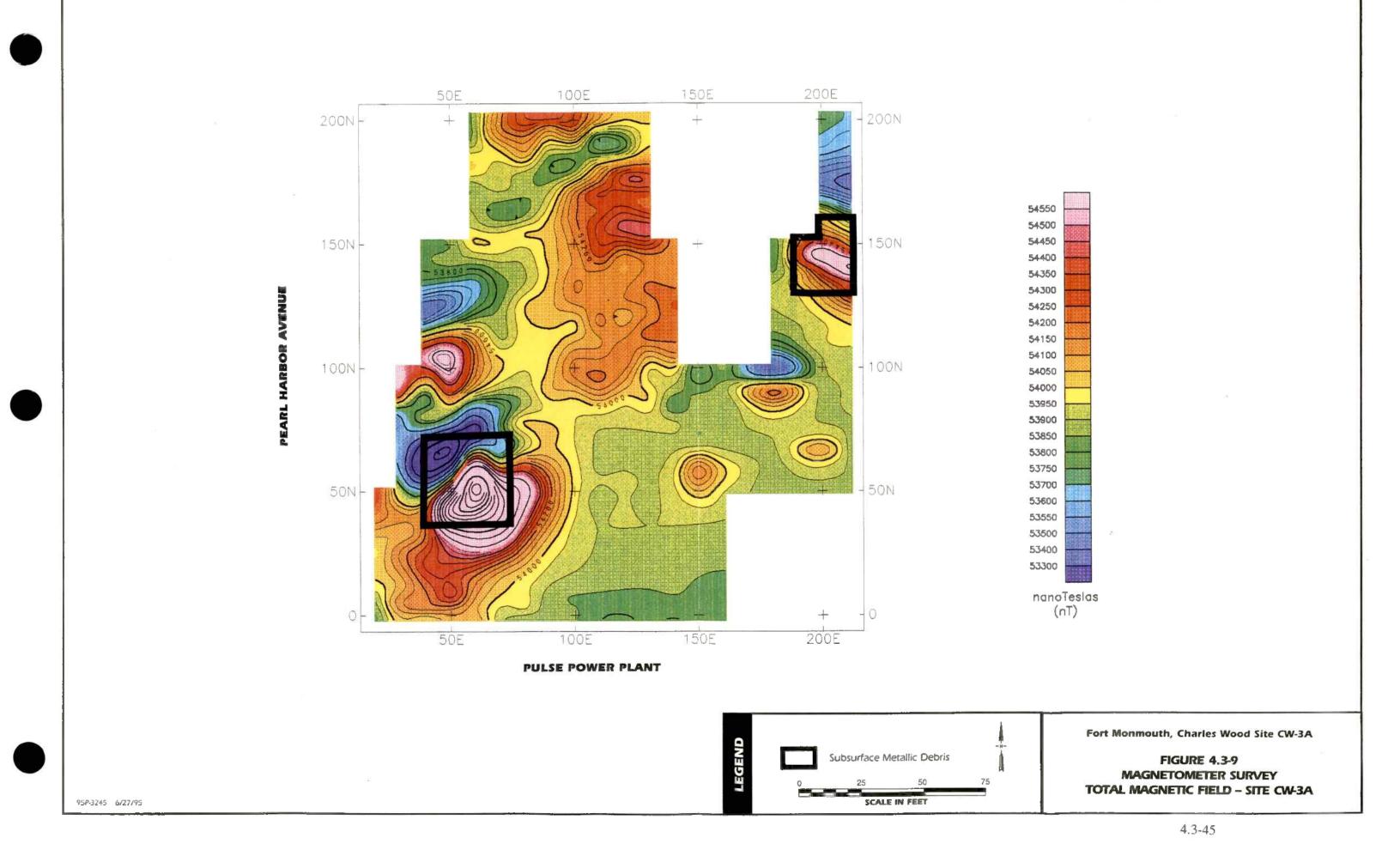
Site CW-3A is also presented in Figure 4.3-6. Surface geophysics were conducted in this area because it was not known if subsurface disposal had occurred in this area and in accessible cleared areas to the southeast in the construction areas. Magnetic and electromagnetic (EM-31) measurements were collected on 10-ft centers. GPR was also used to assess the degree of subsurface soil disturbance.

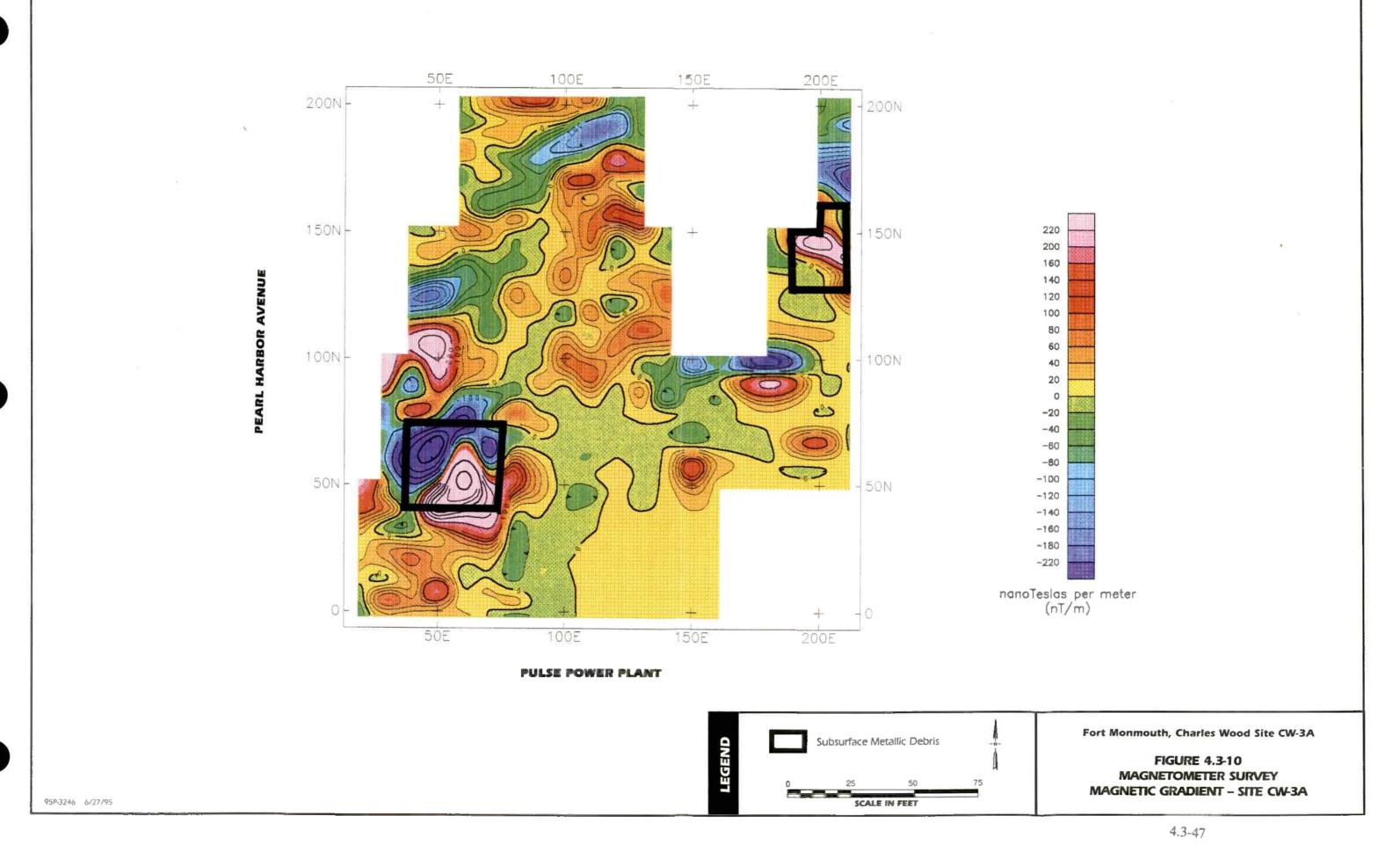
4.3.5.4 Geophysical Results

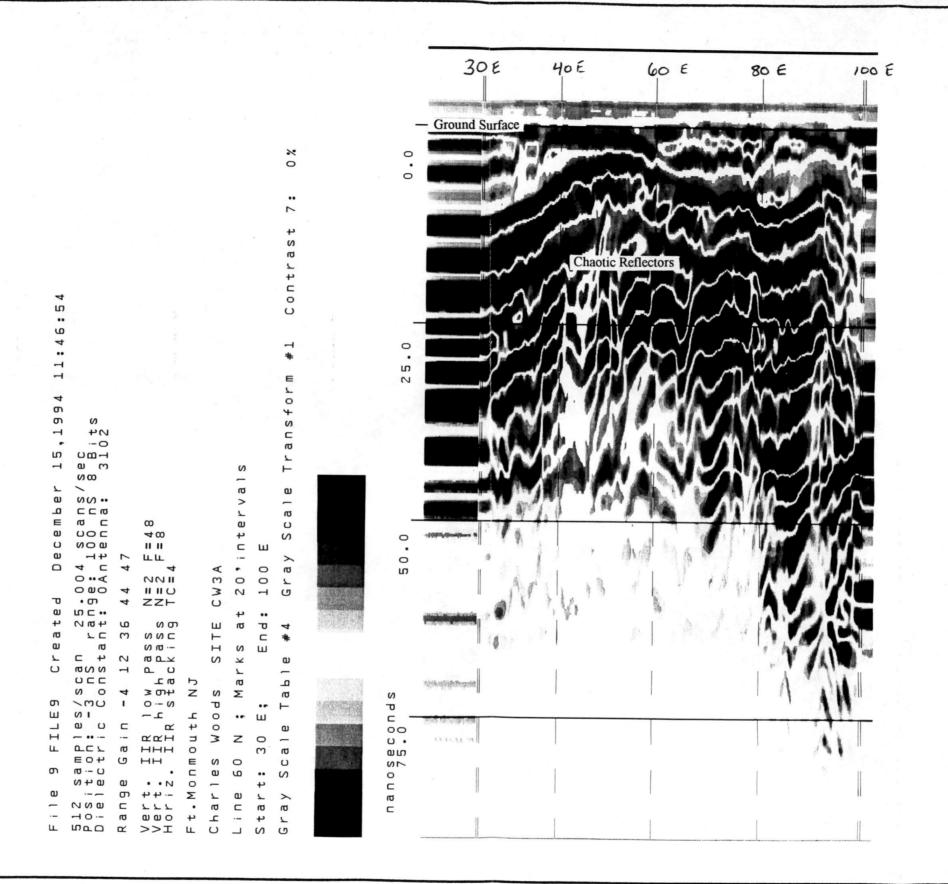
The geophysical investigation at Charles Wood site CW-3A utilized EM, MAG, and GPR methods to characterize the site. Prior to the investigation, a site walk revealed numerous metallic objects on the surface in the form of pipes, sheet metal, metal cans, and concrete, as well as nonmetallic objects such as asphalt and construction debris. The debris was noted and considered during data interpretation.


The EM survey revealed prominent anomalous signatures not attributed to surface debris at grid coordinates 40N to 70N/40E to 70E and 140N to 160N/190E to 210E. These anomalies are shown on the EM quadrature and in-phase contour plots, Figures 4.3-7 and 4.3-8, respectively, as either violet or blue contour intervals (high and low conductivity, respectively). These two EM anomalies are confirmed by the magnetometer survey as being ferrous material. As shown on the total magnetic field and magnetic gradient contour plots, Figures 4.3-9 and 4.3-10, respectively, these anomalies are represented as a high and low pair or magnetic dipole with violet and blue contour intervals. Other subtle anomalies exist throughout the area, as depicted on the EM in-phase plot in Figure 4.3-8, which may indicate metallic debris. However, the size and magnitude of these EM signals are negligible. Also, the EM quadrature plot (Figure 4.3-7) shows high apparent conductivity, represented by the violet contour interval, along the north and western borders of the site. This higher conductivity may be due to a subsurface change in lithology.


The GPR survey at CW-3A revealed chaotic reflectors within grid coordinates 40N to 70N/40E to 70E, confirming the EM and MAG anomalies at a depth of approximately 2 to 3 ft bgs. These chaotic reflectors are indicative of buried metallic debris and are shown on the GPR profile along 60N in Figure 4.3-10A.


4.3.5.5 Recommendations


Geophysical surveys indicated two areas where subsurface metallic debris may be present.


Exploratory trenching will be performed to investigate areas where subsurface metallic debris may be present. Field screening will be conducted with a PID during the excavation. NJDEP will be requested to send a representative to observe the excavation. In the absence of elevated PID readings or evidence of subsurface debris, the excavation will be backfilled and no further action will be taken. If contamination is identified, then sampling will be conducted in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993). Soil sample analytes will be collected and analyzed for the full range of contaminants.

Site CW-4

4.3.6 Range (Small Arms) (CW-4)

4.3.6.1 Site Location

The small arms firing range is a one-story building (Building T-2537) located in the central portion of the Charles Wood area (Figure 4.3-11). The approximate area of site CW-4 is 32,000 ft² (0.7 acre). The range is used for indoor firing of small arms. The small arms are fired into a metal baffle that deflects the rounds down into a sand pit. Currently, the sand is sifted and spent rounds and shell-casings are disposed of off-site. The firing range area is ventilated by a blower through a filter. The filter currently used is a Flanders Filters Model No. 0-00J-C-11-00-CL-12-00-GGF. It has an efficiency of 95%, based on a di-octyl-phthalate (DOP) test. A manufacturer's representative stated that he believes this filter would be close to 100% efficient in removing the likely particulates generated in a firing range.

Spend rounds are visible at the surface of a bare patch of soil about 3 ft in diameter northeast of the building. A pile of sand is on the northwest side of the building.

4.3.6.2 Site History

Interviews with facility personnel indicate that the interior of the building is cleaned periodically. The building is currently in use.

4.3.6.3 Sampling Effort

The CW-4 site is presented in Figure 4.3-11. The facility personnel intend to excavate the soil at the bare patch until spent rounds and shell casings are no longer visible. Because contaminated soil had not been excavated prior to the field effort, one soil boring was installed in place of two of the three surface soil samples proposed in the CDAP. The soil boring was drilled near the debris pile to a depth of 8 ft bgs, where saturation was noted at approximately 6.1 ft bgs. The lithology consisted of an orange-brown sand with trace silt. The soil sample from soil boring SB-01 was collected at a depth of 4 to 6 ft bgs and analyzed for TCL +30 parameters, TAL metals, and TPHs. One surface soil sample was collected from the bottom of

the sand pile (sample SS-01) using a scoop to dig 6 inches below the bottom of the pile in one location. No firing debris was observed. Surface soil boring SS-01 was analyzed for TAL metals only.

4.3.6.4 Soil Sampling Results

Two soil samples were collected, one sample (SB-01) from the 2- to 6-ft bgs sampling interval in the soil boring at the debris pile, and one sample (SS-01) from the 0 to 0.5-ft bgs interval from the sand pile in the rear of the building. The samples were analyzed for the parameters listed in Table 3.6-1. The analytical results for site soils are listed in Appendix D. Table 4.3-7 compares the detected compound concentrations with the NJDEP SCC, and then compares the results with the subsequent site-specific and Monmouth County maximum background concentrations. In addition, the results were also compared with the impact to groundwater SCC because no monitor wells were installed at this site.

VOCs

VOCs were not detected in site soil.

SVOCs

SVOCs were not detected in site soil.

TPHs

Petroleum hydrocarbons were not detected in site soil.

Pesticides/PCBs

Pesticides/PCBs were not detected in site soil.

Table 4.3-7
Fort Monmouth - Charles Wood
Summary of Detected Compounds
In Soils from Site CW-4

COMPOUND	METHOD DETECTION	RESIDENTIAL DIRECT CONTACT	MAXIMUM BACKGROUND	ANALYTICAL RESULTS		
	LIMIT (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)	CONCENTRATION (mg/kg)	SB01-A02 12/21/94 (4-6 ft bgs)	SS01-A01 11/30/95 (0-0.5 ft bgs)	
METALS (mg/kg)					
Aluminum	3.9	NLE	15700	5030	687	
Arsenic	0.35	20 `	31.6	1.5	7.8	
Antimony	0.3	14	ND	ND	2.5	
Barium	0.17	700	26	- 2.7	17.7	
Beryllium	0.1	1	1.7	0.47	0.76	
Calcium	2.2	NLE	653	302	699	
Chromium	1.6	500	128	63.5	58.3	
Cobalt	0.71	NLE	4.5	ND	0.62	
Copper	2.2	600	7.27 ¹	379	3.2	
Iron	0.58	NLE	45500	11500	19700	
Lead	0.4	400 ²	15.1 ¹	1440	8.9	
Magnesium	9.6	NLE	3960	1320	1450	
Manganese	0.18	NLE	120¹	8.8	26.2	
Nickel	1.4	250	8.3	1.5	2.3	
Potassium	(12.3-25.8)	NLE	10600	3490	2720	
Silver	0.54	110	0.261	ND	0.76	
Selenium	0.3	63	0.85	ND	0.33	
Sodium	3.8	NLE	50000	ŇD	16	
Vanadium	0.53	370	59.6	20.6	37.3	
Zinc	0.41	1500	55.6	42.6	24.6	

Compound exceeding NJDEP soil cleanup criteria are noted by bold numbers.

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

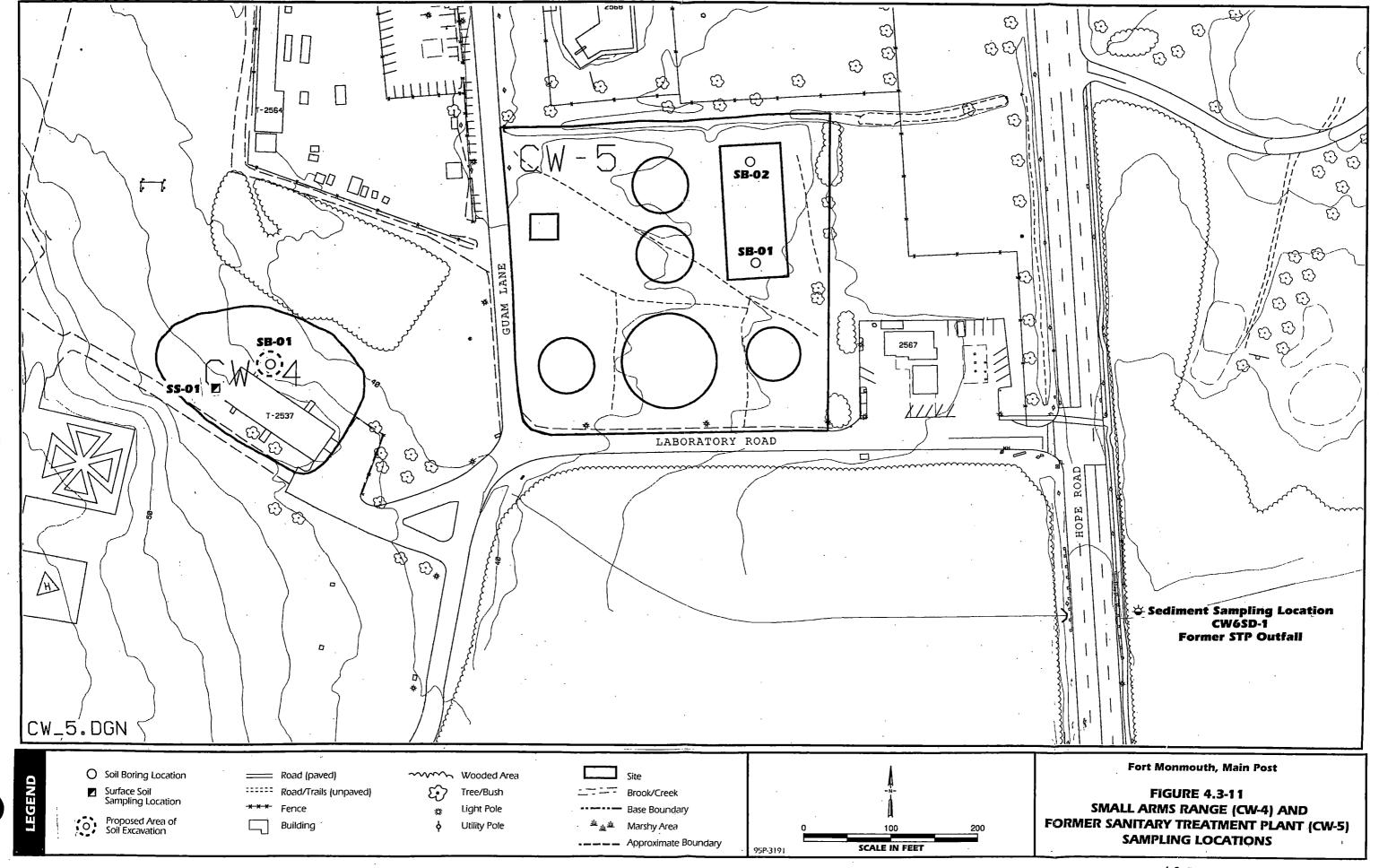
ND - Indicates that the compound was not detected at or below the quantification limits

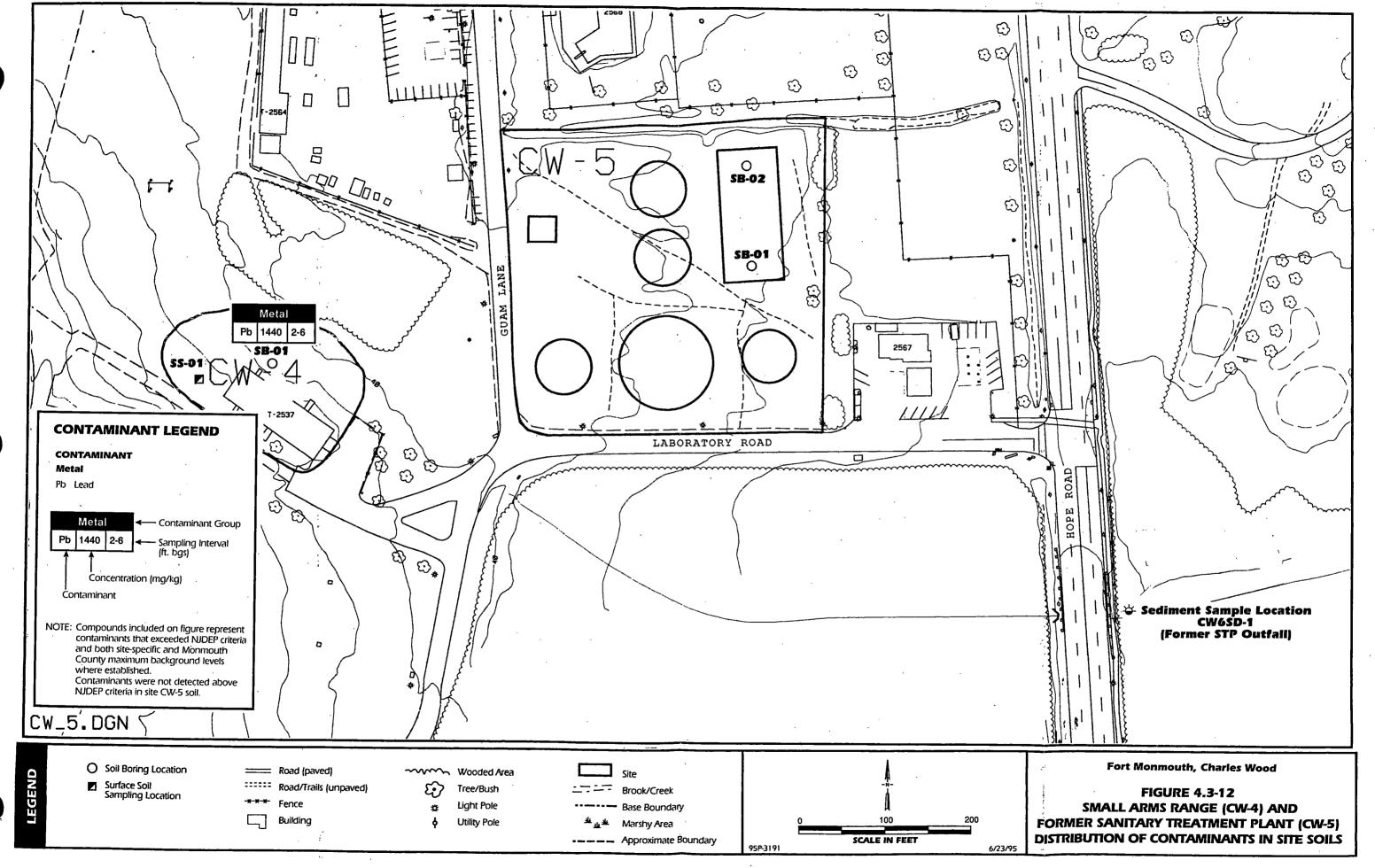
NLE - No Level Established

¹ Monmouth County maximum background concentrations.

² NJDEP criteria are referenced in Site Remediation News, Winter 1995.

Metals


As indicated in Table 4.3-7, of the 20 metals detected in site soil, only lead was found in a concentration exceeding the NJDEP SCC. In addition, lead was detected in a concentration in SB-01 greater than the site-specific and Monmouth County maximum background levels for Charles Wood. The presence of lead in exceedance of criteria in the soil is reflective of the site's use for disposal of spent rounds. Figure 4.3-12 shows the locations of the compounds detected above the NJDEP SCC and above the established background levels for Charles Wood.


4.3.6.5 Recommendations

Soil sampling results indicate that only lead was detected at a concentration exceeding the NJDEP SCC at the spent round disposal area.

DPW has submitted the necessary documentation to HQAMC/AEC to obtain the proper funding to remediate the site in FY 1996. Depending on funding availability, the affected soil will be removed and confirmation samples will be collected at the base of the excavation.

The contaminated soil will be removed and disposed of in accordance with applicable regulations. The area of contamination is approximately 8 feet in diameter. The estimated depth of excavation is assumed to be 7 feet. Excavation will be performed in conjunction with confirmatory sampling to ensure that NJDEP SCC are achieved. It is estimated that 17 yd³ of soil will be excavated, assuming that soil is excavated to a depth of 7 feet. NJDEP will be requested to send a representative to observe the excavation.

Site CW-5

4.3.7 Former Sanitary Treatment Plant (CW-5)

4.3.7.1 Site Location

The former STP at Charles Wood was located in the southwest corner of the area bounded by Hope Road to the east, Corregidor Road to the north, Guam Lane to the west, and Laboratory Road to the south (Figure 4.3-11). The approximate area of the STP was 134,080 ft² (3.1 acres).

4.3.7.2 Site History

The Charles Wood STP was built in 1942 to handle 800,000 gallons of sewage per day. As described in the IA, this STP consisted of a grit chamber screen, comminutor, primary and secondary settling tanks, biofilters, and a baffled contact chlorination tank. Sludge was treated in two anaerobic digesters and discharged to underdrained sand beds for final drying. Supernatant liquid from digester sludge and drainage from the sand beds were recycled through the STP for additional treatment. The chlorinated effluent was discharged to a tributary of Wampum Brook on the east side of Hope Road. Sludge went to the golf course and to landfills. This STP was closed on 29 October 1975 when the Charles Wood sewer system was connected to the NMCRSA system. In 1981, all sludges and supernatant liquids were removed from the STP, and the facility was cleaned and disinfected. The removal contractor was Modern Transportation Co. of Kearny, New Jersey. Mercury used in the distributor seal on the biofilter was removed and disposed of by the Directorate of Logistics. The physical facility was demolished in 1983. In 1993, a youth center was constructed on this site.

4.3.7.3 Sampling Effort

The CW-5 site is presented in Figure 4.3-11. One sediment sample from the outfall area east of Hope Road was collected and analyzed for TCL +30 parameters, TAL metals, and cyanide. Two soil borings were completed and soil samples collected in an effort to evaluate the impact of the former sludge-drying beds on soil quality in the original land surface. Soil borings SB-01 and SB-02 were completed to 8- and 6-ft bgs, respectively. Saturation was observed between 5.5- and 7-ft bgs. The lithology consisted of a yellow-brown gravelly sand fill underdrain by a

11/30/95

greenish-gray silty sand. Soil boring samples were analyzed for TCL +30 parameters, TAL metals, and cyanides.

4.3.7.4 Soil Sampling Results

Two soil samples, one in each borehole, were collected from the 6- to 8-ft bgs sampling interval and were analyzed for the parameters listed in Table 3.6-1. The analytical results for site soils are listed in Appendix D. Table 4.3-8 compares the detected compounds with the NJDEP SCC, and then compares the results with the site-specific and Monmouth County maximum background levels. In addition, the detected compounds were also compared with the impact to groundwater SCC because no monitor wells were installed at this site.

VOCs

One VOC (2-butanone) was detected in SB-01. The concentration was detected well below both applicable SCC (residential and impact to groundwater) and background. 2-Butanone is a common laboratory contaminant.

SVOCs

One SVOC was detected above the laboratory quantitation limit in site soil in SB-01, but below the NJDEP SCC and background. In addition, all compounds detected below quantitation limits were also detected well below both SCCs.

Pesticides/PCBs

Five pesticides and two PCBs were detected in concentrations above laboratory quantitation limits in SB-01 and SB-02, but were detected well below both of their respective SCCs and background.

Table 4.3-8 Fort Monmouth - Charles Wood Summary of Detected Compounds in Soil from Site CW-5

COMPOUND	METHOD RESIDENTIAL DETECTION DIRECT CONTACT		MAXIMUM BACKGROUND	ANALYTICAL RESULTS	
	LIMIT (mg/kg)	SOIL CLEANUP CRITERIA (mg/kg)	CONCENTRATION (mg/kg)	SB01-A02 12/20/94 6-8 ft bgs	SB02-A02 12/20/94 6-8 ft bgs
VOC's (mg/kg)					
2-Butanone	0.0041	1000	ND	0.013	0.01 J
SVOC's (mg/kg)					
Indeno(1,2,3-cd)pyrene	0.234	0.9	ND	0.066 J	ND
Benzo(a)anthracene	0.162	0.9	0.046 J	0.14 J	ND
bis(2-Ethylhexyl)phthalate	0.32	49	0.17 J	0.21	ND
Benzo(b)fluoranthene	0.188	0.9	0.078 J	0.22 J	ND
Benzo(k)fluoranthene	0.205	0.9	0.041 J	0.084 J	ND
Benzo(a)pyrene	0.162	0.66	0.047 J	0.110 Ј	ND
Chrysene	0.145	9	0.083 J	0.15 J	ND
Fluoranthene	0.198	2300	0.042 J	0.21 J	ND
Phenanthrene	0.165	NLE	ND	0.085 J	ND
Pyrene	0.178	1700	0.048 J	0.25 J	ND _
PESTI (SIDES (mg/kg)					
Aroclor-1254	0.042	0.49	ND	0.17	ND
Aroclor-1260	0.042	0.49	ND	0.15	ND
alpha-Chlordane	0.002	NLE	ND	0.0084 P	ND
gamma-Chlordane	0.002	NLE	ND	0.0092	ND
4,4'-DDE	0.0037	2	0.071	0.21 P	0.0058
4,4'-DDD	0.0037	3	ND	0.087	0.0035 J
4,4'-DDT	0.0037	2	0.053	0.087	ND
METALETOTALE (mg/kg)					
Aluminum	3.9	NLE	15700	3920	3400
Arsenic	0.35	20	31.6	3.8	1.5
Barium /	0.17	700	26	36.2	21
Beryllium	0.1	1	1.7	0.14	0.32
Calcium	2.2	NLE	653	1000	851
Chromium	1.6	/ 500	128	42.2	38.3
Colbalt	0.71	NLE	4.5	1	ND
Copper	2.2	600	7.271	21.5	2
Iron	0.58	NLE	45500	8950	5930
Lead	0.4	400 ²	15.1 ¹	20.7	3.3
Magnesium	9.6	NLE	3960	527	717
Manganese	0.18	NLE	120¹	19.7	7.2
Mercury	0.49	14	ND	0.63	ND
Nickel	1.4	250	8.3	2.7	1.6
Potassium	(12.3-25.8)	NLE	10600	944	1880
Silver	0.54	110	.261	7.4	ND
Sodium	3.8	NLE	56.8	28.9	13.5
Selenium	0.3	63	0.85	0.4	0.35
Thallium	0.36	2	ND	ND	0.33
Vanadium	0.53	370	59.6	20.7	21.4
Zinc	0.41	1500	55.6	40.4	11.4

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

ND - Indicates that the compound was not detected at or below the quantification limits

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

P-The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported

¹ Monmouth County maximum background concentrations.

² NJDEP criteria are referenced in Site Remediation News, Winter 1995.

Metals

As indicated in Table 4.3-8, all metals detected in site soils were found in concentrations below the NJDEP SCC, where established.

4.3.7.5 Sediment Sampling Results

The STP sediment sampling location was determined to be freshwater because the area is not tidally influenced. One sediment sample, CW6SD-1, was collected at the former outfall of the STP (Figure 4.3-11).

VOCs

VOCs were analyzed for but were not detected in site sediment samples.

SVOCs

One SVOC [bis(2-ethylhexyl) phthalate] was detected above the laboratory quantitation limit from location C6SD1. NJDEP sediment guidance values are not established for this compound. This compound is a common laboratory contaminant.

Pesticides/PCBs

Three pesticide compounds (4,4'-DDD, 4,4'-DDT, and 4,4'-DDE) were detected in concentrations exceeding the NJDEP sediment guidance criteria. However, the concentrations were found in levels below their respective background concentrations. PCBs were not detected in site sediment samples.

Metals

As indicated in Table 4.3-9, no metals were detected in concentrations greater than the NJDEP sediment guidance criteria.

4.3.7.6 Recommendations

Three compounds (4,4'-DDT, 4,4'-DDD, and 4,4'-DDE) were detected in the sediment at levels that were above the NJDEP sediment guidance criteria but below background. Soil results were below the NJDEP SCC and established maximum background.

No further action will be taken.

Table 4.3-9

Fort Monmouth - Charles Wood Summary of Detected Compounds in Sediment Site CW-5

COMPOUND	METHOD DETECTION	NJDEP SEDIMENT	MAXIMUM DETECTED	ANALYTICAL RESULTS GIVEN BY WESTON SAMPLE LOCATION	
	LIMIT	GUIDANCE *	BACKGROUND CONCENTRATION	C6SD-1	
	(mg/kg)	(mg/kg)	(mg/kg)	12/1/94	
SVOCs (mg/kg)			, , , ,		
bis-(2-Ethylhexy)phthalate	0.32	NLE	0.23	0.45	
Dimethylphthalate	0.145	NLE	ND	0.40 J	
Di-n-butylphthalate	0.215	NLE	0.12	0.081 J	
Di-n-octyl phthalate	0.185	NLE	ND	0.11 J	
PAHs (mg/kg)					
Benzo (a)anthracene	0.162	0.23	0.09	0.079 J	
Benzo (b)fluoranthene	0.188	NLE	0.16	0.1 J	
Chrysene	0.145	0.4	0.14	0.087	
Fluoranthene	0.198	0.6	0.12	0.16 J	
Phenanthrene **	0.165	0.225, 0.326	0.079	0.098 J	
Pyrene	0.178	0.35	0.41	0.19 J	
PESTICIDES/PCBs (mg/kg)					
4,4'-DDD	0.0042	0.002	0.015	0.005 P	
4,4'-DDE	0.0042	0.002	0.096	0.0067	
4,4'-DDT **	0.0042	0.003, 0.00183	0.11	0.0029 JP	
Heptachlor epoxide	0.0021	NLE	ND	0.0042 P	
METALS TOTAL (mg/kg)					
Aluminum	6.1	NLE	6660	866	
Arsenic	0.35	33	5.8	0.74	
Barium	0.48	NLE	45.7	9.6	
Calcium	2.7	NLE	2960	509	
Chromium	1.5	80	36.9	7.8	
Cobalt	0.64	NLE	4.2	1.3	
Соррег	0.55	70	24.5	7.4	
Iron	1.1	NLE	19600	6910	
Lead	1.8	35	142	9.3	
Magnesium	8.7	NLE	2560	320	
Manganese	0.45	NLE	[,] 65.1	25.8	
Potassium	186	NLE	1700	256	
Sodium	3.5	NLE	271	54	
Vanadium	0.66	NLE	39.5	5.4	
Zinc	0.64	120	126	22.5	

Compounds detected above NJDEP Sediment Guidance are bolded.

^{*-} NOAA (1990) ER-L guidance. Values for DDE and DDD are not presented in NJDEP Sediment Quality Evaluations (1991).

^{** -} Standards developed using equilibrium partioning approach in accordance with NJDEP Guidance for Sediment Quality Evaluation (1991). Total organic carbon concentrations of 1% assumed based on organic carbon content detected in adjacent sample.

ND - Compound was not detected at or above the quantification limit.

NLE - No Level Established

J - Concentration was estimated due to detection at or below the quantification limit

P - The percent difference between the results from the two GC columns is greater than 25%, the lower of the two values is reported

Site CW-6

4.3.8 Pesticide Storage Building T-2044 (CW-6)

4.3.8.1 Site Location

Building T-2044 is part of a small complex of buildings in the south-central portion of the Charles Wood area. The complex consists of Building T-2044, Building T-2070, and two metal igloos. The buildings are currently used to store golf course maintenance and landscaping equipment, such as mowers and tractors. The approximate area of site CW-6 is 25,000 ft² (0.6 acre).

4.3.8.2 Site History

The golf course maintenance complex may predate the purchase of the golf course by the Army. Pesticides and herbicides were formerly stored and mixed in this area. The IA contains a 1979 inventory of pesticides and herbicides that were used on the golf course and stored in Building T-2044. Some of the pesticides that were present in significant quantities are malathion, floriable sevin, resmithrin, Borocel IV, chlordane, and Dibrom. The IA also discusses a pest control program that was in effect in 1979. The compounds that were used in large quantities include carbaryl (sevin), malathion, chlordane, and diazinon. Some of the herbicides mentioned in the IA include 2,4-D, Dacthal, 2,4,5-T, and sodium arsenite.

The course groundskeeper, who has been part of the grounds crew for 33 years (1960 to 1993), said pesticides and herbicides were kept in a metal igloo and were mixed in two areas marked A and B in Figure 4.3-13. Area A is on a currently grass-covered area south of the igloo. At area A two USTs were excavated and the chlordane-contaminated soil was disposed of in spring 1995. Area B is on pavement near the office door in T-2044. This paved area has a drain that empties into a ditch in the woods immediately behind T-2044. The supervisor said that pesticide containers were not rinsed, but were disposed of to the landfill as is. Prior to 1980, the containers would have been disposed of at a landfill on the Main Post, such as site M-8.

Pesticides and herbicides are not currently stored or mixed on-site. The facility has hired an outside contractor to come in and apply pesticides and herbicides.

4.3.8.3 Sampling Effort

Limited sampling in 1989 determined that NJDEP SCC were exceeded in one soil sample. The sampling report did not clearly identify the location of the sample.

To confirm the existence of contamination and evaluate the effect on groundwater, two soil borings were completed at locations where pesticides mixing was believed to have occurred. These locations are just north of Building T-2044 (SB-02) and just south of the pavement that extends in front of Building T-2044 (SB-34). The borings were advanced to the water table and soil samples were taken at 6 to 12 inches and at 2 feet and analyzed for TCL +30 parameters. One surface soil sample was taken in the runoff ditch that runs into the woods southwest of Building T-2044 (Figure 4.3-13).

One monitor well was installed in these borings (MW-34), shown in Figure 4.3-13, and groundwater samples were collected in two sampling rounds and analyzed for TCL +30 parameters. Furthermore, a pre-existing monitor well (MW-01) was sampled twice for TCL +30 parameters in an effort to further evaluate the nature and extent of contamination on site groundwater quality.

The location of the monitor well proposed in the CDAP (MW-35) at site CW-6 was moved to site CW-9 because an existing monitor well was located near the proposed well location.

4.3.8.4 Hydrogeologic Interpretation

The lithologic logs from MW-34 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by a brown fine-medium-grained sand with-olive-brown sand laminae. Saturation was observed at approximately 4 ft bgs. Monitor well MW-34 was screened across the water table and was drilled to 14.5 ft bgs. Water-level elevation data, measured on 6 March 1995, prior to the March sampling round, indicate that local groundwater flow is east toward site CW-9 (Figure 4.3-14).

The following subsections summarize the soil and groundwater analytical results for site CW-6.

4.3.8.5 Soil Sampling Results

A total of four soil samples were collected: two in the MW-34 borehole, one in SB-02, and one in SS-01. The soil samples were analyzed for the parameters listed in Table 3.6-1. Sample depths of soil borings were 0 to 2 and 2 to 4 ft bgs in SB-34 and 0.5 to 1 ft bgs in SB-02. The surface soil sample was collected from 0 to 0.5 ft bgs. The analytical results for site soils at specific sampling intervals are listed in Appendix D. Table 4.3-10 compares the detected compounds with the NJDEP SCC, and then compares the results with the site-specific and Monmouth County maximum background concentrations, where appropriate.

VOCs

1

VOCs were not detected in site soil.

SVOCs

SVOCs were not detected above laboratory quantitation limits in site soil.

Pesticides/PCBs

Seven pesticides were detected above laboratory quantitation limits in either SB-34, SB-02, and SS-01 from predominantly the 0- to 2-ft bgs sampling interval. In addition, one compound (dieldrin) was detected in a concentration exceeding the NJDEP SCC and background in SB-34 (0 to 2 ft bgs). Subsequently, dieldrin was not detected in groundwater samples from MW-34. Three of the compounds detected were below the NJDEP SCC and three do not have established criteria. PCBs were not detected in site soil. Figure 4.3-15 presents the locations of compounds detected above maximum background and the NJDEP criteria.

Table 4.3-10 Fort Monmouth - Charles Wood Summary of Detected Compounds In Soil at Site CW-6

COMPOUND	METHOD DETECTION	RESIDENTIAL DIRECT CONTACT	MAXIMUM BACKGROUND	ANALYTICAL RESULTS			
	LIMIT	SOIL CLEANUP CRITERIA	CONCENTRATION	SB34-A01 1/3/95	SB34-A02 1/3/95	SB02-A01 5/10/95	SS01-A01 11/30/94
	(mg/kg)	(mg/kg)	(mg/kg)	(0-2 ft bgs)	(2-4 ft bgs)	(0.5-1 ft bgs)	
SVOC's (mg/kg)							
Phenanthrene	0.165	NLE	- ND	ND	0.24 J	ND	ND
Fluoranthene	0.198	2300	0.042 J	0.049 J	0.18 J	ND	ND
Pyrene	0.178	1700	0.048 J	0.056 J	0.270 J	ND	ND
Benzo(a)anthracene	0.162	0.9	0.046 J	ND	0.160 J	ND	. ND
Chrysene	0.145	9	0.083 J	ND	0.15 J	ND	ND
Benzo(b)fluoranthene	0.188	0.9	0.078 J	ND	0.11 J	ND	ND
Benzo(a)pyrene	0.162	0.66	0.047 J	ND	0.087 J	ND	ND
Indeno(1,2,3-cd)pyrene	0.234	0.9	ND .	ND	0.054 J	ND .	ND
Benzo(g,h,i)perylene	0.224	NLE	0.042 Ј	0.057	0.066	ND	ND
PESTICIDES (mg/kg)							
Heptachlor epoxide	-0.002	NLE	ND	0.018 P	ND	0.0078 P	0.032 R
Dieldrin	0.0039	0.042	ND	0.061 DP	ND	ND	ND
alpha-Chlordane	0.002	NLE	ND	0.14 P	0.0034 P	.07 JD	0.870 CD
gamma-Chlordane	0.002	NLE	ND	0.11 P	0.0027 P	.068 JD	0.800 CD
4,4'-DDE	0.0037	2 '	0.071	0.074 P	ND	0.34 JCD	0.13
4,4'-DDD	0.0037	3	0.053	0.0095 P	ND	2.9 CD	0.86 C
4,4'-DDT	0.0037	2	ND	0.180 P	.011 P	ND	0.81 C
METALS TOTAL (mg/kg	2)						
Aluminum	3.9	NLE	15700	NS	NS	NS	5130
Arsenic	0.35	20	31.6	NS	NS	NS	11.6
Barium	0.17	700	26	NS	NS	NS	72.2
Calcium	2.2	NLE	653	NS	NS	NS	4430
Cadmium	0.86	'1	0.135^{2}	NS	NS-	NS	4.4
Chromium	1.6	500	128	NS	NS	NS	65.8
Copper	2.2	- 600	7.272	NS	NS	NS	69.8
Iron	0.58	, NLE	45500	NS	NS	NS	10900
Lead -	0.4	4003	15.1 ²	NS	NS	NS	203
Magnesium	9.6	NLE	3960	NS	NS	NS	1260
Manganese	0.18	NLE	120 ² ·	NS	NS	NS	78.8
Mercury	0.49	14	ND	NS	NS	NS	6
Potassium	(12.3-25.8)	NLE	10600	NS	NS	NS	1420
Silver	0.54	110	0.262	NS	NS	NS	1.5
Sodium	3.8	NLE	56.8	NS	NS	· NS	103
Selenium	0.3	63	0.85	NS	NS	NS	0.7
Vanadium	0.53	370	59.6	NS	NS	NS	21.8
Zinc	0.41	1500	55.6	NS	NS	NS	463

Compounds exceeding NJDEP soil cleanup criteria are bolded

NA - Not Analyzed; NS - Not Sampled

NLE - No Level Established

C - Pesticide identification was confirmed by GC/MS

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

Note: Metals were analyzed (SS-01), but were not proposed in the scope of work.

ND - Compound was not detected at or below the quantification limits

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits

D - Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis

P - The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported

R - Data rejected, URS The Data Validator

^{(1) -} VOC/SVOC's were collected from 6" to 12" bgs, pesticides and metals were collected from 0"-6" bgs.

² Monmouth County maximum background concentrations.

³ NJDEP criteria are referenced in Site Remediation News, Winter 1995.

Metals

As indicated in Table 4.3-10, of the 18 metals detected in site soils, only cadmium was found in a concentration exceeding the NJDEP SCC in SS-01. In addition, cadmium was detected in a concentration greater than that determined for site-specific and Monmouth County maximum background at Charles Wood. However, in accordance with the NJDEP Cleanup Standards for Contaminated Sites (NJDEP, 1992), the arithmetic mean of cadmium was calculated from the 10 surface soil samples at sites CW-6 and CW-9, since the samples were collected within the same sampling interval (0 to 6 inches). The arithmetic mean or concentration was then compared with the NJDEP SCC and established background. The arithmetic mean (1 mg/kg) was found at a level equal to the NJDEP SCC (1 mg/kg). However, sites CW-06 and CW-09 are located on a golf course. A Summary of Selected Soil Constituents and Contaminants at Background Locations in New Jersey, 1993, provides a separate background concentration level for cadmium in golf course areas. When comparing the arithmetic mean of the analytical results at the two sites with the arithmetic mean for cadmium on golf courses in Table 9 of that document (2.26 mg/kg), the analytical result is found in a concentration below established background. Cadmium is reported in higher concentrations on golf courses due to the direct application of fertilizers, herbicides, and pesticides (Field et al., 1993). Therefore, cadmium is not considered a compounds of concern. Although metals were sampled for in surface soil location SS-01, a metals analysis was not proposed in the original scope of work.

4.3.8.6 Groundwater Sampling Results

Monitor wells MW-34 and MW-1 were sampled for the analytical parameters listed in Table 3.8-1. The analytical results for groundwater samples from the individual sampling rounds are listed in Appendix D. Table 4.3-11 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results with the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate.

Table 4.3-11 Fort Monmouth - Charles Wood Summary of Average Concentrations of Detected Compounds in Groundwater - Site CW-6

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE		
	(µg/L)	QUALITY CRITERIA (µg/L)	CONCENTRATION (µg/L)	MW34 2/10/95, 3/13/95 (avg.)	MW01 5/10/95, 5/27/95 (avg.)	
VOC (µg/L)					1 (-5/	
Benzene	2.4**	1*	ND	ND .	8	
Ethylbenzene	3.1	700	ND	ND	1J	
Xylene (total)	3.8	40	ND	ND	2Ј	
Pesticide and PCB's (µg/L)						
4,4'-DDD	0.097	0.1	ND	ND	0.086J	
gamma-chlordane	0.046	NLE	ND	ND	.035JP	
alpha-chlordane	0.046	NLE	ND	ND	0.0545	

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

ND - Indicates that the compound was not detected

J - Indicates that the concentration value was estimated due to detection at or near the detection limits

^{** -} Method detection limit exceeded NJDEP groundwater quality criteria

P - Percent difference between the results from the GC columns is greater than 25%, the lower of the two values is reported

VOCs

One VOC (benzene) was detected above the laboratory quantitation limit in MW-1 from the February sampling round only. In addition, benzene was found in a concentration exceeding the NJDEP GWQC. Figure 4.3-15 presents the locations of the compounds detected above both background and criteria.

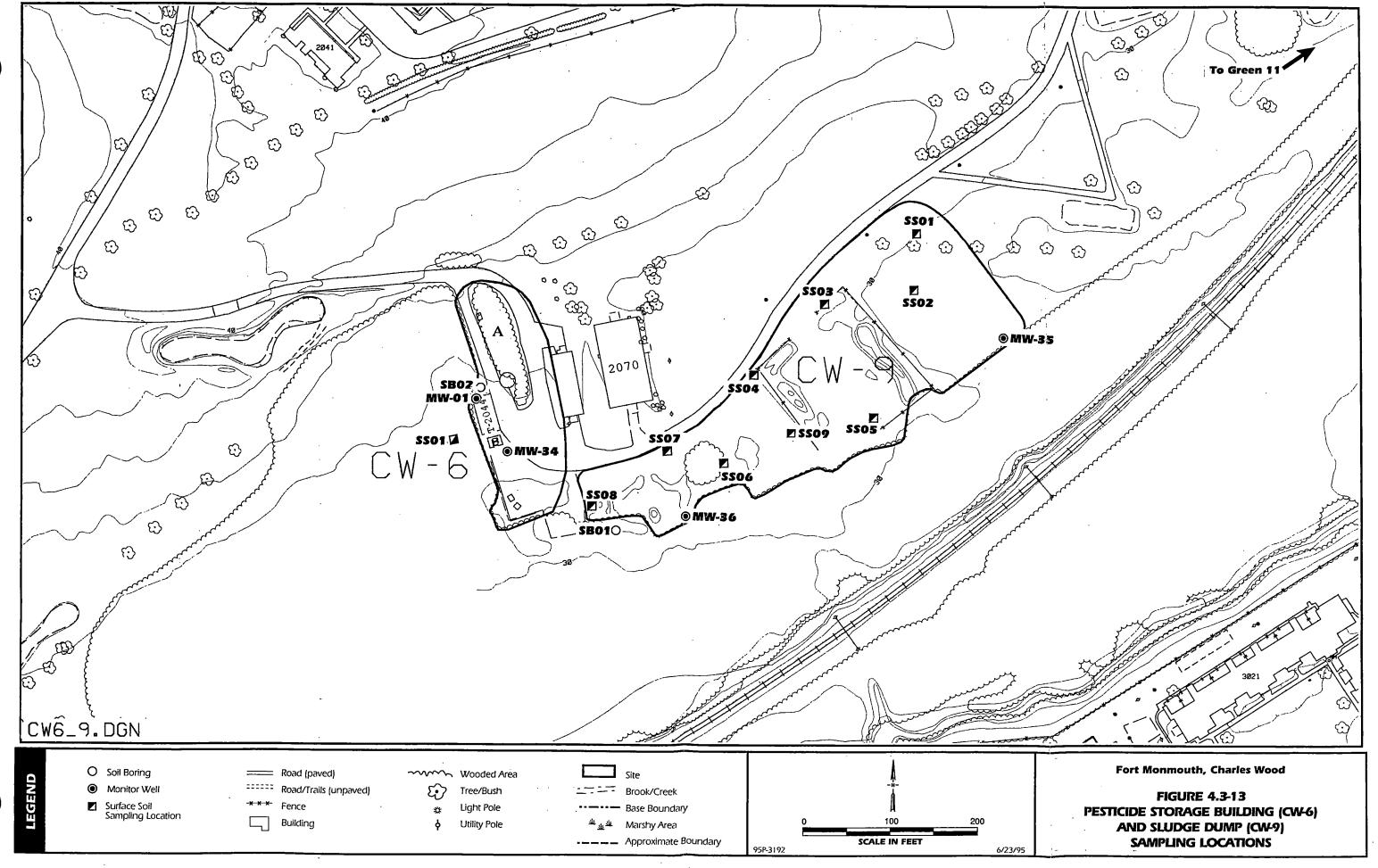
SVOCs

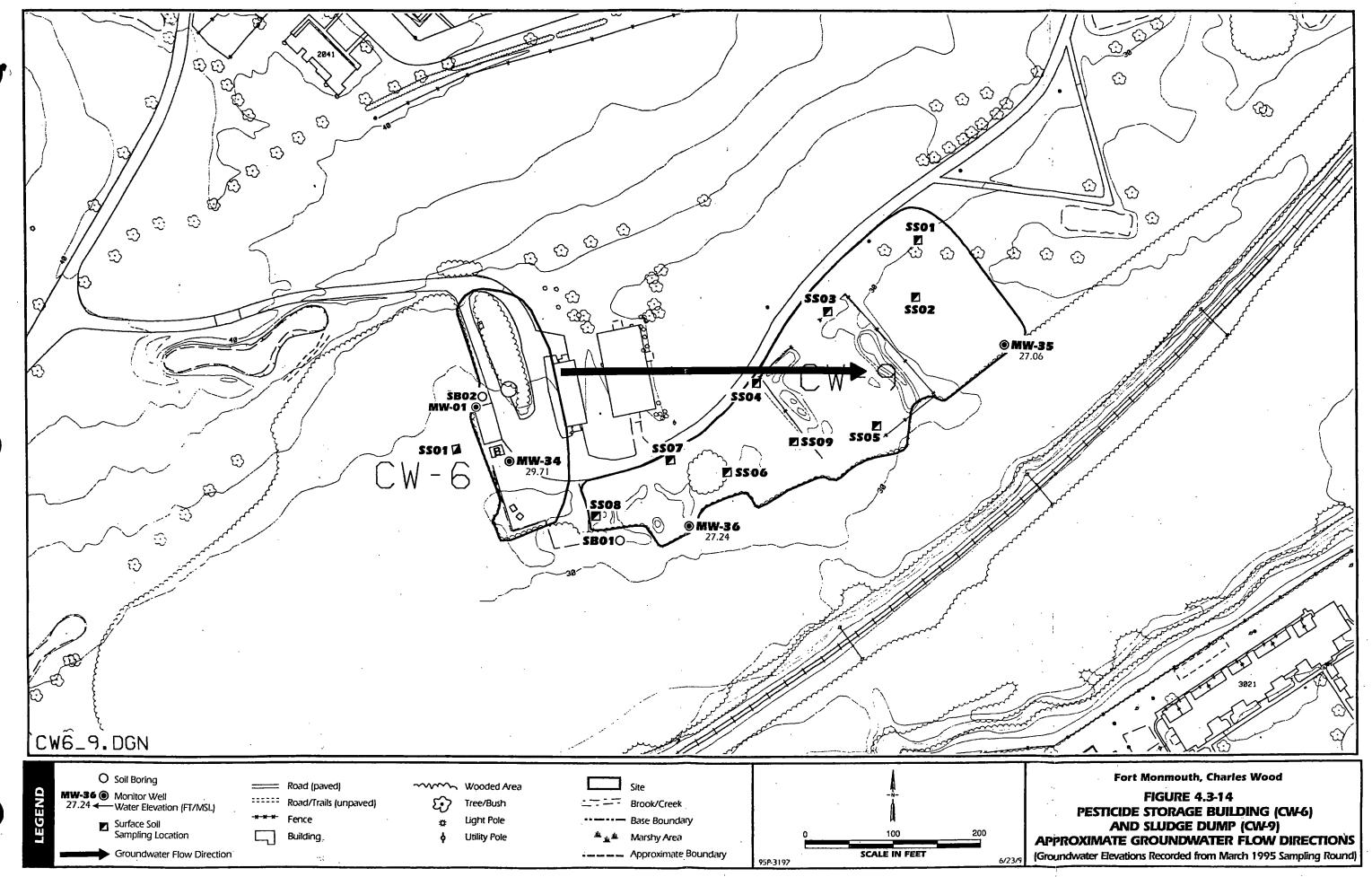
SVOCs were not detected above laboratory quantitation limits in site monitor wells MW-34 and MW-1 from either sampling round. In addition, SVOCs were detected below the NJDEP GWOC.

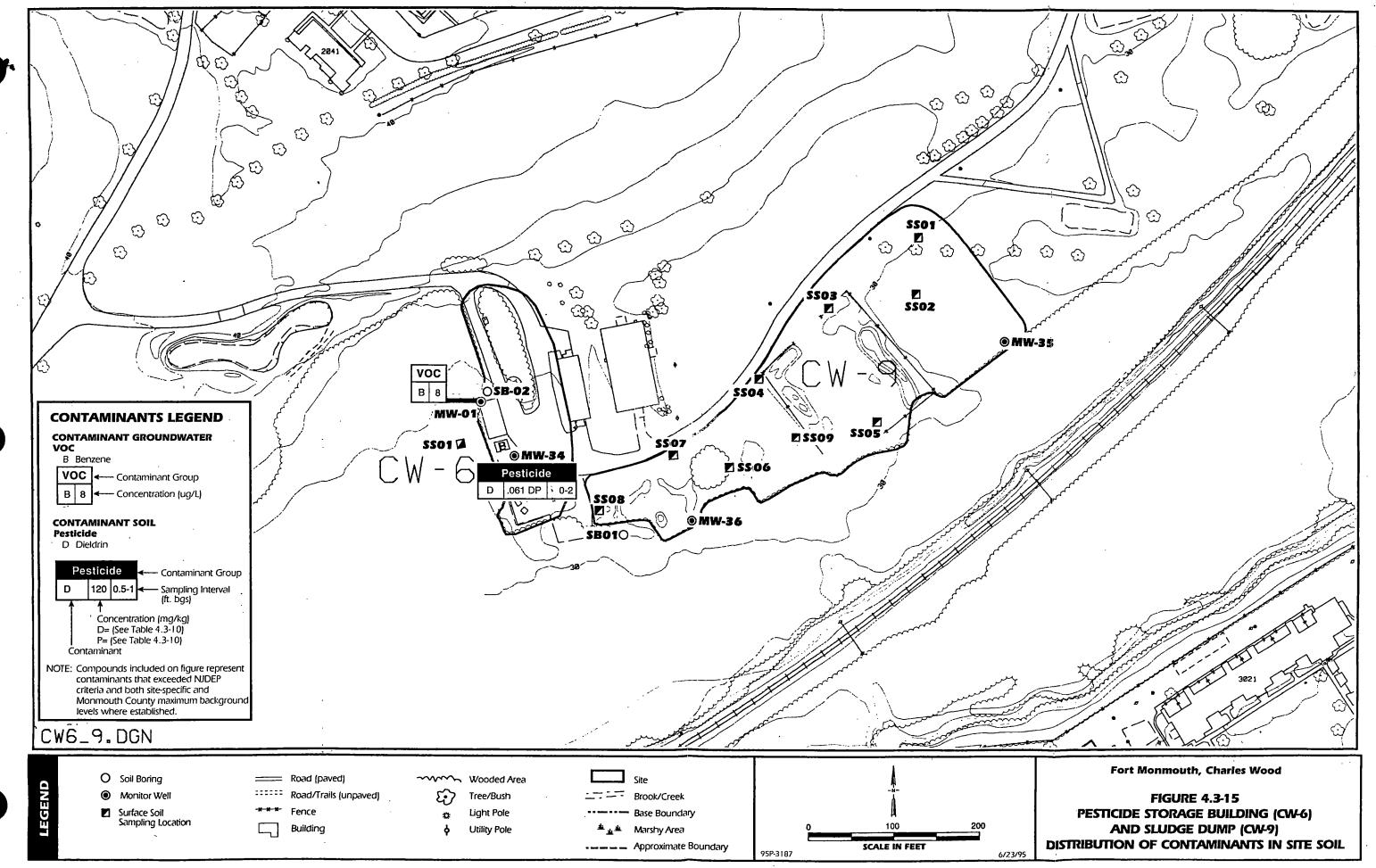
Pesticides/PCBs

One pesticide (alpha-chlordane) was detected in a concentration slightly above the laboratory quantitation limit in MW-1; however, NJDEP GWQCs are not established for alpha-chlordane. PCBs were not detected in site monitor wells from either sampling round.

4.3.8.7 Recommendations


The pesticide dieldrin and the metal cadmium were detected in the soil at two different locations, each at levels that exceeded NJDEP SCC and background. However, the average concentrations of dieldrin and cadmium in surface soil samples at CW-6 and CW-9 did not exceed the NJDEP SCC. Cadmium is typically present at elevated levels at golf courses. Groundwater samples indicated that benzene was detected in the existing monitor well (MW-1), which is attributed to a previously removed UST. Benzene was not detected in downgradient wells. Pesticides were not detected in any groundwater samples above NJDEP criteria.


NJDEP groundwater criteria were exceeded for one VOC, but the measured value was just slightly above the GWQC. Therefore, no immediate remedial action is necessary.


DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further

evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

Site CW-9

4.3.9 Sludge Dump (CW-9)

4.3.9.1 Site Location

The sludge dump (CW-9) as identified in the IA is located in the southern part of Charles Wood, south and southeast of Building 2070 and west of green 11 and tee 12 of the golf course (Figure 4.3-13). The approximate area of site CW-9 is 79,933 ft² (1.8 acres).

4.3.9.2 Site History

Since the 1940s, sludge generated at the STPs has been stored in this area before being used as a soil conditioner and fertilizer on the golf course. Sludge piles are visible in the 1957, 1961, 1974, and 1981 aerial photographs. During the 1993 site visit, a pile of sludge removed from fairway 1 on the golf course was observed south of Building 2070. According to long-term Fort Monmouth employees, at least three other fairways (8, 10, and 11) have 4 to 5 inches of sludge over the native sand; sludge may have been used to fill in low areas.

4.3.9.3 Sampling Effort

Two monitor wells were installed (MW-35 and MW-36), one soil sample from soil boring SB-01 and nine from surface soil locations SS-01 through SS-09 were collected, and two rounds of groundwater sampling were conducted in an effort to evaluate the impact of past site activities on soil and groundwater quality. Monitor wells MW-35 and MW-36 and soil boring SB-01 were analyzed for TCL +30 parameters and TAL metals. Surface soil locations SS-01 through SS-09 were analyzed for TAL metals only. The sampling locations are presented in Figure 4.3-13. MW-35 was relocated from site CW-6 because an existing monitor well was located at the proposed well location. The monitor well (MW-35) was then relocated to a downgradient location at CW-9 to monitor groundwater quality downgradient of the area under investigation.

11/30/95

4.3.9.4 Hydrogeologic Interpretation

Lithologic logs from MW-35 and MW-36 indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by an orange-olive-brown predominantly medium-grained quartz sand with silt laminae. Saturation was observed at 4 ft bgs. Monitor wells were screened across the water table, with total depths of 14.5 and 14 ft bgs in MW-35 and MW-36, respectively. Water-level elevation data, measured on 6 March 1995, prior to the March 1995 sampling round, indicate that the local groundwater flow direction is east (Figure 4.3-14). Based on groundwater elevation measurements, monitor wells MW-35 and MW-36 are downgradient of the area under investigation.

4.3.9.5 Soil Sampling Results

One soil sample was collected from the 2- to 4-ft bgs sampling interval in a boring installed to a depth of 6 ft bgs. One sample from each surface soil location was collected from the 0- to 0.5-ft bgs interval. The soil samples collected were analyzed for the parameters listed in Table 3.6-1. The analytical results for site soil are listed in Appendix D. Tables 4.3-12 and 4.3-13 compare the compounds detected with the NJDEP SCC, and then compare the results with the subsequent site-specific and Monmouth County maximum background concentrations, where appropriate.

VOCs

VOCs were not detected in site soil.

SVOCs

SVOCs were not detected above laboratory quantitation limits in site soil.

Table 4.3-12
Fort Monmouth - Charles Wood
Summary of Detected Compounds in Soil from Boring Location SB-01
Site CW-9

COMPOUND	METHOD DETECTION LIMIT (mg/kg)	RESIDENTAL DIRECT CONTACT SOIL CLEANUP CRITERIA (mg/kg)	MAXIMUM BACKGROUND CONCENTRATION (mg/kg)	ANALYTICAL RESULTS SB01-A02 1/4/95 (2-4 ft bgs)
SVOCs (mg/kg)	1 (8 8)	(35)	(66)	C + wogay
Di-n-butylphthalate	0.215	5700	ND	0.076
PESTICIDES (mg/kg)				
4,4'-DDE	0.0037	2	0.071	0.0076 P
4,4'-DDT	0.0037	2	0.053	0.008 P
METALS TOTAL (mg/l	(g)			
Aluminum	3.9	NLE	15700	
Arsenic	0,35	20	31.6	2.6
Barium	0.17	700	26	6.6
Beryllium	0.1	1	1.7	0.39
Calcium	2.2	NLE	653	366
Cobalt	0.71	NLE	4.5	1
Chromium	1.6	500	128	44
Соррег	2.2	600	7.271	2.3
Iron	0.58	NLE	45500	9720
Lead	0.4	400 ²	15.11	3.9
Magnesium	9.6	NLE	3960	698
Manganese	0.18	NLE	120¹	11.9
Mercury	0.49	. 14	ND	0.12
Nickel	1.4	250	8.3	2.8
Potassium	(12.3-25.8)	NLE	10600	1480
Sodium	3.8	NLE	56.8	21.4
Vanadium	0.53	370	59.6	27.4
Zinc	0.41	1500	55.6	12.8

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

ND - Compound was not detected at or below the quantification limits

NLE - No Level Established

P- the percent difference between the results from the two GC columns is greater than 25%, the lower of the two values is reported Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

¹ Monmouth County maximum background concentrations.

² NJDEP criteria are referenced in Site Remediation News, Winter 1995.

Table 4.3-13 Fort Monmouth - Charles Wood Summary of Detected Compounds in Soil from Surface Locations Site CW-9

COMPOUND	METHOD	RESIDENTIAL	MAXIMUM			```			G1 81 86 15 1000000			
Commonia		DIRECT CONTACT					ANALI	TICAL RE	SULIS			
	LIMIT		BACKGROUND	222				11/30/94				
	LIVIII	SOIL CLEANUP	CONCENTRATION	SS01-A01	SS02-A01	8803-A01	SS04-A01	SS05-A01	SS06-A01	SS07-A01	SS08-A01	SS09-A01
		CRITERIA										
	(mg/kg)	(mg/kg)	(mg/kg)									
METALS TO	FAL (mg/kg) Sai	nple Interval :0"-6" fi	bgs									
Aluminum	3.9	NLE	15700	7350	5730	3600	4380	6930	5450	3910	4070	7700
Arsenic	0.35	20	31.6	13.6	12.1	6.9	6.3	15.6	9.3	10.5	7.2	7.7
Barium	0.17	700	26	. 23.4	28.9	65.4	51.2	32.5	33	40.7	19.2	40.8
Beryllium	0.1	1	1.7	0:73	0.68	0.57	0.55	0.9	0.72	0.58	0.56 -	1
Calcium	2.2	NLE `	653	2680	2650	1960	19600	3570	3610	4370	1630	3440.
Cadmium	0.86	1	0.135	ND	ND	ND	ND	ND	ND	2.6	ND	ND
Cobalt	0.71	NLE	4.5	ND	ND	ND	1.3	, 1.9	1.7	ND	ND	1.8
Chromium	1.6	500	128	56.7	57.2	24.9	28.3	60.5	46.9	164	56.2	70
Copper	2.2	600	7.27	9.6	10.3	5	17.7	8.8	11.1	17.4	9	9.6
Iron	0.58	NLE	45500	20600	18200	10800	12200	22200	17900	9880	11300	25600
Lead	0.49	400 ²	15.1	19.9	30.1	13.5	56.8	27.4	17	82.3	35.5	20.1
Magnesium	9.6	NLE	3960	1910	2010	815	2260	2280	1720	1620	893	2590
Manganese	0.18	NLE	1201	85.1	46.8	22.3	106	59.2	56 .	140	37'	69.5
Mercury	0.49	14	ND	0.2	0.23	ND	ND	0.14	ND	7.9	0.69	ND
Nickel	/ 1.4	250	8.3	6	3.3	ND ND	5.7	6.9	4.9	4.3	2.4	5.8
Potassium	(12.3-25.8)	NLE	10600	1600	2620	1460	2060	3950	3180	1720	1250	5130
Silver	0.54	110	0.261	2.5	2.8	ND	ND	0.77	0.71	1.2	3.3	1.3
Sodium	3.8	NLE	56.8	35.6	33.9	77.4	118	49.7	49.7	40.6	34.5	60.9
Selenium	0.30	63	0.85	0.56	0.62	0.75	0.28	0.63	0.41	0.57	0.6	0.48
Vanadium	0.53	370	59.6	45.7	34	15.7	22.9	33.1	30.3	15.6	29.3	32
Zinc	0.41	1500	55.6	53.7	61.2	25.8	92.5	47.8	62.3	77	36	48.1

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

ND - Compound was not detected at or below the quantitation limits

NLE - No Level Established

Note: MDL's for metal analysis is actually the highest detection limit with potassium given as a range due to high variability.

Note: Metals detected in a duplicate sample from SS-01 were detected below the NJDEP SCC.

¹ Monmouth County maximum background concentrations.

² NJDEP criteria are referenced in Site Remediation News, Winter 1995.

Pesticides/PCBs

Two pesticides (4,4'-DDE and 4,4'-DDT) were detected above laboratory quantitation limits in SB-01. Both compounds were detected well below their respective SCCs. PCBs were not detected in site soil.

Metals

As indicated in Tables 4.3-12 and 4.3-13, of the 21 metals detected in site soil, only beryllium and cadmium were found in concentrations equal to or greater than the NJDEP SCC. In addition, cadmium was detected in SS-07 at a concentration (Table 4.3-13) greater than the site-specific and Monmouth County maximum background levels established at Charles Wood. However, in accordance with NJDEP Cleanup Standards for Contaminated Sites (NJDEP, 1992), the concentration of cadmium at sites CW-06 and CW-09 were averaged and then compared to the NJDEP SCC and established background. The average concentration of cadmium was found to be equal to the SCC when compared with the soil sampling results in the area. Cadmium was not considered to be of a high concentration (see "Metals" in Subsection 4.3.8.5). Cadmium was not detected at any other surface soil location. Although beryllium was found in a concentration greater than the Monmouth County maximum background level, beryllium was detected in a concentration below the site-specific level. Beryllium was found at only one location (SS-09) at a concentration equal to the NJDEP SCC. The concentration of beryllium was also averaged and when compared to the NJDEP SCC, was found at a concentration below the NJDEP SCC and maximum background.

4.3.9.6 Groundwater Sampling Results

Monitor wells at site CW-9 were sampled for the analytical parameters listed in Table 3.8-1. Table 4.3-14 compares the average concentrations of the detected compounds from the February and March sampling rounds with the NJDEP GWQC, and then compares the results with the subsequent site-specific and Monmouth County maximum background levels, where appropriate.

11/30/95

Table 4.3-14 Fort Monmouth - Charles Wood Summary of Average Concentrations of Detected Compounds in Groundwater - Site CW-9

COMPOUND	METHOD DETECTION LIMIT	NJDEP GROUNDWATER	MAXIMUM BACKGROUND	ANALYTICAL RESULTS (µg/L) SAMPLING DATE		
	(µg/L)	QUALITY CRITERIA (µg/L)	CONCENTRATION (µg/L)	MW35 2/20/95, 3/13/95 (avg.)	MW36 2/20/95, 3/13/95 (avg.)	
SVOCs (µg/L)						
bis-(2ethylhexyl)phthalate	9.7	30*	600	ND	4 J	
METALS TOTAL (µg/L)			-			
Aluminum	24	200	8210	226	575	
Barium	1.7	2000	400¹	37.25	31.3	
Beryllium	0.9	.20*	2.8	0.175	ND	
Calcium	10.4	NLE	8700	23400	35050	
Cobalt .	2.3	NLE	30.6	2.45	2.85	
Chromium	2.9	100	49.6	ND	5.7	
Iron	6.4	300	27000¹	104.2	1250	
Lead	1.1	10*	<100¹	ND	2	
Magnesium	. 18.3	NLE	25000 ¹	5875	7835	
Manganese	1.8	50	480¹	40.1	217	
Nickel	10.8	100	48.3	5.65	5.65	
Potassium	685	NLE	10000 ¹	2035	4000	
Sodium	30.5	50000	197000¹	4480	5900	
Vanadium	2.3	NLE	28.9	ND	3.85	
Zinc	3.8	5000	133	26.75	27	

Compounds exceding NJDEP groundwater quality criteria are noted by bold numbers.

NJDEP groundwater quality criteria consist of the higher number between the PQL or STANDARD

^{*}PQL - Practical Quantitation Limit -was used as the NJDEP groundwater quality criteria

ND - Indicates that the compound was not detected

J - Indicates that the concentration value was estimated due to detection at or near the detection limits

^{1 -} Monmouth County maximum background concentration.

VOCs

VOCs were not detected in site monitor wells from either sampling round.

SVOCs

SVOCs were not detected above laboratory quantitation limits in site monitor wells from either sampling round.

Pesticides/PCBs

Pesticides/PCBs were not detected in site monitor wells from either sampling round.

Metals.

As indicated in Table 4.3-14, of the 15 metals detected in site groundwater, only 3 (aluminum, iron, and magnesium) were found in concentrations exceeding the NJDEP GWQC; however, all three metals were detected in concentrations below the site-specific and Monmouth County maximum background levels.

4.3.9.7 Recommendations

The average concentrations of cadmium and beryllium in surface soil samples at CW-6 and CW-9 do not exceed the NJDEP SCC. Cadmium is typically present at elevated levels at golf courses. No compounds of concern were detected in site groundwater above NJDEP criteria.

No further action will be taken.

Site AOC-7

4.3.10 Former Hazardous Waste Storage Area (AOC-7)

4.3.10.1 Site Location

NJDEP identified this site as an area of concern (AOC) (NJDEP, 1990). A temporary hazardous waste storage area was located in an approximately 1-acre fenced site to the east of Building 2708 (Figure 4.3-16). The site is currently a grassy field surrounded by a 7-ft high fence. A former gas station (Building T-2500) is located to the east of the site. The approximate area of site AOC-7 is 41,000 ft² (0.9 acre).

4.3.10.2 Site History

Reviews of aerial photographs from 1961 to 1986 show that this site was a fenced storage area. The 1961 photographs show that the fenced area extended about 50 feet farther to the west than it does today. This western area is now part of the fenced area around Building 2708, which is part of the Pulse Power Laboratory. Large rectangular objects are visible next to the fence on all four sides. These may be cargo or truck vans. The 1969 photograph is similar, but there are three irregular groups of objects at the northwest corner of the lot. The 1974 photograph is similar, except there are five circular igloos along the west fence. In 1986, the site is smaller because the Pulse Power Laboratory is in the western portion of the site. There are objects that appear to be drums along the fence on the south and southeast of the site. The objects are densely packed in a 10- to 20-ft band next to the fence. There are additional objects along the north fence and possibly along the west fence. Personnel interviews indicate that the site was used for a 6-month period in 1987 for temporary storage of hazardous waste (in drums). As part of a program to remove all improperly labeled drums from Fort Monmouth, the facility collected the drums and staged them at this site.

The drums were stored on wood pallets, generally along the fence line. The pallets were not usually stored on a plastic ground cover. Clean Venture, Inc. sampled the drums, labeled them, completed manifests, and arranged for disposal. For the most part, the drums contained solvents, degreasers, and oils. The drums were screened for external radiation and none was detected. Clean Venture did not characterize the drums to the extent of identifying specific compounds,

but some of the solvents that were used at Fort Monmouth at that time are 1,1,2-trichloroethane, 1,1,1-trichloroethane, and benzene.

The only known release of material during the operation occurred on 7 October 1987. A pallet of 5-gallon containers of malathion, a pesticide, was picked up at Sandy Hook. The containers were deteriorated, so the pallet was placed on a plastic ground cover. During the night, the top popped off one of the containers. A security guard became temporarily nauseated from the fumes. The next day the containers were repacked in a drum. The quantity of material that was released is considered small, and it is believed that little, if any, material was spilled on the ground.

4.3.10.3 Sampling Effort

Six soil borings were completed and soil samples collected in an effort to identify the nature and extent of past site activities on soil quality. Soil borings were drilled to groundwater and the soil cuttings were screened with a photoionization detector (PID). Since no elevated PID readings were recorded, soil samples were collected from the interval just above the water table. The total depths of the borings varied from 12 to 14 ft bgs. Lithologic logs from the site borings indicate that the lithology consists of a thin soil cover (0.3 ft) underlain by coarsening downward olivebrown silty medium-grained sand to olive-brown medium-grained sand sequence. The locations of the soil borings were biased toward the fence line, as shown in Figure 4.3-16, because an examination of aerial photographs showed that materials were stored next to the fence. Soil samples were analyzed for TCL +30 parameters and TAL metals.

4.3.10.4 Soil Sampling Results

Six soil samples, one from each boring, were collected from intervals ranging from 8 to 14 ft bgs. Site soil samples were analyzed for the parameters listed in Table 3.6-1. Table 4.3-15 compares the detected compounds in site soil with the NJDEP SCC, and then compares the results with the site-specific and Monmouth County maximum background levels, where

Table 4.3-15 Fort Monmouth - Charles Wood **Summary of Detected Compounds in** Soil from Site AOC-7 (CW-7)

COMPOUND	METHOD	RESIDENTIAL	MAXIMUM	ANALYTICAL RESULTS					
	DETECTION LIMIT (mg/kg)	DIRECT CONTACT SOIL CLEANUP CRITERIA (mg/kg)	BACKGROUND CONCENTRATION (mg/kg)	12/21/95	SB02-A02 12/21/95 (10-12 ft bgs)	SB03-A02 12/21/95 (6-8 ft hgs)	SB04-A02 12/21/95 (8-10 ft bgs)	SB05-A02 12/21/95 (8-10 ft bos)	SB06-A03 12/21/95 (12-14 ft bgs)
VOC's (mg/kg)		. 0 6	, , , ,	6-7	5 //	(G ₀)	(0 10 10 10 Ec)	(o ro re oga)	(12-14 R Dgs)
2 - Butanone	0.0041	1000	ND	ND	0.002 J	ND	ND	ND	ND
SVOCs (mg/kg)									
bis(2-Ethylhexyl)phthalate	0.32	. 49	0.17 J	0.075 J	ND	0.34 J	ND	ND	ND
PESTICIDES (mg/kg)							.1,2		ND
4,4'-DDT	0.0037	. 2	0.053	· ND	ND	0.004	ND	ND	ND :
METALS TOTAL (mg/kg)									- 1/2
Aluminum	3.9	NLE	15700	3650	4340	3820	5170	3490	3610
Arsenic	0.35	20	31.6	8.6	1.7	8.4	12.7	2.8	5.9
Barium	0.17	700	26	2.5	4.5	4.5	6.2	3.6	2.4
Beryllium	0.1	1	1.7	0.31	0.29	0.28	0.45	0.3	0.26
Calcium	2.2	NLE	653	69	91.9	134	275	63.9	43.7
Cobalt	0.7	NLE	4.5	ND	0.94	0.68	ND	ND	ND
Chromium	1.6	500	128	61.1	61.6	73.6	83.4	64.7	61.1
Copper	2.2	600	7.27 ¹	1.6	1.6	1.8	2.2	1.4	1.3
Iron	0.58	NLE	45500	10800	12400	11100	15900	11400	11000
Lead	0.4	400 ²	15.1 ¹	6.3	6.9	4.5	8.5	6.3	4.9
Magnesium	9.6	NLE	3960	694	852	602	919	720	766
Manganese	0.18	NLE	120 ¹	3.6	8.2	12.7	11.3	2.8	1.8
Nickel	1.4	250	8.3	1.8	2.6	1.9	2.1	1.6	1.3
Potassium	(12.3-25.8)	NLE	10600	2060	2360	1740	2570	2200	2280
Sodium	3.8	NLE	56.8	18.8	12	11.7	13.8	14.7	. 11.5
Selenium	0.3	63	0.85	0.26	0.2	ND	0.3	0.26	ND
Zinc	0.41	1500	55.6	8.9	12	10.5	15.8	, 9	9.1

FTMCWA7S.XLS

Compounds exceeding NJDEP soil cleanup criteria are noted by bold numbers.

J - Indicates that the concentration value was estimated due to detection at or near the quantification limits NLE - No Level Established

ND - Indicates that the compound was not detected at or below the quantification limits

Monmouth County maximum background concentrations.

² NJDEP criteria are referenced in Site Remediation News, Winter 1995.

appropriate. In addition, the results were compared with the impact to groundwater SCC because no monitor wells were installed at the site.

VOCs

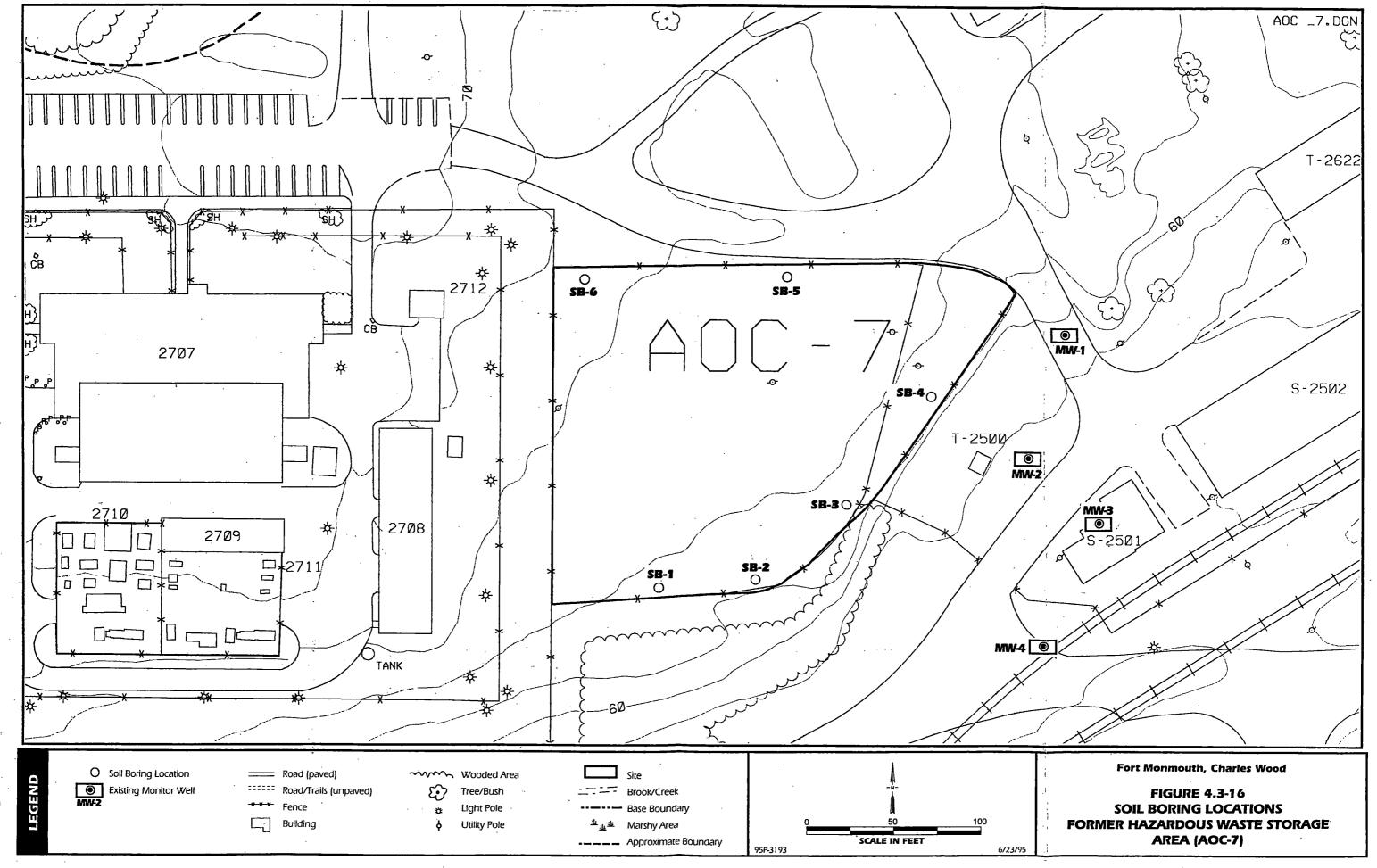
VOCs were not detected above laboratory quantitation limits in site soil.

SVOCs

SVOCs were not detected above laboratory quantitation limits in site soil.

Pesticides/PCBs

One pesticide (4,4'-DDT) was detected above the laboratory quantitation limit in SB-02; however, 4,4'-DDT was detected in a concentration well below both the NJDEP residential direct contact SCCs and impact to groundwater SCC. PCBs were not detected in site soil from any boring location.


Metals

As indicated in Table 4.3-15, all metals detected in site soil were found in concentrations below the NJDEP SCC.

4.3.10.5 Recommendations

No compounds of concern were detected at this site at levels that exceeded NJDEP criteria.

No further action will be taken.

Charles Wood PCB Transformers

4.3.11 PCB Transformers

4.3.11.1 Site Location

During the 1993 investigation (WESTON, 1993), all locations where PCB transformers had formerly been located were inspected for evidence of spills. Three sites were identified where a PCB transformer was either formerly located over soil and thus evidence of a spill could not be determined visually, or formerly located on concrete and there was discoloration in the concrete. These locations are listed in Table 3.5-1 and identified in Figure 4.3-17.

4.3.11.2 Site History

All PCB transformers (contain greater than 500 ppm PCBs) have been removed from Fort Monmouth; however, the former locations of these transformers were not previously investigated for spilled PCBs. The concrete pad outside Building 2000 was removed between the time of the 1993 investigation and the current field effort.

4.3.11.3 Sampling Effort

As discussed in Subsection 3.5, soil samples were taken from below pole-mounted transformers. Because the concrete pad near Building 2000 had been removed, four soil samples were taken downgradient of the former pad location, as indicated in Figure 4.3-18.

4.3.11.4 PCB Sampling Results

The results of the PCB transformer sampling are presented in Table 4.3-16. One of the four transformer sites sampled at the Charles Wood area was found to have PCBs in soil or concrete above NJDEP SCC.

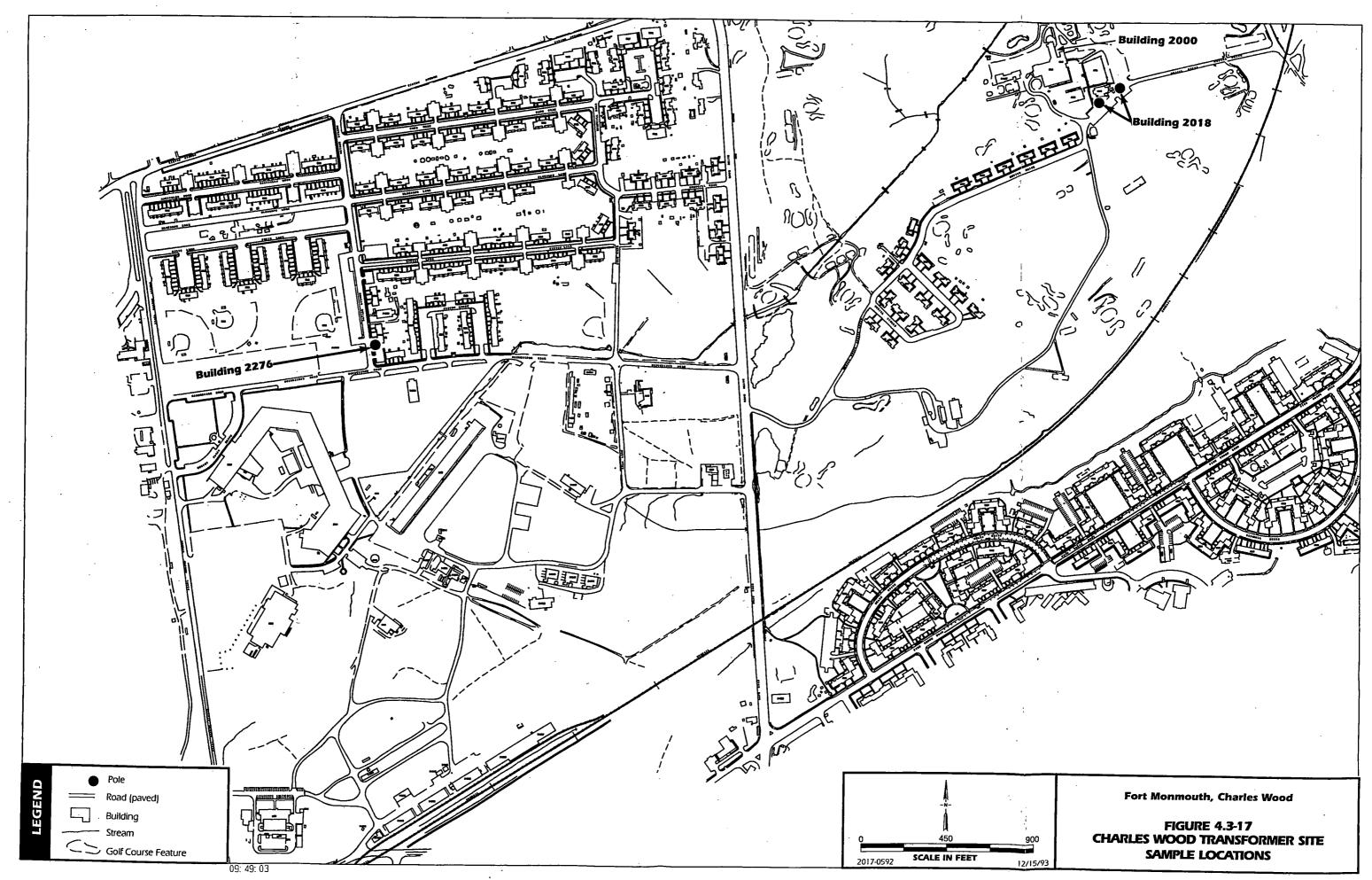
PCBs were detected in four discrete soil samples above NJDEP SCC. The soil samples were collected downslope of the former location of transformer CW035, which was an exterior pad transformer northeast of Building 2000. This pad had been removed prior to sampling.

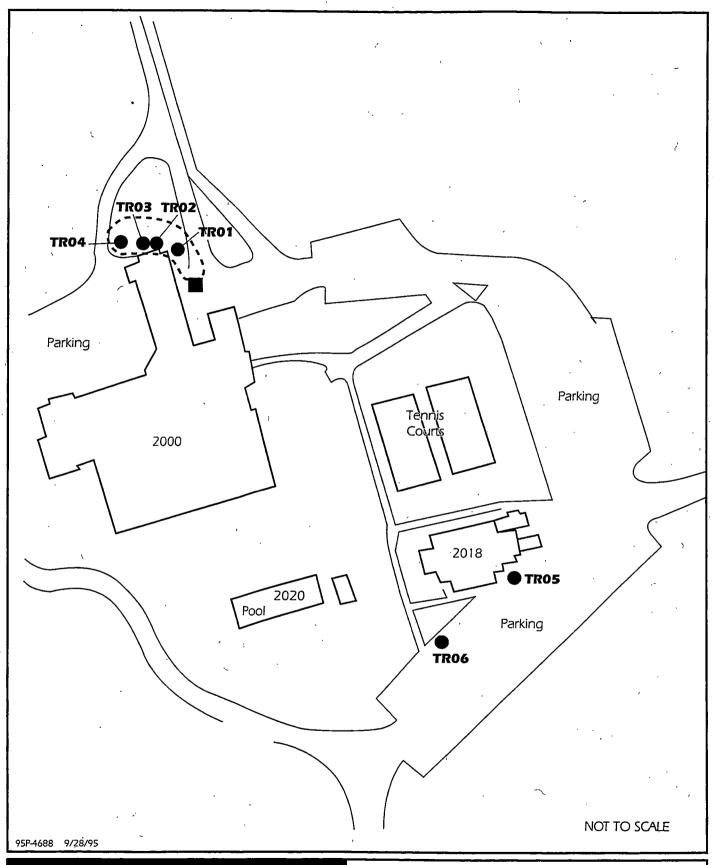
Table 4.3-16
Results of Transformer Site Sampling on Charles Wood

Location (Building No.)	Sample ID	Method Detection Limt (mg/kg)	Medium	NJDEP Soil Criteria (mg/kg)	Total PCBs (mg/kg)
2000	CW07-TR01	23*	Soil	0.49	100
2000	CW07-TR02	4.4*	Soil	. 0.49	27
2000	CW07-TR03	4.4*	Soil	0.49	26
2000	CW07-TR04	.91*	Soil	0.49	6
2018	CW07-TR05	4.5*	Soil	0.49	- ND
2018	CW07-TR06	0.47	Soil	0.49	ND
2276	CWAE-TR01	0.21	Soil	0.49	ND

Compounds exceeding NJDEP cleanup criteria are noted by bold numbers ND - Indicates that the compound was not detected at the quantification limit.

^{* =} Method Detection Limit exceeded NJDEP criteria.




All other transformers sampled in the Charles Wood area either had results below detection limits, or had detectable levels of PCBs below applicable cleanup criteria.

4.3.11.5 Recommendations

PCBs were detected above the NJDEP criteria in each of the four soil samples collected downgradient of the former transformer location northeast of Building 2000 (transformer CW-035). PCBs were not detected above NJDEP criteria in samples collected from the other three sampling locations.

Additional samples will be taken to further delineate the extent of contamination and the contaminated soil will be removed and disposed of in accordance with applicable regulations. The depth of contamination is assumed to be 6 inches. Excavation will be performed in conjunction with confirmatory soil sampling to ensure that NJDEP SCC are achieved.

Sampling Location Former Transformer Pad Soil Remediation Boundary Fort Monmouth, Charles Wood FIGURE 4.3-18 EXTENT OF REMEDIATION AT TRANSFORMER SITE – BUILDING 2000

SECTION 5 DATA QUALITY

5.1 INTRODUCTION

Quality assurance/quality control (QA/QC) procedures were incorporated into the Fort Monmouth site investigation program to ensure collection of quality data for each area of the site investigated. Additionally, such QA/QC procedures were employed to ensure that all information, data, and resulting decisions of the site investigation are technically sound, statistically valid (accurate and precise), properly documented, and ensure the completeness of the data. The mechanism for employing the project QA/QC procedures was the CDAP. Procedures in the CDAP facilitated identifying and monitoring the proper sample collection, handling, and laboratory protocols to be used during the site investigation.

Chemical analyses were conducted to determine the type and concentration of contaminants present in the various media at the site and to provide environmental data, as was discussed in Section 2 of this report. Overall, analyses or tests were chosen based on the compounds produced or used within the specific area or the environmental data needed.

The analytical methods that were used for sample analysis are listed in Table 5.1-1. Information on sample containers, preservation, and holding times is presented in Table 5.1-2.

All analytical work completed for the site investigation was performed or administered by WESTON's Environmental Metrics Division. WESTON's Gulf Coast Laboratory, located in University Park, IL, performed all analytical analyses. This laboratory is certified by NJDEP (certification number 54669).

Table 5.1-1

Analytical Methods for Sample Analysis

Matrix	Parameter*
Sediment	TCL Volatiles TCL Semivolatiles TCL Pesticides/PCBs TAL Metals Cyanide
Surface Water	TCL Volatiles TCL Semivolatiles TCL Pesticides/PCBs TAL Metals (Filtered) TAL Metals (Unfiltered) Cyanide
Soil	TCL Volatiles TCL Semivolatiles TCL Pesticides/PCBs TCL Pesticides PCBs (SW 8080) TAL Metals Cyanide TPH (EPA 418.1)
Concrete	PCBs (SW 8080)
Groundwater	TCL Volatiles TCL Semivolatiles TCL Pesticides/PCBs TAL Metals (Unfiltered) TAL Metals (Filtered) Cyanide TPH (EPA 418.1) Sulfate (EPA 375.4) Ammonia (EPA 350.2)

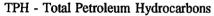

^{*} All analytical methods derived from *Test Methods for Evaluation of Solid Waste*, SW-846, Third Edition, 1992; EPA CLP Document Nos. OLM01.8 and ILM02.1; "Methods for Chemical Analysis of Water and Waste," EPA 600/4-79-020.

Table 5.1-2

Summary of Sample Containers, Volume, Preservation, and Maximum Holding Times

Parameter	Sample Container	Container Volume	Preservation	Maximum Holding Time
Nonaqueous	,			
Cyanide	Flint glass bottle, black phenolic cap, polyethylene liner	4, 8, 16, or 32 oz	4°C until analysis	12 days
Metals	Flint glass bottle, black phenolic cap, polyethylene liner	4, 8, 16, or 32 oz	4°C until analysis	180 days except for Hg, which is 26 days
Pesticides/PCBs	Amber glass, Teflon-lined cap	1,000 mL	Cool, 4°C, dark	Extraction must be started within 14 days. Analysis - 40 days from VTSR.
Semivolatile Organics	Amber glass, Teflon-lined cap	1,000 mL ,	Cool, 4°C, dark	Extraction must be started within 14 days. Analysis - 40 days from VTSR.
Sulfates	Plastic, glass	100 mL	Cool, 4°C	28 days
ТРН	Glass	4 oz	Cool, 4°C	28 days; gasoline in soil, 7 days
Volatile Organics	Glass, polypropylene cap, white teflon liner	120 mL	Cool, 4°C	10 days
Aqueous				
Cyanide	Plastic bottle, plastic cap, plastic liner	1,000 mL	0.6 g ascorbic acid if residual Cl ₂ , NaOH to pH>12, cool, 4°C until analysis. CaCO ₃ in presence of sulfide.	12 days
Metals	Plastic bottle, plastic cap, plastic liner	1,000 mL	HNO ₃ to pH<2	180 days
Pesticide/PCBs	Amber glass, Teflon-lined cap	1,000 mL	Cool, 4°C, dark	Extraction aqueous continuous liquid-liquid extraction must be started within 7 days. Analysis - 40 days from VTSR.

VTSR - Validated time of sample receipt (at the laboratory)

5.2 QUALITY CONTROL PROCEDURES

To meet the QA/QC objectives of the project, the field work and laboratory analyses followed the standardized methods or procedures that were described in the CDAP and are summarized in the subsections that follow.

5.2.1 Field and Laboratory Quality Control Samples

Standard analytical QC checks instituted by field and laboratory personnel included (but were not limited to):

- <u>Field/rinsate blanks</u> Samples prepared using analyte-free water supplied by the laboratory or purchased from commercial sources that certify the quality of the water. Field/rinsate blanks were routed through decontaminated sampling equipment prior to collection. Preservatives or additives were added as required, and the blank sample was then sealed. The field/rinsate blank was shipped with real samples collected for the same parameter group. During field sampling, a field/rinsate blank was collected and analyzed from each group of water or soil/solid samples for every 10 samples received daily.
- Trip blanks Volatile organic sample containers prepared in the laboratory using analyte-free water. The trip blanks accompanied the field samples during transport to the site; during collection, packaging, and transport to the laboratory; and during analysis, and were contained in the same type of sample container as those used in the specific sampling effort. One trip blank sample was included with each shipment of aqueous samples designated for VOC analysis.
- <u>Duplicate samples</u> Samples collected from the same sampling location at the same time. Soil duplicates were homogenized (with the exception of VOC samples). At least one duplicate sample was analyzed from each group of samples of a similar matrix type for every 20 samples received.
- Matrix spike/matrix spike duplicate (MS/MSD) Samples in which compounds are added before extraction and analysis. The recoveries for spiked compounds can be used to assess how well the method used for analysis recovers target compounds (i.e., a measure of matrix interference in the sample). When reviewed in conjunction with other QC data, MS/MSDs may indicate reanalysis using a more appropriate method. At least one spiked sample analysis was performed on each group of samples of a similar matrix type and concentration for each batch of samples or for every 20 samples received, whichever was more frequent.

 <u>Surrogate spiking</u> — Samples in which surrogate compounds are added before sample preparation for organics analysis. The review for spiked surrogate compounds can be used to assess method accuracy for each sample matrix.

5.2.2 Field Activities

The accuracy of field measurements obtained from site instruments was maintained on-site by appropriate calibration procedures, as described in detail in the CDAP.

The field investigation procedures used to perform the site investigation were presented in the Fort Monmouth CDAP. The field procedures included:

- Surface and subsurface soil sampling.
- Installation of monitor wells.
- Groundwater sampling.
- Monitor well casing elevation surveying.
- Surface-water and sediment sampling.
- Concrete pad sampling.
- Ancillary field activities, such as decontamination, field measurements, and fluids management.

Sample identification and documentation procedures were followed in the field as specified in the CDAP, including:

- Sample containers were labeled with the appropriate information.
- The sample was entered into the chain-of-custody record.
- A unique sample code was assigned to each sample collected.
- Signed custody seals were applied on opposite sides of the container lid.
- Samples were shipped to WESTON's laboratories as environmental samples and complied with all DOT requirements for such shipment.

5-6

A bound field notebook was maintained by the Field Team Leader at the site to record daily activities, including sample collection and tracking information. Quantitative field data, such as water-level measurements, were recorded in bound field notebooks. Qualitative or descriptive field data (such as soil textures) obtained from soil borings and monitor wells were recorded in the field in field notebooks, reduced using a standardized lithologic coding system.

5.2.3 Laboratory Activities

5.2.3.1 Laboratory Equipment Quality Control

The reliability and credibility of laboratory analytical instruments and QA of analytical results were ensured by documented calibration procedures and QC samples (such as method blanks and method spikes). A review of the calibration procedures and the calibration frequencies that are standard operating procedures (SOPs) employed by WESTON's Environmental Metrics Division is provided in the CDAP. The following instruments were used to analyze environmental samples:

- Gas chromatograph (GC).
- Gas chromatograph/mass spectrometer (GC/MS).
- Atomic absorption spectrophotometer: furnace (AA).
- Inductively coupled plasma spectrometer (ICP).
- Cold vapor mercury analyzer: flameless AA.
- Spectrophotometer.

Certain TCL VOCs, such as methylene chloride, acetone, 2-butanone, and toluene, are commonly detected as laboratory contaminants. In order to ensure that the data reported are not biased by potential laboratory contamination, certain QA procedures, including reagent blank analysis, were taken. Assessment of the reagent blanks is discussed in Subsection 5.3.2.

5.2.3.2 Laboratory Data

In addition to the data collected in the field and recorded on the chain-of-custody forms, data describing the processing of samples were accumulated in the laboratory and recorded in laboratory notebooks.

Data reduction was performed by the individual analysts and consisted of calculating concentrations in samples from the raw data obtained from the measuring instruments. The complexity of the data reduction was dependent on the specific analytical method and the number of discrete operations (e.g., extractions, dilutions, and concentrations) involved in obtaining a sample that could be measured.

System reviews were performed at all levels. The individual analyst constantly reviewed the quality of data through calibration checks, QC sample results, and performance evaluation (PE) samples. The Section Manager and/or the Analytical Project Manager reviewed data for consistency and reasonableness with other generated data and to determine if program requirements had been satisfied. Selected hard copy output of data (e.g., chromatograms, spectra, etc.) was reviewed to ensure that results were interpreted correctly. The Quality Assurance Officer independently conducted a review of selected projects to determine if laboratory and client QA/QC requirements had been met. The final routine review was performed by the Laboratory Manager prior to reporting the results to the client.

5.3 DATA QUALITY

5.3.1 Data Reporting

Laboratory reports contain final results, methods of analysis, levels of detection, surrogate recovery data, and method blank data. In addition, special analytical problems and/or any modifications of referenced methods were noted.

5.3.2 Data Validation/Usability Review

Separate from the laboratory's internal data review/data validation, an independent review of the final analytical data packages was performed to validate results and to determine usability. The validation was performed by URS Consultants, Inc. (URS) as a subcontractor to Malcolm Pirnie, Inc.

The data validation was performed in accordance with U.S. Environmental Protection Agency (EPA) Region II Modifications to the National Functional Guidelines for Organic Data Review, Multimedia, Multiconcentration (January 1992) and Region II Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analysis (January 1992). For non-CLP procedures, the data were validated following the intent of the National Functional Guidelines.

5.3.3 Results of Data Validation/Usability Review

Malcolm Pirnie issued a Data Validation Report (June 1995) that gave the results of their validation. URS performed data validation services on 84 environmental samples. The matrix type and number of samples were as follows:

Matrix	No. of Samples
Groundwater	33
Surface water	5
Sediment	6
Surface soil	10
Soil boring	24
Transformer soil	4
Concrete	2

URS reported that a majority of the analytical results were usable as reported, despite minor deviations from EPA CLP criteria, which do not jeopardize the chemical representativeness of the data.

There were several instances, however, where compounds or whole fractions were rejected by URS based on deviations from CLP methodologies and/or data validation criteria.

Sample ID	Compound or Fraction	
B9-SB01-A02	Acetone	
B9-SB01-C02	Acetone	
MPA3-SB01-A02	Acetone	
MP08-SD01-A01	Semivolatiles, pesticides/PCBs	
MP16-SS01-A01	Dieldrin	
CW06-SS01-A01	Heptachlor epoxide	
MP02-MW01-A01	Total and dissolved aluminum, chromium, and iron	

The results for these samples are provided in this report, but are flagged in the Results summary tables. The Data Validation Report includes a discussion of the data quality and completeness.

5.3.4 Results of Field and Trip Blanks

During the Fort Monmouth site investigation, field/rinsate blanks and trip blanks were submitted for analysis (numbers of samples are shown in Tables 5.3-1 and 5.3-2), as discussed in Section 3 of this report. The results of the analyses of the field/rinsate blanks were used to assess the efficiency of the equipment decontamination procedures in preventing cross-contamination between samples, and to determine if the compounds detected in the characterization samples were attributable to the sampling equipment or to the site. The results of trip blank analyses were used to determine if compounds detected in samples analyzed for volatile organics were introduced during shipment or from containers and were not attributable to the site. A discussion of the difference between the samples contracted in the scope of work and the actual effort is included in Section 4.

A summary of the compounds detected in field/rinsate blanks is provided in Table 5.3-3. Inorganics, VOCs, and SVOCs were each detected in at least one field/rinsate blank collected during field activities. All of the organic compounds detected are common laboratory contaminants and were likely introduced into the samples during laboratory analysis.

11/24/95

Table 5.3-1
Main Post Samples Collected

MEDIA/PARAMETER	INVESTIGATI	ON SAMPLES	QA/QC SA	MPLES *	TOTAL SAMPLES		
	Scope of Work	Taken	Scope of Work	Taken	Scope of Work	Taken ,	
Surface and shallow soil							
TCL VOA	4	4	1	2	5	6	
TCL BNA	4	6	1	0	5	6	
TCL pesticide/PCB	6	6	1	0 .	7	6	
TCL PCB	8	8	1	0	9	8	
TAL Metals	2	2	1	0	3	2	
Soil Borings							
TCL VOA	38	31	٠ 2	2	40	33	
TCL BNA	26	15	1	1	27	16	
Pesticide/PCB	15	15	1	1	. 16	16	
TAL Metal	13	16	1	1	14	17	
TAL Cyanide	12	11	1	. 1	13	12	
TPH	24	15	2	.0	26	15	
Sediment							
TCL VOA	3	3	1	3	4	6	
TCL BNA	3	3	1	1	4	4	
Pesticide/PCB	3	3	1	1	4	4	
TAL Metal	4	6	1_	1	5、	7	
TAL Cyanide	3	4	1	1	4	5	
Concrete							
TCL PCB	6	4	1	1	7	5	
Surface Water							
TCL VOA	8	8	1	1	9	9	
TCL BNA	8 .	8	1	1	9	9	
Pesticide/PCB	8	8	1	1	٠ 9	9	
TAL Metal (Total)	8	8	1	1	9	9	
TAL Metals (Dissolved)	8	8	1	1	9 .	9	
TAL Cyanide	8	8	1	1	9	9	
Groundwater							
TCL VOA	60	60	25	38	85	98	
TCL BNA	60	60	9	16	69	76	
Pesticide/PCB	60	60	9	16	69	76	
TAL Metal (Total)	58	56	9	15	67	71	
TAL Metals (Dissolved)	58	56	9	15	67	71	
TAL Cyanide	52	52	9	10	61	62	
Sulfate	12	12	2	4	14	15	
Ammonia	8	8	2	4	10	13	
TPH	6	6	2	5	8	11	

^{*} QA/QC samples are trip blanks, field blanks, and duplicates.

Table 5.3-2 Charles Wood Samples Collected

MEDIA/PARAMETER	INVESTIGATION SAMPLES			QA/QC SAMPLES *			TOTAL SAMPLES		
	Scope of	Taken	Analyzed	Scope of	Taken	Analyzed	Scope of	Taken	Analyzed
	Work			Work			Work		
Surface and shallow soil									
TCL VOA	1	1	1	1	2	2 .	2	3	3
TCL BNA	1	1	1	1	0	0	2	1	1
TCL pesticide/PCB	1	1	1	1	0	0	2	1	1
TCL PCB	6	7	7	1	1	1	_ 7	8	8
TAL Metals	13	11	11	1	1	1	14	12	12
Soil Borings									
TCL VOA	52	32	32	3	1	. 1	55	33	33
TCL BNA	52	31	31	3	1	1	55	32	32
Pesticide/PCB	52	31	31	3	1	1	55	32	32
TAL Metal	48	31 -	31	3	2	2	51	、33	33
TAL Cyanide	. 12	12	12	1	1	1	13	13	13
TPH	0	1	1	0	0	0	0	1	1
Sediment									
TCL VOA	3	3	3	1	0	0 -	4	3	3
TCL BNA	3	3	3	1	0	0	4	3	3
Pesticide/PCB	3	3	3	1	0	0	4	3	3
TAL Metal	3	4	4	1	0	0	4	4	4
TAL Cyanide	3	3	3	1	0	_ 0	4	3	3
Concrete									
TCL PCB	_1	0	0	1	0	0	2	0	0
Surface Water									
TCL VOA	2	2	2	1	0	0	3	2	2
TCL BNA	2	2	2	1	_ 0	0	3	2	2
Pesticide/PCB	2	2	. 2	1	0	0	3	2	2
TAL Metal (Total)	2	2	2	1	0	0	3	2	2
TAL Metals (Dissolved)	2	2	2	1	0	0	3	2.	2 ,
TAL Cyanide	2	2	2	1	0	0	3.	2	2
Groundwater									
TCL VOA	38	34	34	22	25	25	60	59	59
TCL BNA	38	34	` 34	6	6	6	44	40	40
Pesticide/PCB	38	34	34	6	6	6	44	40	40.
TAL Metal (Total)	34	30	30	6	4	4	40	34	34
TAL Metals (Dissolved)	34	30	30	6	. 4	4	40	34	34
TAL Cyanide	10	10	10	2	2	2	12	12	12

^{*} QA/QC samples are trip blanks, field blanks, and duplicates.

Table 5.3-3
Summary of Field/Rinsate and Trip Blanks (μg/l)

Sample ID	Inorganics	VOC's	SVOC's	Pesticides/ PCBs
Trip Blanks				
CW01-SB26-D02	N/A	ND	N/A	N/A
CW01-SB31-D02	N/A	ND	N/A	N/A
CW02-SB31-D02	N/A	ND	N/A	N/A_
CW02-SB33-D02	N/A	ND	N/A_	N/A
CW05-SB01-D02	N/A	ND	N/A	N/A
CW06-SB34-D02	N/A	ND	N/A	N/A
CW09-SB01-D02	silver (.93), aluminum (3830), arsenic (2.6),	ND	N/A	N/A
	barium (6.6), beryllium (.39), calcium (366),			
	cobalt (1.0), chromium (44), copper (2.3),			,
	iron (9720), mercury (.12), manganese			
	(11.9), lead (3.9), vanadium (27.4),	,		İ
	zinc (12.8), sodium (21.4), nickel (2.8),	į	•	-
•	potassium (1480)		·	
CWA7-SB04-D02	N/A	ND	N/A	N/A
MPA-SB01-D02	^ N/A	ND	N/A	N/A
MPA-SB02-D02	N/A	ND	N/A	N/A
MP18-SB07-D01	N/A	ND	N/A	N/A
MP18-SB25-D02	N/A	acetone (30),	N/A	N/A
NA 10 0221 2 02		chloroform (3J)		
B3-SB01-D03	N/A	ND	N/A	N/A
B4-SB01-D01	N/A	ND	N/A	N/A
B5-SB01-D02	N/A	ND	N/A	N/A
B9-SB01-D02	N/A	acetone	N/A	N/A
	'	(8,300,000),		
	•	benzene (6J)		
B10-SB01-D02	N/A	acetone (22)	N/A	N/A
CW09-SS01-D01	N/A	ND	N/A	N/A
MP16-SS01-D01	N/A	ND	N/A	N/A
MP08-SD01-D01	N/A	ND	N/A	N/A
CW01-MW26-D02	N/A	ND	N/A	N/A
CW01-MW29-D01	N/A	acetone (20), 2-	N/A	N/A
		butanone (36)	·	
CW06-MW01-D02	N/A	ND	N/A	N/A
CW06-MW34-D01	N/A	2-butanone (30)	N/A	N/A
MP04-MW07-D01	N/A	acetone (13), 2-	N/A	N/A
,	,	butanone (27)		
MP05-MW11-D02	ND	ND /	ND	ND
MP08-MW12-D02	· ND	ND	ND	ND
MP08-MW15-D01	ND	acetone (20), 2-	ND .	ND
,	,	butanone (37)		
MP14-MW20-D02	ND	ND	ND	ND
B3-MW03B-D01	N/A	2-butanone (15)	ND	ND
B3-MW03B-D02	N/A	ND	ND	ND
B10-MW10B-D01	N/A	2-butanone (14)	ND	ND
B10-MW10B-D02	N/A	ND	ND	ND

Table 5.3-3
Summary of Field/Rinsate and Trip Blanks (μg/l) (continued)

Sample ID	E ID Inorganics		SVOC's	Pesticides/ PCBs
Field/Rinsate Blanks			1	T CB3
CW01-SB31-E02	N/A	ND	N/A	N/A
CW09-SB01-E02 SOL	N/A	acetone (5200),	N/A	N/A
		chloroform (3J)		
MPA-SB01-E02	N/A	acetone (240 B),	N/A	N/A
		chloroform (6J)		
B9-SB01-E02	N/A	acetone (130)	N/A	N/A
CW09-SS01-E01	N/A	ND	N/A	N/A
MP16-SS01-E01	N/A	ND	N/A	N/A
MP08-SD01-E01	N/A	ND \	N/A	N/A
CW01-MW26-E02	aluminum (20.2), calcium (105), iron (12.0),	ND	N/A	N/A
ŕ	potassium (67.9), magnesium (34.3), sodium			
	(132), lead (2.6)	1	_ `	χ.
CW01-MW26-E02 SOL	aluminum (18.4), calcium (115), iron (16.8),	N/A	N/A	N/A
,	potassium (119), magnesium (47.6), sodium	,	1.	
	(156), lead (1.5), antimony (13.2)			
CW01-MW29-E01	calcium (113), sodium (321)	ND	· N/A	N/A
CW01-MW29-E01 SOL	calcium (72.3), sodium (137), nickel (12.9)	ND	N/A	N/A
CW06-MW01-E02	N/A	N/A	N/A	N/A
CW09-MW35-E01	aluminum (231), barium (40.8), calcium	acetone (12), 2-	~ ND	ND
	(21100), cobalt (4.0), iron (85.8), potassium	butanone (25)	(
	(2090), magnesium (5580), manganese			
	(43.9), sodium (7230), nickel (10.8), zinc			
	(60.7)			
CW09-MW35-E01 SOL	calcium (191), iron (3.8),	N/A	N/A	N/A
•	potassium (82.5), sodium (654),		Ï	
	vanadium (2.8). zinc (2.6)	``\.		
MP04-MW07-E01	aluminum (18.1), barium (.81), calcium	acetone (10), 2-	ND	ND
	(57.4), iron (62.7), sodium (116), zinc (3.8)	butanone (27)		, [
MP04-MW07-E01 SOL	beryllium (.31), calcium (82.6), iron (4.3),	N/A	N/A	N/A
	potassium (68.8), sodium (81.4), zinc (2.4)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
MP05-MW11-E02	calcium (289), potassium (737), sodium	chloroform (33)	ND	ND
	(165)	·		
MP05-MW11-E02 SOL	sodium (147), calcium (55.4)	N/A	N/A	N/A
MP08-MW12-E02	aluminum (27), calcium (109), iron (13.2),	ND	bis (2-Ethylhexyl)	. ND
	sodium (87.3), vanadium (3.0), copper (2.1)		phthalate (2J)	•
MP08-MW12-E02 SOL	calcium (95.7), iron (7.4), sodium (120),	N/A	N/A	N/A
	zinc (4.1)			
MP08-MW15-E01	calcium (107), sodium (140), nickel (11.4)	2-butanone (38)	bis (2-Ethylhexyl)	ND
<u> </u>			phthalate (3JB)	
MP08-MW15-E01 SOL	calcium (57.1), sodium (156)	N/A	N/A	N/A
MP14-MW20-E02	calcium (103), iron (9.6), sodium (56.3),	ND	ND	ND
	lead (1.5), zinc (3.9)		<u> </u>	
MP14-MW20-E02 SOL barium (1.2), calcium (102), iron (9.2),		N/A	N/A	N/A
	sodium (142), zinc (4.2)			
MP18-MW03-E01	aluminum(33.2), barium(.92),			
· I	calcium(65.6), cobalt(2.2), chromium(2.2),			
	iron(19.3), manganese(1.1), sodium(101),			

Table 5.3-3
Summary of Field/Rinsate and Trip Blanks (µg/l)
(continued)

Sample ID	Inorganics	VOC's	SVOC's	Pesticides/ PCBs
MP18-MW03-E01 SOL	aluminum(20.5), calcium(45.4), cobalt(2.2),			•
	chromium(4.1), iron(13.1), manganese(.72),			
	sodium(94.1)		,	
MP18-MW24-E01	alumnium (25), calcium (282), iron (13.4),	2-butanone (21)	ND	ND
	magnesium (20), sodium (160), antimony			
	(21)			
MP18-MW24-E01 SOL	alumnium (28.4), calcium (161), copper	N/A	- N/A	N/A
	(2.7), iron (13.5), magnesium (23.9),			
	sodium(118)			
MP18-MW24-E02	alumnium (20), calcium (460), copper (5.4),	ND	bis (2-Ethylhexyl)	ND
	iron (24.5), sodium (75.8)		pthalate (140)	
MP18-MW24-E02 SOL	calcium (106), copper (4), iron (15.7),	N/A	N/A	N/A
	sodium (97.2)	_ J		
B3-MW03B-E01	aluminum (26.2), barium (1.0), calcium	2-butanone (17)	ND	ND ·
	(123), iron (16.5), sodium (820), zinc (2.0)			
B3-MW03B-E01 SOL	aluminum (173), barium (113), calcium	N/A ,	N/A	N/A
	(25400), cobalt (7.3), iron (109), potassium			
	(13200), magnesium (5790), manganese		· ·	
1	(90.1), sodium (20800), nickel (61.5),			
	antimony (16.7), zinc (27)	· <i>(</i>		
B3-MW03B-E02	aluminum(27.1), calcium(368), iron(10.1),	1,1,1-	ND	ND
•	magnesium(46), sodium(296)	trichloroethane		
	·	(8J)	١	
B3-MW03B-E02 SOL	aluminum (17.2), calcium (163), iron (9.3),	N/A	N/A	N/A
	magnesium (61,3), sodium (179)	•		,
B10-MW10B-E01	calcium (33.6), manganese (2.7), sodium (95)	2-butanone (15)	ND	ND
B10-MW10B-E01 SOL	calcium (111), sodium (70.4)	N/A	N/A	N/A
B10-MW10B-E02	calcium (141), iron (9.3), magnesium (24),	ND	diethylphthalate	ND
	sodium (170), zinc (6.5)		(2JB)	
B10-MW10B-E02 SOL	calcium (130), iron (9.8), zinc (6.4), sodium	N/A	N/A	N/A
	(231)			

Note: Numbers in () represent the concentration.

N/A - Not Applicable/No Sample

ND - Not Detected

Additionally, the low contaminant concentrations detected in the field blanks indicate that significant cross-contamination between samples did not occur. VOCs were detected in several of the trip blanks submitted for laboratory analysis. All of the VOCs detected are common laboratory contaminants and, similar to the field/rinsate blanks, were likely introduced into the samples during laboratory analysis. A summary of the analytical results for trip blanks is provided in Table 5.3-3.

5.3.5 **Duplicates**

Duplicate samples for groundwater, surface water, sediment, and soil were collected following the protocols in the Site Investigation Fort Monmouth, NJ, Main Post and Charles Wood Areas, Chemical Data Acquisition Plan (WESTON, December 1994) and are discussed in the subsections that follow. The degree of variation between the sample values (not including values below the quantitation limit) is presented in Table 5.3-4 by media.

5.3.5.1 Groundwater

Of the groundwater duplicate results, 70% were within 10% of the routine sample value and only 16% were not within 20% of the routine sample value. These data indicate reasonable agreement among the groundwater results. Groundwater sample results generally exhibit slight variation due to the homogeneous characteristics of liquid samples.

5.3.5.2 Surface Water

Of the surface-water duplicate results, 63% were within 10% of the routine sample and only 1 sample result was not within 20% of the routine sample. These data indicate reasonable agreement among the surface-water results. Surface-water sample results generally exhibit little variation due to the homogeneous characteristics of liquid samples.

Table 5.3-4
Duplicate Sample Data Within Given Ranges of Percent Variation

Medium				Va	riation	in Dupl	icate Re	esults			
	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	>100
Soil Borings and											
Surface Soils	31	11	7	4	1	3	7	7	1		3
Sediment	9	7		2							
Surface Water	12	6					1				
Groundwater	106	20	12	5		3		1	1	1	1

5-17

5.3.5.3 Sediments

Of the sediment duplicate results, 50% were within 10% of the routine sample and only/11% were not within 30% of the routine sample. These data indicate reasonable agreement among the sediment sample results. Sediment sample results tend to show more variation due to the heterogeneity of solid samples.

5.3.5.4 Soils

Of the soil duplicate results, 41% (surface soil and soil boring samples) were within 10% of the routine sample and 35% were not within 30% of the routine sample. These data indicate reasonable agreement among the soil sample results. Soil sample results tend to show more variation, in general, due to the nonhomogeneous nature of solid samples.

5.4 TENTATIVELY IDENTIFIED COMPOUNDS (TICs)

Tentatively identified compounds (TICs) were identified for volatile and semivolatile analyses. The sum of all TICs for every sample is provided in the data tables in Appendix D. In general, the sum of the TICs was small, less than 1 mg/kg for most solids and less than 600 µg/L for water. Significant amounts of TICs occurred in the sediment samples and the soil boring samples. The highest concentration of TICs for any sediment sample was 72 mg/kg, and the highest concentration for any soil sample was 18 mg/kg, both for semivolatile samples. By comparison, the proposed NJDEP cleanup criteria have a limit for total organics of 10,000 mg/kg. The highest concentration of volatile TICs for any solid sample was 1.1 mg/kg. By comparison, the proposed NJDEP limit for total volatile compounds is 1,000 mg/kg. Therefore, the concentration of TICs in solid samples will have no impact on whether it is less than the NJDEP cleanup criteria.

5.5 <u>COMPARISON OF ANALYTICAL DETECTION LIMITS AND REMEDIATION</u> STANDARDS

For certain compounds, the analytical method detection limits exceeded the NJDEP remediation standards. The compounds for which this occurred, along with the most stringent NJDEP remediation standard values and laboratory detection limits, are presented in Table 5.5-1.

The laboratory performed the analysis using the EPA Contract Laboratory Program (CLP) Statement of Work, "Organics Analysis, Multimedia, Multiconcentration," and "Inorganics Analysis, Multimedia, Multiconcentration," for TCL/TAL analyses as specified in the report Investigation of Suspected Hazardous Waste Sites at Fort Monmouth, New Jersey, and as approved by NJDEP in a letter dated 20 April 1994. The detection limits are generally in accordance with the method standards.

The detection limits for many surface-water analyses, including VOCs, SVOCs, and pesticides/PCBs, exceeded the most stringent NJDEP criteria. However, additional sampling is proposed at all surface-water sites.

For groundwater, 19 compounds, including VOCs, SVOCs, and pesticides, exceeded the NJDEP criteria. However, additional sampling is proposed for all monitor wells.

Only one compound exceeded NJDEP criteria in soil samples; i.e., toxaphene. Toxaphene was not present in significant quantities in the 1979 inventory of pesticides contained in the IA. Remedial action or additional sampling is proposed for the two pesticide storage areas, i.e., M-16 at the Main Post and CW-6 at Charles Wood.

For sediment, 13 compounds exceeded NJDEP criteria, including SVOCs, pesticides/PCBs, and 2 metals. Because sediment samples were taken at former locations of STP outfalls (STP had not been operating for at least 20 years), metals are the compounds that are of most concern. The detection limit of mercury was generally only slightly above the NJDEP criteria. The detection limit for antimony was generally close to the regulatory limit. Antimony is not believed to have been used in significant quantities at Fort Monmouth because the major activities have been training and research in electronics.

Table 5.5-1
COMPOUNDS FOR WHICH THE ANALYTICAL DETECTION LIMIT EXCEEDS
NJDEP REMEDIATION STANDARDS

	NJDEP	METHOD
COMPOUND	STANDARD	DETECTION LIMIT
SURFACE WATER (µg/L)		
1,2-Dichloroethane	0.291	2.4
2,4,6-Trichlorophenol	2.14	5.6
2,4-Dinitrotoluene	0.11	5.8
3,3'-Dichlorobenzidine	0.0386	2.8
4,4'-DDE	0.000588	0.1
4,4'-DDT	0.000588	0.1
Aldrin	0.000135	0.05
alpha-BHC	0.00391	0.05
alph-Chlordane	0.000277	0.05
Aroclor-1016	0.000244	1
Aroclor-1221	0.000244	2
Aroclor-1232	0.000244	1
Aroclor-1242	0.000244	
Aroclor-1248	0.000244	1
Aroclor-1254	0.000244	1
Aroclor-1260	0.000244	1
Benzene	0.15	3.3
Benzo(a)anthracene	0.0028	4.9
Benzo(a)pyrene	0.0028	4.9
Benzo(b)fluoranthene	0.0028	5.7
Benzo(k)fluoranthene	0.0028	6.2
bis(2-Chloroethyl) ether	0.0311	9.7
bis(2-Ethylhexy)phthalate	1.76	9.7
Carbon Tetrachloride	0.363	1.5
Chrysene	0.0028	4.4
cis-1,3-Dichloropropene		3
Dibenz(a,h)anthracene Dieldrin	0.0028	. 6
Endosulfan sulfate	0.0019	0.1
Endrin Sulfate	0.93	0.1
gamma-Chlordane	0.0023	0.1
Heptachlor	0.000000	0.05
	0.000208	0.05
Heptachlor epoxide	0.000103	0.05
Hexachlorobenzene	0.000748	5.5
Hexachloroethane	2.73	5.3
Indeno(1,2,3-cd)pyrene	0.0028	7.1
Methylona Chlorida	0.03	0.5
Methylene Chloride Toxaphene	2.49	2.7
Vinyl Chloride	0.0002	5
vinyi Cilionde	0.083	7.9
GOUNDWATER (μg/L)		
1,1,2,2-Tetrachloroethene	2	4.2
1,1,2-Trichloroethane	3	4.3

Table 5.5-1 (Continued)

1,2-Dichloroethane 0.3 2.4 1,2-Dichloropropane 0.5 1.7 Aldrin 0.002 0.05 alpha-BHC 0.006 0.05 Benzene 0.2 3.3 Bromodichloromethane 0.3 2 cis-1,3-Dichloropropene 0.2 3 Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5			
1,2-Dichloropropane 0.5 1.7 Aldrin 0.002 0.05 alpha-BHC 0.006 0.05 Benzene 0.2 3.3 Bromodichloromethane 0.3 2 cis-1,3-Dichloropropene 0.2 3 Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 Toxaphene 0.1 210 SEDIMENT (mg/kg) 2 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 <			9.6
Aldrin 0.002 0.05 alpha-BHC 0.006 0.05 Benzene 0.2 3.3 Bromodichloromethane 0.3 2 cis-1,3-Dichloropropene 0.2 3 Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 2.4 SOIL (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 580 Acenaphthene 150 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654			
alpha-BHC 0.006 0.05 Benzene 0.2 3.3 Bromodichloromethane 0.3 2 cis-1,3-Dichloropropene 0.2 3 Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 2.4 SCOIL (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 580 Acenaphthene 150 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 <			
Benzene 0.2 3.3 Bromodichloromethane 0.3 2 cis-1,3-Dichloropropene 0.2 3 Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 2.4 SCIL (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 2.8 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9			0.05
Bromodichloromethane 0.3 2 2 3 3 1 2 3 3 2 3 3 3 2 3 3	alpha-BHC	0.006	0.05
Bromodichloromethane 0.3 2 cis-1,3-Dichloropropene 0.2 3 Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 2 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9		0.2	
Dieldrin 0.002 0.1 Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg)		0.3	
Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 210 SEDIMENT (mg/kg) 2 580 Acenaphthene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9	cis-1,3-Dichloropropene	0.2	
Hexachlorobutadiene 1 4.6 Methylene Chloride 2 2.7 Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 2.4 SEDIMENT (mg/kg) 2 210 SEDIMENT (mg/kg) 2 580 Acenaphthene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9		0.002	0.1
Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg)			4.6
Pentachlorophenol 0.3 4 Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg)	Methylene Chloride	2	
Toxaphene 0.03 5 trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg) 2 210 SEDIMENT (mg/kg) 2 580 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9		0.3	4
trans-1,3-Dichloropropene 0.2 2.4 SOIL (mg/kg)	Toxaphene	0.03	
SOIL (mg/kg) Toxaphene 0.1 210 SEDIMENT (mg/kg) 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9	trans-1,3-Dichloropropene	0.2	
Toxaphene 0.1 210 SEDIMENT (mg/kg) 2 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Toxaphene 0.1 210 SEDIMENT (mg/kg) 2 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9	SOIL (mg/kg)		
SEDIMENT (mg/kg) 2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9		0.1	210
2-Methylnaphthalene 65 580 Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Acenaphthene 150 580 Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Anthracene 85 580 Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Dibenzo (a,h) anthracene 60 580 Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Mercury 0.15 0.13 Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Antimony 2 5.4 2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			L
2-BHC 0.394 2.9 Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Heptachlor 0.148 2.9 Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
Endrin 0.0654 5.9 4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
4,4' DDT 1.83 5.9 alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
alpha-Chlordane 0.5 2.9 gamma-Chlordane 0.5 2.9			
gamma-Chlordane 0.5 2.9			-
Aroclor 38.7 59			
	Aroclor	38.7	59

SECTION 6 CONCLUSIONS AND RECOMMENDATIONS

SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 MAIN POST

The conclusions and recommendations discussed in the following subsections are for the Main Post area of Fort Monmouth, and are based on the results of the site investigation activities. These conclusions and recommendations are also presented with the site-specific discussions in Section 4 and are summarized in Table 6.1-1.

6.1.1 Landfill 2 (M-2)

Investigation activities performed at site M-2 included the following:

- Sampling of two surface-water locations.
- Installation and sampling of three monitor wells.
- Tidal monitoring.

6.1.1.1 Conclusions

The surface-water sampling results indicate that two VOCs were detected at the two surface-water locations at concentrations greater than NJDEP surface-water criteria, and above maximum background concentrations. In addition, soluble lead was detected at a concentration greater than NJDEP criteria and the maximum background concentrations. Because the site formerly had a New Jersey Pollutant Discharge Elimination System (NJPDES) permit (permit No. 0057274), surface water has been sampled since 1985. The results from the current round of surface-water sampling for VOCs are less than the maximum results from previous rounds.

Chlorobenzene was detected in the groundwater at concentrations exceeding the NJDEP GWQC and background in both downgradient monitor wells from both sampling rounds and in the upgradient well during one sampling round.

Table 6.1-1

Main Post Site Summary and Recommendations

Site	Compounds that Exceed NJDEP Criteria and Maximum Background	Recommendations
M-2 Landfill	Groundwater: Chlorobenzene in 3 wells Surface water: Tetrachloroethene Trichloroethene	Conduct groundwater and surface-water monitoring on a long-term basis.
M-3 Landfill	Groundwater: Chlorobenzene (low value) in 1 well Lead in 1 sample Surface water: None	Conduct groundwater and surface-water monitoring on a long-term basis. Excavate partially exposed drum and conduct confirmatory sampling.
M-4 Landfill	Groundwater: DDT (low value) in 1 well	Conduct groundwater monitoring on a long-term basis.
M-5 Landfill	Groundwater: Tetrachloroethene in 1 well	Conduct groundwater monitoring and sampling of surface- water location SS-6 on a long-term basis.
M-8 Landfill	Groundwater: Tetrachloroethene in 1 well Benzene in 1 well Chlorobenzene in 2 wells	Conduct groundwater monitoring and sampling of surface- water location SS-7 on a long-term basis.
M-12 Landfill	Groundwater: None	Conduct groundwater monitoring on a long-term basis.
M-14 Landfill	Groundwater: None Surface water: None	Conduct groundwater and surface-water monitoring on a long-term basis.
M-15 Water Tank	Soil: DDT DDE Lead Cadmium Zinc	Excavate contaminated soil and perform confirmatory sampling.
M-16 Former Pesticide Bldg.	Soil: Aldrin in 1 sample Dieldrin in 4 samples Heptachlor in 1 sample DDE in 1 sample DDT in 2 samples Groundwater: None	Excavate contaminated soil and perform confirmatory sampling. Abandon site monitor well.
M-18 Former Training Area	Soil: Chrysene (all SVOCs in 1 sample) Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Groundwater: DDD in 1 well Lead in 1 well	Locate and excavate possible UST and any contaminated soil and perform confirmatory sampling. Excavate stained soil at SB-06 and conduct confirmatory sampling. Conduct groundwater monitoring on a long-term basis.

Table 6.1-1

Main Post Site Summary and Recommendations (Continued)

Site	Compounds that Exceed NJDEP Criteria and Maximum Background	Recommendations ,
AOC-3 Former Sewage Treatment Plant	Soil: None Sediment: None	No further action.
Pre-1941 Treatment Plant	Sediment: Arsenic Cadmium Chromium Zinc	No further action.
PCB Transformers	Soil: Building 292 Concrete: Buildings 1002, 1208, 1209	Remediate stained concrete when transformers are removed. Conduct confirmatory sampling. Sample soil at Bldg. 292 to determine extent of contamination.

The results of the tidal monitoring indicate that there is no apparent relationship between the changing creek levels and the water levels in upgradient monitor well MW-1; however, a direct relationship was observed between changing creek levels and the water levels in downgradient monitor wells MW-2 and MW-3. Conductivity and salinity results indicate the presence of freshwater in the creek at site M-2. Freshwater was indicated at monitor wells MW-1 and MW-3. A moderate to high specific conductance was measured at monitor well MW-2, which is unexplained.

6.1.1.2 Recommendations

Although groundwater sample results at site M-2 exceeded NJDEP criteria for one VOC, and surface-water results were slightly exceeded by two VOCs, immediate remedial action is not required for several reasons. Immediate remedial action is usually based on an immediate threat to human health. Shallow groundwater flows toward Mill Creek, as indicated by water-level measurements in site monitor wells, and there are no known uses of groundwater at or downgradient of the site. Although there is slight VOC contamination in Mill Creek, there is no use of this water for human consumption. In fact, Mill Creek becomes saline immediately downgradient of site M-2. Therefore, the groundwater and surface waters are not used for drinking water.

In addition, surface-water sampling has been performed at this site since 1986, and since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future. Although downgradient surface-water samples were not taken during this round, previous sampling at site M-8 indicated that NJDEP surface-water criteria were not exceeded for VOCs. Therefore, the only portion of Mill Creek for which NJDEP surface-water criteria are exceeded is the portion between sites M-2 and M-8. All of this portion is on Fort Monmouth property and, therefore, access to it is restricted.

Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, the Fort Monmouth Directorate of Public Works (DPW) proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells, and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

6.1.2 Landfill 3 (M-3)

Investigation activities performed at site M-3 included the following:

- Geophysical surveys.
- Installation and sampling of three monitor wells.
- Sampling of three surface-water locations.

6.1.2.1 Conclusions

The geophysical surveys indicate that the extent of the identified waste material is within the suspected boundaries of the landfill. Site monitor wells have been installed in appropriate locations to monitor groundwater quality upgradient and downgradient of the waste material. In an isolated area of the site the GPR results indicated hyperbolic radar signatures typical of a buried drum or drums. A partially exposed drum was also observed at this location.

Groundwater quality results indicate that chlorobenzene was detected in one downgradient well below laboratory quantitation limits, but just above NJDEP GWQC and background from one sampling round. Lead was also detected at levels above NJDEP GWQC and background.

The surface-water quality results indicate that no organic or inorganic concentrations exceeded both NJDEP surface-water criteria and the maximum background concentration. Because the site formerly had an NJPDES permit, surface water has been sampled since 1986. The results from

11/30/95

the current round of surface-water sampling for VOCs are less than the maximum results from previous rounds.

6.1.2.2 Recommendations

Although NJDEP groundwater criteria were exceeded for one VOC, immediate remedial action is not required for several reasons. First, the measured value for the VOC was below the quantitation limit and just slightly above the GWQC. In addition, the shallow groundwater flows toward Lafetra Creek, as indicated by water-level measurements in site monitor wells, and there are no known uses of groundwater at or downgradient of the site. Surface-water samples did not exceed NJDEP surface-water criteria. Therefore, there is no immediate threat to human health.

In addition, because surface-water sampling has been performed at this site since 1986, and the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells, and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be the targeted for the monitoring program.

The partially exposed drum will be excavated. The area immediately around and under the drum will be investigated for additional drums. Any excavated drums will be examined to determine if hazardous materials were present or still exist. The drum and the excavation will be monitored with a photoionization detector (PID). NJDEP will be requested to send a representative to

monitor the excavation. If there is no indication that the drum contained, or still contains, hazardous materials and elevated readings are not observed on the PID, the excavation will be backfilled and no further action will be taken. If contamination is identified, additional sampling will be conducted in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993).

6.1.3 Landfill 4 (M-4)

Investigation activities performed at site M-4 included the following:

Installation and sampling of three monitor wells.

6.1.3.1 Conclusions

One pesticide compound was detected at a concentration just above the NJDEP GWQC and background in the upgradient well in both the routine and duplicate samples. The pesticide was not detected in downgradient monitor wells, and also was not detected during previous sampling at downgradient location SS-5 (WESTON, 1993).

6.1.3.2 Recommendations

Although NJDEP groundwater criteria were exceeded for one pesticide, no immediate remedial action is required. The measured value of the pesticide was just slightly above the GWQC. Shallow groundwater flows toward Mill Creek, as indicated by water-level measurements in site monitor wells, and there are no known uses of groundwater at or downgradient of the site. No surface-water sampling was performed at this site during this project. The surface water was previously sampled downstream, but was not analyzed for pesticides. Since Mill Creek flows on Fort Monmouth property between sites M-4 and M-8, access to this stream is restricted.

In addition, surface-water sampling has been performed at this site since 1986, and since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable

and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor well locations are adequately placed to monitor downgradient groundwater, DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Compounds of concern (including pesticides) identified in the first two rounds of sampling would be targeted for the long-term groundwater and surface-water monitoring program.

6.1.4 <u>Landfill 5 (M-5)</u>

Investigation activities performed at site M-5 included the following:

Installation and sampling of two monitor wells.

6.1.4.1 Conclusions

PCE was detected in the upgradient well in concentrations exceeding NJDEP GWQC and background from both sampling rounds. Because the site formerly had an NJPDES permit, surface water has been sampled since 1986. During previous investigations, PCE was also detected at downgradient surface-water sampling location SS-6 (WESTON, 1993). Surface water was not sampled at site M-5 during this investigation because the maximum VOC concentrations at this site during previous rounds of sampling were less than the maximum concentrations at site M-2, which is upgradient. For site M-2, the results of the current round of surface-water sampling for VOCs are less than the maximum results from previous rounds.

6.1.4.2 Recommendations

Although groundwater sample results exceeded NJDEP criteria for one VOC, immediate remedial action is not required. Shallow groundwater at the site flows toward Mill Creek and Lafetra Creek, and there are no known uses of groundwater at or downgradient of the site. No surface-water sampling was performed at this site during this project. Previous sampling rounds have indicated that some VOC concentrations exceed NJDEP surface-water criteria in Mill Creek adjacent to site M-5. However, previous rounds of sampling have indicated that VOC concentrations do not exceed surface-water criteria at site M-8, which is downgradient of site M-5. Therefore, there is little immediate threat to human health.

In addition, surface-water sampling has been performed at this site since 1986, and since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

6.1.5 **Landfill 8 (M-8)**

Investigation activities performed at site M-8 included the following:

- Abandonment of previously installed monitor wells and piezometers.
- Installation and sampling of four monitor wells.

Tidal monitoring.

6.1.5.1 Conclusions

Due to highly turbid conditions and poor water-level recovery of the original monitor wells, all original monitor wells and piezometers were abandoned.

Groundwater sampling results indicate low concentrations of benzene and chlorobenzene were detected in two downgradient monitor wells, and PCE concentrations were detected in the upgradient well (MW-12) exceeding NJDEP GWQC. Additionally, PCE and other VOCs were previously detected at location SS-7, downgradient of site M-8.

Because the site formerly had an NJPDES permit, surface water has been sampled since 1986. However, surface water was not sampled at site M-8 during this investigation because the maximum VOC concentrations at this site during previous rounds of sampling were less than the maximum concentrations at sites M-2 and M-3, which are upstream. The concentrations of VOCs at site M-8 for previous rounds were less than the NJDEP surface-water criteria.

The results of the tidal monitoring indicate that there is no apparent relationship between creek levels and water levels in MW-12 because of its distance from the creek. A poor to moderate relationship was measured between MW-14 and creek levels. A direct relationship was observed between creek levels and MW-13 and MW-15. The conductivity and salinity measurements in Parkers Creek indicate the presence of brackish to salty water at site M-8. Groundwater sampled from MW-12 indicates freshwater. Monitor wells MW-13, MW-14, and MW-15 indicate brackish to salty water in an area of the water-bearing unit close to Parkers Creek.

6.1.5.2 Recommendations

Although groundwater sample results exceeded NJDEP criteria for three VOCs, immediate remedial action is not required. Groundwater flows toward Lafetra Creek, as indicated by water-level measurements in sité monitor wells, and there are no known uses of groundwater at or

downgradient of the site. In fact, groundwater at three of the four monitor wells is brackish and unsuitable for drinking. The brackish water is a result of the proximity of the wells to Parkers Creek, and the direct relationship of tidal fluctuations and site groundwater levels. No surfacewater sampling was performed at this site during this project. Previous sampling rounds have indicated that VOC concentrations did not exceed NJDEP surface-water criteria in the stream. Therefore, there is little immediate threat to human health.

In addition, surface-water sampling has been performed at this site since 1986, and since the landfill has not been used for decades, the concentrations of VOCs seem, at worst, to be stable and possibly decreasing. Presumably, since no material is being added to the source (the landfill), natural degradation will decrease groundwater and surface-water contamination levels in the future.

Since the existing monitor wells and surface-water sampling locations are adequately placed to monitor downgradient groundwater and surface water, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and surface-water samples would be collected from points yet to be determined. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

6.1.6 **Landfill 12 (M-12)**

Investigation activities performed at site M-12 included the following:

- Geophysical surveys.
- Installation and sampling of three monitor wells.
- Tidal monitoring.

6.1.6.1 Conclusions

The results of the geophysical surveys indicate that the identified fill and buried ferrous material are present within the suspected boundaries of the landfill. Monitor wells are positioned to adequately monitor groundwater downgradient of these areas.

Groundwater sampling results indicate that no compounds of concern exceeded NJDEP GWQC from upgradient and downgradient wells.

The results of the tidal monitoring relate to both sites M-12 and M-14. The data indicate that there is no apparent relationship between creek levels and water levels in MW-19 and MW-20. A poor to moderate relationship was measured between MW-16, MW-17, and MW-18 and creek levels. A direct relationship was observed between creek levels and MW-21. The conductivity and salinity measurements in Husky Brook indicate the presence of brackish to salty water at sites M-12 and M-14. Groundwater sampled from monitor wells at each location indicates freshwater.

6.1.6.2 Recommendations

Although no compounds of concern were identified at site M-12, because of the site's history of being used as a landfill, DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a long-term basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Contaminants identified in the first two rounds of sampling would be targeted for the monitoring program.

6 - 12

6.1.7 Landfill 14 (M-14)

Investigation activities performed at site M-14 included the following:

- Geophysical surveys.
- Installation and sampling of three monitor wells.

- Sampling of two surface-water locations.
- Tidal monitoring.

6.1.7.1 Conclusions

The results of the geophysical surveys indicate that fill and some metallic debris exist throughout the site; however, a discrete landfill boundary was not identified at site M-14. This may be due in part to the composition of the fill material and the small amount of subsurface metallic material present at the site.

The groundwater and surface-water sampling results indicate that no compounds of concern were detected above NJDEP GWQC and surface-water criteria.

Tidal monitoring was conducted at site M-12 and site M-14 simultaneously. The results of the tidal monitoring are discussed in Subsection 6.1.6.

6.1.7.2 Recommendations

Although no compounds of concern were identified at site M-14, because of the site's history of being used as a landfill, DPW proposes that a long-term surface-water and groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and surface-water samples would be collected from points yet to be determined. Contaminants identified in the first two rounds of sampling would be targeted for the monitoring program.

6.1.8 Water Tank (M-15)

Investigation activities performed at site M-15 included the following:

Collection of two surface soil samples near the water tank.

6.1.8.1 Conclusions

Two pesticide compounds and three metals, cadmium, zinc, and lead, were detected in surface soil at levels that exceeded NJDEP residential SCC and maximum background.

6.1.8.2 Recommendations

DPW has submitted the necessary documentation to Headquarters, Army Materiel Command/Army Environmental Center (HQAMC/AEC) to obtain the proper funding to remediate the site in FY 1996. Depending on funding availability, the affected soil will be excavated and disposed of in accordance with the applicable regulations. The area of contamination encompasses the perimeter of the tank, about 10 feet at the widest point. The depth of contamination is assumed to be 6 inches. Excavation will be performed in conjunction with confirmatory soil sampling to ensure that NJDEP SCC are achieved. It is estimated that 13 yd³ of soil will be excavated, assuming that soil is excavated to a depth of 6 inches. NJDEP will be requested to send a representative to observe the excavation.

6.1.9 Former Pesticide Storage Building (M-16)

Investigation activities performed at site M-16 included the following:

- Collection of four surface soil samples.
- Collection of two soil samples from discrete depth intervals at one soil boring location.
- Installation and sampling of one monitor well.

6.1.9.1 Conclusions

Pesticide compounds were detected at four surface soil sampling locations and in one soil boring sample (0 to 2-foot interval) in concentrations above NJDEP criteria and background.

No compounds of concern were detected in the groundwater above NJDEP criteria.

6.1.9.2 Recommendations

DPW has submitted the necessary documentation to HQAMC/AEC to obtain the proper funding to remediate the site in FY 1996. Depending on funding availability, the affected soil will be excavated and disposed of in accordance with the applicable regulations. The area of contamination is approximately 50 feet by 20 feet. The depth of contamination is assumed to be 12 inches. Excavation will be conducted in conjunction with confirmatory soil sampling to ensure that NJDEP SCC are achieved. It is estimated that 56 yd³ of soil will be excavated, assuming that soil will be excavated to a depth of 12 inches. NJDEP will be requested to send a representative to observe the excavation.

The site monitor well will be properly abandoned due to the nondetection of compounds of concern in groundwater. The remedial activities proposed will remediate potential source areas of pesticides detected in soil.

6.1.10 Former Training Area (M-18)

Investigation activities performed at site M-18 included the following:

- Geophysical surveys.
- Soil sampling at nine soil boring locations.
- Installation and sampling of two monitor wells.

6.1.10.1 Conclusions

The geophysical surveys identified several anomalies indicative of buried waste and fill material within the suspected boundaries of the site M-18 area. One anomaly was indicative of a UST or storage tank component. The geophysical results indicate that soil borings and monitor wells were appropriately located to evaluate subsurface conditions downgradient and within landfill boundaries.

6 - 15

The soil sampling results indicated that six SVOCs were detected at SB-06 in concentrations that exceeded the NJDEP criteria and established background concentrations.

The groundwater sampling results indicate that 4,4-DDD was detected at a concentration just above the NJDEP GWQC in one well (MW-24) from both sampling rounds. Lead was detected in one location above NJDEP GWQC and background. TPH concentrations were also detected just above laboratory quantitation limits in MW-24 and MW-25 in both sampling rounds.

6.1.10.2 Recommendations

Trenching will be performed at the suspected UST or UST component location to confirm the geophysical results and to excavate if necessary. A PID will be used to conduct field screening during the excavation. The excavation will be performed in conjunction with confirmatory sampling, in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993), if a UST is encountered to ensure that NJDEP SCC are achieved. NJDEP will be requested to send a representative to observe the excavation.

Additionally, soil at soil boring SB-06 will be excavated. If it is determined that the suspected UST is the source of contamination at SB-06, this location will be remediated in conjunction with the UST. Confirmatory sampling will also be conducted.

DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

6.1.11 Former Main Post Sanitary Treatment Plant (AOC-3)

Investigation activities performed at site AOC-3 included the following:

- Collection of two soil samples from two soil boring locations.
- Collection of one sediment sample from one location in the Parkers Creek outfall area.

6.1.11.1 Conclusions

The results of the soil and sediment sampling indicated that compounds of concern were not detected above the NJDEP criteria and established background concentrations.

6.1.11.2 Recommendations

No further action will be taken.

6.1.12 Pre-1941 Sanitary Treatment Plant

Investigation activities performed at the former STP included the following:

Collection of one sediment sample from the outfall area.

6.1.12.1 Conclusions

Nine metals were detected above NJDEP criteria in the sediment sample collected at the outfall area. In addition, four metals (arsenic, cadmium, chromium, and zinc) exceeded their respective maximum background concentrations. The other five metals were detected below established background concentrations.

6.1.12.2 Recommendations

Although four metals were detected in sediment at levels exceeding NJDEP criteria and background, in the worst case the criteria were exceeded by a factor of three. Since the samples was taken at the outfall of the STP, the results are believed to be the worst case and the area of

contamination is probably small. Access to this portion of Lafetra Creek is restricted although the stream is on the property boundary. The STP has not been used since 1941, and, presumably, the local ecology has reached an equilibrium. Therefore, since remediation would disrupt the ecology of the site, no further action will be taken.

6.1.13 PCB Transformers — Main Post

Investigation activities relative to the former location of PCB transformers included the following:

Collection of soil and concrete samples for PCB analysis.

6.1.13.1 Conclusions

PCB levels in stained concrete were found to exceed NJDEP guidance levels in indoor vaults at Buildings 1002, 1208, and 1209. PCBs were also detected above applicable soil standards in the soil beneath transformer MP-062 on the northwest side of Building 292.

6.1.13.2 Recommendations

Since the indoor vaults are normally locked and are accessible by a very limited number of facility personnel, and the stained concrete cannot be removed without significantly disrupting electrical service, remedial work will be performed when the transformers are removed from service and the stained areas are made accessible. A warning sign will be posted, and workers entering the vaults will be trained to take precautions to prevent contamination.

Because the concentration of PCBs is only slightly above the SCC, additional sampling will be conducted beneath the former location of transformer MP-062 to determine the vertical and horizontal extent of PCBs in soil. The soil sampling will be performed in accordance with the NJDEP *Technical Requirements for Site Remediation* (NJDEP, 1993).

6.2 CHARLES WOOD

The conclusions and recommendations discussed in the following subsections are for the Charles Wood area of Fort Monmouth, and are based on the results of the site investigation activities.

These conclusions and recommendations are also presented with the site-specific discussions in Section 4 and are summarized in Table 6.2-1.

6.2.1 Wastewater Treatment Lime Pit 1 (CW-1)

Investigation activities performed at site CW-1 included the following:

- Collection of soil samples from four soil borings.
- Installation and sampling of four monitor wells at each of the soil boring locations.

6.2.1.1 Conclusions

The soil sample results indicate that compounds of concern were either not detected or were below laboratory quantitation limits and NJDEP criteria.

The groundwater sampling results indicate that TCE, PCE, and 1,2-dichlorobenzene were detected in the groundwater downgradient of the site at levels that exceeded the NJDEP criteria.

6.2.1.2 Recommendations

Although NJDEP groundwater criteria were exceeded by three VOCs at this site, immediate remedial action is not required. The probable source of contamination has been eliminated since chemicals are not being disposed of in the pit. The pit was cleaned in October 1992 and the limestone sludge was removed and disposed of as a hazardous waste. Hazardous waste is

Table 6.2-1

Charles Wood Site Summary and Recommendations

	Compounds that Exceed NJDEP	
Site	Criteria and Maximum Background	Recommendations
CW-1 Acid Pit	Soil: None Groundwater: 1,2-Dichloroethene in 1 well Trichloroethene in 2 wells Tetrachloroethene in 1 well	Conduct soil-gas survey. Based on the results of the survey, install and sample two additional monitor wells. Conduct groundwater monitoring on a long-term basis for existing and newly installed monitor wells.
CW-2 Acid Pit	Soil: PCBs in 1 sample Groundwater: Tetrachloroethene in 1 well	Conduct soil-gas survey. Based on the results of the survey, install and sample two additional monitor wells. Collect soil samples for PCBs from monitor well borings. Conduct groundwater monitoring on a long-term basis for existing and newly, installed monitor wells.
CW-3	No samples collected.	Facility will perform trenching to investigate site. If there is no indication of subsurface contamination, then no further action will be taken.
CW-3A Debris Site	Geophysics survey	Facility will investigate geophysics anomalies by backhoe trenching. If there is no indication of subsurface contamination, no further action will be taken.
CW-4 Indoor Firing Range	Soil: Lead	The contaminated soil will be excavated and confirmatory sampling will be performed.
CW-5 Former Sewage Treatment Plant	Soil: None Sediment: None	No further action.
CW-6 Pesticide Storage Building	Soil: Cadmium in 1 sample Dieldrin in 1 sample Groundwater: Benzene in 1 sample	Conduct groundwater monitoring on a long-term basis.
CW-9 Sludge Dump	Soil: Cadmium in 1 sample Groundwater: None	No further action.
AOC-7 Former Drum Storage Area	Soil: None	No further action.
PCB Transformers	Soil: Building 2000 (4 samples)	Excavate contaminated soil and conduct confirmatory sampling.

currently collected for proper disposal off-site and waste is no longer disposed of in the pit. Shallow groundwater flows toward and discharges to the headwaters of Wampum Brook, as indicated by water-level measurements in site monitor wells. There are no known uses of groundwater between the acid neutralization pit and Wampum Brook. Surface-water samples were taken in Wampum Brook in the Charles Wood area and Mill Creek (as Wampum Brook is called further to the east) for use as background samples. No VOCs were detected in these samples, therefore, there is no immediate threat to human health.

The extent of VOC concentrations in groundwater will be investigated by soil-gas survey techniques. The soil-gas survey will be performed on an established grid pattern to estimate the lateral extent of VOCs in the vicinity of the neutralization pit. The results of the soil-gas survey will be used to locate two additional monitor wells, if necessary, at the downgradient edge of the plume. DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and the two newly installed monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

6.2.2 Wastewater Treatment Lime Pit 2 (CW-2)

Investigation activities performed at site CW-2 included the following:

- Collection of soil samples from four soil borings.
- Installation and sampling of four monitor wells at each of the soil boring locations.

6.2.2.1 Conclusions

The results of the soil sampling indicate that one PCB compound (Aroclor-1254) was detected in SB-30 at a concentration slightly above the NJDEP SCC. PCB compounds were not detected

in the other three soil borings. In addition, PCBs were not detected in groundwater samples in the corresponding well location, MW-30.

Groundwater sampling results indicate that PCE was detected in the groundwater in one of the four wells (MW-32) in one of the two sampling rounds at levels slightly exceeding the NJDEP GWQC.

6.2.2.2 Recommendations

Although NJDEP groundwater criteria were exceeded by one VOC at this site, immediate remedial action is not required. The source of contamination has been eliminated since chemicals are not being disposed of in the pit. The pit was cleaned in October 1992 and the limestone sludge was removed and disposed of as a hazardous waste. Hazardous waste is currently collected for proper disposal off-site and waste is no longer disposed of in the pit. Shallow groundwater flows toward and discharges to the headwaters of Wampum Brook, as indicated by water-level measurements in site monitor wells. There are no known uses of groundwater between the acid neutralization pit and Wampum Brook. Surface-water samples were taken in Wampum Brook in the Charles Wood area and Mill Creek (as Wampum Brook is called further to the east) for use as background samples. No VOCs were detected in these samples, therefore, there is no immediate threat to human health.

The extent of PCE concentrations in groundwater will be investigated by soil-gas survey techniques. The soil-gas survey will be performed on an established grid pattern to estimate the lateral extent of VOCs in the vicinity of the neutralization pit. The results of the soil-gas survey will be used to locate two additional monitor wells if necessary. DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells and from the two newly installed monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program. When the additional monitor wells are

installed, soil samples will be collected for PCB analysis because of the detection of PCBs in a soil sample collected from SB-30.

6.2.3 **Landfill 3 (CW-3)**

Investigation activities were not conducted as part of this investigation because of construction rubble that was present at the site during the field effort, which prohibited sample collection as planned. The rubble was removed and properly disposed of in June 1995 and exploratory trenches are planned to determine if any subsurface debris or soil staining is present. Field screening will be performed during excavation using a PID. NJDEP will be requested to send a representative to observe the investigation. In the absence of any elevated PID readings or evidence of subsurface debris, the excavation will be backfilled and no further action will be taken. If contamination is identified, then sampling will be conducted in accordance with the Technical Requirements for Site Remediation (NJDEP, 1993). Soil sample analytes will be collected and analyzed for the full range of contaminants.

6.2.4 Debris Site (CW-3A)

Investigation activities performed at site CW-3A included only geophysical surveys to evaluate accessible areas for potential subsurface waste.

6.2.4.1 Conclusions

Geophysical surveys indicated two areas where subsurface metallic debris may be present.

6.2.4.2 Recommendations

Exploratory trenching will be performed to investigate areas where subsurface metallic debris may be present. Field screening will be conducted with a PID during the excavation. NJDEP will be requested to send a representative to observe the excavation. In the absence of elevated PID readings or evidence of subsurface debris, the excavation will be backfilled and no further

action will be taken. If contamination is identified, then sampling will be conducted in accordance with the *Technical Requirements for Site Remediation* (NJDEP, 1993). Soil sample analytes will be collected and analyzed for the full range of contaminants.

6.2.5 Range (Small Arms) (CW-4)

Investigation activities performed at site CW-4 included the following:

- Collection of one surface soil sample.
- Collection of one soil boring sample.

6.2.5.1 Conclusions

Soil sampling results indicate that only lead was detected at a concentration exceeding the NJDEP SCC at the spent round disposal area.

6.2.5.2 Recommendations

DPW has submitted the necessary documentation to HQAMC/AEC to obtain the proper funding to remediate the site in FY 1996. Depending on funding availability, the affected soil will be excavated and disposed of in accordance with the applicable regulations.

The contaminated soil will be removed and disposed of in accordance with applicable regulations. The area of contamination is approximately 8 feet in diameter. The estimated depth of excavation is assumed to be 7 feet. Excavation will be performed in conjunction with confirmatory sampling to ensure that NJDEP SCC are achieved. It is estimated that 17 yd³ of soil will be excavated, assuming that soil is excavated to a depth of 7 feet. NJDEP will be requested to send a representative to observe the excavation.

6.2.6 Former Sanitary Treatment Plant (CW-5)

Investigation activities performed at site CW-5 included the following:

- Collection of one sediment sample from the outfall area east of Hope Road.
- Installation of two soil borings and collection of two soil samples, one from each boring.

6.2.6.1 Conclusions

Three compounds (4,4'-DDT, 4,4'-DDD, and 4,4'-DDE) were detected in the sediment at levels that were above the NJDEP sediment guidance criteria but below background. Soil results were below the NJDEP SCC and established maximum background.

6.2.6.2 Recommendations

No further action will be taken.

6.2.7 Pesticide Storage Building T-2044 (CW-6)

Investigation activities performed at site CW-6 included the following:

- Installation of two soil borings and collection of two samples from SB-34 and one from SB-01.
- Installation and sampling of one monitor well.
- Sampling of existing monitor well MW-1.
- Collection of one surface soil sample from a drainage ditch.

6.2.7.1 Conclusions

The pesticide dieldrin and the metal cadmium were detected in the soil at two different locations, each at levels that exceeded NJDEP SCC and background. However, the average concentrations of dieldrin and cadmium in surface soil samples at CW-6 and CW-9 did not exceed the NJDEP SCC. Cadmium is typically present at elevated levels at golf courses. Groundwater samples indicated that benzene was detected in the existing monitor well (MW-1), which is attributed to a previously removed UST. Benzene was not detected in downgradient wells. Pesticides were not detected in any groundwater samples above NJDEP criteria.

6.2.7.2 Recommendations

NJDEP groundwater criteria were exceeded for one VOC, but the measured value was just slightly above the GWQC. In addition, one pesticide was detected in soils at a level above criteria and background, but was just slightly above the SCC. Therefore, no immediate remedial action is necessary.

DPW proposes that a long-term groundwater monitoring program be developed and implemented for the site. Aqueous samples would be collected and analyzed on a quarterly basis to further evaluate water quality conditions at the site. Groundwater samples would be collected from existing monitor wells. Compounds of concern identified in the first two rounds of sampling would be targeted for the monitoring program.

6.2.8 Sludge Dump (CW-9)

Investigation activities performed at site CW-9 included the following:

- Installation and sampling of two monitor wells.
- Collection of one soil sample from a soil boring.
- Collection of nine surface soil samples.

6.2.8.1 Conclusions

The average concentration of cadmium in surface soil samples at CW-6 and CW-9 and beryllium in surface soil location SS-09 at site CW-9 do not exceed the NJDEP SCC. Cadmium is typically present at elevated levels at golf courses. No compounds of concern were detected in site groundwater above NJDEP criteria.

6.2.8.2 Recommendations

No further action will be taken.

6.2.9 Former Hazardous Waste Storage Area (AOC-7)

Investigation activities performed at site AOC-7 included the installation of six soil borings. One soil sample was collected from each boring at depths ranging from 8 to 14 feet.

6.2.9.1 Conclusions

No compounds of concern were detected at this site at levels that exceeded NJDEP criteria.

6.2.9.2 Recommendations

No further action will be taken.

6.2.10 PCB Transformers — Charles Wood

Investigation activities performed at the former PCB transformer locations included the collection of seven surface soil samples for PCB analysis.

6.2.10.1 Conclusions

PCBs were detected above the NJDEP criteria in each of the four soil samples collected downgradient of the former transformer location northeast of Building 2000 (transformer CW-035). PCBs were not detected above NJDEP criteria in samples collected from the other three sampling locations.

6.2.10.2 Recommendations

Additional samples will be taken to further delineate the extent of contamination and the contaminated soil will be removed and disposed of in accordance with applicable regulations. The depth of contamination is assumed to be 6 inches. Excavation will be performed in conjunction with confirmatory soil sampling to ensure that NJDEP SCC are achieved.

ACRONYMS/REFERENCES

AA atomic absorption spectrophotometer

ACM asbestos-containing material AMC U.S. Army Materiel Command

AOC area of concern

ASTM American Society for Testing and Materials

ATV all terrain vehicle

AVRADA U.S. Army Aviation Research and Development Activity

AWQC ambient water quality criteria

bgs below ground surface BNA base/neutral/acid

BRAC Base Realignment and Closure Program

CDAP Chemical Data Acquisition Plan

CECOM U.S. Army Communications and Electronics Command

CFR Code of Federal Regulations
CLP Contract Laboratory Program
DCAA Defense Contract Audit Agency
DENTAC U.S. Army Dental Activity
DIS Defense Investigation Services
DOI U.S. Department of the Interior

DOP di-octyl-phthalate

DOT U.S. Department of Transportation

DPW Directorate of Public Works, Fort Monmouth, New Jersey

DOOs data quality objectives

EM electromagnetic

EPA U.S. Environmental Protection Agency

EqP equilibrium partitioning
ER-L Effects Range-Low (NOAA)

FSP Field Sampling Plan

ft² square feet

ft msl feet above mean sea level FWS U.S. Fish and Wildlife Service

GC/MS gas chromatograph/mass spectrometer

GC gas chromatograph

GOGO government-owned, government-operated

gpm gallons per minute
GPR ground penetrating radar

GWQC NJDEP Groundwater Quality Criteria

HHCs halogenated hydrocarbons

HQAMC/AEC Headquarters, Army Materiel Command/Army Environmental Center

IA Installation Assessment

IATA International Air Transport Association ICP inductively coupled plasma spectrometer

ID inside diameter

ISC U.S. Army Information Systems Command

LIST OF ACRONYMS (Continued)

ISMA U.S. Army Information System Management Agency

kHz kiloHertz

LABCOM U.S. Army Laboratory Command

m³ cubic meter MAG magnetometry

MCSS Monmouth County Soil Survey

MEDDAC U.S. Army Medical Department Activities

mg/cm² milligrams per square centimeter

mg/g milligrams per gram
mg/kg milligrams per kilogram
mg/m³ milligrams per cubic meter

MHz megaHertz

mS/m milliSiemens per meter

MS matrix spike

MSD matrix spike duplicate

msl mean sea level microgram per gram

μg/kg microgram per kilogram μg/L microgram per liter

NJAC New Jersey Administrative Code

NJDEP New Jersey Department of Environmental Protection

NMCRSA Northeast Monmouth County Regional Sewerage Authority

NOAA National Oceanic and Atmospheric Administration

nT nanoTesla

OVA organic vapor analyzer
OVM organic vapor monitor
PAH polyaromatic hydrocarbon
PCB polychlorinated biphenyl

PCE tetrachloroethene

PE performance evaluation PID photoionization detector

ppm parts per million ppth parts per thousand

PQL practical quantitation levels PVC polyvinyl chloride pipe

QA/QC quality assurance/quality control

QC quality control

R&D research and development SBA Small Business Administration

SCC Soil Cleanup Criteria

SHERP Safety, Health and Emergency Response Plan

SI site investigation

SIR Subsurface Interface Radar[™]

LIST OF ACRONYMS (Continued)

SOP standard operating procedure STP sanitary treatment plant

SVOC semivolatile organic compound

TAL Target Analyte List
TCL Target Compound List

TIC tentatively identified compound
TOC site-specific organic carbon
TPH total petroleum hydrocarbons

TRI-TAC Joint Tactical Communications Office

TSCA Toxic Substances Control Act

URS URS Consultants, Inc.

USACE U.S. Army Corps of Engineers

USACHCS U.S. Army Chaplain Center and School USAMPS U.S. Army Military Preparatory School

USATHAMA U.S. Army Toxic and Hazardous Materials Agency

USC Unified Soil Classification UST underground storage tank

vac vacuum

VOA volatile organic analysis VOC volatile organic compound

WESTON® Roy F. Weston, Inc.

yd³ cubic yard

Brown, G.A. and O.S. Zapecza. 1990. Results of Test Drilling in Howell Township, Monmouth County, New Jersey. USGS, West Trenton, NJ.

CECOM Historical Office. 1985. A Concise History of Fort Monmouth, New Jersey. Fort Monmouth, NJ.

Cosulich. 1981. Engineering Design to Accompany Registration Statement, Fort Monmouth Solid Waste Landfill. W.F. Cosulich Associates. May 1981.

EPA (U.S. Environmental Protection Agency). 1993. Drinking Water Regulations and Health Advisories, Office of Water, Washington, DC. May 1993.

EPA (U.S. Environmental Protection Agency). 1989. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

EPA (U.S. Environmental Protection Agency). 1986. Quality Criteria for Water. EPA 440/5-86-001.

EPA (U.S. Environmental Protection Agency). 1982. Sampling Protocols for Collecting Surface Water, Bed Sediment, Bivalves, and Fish for Priority Pollutant Analysis. EPA-68-01-6195. 152 pp.

Fields, T.W., T.F. McNevin, R.A. Harkov, and J.V. Hunter. 1992. A Summary of Selected Soils Constituents and Contaminants at Background Locations in New Jersey. New Jersey Department of Environmental Protection, Site Remediation Programs and Division of Science and Research.

FWS (U.S. Fish and Wildlife Service). National Wetlands Inventory. Asbury Park Quadrangle Map.

FWS (U.S. Fish and Wildlife Service). National Wetlands Inventory. Long Branch Quadrangle Map.

Gill, H.E. 1962. Groundwater Resources of Cape May County, N.J.: Saltwater Invasion of Principal Aquifers. State of New Jersey Department of Conservation and Economic Development, Special Report 18.

Harriman, D.A. and B.P. Sargent. 1985. Ground-Water Quality in East-Central New Jersey, and a Plan for Sampling Networks. U.S. Geological Survey, Water-Resources Investigations Report 85-4243.

Harriman, D.A., D.A. Pope, and A.D. Gordon. 1989. Water-Quality Data for the Potomac-Raritan-Magothy Aquifer System in the Northern Coastal Plain of New Jersey, 1923-86. New Jersey Geological Survey Report 19.

Jablonski, L.A. 1968. Groundwater Resources of Monmouth County, New Jersey. USGS Special Report 23. USGS, Washington, DC.

Jablonski, C.F. and R.J. Baumley. 1989. Soil Survey of Monmouth County, New Jersey. U.S. Department of Agriculture, Soil Conservation Service.

Klein, C. and C.S. Hurlburt, Jr. 1985. Manual of Mineralogy. J. Wiley and Sons, NY.

Long, E.R., D.D. MacDonald, S.C. Smith, and F.D. Calder. 1995. "Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Environments." In: *Environ. Mgmt.* Vol. 19, No. 1. pp. 81-97.

Malcolm Pirnie. 1995. Data Validation Report. June 1995.

McNeill, J.D. 1980. Electromagnetic Terrain Conductivity Measurements at Low Induction Number. Technical Note TN-6, Geonics, Ltd., Mississauga, Ontario.

MCSS (Monmouth County Soil Survey). 1989.

Meisler, H., J.A. Miller, L.L. Knobel, and R.L. Wait. 1988. "Region 22, Atlantic and Eastern Gulf Coastal Plan." In: *Hydrogeology: The Geology of North America*, W. Back, J.S. Rosenhein, and P.R. Seaber, editors. Vol. 0-2. pp. 209-218.

Minard, J.P. 1969. Geology of Sandy Hook Quadrangle in Monmouth County, New Jersey. U.S. Government Printing Office, Washington, DC.

NJDEP (New Jersey Department of Environmental Protection). Groundwater Quality Criteria (GWQC).

NJDEP (New Jersey Department of Environmental Protection). 1995. Site Remediation News, Winter 1995.

NJDEP (New Jersey Department of Environmental Protection). 1993a. *Ground Water Quality Standards*. NJAC 7:9-6. February 1993.

NJDEP (New Jersey Department of Environmental Protection). 1993b. *Technical Requirements for Site Remediation*. NJAC 7:26E. July 1993.

NJDEP (New Jersey Department of Environmental Protection). 1993c. New Jersey Surface Water Quality Standards. NJAC 7:9-4. February 1993.

NJDEP (New Jersey Department of Environmental Protection). 1992a. Cleanup Standards for Contaminated Sites, Proposed New Rules. NJAC 7:26D. February 1992.

NJDEP (New Jersey Department of Environmental Protection). 1992b. Field Sampling Procedures Manual. May 1992.

NJDEP (New Jersey Department of Environmental Protection). 1992c. Letter from Division of Parks and Forestry to Mr. Joseph Fallon. 18 September 1992.

NJDEP (New Jersey Department of Environmental Protection). 1991. Guidance for Sediment Quality Evaluations.

NJDEP (New Jersey Department of Environmental Protection). 1990. Letter to Mr. Dinker Desai. 8 June 1990.

NOAA (National Oceanic and Atmospheric Administration). 1990. "Potential for Biological Effects of Sediment Sorbed Contaminants." Tech Memorandum.

Tedrow, J.C.F. 1986. Soils of New Jersey. Robert E. Krieger Publishing Company, Malabar, FL. p. 349.

U.S. Army. 1959. Fort Monmouth History and Place Names, 1917-1959. Fort Monmouth, NJ.

USATHAMA (U.S. Army Toxic and Hazardous Materials Agency). 1980. Installation Assessment of Fort Monmouth. Report 171. May 1980.

USGS (U.S. Geological Survey). 1989. Asbury Park Quadrangle Map.

USGS (U.S. Geological Survey). 1981. Long Branch Quadrangle Map.

WESTON (Roy F. Weston, Inc.). 1994. Chemical Data Acquisition Plan for Site Investigation at Fort Monmouth, New Jersey.

WESTON (Roy F. Weston, Inc.). 1993. Investigation of Suspected Waste Sites at Fort Monmouth, New Jersey.

Zapecza, O. 1989. Hydrogeologic Framework of the New Jersey Coastal Plain. USGS Professional Paper 1404-B. U.S. Government Printing Office, Washington, DC.

APPENDICES

APPENDIX A

MAIN POST AND CHARLES WOOD BOREHOLE LOGS AND WELL COMPLETION SUMMARIES

MAIN POST BOREHOLE LOGS AND WELL COMPLETION SUMMARIES

BOREHOLE ID : MP2-MW1 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/14/94 END DATE : 12/14/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 22.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 22.75 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER : WELLINGTON REEVES

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 19.440

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32584

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

PURGE : 0.00 SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS..... (Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS :

Latitude-North: 40 deg 18' 33.1"

Longitude-West: 74 deg 03' 08.8"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME MAIN POST 2 INSPECTOR K. VALENTI WELL ID MP2-MW1 WATER LEVELS START DATE 12/14/94 **COMPLETION DATE** 12/14/94 DEPTH ELEV. DRILLING SUMMARY 1.60 TC Driller 21.04 WELLINGTON REEVES Protective Casing Drilling Fluid WATER 4.00 inch 0.00 GS 19.44 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 7.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.60 Protective Casing: 1.98 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 3.00 ft. Seal Type: BENTONITE Interval: 3.75 to 5.75 ft. Sand Pack Type: #1 MORIE Interval: 5.75 to 22.75 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 7.00 to 22.29 ft. Type: Slots: **PVC** 0.010 *inches* 3.75 BN 15.69 Silt Trap Interval: 22.29 to 22.75 ft. Backfill Type: Interval: 0.00 to ft. 0.00 5.75 SP 13.69 WELL DEVELOPMENT 12/22/94 Date 7.00 SC 12.44 Method Surge blocking, overpump Yield Purged Volume 9 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 22.29 BS -2.85 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>>> = Formation 22.00 TD -2.56 Additional Comments:

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 22.00

SITE NAME : MAIN POST 2 LOGGER : K. VALENTI
BORING ID : MP2-MW1 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/14/94 ELEVATION : 19.440 surveyed DATE COMPLETED : 12/14/94

ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			75	Silty sand, SM	DK BROWN	LSE	MST	4	HNU	0.0	Fill. Topsoil-organics.
18	1			Poorly graded sand, SP No Sample Recovered	LT BROWN	LSE	MST	656	HNU	0.0	Fill. M-F sand (parking lot fill) with some rounded stones.
17 -	2		100	Poorly graded sand, SP	LT BROWN	LSE	MST	5544	HNU	0.0	Uncert./Fill? Mostly sand (m-f) little gravel, lit. silt, some small rounded stones, same as above.
16 -	3								7		
15 -	4		100	Silty sand, SM	GRAYISH BROWN	SFT	WET	5 7	HNU	0.0	Same as above interval, Mottling noted in matrix.
14 -	- 5			Sandy lean clay, CL	LT ORANGE BROWN	FRM	WET	10	HNU	0.0	Orange-brown sand, some silt, clay. Gray mottling noted throughout matrix in spoon.
				Poorly graded sand, SP	ORANGE-BROWN	LSE	WET		HNU	0.0	4" layer of dark orange to brown coarse to medium sand.
				Silty sand, SM	GRAYISH BROWN	FRM	MST		HNU	0.0	Mottling noted some small sub-angular to sub-rounded.
13 -	6		100	Silty sand, SM	GRAYISH-BROWN	LSE	WET	7 13 11	HNU	0.0	Slight mottling, silty sand (wet)
12 -	7		A.,	Sandy lean clay, CL	LT GRAYISH BRN	FRM	WET	12	HNU	0.0	Wet, mottled sandy clay (with silt)
11 -	8		100	Well-graded sand, SW Sandy lean clay, CL Silty sand, SM	ORANGE-BROWN BROWN LT GRAY LT GRAY-BROWN	LSE SFT LSE	WET WET	6779	HNU HNU	0.0	2" coarse to medium sand. Wet, mottled sandy clay with silt. sharp contact.
10 -	9			Silty sand, SM	BROWNISH DK GRY	SFT	WET		HNU	0.0	
9 -	- 10		100	Silty sand, SM	BRN-DK GRY/BLK	SFT	SAT	7 10 9	HNU	0.0	Mostly silty sand, Mottle noted w/streaks of yellow & orange periodically throughout sps.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 22.00

SITE NAME : MAIN POST 2 LOGGER : K. VALENTI

BORING ID : MP2-MW1 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/14/94ELEVATION : 19.440 surveyed DATE COMPLETED : 12/14/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
				Silty sand, SM	BRN-DK GRY/BLK	SFT	SAT		HNU	0.0	-	Mostly silty sand. Mottle noted w/streaks of yellow & orange periodically throughout sps.
8	11											
7 -	12		100	Silty sand, SM	LT GRAYISH BRN	LSE		3578	HNU			·
6 -	13		•	Sandy silt, ML	DK GRAY TO BLK	LSE	MST		HNU	U. U		
5 -	14		100	Sandy silt, ML	LT BROWN	SFT	WET	4444	HNU	0.0		
4 -	15		ı	Elastic silt, MH	DK GRAY-BLACK	SFT	MST		KNU	0.0		Color is dk gray to black with green tint.
3 -	16		100	Elastic silt, MH	DK GRAY: - BLACK	SFT	MST	7889	HNU	0.0		Same lithology as above interval.
2 -	- 17			Silt, ML	DK GRAY-BLACK	FRM	MST	-	HNU	0.0	,	Dk gray to black. More consoidated. W.L. at 15, bgs.
1 -	- 18		100	Elastic silt, MH	DK GRAY	FRM	SAT	3350 10	HNU	0.0		Saturated 18-19.6. Clayey texture, very little sand
0 -	- 19				,			10			-	-
-1 -	- 20			Silt with sand, ML	GREEN - DK GRAY GREEN-DK GRAY	SFT	MST WET		HNU HNU			
				The second secon		.JE	#£1	7 7 9 13	INIU			

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 2

BORING ID : MP2-MW1

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated ELEVATION : 19.440 surveyed

TOTAL DEPTH : 22.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55
DATE STARTED : 12/14/

DATE STARTED : 12/14/94
DATE COMPLETED : 12/14/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Silt with sand, ML	GREEN-DK GRAY	LSE	WET		0.0 UNH	``
-1	21									
-2	22			Interval Not Sampled		1				Augered interval TD of borehole 22.75.
-3	23								·	
	<u> </u>									÷
-4 -	24					٠		•		
				-						
-5	25			·					,	· · · · · · · · · · · · · · · · · · ·
-6	26						,			
_7.	27									
	28									
-8	28									
	-									
-9-	29		*		7					ų
-10 -	30				-		٠		·	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 47

BOREHOLE	SMP	LTH	LITHOLOGY	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
							`	-									-	
MP2-MW1	1	1	0.00	0.20	SPS		0	MF	80	-20	0	0		NON	MOD	LSE	MST	
MP2-MW1	1	2	0.20	1.50	SPS		0	MF	100	0	0	0		NON	MOD	LSE	MST	
MP2-MW1	1	3	1.50	2.00	SPS		0		0	0	0	0						
MP2-MW1	2	1	2.00	4.00	SPS	F	10	MF	85	5	0	0		NON	MOD	LSE	MST	
MP2-MW1	3	1	4.00	4.40	SPS	F	5	MF	80	15	0	0		LOW	MOD	SFT	WET	
MP2-MW1	3	2	4.40	5.20	SPS		0	F	30	20	50	0		MOD	MOD	FRM -	WET	
MP2-MW1	3	3	5.20	5.60	SPS		0	CM	100	0	0	0		NON	MOD	LSE	WET	
MP2-MW1	. 3	4.	5.60	6.00	SPS		0	MF	70	20	10	0		LOW	POR	FRM	MST	
MP2-MW1	4	1	6.00	6.40	SPS .	F	5	F	70	25	0	0		NON	POR	LSE	WET	
MP2-MW1	4	2	6.40	7.60	SPS		0		30	20	50	0		LOW	MOD	FRM	WET	
MP2-MW1	4	3	7.60	7.80	SPS		0	CM	100	0	0	0	,	NON	POR	LSE	WET	
MP2-MW1	4	-4	7.80	8.00	SPS		0		30	20	50	0		MOD	MOD	SFT	WET	
MP2-MW1	5	-1	8.00	8.80	SPS		. 0	MF	85	່ 15	0	0		NON	MOD	LSE	WET	
MP2-MW1	5	2	8.80	10.00	SPS		0		50	40	10	0	•	LOW	POR	SFT	WET .	
MP2-MW1	6	1	10.00	12.00	SPS		5		65	30	0	0		NON	POR	SFT	SAT	
MP2-MW1	. 7	1	12.00	12.60	SPS		0	FM	85	15	0	0		NON	MOD	LSE	SAT	•
MP2-MW1	· 7	2.	12.60	14.00	SPS		0		30	60	10	0 .		NON	MOD	LSE	MST	
MP2-MW1	8	1	14.00	14.60	SPS		0		40	50	10	. 0		LOW	POR	SFT .	WET	
MP2-MW1	8	2	14.60	16.00	SPS		0	F	10	60	30	0		MOD	,WEL	SFT	MST	
MP2-MW1	9	1	16.00	16.80	SPS		0		10	60	30	0		MOD	MOD	SFT	MST	
MP2-MW1	9	2	16.80	18.00	SPS		0		5	. 55	40	0 /		LOW	POR	FRM	MST	
MP2-MW1	10	1	18.00	19.60	SPS		0		10	45	45	0		MOD	WEL	FRM	SAT	
MP2-MW1	10	2	19.60	20.00	SPS .		0		25	50	25	0	•	LOW	MOD	SFT	MST	
MP2-MW1	11	1	20.00	22.00	SPS		0		25	50	25	0		LOW	MOD	LSE	WET .	
MP2-MW1	12	1	22.00	22.75	NS		0		0.	0	0	0						

BOREHOLE ID : MP2-MW2 PROJECT NAME; FT. MONMOUTH

BEGIN DATE : 12/13/94 END DATE : 12/13/94

LOGGER/COMPANY : K. VALENTE

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 18.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 18.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 13.360

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32585

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

 PURGE :
 0.00

 SAMPLE :
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Moved original well location approx. 5' due S.E. of original staked location. MP2-MW-02 is a stickup well. Latitude-North 40 deg 18' 31.8"/Longitude-West: 74 deg 03' 18.9"

WELL ID START DATE COMPLETION DATE	12		M2 3/94 3/94	WATER LEVELS
Protective Casing	2.14	TC	ELEV. 15.50	DRILLING SUMMARY Driller WELLS REEVE Drilling Fluid WATER Well Type SINGLE CASED SCREENED
	3.46	BN	9.90	WELL DESIGN CONSTRUCTION Casing #I Diameter: 4.00 inch Type: PVC SCH 40 Stick Up Inner Casing: 2.14 ft. Protective Casing: 2.36 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 3.46 ft. Seal Type: BENTONITE Interval: 3.46 to 5.46 ft. Sand Pack Type: #1 MORIE Interval: 5.46 to 18.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 7.46 to 17.00 ft. Type: PVC Slots: 0.010 inches Silt Trap Interval: 17.00 to 17.46 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.46	SP	7.90	
	7.46	SC	5.90	WELL DEVELOPMENT Date 12/22/94 Method Surge blocking/overpump Yield 2.5 gpm Purged Volume 90 gal
	17.00	BS	-3.64	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	17.00	TD	-3.64	TD = Total Depth

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 18.00

SITE NAME : MAIN POST AREA 2 LOGGER : K. VALENTE

BORING ID : MP2-MW2 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : CME-55

EASTING : 0.0000 estimated DATE STARTED : 12/13/94
ELEVATION : 13.360 surveyed DATE COMPLETED : 12/13/94

ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
12 -	1		75	Sandy silt, ML	BROWN/DK BROWN	LSE	MST	7 13 19 15	HNU	0.0	0-1.1' topsoil/organics plant & root fragments
-				Sandy silt, ML No Sample Recovered	BROWN/DK BROWN	LSE	MST		HNU	0.0	Fill. Coal fragments present.
11 -			50	Sandy silt, ML	GREEN GRAY	SFT	MST	13867 /	HNU	0.0	Contents sharp based on color changes. Slight organic odor. Downward coarsening sequence.
10 -		,		No Sample Recovered							
9 -	- 4		,	No Sample Recovered				1352	,		
8 -	- 5			j .				· ·		-).
7 -	6		50	Fill -	GREEN & BLACK			34 9 5 5	HNŲ	1.1	Fill. Possible roof shingles, Slight odor a Approx. 6.5' bgs: Sample appears saturated.
6 -	7			No Sample Recovered						•	
5 -	- 8		50	Silty sand, SM	BROWN-GRAY	SET	WET	23 12 8 10	HNU	0.0	Fill and debris with silty sand. Wood and paper debris present.
4 -	- 9 -			No Sample Recovered	٠,						
3 -	- 10			No Sample Recovered			WET	2259	HNU	0.0	Organic odor in empty spoon. Water entering borehole at 8'10" bgs.

: 18.00

Borehole Log

PROJECT : FT. MONMOUTH TOTAL DEPTH

SITE NAME : MAIN POST AREA 2 LOGGER : K. VALENTE
BORING ID : MP2-MW2 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/13/94 ELEVATION : 13.360 surveyed DATE COMPLETED : 12/13/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	H	READING	COMMENTS
. 2	+ + 11,			No Sample Recovered			WET		HNU	0.0	71	Organic odor in empty spoon. Water entering borehole at 8/10" bgs.
1	+ + 12		50	Elastic silt, MH	BROWN/DK GRAY	SFT	WET	5322	HNU	0.0		Fill/uncertain. SPS filled with water.
-1	+ 13 + + 14		25	No Sample Recovered Silty sand, SM	GRAY BROWN	LSE	SAT	8633	HNU	0.0		Fill. Recovery is slough.
-2	- 15 -			No Sample Recovered				33			,	
-3	16		100	Silty sand, SM	GRAY	LSE	SAT	4 5 9 14	HNU	0.0		16-17' slough.
-4	† 17 † 18			Other	TURQUOIS-GRAY	SFT	WET		HNU	0.0		Very soft silt clay material. Turquois-gray in color, Well set at 17' bgs.TD of borehole 18'bgs
-6	19				·		-			•		
-7	- - 20											-

BOREHOLE ID : MP2-MW3 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/13/94 END DATE : 12/13/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

DEPTH TO BEDROCK : 0.00 TOTAL DEPTH: 16.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 15.60 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2: 2.00

INTERVAL: 15.60 ft. to 16.00 ft. BGS

METHOD : SPLIT SPOON

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLINGTON REEVES

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

10.980 ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT #: NJ 29 32586

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N **TYPE** DEPTH

PURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS :

Latitude-North: 40 deg 18' 35.5"

Longitude-West: 74 deg 03' 08.6"

DATE: 06/20/95 **** Roy F. WESTON, Inc. L'ITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 48

BOREHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	•				STRAT	
/WELL ID	NUM	·NUM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
													•)	•	١			
MP2-MW2	1	1 .	0.00	1.10	SPS		0	MF	30	60	2	8		NON	MOD	LSE	MST		•
MP2-MW2	1	2	1.10	1.50	SPS	F	10		35	48	2	5		NON	POR	LSE	MST		
MP2-MW2	1	3	1.50	2.00	SPS		0		0	0	0	0	, -					-	
MP2-MW2	2	໌ 1	2.00	3.00	SPS		5		25	60	10	0	•	NON	MOD	SFT	MST		
MP2-MW2	2	2	3.00	-4.00	SPS		0		. 0	0	0	0			•			'	
MP2-MW2	3	1	4.00	6.00	SPS		0		0 /	¹ 0	0	0							-
MP2-MW2	4	1	6.00	7.00	SPS 🔧		. 0		o Î	0.	0	0_	-						
MP2-MW2	4	2	7.00	8.00	SPS		0		0	0	0	0				`		٠	
MP2-MW2	5	1	8.00	9.00	SPS -	•	0	MF	60	40	0	0		NON	MOD	SFT	WET		
MP2-MW2	5	2	9.00	10.00	SPS		0		0	0	0	0				•			
MP2-MW2	6	1	10.00	12.00	SPS		0		0	0	0	0		,			WET		
MP2-MW2	7	1	12.00	13.00	SPS .		⁻ 0	F	10 .	70	20	, 0		MOD	WEL	SFT	WET	*	
MP2-MW2	7	2	13.00	14.00	SPS		0		Ó	0	0	0		,			•		
MP2-MW2	8	1	14.00	14.50	SPS		10		60	20	8	` 2		NON	POR	LSE	SAT -	,	
MP2-MW2	8	2.	14.50	16.00	SPS	,	0		0	0	0	. 0		,					
MP2-MW2	9	1	16.00	17.00	SPS		10	•	60	20	5	5		NON	POR	LSE	SAT		
MP2-MW2	9	2	17.00	18.00	SPS		0	1	20	20	60 ⁻	″ 0 .		LOW	MOD	SFT	WET	•	

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME MAIN POST AREA 3 K. VALENTE INSPECTOR WELL ID MP2-MW3 WATER LEVELS 12/13/94 START DATE **COMPLETION DATE** 12/13/94 DEPTH ELEV. **DRILLING SUMMARY** 1.70 TC 12.63 Driller WELLS REEVE Protective Casing Drilling Fluid NONE 0.00 GS 4.00 inch 10.93 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.70 Protective Casing: ft. 2.12 ft. Casing Grout: PORTLAND CEMENT Interval: 2.60 to 4.60 ft. Seal Type: BENTONITE Interval: 2.00 to 4.00 ft. Sand Pack Type: #1 MORIE Interval: 4.60 to 15.60 ft. Grain Size : UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 15.14 ft. Type: Slots: PVC 0.010 inches 2.00 BN 8.93 Silt Trap Interval: 15.14 to 15.60 Backfill Type: Interval: 0.00 to 0.00 ft. 4.60 SP 6.33 WELL DEVELOPMENT Date 12/22/94 Surge blocking/overpump 5.00 SC Method 5.93 Yield 2-3 gpm Purged Volume 225 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 15.14 BS -4.21 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>> = Formation 15.00 TD -4.07 **Additional Comments:**

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : MAIN POST AREA 3 LOGGER : K. VALENTI BORING ID : MP2-MW3 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55
EASTING : 0.0000 estimated DATE STARTED : 12/13/94
ELEVATION : 10.980 surveyed DATE COMPLETED : 12/13/94

_					*								
	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
ĺ				75	Poorly graded sand, SP	LT BROWN	LSE	MST	9	HNU	0.0		Fill. Medium to fine sand
	-					-			10 10				
	9 -	1			Silty sand, SM	GRAYISH BROWN	FRM	MST		HNU	0.0		Fill. Slight organic odor Contains some organic debris and fragments of coal chips.
	٠.	Ī			No Sample Recovered								,
	8 -	.2		50	Silty sand with gravel, SM	GRAYISH GREEN	FRM	мѕт	8 11 9 10	HNU	0.0		Fill with some organic debris, gravels and wood chips. Slight organic odor.
	7 -	- 3			Organic soil with sand No Sample Recovered	GRAYISH WHITE	LSE	MST		HNU	0.0		Fill. Organic debris & trash.
	-												
	6 -	4	XXX	10	Fill No Sample Recovered		NA .	NA	35	HNU	0.0		 Fill with 2" of a few rock and wood, some trash
	-		,		no sample kecovered	^			6				
	5 -	5						-	·			•	
İ	-	_											·
	4 -	6	XXX	10	Fill	WHITE TAN	NA NA	NA	3	HNU	0.0		Fill includes 2" of trash
ľ	-				No Sample Recovered				3212				Fill includes 2" of trash debris & gravels (white-tan). Outside of spoon is dry.
	3 -	7								ł. 			,
	_		-										
	2 -	8	,	. 20	Poorly graded sand, SP	GRAYISH GREEN	LSE	CAT	7				Sill Commission
	_			20	No Sample Recovered	GRATISH GREEN	LSE	SAT	ろひひひ	HNU	0.0		Fill. Organic odor present. Trash debris. Water at 8' bgs.
	4 -				·								\
	1 -	9											
	-	-											
	. 0 -	- 10		100	Fat clay, CH	DK BROWN	FRM	SAT	2322	KNU	0.0		Fill/uncertain. Dk brown sity clay with organic debris, mild organic odor Recovery is saturated.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : MAIN POST AREA 3 LOGGER : K. VALENTI

BORING ID : MP2-MW3 DRILLING COMPANY : J.C. ANDERSON

NORTHING: 0.0000 estimated DRILLING RIG: CME-55 EASTING: 0.0000 estimated DATE STARTED: 12/13/94ELEVATION: 10.980 surveyed DATE COMPLETED: 12/13/94

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Fat clay, CH	DK BROWN	FRM	SAT		HNU 0.0	Fill/uncertain. Dk brown silty clay with organic debris, mild organic odor Recovery is saturated.
-1 -	11						ă.			
-2 -	- 12		50	Lean clay with sand, CL	GREEN I SH-GRAY	SFT	SAT	1	HNU 0.0	Mild organic odor. Very soft silt clay material.
-3 -	13			No Sample Recovered						
-4 -	- 14		75	Silty sand, SM	DK GRAY	SFT	SAT	4346		Soft silty sand, dk gray. Similar lithology to previous spoon - more sand.
-5 -	15									
-6 -	- 16	10		No Sample Recovered						TD of borehole 16' bgs.
-7-	- 17									
-8	- 18									
-9 -	- 19									
-10	- 20		, a							

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 49

BOR	EHOLE	SMP	LTH	LITHOLOGY	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK .					STRAT	4/
/WE	LL ID	NUM	NUM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
			•					9						,						
MP2	-MW3	1	1	0.00	1.00	SPS		0	MF	100	0	0	0		NON	WEL	LSE	MST		
MP2	-MW3	1,	2	1.00	1.50	SPS		0	F	80	20	0	0		NON	POR	FRM	MST		
MP2	-MW3	1	3	1.50	2.00	SPS		0		0	0	0	0		•			•		-
MP2	-MW3	2	1	2.00	2.80	SPS		20		60	15	5	0	-	NON	POR	FRM	MST		
MP2	-MW3	2	2	2.80	3.00	SPS		0		20	0	0	- 80		NON	POR	LSE	MST		
MP2	-MW3	2	3	3.00	4.00	SPS		0		0	0	0	0							
MP2	-MW3	3	1	4.00	4.20	SPS		0		0	0	0	0		/ NA	NA	NA	NA		
MP2	-MW3	3	2	4.20	6.00	SPS		0		0	0	0	0							
MP2	-MW3	4	1	6.00	6.20	SPS		0	-	0	0	0	0		NA	NA	NA	NA		
MP2	-MW3	4	2	6.20	8.00	SPS		0	·.	Ó	0	. 0	0							
MP2	-MW3	5	1	8.00	8.40	SPS	C	5.	F	95	0	0	0		NON	MOD	LSE	SAT		
MP2	-MW3	5	2	8.40	10.00	SPS		0		0	0	0	0	-					•	
MP2	-MW3	6	1	10.00	12.00	SPS		0		5	10	70	15		HGH	WEL	FRM	SAT		
MP2	-MW3	7	1	12.00	13.00	SPS		0 .		20	20	60	0	٠	LOW	MOD	SFT	SAT		
MP2	-MW3	7	2	13.00	14.00	SPS		0		0	0	0	0							
MP2	-MN3	8	1	14.00	15.50	SPS		0	•	60	35	5	0		NON	POR	SFT	SAT	•	
MP2	-MW3	8	2	15.50	16.00	SPS		0		0	0	0	0						-	

PROJECT NAME: FT. MONMOUTH
END DATE : 01/05/95 BOREHOLE ID : MP3-MW4

BEGIN DATE : 01/05/95

LOGGER/COMPANY :

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 23.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 23.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID :

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> ESTIMATED . SURVEYED

SURFACE

ELEVATION : 0.000 17.340

N. COORDINATE: 0.0000

E. COORDINATE: 0.Ò000 ⁻

WELL PERMIT.....(Y) es (N) o: N PERMIT # : 29 32568

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N DEPTH TYPEPURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

Latitude-North: 40 deg 18' 45.2" Longitude-West: 74 deg 03' 09.3"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON MAIN POST 3 INSPECTOR P. THOMAS SITE NAME WELL ID MP3-MW4 WATER LEVELS 01/05/95 START DATE **COMPLETION DATE** 01/05/95 DEPTH ELEV. DRILLING SUMMARY 1.68 TC 19.02 Driller WELLINGTON REEVE Protective Casing Drilling Fluid WATER 0.00 GS .00 inch 17.34 SINGLE CASED SCREENED Well Type WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 8.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.68 ft. **Protective Casing:** 2.36 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 3.72 ft. Seal Type: BENTONITE SLURRY Interval: 6.72 ft. 3.72 to Sand Pack Type: NO. 1 SAND MORIE Interval: 6.72 to 23.72 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 8.72 to 23.26 ft. Slots: Type: **PVC** 0.010 inches 3.72 BN 13.62 Silt Trap Interval: 23.26 to 23.72 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 6.72 SP 10.62 WELL DEVELOPMENT 01/12/95 Date 8.72 SC Method Bailing/overpumping 8.62 Yield Purged Volume 154 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 23.26 BS -5.92 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth ***** = Formation 23.00 TD -5.66 Additional Comments: Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 3

BORING ID : MP3-MW4

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 17.340 surveyed

TOTAL DEPTH : 23.00

LOGGER

DRILLING COMPANY : J.C. ANDERSON
DRILLING RIG : MOBILE B-57

DATE STARTED : 01/05/95

DATE COMPLETED : 01/05/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
16	- - - 1			Silty sand, SM No Sample Recovered	OLIVE GREEN.	SFT	MST		OVM	0.0	0-0.2' bgs topsoil - grass and plant fragments
15	3		80	Silty sand, SM No Sample Recovered	OLIVE GREEN	SFT	MST		OVM	0 .0	Coarsens downward.
13	<u> </u> 		60	Silty sand, SM No Sample Recovered	OLIVE GREEN	FRM	MST	16 19 38 31	OVM (0.0	Trace clay/gravel fragments.
10			75	Silty sand, SM No Sample Recovered	OLIVE GREEN	FRM	MST	524 145 15	OVM (0.0	
	9		85	Silty sand, SM Silty sand, SM No Sample Recovered	OLIVE GREEN BROWN/OLIVE GRN	FRM	MST		OVM (Trace gravel. Slightly more clayey and moister than above. Dk olive green w/lt Fe color sediments.
7	10		75	Silty sand, SM	DK OLIVE GREEN	SFT	WET	11 13 17 20	OVM (0.0	Sand w/clay matrix (similar to soils, found at M5 locations)

Borehole Log

PROJECT : FT. MONMOUTH TOTAL DEPTH : 23.00

SITE NAME : MAIN POST 3 LOGGER :

BORING ID : MP3-MW4 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/05/95 ELEVATION : 17.340 surveyed DATE COMPLETED : 01/05/95

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	H	COMMENTS
6-	11		•	Silty sand, SM	DK OLIVE GREEN	SFT	WET		OVM	0.0	Sand W/clay matrix (similar to soils, found at M5 locations)
5 -	12			No Sample Recovered	DK OLIVE GREEN	LSE	WET	125 15 14	OVM	0.0	Sand w/clay matrix, slightly more sandy.
3 -	13		\65	No Sample Recovered Silty sand, SM	DK OLIVE GREEN	LSE	WET	11 16	OVM	0.0	Water is apparant, but soil is not permeable. Sand in sitt/clay matrix.
2 -	15			No Sample Recovered	ı		,	22			Sand in Sitt/Ctay matrix.
1 -	- 16 - 17		85	Silty sand, SM	DK OLIVE GREEN	LŞE	SAT	9 10 15 20	OVM	0.0	Sat 16' bgs. Interval above is wet during low tide.
-1 -	- 18			No Sample Recovered Silty sand, SM	DK OLIVE GREEN	LSE	SAT	11 226 30	OVM	0.0	
-	- 19 - - - 20			No Sample Recovered						,	

PROJECT : FT. MONMOUTH TOTAL DEPTH : 23.00

SITE NAME : MAIN POST 3 LOGGER

BORING ID : MP3-MW4 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/05/95 ELEVATION : 17.340 surveyed DATE COMPLETED : 01/05/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			95	Silty sand, SM	DK OLIVE GREEN	LSE	SAT	12 19	OVM	0.0	
-	,							31			
-3 -	21								_		
_				,				:		•	
				No Sample Beautaned							,
-4-	22			No Sample Recovered Interval Not Sampled							Augered interval. Set well at 23' bgs.
-											
-5 -	23			·							
-										-	
-6-	. 24				,		,				
				-:							
-			``		,						
-7-	25										
-	_						1				
-8-	26		-)
				1		,					
-9 -	27				,						
-				^		Ì				-	
-10 -	- 28		ĺ								
										-	
-11 -	29										
-	-										
-12 -	30			-	·		,				
					1						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 50

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
									_								•		
MP3-MW4	1	1	0.00	1.00	SPS		0	FM	50	40	5	5		NON	MOD	SFT	MST		
MP3-MW4	1	2	1.00	2.00	SPS		0		0	0	0	0							-
MP3-MW4	2	1	2.00	3.60	SPS		0	MF	70	25	5	0		NON	MOD	SFT	MST		
MP3-MW4	2	2	3.60	4.00	SPS		0		0	0	0	0							
MP3-MW4	3	1	4.00	5.20	SPS		0	FM	70	25	5	0		NON	MOD	FRM	MST		
MP3-MW4	3	2	5.20	6.00	SPS		0		0	0	0	0							
MP3-MW4	4	1	6.00	7.50	SPS		0	FM	70	25	5	Ô		NON	MOD	FRM	MST		
MP3-MW4	4	2	7.50	8.00	SPS	~	0		0	0	0	0							
MP3-MW4	5	1	8.00	8.60	SPS		0	FM	70	25	5	O ₁		NON	MOD	FRM	MST		
MP3-MW4	5	2	8.60	9.70	SPS		0	MF	55	40	5	0	,	NON	MOD	SFT	MST		٢
MP3-MW4	5	3	9.70	10.00	SPS		0		· 0	0	0	0							
MP3-MW4	6	1	10.00	11.50	SPS		0	MF	55	35	10	Ò		NON	MOD	SFT	WET		
MP3-MW4	6	2	11.50	12.00	SPS		0		0	Ö	0	0						,	
MP3-MW4	7	1	12.00	13.60	SPS		0	M	60	30	10	0		NON	MOD .	LSE	WET	•	
MP3-MW4	7	2	13.60	14.00	SPS		0		0	0	0	0							
MP3-MW4	8	1	14.00	15.30	SPS		0	M	60	30	10	0		NON	MOD	LSE	WET		
MP3-MW4	8	,2	15.30	16.00	SPS		0		0	0	0	0 `							
MP3-MW4	, 9	1	16.00	17.70	SPS		0	MF	60	30	10	0		NON	MOD	LSE	SAT		
MP3-MW4	9	2	17.70	18.00	SPS		0		0	0	0	0							
MP3-MW4	10	1	18.00	19.90	SPS		0	MF	60	30	10	0	•	NON	MOD	LSE	SAT	•	/
MP3-MW4	10	2	19.90	20.00	SPS		0`		0	0	0	0							
MP3-MW4	11	1	20.00	21.90	SPS		0		60	30	10	0		NON:	MOD	LSE	SAT		
MP3-MW4	11	2	21.90	22.00	SPS		0	•	0	0	0	0							
MP3-MW4	12	1	22.00	23.00	NS		0		0	0	0	0							

BOREHOLE ID: MP3-MW5 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/09/95 END DATE : 01/09/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 16.43 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 16.43 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 11.280

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT (Y) es (N) o: N PERMIT # : 2932569

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

PURGE: 0.00

SAMPLE :

0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Moved location due to high tension subsurface lines directly beneath original location. Latitude-North: 40 deg 18' 45.8"/Longitude-West: 74 deg 03' 14.6"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON MAIN POST 3 INSPECTOR K. VALENTI SITE NAME WELL ID MP3-MW5 WATER LEVELS START DATE 01/09/95 **COMPLETION DATE** 01/09/95 DEPTH ELEV. **DRILLING SUMMARY** 2.02 TC WELLINGTON REEVES 13.30 Driller Protective Casing Drilling Fluid WATER .00 inch 0.00 GS 11.28 Well Type SINGLE CASED SCREENED **WELL DESIGN CONSTRUCTION** Casing #1 Diameter: 4.00 inch Interval: 0.00 to 16.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: Protective Casing: 2.02 ft. 2.14 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 2.43 ft. Seal Type: 2.43 to BENTONITE Interval: 4.43 ft. Sand Pack Type: #1 MORIE Interval: 4.43 to 16.43 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 6.43 to 15.97 ft. Type: **PVC** Slots: 0.010 inches 2.43 BN 8.85 Silt Trap Interval: 15.97 to 16.43 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 4.43 SP 6.85 WELL DEVELOPMENT Date 01/12/95 6.43 SC Method 4.85 Bailing/overpumping Yield gpm Purged Volume 70 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 15.97 BS -4.69 GS = Ground Surface SC = Top Screen BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>>> = Formation 16.00 TD -4.72 **Additional Comments:**

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH

TOTAL DEPTH : 16.43 SITE NAME : -MAIN POST. 3 LOGGER : K. VALENTI

BORING ID : MP3-MW5 DRILLING COMPANY : J.C. ANDERSON

(-

NORTHING 0.0000 estimated DRILLING RIG : CME-55 EASTING 0.0000 estimated DATE STARTED : 01/09/95 ELEVATION : 11.280 surveyed DATE COMPLETED : 01/09/95

	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				50	Silty sand, SM ι	BROWN	SFT	MST	3 6 14 14	HNU	0.0	Top 4" bgs=topsoil. Cuttings al.5' bgs black With v slight petroleum odor (fill?).
	-	• .				-			14		· ·	odor (fill?).
	10 -	- `1			No Sample Recovered					 		
	-	-			yagana .	. }						
	9 -	- 2) 	50	Silty sand with gravel, SM	BLACK	LSE	MST	0	HNU	0.0	Uncertain/Fill? Black
	-	-			, and an an an an an an an an an an an an an	,			9 11 13 8			Uncertain/Fill? Black soil - very light petroleum product odor.
ŀ		_					j.	, ,		,		
	8 -	3			No Sample Recovered	<u>^</u>						- •
٠	•	-	1									
	7 -	- 4			No Sample Recovered	,			9 2 1 2	HNU	0.0	Spoon was wet upon removal from borehole.
:	-	-							2			
	6 -	- 5		•		,						
:	, -	-										
ľ	5 -	- 6	<u> </u>		No Comple Becovered				7			
ŀ			:		No Sample Recovered				3443			Spoon was wet. Cuttings wet at ~7' bgs. Fill consisted of film (for camera).
						,						
	4 -	7			V.							
		-			_							
	3 -	- 8		20	Silty sand with gravel, SM	BLACK	LSE	SAT	. 4	HNU	0.0	Fill, Film coming up as cuttings. Very slight
	,	-		,	No Sample Recovered				4323			Fill, Film coming up as cuttings. Very slight odor of petroleum products.
	2 -	- 9										-
		_					!	١				
												<i>></i>
	1 7	- 10			No Sample Recovered	,			2222	HNU	0.0	

Borehole Log

FT. MONMOUTH **PROJECT**

MAIN POST 3 SITE NAME :

MP3-MW5 BORING ID :

-- -- TOTAL DEPTH : 16.43

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

NORTHING 0.0000 estimated DRILLING RIG : CME-55 0.0000 estimated : 01/09/95 EASTING DATE STARTED 11.280 surveyed ELEVATION :

DATE COMPLETED : 01/09/95

				·							
ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
			i	No Sample Recovered					HNU	0.0	
0	+ 11 +										
											1
-1	† 12 †		15	Silty sand with gravel, SM No Sample Recovered	BLACK	LSE	SAT	5 4 6 8	HNU	0.0	Used 3" SPS. Same lith, as interval from 8-8.4' bgs.
	47			•	,		ľ				
-2	+ 13		ĺ								
	+		İ					İ			
-3	+ 14		l	-	ر	٠,					
-3	14		15	Elastic silt, MH	BLACK	FRM	SAT	444	HNU	0.0	Used 3" sps. Set well at 16.43' bgs.
	+		ł	No Sample Recovered]	7			
١,	1 45										
-4	15		1	(
	+		Í								
-		1	İ								
-5	† 16		1	Interval Not Sampled	1						Augered interval. TD of borehole 16.43'.
()	ļ ·				1						·
	•										
-6	17										
	+ .										
-7	18										-
	ļ ·										
							(,
-8	19										
	+										, ,
											,
-9	20					1					
			1	1	1	1			1		,

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 51

BOREHOLE	SMP	LTH	LITHOLOG	Y ĮNT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	٠,				STRAT
/WELL ID	NUM	NUM	(FT BG	s)ˈ	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE`	PLAST	SORT	STRENGTH	MOISTURE	UNIT
															•			
MP3-MW5	1	1	0.00	1.00	SPS		0 -		50	40	10	0		LOW	POR	SFT	MST	
MP3-MW5	1	2	1.00	. 2.00	SPS		0 -		0	0	0	0 .				(
MP3-MW5	2	1	2.00	3.00	SPS		15 .		45	40	0	0		NON	POR	LSE	MST	
MP3-MW5	2	2	3.00	4.00	SPS		0		0	0	0,	0						
MP3-MW5	3	1	4.00	6.00	SPS		0		0	0	0 .	0						•
MP3-MW5	4	1	6.00	8.00	SPS		0		0	0	0	0				`		
MP3-MW5	5	1	8.00	8.40	SPS		20		50	30	0 .	0		NON	POR	LSE	SAT	
MP3-MW5	5	2	8.40	10.00	SPS		0		0	0	0	0		}				
MP3-MW5	6	1	10.00	12.00	SPS		0		0	0	0	0					,	•
MP3-MW5	7	1	12.00	12.30	SPS		25		40	30	5	0		LOW	POR	LSE	SAT	-
MP3-MW5	7	2	12.30	14.00	SPS	ر	0 ′		0	0	0	0						
MP3-MW5	8	1	14.00	14.30	SPS		0		0	65	35	0 -		HGH	WEL	FRM	SAT	`
MP3-MW5	8	2	14.30	16.00	SPS		0		0	0	0	0				÷		
MP3-MW5	9	1	16.00	16.43	NS		0		0	0	0	0	,			,		

BOREHOLE ID: MP3-MW6 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/11/95 END DATE : 01/11/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME

ESTIMATED SURVEYED.

SURFACE

ELEVATION: 0.000 10.250

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32570

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST......(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

PURGE: 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.... (Y) es (N) o: N SLUG TESTS..... (Y) es (N) o: N PACKER TESTS..... (Y) es (N) o: N PUMPING TESTS..... (Y) es (N) o: N

COMMENTS :

No sampling, only installed well. Latitude-North: 40 deg 18' 48.4"/Longitude-West: 74 deg 03' 06.9".

CLIEN'S SITE N		MONMO N POST		H	DRILLING FIRM J.C. ANDERSON INSPECTOR K. VALENTI
WELL I START COMPL		01	1/1:	MW6 1/95 1/95	WATER LEVELS
	tive Casing	DEPTH 2.17 0.00	TC	ELEV. 12.42	Drilling Fluid WATER
					WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 15.00 ft. Type: Stick Up Inner Casing: 2.17 ft. Protective Casing: 2.36 ft.
		1.33	BN	8.92	Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.33 ft. Seal Type: BENTONITE Interval: 1.33 to 3.33 ft. Sand Pack Type: #1 MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Type: PVC Slots: 0.010 inches Silt Trap Interval: 14.87 to 15.33 ft.
		3.33	SP	6.92	Backfill Type: Interval: 0.00 to 0.00 ft.
		5.33	SC	4.92	WELL DEVELOPMENT Date 01/18/95 Method Surge blocking/overpump Yield <.5 gpm Purged Volume 45 gal
		14.87	BS	-4.62	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
*****		15.00	TD	-4.75	TD = Total Depth = Formation Additional Comments:

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : MAIN POST 3 LOGGER : K. VALENTI
BORING ID : MP3-MW6 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME

EASTING : 0.0000 estimated DATE STARTED : 01/11/95 ELEVATION : 10.250 surveyed DATE COMPLETED : 01/11/95

			_								
ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			20	Not Classified - Incomple te Data	BLACK	LSE	NA	8055	HNU	0.0	Top 3" bgs consists of topsoil organics and landfill materials.
-	-	$\vdash \vdash \vdash$		No Sample Recovered				5	ľ		lahdfill materials.
9 -	1										
1				,					ĺ		
-	Ţ										
8 -	2			No Sample Recovered				2	HNU	0.0	
				No Sample Recovered				2223	nko	0.0	
-	†				·			3			
_	_	}				, ·					,
7-	3			6							
.	1										
					9						
.6-	4	\vdash		No Sample Recovered				2	HNU	0.0	Switching to 3" dia. sps.
					,			2252			Switching to 3" dia. sps. Wood in SPS heal & spoon shoe. Cutting consists of wet blk gravelly sand ~6'
-								_			list with granter, same s
5 -	- 5										
											,
-	†]			•						•
	ľ										
4 -	6		.50	Silty sand, SM	BROWN TO BLACK	FRM	WET	6897	HNU	1.0	Fill 3" SPS used. Some orange (lt) Fe staining Water level at 6'4" bgs.
.								7			Water level at 6'4" bgs.
				•	-						V.
3 -	7			No Sample Recovered	~ .						,
] [
-	†			,							
2 -	Ŕ		100	Silty sand, SM	GREEN	CET	SAT	3	HNU	0 0	Fill.
-			100	January Series	GREEN	351	3A 1	2423	וחאט	J.U	,
-	+						\	3		_	
			,							,	
1 -	9				,						-
_	1					}		•			
0 -	10		30	Silty sand, SM	GREEN	LSE	WET	1	HNU	0.0	Fill. Saturated sand & silt with fill material.
								2			SILT WITH TILL MATERIAL.

PROJECT : FT. MONMOUTH : 15.00

SITE NAME : MAIN POST 3 LOGGER : K. VALENTI
BORING ID : MP3-MW6 PRILLING COMPANY : J.C. ANDERSO

BORING ID : MP3-MW6 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : CME

EASTING: 0.0000 estimated DATE STARTED: 01/11/95 ELEVATION: 10.250 surveyed DATE COMPLETED: 01/11/95

	ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	-1 -	- 11			Silty sand, SM No Sample Recovered	GREEN	LSE	WET		HNÚ Ö.O	Fill. Saturated sand & silt with fill material.
	-2 -			50	Silty sand, SM	GREEN	FRM	WET	11 11 13 15	HNU 0.0	Auger to 15' set well.
	-4	-			No Sample Recovered Interval Not Sampled	,	-				Augered interval.
	-5	- - 15 . : -		,,							
	-6 -	- 16 - - 17			ر ن					,	
-	-8	-									
	-9	- 19 					-	- :			
,	-10 -	20	·f								

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 52

SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE 0	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
NUM	NUM	(FT BGS	s)	METHOD	GRAVEL F	PCT.	SAND	PCT	PCT	PCT	PCT (TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
1	1	0.00	0.40	SPS		90		10	0	0	0		NA	NA	LSE	NA	
1	2	0.40	2.00	SPS		0		0	0	0	0 -	•					
2	. 1	2.00	4.00	SPS		0		0	0	0	, 0				,		•
3	1	4.00	6.00	SPS		0		0	0	0	0						
4	1	6.00	7.00	SPS		10		50	40	0	0		NON	POR	FRM	WET	<u>.</u> .
4	2	7.00	8.00	SPS		0.		0	0	. 0	0						
5	1	8.00	10.00	SPS		0	•	50	35	15	0 -		LOW	MOD	SFT	SAT	
6	1	10.00	10.60	SPS		0		50	50	0	0		LOW	MOD	LSE	WET	•
6	2	10.60	12.00	SPS		0		0	0	0	. 0						
7	1	12.00	13.00	SPS		0	MF	75	25	0 -	0		LOW	MOD	FRM '	WET	
7	2	13.00	14.00	SPS		0		0	0	0	0		,				,
8	1	14.00	15.00	NS		0		0	Ŏ	Ö	0					•	•
	NUM 1 1 2 3 4 4 5 6 6 7 7	NUM NUM 1 1 1 2 2 1 3 1 4 1 4 2 5 1 6 1 6 2 7 1 7 2	NUM NUM (FT BGS) 1 1 0.00 1 2 0.40 2 1 2.00 3 1 4.00 4 1 6.00 4 2 7.00 5 1 8.00 6 1 10.00 6 2 10.60 7 1 12.00 7 2 13.00	NUM NUM (FT BGS) 1 1 0.00 0.40 1 2 0.40 2.00 2 1 2.00 4.00 3 1 4.00 6.00 4 1 6.00 7.00 4 2 7.00 8.00 5 1 8.00 10.00 6 1 10.00 10.60 6 2 10.60 12.00 7 1 12.00 13.00 7 2 13.00 14.00	NUM NUM (FT BGS) METHOD 1 1 0.00 0.40 SPS 1 2 0.40 2.00 SPS 2 1 2.00 4.00 SPS 3 1 4.00 6.00 SPS 4 1 6.00 7.00 SPS 4 2 7.00 8.00 SPS 5 1 8.00 10.00 SPS 6 1 10.00 10.60 SPS 6 2 10.60 12.00 SPS 7 1 12.00 13.00 SPS 7 2 13.00 14.00 SPS	NUM NUM (FT BGS) METHOD GRAVEL 1 1 0.00 0.40 SPS 1 2 0.40 2.00 SPS 2 1 2.00 4.00 SPS 3 1 4.00 6.00 SPS 4 1 6.00 7.00 SPS 4 2 7.00 8.00 SPS 5 1 8.00 10.00 SPS 6 1 10.00 10.60 SPS 6 2 10.60 12.00 SPS 7 1 12.00 13.00 SPS 7 2 13.00 14.00 SPS	NUM NUM (FT BGS) METHOD GRAVEL PCT. 1 1 0.00 0.40 SPS 90 1 2 0.40 2.00 SPS 0 2 1 2.00 4.00 SPS 0 3 1 4.00 6.00 SPS 0 4 1 6.00 7.00 SPS 10 4 2 7.00 8.00 SPS 0 5 1 8.00 10.00 SPS 0 6 1 10.00 10.60 SPS 0 6 2 10.60 12.00 SPS 0 7 1 12.00 13.00 SPS 0 7 2 13.00 14.00 SPS 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND 1 1 0.00 0.40 SPS 90 1 2 0.40 2.00 SPS 0 2 1 2.00 4.00 SPS 0 3 1 4.00 6.00 SPS 0 4 1 6.00 7.00 SPS 10 4 2 7.00 8.00 SPS 0 5 1 8.00 10.00 SPS 0 6 1 10.00 10.60 SPS 0 6 2 10.60 12.00 SPS 0 7 1 12.00 13.00 SPS 0 MF 7 2 13.00 14.00 SPS 0 O	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT 1 1 0.00 0.40 SPS 90 10 1 2 0.40 2.00 SPS 0 0 2 1 2.00 4.00 SPS 0 0 3 1 4.00 6.00 SPS 0 0 4 1 6.00 7.00 SPS 10 50 4 2 7.00 8.00 SPS 0 0 5 1 8.00 10.00 SPS 0 50 6 1 10.00 10.60 SPS 0 50 6 2 10.60 12.00 SPS 0 0 7 1 12.00 13.00 SPS 0 MF 75 7 2 13.00 14.00 SPS 0 0 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT 1 1 0.00 0.40 SPS 90 10 0 1 2 0.40 2.00 SPS 0 0 0 2 1 2.00 4.00 SPS 0 0 0 3 1 4.00 6.00 SPS 0 0 0 4 1 6.00 7.00 SPS 10 50 40 4 2 7.00 8.00 SPS 0 0 0 5 1 8.00 10.00 SPS 0 50 35 6 1 10.00 10.60 SPS 0 50 50 6 2 10.60 12.00 SPS 0 MF 75 25 7 2 13.00 14.00 SPS 0 0 0 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT 1 1 0.00 0.40 SPS 90 10 0 0 1 2 0.40 2.00 SPS 0 0 0 0 2 1 2.00 4.00 SPS 0 0 0 0 3 1 4.00 6.00 SPS 0 0 0 0 4 1 6.00 7.00 SPS 10 50 40 0 4 2 7.00 8.00 SPS 0 0 0 0 5 1 8.00 10.00 SPS 0 50 35 15 6 1 10.00 10.60 SPS 0 0 0 0 7 1 12.00 13.00 SPS 0 MF 75 25 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT PCT TYPE 1 1 0.00 0.40 SPS 90 10 0 0 0 0 2 0.40 2.00 SPS 0 0 0 0 0 0 0 3 1 4.00 6.00 SPS 0 0 0 0 0 0 4 1 6.00 7.00 SPS 10 50 40 0 0 0 4 2 7.00 8.00 SPS 0 <t< th=""><th>NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT PCT TYPE PLAST 1 1 0.00 0.40 SPS 90 10 0</th><th>NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT TYPE PLAST SORT 1 1 0.00 0.40 SPS 90 10 0</th><th>NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT TYPE PLAST SORT STRENGTH 1 1 0.00 0.40 SPS 90 10 0 0 0 NA NA LSE 1 2 0.40 2.00 SPS 0</th><th>NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT TYPE PLAST SORT STRENGTH MOISTURE 1 1 0.00 0.40 SPS 90 10 0 0 0 NA NA LSE NA 1 2 0.40 2.00 SPS 0</th></t<>	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT PCT TYPE PLAST 1 1 0.00 0.40 SPS 90 10 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT TYPE PLAST SORT 1 1 0.00 0.40 SPS 90 10 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT TYPE PLAST SORT STRENGTH 1 1 0.00 0.40 SPS 90 10 0 0 0 NA NA LSE 1 2 0.40 2.00 SPS 0	NUM NUM (FT BGS) METHOD GRAVEL PCT. SAND PCT PCT PCT PCT TYPE PLAST SORT STRENGTH MOISTURE 1 1 0.00 0.40 SPS 90 10 0 0 0 NA NA LSE NA 1 2 0.40 2.00 SPS 0

PROJECT NAME: FT. MONMOUTH END DATE : 12/14/94 BOREHOLE ID : MP4-MW7 BEGIN DATE : 12/14/94 LOGGER/COMPANY: P. THOMAS BOREHOLE COMPLETED IN (<0>verburden edrock) : 0 TOTAL DEPTH: 16.00 DEPTH TO BEDROCK : 0.00 BOREHOLE DIAMETER #1: 12.25 INTERVAL: 0.00 ft. to 16.00 ft. BGS METHOD : HSA FLUID : NONE BOREHOLE DIAMETER #2: INTERVAL: METHOD: FLUID: BOREHOLE DIAMETER #3: INTERVAL: METHOD: FLUID: DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : CME-55 ESTIMATED SURVEYED SURFACE ELEVATION: 0.000 14.830 N. COORDINATE: 0.0000 E. COORDINATE: 0.0000 WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 029 32571 HOLE ABANDONED...(Y) es (N) o: N WELL INSTALLED...(Y)es (N)o: Y WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0 PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH PURGE 0.00 SAMPLE : 0.00 BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 17' 55.3" Longitude-West: 74 deg 04' 54.5"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON MAIN POST AREA 4 **INSPECTOR** P. THOMAS SITE NAME MP4-MW7 WATER LEVELS WELL ID START DATE 12/14/94 **COMPLETION DATE** 12/14/94 DEPTH ELEV. DRILLING SUMMARY 1.92 TC Driller Protective Casing 16.75 STEVE BURGER Drilling Fluid NONE .00 inch 0.00 GS 14.83 Well Type SINGLE CASED SCREENED **WELL DESIGN CONSTRUCTION** Casing #1 Diameter: 4.00 inch Interval: 0.00 to 6.01 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.92 ft. **Protective Casing:** 2.33 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 1.00 ft. Seal Type: BENTONITE SLURRY Interval: 1.51 to 4.01 ft. Sand Pack Type: NO. 1 Interval: 4.01 to 16.01 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 6.01 to 15.55 ft. Type: Slots: PVC 0.010 *inches* 1.51 BN 13.32 Silt Trap Interval: 15.55 to 16.01 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 4.01 SP 10.82 WELL DEVELOPMENT 12/22/94 Date 6.01 SC 8.82 Method Surge block/overpumping Yield Purged Volume 400 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 15.55 BS -0.72 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth ********** = Formation 15.50 TD -0.67 Additional Comments: Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : MAIN POST AREA 4 LOGGER : P. THOMAS

BORING ID : MP4-MW7 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/14/94 ELEVATION : 14.830 surveyed DATE COMPLETED : 12/14/94

.,	ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
1		-		55	Sandy silt, ML	DK BROWN	SFT	MST	4 7 5	HNU	0.0	Topsoil.
	13 -	1			Poorly graded sand with silt, SP-SM	BROWN-RED	124	MST	5	HNU	0.0	Fine gravel to 0.5 feet bgs.
	,,,	' '		٠	No Sample Recovered							
	12 -	- 2		70	Poorly graded sand with silt, SP-SM	PALE BROWN	LSE	MST	8	KNU	0.0	
1					SILL, SP-SM				8 8 8 10			1 ,
						J						
	11 -	3			Silty sand, SM	ORANGE BROWN	SFT	MST		HNU	0.0	
	-	_			No Sample Recovered	, ,					(~)
	10 -	4		,								
ľ	10	7		45	Silty sand, SM	OLIVE BROWN	SFT	MST	14 16 18 14	HŅU	0.1	Sand with silt/clay lamina
	-	-			٠.				14		-	
	9 -	5)			No Sample Recovered					'	`	
											•	
					′ >	,,					-	
	8 -	6		75	Silty sand, SM	OLIVE & IRON BR	LSE	WET	10 17	HNU	0.0	SAT noted in cuttings ~7'
	_	,			,		`	WET	16 12		,	SAT noted in cuttings ~7' bgs, sand w/silt and clay lamina: 7.1-7.3' (90% sand 10% silt) wet.
ŀ	· 										•	
	7 -	7										
	-	_		·	No Sample Recovered	, ,,, ,			•			
	6 -	8		90	Silty sand, SM	OLIVE & FE BROW	SFT	SAT	8	HNU	1.0	Sand with silt/clay
	-					,			5 9 7		1.0	Sand with silt/clay laminae.
,	-											
	5 -	9										
	-	ļ .			,	,			,			
-					No Sample Recovered		,			,		
-	4 -	10		45	Silty sand, SM	OLIVE BROWN	SFT	SAT	7 8	HNU	3.0	Small gravel laminae ~ 10.4' bgs.
, L	· ·				<u> </u>			i	3	l		

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : MAIN POST AREA 4 LOGGER : P. THOMAS
BORING ID : MP4-MW7 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/14/94 ELEVATION : 14.830 surveyed DATE COMPLETED : 12/14/94

						· · ·						
NOTE STATE	NOT TWO TENE	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT		INSTRUMENT READING	COMMENTS
					Silty sand, SM	OLIVE BROWN	SFT	SAT		HNU 3	.0	Small gravel laminae ~10.4' bgs.
	3 + 1	11			No Sample Recovered							10.4 bgs.
	2 + 1	12		100	Silty sand, SM	OLIVE BROWN	SFT	SAT	11 20 17 14	HNU 1	.0	Coarsening downward sequence into next spoon interval.
	†				Silty sand, SM	ST. BRN/OLV BRN	LSE	SAT	14	HNU 1	•ó	Interval. Sharp color change betw/ strong Fe oxide laminae (c. sand) interbedded w/ olive brown silt/clay.
	1 + 1	13		١	•					,		olive brown silt/clay.
	+										•	
	0 🕇 1	14		50	Poorly graded sand with silt, SP-SM	OLIVE BRN/FE BR	LSE	SAT	12 15	HNU 5	.0	Set well 15.5' bgs.
	+								14			
-	1 + 1	15	···-		No Sample Recovered							
	2 + 1	16							,			
_	3 1	17	-					<i>'</i>				
	-	•										
	4 1	18										
,	ļ.	_				4						
	5 + 1	19	1			•						·
		. •										
	5 - 2					·						
		U			· .	1						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 55

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	<u>;</u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
				· .								•							
MP4-MW7	1	1	0.00	0.45	SPS	•	0	FM	40	35	5	20		NON	NA	SFT	MST		
MP4-MW7	1	2	0.45	1.10	SPS	F	2	MF	85	13	0	0		NA -	WEL	LSE	MST		
MP4-MW7	1	3	1.10	2.00	SPS	•	0		0	0	0 (0			,				
MP4-MW7	. 2	1	2.00	3.00	SPS	F	. 2	MF	85	13	0	0		NA	WEL	LSE	MST		
MP4-MW7	. 2	2	3.00	3.40	SPS		0	-MF	60	30	10	0		NON	WEL	SFT	MST		
MP4-MW7	2	3	3.40	4.00	SPS	~.	0		0	0	0	. 0	/						
MP4-MW7	3	1	4.00	4.90	SPS		Ó	MF	80	15	5	0		NON	MOD	SFT	MST		
MP4-MW7	3	2	4.90	6.00	SPS		0	•	0	0	0	0						•	
MP4-MW7	4	1	6.00	7.50	SPS		0	MÉ	7 5	20	5	<u>,</u> 0 .		NON	MOD	LSE	WET		
MP4-MW7	4	2	7.50	8.00	SPS		0		0	΄΄0	0	0				,			
MP4-MW7	5	1	8.00	9.80	SPS		0	MF	80	15	5	0		NON	MOD	SFT	SAT	,	
MP4-MW7	5	2	9.80	10.00	SPS		0	•	0	0	0	0							
MP4-MW7	. 6	1	10.00	10.90	SPS	F	5	MF	75	15	5	0	1	NON	MOD	SFT	SAT		
; MP4-MW7	6	2	10.90	12.00	SPS		0		0	0	0	(0							
MP4-MW7	7	. 1	12.00	12.50	SPS		0	MF	80	15	5	0		NON	MOD	SFT	SAT		
MP4-MW7	7	2	12.50	14.00	SPS		0	MFC	80.	15	5	0		NON	POR	LSE	SAT		
MP4-MW7	, 8	1	14.00	15.00	SPS		0	MCF	90	10	0	0		NA	MOD	LSE	SAT		*
MP4-MW7	8	2	15.00	16.00	SPS		0		0	0	0	0				,			
																•			

BOREHOLE ID : MP4-MW8 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/13/94 END DATE : 12/13/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 19.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 19.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER

: STEVE BURGER

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 9.020

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32572

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED.. (Y) es (N) o: N **TYPE** DEPTH PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 18' 42.8"

Longitude-West: 74 deg 03' 02.9"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME MAIN POST AREA 4 INSPECTOR P. THOMAS WELL ID MP4-MW8 WATER LEVELS START DATE 12/13/94 **COMPLETION DATE** 12/13/94 DEPTH ELEV. **DRILLING SUMMARY** 1.66 TC 10.68 Driller STEVE BURGER Protective Casing Drilling Fluid NONE .00 inch 0.00 GS Well Type SINGLE CASED SCREENED **WELL DESIGN CONSTRUCTION** Casing #1 Diameter: 4.00 inch Interval: 0.00 to 3.64 ft. Type: Stick Up Inner Casing: Protective Casing: 1.66 ft. 2.03 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.20 ft. Seal Type: BENTONITE SLURRY Interval: 0.20 to 1.64 ft. Sand Pack Type: NO. 1 MORIE Interval: 1.64 to 19.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 3.64 to 18.18 ft. Type: Slots: **PVC** 0.010 inches 0.20 BN 8.82 Silt Trap Interval: 18.18 to 18.64 ft. Backfill Type: Interval: 0.00 to ft. 1.64 SP 7.38 WELL DEVELOPMENT 12/20/94 Date 3.64 SC Method Surge block/overpumping 5.38 Yield Purged Volume 90 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 18.18 BS -9.16 GS = Ground Surface SC = Top Screen BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth 19.00 TD -9.98 Additional Comments: Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH TOTAL DEPTH : 19.00

SITE NAME : MAIN POST AREA 4 LOGGER : P. THOMAS

BORING ID : MP4-MW8 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55
EASTING : 0.0000 estimated DATE STARTED : 12/13/94
ELEVATION : 9.020 surveyed DATE COMPLETED : 12/13/94

							· 				
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT		INSTRUMENT READING	COMMENTS
			20	Organic soil, OL/OH	BROWN	SFT	MST	<u>3</u>	HNU 0	.0	Topsoil grass roots/plant fragments.
	1			No Sample Recovered		1		3788			
		,									·
8	1.		}								
					•						
'	†										
			,								
7	2		27	Silt with sand, ML	RED BROWN	SFT	MST	8	HNU 0	.0	Appears to be fill - bulk fragments 2-2.5' bgs (red)- rough drilling.
	ļ .					}		8 8 14 18			(red)- rough drilling.
				No Sample Recovered							
6	3				-						
					٠.		,	,			
'	ł										
_		•									
5	† 4		32	Silt with sand, ML	DK BRN/GRN BRN	SFT	MST	17 19	HNU 0	.0	Appears to be fill. Plant root fragments.
	1						 	17 19 5 6		_	
		0.00		Well-graded gravel, GW No Sample Recovered	BROWN	LSE	DRY		HNU 0	.0	Fill?
4 .	5						٠,				
j .	t				,						
_				,							
3 ·	† 6	2000	45	Poorly-graded gravel with sand, GP	BROWN-BEIGE	LSE	SAT	16 16	HNU 0	.0	Uncertain - fill?
1.	_	000						8			
,		900									
2	7	10.01.71	~	No Sample Recovered							
				, /							
'	† .										
	<u> </u>										
1.	8			No Sample Recovered				9433	HNU 0	.0	Slough from above
.	1			,				3 3			
0.	9										
-	ţ										. ,
	1										
-1 -	10		95	Silty gravel with sand, GM	BROWN			421	HNU 0	.0	
		·		<u> </u>				1			

: 19.00

PROJECT : FT. MONMOUTH TOTAL DEPTH

SITE NAME : MAIN POST AREA 4 LOGGER : P. THOMAS

BORING ID : MP4-MW8 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55

EASTING : 0.0000 estimated DATE STARTED : 12/13/94

ELEVATION : 9.020 surveyed DATE COMPLETED : 12/13/94

	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INS	COMMENTS
		· '		•	Silty gravel with sand, GM	BROWN				HNU	0.0	
	ا ،	- 44			Organic soil, OL/OH	BROWN	SFT	MST		HNU	0.0	Plant/grass/root fragment
	-1	- 11			'	·						
					N. A					 - -		
	-2 -	12		70	No Sample Recovered Organic soil, OL/OH	BROWN	SFT	MST	3225	HNU	0.0	
	_]				Sandy silt, ML	GRAY	SFT	MST		HNU	0.0	
	-3	13			Silty sand, SM	LT GREEN	LSE	WET	7	HNU	0.0	
			'	٠	No Sample Recovered	·						
e.	-4	- 14	0.00	10	Well-graded gravel, GW No Sample Recovered	GRAY	LSE	SAT	6556	HNU	0.0	Appears to be crushed concrete.
	_]		,									***
	-5	· 15		*	,				۴.			
					e .	٠,		,			1	·
	-6	16		50	Silty sand, SM	GREEN	SFT	SAT	5 4 4 3	HNU	0.0	Sand and gravel (sat); gravel is rounded - augered to 19'.
		• `,		,	,				3			, e
	-7	· 17			No Sample Recovered						ì	
	1		,		,	·						
	-8	18			Interval Not Sampled				,			Interval not sampled - set well at 19' bgs.
	1	•		!					,			
-	-9	19	,		`						,	
-	-	•	-	-			-		,			
	·10 +	. 50			,	1						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 56

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK			-		STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT '
MP4-MW8	1	1 -	0.00	0.40	SPS		0	F	10	35	5	50		NON	NA	SFT	MST	
MP4-MW8	1	2	0.40	2.00	SPS		0		0	0	0	0						
MP4-MW8	2	1	2.00	2.50	SPS		5	F	15	55	20	5		ŃON	POR	SFT	MST	
MP4-MW8	2	2	2.50	4.00	SPS		0		0	0	0	0						
MP4-MW8	3	1	4.00	4.50	SPS	F	5		15	70	10	0		NON	MOD	SFT	MST	
MP4-MW8	3	2	4.50	4.65	SPS	MCF	90	C	10	0	0	0 -		NA	POR	LSE	DRY	
MP4-MW8	3	3	4.65	6.00	SPS		0		0	0	0	0		-				
MP4-MW8	4	1	6.00	6.90	SPS	MFC	80	M	20	0	0	. 0		NA	MOD	LSE	SAT	
MP4-MW8	4	2	6.90	8.00	SPS		0		0	0	0	0						
MP4-MW8	5	1	8.00	10.00	SPS		0		0	0	0	0		•		•		
MP4-MW8	6	1	10.00	10.50	SPS	MFC	45	M ·	40	15	0	0						
MP4-MW8	6	2	10.50	11.90	SPS		0	F	10	25	5	60		NON	POR	SFT	MST .	
. MP4-MW8	6	3	11.90	12.00	- SPS		Ō		0	0	. 0	0						
MP4-MW8	7	1	12.00	12.60	SPS		0	F	10	25	5	60		NON	POR	SFT	MST	
MP4-MW8	7	2	12.60	13.10	SPS		0	F	30	50	10	10		LOW	MOD	SFT	MST	•
MP4-MW8	· 7	3	13.10	13.40	SPS		0	MF	70	25	5	0		NON	MOD	LSE	WET	
MP4-MW8	7	4	13.40	14.00	SPS		0		0	0	0	0 .						•
. MP4-MW8	8	1	14.00	14.20	SPS	MCF	90	CM	10	0	0	0		NA	POR	LSE	SAT	
MP4-MW8	8	2	14.20	16.00	SPS		Ō		0	0	0	0						
MP4-MW8	9	1	16.00	17.00	SPS	F	10	MCF	60	20	10	0		NON	MOD	SFT	SAT	
MP4-MW8	9	. 2	17.00	18.00	SPS		0		0	0	0	0		•		•		
MP4-MW8	10	1	18.00	19.00	NS		0		0	0	0	0				•		

BOREHOLE ID : MP4-MW9 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/13/94 END DATE : 12/13/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 24.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 24.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2: 2.00

INTERVAL: 22.00 ft. to 24.00 ft. BGS

METHOD : SPLIT SPOON SAMPLER FLUID : NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON
DRILLER : STEVE BURGER

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 7.770

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32573

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.... (Y) es (N) o: N No. OF WELLS : 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 44.7"

Longitude-West: 74 deg 03' 02.6"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON MAIN POST AREA 4 INSPECTOR P. THOMAS SITE NAME WELL ID MP4-MW9 WATER LEVELS 12/13/94 START DATE **COMPLETION DATE** 12/13/94 DEPTH ELEV. DRILLING SUMMARY 1.92 TC Driller STEVE BURGER 9.69 Protective Casing Drilling Fluid NONE 0.00 GS SINGLE CASED SCREENED .00 inch 7.77 Well Type WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 7.76 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.92 ft. Protective Casing: 2.14 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 3.19 ft. Seal Type: BENTONITE SLURRY Interval: 3.19 to 5.69 ft. Sand Pack Type: NO. 1 Interval: 5.69 to 24.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 7.69 to 22.23 ft. Slots: Type: PVC 0.010 *inches* 3.19 BN 4.58 Silt Trap Interval: 22.23 to 22.69 Backfill Type: Interval: 22.69 to 24.00 NO. 1 SAND ft. 5.69 SP 2.08 WELL DEVELOPMENT 12/20/94 Date 7.69 SC 0.08 Method Surge block/overpumping Yield Purged Volume 550 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 22.23 BS -14.46 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation 22.00 TD -14.23 Additional Comments: Depths are measured below ground surface. Purge volume not measured.

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA 4

BORING ID : MP4-MW9

NORTHING: 0.0000 estimated
EASTING: 0.0000 estimated
ELEVATION: 7.770 surveyed

TOTAL DEPTH : 24.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/13/94

DATE COMPLETED : 12/13/94

				<u> </u>								
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR		STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			50	Silt with sand, ML	BROWN		SFT	MST	8	HNU	0.0	0-0.4 (topsoil), highly
									7 8			0-0.4 (topsoil), highly organic with plant/root fragments: 0.4-1.0 bgs - s. silt with tr. gravel
6	1			No Sample Recovered						l		
				ins sample resortered	,						•	,
.	+			·								
										ŀ		
5 .	2	e e e e e e e e e e e e e e e e e e e	25	Silty sand with gravel, SM	BRO⊎N		LSE	DRY	12	HNU	0 0	2-2 2 (same lithology as
	*	3			Dito.	1		J	12 15 17 16		0.0	2-2.2 (same lithology as above interval).
.	ł	- 		No Sample Recovered					16	}		
												(
4	3											
												, ,
.	t									ŀ		
				,								1
3.	† 4			No Sample Recovered		•			100			100/5" Split spoon refusal; no recovery.
				·					100			refusal; no recovery.
•	t								0			,
												· .
2.	5											ار
	İ											_
-	†							ر .				
	ł											,
1.	6			Interval Not Sampled								Interval not sampled due
											~	Interval not sampled due to refusal, redrilled at new location; resumed samp. 8-10 bgs, aug. 6-8'
•	t	١ .		•								samp. 8-10 bgs, aug. 6-8'
	·				•							
0.	7											
_										,		
-	†											
-1 -	8		100	Sandy silt, ML	GREEN GRAY		LSE	SAT	4	HNU	0.0	Perched water (?)
-				Not Classified - Incompla	DDOUN		CET	uc-	4			
-	†		•	Not Classified - Incomple te Data	BROWN		SFT	MST	כ	HNU	U.U	Grass roots/fragments throughout interval.
				Sandy silt, ML	GRAY		SFT	MST		HNU	0.0	Silt organic.
-2 -	9										•	-
-	†											
-3	10		30	Silt with sand, ML	DK GRAY		SFT	MST	6	HNU	0.0	
-									5			

: 24.00

Borehole Log

PROJECT : FT. MONMOUTH TOTAL DEPTH

SITE NAME : MAIN POST AREA 4 LOGGER : P. THOMAS

BORING ID : MP4-MW9 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55

EASTING : 0.0000 estimated DATE STARTED : 12/13/94

ELEVATION : 7.770 surveyed DATE COMPLETED : 12/13/94

											•
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			-	Silt with sand, ML	DK GRAY	SFT	MST		HNU	0.0	
	1		`	,					′		
				No Sample Recovered	,						
-3 -	11			·	, ,						
.					_				ŀ		
-	+										
											, ,
-4	12		70	Elastic silt, MH	GRAY	SFT	MST	2	HNU	0.0	Moist to wet with more clay.
				,				2344			Ctay:
	[:		,					_	`	•	
-5 -	13	75.01		Oilte ON	ODAY	l			<u></u>		- [
		20		Silty gravel with sand, GM	GRAY	NA	SAT		HNU	0.0	
-	+	24.032		No Sample Recovered	1						
1						ŀ				-	
-6 -	14 ~		40	Silty sand, SM	GRAY	SFT	SAT	3	HNU	0.0	, , , , , , , , , , , , , , , , , , , ,
\ \	<u>.</u>			Silt with sand, ML	BROWN	SFT	WET	3234	HNU	0.0	16 7-16 8 comp as 16-16 /
				Sitt with Sala, ME	BROWN	311	WLI	7	INO		16.7-16.8 same as 16-16.4 The c.s. silt appears to be softer, possibly due to sat, moisture content.
-7-	15			No Sample Recovered		l			4		to sat, moisture content.
				C							
-	+	'									,
	ļ				,	-			·		·
-8	16		15	Silty sand, SM	GRAY GREEN	LSE	MST	,4.	HNU	4.0	
Ī.	ì	- (*)		No Sample Recovered	1			5	HNU		
	Ī					-		•			
-9-	17									•	·
	''			· · · · · · · · · · · · · · · · · · ·							
-	+									٠,	~
	-			·							
-10 -	18			No Sample Recovered	1				HNU	0.0	2' sat slough from above intervals.
	-										intervats.
-	Γ		,								'
-11 -	10		_				.		Ì		,
''	''		-	•							
-	-								١,		
										V.	
-12 -	20		20	Silty sand, SM	FOREST GREEN	LSE	MST	3 .	HNU	5.0	
						_		ž	HNU		

PROJECT : FT. MONMOUTH TOTAL DEPTH : 24.00

SITE NAME : MAIN POST AREA 4 LOGGER : P. THOMAS

BORING ID : MP4-MW9 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/13/94ELEVATION : 7.770 surveyed DATE COMPLETED : 12/13/94

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Silty sand, SM No Sample Recovered	FOREST GREEN	LSE	MST		HNU 5.0	
-13 -	21			No Sample Recovered						
-14 -	- 22 -		55	Sandy Silt, ML	FOREST GREEN	SFT	SAT	3 4 4 5	HNÚ 4.5	Slt more compact; SAT in parts tight medium. Set Well at 22' bgs. TD=24' bgs.
-15 -	- 23 -			No Sample Recovered		,	-			
-16 -	- 24								,	
-17 -	, ,25	-						•		- ;
-18 -	- 26 -							-		
-19 -	- 27 -		,-							
-20 -	- 28 -		÷							
-21 -	- 29 -									
-22 -	- 30						· .		-	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 58

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	<u> </u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
											•	•				•		
MP4-MW9	1	1 '	0.00	1.00	SPS	F	5	F	15	3 0	15	35		NON	MOD	SFT	MST	
MP4-MW9	1	2	1.00	2.00	SPS		0		0	0	0	0						
MP4-MW9	2	1	2.00	2.50	SPS	FM	35	MCF	45	20	0	0		NA	POR	LSE	DRY	•
MP4-MW9	2	2	2.50	4.00	SPS		0		0	0	0	0	•					
MP4-MW9	3	1	4.00	6.00	SPS		0		0	0	0	Ó						
MP4-MW9	4	1	6.00	8.00	NS		0		0	0	. 0	0						
MP4-MW9	5	1	8.00	8.40	SPS		0	FM	30	45	25	0		LO₩	MOD	LSE /	SAT	_
MP4-MW9	· 5	2	8.40	8.80	SPS		0	F	15	20	5	. 60		NA	POR	SFT	MST	
MP4-MW9	5	3	8.80	10.00	SPS		0	F	30	50	10	10		LOW	MOD.	SFT	MST	
MP4-MW9	6	1	10.00	10.60	SPS		0 (F	20	5 0	20	10		LOW	MOD	SFT	MST	
MP4-MW9	6	2	10.60	12.00	SPS		0		. 0	0	. 0	0	*					
MP4-M₩9	7	1	12.00	13.00	SPS		0	F	10	50	40	. 0		HGH	MOD	SFT	MST	
MP4-MW9	7	2	13.00	13.40	SPS	MFC	45	MFC	35	15	5	0		NA	POR	NA	SAT	•
MP4-MW9	, 7	3	13.40	14.00	SPS		0		0	0	0	0						
MP4-MW9	8	1	14.00	14.40	SPS	FM .	. 10	FM	45	35	10	0		LOW	POR	SFT	SAT	
MP4-MW9	8	2	14.40	14.80	SPS		0	F	20	30	10	40		LOW	POR	SFT	WET	
MP4-MW9	8	3	14.80	16.00	SPS		0		0	0	0	0			•		•	•
MP4-MW9	9	1	16.00	16.30	SPS		0	MFC	75	20	5	. 0		NON	MOD	LSE	MST	
MP4-MW9	9	2	16.30	18.00	SPS		0 '		0	0	0	0						
MP4-MW9	10	1	18.00	20.00	SPS		0		0	0	0	0						
MP4-MW9	11	1	20.00	20.40	SPS		0	MF	50	45	5	0		NA	WEL	LSE	MST	*
MP4-MW9	11	2	20.40	22.00	SPS		0		0	0	0	0						•
MP4-MW9	12	1	22.00	23.10	SPS		. 0	MF	35	45	20	0	•	LOW	WEL	SFT	SAT	
MP4-MW9	12	2	23.10	24.00	SPS		0		0	0	0	0						

BOREHOLE ID : MP5-MW10 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/14/94 END DATE : 12/14/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 16.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID :

DRILLING COMPANY : J.C. ANDERSON, INC.

DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 5.130

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32574

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED. . (Y) es (N) o: N TYPE

DEPTH PURGE 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 48.6" Longitude-West: 74 deg 03' 03.7"

	MONMO POST		H REA 5	DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	12	/14	/W 10 1/94 1/94	WATER LEVELS
Protective Casing	DEPTH 1.78	тс	<i>ELEV</i> . 6.91	DRILLING SUMMARY Driller STEVE BURGER Drilling Fluid NONE
4.00 inch	0.00	GS	5.13	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
		et.		Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40
	="		(e	Stick Up Inner Casing: 1.78 ft. Protective Casing: 2.40 ft.
				Casing Grout: CEMT/BENT Interval: 0.00 to 0.80 ft. Seal Type: BENTONITE SLURRY Interval: 0.80 to 3.00 ft.
				Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft.
	0.80	BN	4.33	Type: PVC Slots: 0.010 inches
	3.00	SP	2.13	Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00	SC	0.13	WELL DEVELOPMENT Date 12/14/94 Method Surge blocking, bailing Yield 5 gpm Purged Volume
	14.54	BS	-9.41	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal
	15.00	TD	-9.87	BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth
				Additional Comments: Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA 5

BORING ID : MP5-MW10

NORTHING : 0.0000 estimated
EASTING : 0.0000 estimated
ELEVATION : 5.130 surveyed

TOTAL DEPTH : 16.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON, INC.

DRILLING RIG : MOBILE B-57
DATE STARTED : 12/14/94

DATE COMPLETED : 12/14/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
4 -	1		60	Sandy silt, ML Silty sand with gravel, SM No Sample Recovered	BROWN	SFT	MST	1243	HNU		Topsoil VAR orange-brown, black, charcoal fragments.
3 -	÷	***	30	Fill No Sample Recovered		LSE	MST	2 1 1 1	HNU	0.0	Glass fragments/plastic cuttings, VAR - orange brown-black 2-2.4 2.4-2.6 blk sand.
2 -	-			No Sample Recovered			-		HNU	0.0	No recovery. Slough is
0 -	- - 5 -			,					t.	,	
-1 - -2 -	•			No Sample Recovered					HNU I	0.0	Spoon sunk under weight of hammer. No recovery. SAT silty clay (organic rich) in spoon shoe.
3	- 8			Silty sand, SM No Sample Recovered	GREEN (DKK)	LSE	SAT	1121	HNU (0.1	Coarsens downward.
-4	9			· ·				•			
-5	10		95	Silty sand with gravel, SM	DK GREEN	LSE	SAT	1 2 2 1	HNU '	1.0	Gravel at 10.4 bgs.

Borehole Log

PROJECT : FT. MONMOUTH : 16.00

SITE NAME : MAIN POST AREA 5 LOGGER : P. THOMAS

BORING ID : MP5-MW10 DRILLING COMPANY : J.C. ANDERSON, INC.

NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57 EASTING : 0.0000 estimated DATE STARTED : 12/14/94 ELEVATION : 5.130 surveyed DATE COMPLETED : 12/14/94

	ELEVATION	рвртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
					Silty sand with gravel, SM	DK GREEN	LSE	SAT		HNU	1.0	Gravel at 10.4 bgs.
-	.5 -	- 11			Sandy elastic silt, MH .	BROWN (GREEN)	SFT	SAT		HNU	1.0	Interbedded sand and clayey sit lamina - trace organics.
	-	-			Silty sand, SM	DK GREEN	LSE	SAT		HNU	1.0	
-	-6 -	- 12 -		80	No Sample Recovered Clayey sand, SC	DK GREEN	SFT	SAT	2111	HNU	1.0	Silt/clayey sand, qtz gravel.
-	-7 -	- 13		•								
				,	No Sample Recovered	-						
-	-8	- 14		90	Silty sand, SM	DK GREEN	SFT	SAT	2121	HNU	0.1	Silt less clayey than above interval.
	9 -	- 15			Sandy silt, ML	BROWN-GREEN	SFT	SAT		HNU	,	Interbedded sand with silt/clay laninae. Set well at 15, bgs.
-1	10 -	- 16		li	No Sample Recovered							
-1	11 -	- 17 `										
-1	12 -	- 18					:					
		,										
-1	13 -	19										
, -1	14 -	- 20							,			

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 59

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	3)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
.*																			
MP5-MW10	1	4	0.00	0.50	SPS		~:0	F	35	40	5	20		NON	MOD	SFT	MST		
MP5-MW10	1	2	0.50	1.20	SPS	F	15	MCF	50	30	5	0		- *	POR				
MP5-MW10	1	3	1.20	2.00	SPS		0		. 0	0	0	0 .							
MP5-MW10	2	1	2.00	2.60	SPS	F	5	MCF	55	35	5	. 0		NON	POR	LSE	MST -		
MP5-MW10	2	2	2.60	4.00	SPS		. 0		~ . 0	0	0	0						,	•
MP5-MW10	3	1	4.00	6.00	SPS		0		0.	0	0	0		5			•		
MP5-MW10	4	` 1	6.00	8.00	SPS		. 0		0	. 0	0	0					_		
MP5-MW10	5.	1	8.00	8.40	SPS	М .	5	MCF	70	20	5	0		NON	MOD	LSE	SAT		
MP5-MW10	5	2	8.40	10.00	SPS		<u>`</u> 0		0	0	0	, o			,				
MP5-MW10	6	1	10.00	10.50	SPS `	FM	15	FCM	70	10	5	0		NON	POR	LSE	SAT		
MP5-MW10	6	2	10.50	11.30	SPS		0	MCF	45	35	18	2		MOD	POR	SFT	SAT		•
MP5-MW10	6	3	11.30	11.90	SPS	F	5	MCF	50	35	10	0		NON	POR	LSE	SAT		
MP5-MW10	6	4	11.90	12.00	SPS		Ò		0	0	0	0						,	
MP5-MW10	7	1	12.00	13.60	SPS	F	, 10	MCF	60	10,	20	0.		LOW	MOD	SFT	SAT		
MP5-MW10	7	2	13.60	14.00	SPS	•	0		0	0	0	0		,					
MP5-MW10	8	1	14.0Ó	14.95	SPS	F	10	MCF	60	20	10	0		LOW	MOD	SFT	SAT	' '	
MP5-MW10	8	2	14.95	15.80	SPS	F	5	MCF	35	30	20	10		LOW	POR	SFT	SAT	•	
MP5-MW10	8	· 3	15.80	16.00	SPS		. 0		0	0	0	0						,	

PROJECT NAME: FT. MONMOUTH END DATE: 12/15/94 BOREHOLE ID : MP5-MW11

BEGIN DATE : 12/15/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

DEPTH TO BEDROCK : 0.00 TOTAL DEPTH: 15.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> ESTIMATED SURVEYED

SURFACE

ELEVATION : 0.000 9.770

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32575

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH PURGE 0.00

> SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 18' 50.9" Longitude-West: 74 deg 03' 01.8"

	MONMOT POST	UTH AREA 5	DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	12,	5-MW11 /15/94 /15/94	WATER LEVELS
Protective Casing	DEPTH 1.93	ELEV. 11.70	DRILLING SUMMARY Driller STEVE BURGER Drilling Fluid NONE
4.00 inch	0.00 GS 9.77	GS 9.77	[사용하는 이 1985년 1일 1985년 1일 전 1985년 1일 1985년 1일 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985년
	0.80	BN 8.97	WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.93 ft. Protective Casing: 2.44 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.80 ft. Seal Type: BENTONITE SLURRY Interval: 0.80 to 3.00 ft. Sand Pack Type: No. 1 SLURRY MORIE Interval: 3.00 to 5.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: PVC Slots: 0.010 inches Silt Trap Interval: 14.85 to 15.00 ft.
	3.00	SP 6.77	Backfill Type: Interval: 14.54 to 15.00 ft.
	5.00 8	SC 4.77	WELL DEVELOPMENT Date 12/15/94 Method Surge blocking/overpump Yield 1.5 gpm Purged Volume 128
	14.54 <i>I</i>	BS -4.77	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	15.00 7	<i>TD</i> -5.23	TD = Total Depth

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : MAIN POST AREA 5 LOGGER : P. THOMAS

BORING ID : MP5-MW11 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 12/15/94
ELEVATION : 9.770 surveyed DATE COMPLETED : 12/15/94

	ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
	•			70	Silt with sand, ML	BROWN	SFT	MST	11	HNU	0.0	Topsoil
	-			4	Silty sand, SM	ORANGE	LSE	MST	10 12	HNU	0.0	
	8 -	1~			Sandy silt, ML	GRAY-BROWN	SFT	MST		HNU	0.0	Black mottles; charcoal fragments (?)- qtz gravel slt. micaceous.
		,		J '	No Sample Recovered					-		· //
	7-	2		50	Poorly graded sand with silt, SP-SM	BROWN	LSE	MST	11 11 11 10	HNU	0.0	
	6 -	- 3			No Sample Recovered	, - -						
	, -	`				,						
	5 -	4		60	Poorly graded sand with silt, SP-SM	OLIVE BROWN	LSE	SAT	6 7 10 10	HNU	0.0	
	4 -	5		÷	No Sample Recovered					:		
i	3 -	6		85	Silty sand, SM	OLIVE BROWN/GRN	LSE	SAT	8	HNU	0.0	
		-		*					10 17			
	2 -	7			Sandy silt, ML	GREEN/BROWN	SFT	SAT		HNU	0.0	
,	1 -	Ω			No Sample Recovered							, .
				90	Sandy silt, ML	GREEN/BROWN	SFT	SAT	15 18 20	HNU	0.0	Sand lenses (mottles) SAT clay mst/wet.
	. 0 -	- 9		1	,		•					
	-1 -	- 10			No Sample Recovered Silty sand, SM	BROWN/GREEN	LSE	SAT	10 15 15	HNU	0.0	Interbedded sand - silt/ clay laninae.

PROJECT FT. MONMOUTH

LOGGER

TOTAL DEPTH

MAIN POST AREA 5 SITE NAME : BORING ID : MP5-MW11

: P. THOMAS

: 15.00

NORTHING : 0.0000 estimated DRILLING COMPANY : J.C. ANDERSON : MOBILE B-57 DRILLING RIG .

0.0000 estimated EASTING /: ELEVATION : 9.770 surveyed

: 12/15/94 DATE STARTED DATE COMPLETED : 12/15/94

	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
Г					Silty sand, SM	BROWN/GREEN	LSE	SAT		HNU	0.0	Interbedded sand - silt/ clay laninge.
	-1 -	· 11										
	Ī	-			No Sample Recovered					'		-
	-2 -	- 12		95 (Silty sand, SM	BROWN/GREEN	LSE	SAT	15 25 35 32	HNU (0.0,	Interbedded sand/silt- clay laminae.
	-3 -	- 13				,						
		• • •			Silty sand, SM	GREEN/BROWN	SFT	WET		HNU (0.0	Sharp content - compact (set) material
	-4 -	14			No Sample Recovered Interval Not Sampled							
	4	-		ŕ	,				·			Interval pot sampled; set well at 15' bgs.
·	-5 -	- 15		i		,						, , , , , , , , , , , , , , , , , , ,
	-6 -	- - 16	١.,	-			-	,				
	-	-						ĺ		,		
	-7-	- 17 ·		ŕ			-			,	,	
	+	-			\	e.						
	-8	- 18			: 	·				•	. <	
	. +	•									` `	
	-9 - \	- 19							,			
,		• •								ر		, , ,
-	10 -	- 20				<i>.</i> ,						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 60

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK				•	STRAT
/WELL ID	NÙM	MUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
											~					<u> </u>		
MP5-MW11	1	1	0.00	0.20	SPS		0	F	15	40	5	40		NON	POR	SFT	MST ·	
MP5-MW11	1	2	0.20	0.90	SPS		0	MFC	80	15	0	0		NA	MOD	LSE	MST	
MP5-MW11	1	3	0.90	1.40	SPS		5	F	25	60	10	0		LOW	POR	SFT	MST	
MP5-MW11	1	4	1.40	2.00	SPS		0		0	Õ	0	0					•	
MP5-MW11	2	1	2.00	3.00	SPS		10	MFC	80	10	0	0		NA	MOD	LSE	MST	
MP5-MW11	2	2	3.00	4.00	SPS		0		0	0	.0 ~	0						
MP5-MW11	3	1	4.00	5.20	SPS		5	MFC	85	10	0	0		NA	MOD	LSE	SAT	
MP5-MW11	3	2	5.20	6.00	SPS		0		0	0	0	0						
MP5-MW11	4	1	6.00	6.70	SPS		5	MFC	85	15	0	. 0		NA	MOD	LSE	SAT	
MP5-MW11	4	2	6.70	7.70	SPS		0	F	40	35	- 25	0		LOW	WEL	SFT	SAT	
MP5-MW11	4	3	7.70	8.00	SPS		0		0	0	0	0						
MP5-MW11	5	1	8.00	9.80	SPS		0	F	40	35	25	0		LOW	WEL	SFT	SAT	
MP5-MW11	5	2	9.80	10.00	SPS	1	Ô		0	0	0	0						
MP5-MW11	6	1	10.00	11.60	SPS		0	MFC	50	35	15	0		NON	MOD	LSE	SAT	
MP5-MW11	6	2	11.60	12.00	SPS		0		0	0	0	0						,
MP5-MW11	7	1	12.00	13.50	SPS `		0	MFC	65	25	10	0		NON	MOD	LSE	SAT	
MP5-MW11	7	2	13.50	13.90			0	MF	55	30 ,	15	0		NON	MOD	SFT	WET	
MP5-MW11	7	3	13.90	14.00	SPS		0		0	0	0	0						
MP5-MW11	8	1	14.00	15.00	NS		0		0	0.	0	0						

BOREHOLE ID : MP8-MW12 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/20/94 END DATE : 12/20/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 16.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER

DRILL RIG TYPE ': MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 13.470

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32560

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0 PUMPS INSTALLED...(Y) es (N) o: N TY

PUMPS INSTALLED..(Y) es (N) o: NTYPEDEPTHPURGE :0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS :

Latitude-North: 40 deg 18' 52.9"

Longitude-West: 74 deg 02' 58.3"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME MAIN POST 8 **INSPECTOR** P. THOMAS WELL ID MP8-MW12 WATER LEVELS START DATE 12/20/94 **COMPLETION DATE** 12/20/94 DEPTH ELEV. DRILLING SUMMARY 1.73 TC Driller Protective Casing 15.20 STEVE BURGER Drilling Fluid NONE .00 inch 0.00 GS 13.47 Well Type SINGLE CASED SCREENED **WELL DESIGN CONSTRUCTION** Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 1.73 *ft*. **Protective Casing:** 2.41 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft. Seal Type: 3.00 ft. BENTONITE SLURRY Interval: 0.50 to Sand Pack Type: NO. 1 SAND MORIE Interval: 3.00 to 5.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: Slots: 0.010 *inches* 0.50 BN 12.97 Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: SAND NO. 1 Interval: 15.00 to 16.00 ft. 3.00 SP 10.47 WELL DEVELOPMENT 01/05/95 Date 5.00 SC 8.47 Method Bailing/overpumping Yield 3.5 qpm Purged Volume 115 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS -1.07 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>> = Formation 15.00 TD -1.53 Additional Comments: Depths are measured below ground surface

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 8

BORING ID : MP8-MW12
NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 13.470 surveyed

TOTAL DEPTH : 16.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B-57
DATE STARTED : 12/20/94

DATE COMPLETED : 12/20/94

						-					•				
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	GIRIA	INS			COMMENTS	,	
1			30	Silt with sand, ML	BROWN	SFT	MST	3	HNU	0.0)	Topsoil			1
			ļ				ļ. ·	3556				,		•	ŭ
12 -				No Sample Recovered				6			,				
	-	1		-					i						
-										-			· · · · · ·		
11,-	- 2		_ , ا]			l _							
1	-		45	Silty sand, SM	BROWN	SFT	MST	5	HNU	0.0)	ł			
<u> </u>	Ĺ		I	p.				7						1	-
.]			l	· ·			_	7	1						1.
				Poorly graded sand, SP	BROWN (FE)	LSE	DRY	'	HNU	0.0	}	,	t.	_	`
10 -	3			No Sample Recovered	1								- '	•	
•				·	-	ļ			-				,		1
1 -	ļ					-						i			L
		,											1		
. 9-	,]				l					,	
· 9	, 4		55.	Poorly graded sand, SP	ORANGE BROWN	LSE	DRY	7 9 10	HNU	0.0)	Trace o	tz. gravel 4	.9-5.1	
				- \			İ	ğ		_		-	*		
-	-					1		10		-			4 4		
					[**		
8 -	- 5		٦.		, ,		ŀ							,	l
	-			No Sample Recovered				i							l
					, , ,	1									1
1]		'								J			•		
		İ													
7 -	6	3000	55	Poorly graded sand, SP		LSE	WET	10	HNU	0.0)	Wet at	7.0' bgs.		1
,						LSE		12				"""	, 230.		
- را	-				,			22				l		-	
							ľ					`	-		
6	- 7							1						•	
°]	′	····		No Sample Recovered					·					- •	.
															1
†	.	1 '													
.				1		1		1	ĺ						
5.	- 8		70	Poorly graded sand with	RED BROWN	LSE	SAT	12	НИН	n n		-			
				Poorly graded sand with silt, SP-SM			~~'	12 15 16 19		0.0	1				1
	-			Poorly graded sand, SP	GREEN	LSE	SAT	18	HNU	0.0		Trace o	tz. gravel.		1
						,							3. 47011		1
					1	1	ļ						•	*	1
4	- 9 /		*				. 1						•		
[,			Poorly graded gravel, GP	FE BROWN	LSE	SAT		HNU	0 0					1.
	-			No Sample Recovered			~ '	1	''''	0.0			ſ		
							.								F
-	- 10	 	27	Poorly graded cand with	FE BROWN			27							1
				Poorly graded sand with silt, SP-SM	IL BROWN	LSE	SAT	23 28 29 28	HNU	U.U		irace q fining	uartz gravel, downward sequ	ience.	1
`						1		38	'						1

PROJECT FT. MONMOUTH SITE NAME : MAIN POST 8

TOTAL DEPTH : 16.00 LOGGER, : P. THOMAS

MP8-MW12 BORING ID : NORTHING 0.0000 estimated

DRILLING COMPANY : J.C. ANDERSON DRILLING RIG . : MOBILE B-57

EASTING 0.0000 estimated

: 12/20/94

DATE STARTED ELEVATION : 13.470 surveyed DATE COMPLETED : 12/20/94

										,	
	ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
					Poorly graded sand with silt, SP-SM	FE BROWN	LSE	SAT		HNU 0.0	Trace quartz gravel, fining downward sequence.
	-	}									
					No Sample Recovered	~ -					
	2 -	11									· ·
		}				1	٠.				
	-	†	·			,	1			(
						,	1				- '
	1 -	12		75	Poorly graded sand, SP	BROWN (OLIVE)	LSE	SAT	.8 18	HNU 0.0	Note: 12.5-12.65 blk/brn var. lamina.
	_	_			,				8 18 22 19		Val. Camilla.
						٠,			"		
	0 -	13				•					
					;						
		_			No Sample Recovered						
											·
	-1 -	14		47	Poorly graded sand with silt, SP-SM	FE BROWN	LSE	SAT	20	HNU O.O	Trace qtz. gravel.
	_	L			Sitt, Sr-Sm	,		SAT	21		· 1
1	_			•	Elastic silt with sand, MH	GREEN (DK)	SFT	WET	رے	HNU 0.0	Fines downward into clay, well set at 15' bgs.
	-2 -	- 15			No Sample Recovered						
	·		l								'
	-	-				•			•		
					t ·						
	-3 -	16			· .						
		_									()
.		Ī		١.	,						,
	-4 -	- 17									
	4	''			-	•				-	
	-										
Ì											,
	-5 -	18									
-	i										-
	1	-		1	`						
	-6 -	- 10			'						,
	-o]	13				•					
٠	_	-				-	1		٠.		<u> </u>
	-7 -	- 20									
		-		-							
ı					<u> </u>		اـــــــــــــــــــــــــــــــــــــ			L	1

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 61

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK				;	STRAT	
/WELL ID	NUM	NUM	(FT_BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
MP8-MW12	1	1	0.00	0.60	SPS		0	FM	25	40	5	30		NON	MOD	SFT	MST		
MP8-MW12	1	2	0.60	2.00	SPS		0		. 0	0	. 0	0							,
MP8-MW12	2	1	2.00	2.70	SPS		. 0	FM	50	40	10	0 .		NON	MOD	SFT	MST ·		
MP8-MW12	2	2	2.70	2.90	SPS		J o	M	95	5	0	0		NON	WEL	LSE	DRY		•
MP8-MW12	2	3	2.90	4.00	SPS [']		0	•	0	0	0	0					•		
MP8-MW12	3	1	4.00	5.10	SPS		5	MF	90	5	0	0	j	NA	WEL	LSE	DRY		
MP8-MW12	3	. 2	5.10	6.00	SPS		0		0	0	0	0		•				•	
MP8-MW12	4	1	6.00	7.10	SPS		10	MF	85	5	0	0		NA	MOD	LSE	WET		
MP8-MW12	4	2	7.10	8.00	SPS		0		0	0	0	0							
MP8-MW12	5	1	8.00	8.40	SPS		0	MF	90	10	0	0		NON	WEL	LSE	SAT '		
MP8-MW12	. 2	2	8.40	9.30	SPS		0	MF	95	5	0	0		NA	MOD	LSE	SAT		
MP8-MW12	5	3	9.30	9.50	SPS		0	MF	90	10	0	0		NON	MOD	LSE	SAT		
MP8-MW12	5	4	9.50	10.00	SPS		0		, O	0	0	0						-	
MP8-MW12	6	1	10.00	10.55	SPS		0	MF	90	10	0	0		NON	MOD	LSE ,	SAT		
MP8-MW12	6	2	10.55	12.00	SPS	•	0		0	0	0	0							
MP8-MW12	7	1	12.00	13.50	SPS		5	MCF	90	5	0	0		ŅA	MOD	LSE	SAT		•
MP8-MW12	. 7	, 2	13.50	14.00	SPS		0		0	0	0	0	٠					·	
MP8-MW12	8	. 1	14.00	14.50	SPS		0	MCF	90	10	0	0		NON	MOD	LSE	SAT		
MP8-MW12	8	2	14.50	14.95	SPS		0	MCF	25	45	30	0		MOD	MOD	SFT	WET		
MP8-MW12	8	`3	14.95	16.00	SPS		0:		0	0	0	0				•			, ,

BOREHOLE ID : MP8-MW13 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/17/95 END DATE : 01/17/95

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLINGTON REEVES

DRILL RIG TYPE : ATV

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 6.020

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # : NJ 29 32561

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

PURGE : 0.00
SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 18' 54.0" Longitude-West: 74 deg 03' 04.8"

SITE NAME MAIN	PO51	LA	KEA	INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	1/1	MW13 7/95 7/95	WATER LEVELS
	DEPTH		ELEV.	DRILLING SUMMARY
Protective Casing	1.78	TC	7.80	Driller WELLS REEVES Drilling Fluid WATER
4.00 inch	0.00	GS	6.02	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
				Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type:
				Stick Up Inner Casing: 1.78 ft. Protective Casing: 2.21 ft.
				Casing Grout: CEMT/BENT Interval: 0.00 to 1.00 ft
		9		Seal Type: BENTONITE SLURRY Interval: 1.00 to 3.50 ft
				Sand Pack Type: No. 1 MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Interval: 3.50 to 15.00 ft. Median Diameter: Interval: 5.00 to 14.54 ft.
	1.00	BN	5.02	Type: PVC Slots: 0.010 inches
	3.50	SP	2.52	Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00	SC	1.02	WELL DEVELOPMENT Date 01/25/95 Method Surge blocking, bailing
				Yield 4 gpm Purged Volume 250 gal
	14.54	BS	-8.52	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	15.00	TD	-8.98	TD = Total Depth
				Additional Comments: Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : MAIN POST AREA LOGGER : P. THOMAS
BORING ID : MP8-MW13 DRILLING COMPANY : J.C. ANDERSON

NORTHING: 0.0000 estimated DRILLING RIG: ATV

EASTING : 0.0000 estimated DATE STARTED : 01/17/95 ELEVATION : 6.020 surveyed DATE COMPLETED : 01/17/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	H	
5 -	- 1 -		40	Silty sand, SM No Sample Recovered	BROWN	LSE	WET	2151	OVM 0.0	Fill. Large wood fragments: wires in drill cutting.
4 -	- 2		70	Sandy silt, ML	GRAY/BROWN	SFT	SAT	7 4 4	OVM 0.0	Fill. Coarsens downward; amber glass fragments throughout interval.
2 -	3		•	No Sample Recovered Sandy silt, ML	GRAY	SFT	SAT	•	OVM 0.0	Augered interval. Logged cuttings only - Fill.
1 -	- 5									cuttings only - Fill.
0′-	6									
-1 -	_		`							
-3 -	-			Sandy silt, ML No Sample Recovered	GRAY	SFT	SAT	2132	OVM 0.0	Fill(?) Natural(?); slightly more gravelly.
-4-	- 10	:		Sandy silt, ML	GRAY	SFT	SAT		OVM 0.0	Fill(?) Natural(?) Augered interval. Logged cuttings only.

PROJECT FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : MP8-MW13

NORTHING 0.0000 estimated

EASTING 0.0000 estimated

ELEVATION : 6.020 surveyed TOTAL DEPTH

: 15.00

LOGGER-: P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : ATV

DATE STARTED : 01/17/95

DATE COMPLETED : 01/17/95

	-									
ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			*	Sandy silt, ML	GRAY	SFT	SAT		OVM 0.0	Fill(?) Natural(?) Augered interval. Logged cuttings only.
-4-	- 11			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						cuttings only.
-5 ⁻	12		r							
-6 -	- 13 -		60	Elastic silt with sand, MH	GRAYISH BROWN	SFT	SAT	8532	OVM 0.0	Set well at 15' bgs. interval appeared to be natural material.
-7-	· - 14			No Sample Recovered						_
-	-									,
-8 -	- 15 -									
-9 -	- 16 -	-							,	, ` · · · · · · · · · · · · · · · · · ·
								نہ	,	4
-10 -	- 17				,			*	·	
-11 -	- 18 -									,
-12 -	- 19 -							,		
-13 -	- 20		*			-		,		

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 62

BOREHOLE	SMP	LTH	LITHOLOGY	Y INT.	SAMPLING	SIZE	GRAVEL	SĮZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	<u>s)</u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT_	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
																		,
MP8-MW13	1	1	0.00	0.80	SPS	M ·	10	MF	50	15	5	20		NON	POR	LSE	WET	
MP8-MW13	1	2	0.80	2.00	SPS		0		0	0	0	0						
MP8-MW13	2	1	2.00	3.40	SPS	F	5	F	30	45	15	5		LOW	POR	SFT	SAT	
MP8-MW13	. 2	2	3.40	4.00	SPS		0		0	0	0	.0						
MP8-MW13	3	1	4.00	8.00	CUT	F	5	F	30	45	15	5		LOW	POR	SFT	SAT	
MP8-MW13	4	1	8.00	8.20	SPS	F	10	F	25	45	15	5		LOW ~	POR	SFT	SAT	•
MP8-MW13	4	2	8.20	10.00	SPS		0		0	0	0	0						
MP8-MW13	5	1	10.00	13.00	CUT	F .}	10	F	25	45	. 15 ,	5		LOW	POR .	SFT	SAT	•
MP8-MW13	6	1	13.00	14.20	SPS		0	F	25	50	20	5		MOD	MOD -	SFT	SAT	•
MP8-MW13	6	2	14.20	15.00	SPS		0		0	0	. 0	0						

BOREHOLE ID: MP8-MW14 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/16/95 END DATE : 01/16/95

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER : WELLINGTON REEVES

DRILL RIG TYPE : ATV

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 12.880

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32562

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y) es (N) o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE

PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 58.3"

Longitude-West: 74 deg 03' 02.2"

DEPTH

CLIENT FT. I SITE NAME MAIN	MONMO POST			DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	/16	MW14 5/95 5/95	WATER LEVELS
	DEPTH		ELEV.	DRILLING SUMMARY
Protective Casing	2.03	TC	14.91	Driller WELLS REEVES Drilling Fluid WATER
4.00 inch	0.00	GS	12.88	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40
	0.50	BN	12.38	Stick Up Inner Casing: 2.03 ft. Protective Casing: 2.43 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft. Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft. Sand Pack Type: NO. 1 MORIE Interval: 3.00 to 15.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: PVC Slots: 0.010 inches
	3.00	SP	9.88	Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00	SC	7.88	WELL DEVELOPMENT Date 01/25/95 Method Surge Block, Bailing Yield .5 gpm Purged Volume 41 gal
	14.54	BS	-1.66	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	15.00	TD	12.88	TD = Total Depth

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : MP8-MW14

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 12.880 surveyed

TOTAL DEPTH : 15.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : ATV

DATE STARTED : 01/16/95

DATE COMPLETED : 01/16/95

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	H	READING	COMMENTS
11 -	1		75	Silty sand, SM) Sandy silt, ML	BROWN	LSE	MST	13 11 88	OVM		•	Fill. Large wood chip fragments.
10 -	,2		55	No Sample Recovered Sandy silt, ML	GRAY/OLIVE GRN	SFT	MST	8786	OVM			fragments. Fill. Strong odor.
9 -	3		_	No Sample Recovered			,	,				
7 -	5		`	No Sample Recovered				4 1 2 1				
6-	6		40	Sandy silt, ML	GRAY	SFT	SAT	4556	OVM	0.0	!	Fill. Large fragments of glass and wood found throughout interval.
5 -	7	,		Interval Not Sampled	(,						
3 -	-		90	Sandy silt, ML Elastic silt with sand, MH Silty sand, SM	GRAY BROWN FOREST GREEN	SFT SFT LSE	SAT		OVM OVM	0.0		
\\ \frac{1}{2}	10		∕50	Silt with sand, ML No Sample Recovered Sandy silt, ML	BROWN GREY	SFT			OVM OVM		,	

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : MP8-MW14

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 12.880 surveyed

TOTAL DEPTH : 15.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : AŢV

DATE STARTED : 01/16/95
DATE COMPLETED : 01/16/95

CLASSIFICATION COL	COUNT COUNT
BI DE RI	STREN MOIST BLOW INSTR
Sandy silt, ML GREY	SFT SAT OVM 0.0
1 - 11 Interval Not Sampled	
0 + 12 OS Silt with cond W	
-1 -13 STEC WITH Said, FIL	SFT SAT 4 DVM 0.0
Silty sand, SM GREEN	LSE SAT OVM 0.0 Backfill?
-2 - 14 Interval Not Sampled Interval Not Sampled	Augered interval. Set well at 15' bgs. TD of borehole is 15' bgs.
-3 + 15	
-4 + 16	
+ .	
-5 + 17	
-6 + 18	
+ -	
-7 + 19	
-8 - 20	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 63

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	*				STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
						•		_				•			,)	
MP8-MW14	1	1	0.00	1.20	SPS	М	5	MF	65	25	<u> </u>	5		NA	MOD	LSE	MST	,
MP8-MW14	1	2	1.20	1.50	SPS	M	5	FM	25	40	10	20		NON	MOD	SFT	MST :	
MP8-MW14	1	3	1.50	2.00	SPS	. •	0		0.	0	0	0		•				
MP8-MW14	. 2	. 1	2.00	3.10	SPS		0	FM	40	45	15	0.		NON	MOD	SFT	MST	
MP8-MW14	2	2	3.10	4.00	SPS		Ó		0	0	. 0	0						
MP8-MW14	3	1	4.00	6.00	SPS		0		0	. 0	0	0		•				
MP8-MW14	4	1	6.00	6.80	SPS		0	FM	30	45	15	10		LOW	POR	SFT	SAT	
MP8-MW14	4	2	6.80	8.00	NS		0	,	0 /	0	0	0		ノ				
MP8-MW14	5	1	8.00	8.40	SPS		0		30	45	15	10		NON	POR	SFT	SAT	•
MP8-MW14	5	2	8.40	8.70	SPS		0	F	20	50	20	10		MOD	MOD	SFT	SAT	
MP8-MW14	5	3.	8.70	9.30	SPS	M	5	MFC	80	15	0	0		NA	POR	LSE	SAT	()
MP8-MW14	5	4	9.30	9.80	SPS		0	F	20	50	20	10		LOW	MOD	SFT	SAT	1 /
MP8-MW14	~5	5	9.80	10.00	SPS		0		0	0	0	0			_	•		
MP87MW14	6	1	10.00	11.00	SPS		0	FM	30	50	15	5		LOW	MOD	SFT	SAT)
MP8-MW14	6	2	11.00	12.00	NS	-	0		0	'o	0	0						
MP8-MW14	7	1	12.00	13.20	SPS		0	MF	25	50	20	5		LOW	MOD	SFT	SAT	
MP8-MW14	7	2	13.20	13.90	SPS	M	5	MFC.	60 _~	30	5	· 5		NON	MOD	LSE	SAT	Έ,
MP8-MW14	7	3	13.90	14.00	NS		0		0	0	0	0						
MP8-MW14	8	1	14.00	15.00	NS		. 0		0	0	0	0				•	•	•
	_																	

BOREHOLE ID : MP8-MW15 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/17/95 END DATE : 01/17/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 18.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVES

DRILL RIG TYPE : ATV

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 5.010

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT #: NJ 29 32563

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 18' 57.9"

Longitude-West: 74 deg 02' 56.7"

	POST			INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	/1	MW15 7/95 7/95	WATER LEVELS
The second secon	DEPTH		ELEV.	DRILLING SUMMARY
Protective Casing	2.00		7.01	Driller WELLS REEVE Drilling Fluid WATER
4.00 inch	0.00	GS	5.01	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
		P (SC)		Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40
				Stick Up Inner Casing: 2.00 ft. Protective Casing: 2.34 ft.
		2		Casing Grout: CEMT/BENT Interval: 0.00 to 1.00 ft.
				Seal Type: BENTONITE SLURRY Interval: 1.00 to 3.50 ft. Sand Pack Type: NO. 1 MORIE Interval: 3.50 to 15.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft.
	1.00	BN	4.01	Type: PVC Slots: 0.010 inches
	3.50	SP	1.51	Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00	sc	0.01	WELL DEVELOPMENT Date 01/25/95 Method Surge Blocking Overpump
		. 1		Yield 2 gpm Purged Volume 120 gal
	14.54	BS	-9.53	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	15.00	TD	-9.99	TD = Total Depth

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : MP8-MW15

NORTHING

0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 5.010 surveyed

TOTAL DEPTH : 18.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : ATV

DATE STARTED : 01/17/95

DATE COMPLETED : 01/17/95

	- 、										
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
	•		30	No Sample Recovered	BROWN/BLACK	LSE	MST	7 9 18 11	OVM	0.0	Fill. Black mottles, concrete rubble bottom of spoon.
4	· 1				-						
3 -	2			Interval Not Sampled					OVM	0.0	Auger refusal at 2' bgs. Moved location up 5' from original hole. Began spooning at 3' bgs.
2	3		30	Silty sand, SM	GRAY/BROWN	SFT	WET	. 7 50 0	OVM	0.0	Fill. Sat ~3,5-4' bgs, spoon refusal at 3.6' bgs Large wood fragments in bottom of spoon.
1 +	4		30	Not Classified - Incomple te Data			-				Interval not sampled - Augered to 5' bgs.
0 -	- 5			No Sample Recovered				185 1			Spoon is saturated.
-1	- 6 _.										
-2 -	7		15	Silty sand, SM No Sample Recovered	GRAY	SFT	-SAT	1 2 1 0	OVM	, 0.0	Fill(?) Gray sand with silt/clay and organics.
-3	8			,							
-4	9			Silty sand, SM	GRAY	SFT	SAT		OVM	0.0	Fill. Logged cuttings only. Silty/clayey sand with trace gravel and organics.
-5	10										

PROJECT FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : MP8-MW1,5

EASTING

0.0000 estimated NORTHING :

0.0000 estimated ELEVATION : 5.010 surveyed

: 18.00 TOTAL DEPTH

: P. THOMAS LOGGER

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : ATV

DATE STARTED : 01/17/95

DATE COMPLETED : 01/17/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Silty sand, SM	GRAY	SFT	SAT		OVM 0.0	Fill. Logged cuttings only. Silty/clayey sand with trace gravel and organics.
-5 -	. 11			,						
-										·
-6 -	12						,			
-										
-7-	13		50	Silty sand, SM	DK GREEN	LȘE	SAT	2222	OVM 0.0	Set well at 15' bgs.
-8 -	14			No Sample Recovered						TD of hole 15' bgs.
-									-	
-9 -	15									
-				,						
-10 -	16									-
-11 -	- 17									
_	-				,					` ,
-12 -	- 18		4							
	_									
-13 -	- 19 -				`.					
-14 -	- 20									
				<u></u>						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 64

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK			,		STRAT
/WELL ID	NUM	NUM	(FT BGS	5)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLÁST	SORT	STRENGTH	MOISTURE	UNIT
					•					-								
MP8-MW15	1	1	0.00	0.60	SPS	F	10	MF	55	20	5	10		NON	POR	LSE	MST	
MP8-MW15	1	2	0.60	2.00	SPS		0		0	0	0	0				•		
; MP8-MW15	2	1.7	2.00	3.00	NS		0	-	0	, 0	0	0						
MP8-MW15	3	1	3.00	3.60	SPS	F	10	FM	50	25	10	5		NON	POR	SFT	WET	
MP8-MW15	4	1	3.60	5.00	SPS		. 0		0	0	0	0 -	-					
MP8-MW15	5	1	5.00	7.00	< SPS		0		0 -	0	0	0	ì			•		
MP8-MW15	5	1	7.00	7.30	SPS	F	5	MF	50	25	10	10		NON	POR	SFT	SAT	•
MP8-MW15	5	2	7.3 0	9.00	SPS		0		0	0	0	. 0						
MP8-MW15	6	1	9.00	13.00	CUT	F	5	FM	55	25	10	5	+	NON	POR	SFT	SAT	
MP8-MW15	7	1	13.00	14.00	SPS		10	MF	70	20	0	0		NA ·	MOD	LSE	SAT	
MP8-MW15	7	2	14.00	15.00	SPS		0		0	0	0.	0						

BOREHOLE ID: MP12MW16 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/04/95 END DATE : 01/04/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : STEVE BURGER
DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 6.330

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32576

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

PURGE : 0.00
SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 18' 48.7"

Longitude-West: 74 deg 02' 15.6"

Protective Casing 4.00 inch	01	./04	MW16 1/95 1/95		ATER LEVELS
Protective Casing 4.00 inch					· · · · · · · · · · · · · · · · · · ·
4.00 inch	2.02		ELEV.		ING SUMMARY
		TC	8.35	Driller STEVE BU Drilling Fluid WATER	JRGER
	0.00	GS	6.33		CASED SCREENED
	3			WELL DES	SIGN CONSTRUCTION
				Casing #1 Diameter: 4.00 inc Type:	ch Interval: 0.00 to 4.50 ft.
				Stick Up Inner Casing: 2.02	ft. Protective Casing: 2.41 ft.
				Casing Grout: CEMT/BENT	<i>Interval:</i> 0.00 to 0.50 ft.
				Seal Type: BENTONITE SLUR	RY <i>Interval:</i> 0.50 to 3.00 <i>ft</i> .
				Sand Pack Type: NO. 1 SAND MOR Grain Size: UNIFORM	Median Diameter:
				Screen Diameter: 4.00 Type: PVC	Interval: 4.50 to 14.01 ft. Slots: 0.010 inches
	0.50	BN	5.83		
	3.00	SP	3.33	Silt Trap Interval: 14.01 to 14 Backfill Type:	4.50 ft. Interval: 0.00 to 0.00 ft.
	4.50	SC	1.83	Date 01/16/95 -Method Bailing, ov	
				Yield 0.5 gpm	Purged Volume 59 gal
					DMMENTS p Sand Pack = Grout
	14.01	BS	-7.68	GS = Ground Surface SC = Top	p Screen = Seal
	14.50	TD	-8.17		ttom Screen = Sand Pack tal Depth = Formation

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.50

SITE NAME : MAIN POST 12 LOGGER : P. THOMAS

BORING ID : MP12MW16 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/04/95 ELEVATION : 6.330 surveyed DATE COMPLETED : 01/04/95

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
			90	Silty sand, SM	OLIVE BROWN	LSE	WET	6575	HNU	0.0		Fill, 0-0.2 topsoil, 0,2-0.3' dk brown charcoal gravel; sat. observed 1.5' bgs.
5 -	- 1			2.5 × 5								
4-	2		90	No Sample Recovered Silty sand, SM	OLIVE BROWN/BRN	LSE	SAT	MOUNT	HNU	0.0		
3 -	- 3		y 10									E . A
2 -	- 4		100	No Sample Recovered Silty sand, SM	BROWN	SFT	SAT	4222	HNU	0.0		Interbedded sand with silt/and organics. differing % compositions.
1 -	- 5											* '
				Poorly graded sand with silt, SP-SM	STRONG PALE GRE	LSE	SAT		HNU	0.0		
0 -	- 6		65	Poorly graded sand with silt, SP-SM	GREEN	LSE	SAT	425	HNU	0.0		
-1 -	7			No Sample Recovered								
-2 -	- 8		50	Silty sand, SM	GREEN/BROWN/OLV	LSE	SAT	2112	HNU	0.0		(Fill?) Iron stained with olive gray/green sand: 8-8.3 Silt and organic zone.
-3 -	9			No Sample Recovered								ā
-4 -	- 10		60	Silty sand, SM	ORNG/FE DK BRN	SFT	SAT	היניתים	HNU	0.0		Uncertain (fill?)

PROJECT FT. MONMOUTH TOTAL DEPTH : 14.50 SITE NAME : MAIN POST 12 LOGGER : P. THOMAS MP12MW16 BORING ID : DRILLING COMPANY : J.C. ANDERSON NORTHING 0.0000 estimated : MOBILE B-57 DRILLING RIG EASTING 0.0000 estimated DATE STARTED : 01/04/95 ELEVATION : 6.330 surveyed DATE COMPLETED : 01/04/95

_											
	ETEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING /	COMMENTS
-	.4	· · 11			Silty sand, SM No Sample Recovered	ORNG/FE DK BRN	SFT	SAT		HNU 0.0	Uncertain (fill?)
		12		85	Silty sand, SM	ORG/FE DK BRN	SFT	SAT	667 8	HNU 0.0	Fining downward interval. (Uncertain/fill).
	7	· 13. · · 14			No Sample Recovered Interval Not Sampled	DK BROWN	SFT	WET		HNU 0:0	Fill? Augered interval. Set well at 145, bgs. TD of borehole 145, bgs.
-	8	15							,	-	borenote 145 bgs.
	9 -							Ų,			
	0 +										
-1	2 -	19			· · · · · · · · · · · · · · · · · · ·				,	,	
-1:	3 -	20		-	,		,				

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 30

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	s).	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
				·														
MP12MW16	1	1	0.00	1.80	SPS		0	MFC	85	15	0	0		NA	MOD	LSE	WET	
MP12MW16	1	2	1.80	2.00	SPS		0		. 0	0	0.	0	_					
MP12MW16	2	1	2.00	3.80	SPS		≠ 0	MFC	85	15	0	0		NA	MOD	LSE	SAT	
MP12MH16	2	2	3.80	4.00	, SPS		.0		0	0	0	0				,		
MP12MW16	3	1	4.00	5.50	SPS		0	MFC	80	20	0	0		NA	MOD	SFT	SAT	
MP12MW16	3	2	5.50	6.00	SPS		0	MFC	90	10	0	0		NA	MOD	LSE	SAT	
MP12MW16	4	1	6.00	7.30	SPS		0	MFC	90	10 -	, O,	0		NA	MOD	LSE	SAT	
MP12MW16	4	2	7.30	8.00	SPS		0		0	0	0	0.						
MP12MW16	5	1	8.00	9.00	SPS		_. 5	MFC	7 5	20	0	0		NA	MOD	LSE	SAT	
MP12MW16	5	2	9.00	10.00	SPS		0		Ö	0	0	0						
MP12MW16	6	1	10.00	11.20	SPS	•	0	MFC	78	20	`2	0	-	NON	MOD	SFT	SAT	
MP12MW16	6	2	11.20	12.00	SPS		0		0	0	0	0						
. MP12MW16	7	1	12.00	13.10	SPS		0	MF	70	25	5	0		NON	MOD	SFT	SAT	
MP12MW16	7	2	13.10	13.70	SPS		0	MF	60	30	10	0 '		NON	MOD	SFT	WET	
MP12MW16	7	3	13.70	14.00	SPS	-	0		0	0	0	. 0						
MP12MW16	8	1	14.00	14.50	NS		0		0	0	0	0						

BOREHOLE ID : MP12MW17 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/11/95 END DATE : 01/11/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON
DRILLER : STEVE BURGER

DRILL RIG TYPE : MOBILE B-57

/ ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 5.900

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32577

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS : 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE / DEPTH

PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N SLUG TESTS....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 47.4"

Longitude-West: 74 deg 02' 19.2"

	MONMO POST			DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	12MW /11/ /11/	95	WATER LEVELS
Protective Casing	DEPTH 1.97		<i>LEV.</i> 7.87	DRILLING SUMMARY Driller WELLINGTON REEVE Drilling Fluid WATER
4.00 inch	0.00	GS	5.90	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
				Casing #1 Diameter: 4.00 inch Interval: 0.00 to 4.50 ft. Type: PVC SCH 40
				Stick Up Inner Casing: 1.97 ft. Protective Casing: 2.34 ft.
	4			Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft.
				Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft.
				Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Type: PVC Interval: 3.00 to 14.50 ft. Median Diameter: 4.50 to 14.35 ft. Slots: 0.010 inches
	0.50	BN	5.40	Silt Trap Interval: 14.35 to 14.50 ft.
	3.00	SP	2.90	Backfill Type: Interval: 0.00 to 0.00 ft.
	4.50	sc	1.40	WELL DEVELOPMENT Date 01/17/95 Method Bailing, overpumping Yield 1.5 gpm Purged Volume 120 gal
				COMMENTS
	14.35	BS	-8.45	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
Ш	14.50	TD	-8.60	TD = Total Depth SSSSSSS = Formation Additional Comments:
				Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

ELEVATION :

5.900 surveyed

PROJECT FT. MONMOUTH TOTAL DEPTH : 14.50 MAIN POST 12 LOGGER : P. THOMAS SITE NAME : BORING ID : MP12MW17 DRILLING COMPANY : J.C. ANDERSON NORTHING 0.0000 estimated DRILLING RIG : MOBILE B-57 0.0000 estimated EASTING : 01/11/95 DATE STARTED

DATE COMPLETED

: 01/11/95

				·						
ELEVATION	рвртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			10	Sandy silt, ML	DK BRN/FE BRN	SFT	MST	2232	OVM 0.0	Poor recovery - appears to be fill.
-	-			No Sample Recovered]			2		
										-
4 -	1									
-	ļ			,	-					
3 -	2	$\vdash\vdash$		No Sample Recovered	-		SAT	2	0.0 MVO	Spoon was wet -
	1							1		Spoon was wet - possible fill recovered wood in drive shoe.
-	Ī			,				'		•
2 -	3			•						
				;						·
	-									
1 -	4							_		, , , , , , , , , , , , , , , , , , ,
'	"	•		No Sample Recovered				3347		Recovered slough in spoon Possible saturated fill with fill gray roots (sat).
-	-				(7		(sat).
			- ;							
0 -	- 5									
							•			·
	6	·	15	Sandy silt, ML	GREEN/BROWN	SFT	SAT	3	0.0 MVO	Slough (?). Sand with grass/tree roots.
				No Sample Recovered	-	-		3 4 4 4		grass/tree roots.
·	Ī									
-2 -	7			,					•	·
-								,		
-	<u> </u>									
-3 -		ļ			· .			_		
-3	"		25	Silty sand, SM	GRAY	SFT	SAT	10	OVM 0.0	Fill - grass roots etc. Poor recovery, slough.
-	-			No Sample Recovered	-			3	}	
					1				}	
-4-	9								}	
-	_									
-5 -	10		20	Silty sand, SM	GRAY	SFT	SAT	2	1	Fill/slough?
								2244	}	•

PROJECT FT. MONMOUTH

SITE NAME : MAIN POST 12

BORING ID : MP12MW17 NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 5.900 surveyed

TOTAL DEPTH : 14.50

: P. THOMAS LOGGER

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG

DATE STARTED

: MOBILE B-57

: 01/11/95

DATE COMPLETED : 01/11/95

ELEVATION	рвртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INŠTRUMENT READING	COMMENTS
			,	Silty sand, SM	GRAY	SFT	SAT			Fill/slough?
	Ī			No Sample Recovered						
-5	11									
	,									
-6	12		100	Clayey sand, SC	GRAY	SFT	SAT	4453		Sand with beds of clay/ silt organics.
	+			-			7	3	*	
-7	13									
	+									
-8	14			Interval Not Sampled						Augered interval - TD and set well 14.5' bgs.
	-									
-9	15									
	+									_
-10	16			i i		-		-		
	 - -									
-11	17									-
	<u> </u>									,
-12 [:]	18									٦
	<u> </u>				•	. '				·
-13 ·	19									^ .
				<u>.</u>						·
-14	20									
- 14	20									

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 31

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	_NUM_	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
					,			•	•									1
MP12MW17	1	1	0.00	0.20	SPS		10	FM ·	30	40	10	10		NON	POR	SFT	MST	•
MP12MW17	1	2	0.20	2.00	SPS		0		0	0	0	0						
MP12MW17	2	1	2.00	4.00	SPS		0		0	0	0	- 0					SAT	
MP12MW17	3	1	4.00	6.00	SPS		0		0	0	0	0						
.,MP12MW17	4	1	6.00	6.30	SPS		10	MF	20	25	5	10		NON	POR .	SFT	SAT	
MP12MW17	4	2	6.30	8.00	SPS		0 .		0	0	0	0						
MP12MW17	5	1	8.00	8.50	SPS		0	MF	50	20	20	10		LOW	POR	SFT	SAT	
MP12MW17	5	2	8.50	10.00	SPS		. 0		0	0	0	0 .						
MP12MW17	6	1	10.00	10.40	SPS		0	MF ·	50	20	20	10		NON	POR	SFT	SAT	
MP12MW17	6	2	10.40	12.00	SPS		0		0	0	0	0		•		,		
∏MP12MW17	7	1	12.00	14.00	SPS		0	MF	50	15	30	5		MOD	MOD	SFT.	SAT	•
MP12MW17	8	1	14.00	14.50	NS .		0		0	0	0	0						

BOREHOLE ID : MP12MW18 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/11/95 END DATE : 01/11/95

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON
DRILLER : STEVE BURGER
DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 4.780

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT #: NJ 29 32578

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y)es (N)o: N TYPE DEPTH
PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS......(Y) es (N) o: N PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 49.7" Longitude-West: 74 deg 02' 14.5"

VELL ID TART DATE COMPLETION DATE	01	1/1:	MW18 L/95 L/95	WATER LEVELS
	DEPTH		ELEV.	DRILLING SUMMARY
Protective Casing	1.84	TC	6.62	Driller WELLINGTON REEVE Drilling Fluid WATER
4.00 inch	0.00	GS	4.78	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
• •		140		Casing #1 Diameter: 4.00 inch Interval: 0.00 to 4.50 ft. Type:
				· L
				Stick Up Inner Casing: 1.84 ft. Protective Casing: 2.26 ft.
				Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft
			-	Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft
				Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Interval: 3.00 to 14.50 ft. Median Diameter:
				Screen Diameter: 4.00 Interval: 4.50 to 14.04 ft. Type: PVC Slots: 0.010 inches
	0.50	BN	4.28	
	3.00	SP	1.78	Backfill Type: Interval: 0.00 to 0.00 ft.
				WELL DEVELOPMENT Date 01/17/95
	4.50	SC	0.28	Method Surge blocking/bailing
			-	SE SE SE SE SE SE SE SE SE SE SE SE SE S
	14.04	BS	-9.26	
	14.50	TD	-9.72	BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation
·····				Additional Comments:

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH TOTAL DEPTH : 14.50

SITE NAME : MAIN POST 12 LOGGER : P. THOMAS

BORING ID : MP12MW18 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/11/95 ELEVATION: 4.780 surveyed DATE COMPLETED : 01/11/95

NOI		13	VERY			E	SE.	COUNT	9	TENT	
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW CO	FIELD	INSTRUMENT READING	COMMENTS
			45	Sandy silt, ML	FE BROWN/GRAY	SFT	MST	_	OVM		Fill. Note: 0-0.2 topsoil
3	1		,	No Sample Recovered			,	4			
	+										
2	2		30	Silty sand, SM No Sample Recovered	GRAY/OLIVE GRN	LSE	SAT	3433	OVM	0.0	Fill. Top 0-3' same lithology as noted above. Sheen observed in spoon.
1	3			no sample recovered							~
. 0	4		50	Silty sand, SM	OLIVE GREEN	SFT	SAT	1 2 1	OVM	0.0	Sharp color change. Trace roots and plant fragments Sheen observed.
-1	5			No Sample Recovered				1			
	†										
-2	6		60	Silty sand, SM	OLIVE GREEN	LSE	SAT	1 2 4	OVM	0.0	
-3	7			Silty sand, SM No Sample Recovered	FE BROWN/GRAY	SFT	SAT		OVM	0.0	Iron (Fe) brown/gray interbedded laminae.
	†	-							-		
-4	8		70	Silty sand, SM	FE BROWN/GRAY	SFT	SAT	4 2 4 5	OVM	0.0	Iron (Fe) brown/grey interbedded laminae.
-5	9		,		·						
	†			No Sample Recovered							
-6	+ 10	.1	80	Silty sand, SM	FE BROWN/GRAY	SFT	SAT	7 5 4 3	OVM	0.0	Slightly more clayey than above lithology. Clay pockets found throughout interval

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.50

SITE NAME : MAIN POST 12 LOGGER : P. THOMAS

EASTING : 0.0000 estimated DATE STARTED : 01/11/95 ELEVATION : 4.780 surveyed DATE COMPLETED : 01/11/95

				,						~	
	ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	-6	- - 11			Silty sand, SM	FE BROWN/GRAY	SFT	SAT		OVM 0.0	Slightly more clayey than above lithology. Clay pockets found throughout interval.
	-7 -	- 12 -		85	No Sample Recovered Silty sand, SM	FE BROWN/GRAY	SFT	SAT	5254	OVM 0.0	
		- 13 - - 14			No Sample Recovered						
	10 -	-			Interval Not Sampled						Augered interval. Set well at 14.5' bgs.
-	11 -	- 16									
	12 -	· 17				,					
	13										
	14 +			,			·				
L.			L								

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 32

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
							`									•		0
MP12MW18	1	1	0.00	0.90	SPS		5	FM	25	50	10	10		NON	POR	SFT	MST	
MP12MW18	1	2	0.90	2.00	SPS		0		0	0	0	0			•	•	7	
MP12MW18	2	1	2.00	2.60	SPS		Ō	MF	85	·15	0	0		NA	MOD	LSE	SAT	-
MP12MW18	2	2	2.60	4.00	SPS		0		0	0	0	0						•
MP12MW18	3	1	4.00	5.00	SPS		5	MF	70	20	0	. 5		NA	MOD	SFT	SAT	
MP12MW18	3 -	. 2	5.00	6.00	SPS		0		0	0	0	0						
MP12MW18	. 4	1	6.00	6.70	SPS	1	5	MF	. 70	20	0	5		NA	MOD	LSE	SAT	-
MP12MW18	4	2	6.70	7.20	SPS		. 0	MF	70	25	` 5	0		NON	WEL	SFT ·	SAT	
MP12MW18	4	3	7.20	8.00	SPS	-	0		. 0	0	0	0						•
MP12MW18	5	1	8.00	9.40	SPS		0	MF	70	25	5	0		NON	MOD	SFT	SAT	
:MP12MW18	5	2	9.40	10.00	SPS		0 .		0	0	0	0						
MP12MW18	- 6	1	10.00	11.60	SPS ,		0	MF	70	20	10	` 0		NON	MOD	SFT	SAT	
MP12MW18	6	2	11.60	12.00	SPS		0		0	0	0	0						
MP12MW18	7	1	12.00	13.70	SPS	,	0	MF	70	20	10	0		NON	MOD	SFT	SAT	
MP12MW18	7	2	13.70	14.00	SPS		0	٠	0	0	0	0						,
MP12MW18	8	1	14.00	14.50	NS		0		. 0	0	0	. 0			•	,		i

BOREHOLE ID : MP14MW19 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/04/95 END DATE : 01/04/95

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH : 16.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BORÈHOLE DIAMETER #2: 2.00

INTERVAL: 15.00 ft. to 16.00 ft. BGS

METHOD : SPLIT SPOON FLUID : NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 7.980

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32579

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N $T\bar{Y}PE$ DEPTH PURGE

0..00 SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y) es (N) o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude North: 40 deg 18' 47.3" Longitude West: 74 deg 02' 20.7"

	MONMOUTH POST 14		DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	MP14M 01/04 01/04	/95	WATER LEVELS
Protective Casing	1.70 TC E	9.68 7.98	DRILLING SUMMARY Driller STEVE BURGER Drilling Fluid WATER Well Type SINGLE CASED SCREENED
	0.50 <i>BN</i> 3.50 <i>SP</i>	7.48	WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Type: PVC SCH 40 Stick Up Inner Casing: 1.70 ft. Protective Casing: 2.49 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft. Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.50 ft. Sand Pack Type: NO. 1 SAND MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: PVC Slots: 0.010 inches Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00 SC	2.98	WELL DEVELOPMENT Date 01/16/95 Method Bailing, overpumping Yield 7 gpm Purged Volume 345 gal COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout
	14.54 <i>BS</i> 15.00 <i>TD</i>	-6.56 -7.02	GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation Additional Comments: Depths are measured below ground surface.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : MAIN POST 14 LOGGER : P. THOMAS

BORING ID : MP14MW19 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57
EASTING : 0.0000 estimated DATE STARTED : 01/04/95

EASTING : 0.0000 estimated DATE STARTED : 01/04/95 ELEVATION : 7.980 surveyed DATE COMPLETED : 01/04/95

_			•		•						
	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				70	Silty sand, SM	OLIVE BROWN	LSE	MST	4534	HNU 0.0	Fill. 0-0.4 topsoil.
-	6 -	- - 1			No Sample Recovered				3 4		
		- 1				·	,				
	5 -	- 2		30	Fill	GRAY		WET	10 11 8 9		Broken charcoal fragments (?).
	4 -	- 7			No Sample Recovered						
	*	3									
	1	_									
	3 -	- 4		10	Silty sand, SM	GRAY	SFT	SAT	3	HNU 0.0	Slough (?).
					No Sample Recovered .				3225		otough (!)!
	1	_			,				,		
	2	- 5									
		_	1								
							,				
	. 1	- 6	$\otimes\!\!\!\otimes$	25	Fill	GRAY/WHITE			5569	HNU 0.0	Fill with glass fragments
	4	-	\bowtie	, ,	No Sample Recovered				9		
		_			7.0				,		
	0 †	- 7					-	-			
	+	•									,
	-1 -	- Ω									
	-'-	0			No Sample Recovered						No recovery. Spoon sat.
	†	-									·
	-2	- 9			`						
	†	•									
	-3	10		100	Silty sand, SM	GRAY		SAT	2	HNU 0.0	Uncertain/fill?
									1 2		

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 14
BORING ID : MP14MW19

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated

ELEVATION : 7.980 surveyed

TOTAL DEPTH : 16.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B-57

DATE STARTED : 01/04/95

DATE COMPLETED : 01/04/95

					•					
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Silty sand, SM	GRAY		SAT		HNU 0.0	Uncertain/fill?
.	1		ļ				-			
			·)	l			, i
	11			<i>;</i>						
-3	''				,					
	ļ .						'		,	
	ı									
-4.	12			. •						
"	'-	•	100	Silty sand, SM	GRAY	SFT	SAT	1 1	HNU O.O	Probably fill.
	1							1	, ~	
			v							·
-5	13								,	
-	,				l .					·
1 .	ļ									
				•						
-6	14		100	Cilty cand Cu	GRAY	CET	CAT		LUMIL O O	Dechably fill Cat wall
			100	Silty sand, SM	UKAT .	SFT	SAT		HNU 0.0	Probably fill. Set well at 15' bgs: wood fragments found in drive shoe.
	+		-							shoe.
			,							
-7	15_	-,								
					}					
1 .	†								`	
				ί,						. `
-8	16									
.	† _"			· ·						
_				,						• .
-9	17									
	1		ļ '							/
'	† .	-								`
-10	18									
									,	.
'	†									
1			-		•					
-11	† 19			*					·	
				i .						
· 1	t			,						
-12	20						.			
1				,						`

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 33

BOREHOLE	SMP	LTH	LITHOLOGY	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	ÇLAY	ORGANIC	ROCK			•		STRAT	
/WELL ID	NUM	NUM	(FT BGS	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
								,											
MP14MW19	1	1	0.00	1.40	SPS		0	MF	60	30	0	10		NA	POR	LSE	MST		
MP14MW19	1	2	1.40	2.00	SPS		0		0	0	0.	0							
MP14MW19	2	· 1	2.00	2.60	SPS		0.		0	. 0	0	0					WET		
MP14MW19	- 2	2	2.60	4.00	SPS		0		. 0	0	0	0							
MP14MW19	3	1	4,00	4.20	SPS		5	MF	- 55	30	10	0		NON	POR	SFT	SAT		١ ,
MP14MW19	3	2	4.20	6.00	SPS		0		0	0	0	0						3	
MP14MW19	4	1	6.00	6.50	SPS		0		, 0	0	0	0				/)		
MP14MW19	- 4	2	6.50	8.00	SPS	,	0		0	0	Ó	0							
MP14MW19	5	1	8.00	10.0Ó	SPS		0		0	0	0	0							
MP14MW19	6	1	10.00	12.00	SPS		0	MFC	60	30	10	0					SAT		
MP14MW19	7	1	12.00	14.00	SPS		0	MFC	60	30	10	0		NON	MOD	SFT .	SAT		
MP14MW19	8	1	14.00	16.00	SPS		0	MFC	60	30	10	0		NON	MOD	SFT	SAT		

BOREHOLE ID : MP14MW20 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/04/94 END DATE : 01/04/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) :

TOTAL DEPTH: 14.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 7.430

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32580

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y) es (N) o: N No. OF WELLS : 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y)es (N)o: N TYPE DEPTH
PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N SLUG TESTS....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

Latitude-North: 40 deg 18' 50.2"

Longitude-West: 74 deg 02' 19.8"

SITE NAME MAIN	POST	Γ 14	1	DRILLING FIRM J.C. ANDERSON INSPECTOR K. VALENTI
WELL ID START DATE COMPLETION DATE	01	L/04	MW20 1/95 1/95	WATER LEVELS
I	рертн Сертн		ELEV.	DRILLING SUMMARY
Protective Casing	1.86	TC	9.29	
4.00 inch	0.00	GS	7.43	The state of the s
	0 E			WELL DESIGN CONSTRUCTION
			12	Casing #1 Diameter: 4.00 inch Interval: 0.00 to 14.50 ft. Type: PVC SCH 40
			-	Stick Up Inner Casing: 1.86 ft. Protective Casing: 2.34 ft.
	5.			Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.00 ft.
=				Seal Type: BENTONITE Interval: 1.00 to 3.00 ft.
				Sand Pack Type: #1 MORIE Interval: 3.00 to 14.50 ft.
	5			Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 4.50 to 14.04 ft.
	1.00	RN	6.43	Type: PVC Slots: 0.010 inches
	1.00	DIV	0.43	Silt Trap Interval: 14.05 to 14.50 ft.
	3.00	SP	4.43	Backfill Type: Interval: 0.00 to 0.00 ft.
			6	WELL DEVELOPMENT
	4.50	SC	2.93	Date 01/13/95 Method Surge blocking/bailing
				Yield .5 gpm Purged Volume 61 gal
				COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout
	14.04	BS	-6.61	GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	14.50	TD	-7.07	TD = Total Depth
				Additional Comments:

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00

SITE NAME : MAIN POST 14 LOGGER : K. VALENTI
BORING ID : MP14MW20 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 0.0000 estimated DATE COMPLETED : 0.0000 estimated DATE COMPLETED : 0.0000

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			50	Sandy silt, ML	DK BROWN	ŞFT	DRY	3565	HNU	2.0	Dk brown to black sandy silt. 1st 3" topsoil.
6 .	1			No Sample Recovered	1			5			
5 -	2	a fall colore	40	College and the second of the	DI ACK		חחע	7		0.0	Sand Sanaral Linkla
(_			Silty sand with gravel, SM	BLACK	LSE	DRY	ろろろ4	HNU	0.0	Sand & gravel, little silt.
	3			No Sample Recovered							-
4					, ,				1		
•					1				,	,	
3 .	4		100	Elastic silt, MH	BLACK	FRM	WET	1	HNU	0.0	Uncertain, Wet outside of spoon at 4.5' bgs. Clayey silt containing roots.
•	<u> </u>				,			1			
2 ·	5										
•	-		-	:							
1 .	6		100	Elastic silt, MH	GREEN	FRM	SAT		HNU	0.0	Uncertain
	ļ			• ,							
0 -	7			.'	-		!		İ		
			•								
-1	T B		30	Elastic silt, MH	GREEN	SFT	SAT	1 2 1	HNU	0.0	Uncertain
				No Sample Recovered]			
-2	9			·							
-	+			,							
-3	10		100	Elastic silt with sand, MH	GREEN	SFT	SAT	1	HNU	0.0	Uncertain
				· · · · · · · · · · · · · · · · · ·	` `	<u> </u>					

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00

SITE NAME : MAIN POST 14 LOGGER : K. VALENTI BORING ID : MP14MW20 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 0.004/94 ELEVATION : 7.430 surveyed DATE COMPLETED : 01/04/95

RECOVERY INSTRUMENT ELEVATION FIELD STRENGTH MOISTURE MATERIAL CLASSIFICATION COLOR COMMENTS Elastic silt with sand, MH GREEN SFT SAT HNU 0.0 Uncertain -3 + 11 † 12 3 HNU 0.0 100 Silt with sand, ML DK GREEN BLK FRM SAT Possible confining layer. TD of borehole 14 bgs. 14 -6 -7 + 15 -9 † 17 -10 + 18 -11 + 19 -12 20

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 34

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GR	AVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	5)	METHOD	GRAVEL PC	т	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
			•									•			•				
MP14MW20	1	1	0.00	1.00	SPS		0		40	6Ö	0	0		NON	POR	SFT	DRY		
MP14MW20	1	2	1.00	2.00	SPS	(0		. 0	0	0	0							
MP14MW20	2	1	2.00	2.80	SPS	40	0		40	20	0	0.		NA	POR	LSE	DRY		
MP14MW20	. 2	2	2.80	4.00	SPS	(0	•	. 0	-0	0	0.					•		,
MP14MW20	3	1	4.00	6.00	SPS	(0		0	50	20	30		HGH	NA	FRM	WET		,
MP14MW20	4	1	6.00	8.00	SPS	(0		0	40	30	30		HGH	NA	FRM .	SAT	•	
MP14MW20	5	1	8.00	8.60	SPS	(0		10	75	15	0	*	MOD	NA "	SFT	SAT	•	
MP14MW20	5	2	8.60	10.00	SPS	(0		0	0	0	0 -							,
MP14MW20	6	1	10.00	12.00	SPS	(0		25	60	. 15	0		ĤGH	NA ·	SFT	SAT		•
MP14MW20	7	1	12.00	14.00	SPS	(0		20	80	0	0 -		NON	POR	FRM	SAT		

BOREHOLE ID: MP14MW21 PROJECT NAME: FT. MONMOUTH
BEGIN DATE: 01/04/95 END DATE: 01/04/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 18.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2: 2.00

INTERVAL: 16.00 ft. to 18.00 ft. BGS

METHOD: SPLIT SPOON FLUID: NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON
DRILLER: STEVE BURGER
DRILL RIG TYPE: MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 7.500

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32581

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y)es (N)o: N TYPE DEPTH

 PURGE:
 0.00

 SAMPLE:
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 50.6" Longitude-West: 74 deg 02' 14.0"

SITE NAME MAIN	POST	14	1	INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	/04	MW21 1/95 1/95	WATER LEVELS
Protective Casing	DEPTH 2.07	TC	<i>ELEV</i> . 9.57	DRILLING SUMMARY Driller STEVE BURGER Drilling Fluid WATER
4.00 inch	0.00	GS	7.50	Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
				Casing #1 Diameter: 4.00 inch Interval: 0.00 to 6.00 ft. Type: PVC SCH 40
	1	37.		
				Stick Up Inner Casing: 2.07 ft. Protective Casing: 2.28 ft.
		20		Casing Grout: CEMT/BENT Interval: 0.00 to 1.00 ft.
				Seal Type: BENTONITE SLURRY Interval: 1.00 to 4.00 ft.
	8		3.	Sand Pack Type: NO. 1 MORIE Interval: 4.00 to 16.00 ft.
				Grain Size: Screen Diameter: 4.00 Median Diameter: 6.00 to 15.54 ft.
				Screen Diameter: 4.00 Interval: 6.00 to 15.54 ft. Type: Slots: 0.010 inches
	1.00	BN	6.50	
	4.00	SP	3.50	Silt Trap Interval: 15.54 to 16.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
				WELL DEVELOPMENT
	6.00	sc	1.50	Date 01/13/95 Method Surge blocking/overpump Yield 0.5 gpm Purged Volume 78 gal
				Yield 0.5 gpm Purged Volume 78 gal
		- 4		COMMENTS
	15.54	BS	-8.04	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	16.00	TD	-8.50	TD = Total Depth

PROJECT FT. MONMOUTH TOTAL DEPTH : 18.00 SITE NAME : MAIN POST 14 LOGGER / : P. THOMAS MP14MW21 BORING ID : DRILLING COMPANY : J.C. ANDERSON NORTHING 0.0000 estimated DRILLING RIG : MOBILE B-57 EASTING 0.0000 estimated DATE STARTED : 01/04/95 ELEVATION : 7.500 surveyed DATE .COMPLETED : 01/04/95

					•						
ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			65	Silty sand, SM	BROWN	SFT	MST	17 19 20	HNU	0.0	Fill, 0-0.4' bgs. consists of grass root fragments.
	1		1				_	19	i		fragments.
	ĺ		1								
6	 1										
			(*	No Sample Recovered	<u> </u>						
	†			No dampte kecovered						`	
		1									
5.	2	، ننب، ننب،	45	Silty sand, SM	BROWN	SFT	MST	12	HNU	0.0	Concrete rubble at 2.2'
1.		\bowtie		Fill	BROWN			ľ	HNU	0.0	bgs.
		\bowtie		,							'
4.	1 3	PY -	45	Interval Not Sampled							Augered interval.
.	+										
						1			-		·
3 -	4			Interval Not Sampled							Augered interval, Out of
			7	.,							Augered interval, Out of concrete interval 2-8-9' bgs, next spoon 10-12'bgs Sat. observed 6'bgs ctngs
'	Ī										Sat. Observed 6 bys citigs
2 -	- - 5										
-]			, , , , , , , , , , , , , , , , , , , ,			Ì				
.	1										
		i									
1.	6										
											,
-	†	,									
			,					·			-
0 -	7	,								,	;
	L	,									
	[, ,							
-1 -	8	$ \ \ $									
'						·					
-											
				')							
-2 -	9	$ \ \ $									
						.					
-											
_											
-3	10		70	Poorly graded sand, SP	GREY	SFT	SAT	3	HNU (0.0	Uncertain/fill?
					<u> </u>			2			

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 14

BORING ID : MP14MW21
NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 7.500 surveyed

TOTAL DEPTH : 18.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B-57

DATE STARTED : 01/04/95

DATE COMPLETED : 01/04/95

CLASSIFICATION COLOR BEAL PROPERTY OF THE PR											
Sandy elastic sitt, NH GRAY SFT WET NNU 0.0 Fill? Trace plant/root fragments. No Sample Recovered SILty sand, SM GRAY SFT SAT 6 HNU 0.0 Uncertain/fill? No Sample Recovered SILty sand, SM GRAY SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered SILty sand, SM GRAY SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill? Note: Wet set are 16 look of borehole 18. SFT SAT 2 HNU 0.0 Uncertain/fill?	ELEVATION	DEPTH	MATERIAL				STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
No Sample Recovered SILTY sand, SM GRAY SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered No Sample Recovered No Sample Recovered SILTY sand, SM GRAY SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered					Poorly graded sand, SP	GREY	SFT	SAT		HNU 0.0	Uncertain/fill?
-6 - 14	-3 -				Sandy elastic silt, MH	GRAY	SFT	WET		HNU 0.0	Fill? Trace plant/root fragments.
-6 - 14	-	,			No Sample Recovered		1				``
-6 - 14											
No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered No Sample Recovered No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	-4-	- 12 -		. 80	Silty sand, SM	GRAY	SFT	SAT	6 1 2 1	HNU 0.0	Uncertain/fill?
No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered No Sample Recovered No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered				,	•	. ,					
-6 - 14	5 -	- 13					`				
-6 - 14				•							-
-7 - 15 No Sample Recovered No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? Note: 16.4-70.4 Held set at 6.5 days. To of borehole 18'. No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	-	_			No Sample Recovered	·	ł				•
-7 - 15 No Sample Recovered No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? Note: 16.4-70.4 Held set at 6.5 days. To of borehole 18'. No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered				•			٠.				
-8 16 90 Silty sand, SM GRAY SFT SAT 2 HNU 0.0 Uncertain/fill? Note: 16 16 16 Met sit layer Well set at 16 borehole 18 10 17 18 No Sample Recovered	-6	14		60	Silty sand, SM	GRAY	SFT	SAT	2	HNU 0.0	Uncertain/fill?
-8 16 90 Silty sand, SM GRAY SFT SAT 2 HNU 0.0 Uncertain/fill? Note: 16 16 16 Met sit layer Well set at 16 borehole 18 10 17 18 No Sample Recovered					·				ž	•	
No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? Note: 10,4-10.6 Wet sit layer Well set at 16,4-10 by set at 16,4-									2		
No Sample Recovered SFT SAT 2 HNU 0.0 Uncertain/fill? Note: 10,4-10.6 Wet sit layer Well set at 16,4-10 by set at 16,4-		- 15			•						·
-8 - 16	'	כו			No Sample Recovered						
-9 - 17 No Sample Recovered No Sample Recovered No Sample Recovered	4	-			,						, , ,
-9 - 17 No Sample Recovered No Sample Recovered No Sample Recovered			1							,	
-9 - 17 No Sample Recovered No Sample Recovered	-8-	- 16	<u> </u>	90	Silty sand SM	GPAY	SET	CAT	2	י אווי ח	Upcortain/fill2 Notes
-9 - 17					ortey band, on	GRA1	3	JAI	3		16.4-16.6 Wet silt layer
-10 - 18 No Sample Recovered	-	-							Ż		of borehole 184.
-10 - 18 No Sample Recovered											
-10 - 18	-9	- 17			,	•					
-10 - 18				•	·						
-10 - 18	1	-		,							,
-11 - 19	,	40			No Sample Recovered						
	-10 7	าช									
		_				`				i	
					,					\	
	-11	- 19	*		'						
-12 - 20											.
-12 - 20		-	-								
-12 + 20	-									٠	
	-12	- 20									
	1									•	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 35

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT.	
/WELL ID	NUM	NUM	(FT BGS	<u>) </u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT .	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
•		-						•				-	•						
MP14MW21	1	1	0.00	1.30	SPS		5	M	60	25	0	10		NA	MOD	SFT	MST		
MP14MW21	1	2	(_ 1.30	2.00	SPS	, ,	0	•	0	0	0	0							
MP14MW21	2	1	2.00	2.20	SPS		5	MF	60	25	0	10		NA	MOD	SFT	MST	•	,
MP14MW21	2	2	2.20	2.90	SPS	2	· O		0	0	0	0						•	¥
MP14MW21	3	1	2.90	4.00	NS NS	,	0		0	0	0	0							
MP14MW21	4	1	4.00	10.00	NS NS		0		0	0	0	0				~-	,		
MP14MW21	5	1	10.00	10.80	SPS	7	0		0	0	0	0		NON	MOD .	· SFT	SAT		4,
MP14MW21	÷ 5	2	10.80	11.40	SPS		0	F	30	50	20	0		MOD	WEL	SFT	WET .		
MP14MW21	5	3	11.40	12.00	SPS		0		0	0	0.	0							
MP14MW21	6	1	12.00	13.40	SPS -		0	MF	60	30	10	0		NON	MOD	SFT	SAT		
MP14MW21	6	2,	13.40	14.00	SPS		0		0	0	0	, O					-,	•	,
MP14MW21	7	1	14.00	15.20	SPS		0 .	MF	60	30	10	0		NON	MOD	SFT	SAT		
MP14MW21	7	2	15.20	16.00	SPS		0		0	Ô	0	0							
MP14MW21	8	1	16.00	17.80	SPS		0		60	30	10	0		NON	MOD -	SFT	SAT	` .	
MP14MW21	8	2	17.80	18.00	SPS	·	0		0	0	o'	0						•	

BOREHOLE ID : MP16MW22 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/15/94 END DATE : 12/15/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD: HSA FLUID: WATER

BOREHOLE DIAMETER #2: 2.00

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD: SPS FLUID: NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 5.500

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32582

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y) es (N) o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

0-2' sampled @1425 for VOC, BNA, TCL, Pest/PCB, Tal metals. VOC @approx. 6-12" bgs. 2"-10' int. same for parameters. VOC taken from 2-4'. Lat. 40 deg 18' 56.1"/Long. 74 deg 01'52.3"

	MONMOUT POST		DRILLING FIRM J.C. ANDERSON INSPECTOR K. VALENTI
WELL ID START DATE COMPLETION DATE	12/	5 MW 22 15/94 15/94	WATER LEVELS
	DEPTH	ELEV.	DRILLING SUMMARY
Protective Casing	1.75 TO	7.25	Driller WELLS REEVE Drilling Fluid WATER
4.00 inch	0.00 GS	5.50	Well Type SINGLE CASED SCREENED
			WELL DESIGN CONSTRUCTION
	A.		Casing #1 Diameter: 4.00 inch Interval: 0.00 to 4.50 ft. Type: PVC SCH 40
			Stick Up Inner Casing: 1.75 ft. Protective Casing: 2.04 ft.
			Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.00 ft.
			Seal Type: BENTONITE Interval: 1.00 to 3.00 ft.
			Sand Pack Type: MORIE #1 Interval: 3.00 to 14.50 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 4.50 to 14.04 ft.
	1.00 BA	V 4.50	Type: PVC Slots: 0.010 inches
	3.00 SP	2.50	Silt Trap Interval: 14.04 to 14.50 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	4.50 <i>SC</i>	1.00	WELL DEVELOPMENT Date 01/05/95 Method Bailing, surge blocking Yield 1 gpm Purged Volume 31 gal
			COMMENTS
	14.04 B S	-8.54	TC = Top of Casing SP = Top Sand Pack = Grout
	14.50 TL	-9.00	
			Additional Comments:

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 16

BORING ID : MP16MW22

ELEVATION :

NORTHING: 0.0000 estimated EASTING: 0.0000 estimated

5.500 surveyed

TOTAL DEPTH : 14.50

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/15/94
DATE COMPLETED : 12/15/94

	ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			\bowtie	50	Other	BROWN	LSE	MST	13 11 7 7	HNU	0.0	Top 3" topsoil. Matrix contains a few subrounded small stones.
	-	-	$\overset{\infty}{\otimes}$	r	Other	BLACK	LSE	NA	7	HNU	0.0	I
	4 -	- 1	XXX		No Sample Recovered							-
	_	-										
	3 -	- 2		100	Lean clay with sand, CL	GREEN-DK GRAY	FRM	SAT	3223	HNU	0.0	Water in the hole at 1' bgs. SPS saturated. Sandy saturated clay.
	-	-							3			saturated clay.
	2 -	-3 /						-			,	
	-	-						-	٠			
ŀ	, 1 -	- 4		70				-	_			
	•	,		75	Sandy lean clay with gravel, CL	DK GREEN-DK GRY	SFT	SAT	2240	HNU	0.0	5.5-6 no recovery. Saturated.
	-			,					,			, , ,
	. 0 -	- 5		,								
	•	_	70 Var		No Sample Recovered							
	-1 -	6		50	Clayey sand, SC	GREENISH BROWN	SFT	SAT	5	HNU	0.0	Saturated sample. Mostly
		<u> </u>							5 6 8 10			Saturated sample. Mostly sands some semi-rounded cobbles.
	-2	- 7			No. Complete Description							
	-				No Sample Recovered							
		-				,						
	-3 -	- 8 ´		100	Poorly graded sand, SP	GREENISH-BROWN	SFT	SAT	5421	HŅU	0.0	Sands get finer w/depth all fine sands towards bottom of spoon. Few small cobbles.
	_	<u>-</u> '			V	·			1			small cobbles.
	-4 -	- 9					,					
	_	-										
	_F -	- 10		100	Daniel and a second and	OPERATOR PROCESS	ノ 		_			
	-5 -	ΙŪ		100	Poorly graded sand, SP	GREENISH-BROWN	LSE	SAT	111	HNU	0.0	Same lithology as previous interval.

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 16

BORING ID : MP16MW22

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated ELEVATION : 5.500 surveyed

TOTAL DEPTH : 14.50

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/15/94

DATE COMPLETED : 12/15/94

										
ELEVATION	рвртн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Poorly graded sand, SP	GREENISH-BROWN	LSE	SAT		HNU 0.0	Same lithology as previous interval.
-5 -	- 11				. •	,				
			ı	Fat clay, CH	GREENISH-GRAY	SFT	SAT		HNU 0.0	Some slight yellow staining observed.
-6 -	- 12 -		100	Fat clay, CH	GREENISH-GRAY	SFT	SAT	2 1 1 5	HNU 0.0	Some yellow staining. Same lithology as previous interval.
-7-	- 13			Poorly graded sand, SP Lean clay, CL	GREENISH-WHITE	LSE	SAT MST		HNU 0.0 HNU 0.0	3" layer-sharp contact.
-8 -	- 14 -		100	Fat clay, CH	DK BROWN	FRM	MST		HNU 0.0	Same lithology as previous interval. TD of borehole 14.5' bgs.
-9 -	- 15 -			· · ·					.~.	
-10 -	- 16 -				, , , , , , , , , , , , , , , , , , ,					
-11 -	- 17			`						
-12 -	- 18 -									
-13	- 19 -			-	. ,				,	
-14	- 20									

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 36

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK			•		STRAT
/WELL ID	NUM	'NUM	(FT BGS)	METHOD	GRAVEL	_PCŤ.	SAND	PĊT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
	•																	
MP16MW22	1	1	0.00	0.50	SPS	MC	20	FM	50	30	0	0		LOW	MOD	L'SE \	MST	•
MP16MW22	1	2	0.50	1.00	SPS	С	100		0	0	0	0		NON	NA	LSE	NA	•
MP16MW22	1	3	1.00	2.00	SPS		0		0	0	0	0						:
MP16MW22	2	1	2.00	4.00	SPS		0	M	25	0	75	0		MOD	MOD	FRM	SAT	•
MP16MW22	3	1	4.00	5.50	SPS		15		30	10	45	0		MOD	POR	SFT	SAT	
MP16MW22	3	2	5.50	6.00	SPS		0	•	0	0	0	. 0		_				
MP16MW22	4	1	6.00	7.00	SPS	C	10	CF	75	0	15	0		LOW	POR	SFT	SAT	
MP16MW22	4	2	7.00	8.00	SPS		01.		0	0	0	0						
MP16MW22	5	1	8.00	10.00	SPS		5	MF	95	0	, O	0		NON	MOD	SFT .	SAT	
MP16MW22	6	1	10.00	11.50	SPS		5		95	0	- 0	0		NON	MOD	LSE	SAT	• •
MP16MW22	6.	2	11.50	12.00	SPS		0		0	15	85	0		HGH	WEL	SFT	SAT .	
MP16MW22	7	1	12.00	13.20	SPS		0		0	10	90	O		HGH	WEL	SFT	SAT .	
MP16MW22	7	2	13.20	13.50	SPS		0	F	100	. 0	0	0		NON	WEL	LSE	SAT	4
MP16MW22	7	3	13.50	14.00	SPS		0		0	40	60	0		MOD	WEL	FRM	MST	
MP16MW22	8	1	14.00	14.50	SPS	•	0		0	40	60	0		HGH	WEL	FRM	MST	

BOREHOLE ID : MP18MW24 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/12/95 END DATE : 01/12/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON.

DRILLER : WELLINGTON REEVES

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE /

ELEVATION: 0.000 6.780

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32565

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 19' 00.2"

Longitude-West: 74 deg 02' 49.7"

	MONMOUTH IN POST 18	DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE		WATER LEVELS
Protective Casing	1.38 TC ELEV. 8.16	Drilling Fluid WATER
4 00 inch	1.00 BN 5.78	WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch
	5.00 SC 1.78	WELL DEVELOPMENT Date 01/18/95 Method surge blocking/overpump Yield .25 gpm Purged Volume 20 gal COMMENTS
	14.54 BS -7.76	GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation

PROJECT FT. MONMOUTH TOTAL DEPTH : 15.00 ~ SITE NAME : MAIN POST 18 LOGGER : P. THOMAS BORING ID : MP18MW24 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57 0.0000 estimated EASTING DATE STARTED : 01/12/95 ELEVATION : 6.780 surveyed : 01/12/95 DATE COMPLETED

					1			·	~		
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR /	STRENGTH	MOISTURE	BLOW COUNT	FIELD		COMMENTS
			70	Silty gravel with sand, GM	ORANGE	LSE	MST	. 7	OVM O.	0	Fill.
√ ₂ 5 ·	1		·	Silty sand, SM	BROWN	LSE	MST	7568	OVM 0.	0	Sampled interval MP18- SB24-A01. VOA collected soil sample MP18-SB24-A01
•	Ť	1	- 1	No Sample Recovered		ļ			1		,
4 -	2		100	Silty sand, SM	BROWN	LSE	мѕт	5566	OVM 0.	0	Fill.
-								8			
3 -	3	****		Fill	BLACK		WET		OVM 0.	Ó	Fill. Shingles.
-	-	\bowtie		اب ا				-			
		\bowtie		,							
. 2	4	\times	45	Silty sand, SM	DK GRAY	LSE	SAT	2	OVM 0.	0	Fill. Collected soil
			-	, , ,				2443			Fill. Collected soil sample. MP18-SB24-A02.
1 -	5		•	No Sample Recovered	· ·			3			
-	 		,								,
۰.								1		,	
. 0 -	^		20	Silty sand, SM	GRAY	SFT	SAT	9 100	OVM 0.1	0	Offset hole 3'; augered to 7' bgs resume SPS; more clay in interval.
-	-			No Sample Recovered	•			Ö			more clay in interval.
-1 -	7		50	Silty sand, SM	GRAY	SFT	SAT	10	OVM 0.0	0	, , , .
							SAT	15 20			
-	.							21			
-2 -											. ,
-2		1 1		No Sample Recovered							,
-	-								,		
İ	,	.									
-3 -	- 9		60	Silty sand, SM	GRAY	SFT	SAT	20	OVM 0.0	ָ נ	Fill. Refusal ~10.5-11' bgs. Offset hole again, 5' to east.
	_				•		SAT	14 100			5, to east.
1											
-4 -	- 10										
•											
	L	1					ľ		I		i

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 18

BORING ID : MP18MW24
NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 6.780 surveyed TOTAL DEPTH : 15.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B-57
DATE STARTED : 01/12/95

DATE COMPLETED : 01/12/95

<u> </u>					_,\		_	E-+	<u> </u>	
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
-				Silty sand, SM	GRAY	SFT	SAT		OVM 0.0	Fill. Refusal ~10.5-11' pgs. Offset hole again, 5' to east.
	1			No Sample Recovered	İ					57 to east.
-4	+ 11									
		$ \cdot $		Interval Not Sampled	,	1				Augered interval in new borehole locations.
	1	$ \cdot $								
				,		1 !				
-5	12			Silty sand, SM	GRAY	SFT	SAT		OVM 0.0	Eill Augened to 157 back
					GKAT	351	SAI		OVM U.U	Fill. Augered to 15' bgs; sanded cuttings. Same as' above, set well at 15' bgs.
٠	+									bgs.
-							li		1	
-6	† 13									
										,
	†						1			A
١,	1									,
-/	† 14		•	·						
	1									4
	*									
-8	15									·
				,	·					,
	+		,							/
							•			,
-9	16			·		ľ			'	
									,	
	†].				
-10	† 17									· .
	1									
ļ.	T								•	
_11	18									
-11	"						,		1 .	,
	1									,
-12	19									`
1.	İ									
	+					.			,	
										1
-13	20									
					,					·
				·	·				L	<u> </u>

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 45

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NÚM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
						•											•	
MP18MW24	1	, 1	0.00	0.20	SPS 7	MF	40	M	35	20	5	0		NON	POR	LSE	MST	
MP18MW24	1	. 2	0.20	1.40	SPS		10	MF	50	20	0	20		NA	POR	LSE	MST	-
MP18MW24	1	3	1.40	2.00	SPS		0		0	0	0	0 .						
MP18MW24	2	1	2.00	2.90	SPS	•	10	MF	['] 50	<i>2</i> 0	0	20		NA	POR	LSE	MST	
MP18MW24	2	2	2.90	4.00	SPS '		0		0	0	0	0					WET	•
MP18MW24	3	1	4.00	4.90	SPS		10	MF	50	25	5	10		NON	POR	LSE	SAT	
MP18MW24	3	2	4.90	6.00	SPS		0		0	0	0	0		1				
MP18MW24	4	1	6.00	6.40	SPS		. 5	MF	45	25	15	10		LOW	POR	SFT	SAT	
MP18MW24	4	2	6.40	7.00	SPS		0		0	0	0	0					·	• .
MP18MW24	5	1	7.00	8.00	SPS	M į	10	MF	50	30	10	0		NON	POR	SFT	SAT	*,
MP18MW24	5	2	8.00	9.00	SPS		0 .	v	0	0	0	0						
MP18MW24	6	1	9.00	10.20	SPS		10		50	30	10	0		NON	POR	SFT	SAT	
MP18MW24	6	2	10.20	11.00	SPS		0		O	0	. 0	0						
MP18MW24	7	1	11.00	12.00	NS		0		0	0	0	0						
MP18MW24	8	1	12.00	15.00	CUT		10 ,	MF	50	30	10	0		NON	POR	SFT	SAT	•

BOREHOLE ID : MP18MW25 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/13/95 END DATE : 01/13/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER : WELL REEVE

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 6.350

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32566

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y) es (N) o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH
PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

Latitude-North: 40 deg 19' 00.2"

Longitude-West: 74 deg 02' 48.1"

	MONMO POST		DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	18MW25 /13/95 /13/95	WATER LEVELS
Protective Casing	DEPTH 1.93	TC ELEV.	
4.00 inch	0.00	GS 6.3	
			WELL DESIGN CONSTRUCTION
			Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type:
	3	5	Stick Up Inner Casing: 1.93 ft. Protective Casing: 2.29 ft.
			Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft.
			Seal Type: BENTONITE SLURRY Interval: 0.50 to 30.00 ft
			Sand Pack Type: NO 1 MORIE SAND Grain Size: UNIFORM Screen Diameter: 4.00 Interval: 3.00 to 15.00 ft. Median Diameter: 5.00 to 14.54 ft.
	0.50	BN 5.85	Type: PVC Slots: 0.010 inches
	3.00	SP 3.35	Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00	SC 1.35	
	2		Yield ~5 gpm Purged Volume 18 gal COMMENTS
	14.54	BS -8.19	TC = Top of Casing SP = Top Sand Pack = Grout
	15.00	<i>TD</i> -8.65	TD = Total Depth ####################################
			Additional Comments: Depths are measured below ground surface.

PROJECT FT. MONMOUTH

TOTAL DEPTH : 15.00

SITE NAME -: MAIN POST 18 BORING ID : MP18MW25

LOGGER : P. THOMAS

NORTHING : 0.0000 estimated

DRILLING COMPANY : J.C. ANDERSON

EASTING : 0.0000 estimated DRILLING RIG : MOBILE B-57

DATE STARTED : 01/13/95 ELEVATION: 6.350 surveyed DATE COMPLETED : 01/13/95

ET.EVZPTTON		ПЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
	5 — 1			90	Silty sand, SM	BROWN	SFT	MST	4556	MVO	0.0	Fill Collected sample
	4 - 2			50	No Sample Recovered Silty sand with gravel, SM	BROWN	SFT	WET	7 9 11 14	OVM	0.0	Fill. Collected sample MP18-SB25-A02. Slightly more gravelly than above interval.
-	2 + 4			50	No Sample Recovered Silty sand, SM	OLIVE GREEN/GRY	SFT	SAT		OVM	0.0	Fill. Sat ~4.5' bgs, large wood fragments ~4.5 ft. bgs.
	1 7 5				No Sample Recovered							
	1 - 7				Silty sand, SM	GRAY	SFT	SAT		OVM	0.0	Fill Logged drill cuttings.
-2	2 - 8	-		·	. '							
	3 + 9 + 4 + 10	0			· .				:			,

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 18
BORING ID : MP18MW25

NORTHING: 0.0000 estimated EASTING: 0.0000 estimated ELEVATION: 6.350 surveyed

TOTAL DEPTH : 15.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B-57
DATE STARTED : 01/13/95

DATE COMPLETED : 01/13/95

ELEVATION	DEPTH	MATERIAL	* RECOVERY		IFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD - INSTRUMEŅT READING	COMMENTS	
				Silty sand,	SM	GRAY	SFT	SAT		O.0 MVO	Fill, Logged drill cuttings.	7-
	11					-			,		. , , ,	
-6 -	13								•			
-7 - -8 -	- 14 - 15					-						
-9 -	16		,	,						·		
-10 -	-		``							j		
-11 -	-			` :.	· · /							
-12 - -	-				-	,					· · · · · · · · · · · · · · · · · · ·	
-13 -	- 20	· / .		•							,	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 46

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL_ID	NUM	NUM	(FT BGS	3)	MÈTHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	_UNIT	
~						•													
MP18MW25	1	1	0.00	1.80	SPS	M	10	MF	50	25	5	10	_	. NON	POR	SFT	MST		
MP18MW25	1	2	1.80	2.00	SPS		.0		0	0	0	. 0					•		
MP18MW25	2	1	2.00	3.00	SPS	М	20	MF	40	25	5	10 -		NON	POR	SFT	WET		
MP18MW25	2	2	3.00	4.00	SPS		0		0	0	0	. 0							
MP18MW25	3	1	4.00	5.00	SPS	М	10	MF	50	25	5	10		NON	POR	SFT	SAT		
MP18MW25	3	2	5.00	6.00	SPS	ı	0		0	0	0	0		-					
4 MP18MW25	4	1	6.00	15.00	CUT	M	10	MF	50	25	5	10`		NON	POR	SFT	SAT	,	

BOREHOLE ID: B1-MW1B PROJECT NAME: FT. MONMOUTH
BEGIN DATE: 01/09/95 END DATE: 01/09/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD: HSA FLUID: WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 22.480

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # : NJ 29 32587

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Longitude-West: 74 deg 02' 43.3" Latitude-North: 40 deg 18' 24.1"

Well developed on 1/19/95.

	FT. MONMO BACKGROUN		DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION	01	L-MW1B L/01/95 L/09/95	WATER LEVELS
Protective Cas	T	TC 24.59	Drilling Fluid WATER
	0.50		Silt Trap Interval: 13.54 to 14.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	4.00	SC 18.48	WELL DEVELOPMENT Date 01/19/95 Method Surge blocking/overpump Yield 1.5 gpm Purged Volume 85 gal
	13.54		BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation
	14.00	<i>TD</i> 8.48	Additional Comments: Depths are measured below ground surface.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.50

SITE NAME : BACKGROUND 1 LOGGER : P. THOMAS

BORING ID : B1-MW1B DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/09/95 ELEVATION : 22.480 surveyed DATE COMPLETED : 01/09/95

		,									
ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR_	STRENGTH	MOISTURE	BLOW COUNT	FIELD ,	INSTRUMENT READING	COMMENTS
			75	Silty sand, SM	BROWN	SFT	WET	5	OVM	0.0	Topsoil
21 -	1			Poorty graded sand, SP	YELLOW BROWN	LSE	WET	15	OVM	0.0	Soil sample from 1-2' bgs B1-SB01-A01
				No Sample Recovered		-					
20 -	2		100	Poorly graded sand, SP	OLIVE YLW BROWN	LSE	SAT	132164 14	OVM	0.0	Sharp color change to org brn ~3.9' bgs. Sat ~2.5' bgs. Composite sand sample collected.
19 -	3 '		-	,	(••			
18 -	- 4		100	Poorly graded sand, SP	ORANGE-BROWN	LSE	SAT	9	OVM	0.0	Iron stained (orange
	-			,				9 11 12			Iron stained (orange brown color), dark heavy minerals throughout.
17 -	- 5 -			,		,	Ī		-		. '
16 -	-6		50	Poorly graded sand with silt, SP-SM	FE BROWN (ORG)	LSE	SAT	10 11 11 12	OVM	0.0	Black heavy minerals throughout matrix.
15 -	- 7			No Sample Recovered				. <u>-</u>		-	
-	-		•	, · · · · · · · · · · · · · · · · · · ·	<u>.</u>						
14 -	- 8		65	Poorly graded sand with silt, SP-SM	FE BROWN/ORANGE	LSE	SAT	6 12 14 18	OVM	0.0	Str. presence of black heavy minerals.
13 -	9 .			No Sample Recovered							
	- 10			Y .		,					
12 -	- 10		60	Poorly graded sand with silt, SP-SM	FE BROWN	LSE	SAT	6582 12	OVM (0.0	Dk heavy mineral throughout.

PROJECT FT. MONMOUTH TOTAL DEPTH

: 14.50 SITE NAME : BACKGROUND 1 LOGGER : P. THOMAS

BORING ID : B1-MW1B DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated : MOBILE B-57 DRILLING RIG

EASTING 0.0000 estimated : 01/09/95 DATE STARTED

ELEVATION : 22.480 surveyed DATE COMPLETED : 01/09/95

			ы			·			1 1	<u>. </u>	
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
				Poorly graded sand with silt, SP-SM	FE BROWN	LSE	SAT		OVM 0	.0	Dk heavy mineral throughout.
11	11			No Sample Recovered							
10	+ 12	ļ.,	45	Cilturated CN	,					•	
			45	Silty sand, SM	STRONG FE BROWN	LSE	SAT	8 11 17 14	OVM 0	.0	
	†		'					14			·
9	13			No Sample Recovered							
	1										
			,								·
8	+ 14			Interval Not Sampled							Interval not sampled, set well at 14.5' bgs; Note: Well set at 14' bgs. due to running sands.
	+	Щ			,						Well set at 14' bgs. due to running sands.
,	145			·							
'	† 15		-	~							,
	+ -			,							
6	16				,						
			\ \	, ,							
	Ť		,								
5	17										
	1				,						`
				,							
4	+ 18									٠	
	+										,
7	19	.									
'	17										
	† .										
2	20			• •							

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 1

BOREHOLE	SMP	LTH	LITHOLOGY	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK		'	-	•	STRAT
/WELL ID	NUM	NUM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
							٠.,		•			,			- '			· · · · · · · · · · · · · · · · · · ·
B1-MW1B	1	1	0.00	0.40	SPS		5 '	MF	50	25 ·	Q	20		NA	MOD	SFT	WET .	-
, B1-MW1B	1	2	0.40	1.50	SPS		0 ′	MF	95	_ 5	Ò	Ô		NON	WEL	LSE	WET .	
B1-MW1B	1	3	1.50	2.00	SPS		0		0	0	0	0						
. B1-MW1B	, 2	1	2.00	4.00	SPS		0	MF	95	5	0	0		NA	WEL	LSE	SAT	
B1-MW1B	3	1	4.00	6.00	SPS		0	MF	95	5	0	0		NA	WEL	LSE .	SAT	
B1-M₩1B	4	1	6.00	7.00	SPS		0	MF	90	10	0	0		NA	MOD	LSE	SAT	`
B1-MW1B	4	2	7.00	8.00	SPS		0	1 .	0	0	0	0						1
B1-MW1B	. 5	1	8.00	9.30	SPS		0	MF	90	10	0	0		NA	MOD	LSE .	SAT	
·B1-MW1B /	5	2	9.30	10.00	SPS		0		0	0	0	0	,					•
.B1-MW1B	6	1 ′	10.00	11.20	SPS	•	0	MF	90	10	0	0		NA	MOD	LSE	SAT	
B1-MW1B	6	2	11.20	12.00	SPS		0	,	0	0	0	0						
81-MW1B	7	1	12.00	12.90	SPS		0	MF	85	15	0	0		NA	MOD	LSE	SAT	
B1-MW1B	7	2	12.90	14.00	SPS		0		0	0	0	0					•	•
B1-MW1B	8	1	14.00	14.50	NS		0		0	0	0	0						

BOREHOLE ID : B2-MW2B PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/05/95 END DATE - : 01/06/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 0.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 20.00 ft. BGS

METHOD: HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID :

DRILLING COMPANY : J.C. ANDERSON

: STEVE BURGER DRILLER

DRILL RIG TYPE : VINCE BORELLI

> **ESTIMATED** SURVEYED

SURFACE

ELEVATION: 19.440 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32588

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTHPURGE 0.00

> SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 18' 42.7"

Longitude-West: 74 deg 03' 45.5"

				INSPECTOR P. THOMAS
VELL ID TART DATE COMPLETION DATE	01	/06	№2B 5/95 5/95	WATER LEVELS
*	DEPTH		ELEV.	DRILLING SUMMARY
Protective Casing	0.79	TC	20.23	Driller STEVE BURGER Drilling Fluid WATER
4.00 inch	0.00	GS	19.44	
				WELL DESIGN CONSTRUCTION
	~		-	Casing #1 Diameter: 4.00 inch Interval: 0.00 to 8.00 ft. Type: PVC SCH 40
			×	Stick Up Inner Casing: 0.79 ft. Protective Casing: 1.01 ft.
				Casing Grout: CEMT/BENT Interval: 0.00 to 5.00 ft.
				Seal Type: BENTONITE SLURRY Interval: 5.00 to 8.00 ft.
			,	Sand Pack Type: NO. 1 SAND MORIE Grain Size: UNIFORM Interval: 8.00 to 20.00 ft. Median Diameter:
				Screen Diameter: 4.00 Interval: 10.00 to 19.54 ft. Type: PVC Slots: 0.010 inches
	5.00	BN	14.44	Silt Trap Interval: 19.54 to 20.00 ft.
	8.00	SP	11.44	Backfill Type: Interval: 0.00 to 0.00 ft.
				WELL DEVELOPMENT
	10.00	sc	9.44	<pre>Date 01/19/95 Method Surge blocking/bailing Yield 2.5 gpm Purged Volume 250 gal</pre>
				COMMENTS
	19.54	BS	-0.10	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	20.00	TD	-0.56	TD = Total Depth SSSSSSS = Formation

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 0.00

SITE NAME : BACKGROUND 1 LOGGER : P. THOMAS

BORING ID : B2-MW2B DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : VINCE BORELLI

EASTING : 0.0000 estimated DATE STARTED : 01/05/95 ELEVATION : 19.440 surveyed DATE COMPLETED : 01/06/95

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
18 -	- 1		50	No Sample Recovered	BROWN	FRM	MST	55 10 10	OVM	0.0	Possible backfill material sampled 1-2'bgs B1-SB01-A01.
16 -			60	Sandy elastic silt, MH No Sample Recovered	BROWN	SFT	MST	10 15 16 14	OVM	0.0	Progressively getting more clay.
15 -			50	Fat clay with sand, CH No Sample Recovered	BROWN/OLIVE	SFT	MST	12 12 15 20	OVM	0.0	Backfilled material; grass roots & fragments.
13 -			100	Fat clay with sand, CH	GREEN/GREY BRN	SFT	MST	4357	OVM	0.0	Backfilled material - sat observed in coarser intervals, grass roots, fragments.
11 -			70	Elastic silt with sand, MH No Sample Recovered	FE BRN/OLV BRN	SFT	SAT	2375	OVM	0.0	Sat, observed in coarse intervals, backfill mat. graded into gray clayey silt. Micaceous a9' bgs.
9	10		90	Silty sand, SM	GRAY	FRM	MST	4357	OVM	0.0	Very micaceous.

PROJECT : FT. MONMOUTH

SITE NAME : BACKGROUND 1

BORING ID : B2-MW2B
NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 19.440 surveyed

TOTAL DEPTH : 0.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON
DRILLING RIG : VINCE BORELLI

DATE STARTED : 01/05/95

DATE COMPLETED : 01/06/95

ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				Silty sand, SM	GRAY	FRM	MST		OVM	0.0	Very micaceous.
8 -	- 11								-		r
7 -	12			No Sample Recovered Silty sand, SM	GRAY	SFT	MST	5	OVM	0_0	V. micaceous.
6 -	- 13							5575			
				No Sample Recovered	_						
				No campto Recovered							
5 -	14		90	Silty sand, SM	GRAY	LSE	SAT	6	OVM	0.0	V. micacous - green elongated, reflective "mineral" found through- out interval.
4 -	- 15							6590			"mineral" found through- out interval.
				No Sample Recovered	_				,		, ,
3 -	16		75	Silty sand, SM	GRAY	SFT	SAT	12 18 14	OVM	0.0	V. micacous very high; green mineral throughout interval.
2 -	- 17 -			No Sample Recovered						-	
1 -	- 18		100		CDAY			4.0			
-	-		100	Silty sand, SM	GRAY -	SFT	SAT	105	OVM	0.0	V. micacous, set well 20, bgs.
0 -	- 19 ·									•	
-1 -	- 20										
	l	1		i e	1	1			1		

DATE: 06/27/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 1

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	3)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
												•				_	_	
B2-MW2B	1	1	0.00	1.00	SPS	F	5 .	FM	40	35	15	5		NON	MOD	FRM	MST	
B2-MW2B	1	2	1.00	2.00	SPS		0		. 0	0	0	0						
B2-MW2B	´ 2	1	2.00	,3.20	SPS	F	5	FM _.	30	35	30	0	•	HGH	MOD	SFT	MST	
B2-MW2B	. 2	2	3.20	4.00	SPS		0		. 0	.0	0	0						
B2-MW2B	3	1	4.00	5.00	SPS	F	5	FM	20	30	3 5	10		HGH	MOD	SFT	MST	
B2-MW2B	3	2	5.00	6.00	SPS		0		0,	0	0	0						
B2-MW2B	4	1	6.00	8.00	SPS		5	FM	20	30	35	10		HGH	MOD	SFT	MST	
B2-MW2B	5	1	8.00	9.4Ò	SPS	•	5	F	20	40	30	5		MOD	MOD	SFT	SAT	
B2-MW2B	5	2	9.40	10.00	SPS		0		0	0	0	0						
B2-MW2B	6	1	10.00	11.80	SPS		0	F,	50	40	10	0		NON	MOD	FRM	MST	
B2-MW2B	6	2	11.80	12.00	SPS		0		0	0	0	0						
B2-MW2B	7	1	12.00	13.40	SPS	1	0	FM	50	40	10	0		NON	MOD	SFT	MST	
, B2-MW2B	· 7	2	13.40	14.00	SPS		0		0	0	0	0						
B2-MW2B	8	1	14.00	15.80	SPS		0	FM	50	40	10	0		NON	MOD	LSE	SAT	
B2-MW2B	8	2	15.80	16.00	SPS		0		0	0	0	. 0						•
B2-MW2B	9	1	16.00	17.50	SPS	•	0	F	50	40	10	0		NON	MOD	SFT	SAT	
B2-MW2B	9	2	17.50	18.00	SPS		0		0	0	0	0						`
B2-MW2B	10	1	18.00	20.00	SPS		0	F	50	40	10	0		NON	MOD	SFT	SAT	

BOREHOLE ID : B3-MW3B PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/06/95 END DATE : 01/09/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 26.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 26.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : STEVE BURGER

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 19.200

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es(N)o: N PERMIT #: NJ 29 32589

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 18' 32.4"

Longitude-West: 74 deg 03' 27.7"

	MONMOUT POST		DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
VELL ID START DATE COMPLETION DATE	01/0	MW3B 06/95 09/95	WATER LEVELS
Protective Casing	1.89 TO		Drilling Fluid WATER
4.00 inch	0.00 GS	19.29	Well Type SINGLE CASED SCREENED
			WELL DESIGN CONSTRUCTION
			Casing #1 Diameter: 4.00 inch Interval: 0.00 to 16.00 ft. Type:
			Stick Up Inner Casing: 1.89 ft. Protective Casing: 2.33 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 11.00 ft.
			Seal Type: BENTONITE SLURRY Interval: 11.00 to 14.00 ft
	11.00 <i>BI</i>	V 8.29	Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Type: PVC Interval: 14.00 to 26.00 ft. Median Diameter: Interval: 16.00 to 25.54 ft. Slots: 0.010 inches
	14.00 SF	5.29	Silt Trap Interval: 25.54 to 26.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	16.00 <i>SC</i>	C 3.29	WELL DEVELOPMENT Date 01/19/95 Method Surge Blocking/Bailing Yield <1 gpm Purged Volume 192 gal
			COMMENTS
	25.54 B S	-6.25	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	26.00 TI	-6.71	TD = Total Depth
			Depths are measured below ground surface. High turbidity at end of well development. Well is very slow to recharge.

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 26.00
SITE NAME : MAIN POST AREA LOGGER : P. THOMAS

BORING ID : B3-MW3B DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/06/95 ELEVATION : 19.200 surveyed DATE COMPLETED : 01/09/95

10 10 10 10 10 10 10 10											4	
No Sample Recovered 17 - 2	ELEVATION	ОЕРТН	MATERIAL	%	-				BLOW	_		
No Sample Recovered 17 - 2				70	Silty sand, SM	BROWN	SFT	MST	11 15	OVM	0.0	Lt med Fe stained mottles sampled (B3-SB1-A01) for
No Sample Recovered 15 - 4 80 Silty sand, SM OLIVE YELLOW BR SFT WET 10 OVM 0.0 Fill? No Sample Recovered No Sa		1							21 17			respective parameters.
No Sample Recovered 15 - 4 80 Silty sand, SM OLIVE YELLOW BR SFT WET 10 OVM 0.0 Fill? No Sample Recovered No Sa												
15 - 4	18 -	1				·						
15 - 4						,						
No Sample Recovered No Sample	-	t			No Sample Recovered							
No Sample Recovered No Sample	47.											
No Sample Recovered 15 - 4 80 STIty sand, SM OLIVE YELLOW BR SFT WET 6 7 10 10 11 12 Fe stained mottles irregular careful layer 20 0cm 0.0 Fill? Fe stained mottles irregular careful layer 20 0cm 0.0 Fill Fe, green/gray mottles; clay stringers. 13 - 6 100 STIty sand, SM ORG BRN/GRN GRY SFT WET 10 10 20 15 15 15 16 17 17 18 10 10 10 10 10 10 10 10 10 10 10 10 10	''	2		70	Silty sand, \$M	BRN-YELLOW FE	SFT	MST	5 7	OVM	0.0	Fill?
No Sample Recovered 13 - 6		1			·				10 14			
No Sample Recovered 13 - 6												. ` `
13 - 6	16 -	3									,	
13 - 6											/	·
No Sample Recovered No Sample Recovered ORG BRN/GRN GRY SFT WET 10 OVM 0.0 Fill Fe, green/gray mottles; clay stringers. 12 - 7 11 - 8	-	-			No Sample Recovered							
No Sample Recovered No Sample Recovered ORG BRN/GRN GRY SFT WET 10 OVM 0.0 Fill Fe, green/gray mottles; clay stringers. 12 - 7 11 - 8	4.5											
13 - 6	15 -	T 4		80	Silty sand, SM	OLIVE YELLOW BR	SFT	WET	6	OVM	0.0	Fill? Fe stained mottles
13 - 6	.				,				10			Gravet tayer ~5' bgs.
No Sample Recovered 13 - 6	,											
13 - 6	14 -	5										
13 - 6						,						
13 - 6	-	Ė			No Comple Books							
11 - 8 100 Silty sand, SM FE BRN/GRN GRY SFT WET 12 OVM 0.0 Very tight matrix.		ŀ			No Sample Recovered		,				Ι,	-
11 - 8 100 Silty sand, SM FE BRN/GRN GRY SFT WET 12 OVM 0.0 Very tight matrix.	13 -	6		100	Silty sand, SM	ORG BRN/GRN GRY	SFT	WET	10	OVM	0.0	Fill, Fe, green/gray
11 - 8 100 Silty sand, SM FE BRN/GRN GRY SFT WET 12 OVM 0.0 Very tight matrix.	_		·						2ŏ 15			mottes, eta, stringers.
11 - 8									-		•	
11 - 8	12 -	7										
10 - 9					,							
10 - 9	_	+		,								
10 - 9												· .
10 - 9	11 -	8		100	Silty sand, SM	FE BRN/GRN GRY	SFT	WET	12	OVM	0.0	Very tight matrix.
10 - 9		L							19			·
	10 -											
9 - 10		 										
9 10 100 Silty sand, SM FE BRN/GRN GRY SFT WET 10 DVM 0.0 Sampled B3-SB1-A03	-	-										
9 10 Silty sand, SM FE BRN/GRN GRY SFT WET 10 OVM 0.0 Sampled B3-SB1-A03												
	9 -	10		100	Silty sand, SM	FE BRN/GRN GRY	SFT	WET	10	оум	0.0	Sampled B3-SB1-A03
					,				14			

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : B3-MW3B

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated ELEVATION : 19.200 surveyed

TOTAL DEPTH : 26.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B-57

DATE STARTED : 01/06/95
DATE COMPLETED : 01/09/95

ELEVATION	рвртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
,				Silty sand, SM	FE BRN/GRN GRY	SFT	WET		OVM	0.0	Sampled B3-SB1-A03
8	+ 11										
,											
7	+ 12		75	Silty sand, SM	GRAY	SFT	MST	4 6 9 12	OVM	0.0	·
	†		ı			•		12			
6	13										
	<u> </u>			No Comple Bosses							·
-	1			No Sample Recovered	,						
5	14		90	Silty sand, SM	GRAY	SFT	WET	12 12 10	OVM	0.0	Quartz sand with silt/ clay matrix, wet at bottom of spoon.
	†		:					11			
4	15	·									
	-			,							_
3	16			No Sample Recovered							
	16		60	Silty sand, SM	GRAY	LSE	WET	3599	OVM	0.0	Coarser than above int.
	†			-				9			
2	17			No. According to							, ,
	+			No Sample Recovered						1	
1.	18		90	Silty and Sil	CDAY	057		ا	0 1.00		1
'			70	Silty sand, SM	GRAY	SFT	SAT	5 7	MVO	U.U	·
	Ť							7			
0	19										
	+										
-1	20			No Sample Recovered Silty sand, SM	GRAY	SFŤ	SAT	5	MVO	n n	
						J1 1	JA I	5 4 9 5	OVI		

PROJECT : FT. MONMOUTH TOTAL DEPTH : 26.00

SITE NAME : MAIN POST AREA LOGGER : P. THOMAS

BORING ID : B3-MW3B DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/06/95
ELEVATION : 19.200 surveyed DATE COMPLETED : 01/09/95

ELEVATION	DEPTH)	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT		INSTRUMENT	COMMENTS
-1 -	21		·	Silty sand, SM No Sample Recovered	GRAY	SFT	SAT		OVM	0.0	
- <u>2</u> -	22 -	-		Interval Not Sampled							Augered interval.
-3 -	,23										
-4 -	24		100	Silty sand, SM	GRAY	SFT	SAT		OVM (0.0	- '
-5 -	- 25 -				, .						
-6 -	26							×.	-		
-7-	- 27										
-8 -	- 28 -	,								•	
-9-	- 29					-					
-10 -	- 3 0					-					

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 1

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK			,		STRAT
/WELL_ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
					•							•						
83-MW3B	1	1	0.00	1.40	SPS	F	5.	FM	50	35	5	5		NON	MOD	SFT	MST	
B3-MW3B	1	2	1.40	2.00	SPS		0		. 0	0	0	0						
B3-MW3B	2	1	2.00	3.40	SPS	F	5		50	35	10	0		NON	MOD	SFT	MST	
B3-MW3B	. 2	2	3.40	4.00	SPS		0		. 0	0	Q	0 .					•	
B3-MW3B	3	1	4.00	5.60	SPS	F	10	MFC	40	30	20	0		MOD	MOD	SFT	WET	<i>*</i>
: B3-MW3B	3	2	5.60	6.00	SPS		0		0	0	0	0						,
, B3-MW3B	4	1	6.00	8.00	SPS		5	MF .	45	35	15	0		LOW	MOD	SFT	WET	•
B3-MW3B	5	1	8.00	10.00	SPS		5	FM	45	35	15	¹ 0		LOW	MOD	SFT	WET	
B3-MW3B	6	1	10.00	12.00	SPS	F	5	FM	45	35	15	0		LOW	MOD	SFT	WET	
B3-MW3B	7	1	12.00	13.50	SPS		0	FM	50	40	10	0		NON	MOD	SFT	MST	
B3-MW3B	,7	2	13.50	14.00	SPS		0		0	0	0	0				•		•
B3-MW3B	8	1	14.00	15.80	SPS		0	FM	50	40	10	0		NON	MOD	SFT	WET	
∫B3-MW3B	. 8	2	15.80	16.00	SPS		0		0	0	Ò	0	1					
B3-MW3B	9	1	16.00	17.20	SPS		0	MF	60	30	10	0		NON	MOD	LSE	WET	
B3-MW3B	9	2	17.20	18.00	SPS		0		0	0	0	0						
B3-MW3B	10	1	18.00	19.80	SPS		0	MF	55	35	10	0		NON	MOD	SFT	SAT	
B3-MW3B	10	2	19.80	20.00	·SPS		0 -	•	0	0	0	0						•
B3-MW3B	11	1	20.00	21.50	SPS	•	0	MF	55	35	10	0		NON	MOD	SFT	SAT	•
B3-MW3B	11	2	21.50	22.00	SPS	•	. 0		0	Ò	0	0						
B3-MW3B	12	1	22.00	24.00	NS		0		0	0	0	0						•
B3-MW3B	13	1	24.00	26.00	SPS		0	FM	50	40 [°]	10	0		NON	MOD.	SFT	SAT	1

BOREHOLE ID: B4-MW4B PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/09/95 END DATE : 01/09/95

LOGGER/COMPANY: K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 9.780

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT (Y) es (N) o: N PERMIT # : NJ 29 32567

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y) es (N) o: Y

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y)es (N)o: N TYPE DEPTH

 PURGE :
 0.00

 SAMPLE :
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Sample I.D. 1-2' B4-SB01-A01 Dup. B4-SB4-001 Sample I.D. 6'-6" to 7'-2" B4SB01-A02. All parameters: TCL+30 VOA, BNA, PEST /PCB, TAL met., Cn. Lat: 40 deg 19' 0"/Long: 74 deg 02' 40.3"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME BACKGROUND 4 INSPECTOR K. VALENTI WELL ID B4-MW4B WATER LEVELS START DATE 01/09/95 **COMPLETION DATE** 01/09/95 DEPTH ELEV. DRILLING SUMMARY 2.30 TC Driller Protective Casing 12.08 WELLS REEVE Drilling Fluid WATER 4.00 inch 0.00 GS Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 15.00 ft. Type: Stick Up Inner Casing: 2.30 ft. Protective Casing: 2.66 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.00 ft. Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: #1 MORIE Interval: 3.00 to 15.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: PVC Slots: 0.010 inches 1.00 BN 8.78 Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to ft. 0.00 3.00 SP 6.78 WELL DEVELOPMENT 01/19/95 Date Surge Blocking/Overpump Method 5.00 SC 4.78 Yield Purged Volume 45 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS -4.76 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>> = Formation 15.00 TD -5.22 **Additional Comments:**

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT FT. MONMOUTH

BACKGROUND 4 SITE NAME :

BORING ID : B4-MW4B LOGGER

: 15.00

: K. VALENTI

0.0000 estimated

DRILLING RIG

TOTAL DEPTH

DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated EASTING

: CME-55

: 01/09/95

DATE STARTED ELEVATION : 9.780 surveyed : 01/09/95 DATE COMPLETED

												<u> </u>
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	C	OLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
			100	Silty sand, SM	BROWN		NA	MST	4	HNU	0.0	Used 3" spoon.
				Silting and SH	DDO!!!!		1		4 3 8	1		
1 -	ļ			Silty sand, SM	BROWN				8			change to drive brn color
	i			Silty sand, SM	OLIVE	BROWN						W/more sand & little silt
		<u> </u>										Fill/uncertain. Gradual change to drive brn color with the silt fill/uncertain. Used 3 it spoint spoint spon for sample collection.
8 -	1			ľ								collection.
	1	<u> </u>										
1 .	1											
		<u> </u>]							1
		<u> </u>	1									
7 -	† 2		100	Poorly graded sand with silt, SP-SM	OLIVE	•	LSE	MST	6	HNU	0.0	3" sps used.
				silt, SP-SM	İ					1		1 .
-	+		'		Ì	-			8			
	ļ							,				1,
1 .	l _									i .		
76-	† 3			Sandy silt, ML	OLIVE		FRM	MST		HNU	0.0	Fill/uncertain with
\				·								Fill/uncertain with orange staining - mod. gray mottling noted from 3-4 (3" sps used).
-	ł											3-4' (3" sps used).
												1
	l,											1
5 -	† 4		100	Silty sand, SM	OLIVE		FRM	WET	10	HNU	0.0	V. firm, moist to wet (tightly packed). Heavy orange (lt.) staining, gray mottling (3" sps)
	1						ļ		11 11 14			orange (lt.) staining,
-	+				ł				14			gray mottling (3" sps)
1	İ						ŀ				'	
,_	Ĺ				1							
4 -	5				l		 ,				,	,
				·	ļ					1		1
-	+					•						
ŀ												• 1
3 -					J				_			1
3	6		100	Silty sand, SM	OLIVE		SFT	WET	7 7 11	HNU	0.0	Heavy dk. orange and gray staining. Wet at 7.2' bgs Sampled B4-SB01-A02.
									7			Sampled B4-SB01-A02.
-	+								11			
												i
2 -	7		`							[
-	'										•	
	1	·		,								
-	Ī				1						_	,
)		-	
1 -	8		100	Silty sand, SM	OLIVE	GREEN	SFT	SAT	Я	HNU	0.0	Outside of sps sat Pod
1			•				'	-711	8 10 11 11			Outside of sps sat. Rod wet to 6' bgs. 1st water at 7'-2" bgs. 3" sps used.
I _	L											used.
1 7	1					•,			•			
	ļ.			-								
0 -	9											
-	<u> </u>											
					1	•						
	· '							.				1
-1 -	10		100	Silty sand, SM	GREEN	(FOREST)	LSE	SAT	4	HNU	0.0	2" sps_used hereafter to
		[6			2" sps used hereafter to td. Thin bands of pale orange to orange color throughout. sps sat-wet.
	L	L		<u></u>					6			throughout. sps sat-wet.

PROJECT : FT. MONMOUTH

SITE NAME : BACKGROUND 4

BORING ID : B4-MW4B

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated ELEVATION : 9.780 surveyed.

TOTAL DEPTH : 15.00

LÓGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG :

: CME-55

DATE STARTED : 01/09/95 DATE COMPLETED : 01/09/95

ELEVATION	рвртн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
•				Silty sand, SM	GREEN (FOREST)	LSE	SAT		HNU (0.0	2" sps used hereafter to td. Thin bands of pale orange to orange color throughout. sps sat-wet.
	+										throughout. sps sat-wet.
	11										
										•	
' '	Ī										
-2	12		100	Poorly graded sand with silt, SP-SM	GREEN-FOREST	LSE	SAT	3	HNU (0.0	
.				Sitt, or on				3 4 8 9	ļ		
_2.	13										
	13				•						, *
'	†			,		1					
-4	14		100	Poorly graded sand, SP	DK GREEN	LSE	SAT	4	HNU (0.0	End of borehole.
:	-							4 8 16 15	`		
_	45			·							
-5	15										
-	†										٠. ا
-6	16										'
.											,
_											
-7	17				٠,						
-	†			•							
-8 -	18										
.							· _]				
-9 -	19				,						
-	+			,							
-10 -	20										,
											, _

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 2

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT_BGS	S)	METHOD	GRAVÉL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
							1 4												
B4-MW4B	1	1	0.00	0.20	SPS		0	M .	85	15	0	0		NON	MOD	NA	MST		
B4-MW4B	1	2	0.20	0.50	SPS	· ·	0 .	М	85	15	0	0 .							
B4-MW4B	1	3	0.50	2.00	SPS		0	М	85	15	0	0							
B4-MW4B	2	1	2.00	3.00	SPS		0	MF	90	10	0	0		NON.	MOD	LSE	MST		
B4-MW4B	2	2	3.00	4.00	SPS		0		30	60	10	0	,	LOW	MOD	FRM	MST		
84-MW4B	3	1	4.00	6.00	SPS		0		55	25	20	0		MOD	POR	FRM	WET		
B4-MW4B	4	1	6.00	8.00	SPS		0		60	25	15	0		LOW	POR	SFT	WET	•	
B4-MW4B	5	1	8.00	10.00	SPS		0		85	.10	5	0		LOW	MOD	SFT	SAT		
B4-MW4B	6	1	10.00	12.00	SPS		0	F	85	10	5	0		NON	MOD	LSE	SAT	•	
B4-MW4B	7	1	12.00	14.00	SPS		0	F	90	10	0	0		LOW	MOD	LSE	SAT		
B4-MW4B	8	1	14.00	16.00	SPS		0	F	95	5	0	0		NON	WEL	LSE	SAT		. •

BOREHOLE ID : B5-MW5B PROJECT NAME: FT. MONMOUTH

END DATE : 01/11/95 BEGIN DATE : 01/11/95

LOGGER/COMPANY: K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 0.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 0.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER
DRILL RIG TYPE : WELLS REEVE
: CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 13.400

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32583

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N

TYPE DEPTH PURGE

0.00 SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 19' 04.7" Longitude-West: 74 deg 02' 07.6"

### WATER LEVELS WATER LEVELS WATER LEVELS		MONMOUT POST A		DRILLING FIRM J.C. ANDERSON INSPECTOR K. VALENTI
Driller WELLS REEVE Drilling Fluid WATER WATER WATER WELL DESIGN CONSTRUCTION	START DATE	01/1	1/95	WATER LEVELS
### WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch	Protective Casing	2.00 TC	15.40	Driller WELLS REEVE Drilling Fluid WATER
Silt Trap Interval: 14.04 to 14.50 ft. Backfill Type: WELL DEVELOPMENT Date 01/19/95 Method Bailing Yield 1 gpm Purged Volume 18 gal COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth		0.00 0.5	13.40	WELL DESIGN CONSTRUCTION
Silt Trap Interval: 14.04 to 14.50 ft. Backfill Type: WELL DEVELOPMENT Date 01/19/95 Method Bailing Yield 1 gpm Purged Volume 18 gal COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth		F	· ·	Stick Up Inner Casing: 2.00 ft. Protective Casing: 2.14 ft.
Silt Trap Interval: 14.04 to 14.50 ft. Backfill Type: WELL DEVELOPMENT Date 01/19/95 Method Bailing Yield 1 gpm Purged Volume 18 gal COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth				Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: #1 MORIE Interval: 3.00 to 14.50 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 4.50 to 14.04 ft.
WELL DEVELOPMENT Date 01/19/95 Method Bailing Yield 1 gpm Purged Volume 18 gal COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation		1.00 <i>BN</i>	12.40	
A.50 SC 8.90 Date 01/19/95 Method Bailing Yield 1 gpm Purged Volume 18 gal COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation		3.00 SP	10.40	A 1800 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation		4.50 SC	8.90	Date 01/19/95 Method Bailing
		14.04 <i>BS</i>	-0.64	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal
Additional Comments: Well during development remained turbid.		14.50 <i>TD</i>	-1.10	TD = Total Depth

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA

BORING ID : B5-MW5B

0.0000 estimated

NORTHING : EASTING 0.0000 estimated ELEVATION : 13.400 surveyed

TOTAL DEPTH : 0.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG

DATE STARTED

: CME-55 : 01/11/95

: 01/11/95 DATE COMPLETED

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			100	Sandy silt, ML	BROWN	LSE	DRY	7 8 9 8	HNU	0.0	3" SPS used. Uncertain fill or natural. Sample collected B5-5801-A01. Topsoil at 0-0.3' bgs.
12 -	1			·				0			openit at a dis 255.
11 -	· - 2		100	Sandy elastic silt, MH	OLIVE BROWN	STF	MST	98 13 15	HNU	0.0	Fill. 2" SPS used. Mottle orange Fe stains. More sand towards spoon bottom Sample col.B5-SB01-A02
10 -	- 3 -			:	•			,			
9 -	- 4	***	100	Fill	OLIVE BROWN	LSE	SAT	9 9 8 8	HNU	0.0	Fill. 2" SPS used. Wet at 4' bgs. Few gray bands at -5' bgs. Heavy Fe staining 35.8'
8 -	- 5										
7 -	6	\bigotimes	50	Silty sand, SM	OLIVE BROWN	LSE	SAT	4455	HNU.	0.0	2" sps used here to T.D.
6 -	7			No Sample Recovered							,
5 -	- 8		50	Silty sand, SM	OLIVE BROWN	SFT	SAT	2121	HNU	0.0~	Mild gray and lt. orange staining in SPS.
4 -	9			No Sample Recovered						•	
3 -	- 10		100.	Silt with sand, ML	DK BROWN TO BLK	SFT	SAT	2223	HNU	0.0	SPS is wet to saturated.

: FT. MONMOUTH PROJECT

SITE NAME : MAIN POST AREA

TOTAL DEPTH

: 0.00

LOGGER : K. VALENTI

BORING ID : B5-MW5B

DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated

DRILLING RIG

: CME-55

EASTING : 0.0000 estimated

DATE STARTED .

: 01/11/95

ELEVATION: 13.400 surveyed DATE COMPLETED : 01/11/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Silt with sand, ML	DK BROWN TO BLK	SFT	SAT		HNU 0.0	SPS is wet to saturated.
	†				. ,					
.2	11				·					
	†			,						
1	12		100	Elastic silt with sand, MH	BLACK	FRM	SAT	5	HNU 0.0	Sps_gets_sandier_towards
	<u> </u>			·				5 4 8 9		Sps gets sandier towards bottom (20%). Auger to 14.5 to set well:
0	13									
	†									
-1	14			Interval Not Sampled					•	
	+	Ш		·						
-2	15				-					
-	1			. (
-3	16			·					,	,
	<u> </u>			-					•	
-4	17									
	18							-		
	_ ''			· ·						
	4.5			•	·					~
-6	19		•						,	
					,		.			
-7	20			•						,

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 3

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	<u>s)</u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
B5-MW5B	1	1	0.00	2.00	SPS		0		35	65	0	0		NON	POR	LSE	DRY -		
B5-MW5B	2	1	2.00	4.00	SPS		0		30	55	15	0		MOD	POR	STF	MST		
B5-MW5B	3	1	4.00	6.00	SPS		0	MF	95	5	0	0		NA	WEL	LSE.	SAT		
B5-MW5B	4	1	6.00	- 7.00	SPS		0	MF	85	15	0	0		NON	WEL	LSE	SAT		
B5-MW5B	4	2	7.00	8.00	SPS		0	-	0	0	0	0							
B5-MW5B	5	1	8.00	9.00	SPS		0	F	75	20	5	0		LOW	WEL	SFT	SAT		
B5-MW5B	5	2	9.00	10.00	SPS		0		0	0	0	0							
B5-MW5B	6	1	10.00	12.00	SPS		0		20	75	5	0		LOW	MOD	SFT	SAT		
B5-MW5B	7	1	12.00	14.00	SPS		0		15	75	10	0		MOD	WEL	FRM	SAT		
B5-MW5B	8	1	14.00	14.50	NS		0		0	0	0	0							

MAIN POST SOIL BORING LOGS

BOREHOLE ID : MP18-SB1 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/12/95 END DATE : 01/12/95

LOGGER/COMPANY: K. VALENTI/P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 8.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 3.00

INTERVAL: 0.00 ft. to 8.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55 MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y) es (N) o: N No. OF WELLS : 0

WELL NEST..... (Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Boreholes were grouted with cement/bentonite mixture from bottom to ground surface.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 8.00

SITE NAME : MAIN POST 18 LOGGER : K. VALENTI/P. THOMAS

BORING ID : MP18-SB1 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/12/95 ELEVATION : 0.000 estimated DATE COMPLETED : 01/12/95

		-		······································			- (-			
ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	LINSTRUMENT	COMMENTS
-1	1		85	Silty gravel with sand, GM Silty sand, SM	ORANGE OLIVE GREEN/GRY	SFT	MST MST	19 21	HNU O		Fill. Collected sample MP18-SB01-A01.
-2			70	No Sample Recovered Silty sand, SM	GRAY	SFT	мѕт	15 10 15 15	HNU O.	.0	Fill with gray shingles
-4 -			60	No Sample Recovered Silty Sand, SM	GRAY	SFT	WET	12 14 14 13	OVM O.	.0 _	Fill. Collected sample MP18-SB01-A02. Soils wet at ~4' bgs.
-6	6		100	No Sample Recovered Silty sand, SM	GRAY	SFT	SAT	12 14 12 13	OVM 0.	.0	Fill. Soils saturated at 6, bgs.
-7 -											
-9 - -10 -									-	•	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 37

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NÙM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
										-					-				
MP18-SB1	1	1	. 0.00	0.90	SPS	MF	45		40 ~	15	, 0	0		NON	POR	LSE .	MST		
MP18-SB1	1	2	0.90	1.70	SPS		10	MF	50	25	. 5	10 ·		NON	POR	SFT	MST		
MP18-SB1	1	3	1.70	⊘2.00	SPS		0		0	Ò	0	0							
MP18-SB1	2	1	2.00	3.40	SPS	MF	10	MF	50	25	5	10		NON	POR	SFT	MST		
MP18-SB1	2	2	3.40	4.00	SPS		0		0	0	0	0							
MP18-SB1	3	1	4.00	5.20	SPS	MF	10	MĖ	50	25	5	10		NON	POR	SFT	WET		
MP18-SB1	3	2	5.20	6.00	SPS		0		0	0	0	0							
MP18-SB1	4	1	6.00	8.00	SPS		10	MF	50	25	5	10		NON	POR	SFT	SAT		

PROJECT NAME: FT. MONMOUTH END DATE : 01/12/95 BOREHOLE ID : MP18-SB2

BEGIN DATE : 01/12/95

LOGGER/COMPANY: K. VALENTI/P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

DEPTH TO BEDROCK : 0.00 TOTAL DEPTH : 0.00

BOREHOLE DIAMETER #1: 6.00

INTERVAL: 0.00 ft. to 6.00 ft. BGS

METHOD : HSA FLUID : AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55 MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH

PURGE 0.00

SAMPLE: 0.00 -

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

PROJECT : FT. MONMOUTH TOTAL DEPTH : 0.00

SITE NAME : MAIN POST 18 LOGGER : K. VALENTI/P. THOMAS

BORING ID : MP18-SB2 DRILLING COMPANY : J.C. ANDERSON

NORTHING: 0.0000 estimated DRILLING RIG: CME-55 MOBILE B-57
EASTING: 0.0000 estimated DATE STARTED: 01/12/95

EASTING: 0.0000 estimated DATE STARTED: 01/12/95 ELEVATION: 0.000 estimated DATE COMPLETED: 01/12/95

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			60	Silty gravel with sand, GM	ORANGE	LSE	MST	9 10 18 13	OVM	0.0	Fill.
-1	1			Silty sand, SM No Sample Recovered	OLIVE GREEN/GRY	SFT	MST		ОУМ	0.0	Fill.
-2	2	**************************************	70	Silty sand, SM	GRAY	SFT	WET	10 14 15 14	OVM	0.0	Soils are finer than previous interval.
-3	3			No Sample Recovered	·	•					
-4	4		90	Silty sand, SM	GRAY	SFT	WET	10 11 15 14	OVM	0.0	Fill. Saturated at bottom of spoon. Collected sample MP18-5802-A02 from 4-6' bgs. Water a6-7' bgs
-5	5				. , ,						
-6	6			No Sample Recovered			,				
-7	7										
-8 -	8					,		•			·
-9-	9				·						
-10	- 10					,	٠.,	-			

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 38

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT		
WELL ID	NUM	NUM	(FT BGS))	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT		
																•				
MP18-SB2	. 1	1	0.00	0.90	SPS	FM	45	MF	40	15	0	0		NON	POR	LSE	MST			
MP18-SB2	1	2	0.90	1.20	SPS	FM	10	MF	50	25	5	10		NON	POR	SFT	MST			
MP18-SB2	1	3	1.20	2.00	SPS		0		0	0	0	0							,	
: MP18-SB2	2	1	`2.00	3.40	. SPS		10	FM	50	20	10	10		NON	POR	SFT	WET		٠,	
MP18-SB2	2	2	3.40	4.00	SPS		0	•	0	0	0	0								
MP18-SB2	3	1	4.00	5.80	SPS	MF	·10	FM	50	20	10	10		NON	POR	SFT	WET			
MP18-SB2	3	2	5.80	6.00	SPS		0		0	0	0	0		٠.						

BOREHOLE DIAMETER #3:

FLUID:

BOREHOLE ID : MP18-SB3 PROJECT NAME: FT. MONMOUTH BEGIN DATE : 01/12/95 END DATE : 01/12/95 LOGGER/COMPANY: P. THOMAS BOREHOLE COMPLETED IN (<0>verburden edrock) : 0 TOTAL DEPTH: 8.00 DEPTH TO BEDROCK : 0.00 BOREHOLE DIAMETER #1: 3.00 INTERVAL: 0.00 ft. to 8.00 ft. BGS METHOD : HSA FLUID : NONE BOREHOLE DIAMETER #2: INTERVAL: METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON
DRILLER : WELL REEVES
DRILL RIG TYPE : MOBILE B57

INTERVAL: METHOD :

ESTIMATED
SURFACE
ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y
WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST......(Y)es (N)o: N No. OF WELLS: 0
PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH PURGE: 0.00 SAMPLE: 0.00BOREHOLE TESTING

 BOREHOLE GEOPHYSICS.....(Y) es
 (N) o: N

 SLUG TESTS......(Y) es
 (N) o: N

 PACKER TESTS......(Y) es
 (N) o: N

 PUMPING TESTS......(Y) es
 (N) o: N

COMMENTS:

Boreholes were backfilled with cement/bentonite mixture from bottom to ground surface.

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 18

BORING ID : MP18-SB3
NORTHING : 0.0000 estimated

EASTING: 0.0000 estimated

ELEVATION : 0.000 estimated

TOTAL DEPTH : 8.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B57

DATE STARTED : 01/12/95

DATE COMPLETED : 01/12/95

				·	• • • • • • • • • • • • • • • • • • • •						
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			60	Silty gravel with sand, GM	ORANGE	LSE	MST	6	OVM	0.0	Fill
-1	1			Silty sand, SM	GRAY	SFT	MST	6989	OVM	0.0	Fill Collected sample MP18-SB03-A01
				No Sample Recovered	1 '						, .
-2 -	2		80	Silty sand, SM	GRAY	SFT	MST	20 10 10 8	OVM	0.0	Fill. Wood fragments (large) ~3' bgs.
-3	3		,	No Sample Recovered						ì	
-4 -	4	, , , , , ,	55	Silty sand, SM	GRAY	SFT	UFT	18	OVM	0-0	Fill large wood
				3110, Saine, Sii			WET	23	CAM	,	Fill. Large wood fragments; wet throughout interval.
-	†							29			
-5 -	- 5		, .	-							
									,		
-	†			No Sample Recovered							
-6-	6	<u></u>	92	0.1				4-			
.	ا آ		82	Silty sand, SM	GRAY	SFT	WET	13 11 11 9	OVM	U.U	Fill. Large wood fragments. TD of borehole 8 ft. bgs.
-	<u> </u>							.9			,
-7-	7										
-, -	′										
-	+			No Sample Recovered							
-8 -	Ŕ										,
											·
-											·
-9-	- 0			•							
	,				•						_ •
-	,			,							
40	اً ا										,
-10 -	טו					,					
					<u></u>						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 39

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCŤ	PCT	_PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
								•										
MP18-SB3	√1	1	0.00	0.50	SPS	FM	45	MF	40	15	0	0		NON	POR	LSE	MST	
MP18-SB3	1	2	0.50	1.20	SPS	F	10	MF	50	25	5	10		NON	POR	SFT	MST	
MP18-SB3	1	3	1.20	2.00	SPS		0		0	0	0	0						
MP18-SB3	2	1	2.00	3.60	SPS	M	10	FM	45	25	10	10		NON	POR	SFT	MST	
MP18-SB3	2	2	3.60	4.00	SPS		0		0	0	0	0						
MP18-SB3	3	1	4.00	5.40	SPS		10		40	25	5	20		NON	POR	SFT	WET	
MP18-SB3	3	2	5.40	6.00	SPS		0		0	0	0	0						
MP18-SB3	4	1	6.00	7.50	SPS	М	10	FM	40	25	5	20		NON	POR	SFT	WET	
MP18-SB3	4	2	7.50	8.00	SPS		0		0	0	0	0		•				

BOREHOLE ID : MP18-SB4 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/11/95 END DATE : 01/11/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 6.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 6.00 ft. BGS

METHOD: HSA FLUID:

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE
DRILL RIG TYPE : CME-55

,

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

(1), (1)

HOLE ABANDONED...(Y) es $(N) \circ : Y$

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

PURGE : 0.00 SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Sampled I.D. boring SB04-A01/A02 5'-6" 1st water T.D.=6'

PROJECT : FT. MONMOUTH TOTAL DEPTH : 6.00

SITE NAME : MAIN POST 18 LOGGER : K. VALENTI

BORING ID : MP18-SB4 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : CME-55

EASTING : 0.0000 estimated DATE STARTED : 01/11/95 ELEVATION : 0.000 estimated DATE COMPLETED : 01/11/95

									-	
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
1 .			100	Poorly graded sand, SP	ORANGE-BROWN	LSE	DRY	7	OVM 0.0	Fill. Sample M18-SB04-A01 collected. 3" SPS used. Top 2" were asphalt.
	↓			-				7 7 9 11	•	Top 2" were asphalt.
				. ,				'''		,
-1	↓ 1		i		·	İ				
	•									·
.	↓									
-2	2	00.00	100	Woll-anaded cand with	ORANGE-BROWN		DDV	45	0.01	
		000	100	Well-graded sand with gravel, SW	ORANGE-BROWN	LSE	DRY	17	O.0 MVO	Sand & grayel, 8" from 278" to 374" int. (278"- 374") of sand & grayels (subang) (small cobbles).
	+	000		,				25	,	(subang) (small cobbles).
		000				'			,	,
-3 ·	3	300		·						
		0.0								
-	†	300			-					
		3000 0000 00000			-					(
-4	4		100	Well-graded sand, SW	REDDISH BROWN	LSE	WET	27	OVM 0.0	3" sps_used. Sample
								27 23 25 29	l :	3" sps used. Sample M18-SB04-A02 collected water at 5.5' bgs.
'	Ī							29		•
	_			·						
-5	7 >			/	ļ.			*		
	l		ļ						. *	
										, ,
-6-	6 .									
"	١			./	1					. `
.	-					-			,	•
			'	,						
-7-	7								·	
									,	
-	t									,
				·						
-8 -	8									, , , , , , , , , , , , , , , , , , ,
	t	'								
] ,								
-9 -	9				-			J		,
	Ī			,						
	L 4.						.			
-10 -	"			. l			-			
	L						l			J

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 40

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
						-											
MP18-SB4	1	1	0.00	2.00	SPS	0 -		100	0	0	0		NA	MOD	LSE	DRY	
MP18-SB4	2	1	2.00	4.00	SPS:	20		80	0	0	0	,	NA	POR	LSE	DRY	
MP18-SB4	3	1	4-00	6.00	SPS	5		95	0	0	0		NA	POR	LSF	UFT	

```
BOREHOLE ID : MP18-SB5
                              PROJECT NAME: FT. MONMOUTH
                           END DATE : 01/11/95
BEGIN DATE : 01/11/95
LOGGER/COMPANY : K. VALENTI
BOREHOLE COMPLETED IN (<0>verburden <B>edrock) : 0
                          DEPTH TO BEDROCK : 0.00
TOTAL DEPTH: 4.00
BOREHOLE DIAMETER #1: 8.00
           INTERVAL: 0.00 ft. to 4.00 ft. BGS
           METHOD : HSA
                                         FLUID:
BOREHOLE DIAMETER #2:
           INTERVAL:
           METHOD:
                                          FLUID :
BOREHOLE DIAMETER #3:
         INTERVAL:
           METHOD:
                                          FLUID:
DRILLING COMPANY: J.C. ANDERSON
DRILLER : WELLS REEVE
DRILL RIG TYPE : CME-55
                      ESTIMATED
                                              SURVEYED
   SURFACE
   ELEVATION :
                      0.000
N. COORDINATE:
E. COORDINATE :
                      0.0000
WELL PERMIT.....(Y)es (N)o: N PERMIT #:
HOLE ABANDONED...(Y)es (N)o: Y
WELL INSTALLED...(Y)es (N)o: N
WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0
PUMPS INSTALLED.. (Y) es (N) o: N
                                          TYPE
                                                         DEPTH
                               PURGE
                                                         0.00
                               SAMPLE :
                                                         0.00
BOREHOLE TESTING
BOREHOLE GEOPHYSICS.....(Y)es (N)o: N
 SLUG TESTS.....(Y) es (N) o: N
  PACKER TESTS.....(Y)es (N)o: N
  PUMPING TESTS.... (Y) es (N) o: N
COMMENTS:
  Sampled I.D. boring SB05-A01/A02 3'-8" 1st water T.D.=4'
```

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST 18

TOTAL DEPTH : 4.00 LOGGER : K. VALENTI

BORING ID : MP18-SB5
NORTHING : 0.0000 estimated

DRILLING COMPANY : J.C. ANDERSON
DRILLING RIG : CME-55

EASTING: 0.0000 estimated
ELEVATION: 0.000 estimated

DATE STARTED : 01/11/95
DATE COMPLETED : 01/11/95

		,								
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			100	Well-graded sand, SW	BROWN	LSE	DRY	34.44	0.0 MVO	Fill. Top 3" asphalt. Sands mild Fe staining. Sample M18-SB04-A01 collected.
-	•							4		collected.
-1 -	1									
_	_									,
							ĺ			-
-2 -	2		100	Poorly graded sand, SP	BROWN	LSE	SAT	89 11 8	OVM 0.0	Fill iron (Fe) staining present. Water at 3.75 bgs. TD of borehole 4/bgs Sample M18SB05-A02 coll
•	-							8		Sample M18SB05-A02 coll.
-3 -	3									
-										·
-4 -	- 4									_
	7									^
				~						
-5 -	- 5							/		
-										
-6 -	- 6			·						
		•1		,						
								٠		,
-7	7									
-	L									
-8 -	- 8									
	_									
	_	.								
-9-	9									
-										
-10 -	- 10		,							

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 41

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS)		METHOD	GRAVEL PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
MP18-SB5	1	1	0.00	2.00	SPS	5		95	0	0	0		NA	POR	LSE	DRY	
MP18-SB5	2	1	2.00	4.00	SPS	0		100	0	0	0		NA	MOD	LSE	SAT	

PROJECT NAME: FT. MONMOUTH END DATE: 01/11/95 BOREHOLE ID : MP18-SB6

BEGIN DATE : 01/11/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 6.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 6.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER: WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y) es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH

PURGE 0.00 SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Sampled I.D. Borings SB06-A01/A02 4' 2st water TD=6'

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST/ 18

BORING ID : MP18-SB6

NORTHING: 0.0000 estimated
EASTING: 0.0000 estimated

EASTING: 0.0000 estimated ELEVATION: 0.000 estimated

TOTAL DEPTH : 6.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 01/11/95

DATE COMPLETED : 01/11/95

-					·							<u> </u>
	ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGIH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				50	Silty sand with gravel, SM	GRAY-BROWN	LSE	MST	17	OVM	0.0	Fill. Top 2" are topsoil
	-			. •	Silty sand with gravel, SM	LT YELLOW BROWN	LSE	MST	17 18 21 25	OVM	0.0	Fill. Top 2" are topsoil (orange/yellow). Used 3" spoon. Cement present. Sample M18-SB06-A01 collected.
	-1 -	1			Silty sand, SM	DK GRAY	LSE	MST		OVM	0.0	Sample M18SB01-A01
	- 1	'			No Sample Recovered							collected.
	-2 -	- 2	e se conce	50	Siles and with many	DI ADV						
				50	Silty sand with gravel, SM	BLACK	LSE	WET	9 13 13 17	OVM	0.0	Fill. 4" broken concrete in top SPS. Sharp change to little silty sand and gravel. Fuel oil staining
	-	-							17			gravel. Fuel oil staining
					,	-						
	-3 -	- 3	The Road of the London		No Sample Recovered							
	į											
	-4 -	- 4	igsqcup		Cond				_			
	7	4			Sandy silt, ML	BLACK	FRM	SAT	6654			Fill. Sheen/odor of fuel present. ID of borehole
	-	-							4			D.
						,					•	
	-5 -	- 5		i								
		-					İ					
	1	-										
		- 4										
	-6 -	- 6										
	_	_										
				,							.′	
	-7	7										
										`		
	+	- `										
		- 0				İ			•			
	-8	- 8										,
		_									ı	
	7					,						
	-9 -	- 9			,							
		•						'				
	-	-										
1												
	-10	10					Ì	٠ .				

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 43

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK			1.	`	STRAT
/WELL ID	NUM	NUM	(FT_BGS)	<u> </u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
									ŕ		_					•		
MP18-SB6	1	1	0.00	0.40	SPS		15 ´		70	15	0	0		ŇA	POR	LSE	MST	
MP18-SB6	1	2	0.40	0.80	SPS		15	1	70	15	0	0		NA	POR	LSE	MST	
MP18-SB6	1	3	0.80	1.00	SPS		· 5	•	80	15	0	0		NON	POR	LSE	MST	
MP18-SB6	1	4	1.00	2.00	SPS		0		- 0	0	0	0		シ				
MP18-SB6	2	1	2.00	3.00	SPS		20		60	20	0	0		NON	POR	LSE	WET	
MP18-SB6	2	2	3.00	4.00	SPS		0		' 0	0	0	0.						
MP18-SB6	3	1	4.00	6.00	SPS		10		25	65	0	0		LOW	MOD	FRM	SAT	•

BOREHOLE ID : MP18-SB7 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/12/95 END DATE : 01/12/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 6.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 3.00

INTERVAL: 0.00 ft. to 6.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELL REEVES

: MOBILE B57 DRILL RIG TYPE

> ESTIMATED -SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y)es (N)o: N

TYPE DEPTHPURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

FT. MONMOUTH PROJECT

SITE NAME .: MAIN POST AREA 18

MP18-SB7 BORING ID :

0.0000 estimated NORTHING : 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH : 6.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B57

DATE STARTED : 01/12/95

DATE COMPLETED : 01/12/95

										 ,
ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			90	Poorly graded sand with silt, SP-SM	OLIVE/YELL BRN	LSE	MST		OVM 0.0	Fill. Collected sample MP18-SB07-A01.
		.,,	1	SILT, SP-SM	. `			6554		MP18-SB07-A01.
	† <i>'</i>		1	·				4		
			1							\downarrow \downarrow \downarrow
-1 -	1		1					٠,	,	
	ļ			:			•		į	
•	+		1	~	,					
			1	No Sample Berevered						
-2	2		50	No Sample Recovered	GRAY	Na	SAT	4	OVM 0.0	Eill No sample collected
}		1	~	Not Classified - Incomple te Data	GRAT	пл	SAI	11 12 13	O4M 0.0	Fill. No sample collected due to all gravel and saturated.
· .	-	f						13		Saturateu.
,			ŀ							
-3 -	- 3	<u> </u>	ľ	N- 0						
	-			No Sample Recovered		`				1,
	1		F		• •					·
					,				ļ. [` .
,	,							′		-
-4-	4		50	Not Classified - Incomple te Data	GRAY	NA	SAT	5 10 15 12	0.0 MVO	Could not sample interval gravel and saturated. TD of borehole at 6' bgs.
			,					15		TD of borehole at 6' bgs.
-	Ī							'-		
_	l _									
-5	7 5			No Sample Recovered	•				1	
	'								`	
-	Ť									
			•	1	,					
-6-	6 ~			i _						
				1	,					· .
-	† ''				•					· · ·
				,						
-7 -	7				,				1 ,	·
					-					·
-	+	1								
]				,					
-8 -	8			*				•		
				ļ	·				ļ	
-	+				-,					
] ;							i '	1
-9-	رو -				·					1 .
					ļ					, ,
_	1				r					, i
.		-,1			·					
- 10 -	10	']				·		<i>'</i>	_	· [
\ \ \ \	10			· ·					_	· .
		L			,					

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 44

	BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
-	/WELL ID	NUM	NUM	(FT BGS)		METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
										,									
	MP18-SB7	1	1	0.00	1.80	SPS		0	MF	90	10	0	0		NA	WEL	LSE	MST	·
	MP18-SB7	1	2	1.80	2.00	SPS		0		0	0	0	0					•	
	MP18-SB7	2	1	2.00	3.00	SPS	М	100		0	0	0	0		NA	NA	NA	SAT	
	MP18-SB7	2	2	3.00	4.00	SPS		0		0	0	0	0						
	MP18-SB7	3	1	4.00	5.00	SPS	М	100		0	0	0	0		NA	NA	NA	SAT	
	MP18-SB7	3	2	5.00	6.00	SPS		0		0	0	0	0			-			

BOREHOLE ID : MP3-SB1 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/14/94 END DATE : 12/14/94

LOGGER/COMPANY: K. VALENTE

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 12.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : HSA FLUID :

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON ,

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)ès (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

PURGE : 0.00
SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS......(Y) es (N) o: N

PACKER TESTS......(Y) es (N) o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

MPAOC3-SB01 performed, once completed was backfilled to surface with grout. Sample collected MPA3-SB01A02,

MPA3-SB01C02 (dup). MPA3-SB01--2 (field blanks)

PROJECT : FT. MONMOUTH TOTAL DEPTH : 12.00

SITE NAME : MAIN POST AREA 3 LOGGER : K. VALENTE

BORING ID : MP3-SB1 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/14/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/14/94

						_ •					
ELEVATION	нтчаа	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	CTELA	INSTRUMENT READING	COMMENTS
-1 -	- 1		75	Silty sand, SM	LT BROWN	SFT	DRY	4557	HNU	15.0	Top 3" of soil in spoon is brown sandy silt topsoil/organic.
-2 -	- 2	00,400	50	No Sample Recovered	WHITISH TAN	LSE	MST	14	HNU	8_0	Reach sand (coarse) &
_	-	0. 50 . 50 . 50 0. 50 . 50 . 50 0. 0. 0. 0. 0.		Well-graded sand with gravel, SW		-		14 13 7			Beach sand (coarse) & gravel.
-3 -	- 3	, , , , , , , , , , , , , , , , , , ,		No Sample Recovered							
-4-	- 4		50	Silt, ML	ORANGE BROWN	LSE	MST	7 8 9 11	HNU	17.0	1st 2" of recovery slough from borehole.
-5 -	- 5 -		,	No Sample Recovered			,				
-6-	- 6 -		50	Poorly graded sand with silt, SP-SM	ORANGE-BROWN	LSE	MST	6 8 8 10	HNU	8.0	Same lithology as previous spoon.
-7-	7			No Sample Recovered			`		,		
-8 -	- 8		75	Silty sand, SM	BROWN	LSE	MST	6 6 9 11	HNU	40.0	
-9 -	- 9			Poorty graded sand with silt, SP-SM	ORANGE BROWN	LSE	MST		HNU	40.0	Same lithology as 4-6'bgs
	-			No Sample Recovered				•			
-10 -	10		50	Poorly graded sand with silt, SP-SM	ORANGE BROWN	LSE	MST	9 10 11	HNU	9.0	Orange brown sand. Same lithology as above interval.

. 1

PROJECT : FT. MONMOUTH . TOTAL DEPTH : 12.00

SITE NAME : MAIN POST AREA 3 LOGGER : K. VALENTE
BORING ID : MP3-SB1 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/14/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/14/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
-11	11		,	Poorly graded sand with silt, SP-SM Poorly graded sand, SP No Sample Recovered	ORANGE BROWN BROWN	LSE	WET		HNU	-	Orange brown sand. Same lithology as above interval. 11.6' wet sand. End of borehole. Borehole grouted to surface.
-12 -	12									,	
-13 -	13									-	
-14 -							,				
-15 - -16 d	-										
-17 -	- 17				· ·			,		-	
-18 -	18										
-19 -	- 19 -		,	·							
-20	- 20								•		

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 53

BOREHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BG	s)	METHOD	GRAVEL	<u>/ PCT. ~ _</u>	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
										,			*					_	
MP3-SB1	1	1	0.00	1.50	SPS		0	F	. 75	25	0	0		NON	MOD	SFT	DRY		
MP3-SB1	1	2	1.50	2.00	SPS		0		. 0	0	0	0		`					
MP3-SB1	2	1	2.00	3.00	SPS .	C	20	CM	80	0	0	0		NON	POR	LSE	MST		
MP3-SB1	. 2	2	3.00	4.00	SPS		0	•	0	. 0	0	0			,-				
MP3-SB1	3	1	4.00	5.00	SPS		0		0	90	10	0		NON	WEL	LSE	MST	•	
MP3-SB1	3	2	5.00	6.00	SPS		0 .		0	0	0.	0	•		•	•			
MP3-SB1	4	1	6.00	7.00	SPS		0	F	90	10	0	0		NON	WEL	LSE	MST		
MP3-SB1	4	2	7.00	8.00	SPS		0		0 ·	0	0	0							
MP3-SB1	5	1	8.00	8.70	SPS		0	M-F	_ 80	20	0	0		NON	MOD	LSE	MST		,
MP3-SB1	5	2	8.70	9.50	SPS	(0	MF	,90	10	0	0		NON	WEL	LSE	MST	· -	•
MP3-SB1	5	3	9.50	10.00	SPS		0		0	0	0	0						· .	-
MP3-SB1	6	1	10.00	10.50	SPS		0	F	90	10	0	0		NON	WEL	LSE	MST		1
MP3-SB1	· . 6	2	10.50	11.00	SPS	,	0	MF	100	0	0	0.		NON	MOD	LSE	WET	•	
MP3-SB1	6	3	11.00	12.00	SPS		0		0	0	0 1	0							

BOREHOLE ID : MP3-SB2 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/15/94 END DATE : 12/15/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 4.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2: 2.00

INTERVAL: 4.00 ft. to 14.00 ft. BGS

METHOD : FLUID : NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER : WELLS REEVE DRILL RIG TYPE

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N)o: N PERMIT # :

: CME-55

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N DEPTH TYPE PURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Augered to 4'. SPS to 14' bgs. SB02 grouted to ground surface level. Groundwater @12' bgs (w.l. used). Sampled 2-10' composite sample int. Routine sample - MPA3-SB02-A02. PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA 3

BORING ID : MP3-SB2

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH : 14.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/15/94

DATE COMPLETED : 12/15/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
			100	Silty sand, SM	LT BROWN .	LSE	MST	89 21 26	HNU	0.0	Topsoils/organics.
				Silty sand, SM	BROWN			21			
	†			Silty sand, SM	LT BROWN			26			Sharp color change at 1/
1				51115, 522, 5	DROWN						Sharp color change at 1' from brown to lt. brown.
-1	+1								l	•	
1 '	'		Ì	•		٠.	_ ′	İ	i .		
1	ŀ			<u>.</u> .	•	ľ					4
	†	27.00		Well-graded gravel with sand, GW	TANNISH WHITE	LSE	DRY		HNU	0.0	Rock fragments and sand.
	1	0.00		sand, GW	2						Rock fragments and sand. Some small sub-rounded stones in sps (lower 1' of sps) of white quartz.
-2	† 2	000	40	Well-graded gravel with	TANNISH WHITE	LSE	MST	۱,	HNU	7 0	of sps) of white quartz.
1		000	~~	Well-graded gravel with sand, GW	TARREST WITTE	LJE	1131	ij	IUMO	3.0	Same as above interval. Rock fragments and sand (white quartzite).
Į.	1	god.			. }			14 16		•	(White quartzite).
·	1	0.00		· .				'			1
	1.	11/2010		No Sample Recovered	-		١				1
-3	†3		,			ļ ·			ĺ		
	1										
	+			,							
		l.				ŀ					
-4	+4		75	Silty sand, SM	GRAYISH BROWN	FRM		47		3.0-	otto and and making
	1 .		'	Sitty saile, si	GRATISH BROWN	FRM	MST	13 15 19 18	INNU	3.0 -	Silt and sand mottled.
1	1							19 18			
1	1										
1 _	1_				· ·					-	
-5	†5			Poorly graded sand, SP	ORANGE BROWN	LSE	MST		HNU	3.0	, ,
1 .					,						
	†	1		No Sample Recovered							
										١.	
-6	+6	7.1.633	100	Poorly graded sand, SP	ORANGE BROWN	LSE	MST	11	HNU	z ′o	Same litheless on about
	,		.,00	i sorty graded sand, or	ORANGE BROWN	LJE	1131	11 65 5	INIU	3.0	Same lithology as above interval.
	1		-	, and the second				5			
	-										
1	1				,						
-7	† 7	133333				1					, ,
				ļ	,						
	+ ,				,	1					1
1			,			[
-8	+ 8		100	Poorly graded sand, SP	BROWN	Lee	MET	10		7 0	
	1		100	l ooi ty graded said, sr	DVOMU.	LSE	MST	· /	HNU	٠.٠	1
1	1		,	•		Ì		8 5			` I
1	1					}		-			
				[.				<u> </u>
-9	†9			·	,						
1	1				•					٦,	· · · · · · · · · · · · · · · · · · ·
1	+										
1						4.					
-10	10	1,1,1,1,1	100	Poorly graded sand, SP	BROWN	LSE	Met	12	uwii	3 0	I pap avida bardina
'				, g. aaaa suna, o	J	LJE	MST	13 15 8	HNU	J.U	Uniform bands from lt.
L	.,		<u> </u>							1	Iron oxide banding. Uniform bands from lt. orange to dk org. Some bands highly distinct.

PROJECT : FT. MONMOUTH

SITE NAME : MAIN POST AREA 3

BORING ID : MP3-SB2

NORTHING: 0.0000 estimated EASTING: 0.0000 estimated ELEVATION: 0.000 estimated

-TOTAL DEPTH : 14.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55
DATE STARTED : 12/15/94

DATE COMPLETED : 12/15/94

				 			•		
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR		MOISTURE BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Poorly graded sand, SP	BROWN	LSE	IST	HNU 3.0	Iron oxide banding. Uniform bands from lt. orange to dk org. Some bands highly distinct.
`	-				,	ļ			bands highly distinct.
-11 -	11		` '	,	:				
_	-						•		
									Ì
-12 -	12		50	Silty sand, SM	BROWNISH GRAY	FRM S	SAT 11 13 14	HNU 0.0	Gray mottles noted. Water at 12' bgs. TD of borehole.
-	-						14		bor enote:
-13 -	13		_		٠ ,		,		~
_	-			·					
		,			-				
-14 -	- 14			,	•				
_	_		•	,				,	-
-15 -	- 15								
	-						/		
		-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,				
- 16 -	- 16			· · · · · · · · · · · · · · · · · · ·			!		
	-			_					, ,
-17	- 17				·				; ;
								<u>.</u> .	
-18 -	- 10							£	
-18	- 18			·	,				
	•							'	
`-19	19			**	,			,	
	-		,		· -				
					•)
-20 -	- 20	•	,		,				
				1			. 1	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 54

BOREHOLE	SMP	LTH	LITHOLOGY	/ INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	•				STRAT	
/WELL ID	NUM	NUM	(FT BGS	S)	METHOD	GRAVEL	PCT.	SAND	PCT_	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	·
												-				'		1	
MP3-SB2	1	1	0.00	0.20	SPS		Ò	FM	65	35	0	0		NON	MOD	LSE	MST		
MP3-SB2	1	2	0.20	0.50	SPS		0	FM	65	35	0	0				,			
MP3-SB2	1	3	0.50	1.50	SPS		0	FM	65	35	0	0						۰ ۰ ر	•
MP3-SB2	` 1	4	1.50	2.00	SPS	CM	80	MC	20	0	o`	0		NON	POR	LSE	DRY		
MP3-SB2	2	1	2.00	2.80	SPS	C	70	CM	30	.0	0	0		NON	POR	LSE	MST	•	
MP3-SB2	2	2	2.80	4.00	SPS		0	٠.	0	0	0	0							
MP3-SB2	3	1	4.00	5.00	SPS		0	MF	60	40	0	0		LOW	MOD	FRM	MST	•	
MP3-SB2	3	2	5.00	5.50	SPS		0	FM	100	0	. 0	0		NON	WEL	LSE	MST		
MP3-SB2	3	3	5.50	6.00	SPS		0		0	0	0	0							
MP3-SB2	4	1	6.00	8.00	SPS		0	MF	100	0	0	0		NON	WEL	LSE	MST		
MP3-SB2	· 5	.1	8.00	10.00	SPS	•	0	FM	100	0	0	. 0		NON	WEL	LSE	MST 、		
MP3-SB2	6	1	10.00	12.00	SPS	-	0	MF	100	0	0	0		NON	WEL	LSE .	MST		
MP3-SB2	7	1	12.00	13.00	SPS		Ō		60	35	5	0 -		LOW	MOD	FRM	SAT		

CHARLES WOOD BOREHOLE LOGS AND WELL COMPLETION SUMMARIES

BOREHOLE ID : CW1-MW26 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/19/94 END DATE : 12/19/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE
DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 60.540

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32591

HOLE ABANDONED:..(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y) es (N) o: N No. OF WELLS : 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

 PURGE :
 0.00

 SAMPLE :
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS..... (Y) es (N)/o: N SLUG TESTS........... (Y) es (N) o: N PACKER TESTS............ (Y) es (N) o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Sampled soils for TCE+30; TAL

Latitude-North: 40 degrees 17' 44.5" Longitude-West: 74 degrees 05' 17.7" CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME CHARLES WOOD AREA INSPECTOR K. VALENTI WELL ID CW1-MW26 WATER LEVELS START DATE 12/19/94 12/19/94 **COMPLETION DATE** DEPTH ELEV. DRILLING SUMMARY 1.92 TC Protective Casing 62.46 Driller WELLS REEVE Drilling Fluid WATER .00 inch 0.00 GS 60.54 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: Protective Casing: 1.92 *ft*. 2.08 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 2.00 ft. Seal Type: BENTONITE Interval: 2.00 to 4.00 ft. Sand Pack Type: #1 MORIE Interval: 4.00 to 16.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: Slots: PVC 0.010 inches 2.00 BN 58.54 Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 4.00 SP 56.54 WELL DEVELOPMENT Date 01/20/95 5.00 SC 55.54 Method Surge block/overpumping Yield Purged Volume 85 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 46.00 GS = Ground Surface SC = Top Screen BS = Bottom Screen BN = Top Seal = Sand Pack TD = Total Depth *********** = Formation 15.00 TD 45.54 Additional Comments:

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI

BORING ID : CW1-MW26 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/19/94 ELEVATION : 60.540 surveyed DATE COMPLETED : 12/19/94

ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
59 -	1		100	Poorly graded sand, SP	YLLWSH LT BROWN	SFT	MST	3 4 7 9	HNU	0.0	Top 3" consist of topsoil with organics.
58			100	Poorly graded sand, SP	YLLWSH LT BROWN	SFT	MST	6	HNU	0.0	
57	3				,			6 7 8			·
56 .	ر 4		100	Poorly graded sand, SP	YLLWSH LT BROWN	SFT	MST	5334	HNU	0.0	Mild iron (Fe) banding throughout spoon.
55 -	- 5				,			4			
54 -	6		100	Poorly graded sand, SP	YELLOW LT BROWN	LSE	SAT	5311	нис	0.0	3" spoon used. Water at 6.1 bgs. Sample CW01- SB00-802 collected. Mild mottling noted.
53 -	7							•			
52	8		100	Poorly graded sand, SP	YELLOW LT BROWN	LSE	SAT	1256	HNU	0.0	Collected sample CW01- SB26-A02.
51 -	9										
50	10		100	Poorly graded sand, SP	YLLWSH LT BROWN	SFT	SAT	1 1 2 2	HNU	0.0	

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI
BORING ID : CW1-MW26 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55

EASTING : 0.0000 estimated DATE STARTED : 12/19/94

ELEVATION : 60.540 surveyed DATE COMPLETED : 12/19/94

ELEVATION	рвртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR.	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
49 -	11		,	Poorly graded sand, SP	YLLWSH LT BROWN	SFT	SAT		HNU C	.0	
48 -	- 12		100	Poorty graded sand, SP	YLLWSH LT BROWN	LSE	SAT	2446	HNU C) . 0	Some gray mottles noted.
47 -	- 13		1	,							
46 - - 45 -	· ·	1.1.1.1.1.1.1		Interval Not Sampled							Augered interval. Set well at 15' bgs. TD of borehole 16' bgs.
44 -	•										
43 -	- 17				,						
42 -	18	Ì	·	1							
41 -	- 19 -		,								
40 -	· 20										

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 8

BOREHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE G	RAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	,				STRAT	
/WELL ID	NUM	NUM	(FT BG	S)	METHOD	GRAVEL P	CT.	SAND	PCT'	PCT	PCT	PĆT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
			,																
CW1-MW26	1	1	0.00	2.00	SPS	•	0	F	100	0	0	0		NON	WEL	SFT	MST		
CW1-MW26	2	1	2.00	4.00	SPS		0	F	95	5	0,	0		NON	WEL	SFT	MST		
CW1-MW26	3	١ 1	4.00	⟨6.00	SPS		0	,	95 .	5	0	0		NON	WEL	SFT	MST		
CW1-MW26	. 4	1	6.00	8.00	SPS		0	·F	98	2	0	0	-	NON	WEL	LSE	SAT		
CW1-MW26	5	1	8.00	10.00	SPS		0	F	100	0	0	0		NON	WEL	LSE	SAT	•	
CW1-MW26	6	1	10.00	12.00	SPS		0	F	100	0	0	0		NON	WEL	SFT	SAT	•	>
CW1-MW26	7	1	12.00	14.00	SPS		0	F	95	5	0	0		NON	WEL	LSE	SAT		
CW1-MW26	8	1	14.00	16.00	NS		0		0	0	0	0			_				

BOREHOLE ID : CW1-MW27 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/19/94 END DATE : 12/19/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 16.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD: HSA FLUID: WATER

BOREHOLE DIAMETER #2: 2.00

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD: SPS FLUID:

BOREHOLE DIAMETER-#3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

` ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 60.810

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32592

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y) es (N) o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

PURGE: 0.00
SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Sampled TCE+30, TAL

Latitude-North: 40 deg 17' 44.6"

Longitude-West: 74 deg 05' 17.8"

	MONMOUT LES WOO		DRILLING FIRM J.C. ANDERSON A INSPECTOR K. VALENTI
WELL ID START DATE COMPLETION DATE	12/1	- MW 27 19/94 19/94	WATER LEVELS
Protective Casing	DEPTH 1.75 TO	ELEV. 62.56	DRILLING SUMMARY Driller WELLS REEVE Drilling Fluid WATER
4.00 inch	0.00 GS	60.81	
	2.00 <i>BN</i>	V 58.81	Silt Trap Interval: 14.54 to 15.00 ft.
	4.00 SF	56.81	Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00 SC	C 55.81	WELL DEVELOPMENT Date 01/20/95 Method Surge Blocking/Overdril Yield 1-2 gpm Purged Volume 128 gal
	14.54 B S		BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation
	15.00 TI	D 45.81	Additional Comments:

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI
BORING ID : CW1-MW27 DRILLING COMPANY : J.C. ANDERSON

NORTHING: 0.0000 estimated DRILLING RIG: CME-55
EASTING: 0.0000 estimated DATE STARTED: 12/19/94

ELEVATION: 60.810 surveyed DATE COMPLETED: 12/19/94

ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	,		100	Poorly graded sand, SP	YELLOW BROWN	LSE	MST	6544	HNU 0.0	Top 2" of SPS is topsoil and organics.
59	1 .				. •			•		
58	2		100	Poorly graded sand, SP	YELLOW BROWN	LSE	MST	3211	HNU 4.0	Same lithology as above interval.
57	3							1		
56 -	4		100	Poorly graded sand, SP	YELLOW BROWN	LSE	SÄT	1 2 1 2	HNU 6.0	First occurance of water at 5.8" bgs. Same lithology as above interval.
55 -	5							Ź		interval.
54 -	6		100	Poorly graded sand, SP	YELLOW LT BROWN	LSE	SAT	3223	HNU 0.0	3" SPS used. Collected sample CW1-SP27 (MW27) A02 at 7' bgs.
53 -	7							3		
52 -	- 8		100	Poorly graded sand, SP	YLLWSH LT BROWN	LSE	SAT	3345	HNU O.O	Same lithology as last spoon. 9-10' pgs pieces of wood and sharp change in color to lt. grysh brn
51 -	- 9			^	÷			5		in color to it. grysh brn
50 -	- 10		100	Poorly graded sand, SP	LT GRY YLW-LT B	LSE	SAT	1122	HNU 0.0	Gray mottles, some slight yellow-orange banding.

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA

BORING ID : CW1-MW27

NORTHING: 0.0000 estimated
EASTING: 0.0000 estimated
ELEVATION: 60.810 surveyed

TOTAL DEPTH : 16.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/19/94
DATE COMPLETED : 12/19/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				Poorly graded sand, SP	LT GRY YLW-LT B	LSE	SAT		HNU	0.0	Gray mottles, some slight yellow-orange banding.
49 -	- 11					,					
48 -	- 12		100	Poorly graded sand, SP	LT YLLWSH BROWN	LSE	SAT	3434	нип	0.0	Gray mottles, some banding.
47 -	- 13 [°]										
46 -	- 14		100	Poorly graded sand, \$P	YLLWSH LT BROWN	LSE	SAT	3446	HNU	0.0	Mottles, Fe banding (orange) towards bottom of sps. TD of hole 16'bgs
45 -	- 1 5						•		,		-
44 -	- 16 -				1						
43 -	- 17										
42 -	- 18 -										
41 -	- 19 -										
40 -	- 20						٠.				,

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 9

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE G	RAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	5)	METHOD	GRAVEL P	CT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
														-	-			
CW1-MW27	1	1	0.00	2.00	SPS		0	F	100	0	0	0		NON	WEL	LSE	MST	
CW1-MW27	2	1	2.00	4.00	SPS		0	F	100	0	0	0		NON	WEL	LSE	MST	
CW1-MW27	3	1	4.00	6.00	SPS		0	F	100	0, ر	0	0 '		NON	WEL.	LSE	SAT	
CW1-MW27	4	1	6.00	8.00	SPS		0	F	100	0	0	. 0		NON	WEL	LSE	SAT	
CW1-MW27	5	1	8.00	10.00	SPS	,	0	F	100	0	0	0		NON	WEL	LSE	SAT	
CW1-MW27	6	1	10.00	12.00	SPS		0	F	100	0	0	0		NON -	WEL	LSE	SAT	
CW1-MW27	7	1	12.00	14.00	SPS		0	F	100	0	.0	0		NON	WEL	LSE .	SAT	
CW1-MW27	8	1	14.00	16.00	SPS		0 .	F	100	0	0	0		NON	WEL	LSE	SAT	

BOREHOLE ID : CW1-MW28 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/19/94 END DATE : 12/19/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD: HSA FLUID: NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON
DRILLER : STEVE BURGER
DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 60.730

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32593

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y)es (N)o: N TYPE DEPTH

PURGE : 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N PACKER TESTS.....(Y) es (N) o: N PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 degrees 17' 44.8" Longitude-West: 74 degrees 05' 17.7"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME CHARLES WOOD AREA INSPECTOR P. THOMAS CW1-MW28 WELL ID WATER LEVELS START DATE 12/19/94 12/19/94 **COMPLETION DATE** DEPTH ELEV. DRILLING SUMMARY 2.16 TC 62.89 Driller STEVE BURGER Protective Casing Drilling Fluid NONE 00 inch 0.00 GS 60.73 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 2.16 Protective Casing: ft. 2.44 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft. Seal Type: Interval: BENTONITE SLURRY 0.50 to 3.00 ft. Sand Pack Type: NO. 1 MORIE Interval: 3.00 to 15.00 ft. Grain Size : UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: Slots: PVC 0.010 inches 0.50 BN 60.23 Silt Trap Interval: 14.54 to 15.00 Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 57.73 WELL DEVELOPMENT 01/20/95 Date 5.00 SC 55.73 Method Surge blocking/overpump Yield Purged Volume 147 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 46.19 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth *********** = Formation 15.00 TD 45.73 Additional Comments: Depths measured below ground surface.

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00
SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : CW1-MW28 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

 EASTING
 : 0.0000 estimated
 DATE STARTED
 : 12/19/94

 ELEVATION
 : 60.730 surveyed
 DATE COMPLETED
 : 12/19/94

	ELEVATION	рвртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
				70	Sandy silt, ML	BROWN	SFT	MST	4345	HNU	0.0	I	Fill. Topsoil.
!	59 -	- 1			Poorly graded sand, SP	ORANGE BROWN	LSE	MST	3	HNU	0.0	ı	Fill.
	1	-			No Sample Recovered								
!	58 -	- 2		60	Poorly graded sand, SP	ORG/OLV BRN	LSE	MST	3543	HNU	0.0	ı	Fill.
- ;	57 -	- 3		•	(~
1	56 -	- - 4 -		50	No Sample Recovered Poorly graded sand, SP	OLV/ORG BROWN	LSE	MST	3433	HNU	0.0	١ .	Fill.
!	55 -	- 5			No Sample Recovered								
	54 - 53 -	- 6 -		100	Poorty graded sand, SP	OLIVE	LSE	MST	3434	HNU	0.0	ı	Fill. Saturation observed at 7.8' bgs.
	73 7	1											
	52 -	- 8		100	Poorly graded sand, SP	OLV/ORG BROWN	LSE	SAT	2355	HNU	0.0	•	Fill.
	51 ⁻	- 9											
	50 -	10		100	Poorly graded sand, SP	YELLOW BROWN	LSE	SAT	3 4 3 4	HNU	0.0)	Fill.

PROJECT : FT. MONMOUTH : 15.00
SITE NAME : CHARLES WOOD AREA LOGGER : P. THO

SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : CW1-MW28 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

 EASTING : 0.0000 estimated
 DATE STARTED : 12/19/94

 ELEVATION : 60.730 surveyed
 DATE COMPLETED : 12/19/94

Ž	Ţ.,	_	RY		<u> </u>			Ę	ניים	
ELEVATION	н	MATERIAL	RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
ELEV	рвртн	MATE	% RE			TRE	CIS	SLOW	FINST	
\ .				Poorly graded sand, SP	YELLOW BROWN	LSE	SAT	1	HNU 0.0	Fill.
	+			·	; 					
49	11									
	+									
48	12		100	Poorty graded sand, SP	YELLOW BROWN		CAT	Ì		,
			100	roon ty graded said, 5r	TELLOW BROWN	LSE	SAI	4434	HNU 0.0.	Fill.
/7.	13									
1.	'			. ,						
				,						
46 -	14			Interval Not Sampled					ر	Augered interval.
	<u> </u>									, 🗸
45 -	15				·					·
-	,									
44 -	16									
-	-									
43 -	17			,					•	·
_	_			· ·	·					
42 -	10			•					1	
442	16									
									,	
41 -	19									,
	_									
40 -	- 20									
				:			Ì	- }		

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 10

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	. CLAY	ORGANIC	ROCK	(_				STRAT
/WELL ID	NUM	NUM	(FT BGS	<u>s)</u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
CW1-MW28	1	1	0.00	0.50	SPS		ο ΄	MF	40	35	0	25		NA	POR	SFT	MST	
CW1-MW28	1	2	0.50	1.40	SPS		. 0	MF	95	5	0	. 0		NON	WEL	LSE	MST	
CW1-MW28	1	3	1.40	2.00	SPS		0		0	Ò	0	0						
CW1-MW28	2	1	2.00	3.20	SPS		0	MF	95	5	0	0		NON	WEL	LSE	MST	
CW1-MW28	2	2	3.20	4.00	SPS		0		0	0	0	0						
CW1-MW28	3	1	4.00	5.00	SPS	- "1	0	MF ·	95	5	0	, 0		NON	WEL	LSE	MST	
CW1-MW28	3	2	5.00	6.00	SPS		0		0	0	0	0						
CW1-MW28	4	1	6.00	8.00	SPS		0	MF	95	5	0	0	1	NON	WEL	LSE	MST	
CW1-MW28	5	1	8.00	10.00	SPS		0	MF	95	5	0	0		NON	MOD	LSE	SAT	
CW1-MW28	_. 6	1	10.00	12.00	SPS .		. 0	MF	95	5	0	0		NON	WEL	LSE	SAT	
CW1-MW28	7	1	12.00	14.00	SPS		0	MF	95	5	0	. O		NON	WEL	LSE	SAT	· .
CW1-MW28	8	1	14.00	15.00	NS		0		0	. 0	0	0						

BOREHOLE ID : CW1-MW29 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/19/94 END DATE : 12/19/94

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD: HSA FLUID: NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BORÈHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON
DRILLER: STEVE BURGER

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 60.410

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N)o: N PERMIT #: NJ 29 32590

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.... (Y) es (N) o: N No. OF WELLS : 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE

 PURGE :
 0.00

 SAMPLE :
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS. ... (Y) es (N) o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

Latitude North: 40 degrees 17' 44.7"

Longitude West: 74 degrees 05' 17.4"

DEPTH -

CLIENT FT. MONMOUTH J.C. ANDERSON DRILLING FIRM SITE NAME CHARLES WOOD AREA INSPECTOR K. VALENTI WELL ID CW1-MW29 WATER LEVELS START DATE 12/19/94 **COMPLETION DATE** 12/19/94 DEPTH ELEV. **DRILLING SUMMARY** 2.03 TC Driller 62.44 STEVE BURGER Protective Casing Drilling Fluid NONE 0.00 GS .00 inch 60.41 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: Protective Casing: 2.03 ft. 2.32 ft. Casing Grout: 0.00 to CEMT/BENT Interval: 3.00 ft. Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft. Sand Pack Type : NO. 1 MORIE Interval: 3.00 to 5.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: **PVC** Slots: 0.010 inches 0.50 BN 59.91 Silt Trap Interval: 14.54 to 15.00 Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 57.41 WELL DEVELOPMENT 01/20/95 Date 5.00 SC 55.41 Method Surge blocking/overpump Yield Purged Volume 158 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 45.87 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth ********** = Formation 15.00 TD 45.41 **Additional Comments:** Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00
SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : CW1-MW29 DRILLING COMPANY : J.C. ANDERSON
NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57
EASTING : 0.0000 estimated DATE STARTED : 12/19/94

EASTING : 0.0000 estimated DATE STARTED : 12/19/94 ELEVATION : 60.410 surveyed DATE COMPLETED : 12/19/94

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INS	COMMENTS
,			100	Sandy silt, ML	BROWN	SFT	MST	12	HNU	0.0	Fill and topsoil.
				Poorly graded sand, SP	01.11/5	۰		12 12 15 7]
. •	Ī			Poorty graded sand, sp	OLIVE BROWN	LSE	MST	′	HNU	0.0	Fill.
59 -	¹								1		
• -	<u> </u>								ŀ		. ~ 1
									ļ		
58 -	2		90	Poorly graded sand, SP	ORANGE/OLIVE BR	LSE	MST	12	HNU	0.0	· !
1							MST	10 5	ŀ		
-	†							6			
1				i .	√						
57 -	3			['							
					•						
-	+								İ		
				No Sample Recovered							
56 -	4	17.77.77.	100	Poorly graded sand, SP	ORANGE/OLIVE BR	LSE	WET	6	HNU	0.0	Fill.
				, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	,		''-'	6453		•••	
-	-							3			
											1
55 -	5			-							
	•										
٠ -	-			İ .							
,									ŀ		1 .
´ 54 -	- 6		100	Poorly graded sand, SP	ODANCE (OL IVE DD			7		2.0	0.4
-	•		100	Poorty graded sand, SP	ORANGE/OLIVE BR	LSE	SAT	1	HNU	2.0	Saturated conditions observed at ~6.4′ bgs.
-	L			·				2			·
53 -											•
55	′			`							
_					•						,
			,	Poorly graded sand with silt, SP-SM	GRAY	LSE	SAT		HNU	0.0	Fe stained lamine at
				•	, .	·					Fe stained lamine at bottom of interval; sharp color change.
52 -	8		100	Poorly graded sand with silt, SP-SM	GRAY	LSE	SAT	3	HNU	0.1	Fill.
				Poorly graded sand, SP	BROWN	LSE	SAT	é	HNU	1 0	Fill.
				, series delices of	onit		"^'	,			
	_			'							
51 -	9										
1	-										
											.
50 -	10		100	Poorly graded sand, SP	OLIVE BROWN	LSE	SAT	2	HNU	0.0	Fill.
	,							2 2 6 10			
				<u> </u>			ــــــــــــــــــــــــــــــــــــــ				

PROJECT : FT. MONMOUTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : CW1-MW29 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING: 0.0000 estimated DATE STARTED: 12/19/94
ELEVATION: 60.410 surveyed DATE COMPLETED: 12/19/94

ELEVATION	рвртн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	READING	COMMENTS
				Poorly graded sand, SP	OLIVE BROWN	LSE	SAT		HNU O	.0	Fill.
49 -	11						_				,
48 -	- 12 -		100	Poorly graded sand, SP	OLIVE BROWN	LSE	SAT	3434	HNU O	.0	Fill.
47 -	- 13 -			,							
46 -	- 14		75	Poorly graded sand, SP	OLIVE BROWN	LSE	SAT	10 14 16	ниυ О	.5	Fill.
45	15			Silty sand, SM	OLIVE BROWN	LSE	SAT		нии о	.5	Fill. Fe stained lamina. TD of borehole 16, bgs.
44 -	- 16 -			No Sample Recovered							
43 -	17					,					
42 -	- 18 -						•				
41 -	- 19										
40 -	- 20			,							

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 11

BOREHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK		ſ			STRAT.	
/WELL ID	NUM	NUM	(FT_BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
					1		~ `			-									
CW1-MW29	1	1	0.00	0.40	SPS		0	MF	45 ·	35	0 -	20		·NA	POR	SFT	MST	`	
CW1-MW29	1	2	0.40	2.00	SPS		0	MF	95	5	0	0		NON	WEL	LSE	MST	· ·	
CW1-MW29	2	1	2.00	3.80	SPS		0	MF	95	5	0	0		NA	WEL	LSE	MST	•	
CW1-MW29	2	2	3.80	4.00	SPS		0		0	0	0	0					_		
CW1-MW29	3	1	4.00	6.00	SPS	•	0	MF	95	5	0	0		NON	WEL	LSE	WEŤ		~
CW1-MW29	4	1	6.00	7.60	SPS		0	MF	95	5	0	0		NON	WEL	LSE	SAT		
CW1-MW29	4	2	7.60	8.00	SPS		0	MF	90	10	0	0		NA	WEL	LSE	SAT		
CW1-MW29	5	1	8.00	8.40	SPS		0	MF	90	10	. 0	. 0		NON	WEL	LSE	SAT		
CW1-MW29	5	2	8.40	10.00	SPS		0	MF	95	5	0	0		NA	WEL	LSE	SAT		
- CW1-MW29	6	1	10.00	12.00	SPS		0	MF	95	5	0	0		NA ·	WEL	LSE	SAT		
CW1-MW29	7	1	12.00	14.00	SPS		0	MF	95	5.	0	0 .	•	NON	WEL	LSE ·	SAT		
CW1-MW29	8	1	14.00	15.00	SPS		0	MF	95	5	0	. 0		NON	WEL	LSE	SAT		
CW1-MW29	8	2	15.00	15.50	SPS		0	F	85	13	. 2	0 -		NON	WEL	LSE	SAT	•	•
CW1-MW29	8	3	15.50	16.00	SPS		0		0	0	, 0	0					× .	**	

BOREHOLE ID : CW2-MW30 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/16/94 END DATE : 12/16/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) :

TOTAL DEPTH: 16.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD: HSA FLUID: WATER

BOREHOLE DIAMETER #2: 3.00

INTERVAL: 12.00 ft. to 14.00 ft. BGS

METHOD: SPS FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 49.470

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32594

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y) es (N) o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

 PURGE :
 0.00

 SAMPLE :
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

1st location moved after collecting one spoon with no rec.

Latitude-North: 40 deg 17' 43.3"

DRILLING FIRM CLIENT FT. MONMOUTH J.C. ANDERSON SITE NAME CHARLES WOOD AREA INSPECTOR K. VALENTI WELL ID CW2-MW30 WATER LEVELS START DATE 12/16/94 **COMPLETION DATE** 12/16/94 DEPTH **DRILLING SUMMARY** ELEV. 2.24 TC 51.71 Driller WELLS REEVE Protective Casing Drilling Fluid WATER .00 inch 0.00 GS 49.47 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 6.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 2.24 Protective Casing: ft. 2.68 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 2.00 ft. Seal Type: BENTONITE Interval: 2.00 to 4.00 ft. Sand Pack Type: #1 MORIE Interval: 4.00 to 16.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 6.00 to 15.54 ft. Type: PVC Slots: 0.010 inches 2.00 BN 47.47 Silt Trap Interval: 15.54 to 16.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 4.00 SP 45.47 WELL DEVELOPMENT Date 01/08/95 6.00 SC Method Bailing/surge blocking 43.47 Yield 1 Purged Volume 68 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack 15.54 BS 33.93 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth *********** = Formation 16.00 TD 33.47 Additional Comments:

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA

BORING ID : CW2-MW30

NORTHING 0.0000 estimated EASTING 0.0000 estimated ELEVATION : 49.470 surveyed

: 16.00 TOTAL DEPTH

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

: CME-55 DRILLING RIG

DATE STARTED : 12/16/94

DATE COMPLETED : 12/16/94

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
48	1		65	Poorly graded sand with silt, SP-SM	BROWN	LSE	MST MST	10 11 10 12	HNU		Top 3" bgs = topsoil. Some organics-roots. 1st hole abandoned with HNu=10.0. Lt brown sand (little silt, mottles noted.)
47	2		65	No Sample Recovered Silty sand, SM	DK GRAY TO BRN	LSE	WET	8 9 13 11	HNU	20.0	Noted mottling with iron (Fe) staining.
46	3			Silty sand, SM No Sample Recovered	DK GRAY	SFŢ	WET		HNU	20.0	Fine silt (some) finer sands. SPS is wet.
45	4		75	Silty sand, SM Sandy elastic silt, MH	GRAY BROWN GREENISH GRAY	SFT	WET WET	11	HNU		Gray mottles noted. 6" piece of wood noted at bottom of spoon/
44 -	 5 		;	No Sample Recovered						٠	bottom of spoon/
43	6	·	20	Sandy elastic silt, MH No Sample Recovered	GRAYISH GREEN	ŞFT	WET	5654	HNU	3.0	Same as above interval. Wood pieces.
42	7										•
41 -	8		50	Sandy silt, ML	GREENISH GRAY	SFT	WET	5443	HNU	150.0	3" SPS used. Same lith. as noted in previous interval. Sampled W2-SB30
40	9		,	No Sample Recovered	·			· -			
39 ·	10		80	Silty sand, SM	GREENISH GRAY	LSE	WET		HNU	o.o	3" SPS used. Fine sands little silt.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI
BORING ID : CW2-MW30 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/16/94 ELEVATION : 49.470 surveyed DATE COMPLETED : 12/16/94

RECOVER INSTRUMENT ELEVATION BLOW COUN READING FIELD STRENGTH MOISTURE MATERIAL CLASSIFICATION COLOR COMMENTS Silty sand, SM GREENISH GRAY WET LSE HNU 0.0 38 + 11 No Sample Recovered 4 HNU 0.0 37 + 12 100 Silty sand, SM GREENISH GRAY SFT WET Mostly quartz sand. 36 + 13 35 50 Well-graded sand, SW GREENISH GRAY LSE MST HNU 0.0 Some white quartz stones. Elastic silt, MH DK GRAY BLACK HNU 0.0 FRM MST Set well at 16' bgs. TD of borehole 16' bgs. 34 15 No Sample Recovered 33 16 32 + 17 31 +(18 30 + 19 29 + 20

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 12

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	()	METHOD	GRÁVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	•.
		٠											•						
CW2-MW30	1	1	0.00	0.80	SPS		1		60	35	0	4		NON	MOD	LSE	MST		
CW2-MW30	1	2	0.80	1.30	SPS		0		90	10	0	0		NON	MOD	LSE	MST		
CW2-MW30	1	3	1.30	2.00	SPS		0		0	0	0	0							
CW2-MW30	2	Ì	2.00	2.80	SPS	`	1		55	39	5	0		LOW	MOD	LSE	WET		
CW2-MW30	2	2	2.80	3.30	SPS		0		70	30	0	0 '		LOW	WEL	SFT	WET		
CMS-MM30	2	3	3.30	4.00	SPS		0		0	0	0	0 .							
CW2-MW30	3	1	4.00	4.50	SPS	`	0		.65	35	0	0		LOW	POR	SFT	WET		
CMS-WM30	3	2	4.50	5.50	SPS		0		35	60	5	0		MOD	MOD	SFT ·	WET		
CW2-MW30	3	3	5.50	6.00	SPS		0 .		0	0	0	0							
CW2-MW30	4	1	6.00	6.40	SPS		0		40	60	0	0		MOD	WEL	SFT	WET		
CW2-MW30	4	2	6.40	8.00	SPS		0		0	0	0	0							
CW2-MW30	5	1	8.00	9.00	SPS		0		40	60	0	0		LOW	MOD	SFT /	WET		
CW2-MW30	5	2	9.00	10.00	SPS	`	0		0	0	0	0							
CW2-MW30	6	1	10.00	11.60	SPS		0	F	85	15	0	0		LOW	WEL	LSE	WET		
CW2-MW30	6	2	11.60	12.00	SPS-		0		0	0	0	0							
CW2-MW30	7	1	12.00	14.00	SPS		5		80	15	0	0	•	NON	MOD	SFT	WET		e.
CW2-MW30	8	1	14.00	14.30	SPS		10		80	5	0	0		NON	POR	LSE	MST		
CW2-MW30	` 8	2	14.30	15.00	SPS		0		0.	90	10	0		MOD	WEL	FRM	MST		
CW2-MW30	8	3	15.00	16.00	SPS		0		0	0	0	0							

BOREHOLE ID : CW2-MW31 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/16/94 END DATE : 12/16/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 16.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 16.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 49.670

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32595

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH' PURGE 0.00% SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS..... (Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

SPS/augered to 8' bgs. Severed wire (subsurface) @approx. 2' bgs. Abandoned location. Moved location 1'. Latitude-North: 40 deg 17' 43.6"/Longitude-West: 74 deg 05' 10.5"

CLIENT FT. MONMOUTH J.C. ANDERSON DRILLING FIRM SITE NAME CHARLES WOOD AREA INSPECTOR K. VALENTI WELL ID CW2-MW31 WATER LEVELS START DATE 12/16/94 **COMPLETION DATE** 12/16/94 DEPTH ELEV. DRILLING SUMMARY 1.91 TC 51.58 Driller STEVE BURGER Protective Casing Drilling Fluid WATER .00 inch 0.00 GS Well Type SINGLE CASED SCREENED 49.67 WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 5.00 ft. 0.00 to Type: PVC SCH 40 Stick Up Inner Casing: 1.91 Protective Casing: 2.51 ft. ft. Casing Grout: PORTLAND CEMENT Interval: 1.00 ft. 0.00 to Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: #1 MORIE Interval: 3.00 to 16.00 ft. Grain Size: Median Diameter: UNIFORM Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Slots: Type: PVC 0.010 inches 1.00 BN 48.67 Silt Trap Interval: 14.45 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 46.67 WELL DEVELOPMENT Date 01/05/95 5.00 SC 44.67 Method Bailing Yield Purged Volume 25 gal <1 gpm **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 35.13 GS = Ground Surface SC = Top Screen BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>>> = Formation 15.00 TD 34.67 **Additional Comments:**

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH

CHARLES WOOD AREA

TOTAL DEPTH : 16.00

SITE NAME :

LOGGER : K. VALENTI

BORING ID : CW2-MW31 DRILLING COMPANY : J.C. ANDERSON

NORTHING 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING 0.0000 estimated DATE STARTED : 12/16/94

ELEVATION : 49.670 surveyed DATE COMPLETED : 12/16/94

			T &	·			т	T F -	1	<u> </u>	
ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
			100	Silty sand, SM	BROWN	LSE	MST	5 9 6 7	HNU	3.0	Fill. Top 3" organics/ topsoil. Brown little silt, mostly sand.
	+							7			silt, mostly sand.
48	1										
"	`										
	†										
47	- + 2		75	Silty sand, SM	BROWN	SFT	MST	10	HŃU	1.0	Fill, Same lithology as
	1							10 10 11			Fill, Same lithology as previous interval. Some orange iron (Fe) staining noted throughout spoon.
}											
46	† 3 . 			Silty sand, SM	GRAY	FRM	MST	5967	HNU	1.0	Fill. More silt than above interval. Firm but able to crush between fingers.
	+			No Sample Recovered	1			7			fingers.
45	+ 4		50	Sandy elastic silt, MH	DK GRAY	FRM	MST	7	HNU	0 0	Fill Same as provious
				Juliay Clustre Site, Mil	DR GRAT	FRA	l HOI	7 7 9 5	INO	0.0	Fill. Same as previous interval. More silt/clay texture. Water present at 5' bgs.
	T .					,					, bgs.
44	- 5			No Sample Recovered	-						1
	+	:							_		
,,			٠.								
43	† 6		75	Sandy elastic silt, MH	DK GRAY	SFT	WET	4	HNU	2.0	Same lithology as previous interval.
	†							7			,
< 42	7			Silty sand, SM	GRAYISH GREEN	SFT	WET		HNU	2.0	Uncertain. Mostly fine
										_,-	Uncertain. Mostly fine sands. Sample CW2-SB31 collected. Wine at depth noted by auger cuttings.
	Ī			No Sample Recovered							
41	8		60	Silty sand, SM	GRAYISH GREEN	SFT	SAT	2226	HNU	0.0	Same lithology previous interval. Sample CW2-SB31 collected.
	+							6			collected.
40	+9			٦							
40				No Sample Recovered	-	٠					
	†										
39	10	-	75	Silty sand, SM	GRAY GREEN	SFT	SAT	2	HNU	0.0	Uncertain.
								2248			

PROJECT : FT. MONMOUTH TOTAL DEPTH : 16.00

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI

BORING ID : CW2-MW31 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 12/16/94 ELEVATION : 49.670 surveyed DATE COMPLETED : 12/16/94 ·

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				Silty sand, SM	GRAY GREEN	SFT	SAT		HNU	0.0	Uncertain.
38	† † 11 †			No Sample Recovered				,			
37	12		75`	Poorly graded sand with silt, SP-SM	DK GREEN GRAY	LSE	SAT	2320	HNU	0.0	Mostly sand with little silt.
36	13			Elastic silt, MH No Sample Recovered	DK GRAY	FRM	MST		HNU	0.0	
35	14		50	Elastic silt, MH	DK GRAY	FRM	MST	55 10 7	HNU	0.0	Same lithology as previous interval.
34	15		i.	No Sample Recovered							
33	- 16										
32	17										``
31	18							, 			
30	+ - 19					-					
29	20										

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 13

BOR	REHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	ŞIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	•
/WE	LL ID	NUM	NÚM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	-
									'											
CWZ	2-MW31	1	1	0.00	2.00	SPS		0	ē	80	20	0	0		LOW	MOD	LSE	MST	% <u>-</u>	
CW2	2-MW31	2	1	2.00	3.00	SPS		0	-	- 85	15	. 0	0		LOW	MOD	SFT	MST -		`
CW2	2-MW31	2	2	3.00	3.50	SPS		0		60	40	0	0		LOW	WEL	FRM	MST ~		
CW2	2-MW31	2	3	3.50	4.00	SPS .		0		0	. 0	0	0							
CW2	2-MW31	3	1	4.00	5.00	SPS		0	F	40	55	5	0		MOD	WEL	FRM	MST	-	
CW2	2-MW31	3	2	5.00	6.00	SPS		0		0	0	0	0							
CW2	2-MW31	4	1	6.00	7.00	SPS		0		40	55	5	0		MOD	MOD	SFT	WET		
CW2	?-MW31	4	2	7.00	7.50	, SPS	_	0	F	80	20	0	0		LOW	WEL	SFT	WET		•
CW2	2-MW31	4	3	7.50	8.00	SPS		0		0	0	0	0 -							
. CW2	2-MW31	5	1	_8.00	9.20	SPS		0		80	20	0	0		LOW	WEL	SFT	SAT		
CWZ	2-MW31	5	2	9.20	10.00	SPS		0		0	0	_ 0	0						•	
CW2	2-MW31	6	1	10.00	11.50	SPS		0		80	20	0	0		LOW	WEL	SFT	SAT _		
CW2	2-MW31	6	2	11.50	12.00	SPS		0		0	0	0	0							_
CW2	2-MW31	7	1	12.00	13.00	SPS		~ 0		90	10	0	0		NON	WEL	LSE	SAT		
CW2	-MW31	7	2	13.00	13.50	SPS		0 ,		0	80	20	0		MOD	WEL	FRM	MST	:	
CW2	-MW31	7	3	13.50	14.00	SPS		0		0	0	. 0	.0		1					
CW2	-MW31	8	1	14.00	15.00	SPS		0	,	0	80	20	0		MOD	WEL	FRM ·	MST		
CW2	-MW31	8	2	15.00	16.00	SPS		0.		0	0	0	0							- *

BOREHOLE ID : CW2-MW32 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/16/94 END DATE : 12/16/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH : 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 49.470

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # : NJ 29 32596

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y)es (N)o: N TYPEDEPTH

PURGE 0.00 0.00

SAMPLE :

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

Latitude North: 40 deg 17' 43.6" Longitude West: 74 deg 05' 10.3"

	MONMOUT		
WELL ID START DATE COMPLETION DATE	12/1	MW32 6/94 6/94	WATER LEVELS
	DEPTH	ELEV.	DRILLING SUMMARY
Protective Casing	1.91 TC	51.38	Driller STEVE BURGER Drilling Fluid NONE
4.00 inch	0.00 GS	49.47	
	,		WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft.
			Type: PVC SCH 40 Stick Up Inner Casing: 1.91 ft. Protective Casing: 2.61 ft.
	3		Casing Grout: CEMT/BENT Interval: 0.00 to 0.80 ft.
			Seal Type: BENTONITE SLURRY Interval: 0.80 to 3.00 ft.
			Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Type: PVC Interval: 3.00 to 5.00 ft. Median Diameter: 5.00 to 14.54 ft. Slots: 0.010 inches
	0.80 BN	48.67	
	3.00 <i>SP</i>	46.47	Backfill Type: Interval: 0.00 to 0.00 ft.
	5.00 <i>SC</i>	44.47	WELL DEVELOPMENT Date 01/05/95 Method Bailing/surge blocking Yield 1 gpm Purged Volume 46 gal
	=		COMMENTS
	14.54 <i>BS</i>	34.93	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	15.00 <i>TD</i>	34.47	TD = Total Depth ####################################
		,	Additional Comments: Depths measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH

CHARLES WOOD AREA SITE NAME :

LOGGER : P. THOMAS BORING ID : CW2-MW32 DRILLING COMPANY : J.C. ANDERSON

TOTAL DEPTH

: 15.00

NORTHING : 0.0000 estimated : MOBILE B-57 DRILLING RIG EASTING 0.0000 estimated : 12/16/94 DATE STARTED

ELEVATION: 49.470 surveyed : 12/16/94 DATE COMPLETED

CLASSIFICATION COLOR H. B. B. D. C. B. D. D. D. D. D. D. D								•					
No Sample Recovered No Sample Recovered No Sample Recovered STITY sand with gravet, SM BROWN No Sample Recovered STITY sand, SM Gray No Sample Recovered ROWN/GRAY LSE SAT 3 HNU 0.0 No Sample Recovered No Sample Recovered No Sample Recovered LSE SAT 4 HNU 0.0 No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	ELEVATION	рертн	MATERIAL	%					BLOW			,	
No Sample Recovered No Sample Recovered No Sample Recovered STITY sand with gravet, SM BROWN No Sample Recovered STITY sand, SM Gray No Sample Recovered ROWN/GRAY LSE SAT 3 HNU 0.0 No Sample Recovered No Sample Recovered No Sample Recovered LSE SAT 4 HNU 0.0 No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered				40	Silty sand, SM	BROWN	ŞFT	SAT	5 5 10	HNU	0.0	0-0.4 topsoil.	
No Sample Recovered No Sample Recovered No Sample Recovered STITY Sand, SM SFT SAT STITY	48 -	1			No Sample Recovered			,	12	•			
No Sample Recovered No Sample Recovered No Sample Recovered STITY Sand, SM SFT SAT STITY													
45	47 -	2		20		BROWN	LSE	SAT	13 20 10	HNU	0.0	Note: Top 4-4.1 - gravel (concrete?)	
43 - 6 43 - 6 SILTY SAND, SM No Sample Recovered BROWN/GRAY LSE SAT 3 HNU 0.0 No Sample Recovered No Sample Recovered LSE SAT 4 HNU 0.0 SILTY SAND, SM No Sample Recovered LSE SAT 4 HNU 0.0 SILTY SAND, SM No Sample Recovered LSE SAT 4 HNU 0.0 HNU 0.0	-	<u> </u>			No Sample Recovered				10				
No Sample Recovered A4 - 5 A5 - 6 - 60 Sitty sand, SM BROWN/GRAY LSE SAT 3 HNU 0.0 A2 - 7 - No Sample Recovered A1 - 8 - 65 Sitty sand, SM OLIVE/GRAY LSE SAT 4 HNU 0.0 Sitty sand with gravet, SM BROWN LSE SAT HNU 0.0 No Sample Recovered A0 - 9 Sitty sand with gravet, SM BROWN LSE SAT HNU 0.0	46 -	3											
No Sample Recovered A4 - 5 A5 - 6 - 60 Sitty sand, SM BROWN/GRAY LSE SAT 3 HNU 0.0 A2 - 7 - No Sample Recovered A1 - 8 - 65 Sitty sand, SM OLIVE/GRAY LSE SAT 4 HNU 0.0 Sitty sand with gravet, SM BROWN LSE SAT HNU 0.0 No Sample Recovered A0 - 9 Sitty sand with gravet, SM BROWN LSE SAT HNU 0.0	-	<u> </u>		-								, ,	
No Sample Recovered No Sample Recovered BROWN/GRAY LSE SAT 3 HNU 0.0 No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered Silty sand, SM OLIVE/GRAY LSE SAT 4 HNU 0.0 Silty sand with gravel, SM BROWN LSE SAT HNU 0.0 No Sample Recovered	45 -	4		20	Silty sand. SM	GRAY	SFT	SAT	5	HNU	0.0		
43 - 6	.					una i		OK.	5 3 5		0.0		
43 - 6							٠.						
A2 - 7 No Sample Recovered OLIVE/GRAY LSE SAT 4 HNU 0.0 7 7 7	.44 -	5										-	
A2 - 7 No Sample Recovered OLIVE/GRAY LSE SAT 4 HNU 0.0 7 7 7	-												
No Sample Recovered 41 - 8	43 -	6		60	Silty sand, SM	BROWN/GRAY	LSE	SAT	3 5	HNU	0.0		
No Sample Recovered No Sample Recovered	-	-				, ,		,	14	/			
41 - 8	42 -	7											
Silty sand with gravel, SM BROWN LSE SAT HNU 0.0					No Sample Recovered								
Silty sand with gravel, SM BROWN LSE SAT HNU 0.0													
Silty sand with gravel, SM BROWN LSE SAT HNU 0.0	41 -	8		65	Silty sand, SM	OLIVE/GRAY	LSE	SAT	4 7 9	HNU	0.0		
No Sample Recovered	-	† ·							7				
	40 -	9				BROWN	LSĖ	SAT		HNU	0.0		
39 - 10 75 Sandy silt, ML GRAY SFT WET 5 HNU 0.0 v. micaceous	.	-			No Sample Recovered								
5 5 5	39 -	10		75	Sandy silt, ML	GRAY	SFT	WFT	5	HNU	0-0	V. micaceous	
					.,	,			4 5 5				

06/02/95

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00
SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : CW2-MW32 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 12/16/94 ELEVATION : 49.470 surveyed DATE COMPLETED : 12/16/94

										
ELEVATION	рвртн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
38	- -\11			Sandy silt, ML	GRAY	SFT	WET		HNU O.O	v. micaceous
37 -	- 12		60	No Sample Recovered Sandy silt, ML	GRAY	SFT	WET	33 62	HNU 0.0	
36	-			No Sample Recovered	,		-			
35 - - 34 -			,	Interval Not Sampled						Set well at 15' bgs.
33 -	- - 16		, :							
32 -	- 17		-					-		
31 -	-									
30 - - 29 -										

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 14

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS) .	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT .	TYPE .	PLAST	SORT	STRENGTH	<u>MOİSTURE</u>	UNIT
•		1.		٠,								•					-	
CW2-MW32	1	1	0.00	0.80	SPS	C	10	MF	45	25	5	15		NON	POR	SFT	SAT	
CW2-MW32	1	2	0.80	2.00	SPS		0		0	0 .	0	0		•				ı
CW2-MW32	2	1	2.00	2.40	SPS	MF	15	MF	55	25	5	0		NON	POR	LSE	SAT	
CW2-MW32	2	2	2,40	4.00	SPS		0		0	0	0	0			•			-
CW2-MW32	3	1	4.00	4.40	SPS		0	MF	60 1	30	10	0		LOW	MOD -	SFT	SAT	
CW2-MW32	3	2	4.40	6.00	SPS	* .	0		0	0	0	0				-		
CW2-MW32	4	1	6.00	7.20	SPS		0,	MFC	7 5	20	· 5	0 .		NON	MOD	LSE	SAT	* *
CM2-MM32	4	2	7.20	8.00	SPS	-	0		0	0	0	, 0						•
CW2-MW32	5	1	8.00	9.00	SPS		0	MF	75	20	5	0	•	NON	MOD	LSE	SAT	•
CW2-MW32	-∕5	2	9.00	9.30	SPS	MCF	35	MF	50	15	0	-0		NA	POR	LSE	SAT	ſ
CM2-MM32	, 5	3	9.30	10.00	SPS		0		0	0	0	0		4×4				
CMS-WM35	` 6	1	10.00	11.50	SPS	~ <u>`</u>	0	F	40	55	5	0		NON	MOD	SFT	WET	
CM2-MM32	. 6	2	11.50	12.00	SPS .		0 '		0	0	0	0				•		•
CMS-WM35	· 7	⁾ 1	12.00	13.20	SPS	,	0	F	40	55	5	0 -		NON	WEL	SFT .	WET	•
CW2-MW32	7	2	13.20	14.00	SPS		. 0		0	0	0	0 -					, .	
CMS-WM35	8	1	14.00	15.00	NS.		0		0	0	0	0				,		5 T

PROJECT NAME: FT. MONMOUTH BOREHOLE ID : CW2-MW33

BEGIN DATE : 12/15/94 END DATE : 12/15/94

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON : STEVE BURGER DRILLER

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 49.180

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # : NJ 29 32597

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.....(Y) es (N) o: N No. OF WELLS : 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH

PURGE 0.00 SAMPLE :

0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 17' 43.3"

Longitude-West: 74 deg 05' 10.2"

	MONMO LES W		AREA	DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	12	/15	MW33 5/94 5/94	WATER LEVELS
	DEPTH		ELEV.	DRILLING SUMMARY
Protective Casing	1.91	TC	51.09	Driller STEVE BURGER
4.00 inch	0.00	GS	49.18	Drilling Fluid NONE Well Type SINGLE CASED SCREENED
				WELL DESIGN CONSTRUCTION
			2	Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40
	9 -			
				Stick Up Inner Casing: 1.91 ft. Protective Casing: 1.99 ft.
	* 1			Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft.
				Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft.
			-	Sand Pack Type: NO. 3 MORIE Grain Size: UNIFORM Interval: 3.00 to 15.00 ft. Median Diameter:
				Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft.
	0.50	BN	48.68	Type: PVC Slots: 0.010 inches
	3.00		46.18	Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	3.00	51	40.10	
	5			WELL DEVELOPMENT Date 01/24/95
	5.00	SC	44.18	Method Surge Blocking/Bailing
			A	SF Congress of State
	2		90	COMMENTS TC = Top of Casing SP = Top Sand Pack = Grout
	14.54	BS	34.64	GS = Ground Surface SC = Top Screen = Seal
	15.00	TD	34.18	BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth = Formation
				Additional Comments: Depths measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : 'CW2-MW33 DRILLING COMPANY : J.C. ANDERSON NORTHING 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated : 12/15/94 DATE STARTED 😹

49.180 surveyed ELEVATION : DATE COMPLETED : 12/15/94

						-					
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
·-	-		70	Silt with sand, ML Silty sand, SM	BROWN BROWN	SFT	MST	11 12	HNU		Topsoil; plant/grass fragments.
48 -	1		,	No Sample Recovered							
47 -	- 2	· · · · · · · · · · · · · · · · · · ·	60	Silty sand, SM	BROWN	SFT	MST	11 10 9	HNU	0.0	-, '
46 -	3		,					9			
-	-			No Sample Recovered		,			·	*	
45 -	-		80	Silty sand, SM	GRAY	SFT	SAT	3334	HNU	0.1	
44 -	- 5 -										
43 -	-6		75	No Sample Recovered Silty sand, SM	GRAY	SFT	SAT	3455	HNU	0.0	Note at 7.3 to 7.5' bgs occurrance of green sand layer (75% sand/25% silt)
42	- - 7							5			tayer (13% Sanuy23% STIL)
	-		``	Silty sand, SM No Sample Recovered	GREEN	LSE	SAT		HNU	0.0	
41 -	- 8		60	Silty sand, SM	GREEN	LSE	SAT	6556	HNU	0.0	c
40 -	- 9		ı	No Sample Recovered							
39	- 10		45	Silty sand, SM	GREEN	LSE	SAT	5	HNU	0.0	
				,		LSE		9 8			

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA

BORING ID : CW2-MW33

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 49.180 surveyed

TOTAL DEPTH : 15.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG

: MOBILE B-57

DATE STARTED

: 12/15/94

DATE COMPLETED

: 12/15/94

INSTRUMENT READING RECOVERY BLOW COUNT ELEVATION FIELD MATERIAL STRENGTH MOISTURE CLASSIFICATION COLOR COMMENTS DEPTH Silty sand, SM GREEN LSE SAT HNU 0.0 38 + 11 No Sample Recovered 37 + 12 No Sample Recovered 36 + 13 35 + 14 Interval Not Sampled Augered interval. 34 + 15 33 + 16 32 + 17 31 + 18 30 + 19 29 -- 20

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 15

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLÀY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT_BGS	>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
CW2-MW33	1	1	0.00	0.60	SPS		0	FM	15	3 0	15	40		NON	POR	SFT	MST	
CW2-MW33	1	2	0.60	1.40	SPS	FM	10	MFC	60	20	5	5		NON	MOD	SFT	MST.	
CW2-MW33	1	3	1.40	2.00	SPS		0		0	0	0	0 .						
CW2-MW33	. 5	1	2.00	3.20	SPS		.0	MFC	60	35	5	0		NON	MOD	SFT	MST	
CW2-MW33	2	2	3.20	4.00	SPS		0		0	0	0	0						·
CW2-MW33	3	1	4.00	5.60	SPS		0	MFC	55	35	10	0		NON	MOD ·	SFT	SAT	
CW2-MW33	3	2	5.60	6.00	SPS		0		0	0	0	0						
CW2-MW33	4	1	6.00	7.30	SPS		0	MFC	55	35	10	0		NON	MOD	SFT	SAT	
CW2-MW33	4	2	7.30	7.50	SPS	•	0	MF	75	25	0	0		NA	MOD	LSE	SAT	
CW2-MW33	4	3	7.50	8.00	SPS		0		0	0	0	0				•		_
CW2-MW33	5	1	8.00	9.20	SPS	F	10	MF	70	20	0	0		NA	MOD	LSE	SAT	ŕ
CW2-MW33	5	2	9.20	10.00	SPS		0		0	0	0	0						•
CW2-MW33	6	1	10.00	10.90	SPS	F .	10	MF	70	20	0	0		NON	MOD	LSE	SAT	_
CW2-MW33	6	2	10.90	12.00	SPS		0		0	0	0	0						
CW2-MW33	7	1	12.00	14.00	SPS		0		0	0	0	0						
CW2-MW33	8	1	14.00	15.00	NS		0		0	0	0	0						

BOREHOLE ID : CW6-MW34 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/03/95 END DATE : 01/03/95

LOGGER/COMPANY : K VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID :

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID :

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION : 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.... (Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y)es (N)o: N TYPEDEPTH

PURGE0.00 0.00

SAMPLE :

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON CHARLES WOOD AREA 6 SITE NAME INSPECTOR K. VALENTI WELL ID CW6-MW34 WATER LEVELS START DATE 01/03/95 **COMPLETION DATE** 01/03/95 DEPTH ELEV. DRILLING SUMMARY 1.79 TC Driller 33.76 WELLS REEVE Protective Casing Drilling Fluid WATER 0.00 GS Well Type 00 inch 31.97 SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 14.50 ft. Type: PVC SCH 40 Stick Up Inner Casing: Protective Casing: 1.79 ft. 2.20 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.00 ft. Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: MORIE #1 Interval: 3.00 to 14.50 ft. Median Diameter: Grain Size : UNIFORM Screen Diameter: 4.00 Interval: 4.50 to 14.04 ft. Type: PVC Slots: 0.010 inches 1.00 BN 30.97 Silt Trap Interval: 14.04 to 14.50 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 28.97 WELL DEVELOPMENT 01/06/95 Date 4.50 SC Method Bailing/overpumping 27.47 Yield 3 Purged Volume 150 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.04 BS 17.93 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>> = Formation 14.50 TD 17.47 Additional Comments:

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH TOTAL DEPTH

: 14.50 SITE NAME : CHARLES WOOD AREA 6 LOGGER : K VALENTI

BORING ID : CW6-MW34 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated **\: CME-55** DRILLING RIG 0.0000 estimated EASTING : 01/03/95 DATE STARTED ELEVATION : 0.000 estimated DATE COMPLETED : 01/03/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			25	Silty sand with gravel, SM No Sample Recovered	BROWN	LSE	MST	10 10 13 11	HNU	0.0	Fill(?) Collected sample CW06-SB34-A01. 3" SPS used.
-1 -	1	,	•			,					,
-2	2		100	Poorly graded sand, SP	GRAYISH BROWN	LSE	WET	15 18 17 21	HNU	0.0	Fill(?). 3" SPS used. Collected samp. CW06-SB34 A02. Wet a2'bgs. Sands coarsens down. Fe stain.
-3 -	3								,		
-4 -	4		100	Poorly graded sand, SP	OLIVE GREEN-BRO	LSE	SAT	3 4 4	HNU	0.0	Colors: 4-5' olive green, 5-5.6' pale brown. 5.5-6' orange brown.
-5	5									,	
-6 -	- 6		100	Poorly graded sand, SP	BROWN	LSE	SAT	4555			Colors; 6-6.5 brown, 6.9-7.6 orange, 7.5-8, greenish brown.
-7 -	7			· ·							
-8	- 8		100	Poorly graded sand, SP	BROWN	LSE	SĄT	6 7 7	HNU	0.0	Color: 8-8.5' orange 8.5-10' greenish brown more olive/brown towards bottom of spoon.
-9 -	- 9						,	7	,		_
-10 -	10		25	Poorly graded sand, SP	LT BROWN	LSE	SAT	10	HNU	0.0	
	·						SAT	10 13 15		<u>-</u> -	

PROJECT FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 6

BORING ID : CW6-MW34

0.0000 estimated NORTHING : EASTING 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH : 14.50

LOGGER : K VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 01/03/95

DATE COMPLETED : 01/03/95

					•				
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR		BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
~. <u></u>				Poorly graded sand, SP No Sample Recovered	LT BROWN	LSE S	AT	HNU 0.0	
-11	11			, .			(
-12 -	- 12		100	Poorly graded sand, SP	LT BROWN	LSE S	AT 10 13 15 15	HNU 0.0	TD of borehole 14.5'. Lt orange banding from 13-13.8. 13-8-14 heavy Fe banding.
-13 -	- 13 -			·					,
-14 -	14		-	Interval Not Sampled					Augered interval.
-15 -	- 15 -								
-16 -	- 16 -		,	,				-	
-17 -	- 17								
-18	- 18								
-19	- 19 -								
-20 -	- 20						,		

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 19

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GR	RAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	3)	METHOD	GRAVEL PC	T.	SAND	PCT	PCT	PCT	PCT.	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIŢ	<u>:</u>
													/					_	
CW6-MW34	1	1	0.00	0.50	SPS	2	20		65	15	0	0		NON	POR	LSÉ	MST		
CW6-MW34	1	2	0.50	2.00	SPS		0		0	Ō	0	0			~	ş			
CW6-MW34	2	1	2.00	4.00	SPS		0		100	0	- 0	0		NON	MOD	LSE.	WET		•
CW6-MW34	3	1	4.00	6.00	SPS		0		100	0 -	0	0	•	NON	MOD	LSE	SAT		
CW6-MW34	4	1	6.00	8.00	SPS		0	F	100.	0	0	0		NON	MÓD	LSE	SAT		
CW6-MW34	5	1	8.00	10.00	SPS		0		100	0	0	0	•	NON	MOD	LSE	SAT	•	
CW6-MW34	6	1	10.00	10.50	SPS		0	MF	100	0	0	0		NON	MOD	LSE	SAT		
CW6-MW34	6	2	10.50	12.00	SPS		0		0	0	0	0							
CW6-MW34	7	· 1	12.00	14.00	SPS		0		100	0	0	0		NON	MOD	LSE	SAT	•	-
CW6-MW34	8	1	14.00	14.50	NS		0		0	٠0	0	0	. ,		•			•	

BOREHOLE ID : CW9-MW35 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/03/95 END DATE : 01/04/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 0.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD: HSA FLUID: NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON
DRILLER: WELLINGTON REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 29.270

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # : NJ 29 32600

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.... (Y) es (N) o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS : 0

PUMPS INSTALLED...(Y)es (N)o: N TYPE DEPTH

 PURGE:
 0.00

 SAMPLE:
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 17' 48.9"

Longitude-West: 74 deg 04' 25.2"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME CHARLES WOOD AREA 9 P. THOMAS INSPECTOR WELL ID CW9-MW35 WATER LEVELS START DATE 01/03/95 **COMPLETION DATE** 01/04/95 DEPTH ELEV. DRILLING SUMMARY 2.16 TC 31.43 Driller WELLINGTON REEVE Protective Casing Drilling Fluid NONE 0.00 GS .00 inch 29.27 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 4.50 ft. Type: Stick Up Inner Casing: ft. 2.16 Protective Casing: 2.46 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft. Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft. Sand Pack Type: NO. 1 SAND PACK Interval: 3.00 to 14.50 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 4.50 to 14.01 ft. Type: Slots: **PVC** 0.010 inches 0.50 BN 28.77 Silt Trap Interval: 14.01 to 14.50 Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 26.27 WELL DEVELOPMENT 01/06/95 Date 4.50 SC Method 24.77 Surge blocking/bailing Yield Purged Volume 225 gal **COMMENTS** SP = Top Sand Pack TC = Top of Casing = Grout 14.01 BS 15.26 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth **** = Formation 14.50 TD 14.77 Additional Comments: Depths measured below ground surface.

NOTE: Well Diagram not to Scale

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 9

BORING ID : CW9-MW35

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 29.270 surveyed

TOTAL DEPTH : 0.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 01/03/95

DATE COMPLETED : 01/04/95

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
-	-		65	Silty sand, SM	DK BROWN	SFT	MST	68 9 11	HNU	0.0	Fill. Topsoil, plant/ grass fragments. M. qtz gravel ~0.9-1.0 bgs.
28 -	- 1	1	``.	Poorly graded sand with silt, SP-SM No Sample Recovered	GRAY BROWN	LSE	WET	,	HNU	0.0 ·	
27 -	- 2	•—••••••••••••••••••••••••••••••••••••	80	Silty sand, SM	OLV/GRAY/ORG/BR	LSE	WET	36 22 18 11	HNU	0.0	Color change from gray brown 2-2,45; to olive brown 2-45-2.7 bgs, and orange brown 2.7-3.6.
26 -	- 3			No Sample Recovered	· .						
25 -	- 4		55	Poorly graded sand with silt and gravel, SP-SM	ORÄNGE BROWN	LSE	SAT	7 7 7 7	HNU	0.0	
24 -	- 5 -			Silty sand, SM No Sample Recovered	OLIVE BROWN	LSE	SAT		HNU _.	0.0	
23 -	-6 ,		80	Silty sand, SM	OLIVE BROWN	SFT	SAT	8676	HNU	0.0	Iron (Fe) stained laminae 6-7' bgs. 7-7.6' bgs. color change to gray brown, fining downward.
22 -	- 7							•			
21 -	- 8		50	No Sample Recovered Silty sand, SM	OLIVE BROWN	SFT	SAT	6667	HNU	0.0	Sand with silt laminae
20 -	- 9			No Sample Recovered				•	,	, ~	
19	- 10		30 /	Silty sand, SM	OLIVE BROWN	SFT	SAT	3588	HNU	0.0	Strong presence of dark heavy minerals.

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 9

BORING ID : CW9-MW35

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated ELEVATION : 29.270 surveyed TOTAL DEPTH : 0.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 01/03/95

DATE COMPLETED : 01/04/95

						_				1
ELEVATION	DEPTH	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Silty sand, SM	OLIVE BROWN	SFT	SAT		HNU 0.0	Strong presence of dark heavy minerals.
18	11			No Sample Recovered			,	,		
17	12		50	Silty sand, SM	OLIVE BROWN	SFT	SAT	4689	HNU 0.0	Strong presence of dark heavy minerals.
16	13		ı	No Sample Recovered						
15 -	14			Interval Not Sampled	·					Interval not sampled, augered interval; set well at 14.5 bgs.
_	-	Ш								well at 14.5 bgs.
14 -	15	-				• .			·	
13 -	- 16		,							
-	-									
12: -	17			,						
				_						
11 -	18									
-	-				•					
· 10 -	- 19		•		,				`	
-	-									
9 -	- 20								, ~	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 26

BOREHOLE	SMP	LTH	LITHOĻOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL_ID	NUM	NUM	(FT BGS	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
											,	•					`		
CW9-MW35	1	1	0.00	1.00	SPS	M	10		45	30	5	10	-	NON	MOD	SFT	MST		c١
CW9-MW35	1	2	1.00	1.30	SPS		0	MFC 1	90	10	0	0		NA	MOD	LSE	WET		
`CW9-MW35	1	3	1.30	2.00	SPS		0		0	0	0	0	,						
CW9-MW35	2	1	2.00	3.60	SPS		0	MCF	85	15	0	0		NA	MOD	LSE	WET		
CW9-MW35	2	2	3.60	4.00	SPS	`	0		0	0	0	0							
CW9-MW35	3	1	4.00	4.70	SPS	M	30	MCF	60	10	0	0		NA	MOD	LSE	SAT		
CW9-MW35	3	2	4.70	5.10	SPS		0	MCF	85	15	0	0		NA T	MOD	LSE	SAT		
CW9-MW35	3	3	5.10	6.00	SPS		0		.0	0	0	. 0					,		
CW9-MW35	4	1	6.00	7.60	SPS		0	MF	70	30	0	0		NA	MOD	SFT	SAT		
CW9-MW35	4	2	7.60	8.00	SPS		0		0	0	0	0				•			
CW9-MW35	5	1	8.00	9.00	SPS		0	FM	80	20	0	0		NON	MOD	SFT	SAT		
CW9-MW35	5	2	9.00	10.00	SPS .	J	0	•	0	0	0	0							
CW9-MW35	6	1	10.00	10.60	SPS		0	FM	80	20	0	0		NA	MOD	SFT	SAT .		•
CW9-MW35	6	2	10.60	12.00	SPS		0		0	0	0	0					•		
CW9-MW35	7	1	12.00	13.00	SPS		0	MF	80	20	0	0		NA	MOD	SFT	SAT	•	
CW9-MW35	. 7	2	13.00	14.00	SPS		0		0 ~	. 0	0	0	•			•			
CW9-MW35	8	1	14.00	14.50	NS		0		0	0	0	0 .			•				

BOREHOLE ID : CW9-MW36 PROJECT NAME: FT. MONMOUTH BEGIN DATE : 01/04/94 END DATE : 01/04/95 LOGGER/COMPANY : P. THOMAS BOREHOLE COMPLETED IN (<0>verburden edrock) : 0 TOTAL DEPTH : 14.00 DEPTH TO BEDROCK : 0.00 BOREHOLE DIAMETER #1: 12.00 INTERVAL: 0.00 ft. to 14.00 ft. BGS METHOD: FLUID: BOREHOLE DIAMETER #2: INTERVAL: METHOD: FLUID : BOREHOLE DIAMETER #3: INTERVAL: METHOD : FLUID: DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : ATV-SKID RIG ESTIMATED SURVEYED SURFACE ELEVATION : 0.000 31.220 N. COORDINATE: 0.0000 0.0000 E. COORDINATE: WELL PERMIT.....(Y)es (N)o: N PERMIT #: HOLE ABANDONED...(Y)es (N)o: N WELL INSTALLED...(Y)es (N)o: Y WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0 PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH PURGE : 0.00 SAMPLE : 0.00 BOREHOLE TESTING BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N PUMPING TESTS.....(Y)es (N)o: N COMMENTS: Lat. N. 40 deg. 17'47" Long. W. 74 deg. 4'28"

LIENT FT. TE NAME	MONMOU	in	DRILLING FIRM J.C. ANDERSON INSPECTOR P. THOMAS
ELL ID TART DATE OMPLETION DATE	01/	MW36 03/95 04/95	WATER LEVELS
	DEPTH	ELEV.	DRILLING SUMMARY
Protective Casing	1.99 T	C 33.21	Driller STEVE BURGER Drilling Fluid WATER
4.00 inch	0.00 G	S 31.22	Well Type SINGLE CASED SCREENED
			WELL DESIGN CONSTRUCTION
			Casing #1 Diameter: 4.00 inch
			Stick Up Inner Casing: 1.99 ft. Protective Casing: 2.38 ft.
		8	Casing Grout: CEMT/BENT Interval: 0.00 to 1.00 ft
			Seal Type: BENTONITE SLURRY Interval: 1.00 to 3.00 ft
			Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Median Diameter:
	∛		Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 4.00 to 13.54 ft.
	1.00 B	N 30.22	Type: PVC Slots: 0.010 inches
			Silt Trap Interval: 13.54 to 14.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft.
	3.00 S	P 28.22	maervai. 0.00 to 0.00 ji.
		87	WELL DEVELOPMENT
	4.00 S	C 27.22	
			Yield 4 gpm Purged Volume 175 gal
			COMMENTS
	13.54 B	S 17.68	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal
			BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth
	14.00 T	D 17.22	Additional Comments:
			Tameroum Communa.

NOTE: Well Diagram not to Scale

PROJECT FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 9

BORING ID : CW9-MW36.

NORTHING 0.0000 estimated

EASTING 0.0000 estimated

DRILLING COMPANY DRILLING RIG

TOTAL DEPTH

LOGGER

: 14.00

: P. THOMAS

: J.C. ANDERSON

: ATV-SKID RIG

DATE STARTED

: 01/04/94 ELEVATION : 31.220 surveyed : 01/04/95 DATE COMPLETED

	ELEVATION	рветн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				100	Well graded sand with silt, SW-SM	BROWN TO BLACK	LSE	MST	4334	HNU	0.0 -/	Fill/topsoil.
	-	Ļ							4			
	30 -	- 1				μ					, (
		·		,								
		,				* .						
	29 -	- 2		100	Well-graded sand, SW	LT BROWN	LSE	WET	5	нии	0.0	Moderate lt. gray mottling. SPS wet a3' bgs
	-	-							5656			
	28 -	- 3				• •		· .	-			,
					·							
ŀ		-					, -					
	27 -	- 4	$\otimes\!\!\!\otimes$	100	Other	LT BROWN	LSE	SAT	5	HNU.	0:0	Saturated at 5' bgs. Lt. iron (Fe) staining at bottom of SPS.
	, :	-	\bowtie	-				r	5 8 7			bottom of SPS.
	26	- 5	\bowtie				·			,		
-	20		\bowtie			· ·			,			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		• `	\bowtie					ſ				
	25	- 6	\bowtie	50	Other	LT ORANGE-BROWN	LSE	SAT	ر 10	HNU	4.0	
	-	_	\bowtie		,			,	7 10 11 12		٠.	
	٠,	- 7	888			-						
	24			3	No Sample Recovered				,			, · · · · · · · · · · · · · · · · · · ·
	,	-						,		. ,	-	
	23	8 -		100	Poorly graded sand, SP	LT ORANGE-BROWN	LSE	SAT	3	HNU	5.0	Lt (orange/red) iron (Fe) staining in lower half of SPS.
	1	-		-					₹ 4	HNU	,	SPS.
-					,				-			,
	22	9								'		
,	.	-				. 		,				
	21	.′ -∕10		100	Poorly graded sand, SP	YELLOWISH BROWN	LSE	SAT	Ş	HNU	5.0	Some iron (Fe) staining.
L		-							4 5			

31.220 surveyed

ELEVATION :

PROJECT FT. MONMOUTH TOTAL DEPTH : 14.00 SITE NAME CHARLES WOOD AREA 9 LOGGER : P. THOMAS CW9-MW36 BORING ID : DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG _ : ATV-SKID RIG 0.0000 estimated DATE STARTED : 01/04/94

DATE COMPLETED

: 01/04/95

2	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	20 -	- 11			Poorly graded sand, SP	YELLOWISH BROWN	LSE	SAT		HNU 5.0-	Some iron (Fe) staining.
	19 -	- - 12 -		100	Poorly graded sand, SP	LT BROWN	LSE	SAT	3888	HNU 6.0	Fe staining throughout SPS. End SPS. To auger to 15. Set well TD 14.
	18 -	- 13				, ,					
	17 -	· •									
	15 -	_			-			,			
	14 -	- 17									
	13 -	- 18								-	
	12 -	-									
	11	20			*.						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 27

į	BOREHOLE	, SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
	/WELL ID	NUM	NUM	(FT BG	<u>s)</u>	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
	CW9-MW36	1	1	0.00	2.00	SPS	M	5	CM	55	10	. 0	0		NA	POR	LSE	MST	
	CW9-MW36	2	1	2.00	4.00	SPS		0	CM	100	0	0.	0		NA	POR	LSE	WET	
	CW9-MW36	3	1	4.00	6.00	SPS		0	CM ·	100	0	0	. 0		NA	MOD	LSE	SAT	
	CW9-MW36	4	1	6.00	7.00	SPS		0	CM	100	0	0	. 0		NA.	POR	LSE	SAT	J
	CM3-WM36	4	2	7.00	8.00	SPS		0		0	0	0	0						
	CH9-MH36	5	1	8.00	10.00	SPS		0	MF	. 100	0	0	0		NA .	MOD	LSE	SAT	
	CW9-MW36	6	1	10.00	12.00	SPS		0	MF	100	0	0	0		NA	MOD	LSE	SAT	'n
	CW9-MW36	7	1	12.00	14.00	SPS		0	MF	100	0	0	0		NA	MOD	LSE	SAT	

BOREHOLE ID: B6-MW6B PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/10/95 END DATE : 01/10/95

LOGGER/COMPANY: K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 0.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 14.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY: J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 35.190

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32602

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS : 0

PUMPS INSTALLED...(Y) es (N) o: N TYPE DEPTH

 PURGE:
 0.00

 SAMPLE:
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 17' 48.4" Longitude-West: 74 deg 04' 43.8" CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME CHARLES WOOD AREA INSPECTOR K. VALENTI WELL ID B6-MW6B WATER LEVELS START DATE 01/10/95 **COMPLETION DATE** 01/10/95 DEPTH ELEV. DRILLING SUMMARY 2.18 TC 37.37 Driller WELLS REEVE Protective Casing Drilling Fluid WATER 4.00 inch 0.00 GS 35.19 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 14.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: **Protective Casing:** 2.18 ft. 2.33 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.00 ft. Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: #1 MORIE Interval: 3.00 to 14.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 4.00 to 13.54 ft. Type: PVC Slots: 0.010 inches 1.00 BN 34.19 Silt Trap Interval: 13.54 to 14.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 32.19 WELL DEVELOPMENT Date 01/24/95 4.00 SC 31.19 Method Surge Block/Overpumping Yield Purged Volume 260 gal ~.5 qpm **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 13.54 BS 21.65 GS = Ground Surface SC = Top Screen Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth ********** = Formation 14.00 TD 21.19 Additional Comments:

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA

BORING ID : B6-MW6B

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 35.190 surveyed

TOTAL DEPTH : 0.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 01/10/95

DATE COMPLETED : 01/10/95

CLASSIFICATION COLOR BE SEED OF THE STATE OF	NO.		l i	ERY			Ħ	a	COUNT	Ą	ENT.	
Poorty graded sand, SP YELLOW LT BROWN LSE MST 14 HNU 2.0 Support Cleared sample BR-SSD1-AD1: Do of spoon Troopty graded sand, SP YELLOW LT BROWN LSE MST 14 HNU 2.0 Support Cleared sample BR-SSD1-AD1: Do of spoon The state of the s	GEVAT	PTH	ATERI?	RECO1	CLASSIFICATION	COLOR	RENGI	ISTUE		FIEI	STRUP READI	COMMENTS
33 - 2	圙	<u> </u>	<u> </u>	. %				-				
33 - 2 100 Poorly graded sand, SP YELLOW LT BROWN LSE WET 6 HNU 2.5 Uncertain/fill? Drove 2" and 3% SP 5, Some Fe sample 80" SEU! A02" collected." 100 Poorly graded sand with YLLWSH LT BROWN LSE SAT 3 HNU 0.0 Uncertain/fill? 2" sps hernes stains space stains will brown towards Bottom. 29 - 6 100 Poorly graded sand with BROWN LSE SAT 3 HNU 0.0 HNU 0.0 Top 2" of SPS is same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 Same as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 3 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAME as above top 4" of SEE SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT 4 HNU 0.0 SAT		†		,	Poorly graded sand, SP	YELLOW LT BROWN	LSE	MST	11	HNU :	2.0	Uncertain/fill? Used 3" spoon, Collected sample B6-SB01-A01. Top of spoon 3 inches was topsoil.
32 - 3 31 - 4 100 Poorly graded sand with yllwsh LT BROWN LSE SAT 3 HNU 0.0 Uncertain/fil? 2" sps her to tail sps wet hild brown towards bottom. 30 - 5 29 - 6 100 Poorly graded sand with slit, sp-sm become the total sps wet hild brown towards bottom. 28 - 7 27 - 8 100 Elastic silt, NH BLACK FRM DRY 3 HNU 0.0 Top 2" of SPS is same as above. Top 4" of SPS was left.	34	1						,				
31 - 4	33	- 2		100	Poorly graded sand, SP	YELLOW LT BROWN	LSE	WET	6 7	HNU 2	2.5	Uncertain/fill? Drove 2" and 3" SPS. Some Fe
29 6 100 Poorly graded sand with silt, SP-SM BROWN LSE SAT 3 HNU 0.0 Poorly graded sand with silt, SP-SM BROWN LSE SAT 3 HNU 0.0 Same as above interval change. 28 7 BLACK FRM DRY 3 HNU 0.0 Top 2" of SPS is same as above interval change.	32	+3		-					10			B6-SB01-A02 collected.
29 6 100 Poorly graded sand with silt, SP-SM BROWN LSE SAT 3 HNU 0.0 Poorly graded sand with silt, SP-SM BROWN LSE SAT 3 HNU 0.0 Same as above interval change. 28 7 BLACK FRM DRY 3 HNU 0.0 Top 2" of SPS is same as above interval change.				1								
29 - 6	31	+ 4		100	Poorly graded sand with silt, SP-SM	YLLWSH LT BROWN	LSE	SAT	3 3 4 5	HNU (0.0	Uncertain/fill? 2" sps here to TD. \$ps wet. Mild orange staining. Soil brown towards bottom.
28 - 7 27 - 8	30	5			,							
28 - 7 27 - 8	29	6		100	Poorly graded sand with	BROWN	LSE	SAT	3	HNU (0.0	
27 - 8	20	 			,				5		,	,
26 - 9 25 - 10 100 Elastic silt, MH BLACK FRM MST 4 HNU 0.0 Same as above. Top 4" of sps was wet.	28	[,	
26 - 9	27`	8		100	Elastic silt, MH	BLACK	FRM	DRY	3449	HNU (0.0	Top 2" of SPS is same as above interval. Sharp interval change.
SDS was wet.	26	9										
, , , , , , , , , , , , , , , , , , ,	25	10		100	Elastic silt, MH	BLACK	FRM	MST	4	нии с	0.0	Same as above. Top 4" of

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA

BORING ID : B6-MW6B

NORTHING : 0.0000 estimated EASTING : 0.0000 estimated

ELEVATION : 35.190 surveyed

TOTAL DEPTH : 0.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 01/10/95

DATE COMPLETED : 01/10/95

<u> </u>									- '	
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Elastic silt, MH	BLACK	FRM	MST		HNU 0.0	Same as above. Top 4" of sps was wet.
24	- 11 - 11									
1										
23	 12		- 100	Elastic silt, MH	BLACK	FRM	WET	3	HNU 0.0	TD of borehole.
						-		3355		
	† ·)		·
22	13			•	1					
_ ~~	,13									`
	ļ									
		,								
. 21	14		•	,	-	'				
	+									
						1				
20	 15									
				·						
	Ţ									,
10	16		1							
'	'				•					
	+									
18	17			-						
	†									
	1									. ,
17	18				,					
	1									
	1			·						
16	19									
.5	''									
	+									
15	20									
				,						
	1		<u></u>						L	!

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 4

BOREHOLE	SMP	LTH	LITHOLOGY	/ INT	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK		•			STRAT		
/WELL ID	NUM	NUM	(FT BGS	3)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT		
																'-		~,		_
B6-MW6B	1	1	0.00	2.00	SPS		Q.	MF	100	0	0	0	•	NON	WEL	LSE	MST		,	
'B6-MW6B	2	1	2.00	4.00	SPS		Ò		95	5	0	0		NON	WEL	LSE	WET			
B6-MW6B	3	1	4.00	6.00	SPS		0	MF	90	10	0	0 <		NON	WEL	LSE	SAT			
B6-MW6B	4	1	6.00	8.00	SPS		0	MF	90	10	0	0 `		NON	WEL	LSE	SAT			
B6-MW6B	5	1	8.00	10.00	SPS		0		5	65	30	0		MOD	MOD	FRM	DRY			
B6-MW6B	6	. 1	10.00	12.00	SPS		0	1	2	70	28	0		MOD	WEL	FRM	MST			
B6-MW6B	7	1	12.00	14.00	SPS		0		0	.90	10	0		MOĐ	WEL	FRM	WET			

BOREHOLE ID : B7-MW7B PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/10/95 END DATE : 01/10/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 15.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 64.270

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32604

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS......(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Sample B7-SB01-A01 collected at 1-2' bgs. Sample B7-SB01-A02 collected at 5-6' bgs. Top of water table ~6' bgs. Latitude-North: 40 deg 17' 32.5"/Longitude-West: 74 deg 05' 21.3"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON CHARLES WOOD AREA SITE NAME INSPECTOR K. VALENTI WELL ID B7-MW7B WATER LEVELS START DATE 01/10/95 **COMPLETION DATE** 01/10/95 DEPTH ELEV. **DRILLING SUMMARY** 2.04 TC 66.31 Driller WELLS REEVE Protective Casing Drilling Fluid WATER .00 inch 0.00 GS 64.27 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 6.00 inch Interval: 0.00 to 15.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: Protective Casing: 2.04 ft. 2.47 ft. Casing Grout: PORTLAND CEMENT Interval: 0.00 to 1.00 ft. Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: #1 MORIE Interval: 3.00 to 15.00 ft. Grain Size : UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: Slots: **PVC** 0.010 inches 1.00 BN 63.27 Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 61.27 WELL DEVELOPMENT Date 01/24/95 5.00 SC 59.27 Method Surge Block/Overpumping Yield 2 Purged Volume 122 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 49.73 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>> = Formation 15.00 TD 49.27 Additional Comments:

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI

BORING ID : B7-MW7B DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 0.0000 estimated DATE COMPLETED : 0.0000 estimated DATE COMPLETED : 0.0000

	ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	READING	COMMENTS
				100	Silt with sand, ML	BROWN	STF	DRY	3 3 4 6	HNU 2.	0.	Fill/uncertain, 3" SPS Sampled B7-SB01-A01 from tightly packed silt.
		,						-	6			
	63 -	1				,						
			,					:				
į	62 -	2		100	Silt with sand, ML	BROWN	STF-	DŖY	3	HNU 1.		Fill/uncertain, 3" sps
İ	_				Poorly graded sand, SP	YELLOW BROWN	LSE	MST	3	HNU`1.		Fill/uncertain. 3" sps used. Fill/uncertain. Brown
	44 -	_					!					Fill/uncertain. Brown sand 2.4-2.9' Grades into It brown-yellowish sand w/few cobbles to 4' bgs.
	61 -	-3 .			·					,	•	
	-	,									•	1.0
	60 -	- 4		100	Poorly graded sand, SP	OLIVE	LSE	WET	5 6 7	HNU 5.	0	Fill/uncertain, 3" SPS used. Sample B7-SB01-A02.
	-	-							6 7			
	59 -	- 5		-		· .	:					,. ·
	_	L								, .		
	E0 -	- 4							ď		,	
	_. 58 ~	6		100	Poorly graded sand, SP	OLIVE GRAY	LSE	SAT	2245	HNU O.	0	SPS 2" used. Saturated at 6' bgs.
	-	-							כ	. *		
	57 ~	7.				-						
		-					^					
1	56 ⁻	- 8		·50	Poorly graded sand, SP		LSE	SAT	5	HNU O.	0	SPS saturated.
	-	-			·				5589			
	55 [°] -	- o			No Sample Becaused			-				
	ְׁ כּנ				No Sample Recovered		-					
		-				,					•	
	54 ~	- 10		100	Poorly graded sand, SP	LT BROWN	LSE	SAT	2357	HNU O.	0	
L					<u> </u>		L	L	_7	<u>'</u> .		

: 15.00

PROJECT FT. MONMOUTH TOTAL DEPTH

SITE NAME : CHARLES WOOD AREA LOGGER : K. VALENTI BORING ID : B7-MW7B DRILLING COMPANY : J.C. ANDERSON

NORTHING 0.0000 estimated DRILLING RIG : CME-55 EASTING 0.0000 estimated DATE STARTED : 01/10/95

ELEVATION: 64.270 surveyed DATE COMPLETED : 01/10/95

ELEVATION	овртн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
53 -	11			Poorly graded sand, SP	LT BROWN	LSE	SAT		HNU O.O	,
52 -	12		100	Poorty graded sand, SP	LT BROWN	LSE	SAT	65,69	HNU 0.0	Some It orange banding. Auger to 15' bgs to set well.
51 -	13			Interval Not Sampled					,	Augered interval TD at 15' bgs.
49 -	15									ior bgs.
48 -	16									
47 -	-	, 1				(.				
45 -	- 19				,					
44 -	- 20					,	-			

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 5

BOREHOLE	SMP	LTH	LITHOLOG'	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
•		,			•			<u> </u>			(
B7-MW7B	1	1	0.00	2.00	SPS		0		15	80	0	5		LOW	POR	STF	DRY	
B7-MW7B	. 2	1	2.00	2.40	SPS		0		. 15	85	0	0		LOW	NA	STF	DRY	
B7-MW7B	2	2	2.40	4.00	SPS		5	MF	95	0	0	0		NON	MOD	LSE	MST	
B7-M₩7B	3	1	4.00	6.00	SPS		0	MF	100	0	0	0 .		NON	MOD	LSE	WET	
B7-MW7B	4	1	6.00	8.00	SPS		0	М	100	0	0	0		NON	MOD	LSE	SAT	•
B 7-MW 7B	5	1	8.00	9.00	SPS		0		100	0	0	0	,	NA	MOD	LSE	SAT	
B7-MW7B	5	2	9.00	10.00	SPS `		0		0	0	0	0					•	
B7-MW7B	. 6	1	10.00	12.00	SPS		0		100	0	0	0	•	NÓN	MOD	LSE	SAT	
B7-MW7B	7	1	12.00	14.00	SPS		0	MF	100	0	0	0		NA	WEL	LSE	SAT	
B7-MW7B	8	1	14.00	15.00	NS		0		0	0	0	0						

PROJECT NAME: FT. MONMOUTH BOREHOLE ID : B8-MW8B

BEĞIN DATE : 01/10/95 END DATE : 01/10/95

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

DEPTH TO BEDROCK : 0.00 TOTAL DEPTH: 15.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 15.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : STEVE BURGER

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE

ELEVATION : 0.000 47.040

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32598

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER.... (Y)es (N)o: N No. OF WELLS : 0 WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE

DEPTH PURGE 0.00

SAMPLE: .0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Latitude-North: 40 deg 17' 35.3"

Longitude-West: 74 deg 05' 01.4"

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON SITE NAME CHARLES WOOD AREA INSPECTOR THOMAS WELL ID B8-MW8B WATER LEVELS START DATE 01/10/95 **COMPLETION DATE** 01/10/95 DEPTH ELEV. DRILLING SUMMARY 1.86 TC 48.90 Driller STEVE BURGER Protective Casing Drilling Fluid WATER 0.00 GS .00 inch 47.04 Well Type SINGLE CASED SCREENED **WELL DESIGN CONSTRUCTION** Casing #1 Diameter: 4.00 inch Interval: 0.00 to 5.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: ft. Protective Casing: 2.37 ft. Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft. Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft. Sand Pack Type: NO. 1 SAND MORIE Interval: 3.00 to 15.00 ft. Grain Size : Median Diameter: UNIFORM Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: Slots: PVC 0.010 inches 0.50 BN 46.54 Silt Trap Interval: 14.54 to 15.00 Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 44.04 WELL DEVELOPMENT Date 01/24/95 Surge Blocking/Overpump 5.00 SC Method 42.04 Yield 1-4 gpm Purged Volume 210 gal **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 32.50 GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth >>>>> = Formation 15.00 TD 47.04 Additional Comments: Depths are measured below ground surface.

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : B8-MW8B DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 01/10/95 ELEVATION : 47.040 surveyed DATE COMPLETED : 01/10/95

	,		•		·						
ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
			50	Sandy silt, ML	BROWN	SFT	MST	14	OVM	0.0	Topsoil.
46	1			Poorly graded sand, SP	YELLOW BROWN	LSE	MST	120	OVM	0.0	Sharp contact. Sampled 1-27 bgs 88-S801-A01.
				No Sample Recovered	Ī]					
45 -	2		100	Poorly graded sand, SP	YELLOW BROWN	LSE	MST:	15 10 15 10	OVM	0.0	Same unit as above.
44 -											
42 -			70	Poorly graded sand with silt, SP-SM	YELLOW BROWN	LSE	ΨET	11 16 17 14	OVM	0.0	Sat ~5' bgs; Iron (Fe) stained zones throughout. Sampled B8-SB01-A02
-	╀.			No Sample Recovered	-						
	ļ					ļ. Ī					
41 -	6		60	Silty sand, SM	YELLOW BROWN	LSE	SAT	16 10 15 14	OVM . (0.0	. ,
40 -	7			No Sample Recovered							
39 -	8		7 5	Silty sand, SM	YELLOW BROWN	LSE	SAT	15 10 15 16	OVM (0.0	·
38 -	9			No Sample Recovered							
		1 I			1						
37 -	10			Interval Not Sampled					OVM (0.0	Augered interval to keep sands out of hole. Cutting same lithology as above.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 15.00

SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : B8-MW8B DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57
EASTING : 0.0000 estimated DATE STARTED : 01/10/95

ELEVATION : 47.040 surveyed DATE COMPLETED : 01/10/95

		1			т		,		····	
ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT		COMMENTS
<u>-</u>	-			Interval Not Sampled					OVM 0.0	Augered interval to keep sands out of hole. Cutting same lithology as above.
36 -	11			` (
35 -	- 12		80	Silty sand, SM	YELLOW BROWN	LSE	SAT	6459	OVM 0.0	Iron (Fe) stained zones throughout - dark heavy minerals throughout spoon
34 -	- 13							y	,	
33 -	- 14			No Sample Recovered Interval Not Sampled					OVM 0.0	Augered jpterval. Set
32 -	- 15			C						Augered interval. Set Well at 15' bgs. TD=15' bgs.
32	-				(•		
31 -	16									
30 -	- 17						. `.			
29 -	- 18 									
28 -	- 19						-			
-	-									
27 -	20				_					

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	•				STRAT	,
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
•									•	-						`	F3		
B8-MW8B	1	1	0.00	0.40	SPS		0	MĘ	40	30	-5	25		NON	POR	SFT	MST		
B8-MW8B	1	2	0.40	1.50	SPS		0	MF	95	5	0	0		NA	WEL-	LSE	MST `		
B8-MW8B	1	3	1.50	2.00	SPS		0		0	0	0	- 0						٠.	
B8-MW8B	2	1	2.00	4.00	SPS		0.	MF	95	5	0	0	, -	NA	WEL	LSE	MST		
B8-MW8B	3	1	4.00	5.40	SPS		0	MF .	90	10	·.0 ´	0	•	NA	MOD	LSE	WEŢ	•	
B8-MW8B	3	2	5.40	6.00	SPS	,	0		0	0	0	0		•	,				
B8-MW8B	4	1	6.00	7.20	SPS		0	MF	85	15	0	0		NA	MOD	LSE	SAT	ŗ	
B8-MW8B	4	2	7.20	8.00	SPS		0		0	0	0/	0	•						
, B8-MW8B	5,	1	8.00	9.50	SPS		0	MF	85	15	0	0	-	NA	MOD	LSE	SAT		
B8-MW8B	5	2	9.50	10.00	SPS		0		0	0	0	0	,					· .	
B8-MW8B	· 6	1	10.00	12.00	NS		0		0	0	0	0							•
B8-MW8B	. 7	1	12.00	13.60	SPS		0	MF	85	15	0	0		NA	MOD	LSE	SAT		
B8-MW8B	7	2	13.60	14.00	SPS		0	•	0	0	. 0	0							
B8-MW8B	8	1	14.00	15.00	NS		0	•	0	0	. 0	0							

Borehole Location Data Roy F. WESTON, Inc. BOREHOLE ID : B9-MW9B PROJECT NAME: FT. MONMOUTH BEGIN DATE : 01/23/95 END DATE : 01/23/95 LOGGER/COMPANY : K. VALENTI BOREHOLE COMPLETED IN (<0>verburden edrock) : 0 TOTAL DEPTH: 0.00 DEPTH TO BEDROCK : 0.00 BOREHOLE DIAMETER #1: 12,00 INTERVAL: 0.00 ft. to 15.00 ft. BGS METHOD : HSA FLUID : WATER BOREHOLE DIAMETER #2: INTERVAL: METHOD: FLUID: BOREHOLE DIAMETER #3: INTERVAL: METHOD: FLUID: DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE **ESTIMATED** SURVEYED SURFACE **ELEVATION**: 0.000 43.130 N. COORDINATE: 0.0000 E. COORDINATE: 0.0000 WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32603 HOLE ABANDONED...(Y)es (N)o: N WELL INSTALLED...(Y)es (N)o: Y WELL CLUSTER (Y) es (N) o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE

 PURGE:
 0.00

 SAMPLE:
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N
SLUG TESTS.....(Y)es (N)o: N
PACKER TESTS.....(Y)es (N)o: N
PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Water @5'-4" Sampled at 6"-12" B9-SB01/B9-SB01-A01 MS/MSD and 4' to 5'4" B9-SB01-A02/B9-SB01-002 Dup. Latitude-North: 40 deg 17' 55.3"/Longitude-West: 74 deg 04' 54.5".

DEPTH

CLIENT FT. MONMOUTH DRILLING FIRM J.C. ANDERSON CHARLES WOOD AREA SITE NAME INSPECTOR K. VALENTT WELL ID B9-MW9B WATER LEVELS START DATE 01/23/95 **COMPLETION DATE** 01/23/95 DEPTH ELEV. **DRILLING SUMMARY** 2.18 TC 45.31 Driller STEVE BURGER Protective Casing Drilling Fluid WATER .00 inch 0.00 GS 43.13 Well Type SINGLE CASED SCREENED WELL DESIGN CONSTRUCTION Casing #1 Diameter: 4.00 inch Interval: 0.00 to 15.00 ft. Type: PVC SCH 40 Stick Up Inner Casing: 2.18 ft. Protective Casing: 2.52 ft. Casing Grout: Interval: PORTLAND CEMENT 0.00 to 1.00 ft. Seal Type: BENTONITE Interval: 1.00 to 3.00 ft. Sand Pack Type: #1 MORIE Interval: 3.00 to 15.00 ft. Grain Size: UNIFORM Median Diameter: Screen Diameter: 4.00 Interval: 5.00 to 14.54 ft. Type: PVC Slots: 0.010 inches 1.00 BN 42.13 Silt Trap Interval: 14.54 to 15.00 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 3.00 SP 40.13 WELL DEVELOPMENT Date 01/25/95 5.00 SC Method 38.13 Surge Blocking/Bailing **Yield** Purged Volume 290 gal <1 gpm **COMMENTS** TC = Top of Casing SP = Top Sand Pack = Grout 14.54 BS 28.59 GS = Ground Surface SC = Top Screen Seal BN = Top Seal BS = Bottom Screen = Sand Pack TD = Total Depth **** = Formation 15.00 TD 28.13 Additional Comments:

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA

BORING ID : B9-MW9B

NORTHING: 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 43.130 surveyed

TOTAL DEPTH : 0.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : ATV

DATE STARTED : 01/23/95

DATE COMPLETED : 01/23/95

ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
		- 6	100	Silty sand with gravel, SM	BROWN	SFT	MST	11 12 12 14	OVM	0.0	Fill-3" SPS used. Top 3"= topsoil. Sampled B-95B01- A01/B-95B01-E02.
· -				-'				12			AOT/B-9sbot-Eo2.
				_	,			•			,
42 -	1										
					,	-	, ,				
-	+				,						
						ĺ					
41 -	2		100	Poorly graded sand with silt, SP-SM	OLIVE BROWN	SFT	WET	7	OVM	0.0	Fill. 3" sps used. Heavy
				SILL, SP-SM				7 11 12			SPS.
-	Ţ							12	7.		.
40 -	,				`						
40	3								,		. [
-	ļ ·										
				,							· .
39 -	4		100	Poorly graded sand, SP	FOREST GRN-BRN	SFT	WET	5	OVM	n n	Fill Heavy iron staining
				Troot ty gradua bana, or	TOREST GRI BRI	0, 1	"-'	5 11 14	OVE	0.0	Fill. Heavy iron staining throughout SPS (3" sps). Sampled B9-SB01-A02/B9-SB01-C02 Dup.
-	١.		1					14	1		B9-SB01-C02 Dup.
				,							
38 -	5										
	Ĺ				,						·
											_
37 -	- 6		100	Silty and SH	ODEENIOU DOOLIN			,			
"	•		100	Silty sand, SM	GREENISH BROWN	SFT	WET	4345	OVM	0.0	Fill. 2" SPS to TD of Well. SPS saturated. Less sand w/depth, org iron (Fe) banding throughout.
-	-			*				5			(Fe) banding throughout.
			.		<i></i>						'
36 -	7										
			•	•							
-	t			•							
	.										
35 -	T 8	-,-,-	100_	Silty sand, SM	GREEN BROWN	SFT	SAT	5	OVM	0.0	Fill W/heavy iron (Fe)
	L			ŧ				5658			Fill w/heavy iron (Fe) staining bottom 6" of SPS. Sand size black minerals with silt.
]											
34 -	9										,
-			٠								
-	-			Elastic silt, MH	DK BROWN-BLACK	FRM	WET		OVM	0.0	6" of sand size dk to
				• • • • • • • • • • • • • • • • • • • •							6" of sand size dk to black minerals w/silt moist to wet throughout
33 -	10		100	Elastic silt, MH	DK GRAY-BLACK	SFT	WET	1 2	OVM	0.0	spoon.
		}						1			

FT. MONMOUTH **PROJECT**

CHARLES WOOD AREA

: 0.00 TOTAL DEPTH LOGGER

SITE NAME

: K. VALENTI

BORING ID : B9-MW9B DRILLING COMPANY : J.C. ANDERSON

NORTHING 0.0000 estimated DRILLING RIG : ATV

EASTING 0.0000 estimated

DATE STARTED . : 01/23/95

43.130 surveyed ELEVATION :

: 01/23/95 DATE COMPLETED

		-	Σĭ		1			Ħ	E .	<u> </u>
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Elastic silt, MH	DK GRAY-BLACK	SFT	WET		OVM 0.0	
	ļ .									
32 -	11									
31 -	- 12		100	Elastic silt, MH	DK GRAY TO BLK	FRM	WET	3577	OVM 0.0	End B.H. Auger to 15. Wet well at 15'.
30-	- 13							7		
29 -	- 14			Interval Not Sampled						Augered interval. Set well at 15; TD of borehole 15; bgs.
28 -	- 15				:			•		
, ,	1		,	,						
27 -	- 16		,			,				
)									·
26	17-		,	,					,	
25	- 18								,	
24 -	- 19		-	/					· .	
	-			·						
23	- 20			-				•		

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 7

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS	s) ·	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
B9-MW9B	, 1	1	0.00	2.00	SPS		15		60	25	0	0		NON	POR	SFT	MST	
B9-MW9B	2	1	2.00	4.00	SPS		0	MF	90	10	0	0		NON	MOD	SFT	WET	
B9-MW9B	3	1	4.00	6.00	SPS	•	, 0	F	95	5	0	0		NON	WEL	SFT	WET	
B9-MW9B	4	1	6.00	8.00	SPS		0		65	30	5	0 ′		LOW	MOD	SFT	WET	
B9-MW9B	5	1	8.00	9.50	SPS		0	F	· 75	25	0	0		LOW	MOD	SFT	SAT	
B9-MW9B	5	2	9.50	10.00	SPS		0		5	90	_. 5	0		MOD	WEL	FRM	WET	
B9-MW9B	6	1	10.00	12.00	SPS		0		10	80	10	0		MOD	WEL	SFT	WET	
B9-MW9B	7	1	12.00	14.00	SPS		0		10	80	10	0		MOD	WEL	FRM	WET	
B9-MW9B	8	1	14.00	15.00	NS		0		0	0	0	0						

BOREHOLE ID : B10MW10B PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/10/95 END DATE : 01/10/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.50 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.25

INTERVAL: 0.00 ft. to 14.50 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON
DRILLER : STEVE BURGER

DRILL RIG TYPE : MOBILE B-57

ESTIMATED SURVEYED

SURFACE :

ELEVATION: 0.000 51.360

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # : NJ 29 32605

HOLE ABANDONED...(Y) es (N) o: N

WELL INSTALLED...(Y)es (N)o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE DEPTH

 PURGE :
 0.00

 SAMPLE :
 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Latitude-North: 40 deg 17' 52.0"

Longitude-West: 74 deg 05' 16.0"

CLIENT FT. M SITE NAME CHARL		UTH OOD A	DRILLING FIRM J.C. ANDERSON REA INSPECTOR P. THOMAS
WELL ID START DATE COMPLETION DATE	01	0 MW 10 /10/9 /10/9	4.36 FT (TOC) ON 01/24/95
Protective Casing	1.78	TC ELE	V. DRILLING SUMMARY .14 Driller STEVE BURGER Drilling Fluid WATER
4.00 inch	0.00	GS 51	.36 Well Type SINGLE CASED SCREENED
			WELL DESIGN CONSTRUCTION
			Casing #1 Diameter: 4.00 inch Interval: 0.00 to 4.50 ft. Type:
			Stick Up Inner Casing: 1.78 ft. Protective Casing: 2.07 ft.
			Casing Grout: CEMT/BENT Interval: 0.00 to 0.50 ft.
			Seal Type: BENTONITE SLURRY Interval: 0.50 to 3.00 ft.
	3	1.79	Sand Pack Type: NO. 1 MORIE Grain Size: UNIFORM Screen Diameter: 4.00 Interval: 3.00 to 14.50 ft. Median Diameter: Interval: 4.50 to 14.04 ft.
	0.50	BN 50	Type: PVC Slots: 0.010 inches
	3.00	SP 48	Silt Trap Interval: 14.04 to 14.50 ft. Backfill Type: Interval: 0.00 to 0.00 ft. 36
	4.50	SC 46	WELL DEVELOPMENT Date 01/24/95 86 Method Surge/Overpumping Yield 0.5 gpm Purged Volume 469 gal
			COMMENTS
	14.04	BS 37	TC = Top of Casing SP = Top Sand Pack = Grout GS = Ground Surface SC = Top Screen = Seal BN = Top Seal BS = Bottom Screen = Sand Pack
	14.50	TD 36	.86 Additional Comments:
			Depths are measured below ground surface. Well developed for approximately 2 hours.

NOTE: Well Diagram not to Scale

Elevations are feet above mean sea level

PROJECT FT. MONMOUTH

CHARLES WOOD AREA SITE NAME :

B10MW10B BORING ID : NORTHING : 0.0000 estimated DRILLING RIG

EASTING 0.0000 estimated

51.360 surveyed ELEVATION :

TOTAL DEPTH : 14.50

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

: MOBILE B-57 : 01/10/95 DATE STARTED

: 01/10/95 DATE COMPLETED

	ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
				75	Sandy silt, ML	BROWN	SFT	MST	3 10 14 15	OVM	0.0	Topsoil; collected sample
		-			Silty sand, SM	OLIVE BROWN	SFT	MST	15	OVM	0.0	Collected sample 1-2' bgs TCL+3/TAL/CN B10-SB01-A01
	50 -	- 1			_	-						
ı					No Sample Recovered							
i	49 -	- 2		100	Silty sand, SM	FE BRN/OLV BRN	LSE	WET	14 19 22 14	OVM	0.0	Fill? Collected TCL+30/TAL/CN
	•]				^							,
	48 -	- 3		,								
	-	-				· ·		.				
	.47 -	- 4		_100	Silty sand, SM	FE BRN/YLW BRN	SFT	SAT	10	OVM	0.0	Fill? Sat ~4.5' bgs.
	-	-						SAT	6			
	46 -	-5			Silty sand, SM	FE BRN/YLW BRN	SFT	SAT		OVM	0.0	Fill? Fines downward. Sharp contact due to sand texture, m-f.
1		- .		. ,		,		-			•	1
ļ	45 -	- 6		50	Silty sand, SM	GRAY	SFT	SAT	2335	OVM	0.0	V. micaeous
	٠ -			-	,				5			
	44 -	7			No Sample Recovered	. /	,					. (
		-			,	-		,				
	43 -	- g		7 5	Silty cond SN	CDAV .	CET	CAT	E	OVM	0.0	V
	7.5	_		,	Silty sand, SM	GRAY -	SFT	SAT	5655		U.U	V. micaceous.
		-							-			
	42	- 9										
	1	•	/		No Sample Recovered	-						
	41			70	Silty sand, SM	GRAY .	SFT	SAT	5455	OVM	0.0	Slightly coarser than previous interval
L		<u>ن</u>	<u> </u>						5	<u> </u>		, -

PROJECT FT. MONMOUTH TOTAL DEPTH

: 14.50 SITE NAME : CHARLES WOOD AREA LOGGER : P. THOMAS

BORING ID : B10MW10B DRILLING COMPANY : J.C. ANDERSON

0.0000 estimated NORTHING : DRILLING RIG : MOBILE B-57 EASTING : 0.0000 estimated : 01/10/95 DATE STARTED ELEVATION: 51.360 surveyed DATE COMPLETED : 01/10/95

ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
	-			Silty sand, SM	GRAY	SFT	SAT		OVM	0.0	Slightly coarser than previous interval.
40 -	- 11										
-	Ì			No Sample Recovered							
39 -	12		45	Silty sand, SM	GRAY	SFT	SAT	5986	OVM	0.0	
38 -	- 13			No Sample Recovered					:		
-	•		1								,
37 -	14			No Sample Recovered			, ,		OVM	0.0	Augered interval. Set Well at 14.5' bgs.
	-		_								wett at 14.5 bys.
36 -	15								,		
_											
35 -	16				. *.						
_											
34 -	17										
-	-										
33 -	- 18			,							
32 -	10										
32	, iÿ										
31 -	20										
								<u>.</u> .			

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 3

BOREHOLE	SMP	LTH	LITHOLOGY	f INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK		-			STRAT.
/WELL ID	NUM	NUM	(FT BGS	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	<u>PCŤ</u> ∽	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
B10MW10B	1	1	0.00	0.40	SPS		5 .	MF	40	30	5	20		NON	MOD	SFT	MST	
B10MW10B	1	2	0.40	1.50	SPS		0	MF	60	30	5	5		NOŅ	MOD	SFT	MST/	
B10MW10B	1	3	1.50	2.00	SPS		0		0	(O	Ò	0						
B10MW10B	2	, 1	2.00	4.00	SPS		0	MF	65	30	5	0		NON	MOD	LSE	WET ·	
B10MW10B	3	1	4.00	5.00	SPS		0	MF	65	30	5	0		NON	MOD	SFT	SAT	
B10MW10B	3	2	5.00	6.00	. SPS	•	0	F	60	35	5	0		NON	MOD	SFT	SAT	
B10MW10B	4	1	6.00	7.00	SPS		0	FM	55	35	10	0		NON	MOD	SÈT	SAT	•
_B10MW10B	4	2	7.00	8.00	SPS	,	0		0	0	0	0						
[∟] B10MW10B	5	1	8.00	9.50	SPS		0	FM	55	3 5	10	0		NON	MOD	SFT	SAT	
B10MW10B	5	2	9.50	10.00	SPS		0		0	,O	0	0			_	•	-	
B10MW10B	6	1	10.00	11.40	SPS		0	F	60	35	5	0		NON	MOD .	SFT -	SAT	
B10MW1QB	6	2	11.40	12.00	SPS		. 0		0	O	0	0			* -,	•		•
B10MW10B	7	. 1	12.00	12.90	SPS		0	F	55	35	· 10	0		NON	MOD	SFT	SAT	
B10MW10B	7,	2	12.90	14.00	SPS		0		0	0	0	0.				•		
B10MW10B	8	1	14.00	14.50	SPS		0	•	0	0	0	0			2	•	•	•

CHARLES WOOD SOIL BORING LOGS

BOREHOLE ID : CW4-SB1 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/21/94 END DATE : 12/21/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 8.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 8.00 ft. BGS

METHOD : HSA FLUID : AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # :

HOLE ABANDONED ... (Y) es (N) o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH

PURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Upon completion borehole was abandoned by grouting from TD to ground surface.

EASTING

FT. MONMOUTH **PROJECT**

CHARLES WOOD AREA 4 SITE NAME :

BORING ID : CW4-SB1

NORTHING : 0.0000 estimated 0.0000 estimated

ELEVATION : 0.000 estimated

: 8.00 TOTAL DEPTH

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG

: CME-55

DATE STARTED

: 12/21/94

DATE COMPLETED

: 12/21/94

					•						
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD		COMMENTS
-			75	Silty sand, SM	BROWN	SFT	MST	8 13 15 11	HNU 3.	.0	Fill(?)
-1 -	1			Poorly graded sand, SP No Sample Recovered	LT BROWN	LSE	MST		HNU O.	.0	Fill(?) Mild iron (Fe) staining in lower portion of SPS.
-2 -	2		50	Poorly graded sand, SP	FOREST GREEN	LSE	/ MST	9 7 7 5	หพบ 1 .	.0	Fill(?).
-3 -	- 3			Silty sand, SM No Sample Recovered	DK BRN - BLACK	SFT	MST	5	HNU 1.	.0	Fill(?) Bottom 2" of SPS Soils in spoon are wet.
-4	4		50							•	
_	-		50	Poorly graded sand, SP	GREEN	SFT	MST	89 16 13	HNU . 1.	.υ	
-5 -	- 5		r	No Sample Recovered						-	-
-6 -	-6		50	Poorty graded sand, SP	GREEN	, LSE	WET	9 11 85	HNU O.	.0	Water occurred at 6.1'bgs Collected soil sample CW04-SB01-A02.
-7-	- 7			No Sample Recovered				,			
-8 -	- 8		,								
	-					,					-
-9 -	- 9 -		•					,			
-10 -	- 10										

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 16

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL PCT.	SAND	PCT	PCT,	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
CW4-SB1	1	1	0.00	1.00	SPS	_ 10		40	50	0	0		NON	POR	SFT	MST	•
CW4-SB1	´ 1	2	1.00	1.50	SPS	0		95	5	0	0		NON	MOD	LSE	MST	
CW4-SB1	1	3	1.50	2.00	SPS	0		0	0	0	0						
CW4-SB1	2	1	2.00	2.60	SPS	0		95	5	0	0		NON	WEL	LSE	MST	
CW4-SB1	2	2	2.60	3.00	SPS	· 0		60	40	0	0	•	LOW	WEL	SFT	MST	
CW4-SB1	2	3	3.00	4.00	SPS	0		0	0 .	· 0	0						
CW4-SB1	3	1	4.00	5.00	SPS	0		95	5	0	0		LOW	MOD	SFT	MST	
CW4-SB1	3	2	5.00	6.00	SPS	· 0		0	0	0	. 0					(
CW4-SB1	4	1	6.00	7.00	SPS	0		95	5	. 0	. 0		LOW	MOD	LSE	WET	
CW4-SB1	4	2	7.00	8.00		- 0		0	0	0	0		 .				

CW5-SB1 PROJECT NAME: FT. MONMOUTH BOREHOLE ID :

12/20/94 BEGIN DATE : END DATE *:* 12/20/94

LOGGER/COMPANY: K. VALENTE

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 8.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 8.00 ft. BGS

METHOD : HSA FLUID : AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE DRILL RIG TYPE : CME-55

> **ESTIMATED** SURVEYED

SURFACE

ELEVATION : 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT # :

HOLE ABANDONED ... (Y) es (N) o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED. (Y)es (N)o: N DEPTH

PURGE 0.00 0.00

SAMPLE :

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Upon completion borehole was abandoned by grouting from TD to ground surface.

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 5

BORING ID : CW5-SB1

NORTHING: 0.0000 estimated EASTING: 0.0000 estimated

ELEVATION: 0.000 estimated

TOTAL DEPTH : 8.00

LOGGER : K. VALENTE

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/20/94

DATE COMPLETED : 12/20/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
			50	Silty sand, SM	BROWN	LSE	MST	12 10 8	HNU	0.0	Fill. Top 3" is topsoil. Some gravels(medcoarse) Color changing at bottom of SPS to grey-brown.
-1	1			No Sample Recovered		•	:	8		-	of SPS to grey-brown.
	†						·				
-2	2		75	Silty sand with gravel, SM	GRAY BROWN	LSE	,MST.	12 11 10 11	HNU	0.0	Fill. Gray brown silty sand, some medium gravels
-3	7			1							
		0.000 0.000 0.000		Well-graded sand with gravel, SW No Sample Recovered	YELLOW-BROWN	LSE	MST		HNU	0.0	Fill. Sand, medium to coarse gravels. Some fragments of quartzite.
-4	4	ກະວິ	100	·	YELLOWISH BROWN	165	мет	12	HNU	0 0	Comp Lithelanu as
		00000 00000	100	Well-graded sand with gravel, SW	TELLOWISH BROWN	LSE	MST	7 6 7	nnu		Same lithology as previous interval.
-5	5	0,000 0,000 0,000 0,000						-			, ,
	+	00000000000000000000000000000000000000		,	_						
-6	6	00 00 00 00 00 00	100	Silty sand with gravel, SM	DK BROWN	FRM	MST	0	HNU .	0 _0	3" SPS lised Mottles
					1			12 6 8			3" SPS used. Mottles noted. 1" of silty sand with organics at 6.6-6.7' bgs. Collected soil samp
-7	7			Poorly graded sand, SP	GREENISH GRAY	LSE	SAT		HNU	0.0	3" SPS used. Collected soil sample CW05-SB01-A02
					**	•					
-8	8				·		*	4			
	· ·									[·
-9	9										
					·						
-10	10										

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 17

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL PCT.	SAND	PCT	PCT -	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
						`					•							
CW5-SB1	1	1	0.00	1.00	SPS	10		50	40	0	0 .		NON	POR	LSE	MST		•
CW5-SB1	1	2	1.00	2.00	SPS	0		0	0	0	0 _							
CW5-SB1	2	1	2.00	3.00	SPS	15		60	25	0	0 .		NON	MOD	LSE	MST		
CW5-SB1	2	2	3.00	3.50	SPS	30		. 65	5	0	0 .		NON	POR	LSĘ	MST		
CW5-SB1	2	3	3.50	4.00	SPS	. 0		0	0	0	0						•	
CW5-SB1	3	1	4.00	6.00	SPS	25		70	, 5	0	0		NON	POR	LSE	MST		
CW5-SB1	4	1	6.00	6.80	SPS	20		40	35	5	. 0	,	LOW	POR	FRM	MST		
CW5-SB1	4	2	6.80	8.00	SPS	5		95	0	0	0		NON	MOD	LSE	SAT		

BOREHOLE ID : CW5-SB2 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/20/94 END DATE : 12/20/94

LOGGER/COMPANY : K. VALENTE

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH : 6.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 6.00 ft. BGS

METHOD : HSA FLUID : AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD : FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

> **ESTIMATED** SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED. . (Y) es (N) o: N TYPE DEPTH

PURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Upon completion the borehole was abandoned by grouting from TD to ground surface.

PROJECT FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 5

LOGGER

: 6.00

: K. VALENTE

CW5-SB2 BORING ID :

DRILLING COMPANY : J.C. ANDERSON

NORTHING

TOTAL DEPTH

0.0000 estimated

DRILLING RIG

: CME-55

EASTING

0.0000 estimated

DATE STARTED

: 12/20/94

0.000 estimated ELEVATION :

DATE COMPLETED

: 12/20/94

									•		
ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT		INSTRUMENT	COMMENTS
-1 -	- 1		50	Sandy silt, ML Silty sand, SM No Sample Recovered	GRAY BROWN	SFT	MST	7566	HNU O		Fill. Top 4" consists of topsoil. Minor clay content. Fill(?)
-2 -	2		75	Silty sand, SM	DK GRAY - BROWN	SFT	MST	10 97 8	HNU O	0.0	Some sub-rounded to fragmented quartz sands.
-3 -	- 3			No Sample Recovered				8			
-4 -	4		100	Silty sand, SM	DK BROWN	SFT	MST	4 5 11 12	HNU O	.0	Fill. Sandy silt. 3 or 4 pieces of broken bricks (red-orange in color).
-5 -	- 5 -			Elastic silt, MH Silty sand, SM	DK BROWN BLACK GREENISH GRAY	SFT	MST SAT		HNU O		Fill. Silt w/some clay. Collected sample CW05- SB02-A02. Water at 5.2' bgs. TD of borehole 6'bgs
-6 - -	-					,					
-8-	-			,							-
-9 -	- 9			•	,						
-10 -	- 10				,						

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 18

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS	3)	METHOD	GRAVEL PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	•
		•				•					_				-			
CW5-SB2	1	1	0.00	0.90	SPS	5	-	25	60	10	o o		LOW	POR	FRM	MST		
CW5-SB2	1	2	0.90	1.00	SPS	0		85	15	0	0 .		NON	MOD	SFT	MST .		
CW5-SB2	, 1	3	1.00	2.00	SPS	0		Ö	0	Ò	0							٠
CW5-SB2	2	1	2.00	3.50	SPS	5		75	20	0	0		LOW	MOD	SFT	MST		
CW5-SB2	2	2	3.50	4.00	SPS	0 .		0	0	0	0							
CW5-SB2	3	1	4.00	5.00	SPS	, 5		45	50	0	0 .		NON	MOD	SFT	MST		
CW5-SB2	3	2	5.00	5.20	SPS	Ô		0	65	35	0	-	MOD	WEL	SFT	MST		
CW5-SB2	3	3	5.20	6,00	SPS	.0		85	15	0	. 0		NON	WEL	LSE	SAT		

PROJECT NAME: FT. MONMOUTH BOREHOLE ID : CW7-SB1

BEGIN DATE : 12/21/94 END DATE : 12/21/94

LOGGER/COMPANY: P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.25

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2: 3.00

INTERVAL: 12.00 ft. to 14.00 ft. BGS

METHOD : SPLIT SPOON SAMPLER FLUID : NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID:

DRILLING COMPANY : J.C. ANDERSON DRILLER : STEVE BURGER DRILL RIG TYPE : MOBILE B-57

> **ESTIMATED** SURVEYED

SURFACE

ELEVATION : 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH PURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS :

Upon completion borehole was grouted with portland cement and bentonite from TD to ground surface.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00

SITE NAME : CHARLES WOOD AREA 7 LOGGER : P. THOMAS

BORING ID : CW7-SB1 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated DRILLING RIG : MOBILE B-57

EASTING : 0.0000 estimated DATE STARTED : 12/21/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/21/94

ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	READING	COMMENTS
			90	Sandy silt, ML	BROWN	SFT	MST	4565	HNU	25.9	7	Topsoil: HNU/OVM readings may be from decon solut. no cutting readings for entire boring.
-	+		,	Silty sand, SM	BROWN ORANGE	SFT	MST	5	HNU	29.0)	entire boring.
-1 -	1											
.	†			ì								
-2 -	2		75	No Sample Recovered Silty sand, SM	BROWN	SFT	MST	10	HNU	252	,	,
								10 12	HNU		-	
	Ī							10				
-3 -	3		1	· · ·								
		·										
				No Sample Recovered								
-4 -	4		75	Silty sand, SM	BROWN	SFT	WET	18	HNU	5.2		
-								22 28 30	HNU			
-5 -	5									٠.	ł	
_						(
				No Sample Recovered				1823306700 100				
-6-	6	111111	100	Poorly graded sand, SP	OLIVE BROWN	LSE	MST	30	HNU	8.0	ľ	
.								10 10				
-7-	7									,		
_	<u> </u>									'		
-8-	8		100	Poorty graded sand, SP	OLIVE BROWN	LSE	MST	10	нип	0.0		Fe stained laminae.
						LSE		10				
-9-	9											
												-
											ļ	
-10 -	10		100	Poorly graded sand with silt, SP-SM	OLIVE BROWN	LSE	MST	12	HNU	0.1		
				<u> </u>			.,	1 <u>0</u>				

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00

SITE NAME : CHARLES WOOD AREA 7 LOGGER : P. THOMAS

BORING ID : CW7-SB1 DRILLING COMPANY : J.C. ANDERSON

NORTHING: 0.0000 estimated DRILLING RIG: MOBILE B-57
EASTING: 0.0000 estimated DATE STARTED: 12/21/94

EASTING : 0.0000 estimated DATE STARTED : 12/21/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/21/94

						•				
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Poorly graded sand with silt, SP-SM	OLIVE BROWN	LSE	MST		HNU 0.1	
-11 -	- 11									
-12	12		100	Poorly graded sand, SP	OLIVE	LSE	WET	102410	HNU 0.0	Fe stained laminae, sat from ~12.5-13' bgs.
-13	- 13									
-14	- 14									
-15	- · 15		,							,
-16	- 16 -				·					
-17	· 17									
-18	· 18	,				,			•	
-19	· 19				,.					
-20 -	· 20									

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 20

ROKEHOLE	SMP	LIH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT_BGS	3)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
~																		
CW7-SB1	1	1	0.00	0.40	SPS		0	MF	40	3 0	_0	30		NON	POR	SFT	MST	
CW7-SB1	1	2	0.40	1.80	SPS	F	5	MF	60	35	0	0		NA	MOD	SFT	MST	
CW7-SB1	1	ຸ 3	1.80	2.00	SPS		0		0	0	0	0				•		
C₩7-SB1	2	1	2.00	3.50	SPS		0	MF	50	35	15	0		LOW	WEL	SFT	MST	
CW7-SB1	2	2.	3.50	4.00	SPS		0		0	0	0	0						
CW7-SB1	3	1	4.00	5.50	SPS		0	MF	7 5	20	5	0		NON	WEL	SFT	WET	
CW7-SB1	3	2	5.50	6.00	SPS		0		0	0	0	0	,					
CW7-SB1	4	1	6.00	8.00	SPS		0	MFC	95	5	0	0		NA	MOD	LSE	MST	
CW7-SB1	5	1	8.00	10.00	. SPS		0	MF ·	95	5	0	0		NA	MOD	LSE	MST	
CW7-SB1	6	1	10.00	12.00	SPS		0	MF	90	10	0	0		NA	MOD	LSE	MST	
CW7-SB1	7	1	12.00	14.00	SPS		0	MF	95	5	0	0		NA	MOD	LSE .	WET	

CW7-SB2 BOREHOLE ID : PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/21/94 END DATE : 12/21/94

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.25

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2: 3.00

INTERVAL: 12.00 ft. to 14.00 ft. BGS

METHOD : SPLIT SPOON FLUID : NONE

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID :

DRILLING COMPANY: J.C. ANDERSON

DRILLER : STEVE BURGER

DRILL RIG TYPE : MOBILE B57

ESTIMATED . SURVEYED

SURFACE

ELEVATION: 0.000

0.0000 N. COORDINATE:

E. COORDINATE: 0.0000

WELL PERMIT....(Y)es (N)o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH

PURGE 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Upon completion borehole was abandoned by grouting from TD to ground surface.

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 7

BORING ID : CW7-SB2

NORTHING : 0.0000 estimated

EASTING: 0.0000 estimated ELEVATION: 0.000 estimated

TOTAL DEPTH : 14.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : MOBILE B57.

DATE STARTED : 12/21/94

DATE COMPLETED : 12/21/94

		_			•				١.		
ELEVATION	рветн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			60	Silty sand, SM	BROWN	SFT	WET	2	OVM	0.5	Topsoil
								10 7		1	
	Ť			Silty sand, SM	RED YELLOW BRN	LSE	WET	7	OVM	0.5	• .
1				1		1	ĺ	'		~	, '
-1	† 1		1	-	,			-			
	l	<u> </u>		No Sample Recovered				ŀ	ŀ		,
'	†.	1					1	1	{		`
, ,	ł	i l					ľ	İ			
-2	2		85	Silty sand, SM	BROWN	SFT	WET	_	OVM	0.5	
								1 10			
	‡			Silty sand, SM	BROWN	SFT	MST	15 21	OVM	0.0	
						İ	Ì				
-3.	13		١.	Silty sand, SM	BROWN	LSE	LIET		0.44	0 0	
-				Sitty Salid, Si	DRUWN .	LSE	WET		OVM	0.0	· .
١.	↓										, [
				No Secolo Reserved	<u> </u>	1					,
_,.	<u> </u>			No Sample Recovered			İ				
-4 ·	T 4		90	Silty sand, SM	BROWN	LSE	MST	14	OVM	0.0	,
								15			
	Ť							18			
				\		1					
-5 -	- 5		-			Ι,					
				·	}	,					
-	†										
				No Sample Recovered			•		'		
-6	6	11.15.15.1	80	Poorly graded sand, SP	OLIVE/FE BROWN	LSE	MST.	0	OVM	0.0	Iron (Fe) colored with
				, S. 2222 22.12, 21	January 12 Brown			9989	0	0.0	Iron (Fe) colored with olive to brown sand
-	ļ							9			tamifide:
				İ							
-7-	7			ſ		İ					
	ļ .										
_	1			· .							
]				No Sample Recovered	1 .						
-8-			400]						
-8	•		100	Poorty graded sand, SP	OLIVE BROWN	LSE	MST	7	OVM	0.0	
					i			7 7 10 12			
<u>-</u>	Ī			· .	*.			12			·
				·			,				
-9-	9						,				,
				·					1		
-	†									_	
							,			-	
-10 -	10	1	100	Poorly graded sand with silt, SP-SM	OLIVE BROWN	LSE	MST	11	OVM	0.0	
				SILC, SY-SM		LSE		17 13			
L	L	<u> </u>		<u> </u>	<u> </u>	L. 1	1	15			

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00 SITE NAME : CHARLES WOOD AREA 7 LOGGER : P. THOMAS BORING ID : CW7-SB2 DRILLING COMPANY : J.C. ANDERSON NORTHING : 0.0000 estimated : MOBILE B57 DRILLING RIG EASTING : 0.0000 estimated DATE STARTED : 12/21/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/21/94

ELEVATION	DRPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Poorly graded sand with silt, SP-SM	OLIVE BROWN	LSE	MST		OVM 0.0	
-11 -	11							-		
-12 -	- 12		100	Poorty graded sand, SP	OLIVE BROWN	LSE	SAT	100	OVM 0.0	Collected soil sample. TD of borehole 14' bgs.
-13 -	- 13			*						
-14 -	- 14		-			4				
-15 -	- 15									
-16 -	16									
-17 -	- 17									
-18 -	- 18									
-19 -	- 19									
-20 -	20						1 300			

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 21

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	_UNIT
,																		
CW7-SB2	1	1	0.00	0.40	SPS		10	MF	40	20	0	30		NA ·	POR	SFT	WET	
CW7-SB2	1	Ž	0.40	1.20	SPS		0	MF	80	18	2	0		NON	MOD	LSE	WET	•
CW7-SB2	1	3	1.20	2.00	SPS		0		0	0	0	0						•
CW7-SB2	2	1	2.00	2.30	SPS		0	MF	80	18	2	0 .		NON	MOD	SFT	WET	
CW7-SB2	2	2	2.30	2.95	SPS		0	MF	55	30	15	0		LOW	MOD	SFT	MST.	
CW7-SB2	2	3	2.95	3.70	SPS		10		60	28	2	0		NON	MOD	LSE	WET	
CW7-SB2	2	4	3.70	4.00	SPS		0		0	0	0	0						
CW7-SB2	3	1	4.00	5.80	SPS		0	MF	75	25	0	0		NA	MOD	LSE	MST	
CW7-SB2	3	2	5.80	6.00	,SPS		0		0	0	0	0						
CW7-SB2	4	1	6.00	7.60	SPS		0	MFC	95	5	0	0		NA	MOD	LSE	MST	
CW7-SB2	4	2	7.60	8.00	SPS	•	0		0	0	0	0					,	•
CW7-SB2	5	1	8.00	10.00	SPS		0	MF	95	5	0	. 0		NA	WEL	LSE	MST	
CW7-SB2	6	1	10.00	12.00	SPS		0	MF	90	10	0	0		NON	MOD	LSE	MST	
CW7-SB2	7	1	12.00	14.00	SPS		0	MF	95	5	0	0		NA	MOD	LSE	SAT	_

PROJECT NAME: FT. MONMOUTH END DATE : 12/21/94 BOREHOLE ID : CW7-SB3

BEGIN DATE : 12/21/94

LOGGER/COMPANY : K. VALENTZ

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

DEPTH TO BEDROCK : 0.00 TOTAL DEPTH: 12.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : HSA FLUID : NONE

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD : FLUID:

DRILLING COMPANY: J.C. ANDERSON DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATEDSURVEYED

TYPE

SURFACE

ELEVATION : 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0 WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y)es (N)o: N

PURGE 0.00

SAMPLE : 0.00.

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N SLUG TESTS.....(Y)es (N)o: N PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Borehole location grouted to surface level.

DEPTH

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 7

BORING ID : CW7-SB3

NORTHING

: 0.0000 estimated

EASTING : 0.0000 estimated ELEVATION : 0.000 estimated

TOTAL DEPTH : 12.00

LOGGER : K. VALENTZ

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/21/94

DATE COMPLETED : 12/21/94

ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT READING	COMMENTS
-1 -	1.		50	Silty sand, SM No Sample Recovered	ORANGE BROWN	LSE	DRY	6589	OVM	116.0	Fill. Some semi-rounded stones, little gravel silty sands.
-2	- 2		100	Silty sand,/SM	ORANGE-BROWN	LSE	MST	4545	оум	98.4	Same lithology as noted above with less gravel.
-3 -	- 3					,		• •			
-4-	- 4		50	Silty sand, SM	OLIVE BROWN	SFT	MST	6744	OVM	84.3	
-5 - -	- -	·, · · · · · · · ·		No Sample Recovered				•			,
-6 - -7	-		100	Poorly graded sand, SP	OLIVE	LSE	MST	11 13 9	OVM	12.3	Top of spoon (4") silt with sand, all sand in rest of spoon. 3" sps used.
-8 -	- 8		100	Poorly graded sand, SP		LSE	MST	67.97	OVM	2.4	3" sps used. Light grange mottles. Sample CWA7-SBU3 AU2 collected.
-9-	9							9 7			AUZ collected.
-10 -	- 10		100	Not Classified - Incomple te Data			1	5667	HNU	0.0	Water noted at 10'-6" bgs Wet sands. Heavier mottling at 11'-2" to 12'

PROJECT : FT. MONMOUTH : 12.00

SITE NAME : CHARLES WOOD AREA 7 LOGGER : K. VALENTZ
BORING ID : CW7-SB3 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/21/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/21/94

ELEVATION	рертн	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Not Classified - Incomple te Data					HNU 0.0	Water noted at 10'-6" bgs Wet sands. Heavier mottling at 11'-2" to 12'
-11 -	- 11									
-12 -	12			-						·
-13 -	13	•			,	_				
-14	14									
-15 -	- 15 -									
-16 -	- 16		·	-						
-17 -	17			-1						·
-18 -	- 18 -	,								
-19 -	- 19									
-20 -	- 20									

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 22

BOREHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM	(FT BG	S)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
			,															
CW7-SB3	1	1	0.00	1.00	SPS		10		50	40	0	0		NON	POR	LSE	DRY	
CW7-SB3	1	2	1.00	2.00	SPS		0		0	0	0	0				-		
CW7-SB3	2	1	2.00	4.00	SPS		0		70	30	0	0		NON	MOD	LSE	MST	
CW7-SB3	3	1	4.00	5.00	SPS		0	F	85	15	0	0	1	NON	WEL	SFT	MST	
CW7-SB3	3	2	5.00	6.00	SPS		. 0		0	0	0	0						
CW7-SB3	4	1	6.00	8.00	SPS		0		100	0	0	0		NON	MOD	LSE	MST	
CW7-SB3	5	1	8.00	10.00	SPS		0		100	0	0	0		NON	MOD	LSE	MST	
CW7-SB3	6	1	10.00	12.00	SPS		0		0	0	0	. 0						

PROJECT NAME: FT. MONMOUTH BOREHOLE ID : CW7-SB4

BEGIN DATE : 12/21/94 : 12/21/94 END DATE

LOGGER/COMPANY : K. VALELNŢI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 12.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : HSA FLUID : AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION : 0.000

N. COORDINATE: 0.0000

E. COORDINATE : 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT #:

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o; N No. OF WELLS: 0 WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPE

DEPTH : PURGE : 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Upon completion borehole was abandoned by grouting from TD to ground surface.

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 7

BORING ID : CW7-SB4

NORTHING: 0.0000 estimated
EASTING: 0.0000 estimated
ELEVATION: 0.000 estimated

TOTAL DEPTH : 12.00

LOGGER : K. VALELNTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55 DATE STARTED : 12/21/5

DATE STARTED : 12/21/94
DATE COMPLETED : 12/21/94

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INS	COMMENTS
		0000	50	Well-graded sand with gravel, SW	YELLOW BROWN	LSE	DRY	6455	HNU	0.0	Fill(?). Top 2" consist of topsoil.
-	-	- 29		Silty sand, SM	BROWN	LSE	MST	5	HNU	0.0	
-1 -	1			No Sample Recovered							
-2 -	2		100	Silty sand, SM	OLIVE BROWN	SFT	MST	6 6 7 5	HNU	0.0	Fill(?) Sandier with depth.
-3 -	- 3 -		i								
-4 -	- 4		100	Silty sand, SM	OLIVE BROWN	SFT	MST	4	HNU	0.0	
	-							4 5 7 7			
-5 -	- 5 `										
-	-			,	i	,					
-6-	- 6		100	Poorly graded sand, SP	OLIVE	LSE	MST		HNU	n 5	
-	-		100	Tool ty graded Salid, Sr		Lac	ms i		INU	0.5	
-7-	7										
-8-	- 8		100	Poorly graded sand, SP	OLIVE LT BROWN	LSE	MST	7	HNU	0.0	3" sps used. Color becomes olive sand color
-9 -	- 9				·			7 8 10 11	,		3" sps used. Color becomes olive sand color towards bottom of SPS. Iron (Fe) staining.
-10 -	- 10		100	Poorly graded sand, SP	OLIVE - LT BRN	LSE	WET	6755	HNU	0.0	3" sps used. 1st Water Wet sands at 10.2' bgs. TD of borehole

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 7

BORING ID : CW7-SB4

NORTHING: 0.0000 estimated
EASTING: 0.0000 estimated
ELEVATION: 0.000 estimated

TOTAL DEPTH : 12.00

LOGGER : K. VALELNTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : CME-55

DATE STARTED : 12/21/94
DATE COMPLETED : 12/21/94

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
-11	+ 11			Poorly graded sand, SP	OLIVE - LT BRN	LSE	WET		HNU 0.0	3" sps used. 1st Water wet sands at 10.2' bgs. TD of borehole
-12	12			, ·		,				
	+ 13 + 14		-							
-15	 15					-				
	16									,
-18	+ + 18					_				
-19	19						-			
-20	20					,				;

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 . *** PAGE: 23

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	~SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK	-				STRAT
/WELL ID	NUM	NUM	(FT BGS	3)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
CW7-SB4	1	1	0.00	0.40	SPS		30		70	0	0	0		NON	POR	LSE	DRY	
-CW7-SB4	1	2	0.40	1.00	SPS		Ò		80	20	0	0		NON	MOD	LSE	MST	
CW7-SB4	1	3	1.00	2.00	SPS		0	-	0	0	. 0	0				•		
CW7-SB4	2	1	2.00	4.00	SPS		0	F	85	15	0	. 0		NON	WEL	SFT	MST	
CW7-SB4	• 3	1	4.00	6.00	SPS		0		85	15	0	0	~	NON	WEL	SFT	MST	
CW7-SB4	4	1	6.00	8.00	SPS		0		100	0	Ó	0 .		NON	WEL	LSE	MST	
CW7-SB4	5	1	8.00	10.00	SPS		.0		100	0	0	0		NON	WEL	LSE	MST	
CW7-SB4	6	1	10.00	12.00	SPS		0		100	0	0	0		NON	WEL	LSE	WET .	

BOREHOLE ID : CW7-SB5 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/21/94 END DATE : 12/21/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 12.00 DEPTH TO BEDROCK : 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 12.00 ft. BGS

METHOD : HSA FLUID : AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # :

HOLE ABANDONED ... (Y) es (N) o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y) es (N) o: N No. OF WELLS : 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED.. (Y) es (N) o: N TYPEDEPTH PURGE : 0.00

SAMPLE : 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS....(Y)es (N)o: N SLUG TESTS.....(Y) es (N)o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y)es (N)o: N

COMMENTS:

Upon completion the borehole was grouted to surface level.

: 12.00

PROJECT : FT. MONMOUTH TOTAL DEPTH

SITE NAME : CHARLES WOOD AREA 7 LOGGER : K. VALENTI

BORING ID : CW7-SB5 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/21/94

ELEVATION: 0.000 estimated DATE COMPLETED: 12/21/94

ELEVATION	ОВРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INSTRUMENT	COMMENTS
			100	Silty sand, SM	LT ORANGE BROWN	LSE	DRY	4 7 9	OVM	18.1	Top 2" sps was topsoil/ organics. Some small cobbles noted throughout interval.
-1	1			-							
	_			·		_			!		
-2	2		100	Sandy silt, ML	BROWN	FRM	MST	5 7 9 4	OVM	12.9	Some sand with little clay texture.
-3	3) .							
-4	4		100	Silty sand, SM	OLIVE BROWN	FRM	MST	<u>8</u>	OVM	2.5	Mottling noted in bottom
				. /				8 7 9 13			Mottling noted in bottom 4" of SPS. Increase in sand % towards bottom of SPS.
-5	5		1								
-6 -	6		100	Poorly graded sand with silt, SP-SM	OLIVE	LSE	MST	5 7 7	OVM	3.7	Top of sps olive brown color, bottom sps olive color.
-7	7							6			color.
	,									,	
-8 -	8		100	Poorly graded sand, SP	LT BROWN	LSE	MST	15 19 16 14	OVM	١.	3" SPS used. Heavy mottling towards bottom of SPS Collected sample CWA7-SB05-A02.
-9 -	9							14			LWA/-SBUD-AUZ.
-				,	·						
-10 -	10		100	Poorly graded sand, SP	LT BROWN OLIVE	LSE	WET	7644	OVM ·	0.0	3" SPS used. Water at 11,-7" bgs. Fe lamina staining. Collected sample CWA7-SB05-A02.

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 7

BORING ID : CW7-SB5

NORTHING : 0.0000 estimated
EASTING : 0.0000 estimated
ELEVATION : 0.000 estimated

TOTAL DEPTH : 12.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG

: CME-55

DATE STARTED : 12/21/94 DATE COMPLETED : 12/21/94

ELEVATION	рертн	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				Poorly graded sand, SP	LT BROWN OLIVE	LSE	WET		OVM 0.0	3" SPS used. Water at 11'-7" bgs. Fe lamina staining. Collected sample CWA7-SB05-A02.
-11 -	11							,	,	
-12	12									
-13	17		<u> </u>					e e	(
		`			,					
-14 -	14				(
-15 -	- 15									
-16	- 16	,								
- 	•			,	-					· .
-17 -	- 17 -				`					,
-18 -	- 18			,					-	
-19 -	- 19			~						
-20 -	- 20			,					1	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 24

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT
/WELL ID	NUM	NUM:	(FT_BGS	S)	METHOD	GRAVEL PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
																	•
CW7-SB5	1	1	0.00	2.00	SPS	5		70	25	0	0		NON	MOD	LSE	DRY	•
CW7-SB5	2	1	2.00	4.00	SPS	0		35	60	5	0		LOW	MOD	FRM	MST	•
CW7-SB5	3	1	4.00	6.00	SPS	0		60	40	0	0 '	-	NON	MOD	FRM	MST	•
CW7-SB5	4	1	6.00	8.00	SPS	0 ,		90	10	0	0		NON	MOD	LSE	MST	
CW7-SB5	5	1	8.00	10.00	SPS	0		100	0	0	0		NON	MOD	LSE	MST	,
CW7-SB5	6	1	10.00	12.00	SPS	, 0		100	0	0	0		NON	MOD	LSE	WET	

BOREHOLE ID : CW7-SB6 PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 12/21/94 END DATE : 12/21/94

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 14.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 8.00

INTERVAL: 0.00 ft. to 14.00 ft. BGS

METHOD: HSA FLUID: AIR

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE : CME-55

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y) es (N) o: N PERMIT # :

HOLE ABANDONED...(Y)es (N)o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER.....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y) es (N) o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH
PURGE: 0.00

PURGE: 0.00
SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y) es (N) o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y)es (N)o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

The borehole was abandoned then grouted to surface level.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00

SITE NAME : CHARLES WOOD AREA 7 LOGGER : K. VALENTI
BORING ID : CW7-SB6 DRILLING COMPANY : J.C. ANDERSON

NORTHING: 0.0000 estimated DRILLING RIG: CME-55

EASTING: 0.0000 estimated DATE STARTED: 12/21/94

ELEVATION: 0.000 estimated DATE COMPLETED: 12/21/94

	ELEVATION	ОЕРТН	MATERIAL	% RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD	INS	COMMENTS
				100	Poorly graded sand with silt, SP-SM	ORANGE-BROWN	LSE	DRY	45 65	OVM	1.5	Fill(?)
	-1 ·	1				,	-		5			
	-2 -	2		100	Silty sand, SM	ORANGE-BROWN	FRM	MST	5	OVM	0.0	
				,					5565			,
	-3 ·	- 3										·
	ر	,									,	
	•				·							
	-4 -	4		50	Poorly graded sand with silt, SP-SM	OLIVE BROWN	LSE	MST	11	OVM	0.0	Fill(?)
	-	_							11 13 15 17			
	-5 -	- 5			No Sample Boomer							
	-				No Sample Recovered							
	-		;					-				,
	- 6 -	- 6		100	Silty sand, SM	ORANGE-BROWN	FRM	MST	12 12	OVM	0.0	Fill(?)
	-	-							14			
	-7 -	- 7										·
		_										
	-8 -	- 8		100	Well graded sand with silt, SW-SM	OLIVE ORANGE/BR	LSE	MST	18 18 18	OVM	0.0	3" sps used, Iron (Fe) laminae staining. Mostly sands towards bottom of sps. More sand with depth
	-	<u>_</u>			- .			,	14			sps. More sand with depth
	-9 -	-9 .										
	-	-										,
				_								
	-10 -	- 10	;	100	Poorly graded sand, SP	ORANGE LT BROWN	LSE	MST	11 12 12	OVM	0.0	3" sps used. Olive in color at top of sps 10-5" color change to orange- lt brown.
<u>_</u>					<u> </u>				_9_			ILT Drown.

PROJECT : FT. MONMOUTH TOTAL DEPTH : 14.00

SITE NAME : CHARLES WOOD AREA 7 LOGGER : K. VALENTI
BORING ID : CW7-SB6 DRILLING COMPANY : J.C. ANDERSON

NORTHING : 0.0000 estimated DRILLING RIG : CME-55 EASTING : 0.0000 estimated DATE STARTED : 12/21/94 ELEVATION : 0.000 estimated DATE COMPLETED : 12/21/94

_	,				· · · · · · · · · · · · · · · · · · ·					
ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION /	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
-11 -	11			Poorly graded sand, SP	ORANGE LT BROWN	LSE	MST		OVM 0:0	3" sps used. Olive in color at top of sps 10-5" color change to orange-lt brown.
-12 -					i	,-				
-13 -	-		100	Poorly graded sand, SP	OLIVE BROWN	LSE	WET	8 11 13 12	OVM 0.0	3" SPS used Sample CWA7-SB06-A03 collected. TD of borehole 14' bgs.
-14 -	-		-							
-15 -	- 15				C					
-16 -	- 16								·	
-17 -	- 17	·								,
-18	- 18									
-19	· · 19				,				,	
-20	- 20									2

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 25

BOREHOLE	SMP	LTH	LITHOLOG	Y INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK		•			STRAT,	
/WELL ID	NUM	NUM	(FT BG	s)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
															•				
CW7-SB6	1	1	0.00	2.00	∠ SPS		0	• -	90	10	0	0		NON	MOD	LSE	DRY		
CW7-SB6	2	1	2.00	4.00	SPS		0		60	40	0	0		NON	MOD	FRM	MST		
CW7-SB6	3	1	4.00	5.00	SPS	•	0		90	10	0	0		NON	MOD	LSE ·	MST		,
CW7-SB6	3	2	5.00	6.00	SPS		0		Ó	0	0	0							
CW7-SB6	4	1	6.00	8.00	SPS		0		70	30	0	0 :		LOW	MOD	FRM	MST		
CW7-SB6	5	1	8.00	10.00	SPS		0		90	10	0	0		NON	POR	LSE	MST	•	
CW7-SB6	6	1	10.00	12.00	SPS		0		100	0	0	0		NON	MOD	LSE	MST		
CW7-SB6	. 7	1	12.00	14.00	SPS		0		100	0	0	. 0 /		NON	MOD	LSE	WET		

BOREHOLE ID: CW9-SB1 PROJECT NAME: FT. MONMOUTH
BEGIN DATE: 01/04/95 END DATE: 01/04/95

LOGGER/COMPANY : K. VALENTI

BOREHOLE COMPLETED IN (<0>verburden edrock) : 0

TOTAL DEPTH: 4.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 2.00

INTERVAL: 0.00 ft. to 4.00 ft. BGS

METHOD: FLUID: AIR

BOREHOLE DIAMETER #2:

INTERVAL: .

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON

DRILLER : WELLS REEVE

DRILL RIG TYPE :

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #:

HOLE ABANDONED...(Y) es (N) o: Y

WELL INSTALLED...(Y)es (N)o: N

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0

WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED..(Y)es (N)o: N TYPE DEPTH

PURGE: 0.00
SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.....(Y)es (N)o: N

SLUG TESTS.....(Y) es (N) o: N

PACKER TESTS.....(Y) es (N) o: N

PUMPING TESTS.....(Y) es (N) o: N

COMMENTS:

Upon completion the borehole was grouted from TD to ground

surface.

PROJECT FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 9

BORING ID : CW9-SB1

NORTHING 0.0000 estimated

EASTING 0.0000 estimated 0.000 estimated ELEVATION :

TOTAL DEPTH : 4.00

LOGGER : K. VALENTI

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG

DATE STARTED : 01/04/95

DATE COMPLETED : 01/04/95

ELEVATION	ОЕРТН	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
-1 -	- 1		100	Poorly graded sand, SP	BROWN	LSE	MST		HNU O.O	2" sps driven by sledge hammer. No access for rig olive in color towards bottom tip of sps.
-2 -	2		100	Well-graded sand, SW	OLIVE BROWN	LSE	SAT		ĤNU 0.0	Water occurred at 2.1' bgs. Collected sample, CW09-SB01-A02.
-3 -	- 3 -		,		i i					
-4 - -5 -	-									
-6-	-									
-7-	- 7				·					
-8 -	- 8									
-9 -	- 9				·					s.
-10 -	- 10								,	

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 28

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK					STRAT	
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL PCT.	SAND	PCŢ	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT	
CW9-SB1	1	1	0.00	2.00	SPS	0	MF	100	0	0	0		NA	MOD	LSE	MST		
CW9-SB1	2	1	2.00	4.00	SPS	0	CF	100	0	0	. 0		NA	POR	LSE	SAT		

BOREHOLE ID : CW9MW36A PROJECT NAME: FT. MONMOUTH

BEGIN DATE : 01/03/95 END DATE : 01/03/95

LOGGER/COMPANY : P. THOMAS

BOREHOLE COMPLETED IN (<0>verburden edrock) :

TOTAL DEPTH: 6.00 DEPTH TO BEDROCK: 0.00

BOREHOLE DIAMETER #1: 12.00

INTERVAL: 0.00 ft. to 6.00 ft. BGS

METHOD : HSA FLUID : WATER

BOREHOLE DIAMETER #2:

INTERVAL:

METHOD: FLUID:

BOREHOLE DIAMETER #3:

INTERVAL:

METHOD: FLUID:

DRILLING COMPANY : J.C. ANDERSON
DRILLER : STEVE BURGER
DRILL RIG TYPE : ATV-SKID RIG

ESTIMATED SURVEYED

SURFACE

ELEVATION: 0.000 31.220

N. COORDINATE: 0.0000

E. COORDINATE: 0.0000

WELL PERMIT.....(Y)es (N)o: N PERMIT #: NJ 29 32601

HOLE ABANDONED...(Y)es (N)o: N

WELL INSTALLED ... (Y) es (N) o: Y

WELL CLUSTER....(Y)es (N)o: N No. OF WELLS: 0
WELL NEST.....(Y)es (N)o: N No. OF WELLS: 0

PUMPS INSTALLED...(Y) es (N)o: N TYPE DEPTH

PURGE: 0.00

SAMPLE: 0.00

BOREHOLE TESTING

BOREHOLE GEOPHYSICS.... (Y) es (N) o: N SLUG TESTS..... (Y) es (N) o: N PACKER TESTS..... (Y) es (N) o: N PUMPING TESTS..... (Y) es (N) o: N

COMMENTS :

Upon finishing with CW09-MW36A (1-3-95) a test borehole, the borehole was abandoned by grouting from TD to ground surface Hole CW09-MW36. Lat.N: 40 deg 17' 47" Long.W: 74 deg 4' 28"

PROJECT : FT. MONMOUTH

SITE NAME : CHARLES WOOD AREA 9

BORING ID : CW9MW36A

NORTHING : 0.0000 estimated

EASTING : 0.0000 estimated

ELEVATION : 31.220 surveyed

TOTAL DEPTH : 6.00

LOGGER : P. THOMAS

DRILLING COMPANY : J.C. ANDERSON

DRILLING RIG : ATV-SKID RIG

DATE STARTED : 01/03/95

DATE COMPLETED : 01/03/95

THE STATE OF STITE SAME AND SERVER SERVERS SAT TO STITE SAME AND SERVER SERVERS SAT TO STATE SAME AND SERVER SERVERS SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAME AND SERVER SAT TO STATE SAT TO SERVER			,									
No Sample Recovered No Sample Recovered Silty sand, SM Poorly graded sand with Silt, SP SM No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	ELEVATION	ОЕРТН	MATERIAL	o/p					BLOW			
No Sample Recovered 8 No Sample Recovered 8 No Sample Recovered 8 No Sample Recovered 8 No Sample Recovered 12 No Sample Recovered 13 No Sample Recovered 14 No Sample Recovered 15 No Sample Recovered 16 No Sample Recovered 17 No Sample Recovered 18 No Sample Recovered 18 No Sample Recovered 18 No Sample Recovered 19 No Sample Recovered	1			50	Silty sand, SM	BROWN	SFT	MST	1 2	HNU	0.0	Fill and topsoil.
No Sample Recovered 8 No Sample Recovered 8 No Sample Recovered 8 No Sample Recovered 8 No Sample Recovered 12 No Sample Recovered 13 No Sample Recovered 14 No Sample Recovered 15 No Sample Recovered 16 No Sample Recovered 17 No Sample Recovered 18 No Sample Recovered 18 No Sample Recovered 18 No Sample Recovered 19 No Sample Recovered				1					4			
29 2 55 Silty sand, SM BROWN LSE WET 17 HNU 0.0 Fill/topsoil Sat -2.8' bgs. 28 3 No Sample Recovered No Sample Recovered 27 4 Silty sand, SM OLV/GRN/BRN LSE SAT 7 HNU 3.0 Note: strpng color chapped bgs trace round gravel gtz fragments. 26 5 No Sample Recovered No Sample Recovered	-	Ť		1				ĺ	4			
29 2 55 Silty sand, SM BROWN LSE WET 17 HNU 0.0 Fill/topsoil Sat -2.8' bgs. 28 3 No Sample Recovered No Sample Recovered 27 4 Silty sand, SM OLV/GRN/BRN LSE SAT 7 HNU 3.0 Note: strpng color chapped bgs trace round gravel gtz fragments. 26 5 No Sample Recovered No Sample Recovered				,						1		
28 - 3 No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	√30 -	1		1	No Sample Recovered	┨ .						
Popriv graded sand with sitt, SP-SM OLV/GRN/BRN LSE WET 13 HNU 3.0 Sat -2.8/ bgs. No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered			i		100 COMPCO NOCOCO CO		1		1			1.
Popriv graded sand with sitt, SP-SM OLV/GRN/BRN LSE WET 13 HNU 3.0 Sat -2.8/ bgs. No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered		+				1		-	l			, '
Popriv graded sand with sitt, SP-SM OLV/GRN/BRN LSE WET 13 HNU 3.0 Sat -2.8/ bgs. No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered				Ì				1	ļ			1
Popriv graded sand with sitt, SP-SM OLV/GRN/BRN LSE WET 13 HNU 3.0 Sat -2.8/ bgs. No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	20 -	,							l	l		
No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	-			55	Silty sand, SM	BROWN	LSE	WET	10	HNU (0.0	Fill/topsoil
No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered No Sample Recovered	l _	Ĺ			Poorly graded sand with	OLIVE BROWN	LSE	WET	12	HNU 3	3.0	Sat ~2.8' bgs.
No Sample Recovered No Sample Recovered OLV/GRN/BRN LSE SAT 7 HNU 3.0 Note: strpng color chappe bus trace round 5 2/2 5.5 No Sample Recovered No Sample Recovered 25 - 6 24 - 7 23 - 8					SILL, SP-SM -		İ		'-			
No Sample Recovered No Sample Recovered OLV/GRN/BRN LSE SAT 7 HNU 3.0 Note: strpng color chappe bus trace round 5 2/2 5.5 No Sample Recovered No Sample Recovered 25 - 6 24 - 7 23 - 8									i			
27 - 4	28 -	† 3·			No Sample Beautaned	4		ļ				
26 - 5 No Sample Recovered No Sample Recovered 27 - 7 28 - 8 29 - 9				Ì	no sample Recovered				ľ			į l
26 - 5 No Sample Recovered No Sample Recovered 27 - 7 28 - 8 29 - 9	1 1	t		•	·						•	·
26 - 5 No Sample Recovered No Sample Recovered 27 - 7 28 - 8 29 - 9	[1.									
26 - 5 No Sample Recovered No Sample Recovered 25 - 6 24 - 7 23 - 8 22 - 9	27 -	4		-75	Silty sand, SM	OLV/GRN/BRN	1 SF	SAT	7	HNU 3	3.N	Note: strong color change
26 - 5 No Sample Recovered 24 - 7 23 - 8 22 - 9								OA.	12			to It Fe brown at 5.2/5.5
25 - 6 24 - 7 23 - 8 22 - 9	-	-							18	ł		qtz fragments.
25 - 6 24 - 7 23 - 8 22 - 9												
25 - 6 24 - 7 23 - 8 22 - 9	24	[[1		1					
25 - 6 24 - 7 23 - 8 22 - 9	26)										
25 - 6 24 - 7 23 - 8 22 - 9		•							1			
24 - 7 23 - 8 22 - 9	1				No Sample Recovered	1		İ				
24 - 7 23 - 8 22 - 9								1				·]
24 - 7 23 - 8 22 - 9	25 -	6				1						
24 - 7	1		-		}		'		_			
24 - 7	-	-							[,
23 - 8 22 - 9				`	`			1				
23 - 8 22 - 9	24 -	7										
22 - 9												
22 - 9		_										· .
22 - 9												
22 - 9		L .	;									
	25	8	[i							١,		
]]		1	1						
	†	-										
						1				}		
21 - 10	22	- 9]]									
21 - 10					1					·		
21 - 10		Ļ										
21 - 10					}							
	21	- 10	 .						1			
	"	10				1						
										ļ		

DATE: 06/20/95 **** Roy F. WESTON, Inc. LITHOLOGICAL DATA FOR - CLIENT ID: USAC2 *** PAGE: 29

BOREHOLE	SMP	LTH	LITHOLOGY	INT.	SAMPLING	SIZE	GRAVEL	SIZE	SAND	SILT	CLAY	ORGANIC	ROCK		~			STRAT
/WELL ID	NUM	NUM	(FT BGS)	METHOD	GRAVEL	PCT.	SAND	PCT	PCT	PCT	PCT	TYPE	PLAST	SORT	STRENGTH	MOISTURE	UNIT
					•													
CW9MW36A	1	1	0.00	1.00	SPS	CM -	5	FM	45	30	10	10	•	NA	POR	SFT	MST	-
CW9MW36A	1	2	1.00	2.00	SPS		0		0	0 .	0	0						
CW9MW36A	2	1	2.00	`2.30	SPS	М	5	MFC	70	20	0	5		NA	MOD	LSE	WET	
CW9MW36A	2	2	2.30	3.10	SPS		. 0	MCF	90	10	0	0			MOD	LSE	WET	
CW9MW36A	2	3	3.10	4.00	SPS		0		0	0	Ö	0						
CW9MW36A	3	1	~ 4.00	5.50	SPS		0	MCF	85	15	0	0		NA	MOD	LSE \	SAT	
CW9MW36A	3	2	5.50	6.00	SPS		0		0	0	0	0			1100		OAT	

APPENDIX B.
SURVEY DATA

Monitoring Well and Tidal Gauge Table Fort Monmouth, New Jersey (Continued)

Monitoring Well Designation	Outer Casing Elevation	PVC Elevation	Ground Elevation	Point Number
MP2-MW2	15.72	15.50	13.36	129
MP2-MW3	13.10	- 12.63	10.98	130
MP2-MW1	21.42	21.04	19.44	131
B2-MW02B	20.45	20.23	18.07	132
B1-MW01B	25.16	24.59	22.48	133
B5-MW05B	15.54	15.40	13.40	135
MP16-MW22	7.54	7.25	5.50	136
B9-MW09B	45.65	45.31	43.13	137
CW2-MW31	52.18	51.58	49.67	. 138
CW2-MW32	52.08	51.38	49.47	139
CW2-MW33	51.17	51.09	49.18	140
CW2-MW30	52.15	51.71	49.47	141
B10-MW10B	53.43	33.14	51.36	142
B8-MW08B	49.41	48.09	47.04	143
CW9-MW35	31.73	31.43	29.27	144
CW9-MW36	33.60	33.21	31.22	145
CW6-MW34	34.17	33.76	31.97	146
B6-MW06B	37.52	37.37	35.19	147
	Stream Bed Eelvation	Distance to Top of Gauge	Top Elevation	
Stilling Well-2	1.28	+9.00	10.28	148
Stilling Well-1	1.37	+9.26	10.63	150
Stilling Well-7	-1.02	+8.85	7.83	151
Stilling Well-9	-1.63	+8.80	7.17	152
Stilling Well-8	-1.71	+8.20	6.49	153

Monitoring Well and Tidal Gauge Table Fort Monmouth, New Jersey

Monitoring Well Designation	Outer Casing Elevation	PVC Elevation	Ground Elevation	Point Number
MP4-MW7	17.16	16.75	14.83	100
MP4-MW8	11.05	10.68	9.02	101
MP4-MW9	9.91	9.69	7.77	102
MP5-MW11	12.21	11.70	9.77	103
MP3-MW4	19.70	19.02	17.34	104
MP3-MW5	13.42	13.30	11.28	106
MP3-MW6	12.61	12.42	10.25	107
MP3-MW12	15.88	15.20	13.47	108
MP5-MW10	7.53	6.91	5.13	109
MP8-MW14	8.62	8.22	6.19	110
MP8-MW13	8.23	7.80	6.02	111
MP8-MW15	7.35	7.01	5.01	112
MP18-MW24	9.04	8.16	6.78	113
MP18-MW25	8.64	8.28	6.35	115
B4-MW04B	12.44	12.08	9.78	116
B7-MW07B	66.74	66.31	64.27	117
CW1-MW-29	62.73	62.44	60.41	118
CW1-MW-26	62.62	62.46	60.54	119
CW1-MW-27	62.76	62.56	60.81	120
CW1-MW-28	63.17	62.89	60.73	121
MP14-MW19	10.47	9.68	7.98	122
MP14-MW20	9.77	9.29	7.43	123
MP14-MW21	9.78	9.57	7.50	124
MP12-MW18	7.04	6.62	4.78	125
MP12-MW16	8.74	8.35	6.33	126
MP12-MW17	8.24	7.87	- 5.90	127
B3-MW03B	21.53	21.09	19.20	128

APPENDIX C WELL DEVELOPMENT LOGS

T.O. 4.65 - ("WETE) >1-well velnesse

GEOLIS Well Development Form

CUE	ECT:	100 17	intui	muin)		WELL NO. DATE: LOGGER: BIGNATUR			2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	2194	5	
ONE W	ELT AOFR	ME:	-	galk	one W				ft TOC	Well V	olume	2-inch	= 0.16 6-inch = 1.4
TIME	ACTIVITY	DEPTH	PURGE	PINOS	AíC	mot		MEASU	REMENTS	Quion	4/1000	TURBIOTTY	= 0.65 8-inch = 2.6
100	DED	9.33		1	111/1	11150	11111	MEI	MIXI	WD	<u> </u>	2	
105	NE				1			1				72.	
illo	1000	DOB	24	7	7.3	70	2		-		- 1		1
1115	DOE/	DSB	24	and the	4.91	34<	15.23	122	TIPPA				1.5 ppm ()
1130		22-5	NIA	14 m	NIG	-	1.205	.03	/ Vhow	-	7 30	- 1	Sppm U
1145		20.0			NA	78				-	-		5. 1
1150		19.0	~1			333	15.3	221	TI/PA.	-	100	7	1.
1200		DRY	MA				13.0	, 231	IVADE			1/	mn V
1218		19.90	NA			7			-	-	181		
1230		20.00			-				-	-	-		- S
				Nell N	المادر	to		5		-			<u></u>
00	iler	Sura	blo	14	- 1	. 1	1	10 K					lop with
			2.00		7	XLL	10	may	cse	dusc	- AP	M	
79					+	-	\rightarrow	-	-	-	_	-	
1.0	N.E.				+		-	\dashv	+		_		7
				+		-		1	-		-	-	M-14
	7				+	-		+		-	_		4
		d for				10	-	,	-				
14				1		-		NE	THA	15	_	124	- 1 M
	FINAL				+		-	-	_	-	+	-	
NAL WELL	YIELD:	10	.<	GPM	DIMAD	DATE		1		\perp		\perp	
	-		CTIVITY				ESTIMA	/		ESPOND		NOOWAS	NN: Ory FT
BB - Begin							ELD ME		***************	CODES		π	RBIDITY
08 - Begin 18 - Begin 18 - Begin 18 - Begin 18 - Begin 18 - Begin 18 - Begin ecity other	Overpump Rewhiding Recirculati Hydraulic Idr Surging Surge Bloc Ather method:	on Jetting I Iding	DBE - E	Ing M	ITP - Tam ISC - Spe IPD - Pho IPD - Plan IPH - pH IPH - pH IPH - Imh	cific Con lotanizer se tonize lotved Or	ductanos (e.g., Hh r (e.g., O' (ygeri	44	Enter Turbidity Meter Reading (Final should be < 5 NTU) OR Enter Qualitative Observations HHigh: Opeque/Muddy/Sity MMedium: Translucent/Cloudy				
T - Field M	edaure(70)			es at right			01 - Othe 02 - Othe	f			L-Le	W. ITER	eparent/Some Still ear/No Velble Still

GEOLIS Well Development Form

COM	PANY: _	Rtu					WELL NO.	:	Yu	 R: <i>i</i>			
CUEN	_	USACL					DATE:	_	1-17-9		_	,	
PROJ	ECT:	2388C	076-as	18	-		OGGER:	_	Kink				
SITE:		MPZ				_	BIGNATUR	_	1. Li-				
ONE WI	EIT AOF	ME 2	10.4	galk	one W					Well V	olume 2/1001)		th = 0.16 6-inch = 1.47 th = 0.66 8-inch = 2.61
	ACTIVIT	DEPTH TO	DATE	PURGE VOLUME (ga)			FIELD	MEASU	EMENTS				3041211 - 2.01
TIME	CODE	1			1	МТР	nsc	MV	thu			TURBELLY	COMMENTS
STA	1405	8.25	<u> </u>										
1405		8.25	·	<u> </u>									
1425			ļ			<u> </u>					i		
1430	D3Q	14.60	BAIREN	5. 3	6.08	11.9	1271	106	1.0			Н	Dr. Gray Skry
1435	780A)	\$23.41	Dey	12.0	6:17	12.7	.277	097	0.0			H	11 "
1515	T	16.20					<u> </u>						REMARG. Nysluly
1520	NBB	isiao	BAileD	15.0	<u>5.07</u>	12.7	-262	204	3.0		,	4	1 1
1528	1 /	. 1		18.0	5.08	12.7	. 263	196	0.0	·		4	
1130	Dec/		Dey	20.0								H	
1545	DSF	21.24											Re-cusesing Slow
						•							
]		
					``								
							·						
	•												
												\dashv	
	FINAL										_		
INAL WELL			0.5	(GPM)							_ }		
							ESTIM			RESPON		PAWE	DOWN: PRY FT
را و 80 - 80		F PREIN I		Y CODE					EMENT	CODE	8		TURBIDITY
OB - Bagin	г Отегри		DOE	End Built End Over		•	MTP Te	eche Co	ncuelsoc		E		78697410 310 510 510 E
CB - Begin HB - Begin	Recircul	elion .	DCE	End Paret End Reck	CULETO	ī.	MPD - Ph	otoloniza The toniz	r (e.g., H	No.		***********	
AB - Begin SB - Begin	Air Surgi	NG	DAE-	End Hydr End Air Si	uraina :	sung	VPH - pH	ectved ()X/JOET				refletye Observatore
(B.: Begin sectly other	Other		DXE.	End Surgi End Other	o exect		MEH EN	hoff Con			M.	Mediu	Opeque/Moddy/Sity
(T - Flood)			ct from ex	dee at rig	•		401 - OU 402 - OU				***********		Case/No Visible Stit
YRIGHT O	1991 by Ro	y F. Westo	n, inc.	***************************************			***************************************			*****************			GORIZRIT

GEOLIS Well Development Form

COMP/		RFW	•			w	ELL NO.:		Murz		· `		_ 🖁	Man !	
CUENT: C 3886 - 36 (38)						DATE: _			12-22-94						
						LOGGER: KVA (2007)									
- BITE:		27.1WC.	7			81	GNATURE	: <u> </u>	VI	~	\				İ
ONE WE	LT AOT M	IE ~ <u>5</u>	.7	gallo	ns WE	IL TD: _	19,2	6	R TOC	Well V (gallon			n = 0.16 n = 0.65	6-inch = 1.47 6-inch = 2.61	
	ACTIVITY	· · · · · · · · · · · · · · · · · · ·	PATE	PURGE VOLUME (gel)			FIELD MEASUREMENTS				,	È			'
TWE					1 1/16	m	mf	WEH WN	ma	WSD		TURBIONY	0	COMMENTS	,
0805	SAR	10.52				-	_	_	_	_ ,			,	~	
0815	DSE		`										·		
0820	DBB														*
0830	DBE						<u> </u>		<u> </u>	-: .				· · · · · · · · · · · · · · · · · · ·	,
0833					· .		· ·				·		Proble	ems with	Sta
0835	FMT	12,12	·											-	
0855									Dikun					. 1	
1955	FMT		2/29	1	657	421	13.30	064	Cloudy	.01			Klese/	Little Clasy	
1005	FUT		21/2	ż	6.45	416	13.50	046	DYN	10.			· '		
1015	FMY		21/2	3	1.0		13.80							- 	·
1020	FMT	`	21/2	ļ	1		14,00					<u> </u>		<u> </u>	
	FMT		21/2		1	415	13.80	106	Clear	2.8		<u> </u>	<u> </u>		
1030	FMT		2/2		1	.412	1390	105	Clear	2.0			No 10	al odor	HUV
														, -	
		· .		re ·		ļ	<u> </u>					<u> </u>	<u> </u>		
			ļ 		<u> </u>	<u> </u>				ļ		<u> </u>	ļ <u>"</u>		
			ļ	ļ	ļ·			ļ		,		<u> </u>	<u> </u>	-	
				ļ	-				<u> </u>	<u> </u>			<u> </u>	-	
				<u> </u>			-		ļ				 		
	FINAL		L_j_		<u> </u>	<u> </u>	<u> </u>		}	·	· .		<u> </u>		
FINAL WE	************		<u>s</u>	(GPI		MP RATI	- ह्डा	MATED	α	ORRESP	ONDIN	G DRAV	VDOWN:	<u>5</u> (FI)	ĺ
	DEVELO	OPMEN	TACTIV	ITY COL)E9		FIELD	MEASI	REVE	NT CO	DES		TURB	YTICH	
D08 - 8-0			*************	E + End B E + End C		olno		smpera Specific		erce .				Meter Reading be < 3 NTU	
DCB - Beg	in Rawhic	ling		E • End Pi E • End R				Photolon Flame to							-
DHB - Be	in Hydrei	ilic Jettin	g DH	E - End H E - End A	ydraulic	Jetting		Dissolve						e Cheervations	
DSB - Bec	in Surge		DS	E-EMS	urge Blo		MEH-	B1						re/Muddy/Sity trail:cent/Cloudy	
EXB. Bea			D) (E-End O	J)OF		MOY -	imhoff C Other:	000			L-Low	z Transpi	rent/Some Siii	
EMIEVED	d Messuri	emente (s	elect from	codes el	nghi)		M02 •					N - No.	s: Chai	No Vielble Str	
COPYRIGHT	© 1901 by	Roy F. We	eton, Inc.											G0812917	,

COM	PANY:	RE			·	_	WELL NO.	: _	Mu	JO 3			
CUEN	_	USA					DATE:	_	1929				
PROJ			<u>076-</u>	<u>038 - C</u>	<u>∪20</u> -	ಬ	LOGGER:	_	4.446	MI	N. 16-2	15	
NITE:		MPZ					BIGNATUR	<u>E:</u>	KIM	w.			
ONE WE	ETT AOTTIN	ME:	ح.	gallo	w w	ELL TD:	16.	87	_ ft TOC	Well V			h = 0.16 6-inch = 1.47 h = 0.65 8-inch = 2.61
TIME	ACTIVITY	DEPTH TO WATER	PURGE RATE	PURGE VOLUME	ATC	T	FIELD	MEASU	REMENTS	1		TURBOUT	
		(TC)	(gpm)	(gal)	MPH	MS C	MTP	MEH	MCL	MPD		5	COMMENTS
1100	STA	8.30				+			 	1			<u> </u>
1100	DSB	0.30	,			┼	+	 					
		 				↓		├	 				
1105	DSE					<u> </u>	·	<u></u>				1	
1105	DBB.					1							7
1115	DBE	1235	2gal							1			
1115	DOB						†		SIHY	 			
1130	DOB		Zgal		10	1120	14.2	-	Green				
	r	1110	Zgal				16.2		3.6,	43			
1145	DOB	11.10	2,500	<u> </u>	6.90	.412	166	095	5.6	4,0			
	DOB		<u> 3gal</u>	1	691	,457	16.8	112	Clear	4.0			Ken surging punt
1225	DOR	İ	3aal				16,50	101		4.0	$\neg \dashv$		
1735	DOB	1	3491	. 72		470	1	119					
1140	DOR							***	Cloudy	-			
100			2941 			.432		[00]	5.6	4.0			Ken Jurged Dump
120	DOB		3gal	5	291	.479	16.60	.098	Clear	4.0		_	
1250	DOF										}		
					- 1								
											\dashv		
1			,										
					-+								
	-+	- 											
 -													
	FINAL										T		
FINAL WEL	L YIELD	12	3	_(GPM	PUM	P RATE	- ESTIM	ATED	ΦI	RESPON	DING F	RAWD	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Ĺ	DEVELOR	MENT	ACTIVITY	CODE	3	3 (%)	FIELD M	EAGI R				******************************	
289 - Bagir	***************************************	***************************************		End But			yvinion u			I CODE	8		TURBIDITY
XXB - Begin XRB - Begin	t Overpum	ping	DOE -	End Over	Janua	19	MTP - To	ectic C	onduder		•	enter Tu	which Melar Reading
XB - Begin	Recircule	tion	DCE 4	End Rawl End Reci	culatio	n	MPD - Ph	oloionia	er (e.p.	TNU.		gi wasi'i	
XHB - Begin XB - Begin	Air Surgin	a	DHE.	End Hydr End Air S	aulic Je		MDO - DI	pecived	Охуреп		6	n r Cu	zeltelive Observations
SB - Begin KB - Begin	Surpe Blo	cking	DSE .	End Surg	 Block 		MPH - pt MEH - En				Ha	High:	Openie/Muddy/Sity
pacify other	method:		***************	End Othe			MMC - Im MO1 - Ot	hoff Cor	*			LOW:	m Introducent/Cloudy (rareptient/Some Still
MT = Fletd I	Headure(T)	ento (este	ct from co	des at rig	h i		MO2 - O1	W F			N.	None:	Char/No Valou SIII
PYRIGHT ©	1991 by Roy	F. Wester	n. Inc			. 101							***************************************

DBB - Bag DDB - Bag DDB - Bag DDB - Bag DBB -	in Overpui in Rewhidi in Recircul in Hydraul in Air Surge in Surge B in Other ser mathod	ng ation ic Jetting ing locking	DOE DRE DICE DHE DAE DRE DXE	- End But - End Ov - End Rus - End Rus - End Air - End Sun - End Oth	erpump whiching carculation drausic . Surging ige Bloc est	on letting	MPD - P MPD - T MDO - T MPH - P MEH - E	pecific C hololoni larne ton Xesotvec H h mholi Co	zer (e.g., Izer (e.g., I Oxygen	CVA)	Enter (Hartigh Marked LaLows	Furbidity Meter Reading If should be < 5 NTU) OR Australive Observations Opeque/Muddy/Sity turn: Translucent/Goudy Transparent/Some Still Clear/No Velbis Still
FINAL WEI	DEVETO:		2 ACTIVI	GPM			- ESTIM	_		RRESPONE	DING DRAW	DOWN: FT
	FINAL							_				100
- //												
			1 43									
1505		16.10	Law man								7 4	RUCHARE-
1500	DBE	20.10	2.5	154.0	5.22	14.5	.353	181	-		4	CLEAREN A CITTE MORE STILL ALCO
1450	000	20.12	2,0	1340	5.68	14.5	.356	179	-		М	,
1440	De.J.	20.10	2.0	14.0	5.71	14.5	.342	148	1.0		M	
1430	Des	2423	2.0	94.0	5.76	14.6	:361	169	۵.۵		M	and the sales of
1425	Dus	21.80	2.0	74.0		HAS	ð	-			M	Fru BACK Ti 2. CAM
14:20	Dus	18.90	2.5	69.0	5.81	14.6	.378	159	1.0		M	JOSHOTO Plan TO
1410	DU:3	18.16	2.0	BAO	5.76	14.7	1386	159	1.5		M	TWO 2.0 GPM
1400	Dug	17.48		49.0	5.78	14.9	.363	160	1.0		M	Clearing - To 1.5
1350	Dos	17.30	1.0	39.0	5.56	15.0	.374	167	2.0		H	SAME
1340	Dog	17.05	1.0	29.0	5.82	14.6	.380	146	2.0	1	H	STAL BILTY
1330	DOB	15.83	7.0	19.0	100	11.8	.46	074	1.0		Ħ	INCRASE Flux
1320	003	14-00	0.5				.396		8.0	4	H	Gray is 4 · Green
1512	983	12.70	-	13.0				2			H	Greznish Gray
1245	DSE	12.70							and the same		14	
1245	STATIC	12.70		-	-	-	_	-	-		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	44
TIME	ACTIVITY	DEPTH TO WATER	PURGE RATE (gpm)	PURGE VOLUME (gal)		МТР	MSC		HAU		TURBIOTY	COMMENTS
ONE WE	ELL VOLUM	1E: ~ 8	. 1	gallo	ene WE	ELL TD:	25.	10	# TOC	Well Volu (gallons/f		n = 0.16 6-inch = 1.47 n = 0.65 8-inch = 2.61
SITE:	-	MP 3		-		. 8	IGNATUR	E: _ Y	· V	4		
PAOJE	CT:		076-0	38			OGGER:		K. VAL			
CUEN	r:	USARI			12		VELL NO.: NATE:	Post	1-0-	95		

CUENT		PFZ					VELL NO.:	_	Muc			- Rx	
PROJE			-076-	238			ATE: OGGER:	_	1-12-1 4. VALG				
SITE:		MA3					IGNATURE		V. U.			- 600.	
ONE WE	ETT AOTO	ME:(0.40	gallo	one WE	ELL TD:	18.1	5	RTOC	Well Volume		h = 0.16 6-inch = 1.47 h = 0.65 8-inch = 2.61	
	ACTIVITY	DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENTS		\top		
TIME	CODE	WATER (R)	(gpm)	VOLUME (gal)	МРН	MTA	MSC	MV	H~u		Turesion	COMMENTS	_
% 5€	STATIC	830	43	_	_	_	-	-	_		+	BEGAN SUGE OGUS BLUCKING. 0905	
0915	DBB	8.30									+	BEGON BALLING	
0925	DBE	17.40		20								Bailer Dry.	
0930	<u>'</u>	15.00				à.						REHEASE NE PER	2 MINUTE
0945	Do3	9,20	0.5	20	6.58	12.2	1.054	-039	5.0		H	DK. GRAY SILLY WATER. MILD ODOR.	
0622	Dog	13.40	0.5	25	6.65	15.2	1.057	-063	6.5	ATA	H	" " "	
1005	Dos	13.76	20.5	. 3c	6.60	17.2	1.06	-079	n.o		H		
1010	Dus	13.70	10.5	~32	6.66	17.8	1.476	-U9 V	4.0	20	M	Charing But	
1015	DUS	13.79	20.5	~35	6.68	18.8	1.057	-093	8.0		M		
1-25	DBE	Dey	1.0	~37				V 100				treased Flow Parts WEZI WENT DRU.	
1035	D03	1020	10.5	~38	6.60	16.7	1.084	-087	9.6		4	Clerazorg-HeranyClin	ineg (.)
1040	DOB	14.05	~0.3	~40	6.60	15.6	1.081	- 080	8.5		M	THEFERSED FLOW	1
1050	p-3	14.57	20.5	245	6.65	17.0	1.055	787	4-0		L		ک
1100	DoB	14.51	20.5	250	6.62	17.7	1.084	-088	8.0		L	Cleareing	
11.0	Dog	14.51	~0.5	^55	6.62	17.0	1.030	-08¥	8.0		L	SAME AP ABOVE	
1120	DUB	14.59	nus	~60	6.60	17.1	1.060	-086	8.3		1	cleasing	
1130	Dog	+-				16.8	ااكما		8.0		1	W.I. HARD TO DETERM	المو
1140	03E	\dashv	20.5	270	5.58	16.8	1.078	- <i>0</i> 80	8-2		1		
	FINAL	-			-4				- (-	1 1	
FINAL WEL			0.5					ارح					
				GPM			- ESTIN			RRESPONDIN	G DRAW	DOWN: 6 FT	
		"MEN	ACTIVI	TY COOR	=39		FIELD	ÆASU	REMEN	IT CODES		TURBIDITY	
DBS - Begi DOS - Begi DOS - Begi DOS - Begi DAS - Begi DSS - Begi DOS - Begi Specify oth	n Overpun n Rewhidi n Rectroul n Hydrauli n Air Sunge n Sunge Bi n Other er method	ng ation ic Jetting ing locking	DOE DRE DICE DHE DAE DSE DRE	- End Bai - End Ov - End Ran - End Ran - End Hy - End Air - End Sur - End Oth	erpumpi whiching dreutette traute J Surging ge Block	etting King	MPD - P	pecific C hotoloni: erne lon lesolved H h mhoff Co	onducter zer (e.g., Izer (e.g., I Oxygeri	HNLD OVA)	(Final Enter (H = High M = Med L = Low;	Turbidity Meter Reading If should be < 5 NTU) OR Catalhethy Observations : Opeque/Muddy/Sity furn: Transhoont/Goudy Transparent/Some Bill	
MT - Fleid	Medaurer	nenia (es	lect from (odes at f	gh ē		M02 - 0				N - Non	r: Clear/No Vielble Stit	

G061291T

CUENT: US ACE PROJECT: 03886-076-038 DATE: 1-18-95 PROJECT: 03886-076-038 LOGGER: V. VALENTE BITE: MP3-MW06 BIGNATURE: V. V. ONE WELL VOLUME: ~5.8 gallons WELL TD: 17.15 ft TOC (gallons/foc) TIME ACTIVITY TO WATER PURGE PURGE FIELD MEASUREMENTS	2-inx 4-inx	ch = 0.16
ONE WELL VOLUME: ~ 5.8 gailons WELL TD:	# 4-inc	ch = 0.65 8-Inch = 2.61
ONE WELL VOLUME: _~ 5.8 gallons WELL TD:	# 4-inc	ch = 0.65 8-Inch = 2.61
(gallona/loc	# 4-inc	ch = 0.65 8-Inch = 2.61
TIME ACTIVITY TO BATE VALUE FIELD MEASUREMENTS	7	
THE SOUTH TO BATE UNITED	TURBIDIT	СОММЕНТЅ
(apm) (apm) (ap) MPH MTP MSC MV HNU		
CX 30 STATE 8125		
0842 180		
Ogou DSE		
0910	1.	
1110 DBB 850 Bir Les 5.0 5.79 15.1 1.340 190 0.5	Н	GIEZWISH GRAY SILTY WATER
1115 DBE DRY BAILED 7.0 5.43 14.8 1.261 179 0.0	H	" " "
1119 - 15.80	 •	
1145 DBB 10:20 BALD 120 6.06 13.6 1.120 040 1.0	H	TEASH ODUR
1153 DBGABDRY 13.0 6.17 13.7 1.124 053 1.0	H	
Mae DEE	Ţ.	· ·
12.0 DBB 11.00 BAILED 14.0 6.01 12.8 1.013 050 0.0	H	
1215 DBF 1687 20.0 6.03 13.0 1.024 049 0.0	4	
1330 D.3 8.53 28.0 6.36 14.0 1.097 019 0.0	H	
1335 DEE Dey 28.0	Н	
MUU DOB 10.60 30.0 6.51 13.2 ,947 002 0.0	11	CLEARING BUT STILL
1406 DBE - 34.0	Н	1. Punj = 14.95
1430 008 11.00 35.0 6.54 11.2 1.037-005 0.0	M	BUTTELL STORY THONKY
1455 DB 13.25 KOS 41.0 6.48 16.6 .958 - UUS C.U		chaeine
1510 DOB 14.00 KO.5 45.0 6.61 16.4 1.001 -016 0.0	4	cleared of
	EXT	PAGE >>
FINAL WELL YIELD: GPM PUMP RATE - ESTIMATED CORRESPONDIN	G DRAW	
DEVELOPMENT ACTIVITY CODES FIELD MEASUREMENT CODES		TURBIDITY
DBB - Begin Saling DBE - End Bating MTP - Tamperature DOB - Bagin Overpumping DOE - End Overpumping MSC - Specific Conductance	Enter:	Turbidity Meter Reading
ORB - Begin Rewinding ORE : End Pawridging MPO : Brotolphase (40 / 110)	(Fina	i should be < 5 NTU
DHB. Beon thydroule: Jodine Due: Englisher Many MPOV Fund onlast (6.5 / OVA)	Fat-	CR Availtative Observations
AB - Begin Air Surging DAE - End At Surging UPH - pH		
DOB Books Other DOE Englower Mark Children	M Med	Opeque/Muddy/Sity
specify diser method: MO1 - Other:	L-Low:	Transparent/Some Stit Clear/No Velble Stit
THE STREET OF 1991 by Roy F. Weston Inc.		

			RF	• .						,					_
	COMP	. —	03¢			<u> </u>	٠ ،	MET NO":		MIN	16			_	
i	PROJE	. —		6-076	-1/26		~ ₁	DATE:		18-75					, Ì
	SITE:		NA.		03.8			OGGER:		UNGO		<u> </u>			'
								MONATUR		M	<u> </u>				<u>!</u>
	ONE WE	TT AOF (1)	WE ~	5.8	gallo	na Wi	ELL TD:		ري	RTOC	Well Vi (gallon	olume e/foct/	2-inci	h = 0.16 6-inch = 1. h = 0.65 8-inch = 2.	67 91
l		ACTIVITY	אדיששם סו	PURGE	PURGE			FRELD	MEASUR	EMENTS			1	T	_
	TIME	CODE	WATER (R)	RATE (gpm)	VOLUME (ga)	МРН	МТР	MC	MV	Hvv	·		TURBOLLY	COMMENTS	
L	CONTIN	ves 1	ron	Presid	us Pa	ج ^{ل-}									
ļ	1510	003	14.00	20.5	45.0	6.61	16.4	1.001	-016	0.0			4	close	_
	1530	200	14.85	20.5	49.0	6.49	17,8	.776	-013	0.0			L		_
	1540	DoB		40.5	- 1								۷	purply.	_
_	1550	DoB		<0.5									L	cient.	
	1600	DOB		10-5	√5B.0	6.35	16,1	1769	004	0,0			Ĺ	climp	
	1600	DOE								` '		•		\	
			İ	1	1					~			1		_
_	,										-			· · · · · · · · · · · · · · · · · · ·	_
											_			`	┥
										- 	- +		-}	· · · · · · · · · · · · · · · · · · ·	4
															4
															╝
_															
_														_	٦
_															٦
_						_									7
	 -									,					7
-	 _														7
_		FINAL													7
	INAL WELL	YIELD:		0.5	_ GPM	PUMF	PRATE	· ESTIM	(TED)	COR	RESPON	DING D	RAWD	OWN: D() V FT	1
	D	EVELOP	MENT.	ACTIVIT	Y CODE	3	F	HELDM	EASUR					TURBIDITY	
į	ر ن وح8 - 88	ورلو		DBE -	End Belli	***************************************		MIP . Ter		*************					
Ĭ	08 - Bagin R9 - Bagin	Pawhidin		DOE.	End Over End Paret		9	MBC - Sp	cinc Co				(Final	riskfly: Mem Reacting should be << 5.NT()	
Ä	CB - Begin IB - Begin	Recircule		DCE.	End Reck	culation		MPD - Phi MPD - Pla	me toniz	et le n. t	NU) JVAL				
ľ	AB . Beats	Vr Surain	a	DAE.	End Hydr End Air Sk	ruic Jel		MDO - Die MPH - DH	solved (Журеп				allaive Cheerasions	}
ŝ	38 - Begin (CB - Begin (Surge Blo	cidng	DSE-	End Surge End Other	Block!	10	AEH - Eh				H	High:	Opeque/Muddy/Sity	
Ė	ectly other	method		***************				AMC - Int 101 - Oth	noff Con				Low, T	RE:: Translucent/Cloudy ransparent/Some 388	
	(T. Fleid)	oceu/e/7		ct from co	dee at Hg	***************************************		#02 - OH				N.	None:	Clear/No Visible Sta	
	WEIGHT 61	204						*************	***************************************						1

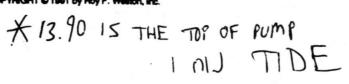
	COM	PANY:	Luch				_ \	VELL NO.:		MAT	-Mu	アクロ	L	
- 1	CUEN	т:	CXAC	8/_				MTE:	· —	~~	12/22	ia t		
1	U PROJ	∋ C1:	KINY M	Runa	$m_{\mathcal{F}}$			OGGER:			Mor	WC)		
ł	eite:		w-	4			. 8	IGNATUR	E:		Min			
	ONE W	LL VOLU	ME:		galic	ns W	ELL TD:			RTOC	Well V		2-Incl	h = 0.16 6-inch = 1.47 h = 0.85 6-inch = 2.61
		ACTIVITY	DEPTH	PURGE	PURGE			FIELD	MEARLE	EMENTS			<u> </u>	7-0.00 GARCH = 2.61
1	TME	CODE	WATER	RATE	VOLUME	ATU	mv	T		T			CHBIOTY.	COMMENTS
L	<u> </u>		(40)	(gpm)	(ge)	WB7	MELL	1200	100	.0001	W0		5	CMMEN15
-	05:77	NO	0.39				1 1.00	1.02	1,,,,,	T VIII	MW		-	
t	しなが	Moz	10-71	 -			-	 	 	├	· ·			
	2011C	1000	0 201	 					 -	 				
1	7075	CON	8.31	,,,										V. Sery Bour
K)ARC	<u> </u>	1390	14		5.3	194	1330	144	452	'GY-			
1	<u> </u>		14.10	44			185		l - 5	anci				Clarina
	215		14.21	~4							BA	,		Cloury
1	1930		14.32	~4		"	_			רניטן	1			Curi
)945	·	14.37			5.65	221	.225	1/5	CLEAR	Rive			SCIGHTLY CLOUDY
1	000		14.37					721	11 0	CLEAN	PICC			CLEAR
17	005		14.37			565	7011	225	16.3	CLEAR	Bria	-	1	CIGHTLY CLOUDY
170	9-10		14.37	~4		77	204	720	1/2	CUSAR	DI a		1	RIGHTLY CLOUSE
	215		14,37			64	100	220	0.5	Cioux	BKG			CLOUNY
۳	725		1277			-/,	1/3	220	1.0	CLEPR	BKG			SLIGHTLY CLUDOY
F-	\ <u>\\</u>		14.40			767	21.0	217	11.0	CLEAR	BKG			CLEAR
۲	, , ,		19.10			1.64	213.	.2231	6.3	CLEAR	BKG			SLIGHTLY CLOUSY
H														
\vdash				 -	· -									
H				·	7									
-			- '			$-\!\!\!\!\!+$								
┝		FINAL							-					
\vdash										-				
F	NAL WEL	***************************************			GPM		PRATE	ESTIM	ATED>	∞ F	RESPON	IDING (DRAWD	OWN: 6 FT
	I	EVELO	PMENT	ACTIVIT	YCODE	9	F	IELD M	EASUF	EMEN	T CODE	33		TURBIDITY
0	28 - Begir	Belling		DBE-	End Bath	M.		MIP.TE			******************			
Ħ.	08 - Begir 18 - Begir	Rewhich		DOE.	End Over End Park	pumpin		48C - Sc	eche C	e de la composición dela composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición dela composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la compos	CE			Should be 45 NTU
D	38 - Begir	Recircula	tion	DOE	End Reci	rculation		MPD∴P	otologia me fonb	er (e.g.,)	114)			
D	IB - Begir VB - Begir	Air Same	Jetting	OHE -	End Hydr	aufic Je	ting	MDO - DI	BEVIORS.	Cxygen		E	nter Q	isitativa Observations
D	iB - Begin	Surge Bk	clong	DSE -	End Air S End Surg	Block!	na	VPH - pH VEH - EN						Opeque/Moddy/Sity
	O - Begin	Other		DKE•	End Othe			AMC - Im	hoff Con				Mediu	m. Irenelycent/Cloudy
				ect from oc				401 - 0 0	* **	***************************************			LOW.	Carreparent/Some Sil
		1991 by Ro			A			102 - O1						

GEOLIS Well Development Form COMPANY: WELL NO : CUENT: DATE mos PROJECT: LOGGER: SIGNATURE: ONE WELL VOLUME: Well Volume 2-inch = 0.16 gallons WELL TD: ft TOC (gallone/logs 4inch = 0.65 8-inch = 2.61 DEPTH PURGE FIELD MEASUREMENTS PURGE ACTIVITY TURBIOT TO RATE VOLUME molum **ATC** CODE WATER 00 COMMENTS my (94) (gpm) (2) may mec mip men me WOD OKI V-Un FINAL FINAL WELL YIELD: GPM PUMP RATE - ESTIMATED CORRESPONDING DRAWDOWN: - VICY - FT DEVELOPMENT ACTIVITY CODES FIELD MEASUREMENT CODES TURBIDITY DBS - Begin Belling DBE - End Builing DBB - Begin Setting
DOB - Begin Overpumping
DOB - Begin Revniding
DCB - Begin Revniding
DCB - Begin Hydrautic Jetting
DAB - Begin Air Surging
DAB - Begin Air Surging
DSB - Begin Other
Specify other Teathod: MTP - Tamperatura Enter Turbidity Meter Reading DOE - End Overpumping DRE - End Pawhiding MSC Specific Conductiones
MPO - Phototonian (e.g., Hha) (Final should be < 5 NTU) DCE - End Recirculation MPD - Planne tonizer (e.g., OVA) DHE - End Hydraulic Jetting MDO - Dissolved Oxygen Enter Qualitative Observations DAE - End Air Surging DSE - End Surge Blocking DXE - End Other MPH - pH H. High: Opeque/Muddy/Sity MEH - Bh M - Medium: Translucent/Cloudy MMC - Imhoff Cone L-Low: Transparent/Some Stit MO1 - Other: PMI = Paid Mediculturisments (estect from codes at right) N - None: Clear/No Velble Sitt MO2 - Other

. .

ACTIVITY CODE	DEPTH TO WATER	PURGE	T	ne WE	LL TD:	2112						
CODE	TO WATER			,	- 1	34:	55_	RTOC	Well V	olume a/foot)	2-Inch 4-Inch	h = 0.16 6-inch = 1.47 h = 0.65 6-inch = 2.61
B		(gpm)	PURGE VOLUME (gal)	ATC	2000	ac	MEABUR	1			UPBIOTY	COMMENTS
	55			HYM	niet	MA	ma	mce	-WD	- 3	F	
YY.	010				1,3	- 0		341				manalan -
035			-	8 [4							. (genforay-
203		37		25-	7/19		17.5					Seenlyny v sie
	1			6,33	342	149	43/	V	QVI-	,		Jeo. ((124 4 32
	5	H.72	7.73	6.61	733	14.10	HUS	7.54	DIA	S 4		
	5	19.33										et goen ne
	5		1	6.79	030	150	:446	cl-da	BU	_		2001/1/16
	5	19.72										llear
	5	9.72		0.31	-05	14.8	1440	ilan	Bhi	2 4		
_	1.1	1	Hu	noe	\$ 0	Sea	a	ter	00	KM		
	\	4 h	my	0	, Qu	ior	na	*	â		LT SA	
_						,	0	~		,		the second of the second
								4. 9			-1	The start
				-						180	ft.	
_			- 4									
\dashv	2		10 00 00 00 00 00 00 00 00 00 00 00 00 0	-			- 3					
IAME	-			-	-	-	-	_		_		
		=	CD								\perp	
		ACTRA	_			_	_				DRAWI	
Betling Overpun Sewhidin Recircula Rydraulk Mr Surgir Burge Bik Other	sping d dion Jetting ng seking	DBE DOE DRE DCE DHE DAE DBE	End But End Ove End Rec End Rec End Hyd End Air S	ing rpumpir rhiding freuliation freulic Je Burging se Block	n itting i	MTP . Ta MSC - S4 MPD - P4 MFD - P6 MPH - p4 MEH - B1 MMC - In	mperature de la constanta de l	re onducter or (e.g., car (e.g., Oxygen	ca -thui	1 H	(Final Enter Q - High: - Medit	TURBIDITY urbidity Meter Reading should be < 5 NTU) OR stalltalive Observations Opeque/Muddy/Sity um: Translucent/Ooudy Transparent/Some Bitt
	Batting Overpun Bawhidir Rectrouls Rydraulik It Surgis Ringe Bk Riner mathod:	INAL VIELD: SVELOPMENT Setting Discripting Servicing Sydraulic Jetting Sydraulic Jetting Sydraulic Jetting Stripe Blocking Stripe Stripe Blocking Stripe There	S P.73 S	S P.73 S P.73 S P.73 S P.73 S P.73 S P.73 S P.73 GPM EVELOPMENT ACTIVITY CODE Builting Det - End Rec Sydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Rec Hydraulic Jerting DHE - End Det Hydraulic Jerting DHE	S P.73 G.G. 5 P.73 G.90 5 P.73 G.90 5 P.73 G.93 5 P.73 G.93 5 P.73 G.93 5 P.73 G.93 6 P.7	S PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 5 PAR COLORS 6	GARDA GOOD ON THE DIES OF THE DIES OF THE STIME OF THE ST	S 9.72 C.70 C.70 C.70 C.70 C.70 C.70 C.70 C.70	S P.73	S P.73 (C) DBS IN LO HUS YOU BILLY S P.73 (C) CBO ISO, HUS INCOMPLY S P.73 (C) CBO ISO, HUS INCOMPLY S P.73 (C) CBO ISO, HUS INCOMPLY S P.73 (C) CBO INCOMPLY S P.74 (C) CBO I	S 9.72 (C) D314 (C) HUS 7-21 BILD S 9.72 (C) D-04 215 (C) LYS UNLY BILD S 9.72 (C) S 15 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 15 (C) S 14 (C) LYS UNLY BILD S 9.72 (C) S 15	WELD: GPM PUMP RATE ESTIMATED CORRESPONDING DRAWN WIELD: GPM PUMP RATE (ESTIMATED) GRASSPONDING DRAWN GRASSPONDING DRAWN FIELD MEASUREMENT CODES FIELD MEASUREMENT CODES MITP: Tamparatura MCD: Procedural or Control MC

COMP	PANY:	Wec	100	1 00			WELL NO.	11	MD5-	mw.	10			
CUEN		NSA	CE			_	DATE:	: 4	12	blay	10	1	-	RIN
PROJ	вст:	NW	mode	out h			LOGGER:	_	0/2	Them	10		- 8	
SITE:		INI	5				BIGNATUR		1	ama	0		-	MONTH.
ONE WE	ETT AOTO	ME:		galk	one Wi					Well Vo	olume	2-Inch	-0.16	6-inch = 1.4 8-inch = 2.6
	ACTIVITY	DEPTH	PURGE	PURGE			FIELD	MEASUF	EMENTS				985	5-inch = 2.6
TIME	CODE	WATER (%)	(gpm)	VOLUME (gal)	MAL	mortu	m my	a	0001	TAN		URBIOTY	0	OMMENTS
1340.	SB	4.05			11111	IIIB	MIER	INIT	wa	(MM)		F	-	
1410	BB						\dagger	 		\vdash				
1415	206	,	-5		(012	201	200	KI	7:1	Dur			1 4	. (
1440					658	43	021	15.10	Since	ASKIT NW.			y, au	uh ven
1455		1	2 1 2		693	237	030	R 7	rla.d.	Bru				
1505		695	^5		672	1474	200	15.3	1000	evil	\neg	\neg		
150	-	101	15		6.96	1445	म्ण्ड	154	Uncl	310	-			
1525	5		~5		18.0		03/2				\dashv	-		
1600					1		-	134	Cuby	rat	\dashv	\dashv		
1			- 434	de la				24		-+	+	-		
											\dashv			
				/_					\dashv		\dashv	\dashv		
				4 . 1				\neg		-+	\dashv	\dashv		
								\dashv	\dashv	\dashv	\dashv	+		
	-							$\overline{}$	\dashv	-	+	\dashv		
					\neg			$\overline{}$	\rightarrow		+	\dashv		
					\neg				\dashv	\dashv	+	+		
							_	_	+	-	+	+		
5 -					+		\dashv	+	+		+	+		
	FINAL				\top			+	+	+	+	+		
FINAL WELL	YELD:	- <	5	(GPM)	PUMP	RATE	- ESTIMA	TED	COR	RESPONE	DING D	RAWIY	WW.	2 -
D	EVELOP	MENT	CTIVITY	CODE						CODES			URBIDI	<u>5</u>
08 - Bagin 08 - Bagin	Selling Overs		DSE-I	End Ballin	4		MIP - Ten	CORECTUR						ter Reading
RB - Begin CB - Begin	Rewhickno		DRE -	End Over End Pawh	iding		MSC - Spi MPD - Phy	Apionize	le.p., h	Nan-		(Final s	hould be	<8 NTU)
HB - Begin	Hydraulic.	Jettina	OHE .	End Reck End Hydro	wile Jet		MFD - Flat MDO - Die	ne toniza	1 (0.0	OYA)	E,	Er Cv	OR O extent	beervalions
AB - Begin : SB - Begin !	Surpe Bloc	kdng	DAE "	ind Air Su and Surge	polipa		MPH - PH							Luddy/Sky
XB - Begin (pacify other	Denor		DXE - E	nd Other			ANC-IM AEH-BI	off Cone			Me	Medium	r. Transl	voent/Cloudy
MT = Fleid M	edaureme	nts (velec	t from coc	les at righ			401 - 0th 402 - 0th	9 7				OW. If	une paren	VSome Stit
YRIGHT 6 1								-1A::						VA


	COMF	WY: U						WELL NO.	[7	105-	Mu	1-10				7
-	CUEN	т:, 	124K					DATE:	_	$-\lambda^2$	ZIV	4		— ###	*	
.	PROJE SITE:	≆CT:	~!' !!!	in	CI W			LOGGER:			<i>7</i> ,007					
Ì	915		<u>-</u> _	1 5				BIGNATUR	<u> </u>		pow	<u> </u>			.	J
	ONE WE	ELL VOLUI	··		gallo	one WE	ELL TD:		·	n TOC				h = 0.16 h = 0.65	6-inch = 1.47 8-inch = 2.81	
1	TIME	ACTIVITY	DEPTH	PURGE	PURGE	L		FIELD	MEASU	EMENTS);		È			_
	IONE	CODE	WATER (R)	(gpm)	(Get)	WC WC	or or	מטן ועמן	MELT	mu	nec		TURBIDITY	0	OMMENTS -	
L	1345	灰分	4.10]										Alter	Swedsir	~
L	1410	MRP	-6											3022	<u></u>	-
Ľ	1415	TPO?						, -	ľ					V. du	It geen	7
1	435			1-5		607	14.6	1,249	109	8 Jel	BYLU		<u> </u>		0-1-	1
1	455			~15		6.5	BA	25	018	day	BKG	-				7
1	<u>505</u>		1030			S.55	14.1	·250	020	and	RXX				,	1
	210		-			6.58	14.4			Unch						┨
Ц	525					65	ا. أناد	124	fon	Clad	(3)(1	~			•, .	┨
Ľ	1212				. (0.5	13.1	1246	002	Clan	BKG	· ·				1
Ц	boU		,			F110	Bu	246	HI	llea	But	,		м.		1
L				`							- V-1				-	1
L															<u> </u>	1
L														_		1
															:	1
` '	<u>`</u>															1
			· ·													1
<u>. </u>	<u></u>														, /	1
														,		1
_																
_		FINAL							اجنر					L		
Fl	NAL WEL	***************************************		<u> 15</u>	_ GPM		PRATE	- ESTIM	ATED	COF	RESPO	NDING	DRAWI	OWN:	3(FT)	
	***************************************	EVELO	MENT,	ACTIVIT	Y CODE	9		FIELD M	EASUF	REMEN	T COD	E8		TURBID	my	
D	88 - Bagir 08 - Bagir	Overburt	phg		End Bull End Over			MTP - Ta MSC - Sc	mperatu	7			Eritor To	utildity M	iar Reading	
D	38 · Begin	Rawhidin Recircula	tion	DRE .	End Raw End Reci	Nabra		MPD - P	COOL	er le n	YN G		(Final	should be	<8 NTU)	ĺ
D,	18 Begin	Hydraulic Air Surgir	Jellin o	DHE.	End Hydr End Air 9	autic Je	ting .	MFD - FL MDO - DI	bevices	Cxypen	OVA		niu C		beervalions	
O.	B/Beoli B=Beoli	Surge Bio	cking	DSE .	End Sura	• Block	ng	MPH - pt MEH - B					- High:	Opeque/I	kuday/Siny	
Sp	ectly one	/ method:		*************	End Othe			MMC - In MO1 - Ot	hoff Cor	•			Low	(Enepare)	ucent/Cloudy n/Some 8th	
r t	1 - Field	Vesiaurem	erito (sele	ct from ex	des at do	ie S		MO2 - Ot				N	None:	Clear/No.	Visible Sit	

RFW COMPANY: <u>imw-12</u> WELL NO .: USACE 01-05-95 CLIENT: DATE: 03886.076-038 K. VALCOTT PRO ECT. LOGGER: MP. 8 BIGNATURE: Well Volume ONE WELL VOLUME: gallone WELLTD: 17.30 R TOC -(galiona/foot) 4thcb = 0.65 8-Inch = 2.61 DEPTH PURGE FIELD MEASUREMENTS PURGE ACTIVITY TO TIME RATE VOLLIME COMMENTS CODE WATER (gel) (gpm) PH (10) NV Temp 9.7o 0915 STATIC د. ا 0920 933 5.16 14.4 .153 256 Honoisail - Silty 59py 1.0 Purp AT 1 OFF BUTTOM Pump silted up 5gpig 6.0 29pm 31.0 **`**000 :68 ruplaces to 0.5 From Bottom ala 10. water Clearna 3.5 1100 1165 د ه.د 10.7 228 ر ن، 50 3.5 1125 OOE 1164 10. 5.80 14.5 ನ್ನಾಳ 3.5 1128 DOE 10.60 , RAISING Ski FOR THUS NUTES FINAL 2-35 FINAL WELL YIELD: **GPM** PUMP RATE - ESTIMATED CORRESPONDING DRAWDOWN: DEVELOPMENT ACTIVITY CODES FIELD MEASUREMENT CODES TURBIDITY DBB - Begin Belling DBE - End Builing MTP - Temperatura Enter Turbidity Meter Reading DOS - Begin Overpumping DRS - Begin Rawhiding DOS - Segin Recoulation DOE - End Overpumping MSC - Specific Conductance Final should be < 5 NTUS ORE - End Partiding
OCE - End Recirculation MPO - Photoboliser (e.g., HNu) OR MFD : Hame tonizer (e.g., OVA): MDO : Dissolved Oxygen DHB - Begin Hydraulic Jetting DHE End Hydraulic Jetting Enter Qualitative Observations DAB : Bogil Al Surging DSB : Bogil Surge Blocking EXIS : Begil Onle DAE - End Air Surging MPH - oH Harright Opeque/Muddy/Sity DSE - End Surge Blocking DXE - End Other MEH - Bi M : Medium: Translucent/Cloudy MMC - Inhoff Cone L-Low: Transparent/Some 211 Specify other method: MOY - Other: N - None: Clear/No Visible Silt FMT: Field Messurements (select from codes at right) MO2 - Other:

COPYRIGHT @ 1991 by Roy F. Weston, Inc.

G061291T

PROJE SITE:			KE	-944			ELL NO.:	_		25/95	-	- 3
		038				L	ATE: DOGGER: IGNATURE	=	Jan	SACCOM	AN DI	
ONE WE	IL VOLUM	(E:		gallo	one WE				ft TOC	Well Volume	2-Inch	n = 0.16 6-inch = 1.47
TIME	ACTIVITY	DEPTH TO	PURGE	PURGE			FIELD	MEASUR	EMENT8			
·	CODE	WATER (R)	(gpm)		1.	MTP	MSC	MEH	MPD	A Living	TURBIOTY	COMMENTS
1145	DSB	6.01)	-		2	112				. 214	
1150	DBB	1	1		133	- 4	14					
1122		×13.90		10	5-38	11.0			BKG	- 7	H	DK GRAT VERY SILTT
1200	SOB	8.45	6	40	607	11.7	5.24	013	BKG	7	H	DK GRAY CLEARING
	Dob	9.01	6	70	6.41	11.3		-047			m	4 //
1210	D08	7.09	4	90	6.57	11.7	5.28	-069	BKG		1	HAZY
	DOB	7.49	4	110	6.68	11.7	5.17	-081	BKG	1. 6	N	CLEAR
	DUB	7.50	4	130	672	11.7	5.17	-084	Brig		N	11
1	1)03	7.51	4	150	6.75	11.5	5.17	-087	BKG		N	-,1
	DUB	7.52	4	170	6.75	11.6	5.13	-086	Brig	17.5	N	1)
		7.53	4	190	6.73	-	5.10			1	2	A
1240		7-54	4	210	6.72	11.8	5.09	-088	BKG		N	11
-		7.55	4	230	6.74		5.02				N	П
1250	DOE	7.56	4	250	6.76	11.8	5,01	- 088	BKG	2	N	11
						-		li La Mari				
				34							1	
1.1.15			SLIC	HT	ON	NO A	ND	SL	(11	-1 V C		
		Laure E	1	ING	DE		PEN		GHT	4130	PSY	
	FINAL		JUN	11-0	-	120	7-7.	2/-				
FINAL WE	T METD:		4	GPM	PUN	P RATE	- ESTIA	MIED	∞	RRESPONDI	NG DRAW	DOWN: /.Z FT
	DEVELO	PMENT	ACTIVI	TY COO	E9		FIELD	WEASU	REMEN	IT CODES		TURBIDITY
DRB = Bag DOB = Bag DOB = Bag DOB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag DAB = Bag	in Overpui in Rewhidi in Recircul in Air Surge in Surge B in Other er method	ng lation le Jetting ing locking	DOE DRE DCE DHE DAE DSE DXE	- End But - End Ov - End Ru - End Ru - End Hy - End Air - End Su - End Ou	erpump whiching chrotieth draufic Surging tge Bloc ter	on etting	MSC - S MPD - P MFD - F MDO - I MPH - P MEH - E	hololoni lame ton Xesolvec H h mhoff Oc Wher;	Sonducta zer (e.g., itzer (e.g., i Oxygen	OVA	Enter 6 H - High M - Med L - Lewr	Furbidity Meter Reading If should be < 5 NTU) CR Qualitative Observations Opeque/Muddy/Sity furn: Translucent/Cloudy Transparent/Some Still Clear/No Visible Still

COMP	ANY:		-W			. 6	VELL NO.:			1-14		_ @
CUENT			ACE			. 0	ATE:			5/95		
PROJE	CT:	M-8	0 70	- 038			OGGER:		The l	ACCOMA	NDI .	-
SITE:							IGNATURE		mu	v. 30		
ONE WE	IT AOTON	1E:		gallo	ns WE	ELL TD:	16.	82	ft TOC	Well Volum (gallons/loo		= 0.16 6-inch = 1.47
TIME	ACTIVITY	DEPTH TO	PURGE RATE	PURGE			FIELD	MEASUR	EMENT8		È	
IME	CODE	WATER (%)	(gpm)	(gel)		tmsc	MT	ME	man		TURBIOTY	COMMENTS
0920	DSB	7.80	_	_			1	1110	1111			
0925	DBB))	6	BALL	ED	DRY				H	GREEN BROWN
0930	DBE))	_							H	11
0945	DOB	T1.56	~0.5	6	6.40	4.68	10.9	001	BKG		H	11
0955	DOB	9.95	20.51	11	1 1	4.63		-077			1-1	11
1005	DOB	13.62	~1	21	6.47	4.72	19.4	-083	BKG	- 1	H	u .
1010	DOE	*								1		7,
1025	DOB	8.92	~0.5	21	6.89	4.57	14.6	-106	BKG		H	. 11
1030	DUB	11.85	~0.5	23.5	6.92	4.65	13.2	-102	BKG		Н	11
1035	,	11.57	20.5			4.67		-101	BKG		H	11 CLEARING
1040	DOB	11.28	~0.5	27.5	6.75	4.59	16.5	-102	BKG		H	// 17
1045	DOB	11.62	~0.5	29	6.70	4.64		-104	Bhb		4	11 4
1050	DOB	11.86	~0.5	31.5		4.70	19.9	-104	BK6		H	11 11
1055	Job	12.11	~0.5	33	6.71	4.62	17.2	-105	Bila		M	11 11
1100	DOB	12.43	~0.5	35.5	6.82	4.51	18.2	-108	BKG		L	VERY CLOUDY
				37	6.72	4.46		-105	_		1_	CLOUDY
	-		-0.5	39.5	6.69	4.53	18.9	-106	BKG		1	CLOUDY
1115	DOE	13.05	20.5	41	6.74	4.42	196	-103	BKG		1.L	HAZY
	XW	STER	LFUE	L Dis	fred	70	TOP		MP	fump 15	AW	EBOW
	FINAL		7									
FINAL WEL	T AIEID:		0.5	GPM	PUN	IP RATE	· ESTIM	ATED	0	RRESPONDI	NG DRAW	DOWN: (o FT
ı	DEVELO	PMENT	ACTIVI	TY CODE	E S		FIELD	MĒASU	REMEN	T CODES		TURBIDITY
DBS Bugi COS Bugi ORS Bugi DCS Bugi DHB Bugi DAB Bugi DSS Bugi DXS Bugi Spacity oth	in Overpui in Rectroul in Hydraul in Air Surg in Surge B in Other er mathod	ng ation c Jetting ng ocking	DOE DRE DICE DHE DAE DSE DXE	• End Bat • End Ove • End Pan • End Rac • End Hya • End Air • End Sur • End Oth	erpumpi whiching streutiet drautiet Surging ge Block er	eting	MPD - PI	pecific C traintoni erne ton lescived H nthoff Co	onducta ser (e.g., lzer (e.g. l Oxygen	OVA)	Enter C H - High M - Medi L - Low;	Curbidity Meter Reading I should be < 5 NTU) OR Assitutive Observations Opeque/Muddy/Sity um: Translucent/Cloudy Transparent/Some Stit
FMT - Floid												COLUMN TO THE PARTY OF THE PART

COPYRIGHT © 1991 by Roy F. Weston, Inc.

LOW TIDE

G061291T

	IPANY:	R	FW						-	hl., /	-			; : <u></u>	
CUE	_		ACE				WELL NO.	· –		1W-1				Ra	
1	ECT:	03886	-076	-038		_	DATE:	-	<u>1/2</u>		com	0411	7		, 1
SITE:			n-8				LOGGER: BIGNATUF	 	-Och	W-C	0	7702	<u>'-</u>		/
ONE W	ETT AOTA			galk	one W		16.		_ R TOC	Well	Volume			6-inch = 1.	
		DEPTH	PURGE	PURGE			FIELD	MEARLE	REMENT			4	- 0.03	/ 0-inch = 2.	<u> </u>
TIME	ACTIVITY	WATER	RATE	VOLUME		1						TURBIDITY	١,	OMMENTS	
		(P)	(gpm)	(get)	MAH	MI	MSC	MEH	(MP)			1 5	'	MMEN 15	
1345	DSB	5,00	J	_						 		 	 		\dashv
1350	DBB	-	_	10			1		_	 	 	†	 		ᅱ
1358	BBE	_	_	10				1	† -	 - :	+	H	-DK GV	LEN GIRAY	\dashv
1435	DOB	8.61	2	10	5.69	97	3.77	133	BKG	 	 -	177	57	LTY	\dashv
1410	DOB	8.36	2		6.37	11.4	3.74		+		1	<i>H</i> <i>H</i>		CLEARIN	
1415	DOB	8.24	2	30	6.63	11.6	3.79	-083	+		├	m			
1420	DOB	8.95	2	40	68	117	3.80		BKG		 	M	UKBY	VERY Cu	100
1425	DOB	8,93	2	50	6.75	10 9	3.77	1	BKG	 	 	M		CICO	4
1430	DUR	8.97		60	1.73	<u> </u>			BKG	 -	-	M	11	CLEARIC	4
1435	DUB	9.01	2		, 			-095			 	8	/)	11	4.
1440	DOB	9.03	2		<i>5</i> . 75		3.82		B16			M			\dashv
1445		9.05	2	2.	0.76		3.77		BKG	-		[*] i	1	//	4
1450	DOB	7.04	2	100			3.80					<u> </u>		1500)	4
1455	DUB	9.04	2		/ 1		3.79		BKG			<i>N</i>	_	EAR	۱,
500	DE	9.03	2	$\overline{}$				-698			 	N		FAR	4
					,		211		5.6	<u>.</u>		<u> </u>		EAN	4
	١.													- r	\dashv
			SEW	MUE	00	OR	AND	50	DSY	WA	TER				-
			THAU	W GH O			ELO		_ '		/ 	\dashv	- ` -		\dashv
	FINAL											-			\dashv
FINAL WE	IT AIETD:		2	(GPM	PUMI	PRATE	- ESTIM	ATED		RRESPO	NDING	DRAWI		tt G	4
	DEVELO	PMENT	ACTIVIT	Y CODE	3		FIELDN	EASUI	· ·			***************************************	TURBI	<u> </u>	1 .
D 23 - B.	n Belling		DBE -	End But	ησ		MTP - Ta								8 8 8 8 8
DOS - Bag DRS - Bagi	n Rawhidir	•	DOE	End Ove End Paw	(Pumple	9	MSC - 8,	edite C	ordunia.)CE		enter i i (Final	ubidity is should b	eter Reading • < 8 NT: 5	
DCB - Beg DHB - Beg	n Recircule	tion	##### 0.0 : ₹#	End Rec	rculation		MPD - PI MPD - Fi	une toni	zer le.o.,	OVAL			CR.		
MB - Beg	n Air Surgi	(C	DAE-	End Hyd End Air S	uraina	sung .	MDO - DI MPH - pi	eectved.	Oxygen.					Cheertelons	
XSB - Begi XXB - Begi	n Surge Bi n Other	ocking	DSE.	End Sung End Othe	Blocki	ng 🔛	MEH-B				H	High:	Openie	Muddy/Siby	22 22 23 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26
county of	er method						MMC - 1/7 MO1 - 00		•			LOW		lucent/Cloudy m/Some Bitt	
MT - Field	meatier;	MATERIAL SERVICE	ci nom c	xies at m	d iğ		M02 - 01	W.			N	None:	Char/N	Velkie Sit	988
PYRIGHT C	1991 by Rc	v F Waste	n lee											*******************************	3

	PANY: _		PFm			_ '	WELL NO.		Mu	5-16		
PROJ	_		86-07	6-X38	,	_	DATE:	-		55		
SITE:		MP		0 050			LOGGER: BIGNATUR	·	V. VAI	CMT P	-	
ONE WI	ELL VOLU	ME:	8.6	galk	ons W				# TOC	Well Volum		h = 0.16 6-inch = 1.47
	1	DEPTH	PURGE	PURGE			FIELD	MEASUE	EMENTS	g-ionaroq	T.	h = 0.65 8-lpch = 2.61
TIME	CODE	WATER	(gpm)	(gel)	MPH	MTP	MSC	Τ.,	T		TURBIOTY	COMMENTS
1320	STATI	3.45	-	_	-	-	-	-	-		+	
1325			Bailes		-			1			+	2"0,50,10,15
1340		9.47							-		+	3" Pur Bailer VSC
1345	DoB	8.70	0.5	1.0	7.15	21.7	.283	-052	0.0	_	1,	
1350	DOB	9,40	0.5			201		-046	_			Clear Hazy - Deta oline-Grean snay
1400	003	21.11	0.5	9.0	611	16.2		-018	0.0		14	20156-61060 3100
1410	DUB	12.25	0.5	140	5.86	16.a			0.0		H	000
1420	50	14,25	8.5	19,0	5.94	16.4	-287		0.0			Draw Dun
1430	DuB	12.90	0.5	24.0	5.87	17.8	.278	022	_		H	WATER CIEMPONS.
1440	Des	1360	0.5	29.3	594	13.1	,262	مجن	_		M	Charling Bufilt
1450	DB	12.33	0.5	34.0	5.84	17.4	.25]	026	_		1	
1500	DoB	12.25		39.0					-		1	HAZE
1505	DUS	12.28	0.5	44.0	5.87	17.6	.288	018	-		1	Clenzing
1510	DUB	12-24	0.5	49.0	5.95	17.9	.288	238	-		N	clearen
15,5	DUB	12.02	0,5	54.0	5.94	17.9	.288	029	-		N	etteriety
1250									-		N	
		\dashv		\rightarrow	_							
									€			1
	FINAL		5.5									
INAL WEL	***************************************			_ GPM		P RATE	- ESTIM	ATED	∞R	RESPONDING	G DRAWI	DOWN: FT
		PMENT	ACTIVIT	Y CODE	39	F	TELD M	EASUF	EMENT	CODES		TURBIDITY
BB = Bugli CB = Bugli RB = Bugli CB = Bugli HB = Bugli AB = Bugli SB = Bugli SB = Bugli SB = Bugli MI = Field	n Overpun n Revinide n Recircul n Hydraul n Air Surg n Surge B n Other or method	ng ation is Jetting ing ockling	DOE DRE- DRE- DHE- DAE- DSE- DXE-	End But End Ove End Raw End Rac End Hyd End Air S End Othe	rpumpir hiding irculation iraulic Ja iurging pa Block k	n Hilling Ing	MPD - PH MPD - PH MDO - DI MPH - PH MEH - EH MMC - In MO1 - OU	pecific Co rototonia rme lonia sectived () inoff Con her;	onducten or (e.g.,) cer (e.g.,) Oxygen	ines) DVA)	Frier G Erier G I - High: II - Medit Lour;	whichly Meter Reading should be < 5 NTU) OR mainstive Observations Opeque/Muddy/Sity HT Testeboomt/Coudy Transparent/Some Sitt
PYRIGHT 6				A. A. A. Air			MO2 - Ot	(A /Z			MALC! A	Clear/No Vallois SIII

COMP		RFW	100	10 Y	7.438		WELL NO.:		Mui	2		
CUEVI		USAE					DATE:	N	1-17-			
PROJE	CI:	MP12	-076-	078			LOGGER:		V. VALE	NTI		
10.00	TT VOLUM		8,3	gallo	ne WE			6.7	# TOC	Well Volum (gallons/for		h = 0.16 8-inch = 1.47 h = 0.85 8-inch = 2.61
7 - 7	ACTIVITY	DEPTH	PURGE	PURGE	1	47° 13	FIELD	MEASUR	EMENTS		Т.	
TIME	CODE	WATER (%)	(gpm)	(gal)	mpn	MTD	MSC	MU	How		TURBIOTY	COMMENTS
اددا	STATE	4.15	-	_	-	-	-	-	10			
1115	DBB	4.15	BAILE		-8.5			2				ON WATER.
1125	DBE	10.10	BAILED	15.0					1 84			DELTHI TO TODOF.
1130	Dus	6.10	0.5	16.0	5.82	12.0	1.276	142	3.0	The Mark	4	Purp = 14:25 Dr. Emy silry WATER
1140	Dus	6.02	0.5	20.0			1 1000			2	H	
1150	Des	5.70	0.5	25.0	6.58	19.1			2.0	1	Н	7.2
1200	Dos	6.15	0.5	30.0	6.54	16.6	,380				M	CLEARING BUT STILL A LITTLE SILTY- GPM
1210	Dus	6.80	1.0	A STATE OF THE STA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.362				M	
2/5	Dus	7.36	1.0				.407			14.74	M	Clearing - Huse
1200	DUB	1.38	1.0				.359		1.0		M	
230	DuB	7.87	1.3	60.0					2.0		М	
235	Dus	8.00	1.0	65.0	6.59	16.1	.411				M	Clear BUT IT, HAZ
240	073	8.13	1.0	7020	657	100.00	1	-083		- 1	L	SEPTIC LOVE NOW
245	Dos	8,24	1.5	75:0	6.57	14.9			3.0		1	SACTEMEN Flow TO
1250	Des	9.51		805		15.9	.411	-092			1	CLAZ OLT HAZY
255	003	9.88	1.5	90.0	6.59	16.0			-	* 1	4	CLE 4:2 OCT 11429
1300	DBE	9.96	1.5	98.5	6.55	16,0	-391	-096	-		4	CLERRAHAZY
	FINAL							1,75%				
FINAL WEL	1446										1	
	DEVELO	PMENT	ACTIVIT	GPM		IP RATE		MIED MEARI		T CODES	NG DRAW	
NBB :: Bergi XOB :	ri Salling In Overpur In Recircul In Recircul In Hydraul In Air Surg In Surger B In Other	mping ng ation ic Jetting ing locking	DBE DOE DRE DCE DHE DAE DSE DXE	- End Bail - End Ow - End Ran - End Rac - End Air - End Sur - End On	ting erpumpi whiching draulic draulic Surping ge Bloc er	etting	MED - P MPD - P MPD - P MPD - E MPH - P MEH - E	emperation pecific C trototori larne Ion Secolved H In mhoff Co	ira Sonductar ser (e.g., Izet (e.g., Oxygen	eca HNAD	(Final Enter H = High M = Mac L = Low	TURBIDITY Turbidity Meter Reading at should be < 5 http: OR Carathative Observations Copaque/Muddy/Sity fum: Transhuoent/Cloudy Transparent/Some Sitt Clear/No Visible Sitt

COMP		RFW					ELL NO.:			2-M	7-18	- 8	
PROJE	,	F7 Mr-1	MON	MOUTH			ATE: DGGER:		SACCO	MANDI	VALE	NTE	
SITE:			-	: 			GNATURE		h De				
ONE WE	LL VOLUM	Æ:	9 .0	galic	ne WE	ELL TD:	17.	20	RTOC	Well Vol. (gallons/l		ch = 0.16 6-inch = 1.47 ch = 0.65 8-inch = 2.81	
7045	ACTIVITY	DEPTH TO	PURGE	PURGE		· · · · · ·	FIELD	MEASUR	EMENTS) Lie		1
TIME	CODE	WATER (R)	(gpm)	VOLUME (gal)	MPH	MTP	MSC	MV	How		TUTBED	COMMENTS	
0840	I .	3.45											†
0845	DSB								<u> </u>				1
085 5	DSE					,						1	1
C 822	ଅଷୟ										Н	WATER CLIE-GRAY	1
C900	DOE	DRY	٠	Re-C	AARGI	PAT	466	(va. (1.5	ח אות	10 -	Sirty WEZI ORY AFTER BAUMISS - GALI	┪.
0915	Dos	9.10	0.5	0					ن		il	Dr. Gray Stery WATE	- -
0917	DUB	9.80	0.5	1.0	444	11.1	.229	247	ر د		H	•• •• "	1
0930	DoB	10:03	0.5	7.0	4.41	17.6	. 241				4	_	1
09,40	Dog	10.08	05	12.0	4.39	14.8	.243	245	1.0		H	CLEARING BUT STILL S	UC4
0950	D 03	10.30	0.5	17.0	4.54	17.7	.251	254	A. 0		- T	Cleares upalitte some yerum-isom Sity matage itgan] <i>/</i> ·
1000	Dug	10.32	0.5	22.0	4.97	17.1	.23U	21)	a .,		It	STORY WATER- Again]
1010	N.B	10.35	0.5	a7.0	5.00	16.9	.231	216	a . 0		M	Cleased more	1
اسين	80 A	ان در در	C) \(\frac{1}{2} \)	32.00	4,44	18.8	.229	258	40		М	clearing But Hom	y Hace-
1025	DC3	10.09	0.5	34.5	4.71	18.9	225	254	3.0	i.	L	Cleasing - Harry	1
1030	DOB	10.07	0:1	37. 0	4.69	18.6	.225	254	3· w		L		1
1035	De B	105.43	0:5	99.5	4.68	18.3	.231	252	ں.د		1	Charges latte !	Ace.
1040	<u>aus</u>	9.97	0:5	42.0	4.69	18.1	.233	252	0.0		4		
1045	OME.	9.95	٥.٢	415.0	4.72	1812	-229	243	ا. ا				
			-,								_ _]
	FINAL).5										_
FINAL WE				GPN		AP RATE		MTED	************	RRESPON		WDOWN: FT	_
	DEVELC	PMEN								AL CODE	8	TURBIDITY	
085 - Bag 005 - Bag 085 - Bag	n Overpu	mping	00	End Bu	erpump	lng	M8C - 8	emperati pacific (onducts	PC		e Turbidity Meter Reading nal should be < 8 NTU	
DCB - Beg CHB - Beg	n Recircu	etion		End Re	circulati	an .	MFD F	arne ton	291 (e.g.,	"OVA)		OR Cushafte Observations	
DAB - Beo OSB - Beol	n Air Sure	ma	DAE	- End Hy - End Air	Surging		MPH • p	H	Oxygen		****	th: Opeque/Muddy/Shy	, ,
	n Other			· End Ou		earg .		mholf Ot	Re		M-M	udum:::Translucem/Cloudy v:::Transparent/Some Still	
FMT Field			lect from	codes at	igh ő		MO1 - C MO2 - C					ne:: Char/No.Vielble: Sti	333 333 333
												***************************************	3

Rfw COMPANY: MW-19 WELL NO .: USACE CLIENT: 1-16-95 DATE: 03886-076-038 PROJECT: K-UALCNII LOGGER-MP14 BIGNATURE: ONE WELL VOLUME: 7.0 gallone WELL TD: 17.60 ATOC Well Volume 2-inch = 0.16 6-inch = 1.47 (gallons/foot) 4-inch = 0.65 8-inch = 2.61 DEPTH PURGE PURGE FIELD MEASUREMENTS ACTIVITY TO TIME RATE VOLUME CODE WATER COMMENTS (apm) (gel) (4) MPH MTP Mse MV HNU 1020 6.95 STATIC 1020 DBB 6.95 BALLED 3" Pre Briter - up steem on 1.0 HILD SEPTIC GOOD 0.0 1035 DBE 7.15 15.0 WATER PROSET 6" off DOB 7.15 1040 0.2 16.0 5.54 13.0 .366 DK. Gray Siry water 060 7.30 Pup AT 3' Off 20.0 5,2/3 1050 Dus 0.5 13.4 .369 057 2.3 H Bussom utwell. Flu PATE TO 0,5 7.30 Dus 2510 3.63 1100 .457 16.2 -009 14 10 1.06PP 000 35.0 5.80 16.8 But still silty. 11 10 .SU -030 003 7.41 \$5.c 1120 THEREMEN EPM 1.0 5.86 15.3 ,518 -036 (loneing To 1.5 6PM 7.45 1130 Duis 1.5 60.0595 Increwstruito 14.8 534 .643 2 6 PM . A well. Changes o little. 7.52 1140 003 2.0 80.6 14.5 5.90 .540 M -47 7.65 1150 Dus 105.0 5.93 INCREASE Flow TU 14.0 .555 J. 4 2. 56PM - CLARED BUT HARY 1200 DUG 4.0 8.10 145.0 5.86 13.5 FIDE TO 4.06.PM 569 -033 L 9.15 6.0 1205 Das 205.05.54 13.2 Flow TO 6.0 GPM 580-030 1.0 Dos 9.70 1210 7.0 275.0 133 5.97 .591 FLOW TO 7-08PM -033 1.0 1215 DBF 9.72 7.0 345.0 5.98 13.3 .590 -027 SUCO PIXHARGE RATE FINAL FINAL WELL YIELD: (0-7 **GPM** PUMP RATE - ESTIMATED CORRESPONDING DRAWDOWN: FT DEVELOPMENT ACTIVITY CODES FIELD MEASUREMENT CODES TURBIDITY Des - Begin Selling DBE - End Batting MTP - Temperature DOB - Bagin Overpumping DRB - Begin Rawhiding Enter Turbidity Meter Reading DOE - End Overpumping MSC - Specific Conductance MPD - Phototonizer (e.g., HNu) (Final should be < 5 NTU) DRE - End Rewhiding DCB - Begin Recirculation DCE - End Recirculation MFD - Flame tonizer (e.g., OVA) OR DHB - Begin Hydraulic Jetting DAB - Begin Air Surging DSB - Begin Surge Blocking DHE - End Hydraulic Jetting MDO - Dissolved Oxygen Enter Qualitative Observations DAE - End Air Surging MPH - pH DSE - End Surge Blocking H. High: Opeque/Muddy/Sity MEH - Bh DKB - Begin Coher Specify other method DIE - End Other M - Medium: Translucent/Cloudy MMC - Imhoff Cone L-Low, Transparent/Some Still His - Paid Measurements (select from codes at right) MO1 - Other: N . None: Clear/No Velble Stit MO2 - Other

1	APANY: _	RFL				_	WELL	a.: _	Mwa					Ti:31 /
PRO	NT: Ject:		4C <i>t</i> 6 0 9 6	-636		_	DATE:	_	1-13-9	5			*	
SITE	_	MPIY		-038		_	LOGGER BIGNATI	_	K. Vane					
ONE W	/ELL VOL	UME: ^	6.5	gali	lone W				ft TOC			nch = 0.16 nch = 0.65	6-inch = 1.47	
TIME	ACTIVI	DEPT TO	roma		` L		FIEL	D MEASU	PEMENTS				8-Inch = 2.61	4
IME	CODE	(R)	R GPM		нам	МТР	Msc	: MU	HAU				EXMENTS	
الاكن	Statio	- 6.85	- -				T	1						┥
1255	DSS							1	 -		_	+		-
1300	DSE	083							1					╣.
1305	DB	12.00		10.0				 	1		146	Dr.gn	HY STLTU WASTE	<u> </u>
1310	DoB	7.45	0.5	11,0	1.18	17.3	,246	-605	0.6	 	H	BA100	ay stry water Some level of with pumps EZC.	rue.
1320	DuB	8.47	0.5	16.0					0.0			124 00		-
1330	Dug	9.40	0.5	21.0	6.50		 		╀╤╼╾┼		H		my, stratily	4
1340	Das	1045	0.5	26.5				-018			<u> </u>	DKGPA	Str. Cans Fr	((COC)
1350	DW.	11.17	J.5	31.0			.363.		8.0		M	+		-
1355	DuB	00.4	0.5	33.5					-		M	Mild S	EDLIC ONOS	1
1400	DOB	12.43	0.5	1	6.47			~014	-		 -	 '	· · ·	,
1405	DOB	12.38	0.5	38.5			_	~ 0 &0			M	 		·
1410	DoB	12,39	0.5		6.51						1	SILTY AC	AN	
1415	DUS	12.21	0.5		6.48		.364				41	7.10 Sep	HCODER	-
1420	Dus	12.19	0.5	46.0 (.364		-		M	Clerraine	AIME	
1425	Dos	11.91	0.5		646	$\overline{}$					M	ļ <u> </u>		3
1430	Durg	11.58	0.5		6.45						12	Clynzsu	runey	
440	DoB	10.87	0.5	56.06			-358	-016			1			
1450	00=	10,10	0.5	61.06			•356				+	Ciraz But	HAZY . Thu	-9AST:
	FINAL	T				$\overline{}$	-			- -	L	SEPTIC 00	×2.	ore .
NAL WEL	L YIELD:		>.5	GPM	PUMP	RATE -	PSTILL	ATEN		<u>. </u>			1/ 5	
C	EVELO	PMENT	ACTIVIT	Y CODE		2000 ann	20 T00000000000000000000000000000000000			ESPONDIN	ig Draw	-	4 FT	
18 - Begin	Selimo			End Built						CODES		TURBID		,
)B - Begin 18 - Begin	Rewhich	G	DOE	End Over	pumping idina		18C - 8p	nperatur actile Co			Erter I (Final	urbidity Me should be	ter Reading	
8 - Begin 18 - Begin	Hydraulic	Jettino	DHE	End Recen	culation			me toniz	(e.p., Ht) (e.p., O	VA)		CR.		•
B - Begin B - Begin	Surge Bio	ig cking	DGE -	End Air Su End Surge	rging Blocklo		IPH - pH IBH - Bh	eolvad C	wygen			Cpeque/A	COOR/SECTION	
B . Begin ectly other	method		D.E.	End Other		H	MC - Im	hoff Cone			M - Medi	an, Iranal	Carni Cloudy	
		*************		ngh te sebo		·	102 - OH	- 10			N - None	Transparen Clear/No	Visitoria SIII Visitoria SIII	1
RIGHT & t	991 by Ros	· F Wassa											***************************************	

COMP		ffw SACE			-		WELL NO.:	_	MWZ				-	R	
PROJE			740-113	8-89			ATE:	_	1-13		-		-	6	6
SITE:		49.12	RO-03	5 2.9			OGGER:		1. Valor		0	le l	-	16.20	
			,8	galic	one WE		19.	100 -000	7 3 Y	Well Volum	me 2-		= 0.16 = 0.65	6-Inch = 8-Inch =	
	-	DEPTH	PURGE	PURGE		1	FIELD	MEASUR	EMENTS	(((((((((((((((((((_	- 0.00	o-inch =	2.01
TIME	CODE	WATER	(gpm)	VOLUME (gal)	1 9	МТР	Msc	MV	Hnu	T		TURBIOTTY	Typ of At 16	OMMENTS	
0500	STATE	7.26	-	-		-	400		-	12.			411		
3910	DSB	7.26							4				Milo i	moFile	000
0926	DBB	The Control	Bailon				-					47		Ballen US	
0930	DSE		BAILED			100	190			al bear			Will R	sing;	3
0950	DOB	7.26	0.5	S. C. LEW	6.60	14.7	.375	170	0.0		+	+	Dr. en	7 Silty	7
1000		100000000000000000000000000000000000000		13.0			1		0.0		1				\neg
1610	Dos	13.30	7.0	18.5	6.73	19.1	.359	041	0,0		Н		٠.		
1020	Dus	13.35	0.5	23.3	6.67	19.5	.348	-002	-		H		Be5. W.L	y TO CK	MAR
2030	003	13.38	0.5	28.0					_		IM				
040	Des	16.40	4.0	38.0	6.60	18.1	. 464	-013	14		+		Silty	More Mara	2
050	DOB	-16	~1,0	C 1 S 2		. T. A	.320		-		1	1	"	4477	
100	003	_	0.5	53.0	6.61	19.6	.302	-026	=		+		SALVANIA OF THE PRINCIPLE OF THE PRINCIP	climed tagan	4
1110	DoB	-	0.5	58.0	6.65	18.4	,341	-047	_		11	_	11 .		
1120	003	_	5.0	63.0	6.55	17.6	.324	-052	-		M			water:	87.1
130	Doa	-	0.5	68.0	6.54		.336		-		1	_		oup-ch	
140	D.B	-	0.5	73.0	6.53	17.7	346	-053	-		N		CLAR	127	-4
1150	A3	-	0.5	78.0	6.50	17.7	.355	-017	-	A. 4.	1	_			
	DOE	14 18												1 -	
			1 %		12								,		
	FINAL		1 2 8	H.	7		7.5					1			
NAL WE	LL YIELD:	(3.5	GPM	PUN	P RATE	- ESTIN	MTED	∞ F	RESPOND	ING DR	AWE	XXXX	10	FT
	DEVELO	PMENT	ACTIVI	TY COD	E8		FIELD	ÆASU	REMEN	T CODES			TURBI	YTK)
18 : Begi 18 : Begi 18 : Begi 18 : Begi 18 : Begi 18 : Begi 18 : Begi 18 : Begi	in Overpui in Rewhidi in Recircul in Hydraul in Air Surg in Surge B	ng atlon ic Jetting ing locking	DOE DRE DICE DHE DAE DRE DRE	- End Bat - End Ov- - End Pan - End Ras - End Hy - End Air - End Sur - End Oth	erpumpi whiching dreutlette drautle J Sunging ge Block er	etting	MPD - P	pecific C tratationi ame ton Mesolved H th mhoff Co	onducter er (e.g., Izer (e.g., Oxygen	HNU	Ent H.H M.N U-Le	inal er C loh: ledit wz	should to Of usitetive Opeque on: Trac	Observation /Muddy/SI slucent/Obsert/Some	one by budy

COMP	ww	214				. •	VELL NO:		なろう			<u> </u>	_ 🕷	A.
CLIEN		USAC				. 0	MTE:			22 -		·	_	
PROJE	3CT:	114M 114M	076-0	38			OGGER:			Alent			_ #	
NITE:		TIPIQ	<u> </u>			. 8	GNATUR	<u> </u>	T K	ue	4	<u> </u>	<u> </u>	
ONE WE	IL VOLUA	Æ <u>~</u>	8.64	gallo	ns WE	ELL TO:		6.72	RTOC	Well V			h = 0.16 h = 0.65	6-inch = 1.47 8-inch = 2.61
		DEPTH	PURGE	PURGE		-	FIELD	MEARLIA	EMENTS			Τ.		
TIME	CODE	WATER	RATE (gpm)	VOLUME (gal)	мРн	нтр	T	MV		_		тивопт	Ç	OMMENTS
1400	2.46	STATI	C .											- `
1410	DOB	1.95	1.0	1.0	5.54	11.9	1.454	067	Ø. 0			H	Browns	ilyantez.
1415	Dos		5.0	1.0	6.07	1117	1.294	001	0.0			1	MACF.	
1420	Deg.	_	10.0	ivo	6.14	11.7	1.241	016	0.0			H		2 BUT 5174
1425	Dus		15.0	10	6.06	12.4	1.328	003	0,0			H		
1430	Des		<i>2</i> 0.0	1.0	6.13	12.2	1.287	012	0,0			H		
1495	2003		25. U	ر. ن	6.07	12.4	1.315	006	0.0			Ħ		
1440	1203	_	<i>30.0</i>	j. u	هه.ط	12.4	1.319	800	ن.ن		•	M	Chase	ng To Cioan
1445	Dus	_	<u> </u>	1.0	6.09	12.6	1.301	200	0.0			Н		
1450	DuB		40.0	1.0	6.08	12.6	1.297	006	0.0			М		
1455	DuB	_	45.0	1.0	6.09	12.7	1.298	<u>008</u>	0,0	-		M	-	
1500	DOE	-	20.0	1.0	0.09	12.6	1.298	<u>800</u>	0.0			4/	STRUCK ALMOST	cuese.
· · ·	g. p . **		, _ -	· . · · · · · · · ·	†	· -						, " #A.	,ess	
												٠.		
-+														
	-+				- +			_					- · · · · ·	
	FINAL				-								·	
INAL WEL				·				_		L			·	
				GPM			- ESTIM			RESPO	~ *	DRAW	DOWN:	FT
	DEVELO	MENT					FIELD N	EASU	REMEN	T COO	-38		TURBLE	NEX
85 - Begi 05 - Begi 05 - Begi	r Overpun	ping	DOE	End But End Ove	ADMINIST	•	MTP - Tu MBC - Si	echo C		10000000000000000000000000000000000000				
PIS × Begir CB × Begir	i Recircule	tion	DCF	End Ren End Rec	rculatio		MPD = PI MFD = FI	olooniz King topi	er (e.p.,) zer (e.p.	eren Over			C.	
HB - Begir AB - Begir	i Hydraulk i Air Sanot	- Jetting	DAE	End Hyd End Air (raulic Ja	riting	MDO - D	secived:	Охуреп			Enter C	والوالس	Cheeralicas
SB - Begit	Surge Bi	xdrg	DSE	End Sun	H Block	ing	MPH - pl MBH - B	***********						Muddy/Sity
XB - Begin pecify other			DÆ	End Ope			MMC - In MO1 - Ot	hoff Cor	•	**************************************		- Med	um Iran Transcare	Mcont/Coucy
MT - Flekt			ect from c	odee at ti	gh i		MO2 - 01							o Vielbie SD
PYRIGHT 6	1991 by Ro	w E Wass			***************			****************				-00000		**************************************

COM	IPANY: _	Virke	-			_ ,	WELL NO.	31	Mw:					
	_	03586		J78			DATE:	-	Ci-c					*
SITE:		2716			11/0		LOGGER:	_	1: Von	_	15.	107	× (
ONE W	ETT AOLT	ME: ~ 3	8.64	galk	one W					Wel	Il Volume	2-Inc	ch = 0.16 6	Inch = 1.47
	ACTIVIT	DEPTH TO	PURGE			1	FIELD	MEASUF	EMENTS		ionavioae		h = 0.65 8	Inch = 2.61
TIME	CODE		(gpm)	VOLUME (gal)	(MP4)	Temp	(msc)	T				LIPBIOLITY	СОМ	MENTS
2840	STATE	3.43	۷.	-		-	- 2 GA		- 2017				-	
				3	5.16	14,4	.183	756	KAV	5	14			
855	DBE	16.15	2	3.0			.547		100		779			
500	STANC	3.45	الرية		XX.	700							Soury.	slaw Pr
505	DSB				10			20 12		3			6	
518	083	主教有		10.0			75.	Cont. 6	2			- 3	A de	
515	DBE	15.2					.516		3			- 0		
522	DSB			-4-4	44-					-	1			1
725	DSE	6.75	4			2.5								
525	DBB			17.0	7						+		WATE-12 !	MUDDI
20	DBE								-			10 1 m	13 min	/ /
135	DBB	de la						-+			-		LET REC	HARJE
37	08E	15.40	1 1	7.4			1	-	-		+		1 1	
20	Dog		2,0	M.o				-	-		-			
27	D03		1.0	31.3	977		\dashv		-		\vdash		7	
45	Dor	400	1	. 1					\dashv				Punne	<u></u>
50	Dos	9.80	5	1				+	\dashv	- 1			brub Di	5 7 E ,
100	DOF	set /	2 1										10 20	-
	P	Zema	EMB	FURTH	20	200	0.000	8	611		0. 1			- 50
	FINAL		- 0					•	041	1174	DAZK	7	Vo Dayl	949
AL WEL	L YIELD:	neg er je		GPM	PUMP	RATE -	ESTIMA	TED	~					1
Ι	DEVELO	PMENT	ACTIVIT	Y CODE				-	-		ONDING D			FT
- Begin	Belle		D8E -	End Balli			ELD ME			W.			TURBIDITY	
- Begin - Begin - Begin - Begin - Begin - Begin	Coverpoint Rewhidin Rectroule Hydraulik Air Surgir Surge Bio Other r method:	g tion Jetting	DOE - DRE - DOE - DHE - DAE - DSE -	End Over End Rece End Rece End Hydr End Air Surge End Other	pumping skling culation autic Jet urging Biockle	Mang M Mang M M M M	ITP - Term ISC - Spe ISC - Spe IPD - Pro IPD - Pro IPH - pH IEH - Eh MC - Imh	raffic Cor Motonizer ne fonize sotved C	rducteno (e.g., H r (e.g., C Xygen	MA	E H-	(Final High: Mediu	rbidity Meter I should be < 8 OR saltative Obse Opeque/Muck m: Transluces	NTU) rvsilons ly/Sity
-Fleid 1	Joeannen)	en s e (sele	ct from oc	xies at rigi	7	_ M	01 - Oth 02 - Oth	1				OW. I	raneparent/Sc Clear/No Vell	me Bitt
GHTO	1991 by Ro	F. Westor	. inc		***********				**************					

	COMP CLIEN PROJE SITE:	п:		Wes USA Pin M-1	DEUT TE TE TEU	<i>SOO</i>	₽i ¦	WELL NO. DATE: LOGGER: BIGNATUR	_	<u>\</u>	w- Jok Th) 0		*	
	ONE WE	ETT AOFIN		T	gelic	one Wi	ELL TD:		-	_ ft TOC	3	Volume one/foot)		h = 0.16 h = 0.83	6-inch = 1.47 8-inch = 2.61	
	TIME	ACTIVITY CODE	DEPTH TO WATER (R)	PATE	PURGE VOLUME (gal)	ATC	mulu	M OC	MEABU	7	Т	T :	TURBIOTY	C	OMMENTS	
	0835	12/6	3.10					1		1	1	1		Das	122	
	0855	BB			boul	ed	0	أكمر	Y-	1	V.5		 `-		in Jar	
-	0920	DOE	X					0			- ava	4	 	(4 W	in bon	truck
	0935	DOB	1013			594	72	10.5	OSC	W.	+	1	7700	D.	in Bay	TOT COSINO
	0937		17.16	B	ail		Dr		17		Vise	N.	100	M	e to 25A	Jun 5
	1040		891					0			Telm (T		1	CIVADIA	July 1002
	1110	DE	17.1U	G	aul	o co	Dr	12/	-	•			-	~ ^	0.259	۔۔۔
	1144	069	12.40					1		7.		 	-		<u>0 204</u>	TOTAL
	1159	BE	15.25		0	(58	72	11.8	714	Prix	N.se	*	22	Bar	loch-6g	
35	1335		892			0, -					1 CAXIS		/OLL	, aca	300 40	allory
99	.1413	DOE												<u> </u>		
	1424		1035	0.25	0 5	(ك	72	BB	-Car	'ole	Form		7)0	,		lowhele
122	1433		BOEI	0.95	0.3					•			7200		'	HADIREC
33	1440		1347	0.25	25	121	7.3	ماما	725	(2)(1-	Cher.				20 (10)	
	1441	MB							_003	10.40	32011		<u> </u>	1011	ed Gowy	of brush
	52 H	i	col	35		137	12	8.7	706+	61	4 .79	ر	770			Intoke
	540		151	0.85\$		7.20	7 <u>a</u>	14,2				 	720			-
[1547		335	0.355		128		185			-San	-	727)		
-	, ·															
.		FINAL					·									-
	FINAL WEL	L YIELD:		0.5	GPM	PUM	P RATE	- ESTIM	ATED	00	RRESP	ONDING	DRAW	DOWN:	Dryf	. •
		DEVELO	MENT	ACTIVIT	YCODE	9	j	TELD N	EASU	REMEN	AL COI	DE8		TURBID	my.	
	OABS BOOK OOB BOOK OAB BOOK OAB BOOK OAB BOOK OAB BOOK OAB BOOK OAB BOOK	t Overpun : Rewhidin : Recircule : Hydraulk : Air Surgir	g don Jetting	OXE OXE OXE OXE OXE	End Built End Ove End Raw End Red End Hyd End Air S	rpumpir Nding reulation raulic Ja urping	ig Tilling	MTP : To MBC : So MPD : Po MFD : Po MDO : Do MPH : po	pecific C notolonia une loni sectived	onducia er (e.g., zer (e.g.	HNLI) OVAL		(Pina) Enter C	urbidity M should be Off usitistive (oter Roading ACS NITO Descriptions	
		Other r method: Messurem	enis (esi	DE.	Ero Sur Ero Caya Casa at Ro			MEH = 8 MMC = In MO1 = 01 MO2 = 01	thoff Co	•		Ľ	- Medi Low,	un: Trans Transpare	Muddy/Sity Licent/Cloudy n/Some Stit Velole Stit	

Recarey & 1.5'every 10 minutes

,	CUB	ECT:		2.51. 2.51.5 715	<u>iom</u>	ଠ୍ନ	7	WELL NO. DATE: LOGGER: BIGNATUR	_	<u> </u>	1110 1110	1195 105	2				
	ONE W	ELL VOL	E:		gelic	ons Wi				_ ft TOO	Well	/olume		h = 0.16		= 1.47	
	TIME	ACTIVIT		PURGE RATE (gpm)	PURGE VOLUME (gal)	ATL	WY	mail	MEABU	T	8		ALIQUE	h = 0.85	8-Inch XOMMEN		
	2948	RB.	4.21	Barlec		1112.55		#X12(M	MAC	mu	 	F	┼		<u> </u>	1
	005	1885		Bule				 	_	-		 	-	Ros	. 0		-
Ц	025	DE		Bai	led	(25	2003	52	VI in	DV.	Vsex	DO	T	Bar	<u>~ (</u>	<u>yux</u>	42
4	133	1033	_	taile				1	III W	100	may	Y	4	Day	leck s	<u>~91</u>	plum
Ц	141	WE	1590	Baile	5	55	186	72	11.5	RV.	VSIN		<u></u>	 			
Ц	204	1782	14.75								1 cq yru)					
Ц	342	M7	102			·								Das	Ω.		•
4	70,	TAC.		Bella	18/	o 08	82	72	119	SK	Same	00	7	Bosi	1-11 20-12	2.U.	γ ₀ }.
H	445	MG	14.63										1.	1		"6 1	eau
H	5:00	100	130	- 10		1 -											
1	<u> </u>		6.15	שעיי	5	15#	UH	73	KL!	1) [KIM	\mathcal{D}	$\sqrt{}$	انتنا	2.1		•
-								-	<u> </u>	_,_							
				 													
				· .	-+												
						-		-		÷		_	_			·	3
				_													
					-					-+							
						_				- 		\dashv	-+		<u>·</u>	.	
		FINAL								7			\dashv				
FIN	AL WELL	YIELD:	_0	.5	GPM	PUMP	RATE -	ESTIMA	ED	COR	RESPON		PAWN		10		
	D	EVELO	MENT A	CIIVIT	CODES)	F	ELO M	EASUR		CODE		*********		استحسا	F)	
De DO	8 - Begin 8 - Begin	Seting Overoun		DBE -	End Bulin End Overp			(I) - Terr	nceretur					URBIDI Nelly Me			٠.
DK DC	a - Begin B • Begin	Rawhidin Recircula	g dos		End Puwh End Recirc	dina	M	ISC - Spe IPO - Pho	Molonia	len .	AAA		(Final s	hould be	€8 NTU	ng .	
W.	3 - Begin	Hydraulk Air Surair	Jetting	UHE *	End Hydra Ind Air Su	ufic Jett	7. S.	FD - Plac IDO - Dia IPH - pH	ne toniza ectved C	ху ре п Ху ре п	DVA	E		OR Litative O	beervalio	738	•
2.5	3 - Begin 3 - Begin	Other	clang	D9E - 1	nd Surge nd Other	Blockin	M	EH - EN MC - Imp	of n_			H.	tigh: (paque/V	uddy/SE		<i>;</i>
M	city other - Field N	erante(i) ruemog;	enia (velac	t from coo	Ses at righ			01 - 0th 02 - 0th	f.			L - L	OWI	Ereperen Cast/No.	/Some P		
•••••			y F. Weston,			٨					_						

lewey =0.4' every 10 minutes

G081291T

COMI CUEN PROJ BITE:		RFW USA 93286 CI	CE	037		_ [WELL NO.: DATE: LOGGER: BIGNATUR		3.	WZ6 1/2019 SACC h W-:	PS PAANDI		
ONE W	ETT. AOTA	ME:	··	galic	ons Wi	ELL TO:	16.8	85	ft TOC			ch = 0.16 6-inch = 1.47 ch = 0.65 8-inch = 2.61	
TIME	ACTIVIT	WATER	PURGE RATE (gpm)	VOLUME		MEH	<i>ŧ</i>	T 100.5C	EMENTS	· · ·	UMBIOTIV	COMMENTS	
0915	DSB	9.25			MIH	JUSC	MIT	HET	MAD		2		
	300	+***		PAI		30		ļ	 				
1140	100	NK	15	LAT.	(E)	DR	' 	253	0.45			106865	
1175	DOP	10.35	1.5	તા	1.76	577	125	1428	BKC		29,	16H BROWN SET	Ý
1300	DSB	10	 	945 7/10	D.	11.54	1 10	L /-	200	(= =	 ,		
	17 2 2	+	21				DR		 		<u> </u>	JETTON CTOURS	
1315	DOB	11.98				280	+		BKG		#	11	
1320	1	12.25	, <u></u>	15	,		/3.8				H	11	
1325	 	12.73	≈ 1		4.72	 	15.0		BKG		H	11	
1330	DOB		≈1				14.6		BK6		\mathcal{H}	" CLFAR	
1395	 	13.35	21	=-	4.86	332	14.5		RKG		H	11 STILL CLE	ARIN
<u> </u>	-	14.15	×1		_	336	70		BKG		H	11 /1	-
1345	-	* <) 4.40			4.86	338	<u> </u>	.1757	BKG			// A	
1350		< 14.40		42.5				.741	BKG		M	VERY CLOUDY)
1351		<14.40		47		_	pum	WA	iT	FOR 0	RECHAR	î.E	
1400	DOB	טן.טן			493		/3.7	.738	BKG		1	HAZY	
1405	DOB	14.20	×1	47.5	4.90	345	141	.646	BKG		M	VERY CLOUDY	
1410		14.40 P</td <td></td> <td>52.5</td> <td></td> <td></td> <td></td> <td>،755</td> <td></td> <td></td> <td>L</td> <td>HAZY</td> <td></td>		52.5				،755			L	HAZY	
1414		12.60			 	350	19.5	.768	BKG		1	CLOUDY	
OVE		14.40	TOP	OF	pun	1P							
	FINAL												
FINAL WEI	T AIEID:	<u>`</u>	<u> </u>	_(GPM	PUM	P RATE	- ESTIM	ATED	ΩI	RRESPON	DING DRAW	DOWN:FT	
	DEVELO	PMENT	ACTIVIT	Y CODE	39	ı	FIELD N	EASU	REMEN	T CODE	8	TURBIDITY	·
DBB - Bugi DOB - Begi DOB - Begi DCB - Begi DHB - Begi DAB - Begi DSB - Begi DXB - Begi Spacity oth	in Overpui in Recircul in Recircul in Hydraul in Air Surge in Surge B in Other er method	ng adion ic Jetting ing locking	DOE DRE DCE DHE DAE DSE DXE	End But End Ove End Raw End Rec End Hyd End Air S End Sung End Other	rpumpi rikting reutatio raufic Ju jurging ye Block V	ng a etting	MTP Ta MSC - Sp MPD - Pa MPD - Pa MDO - Di MPH - pi MEH - B MMC - in MO1 - Qt	ryperatu peditic C polotopia ume toni ectived i shoff Co	rs onduster er (e.g., zar (e.g., Oxygen	YOR	Enter C	Curbidity: Meier: Reading I should be < \$ NTU) OR braitetys: Cheerustons Openue/Muddy/Sity unr.: Translucent/Cloudy Transparent/Some Sit	
FMT - Flekt				odes at th	th)		MO2 - Ot				N-None	Cinar/No.Velos Six	

#26 CONTINUED

CUENT	_	RFU VSAC Ozasi		037		. D	ÆLL NO.:		1/2	2 ZCe 2/95 ACCOMAN	7	
SITE:	··· <u> </u>	Cu					OGGER:	<u> </u>	& dry	W- 80		
ONE WE	TT AOTA	/E		gallo	ne WE	LL TD: _	16.8	5	RTOC	Well Volume (gallons/foot)		0 = 0.16 6-inch = 1.47 1 = 0.65 8-inch = 2.61
TME	ACTIVITY	1	PURGE	PURGE			FIELD	MEABUR	EMENTS		È	
Imig	CODE	WATER (R)	(gpm)	(ge)	MPH	MEH	MTP	MSC	MPD		TURBIOTY	COMMENTS
1420	DOB	14.2	71	58.5	4.94	100	M-8	.659	BYG		1	VERY HAZY
1425	DOE	44.40		B.5	4.94		14,2	,751	BKG		L	4024
1428	DOB	12.80		63.5		1		.770	BKG		1	HAZY .
1430	DOB	13.50		65.5					BKG		1	SLIGHT HAZE
1435		<i>×14.4</i> 0				358	14.6	.672	BKG		L	SLIGHT HAZE
1940		4.40</th <th></th> <th></th> <th></th> <th></th> <th>15.1</th> <th>.773</th> <th>BKG</th> <th></th> <th>1</th> <th>SLIGHT HAZE</th>					15.1	.773	BKG		1	SLIGHT HAZE
1445	DaB	4.40</th <th></th> <th>80.5</th> <th></th> <th></th> <th></th> <th>.733</th> <th>BKG</th> <th></th> <th>N</th> <th>CLEAR</th>		80.5				.733	BKG		N	CLEAR
1450	20E	<14.40	2]	85.5	4.95	353	[5.1	.731	BKG		N	CLEAR
												1.0
	·	-				,						
												-,
	*											
		·				<u> </u>						, , , , , , , , , , , , , , , , , , ,
	FINAL											,
	لتتت	0	1.D									
FINAL WEL				GPM		IP RATE				RESPONDING	DRAW	DOWN: 5 FT
***************************************		PMENT	ACTIVI	Y CODE	<u>:</u> 9	J	IELD A	MEASU	REVIEN	T CODES		TURBIDITY
DAS Begin DAS Begin DAS Begin DAS Begin DAS Begin DAS Begin DAS Begin DAS Begin	r Overpui r flawhidi n Recircul n Hydraul i Air Surge i Surge B	ng ation c Jetting ng	DOE DRE DCE DHE DAE DSE	- End But - End Ow - End Rec - End Hyc - End Air - End Sun - End Oth	erpumpi rhiding dreutation traufic J Surging ge Block	ng n etting dng	MPD-P	pecific C halcioniz arne loni lesolved H	onduziar per (e.g., izer (e.g., Oxygen	HIND OVAL	(Final Enter C 1 = High:	urbidity Meter Reading I should be < 5 NTU) OR Amiliative Observations Opeque/Muddy/Sity um: Translucent/Cloudy
Specify atte FMT - Fleki COPYRIGHT 6	r method Messurer	nents (se	ect from o				MO1 - O MO2 - O	her.			Low.	Transparent/Some 3th

TIME I		C3986	SACE -076- WOI			1	WELL NO. DATE:	: –		W 7	<u> </u>		_	R	
ONE WELL	VOLUM	C	W01.	-037			DATE:		,	1101					
ONE WELL							LOGGER:				<u> </u>	AAA N			1888
TIME AC		E					BIGNATUR	— E: :	AM L	7. EQ	۲۰۰۰	O(P-D)	一 		. 8888
TIME I	YTIVITS			galk	ona W	/ELL TD:	16.	90	_ ft TOC		/olume		h = 0.16 h = 0.65	6-inch = 1.4	- 1
TIME I		DEPTH TO	PURGE	PURGE			FIELD	MEASU	REMENTS			T .	1	8-inch = 2.6	닉
2010	XODE	WATER (%)	(gpm)	(Set)		MEH			MPD			TURBIOTY	∞	MMENTS	
1915]:	9.31		1.								-			\dashv
310 D	BB .	9.39					 	 	-						4
315 D	BB	NR		×10		PAILE	5 1	RY	(7)	PALL O	a C	11	l/A		4
325 N	8/	0.41	21	×10	4,9	311	11.0	———		AILA	<u>د</u>	<i>H</i>		1/BROWN	<u>\$</u>
330 K					1100	325	 		BKG			M	·	//	_
711	1		21						BKG			H	-		
340 N			≈ 11			1222	15.7		BKG			\mathcal{H}	/(
			2 1.25	_			16.4	.830				H	u	CLEARI	NG
~						342			BK6			H		STILLCO	_
200		1.35		39.5					BKG	T		\mathcal{H}	11		1
355 00	- 1:		¥1.25		4.87		6.2		BKG			m	VERY	CLOUD	7
100 00.		.74	× 1.2>	54.5			16.8	STOR.	BKG			/	FIAZ		4
105 Do			71.75		4.79		t . I	836		·	<u> </u>	N	CLE		1
410 DU				09.5	1.82	353	-		BK6			V	CLER		1
115 DO	3: //,	47 2	1.25	15.5	1.83	355		838	BKG	_		v	CLEC		1
20 00	B]/1.		1.25 8		1.32	357/		834			/ -	1			1
25 DOI	7 JI.	47 8	1.25 8	20.5 4	1.84	359		836 1				. 	CLEA		-
130 DOI	11.	.50 ≈	1.25 9	18	1.82 :	358 /		833 C				U	CLEA		1
135 DO						4 -		340 B					CLE		
40 DOJ	3 11.9							37 B		\dashv		<u> </u>	CLEA		
ER FINA	L			-		10	· · · · · ·	7 3 1 17	1/4	-	- 1/	V	CLEAI	<u>\</u>	
ML WELL YIE	 LD:	7/	1.25	GPM	B1 H 4-			ارد	- J L			\bot			
***************************************	***************************************	EAFT		CODES		PRATE -	ESTIMA		- CORR			RAWD	OWN: _	△_ [F]	
						FI	ELD ME	ASURI	EMENT	CODE	8		URBIDIT	1	
Bagin Batt Bagin Paw Bagin Rac Bagin Rac Bagin Ryd Bagin Air S Bagin Cave Bagin Cave Bagin Cave Bagin Cave Bagin Cave	pumpk hiding revisite suite as urging e Block	n rtting kng	DOE: DRE: DRE: DHE: DAE: DSE:1 DXE:E	End Builtin End Over End Rawh End Rech End Hydra End Air Su End Surge End Coner End Coner	pumpin kding culation kulic Jet kging i Blockir	Sing M Sing M M M M M	PD-Pio	ciffic Cor lictorizer se ignize solved <i>O</i>	rductence (e.g., Hr n (e.g., O xygen	An	En Hat Mai	der Tur Final a ler Cur ligh: (Mediun	bidity: Mere hould for a On Thelia; Os pecual/Mo to Tambles undpowers!	: Reading S-NTU) ervations dry/Say	

#27 CONTINUED

PROJE	COMPANY: KFW CUENT: USACE PROJECT: 0386-076-037 SITE: UV01						TELL NO.: ATE: OGGER: GNATURE		4	N27 20/15 , SACCOM L. SQ	4MDT	
ONE WE	IT AOFR	Æ		gallo	ne WE	LL TD: _	16.9	0	RTOC	Well Volume (gallone/loot)	2-Inch	n = 0.16 6-inch = 1.47 n = 0.65 8-inch = 2.61
TIME	ACTIVITY		PURGE RATE	PURGE VOLUME			FIELD	MEASUR	EMENTS	· · · · · · · · · · · · · · · · · · ·	TURBOTT	
	CODE	WATER (R)	(gpm)	(g e4)	meh		MTP				15 E	COMMENTS
1445	DOB		<u> </u>	120.5	4.81	366	17.3	.842	BKG		N	CLEAR
1450	ME	11.50	1.25	128.	4.82	356	17.6	.828	BKG	<u> </u>	N	CLEAR
		,				<u> </u>		<u></u> -				
			`			, *.					-	
									-			
			· -								ļ	
				_			<u> </u>				-	
			7					,			-	
				`				-				
	-					,,		1				
		,									-	` `
	<u> </u>					, ,	7.					
-								`			1	
	FINAL											,
FINAL WE	· · · · · · · · · · · · · · · · · · ·	200.5 1 W1	0.{	GPM			- ESTI			RRESPONDIN	G DRAW	DOWN: 3 FT
085 - B-0			CSE	- End Bu	ing		MTP - T	emperat	V	IT CODES	Enter	TURBIDITY Turbidity Moter Reading
DCB Beg DHB Beg DAB Beg DSB Beg DKB Beg Beatly of	DOB - Bagin Overpumping DOE - End Overpumping DOB - Begin Rawhiding DRE - End Rewhiding DOB - Begin Recirculation DCE - End Recirculation DMB - Begin Flydraulic Jetting DHE - End Hydraulic Jetti DAB - Begin Ar Surging DAE - End Air Surging DAB - Begin Surge Blocking DSE - End Surge Blocking DSB - Begin Citier DICE - End Other Specify other method: FMI - Fleid Measurements (select from codes at right)							MRC - Specific Conductances (Final should be MPD - Photobolise (e.g., HNs) OR MPD - Plante fonite (e.g., OVA) OR MPD - Plante fonite (e.g., OVA) Or MPD - Plante fonite (e.g., OVA) Or MPH - pH MPH - pH				

#28

α	OMPANY:	_	RF		_ <u>-</u>			WELL NO			hW 2	9			<u></u>	- Top
1 .	IENT:	7	7001	ACE	4==			DATE:	· -		0/95	<u>.</u>	,	-		
80	OJECT: TE:			-076- WOI	037		_	OGGER:	_	7	8xcc	MAN	DI_	_		
ONE	WELL VO	MUJK	(E:		gal	iona W		16.E		_ ft TO				h = 0.16		7
	ACT	MTY	DEPTH	PURGE	PURGE	:		FIELL	MEASU	REMENT		1008		n = 0.65	>8-Inch = 2.61	'-
TIMI	∞	DE	WATER	RATE (gpm)	VOLUM (gai)		MTP	T	T.	HIMPL	T		TURBIOTY		COMMENTS	,
091		\mathcal{B}	9.48		TOP	BUK					w po)R	1	 		-
1/30	106	$ \mathcal{B} $	NR	(3)	ALLE	\$ D	RY		†		10		 	10	CALC	4
1145	150	B	9.81	1.5	17.5			1,271	109	TEKG		11	20		GALS	4, 2
ng0	130	B	10.50	1.5	1 49		15.6	.348		BRG	 	1/1	848	MED	UMX BROWN S	14 /CLEARING
1205	Do	B	0.45		46.5	+/* W ~			<u>-</u>	BKG	 	<i>[7]</i>	r 15		H/SILT	
1215	DOB	_		X2.01	66.5	4.81	_			06	 	H	M		VERY CLO	4) <i>y</i>
1225		BI	1.07		86.5				290						CLOUDY	4
1235	DOX	2 /	1.405		1065		7		301	BKG			N		FAR	1
1240		_	-		116.5			336	299				N-4	_	EAR TO	_
1245			1.05		126.5					+			<u></u>		Y HAZY	1
1250	/XB		0.95	20	1265	4.92	7-		_	BKG			4		Y HAZY	
1255	DOB		· T	2.0	GEA					BKG			4	VER	Y HAZY	
1360		_			146.5	$\overline{}$		QUT		MPORA	RILLY	$-\downarrow$	\dashv			
-	1000	7		2,0	16.7	7.00	12.5	١٤٤.	30L	BKG		$-\downarrow$	4	VER	1 6424	
	+-	╁														
	†	十														
	_	+														
		1	JAY	20	LEU	<u> </u>	-		7							-
, '	 	1	-Uns	THER			WA		IOT		UN]	DOL	M	ANY		
	FINAL	+	0/	MER	3 01		70	THE	- 1	IMP	LEVI	ELL				
FINAL WI	<u> </u>). T	1 4	5.2					ا رم		\bot					
	207280208800000	****	***************************************		_ GPM		PATE -	ESTIM			RESPON		RAWD	OWN:	Q FT	
) 26 - 26 c			TERES S	CTIVIT			F	ELD M	EASU	REMEN	T CODE	:8		URBIC	YTY	
XXB - B.	art Over	um	ing	DOE	End Bull End Ove	mumala		(TP - Ten 18C - Sp	ecific C	onderie		6	ner Tu	bidity M	olar Reading	
CB - Be XB - Be	In Recirc	rilett.		DRE . DCE .	End Ray	hiding reulation	N N	IPD - Ph IFD - Pla	otoloniz me loni	er (e.g., .	IN.		(rmai s	hould b	x<8.NTU	• ,
AB CES	in Air Su	aina		DAE -	End Hyd End Air 9	urcina		IDO - DI IPH - pH	Deviced	Охурел				eltetive	Observations	
1XB - 840	Series Berge Bee					• Blockl	Ing MEH = En MMC = Imhoff Cone					H. High: Openius/Muday/Sky M.: Medium: ! revelucent/Cloudy				
MT Freik	By other mathod: - Field: Messaurements: (estect from codes at right)							01 - 0 0 02 - 0 1	* 1			LOW: Introduction Policy - Low: Introduction Rin N. Norw: Cauri No Vision Str				
	Held Measurements (select from codes at right							VI	T	N×Non						

#29

PROJ	BCT:	0388	SACE 6-076-	037		DATE	1.795	1			AND		*
ONE WE	ELL VOLUM	ME:		gallor	ne WELL	TD: _/			c W	ell Volur		inch = 0	
TIME	ACTIVITY	DEPTH TO WATER	PURGE	PURGE VOLUME (ga)	MQ M			SUREMEN	8	JIONE/10		Inch = 0.	65 B-Inch = 2.61
1130	DSB	9.52				TP m	9/11	EHIMPI	4	3	1	5	
1140	DBB	NK		10	RAI	LE 0.37	YOU	-	+	1	1	_	
1145	DOB	10.35	1.5	17.500 5	60 8		ZK A		+	1,	4	1	O GALS
155	DOB	10.60	1.5	32.5 5.	72 17	3 .40	,	1	_	F	12	HIGH	HBRULNSTL
	DOB /	11.05	1.5	3047.55	08 13	10				H	C	LARI	NG HIGH SIL
	1000	11.51	22.01	867.55	07 12		_	2 BKG	-	M	CL	EARING	S/MEDIUM/VE
225	000 1	1.29		87.5 5			120	BKG BKG		1	M	VEI	RY CLOUDY
		_		67.5 5.		-		6 BKG	-	+	IN		EAR
		_	2.0/	17.5 5	23 /3.	^ '	-	BKG		18	N		EAR
	- 1	-	2.0 /2	7.5 5.	09 /3	- 1		BKG	_	-	W		EAR
			2.0 1	37.5 5.	18 14.2	401		BhG		-	N		EAR
		32 2	1 0.1	17.5 5.	26 14.	3 403	277	BKG		-	N		EAR
201	DE 11.	31 12	1.0 15	7.5 5.7	29/4.3	.399	272	BKG	-	_	N		FAR
7	-	\perp						1			10	CLE	AK
-+	+	-	-				Maria II			-	370		
-	+	+	- 1	-								-	
1 4 4	1.1	ATE	0	-1,01							10		
				~	WAS			WN	004	M	AN	YF	URTHER
FIA	W.	7	1	HE P	ump	LEG	EL						KIIIKA
MELL Y	ELD:	1.5.	2		1				10				
	/ELOPM			GPM P	UMP RAT	E - ESTIM	ATED	CORF	ESPO	NDING	DRAWE	OWN:	2 FT
- Begin Be	iliana.					FIELD	EASU	REMENT				TURBID	
Bellin Co. Bellin Rus Begin Rus Begin Rus Begin Rus Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air Begin Air	rerpumping whicking ctroulation draulic Jet Surging ge Blockin er	ling V	DICE - EN DI-E - EN DI-E - EN DISE - EN DICE - EN	d Overpum d Pawhidin d Pacarcular d Hydraufic I Air Surgin I Surge Bio I Other	tion Jetting	MTP - Te MSC - Se MPD - Pt	reperature di control	ra Productano Pr (e.g., Hi Pr (e.g., O Oxygen		E H-	inter Tu (Final : mar Cu High: (rbidity M rhould be OR Obscue/I	ofer Reading < 5 NTU) Discretions Muddy/Sity

-30

GEOLIS Well Development Form

COMP	,	KE				_ '	WELL NO.	:	Mu				_ 📓		
CUEN		<u>US/</u>		<u>~~~</u>		_	ATE:		01-0				- 🖁		
PROJE	3CT:	03886 Uw	,	03-1		_	OGGER:	_	Y.VALE	~ 1 **			- 🖁		
SITE:		<u> </u>	<u> </u>				HONATUR	<u> </u>	V.ie		\succeq				
ONE WE	TT AOT N	ME^6	,9	galk	one W	ELL TD:	_12.	92	RTOC	Well V (galion			h = 0.16 h = 0.65	6-inch = 1.47 6-inch = 2.61	
l	ACTIVITY	DEPTH	PURGE	PURGE		_	FIELD	MEASU	EMENTS			Ł	Ţ		
TIME	CODE	WATER	RATE (gpm)	VOLUME (gel)	MPH	АТР	MSC	nu	Hau			TURBIOTY	α	OMMENTS	
1330	TATE	7.34	-			<u> </u>		_	20	,		_		LA WEZI	
1400	DBB	7.34		'								H		7.0	
1410	DBE		-			<u> </u>									
1420	DBS			250		<u> </u>	:								
1430	DRB					<u> </u>									
1440	DBB				6.0	16.8	.635	015	00			н	۳۹۶۲ ۲۵۲۲	12 STILL	
1445	DBE			30.0		<u>.</u> .									
1510.	BB			32.0	6.12	15.0	.623	٥υ٢	0,0			A	WATE7	01624-5-14	
ا55ى	033			35.5	اه.ما	W.0	132	002	ں ہ		,	H			
1550	DOV			38,0	5.98	15.6	.641	012	۵٥			H			
الدىن	DOF	Dey		40.0	6.03	15.1	.630	-004	.			L	WATER JUST SL	CLC-7486-79	
1625	DBE			•	•						~		<u> </u>	10104.5121	
09:0		6.90			`										
0945		DVi	_	12.0									· ·		
	DRB	15.6			5.63	13.0	1.010		SKG			Н	GRAY	Brown	
	UBB	14.69	_	20	6.02	140	917	-026	BIG			H	1		
1015		5.02	[22	6.15	14.1	895	-32	BKG			H	11		
	_0	FR							7						
<u></u>	-7Fz-7	mee	<u> </u>	Bu	x 1	474	<u> </u>								
	FINAL														
FINAL WEL	T AIETD:			_ GPM	PUN	AP RATE	- ESTIN	MTED	COF	RESPO	NDING	DRAW	DOWN:	<u> </u>	
	DEVELO	PMENT	ACTIVIT	YCODE	3 3		FIELD N	ÆASU	REMEN	1000)	38		TURBID	ΠY	
088 - Bagi 008 - Bagi	r Cally	**************************************		• End Bel			MTP . Ti	mpereti		**************************************		Enter T	urbidity M	E Realing	
CRS - Begi	n Rawhidi	7	DRE	- End Ox - End Par	rhiding		MPD-P	hololoni	ondunter Br.(c.p., l	No.		(Final	**************	X481NIU	
DCB - Begi DHB - Begi	n i tydraul	c Jetting		End Rec End Hys				ETHE TON	zer (e.g., Oxygen	OVÁ		- 70		Zoee Tyrelione	
DAB - Begi OSB - Begi	Ar Surpl	70	DAE	End Air	gnigrut		MPH-p		₩AY Y					***************************************	
DOB - 844	Other			End Sun End Oth			METER:					Tribling Company (under Stay Uribbiling (under Stay)			
Spacify eito FMT=Field			MO1 - Other: L:- Low, Yraneparent/Some L MO2 - Other: N:- None, Clear/No. Vielble S												
OPYDIGM 6							m/44.Q	M(m)		***************************************					

COPYRIGHT © 1991 by Roy F. Weston, Inc.

G081291T

COMP/ CLIENT PROJE	:	USACE 01886-076-037 				. u	FELL NO.: ATE: COGGER:		MW 30 1/24/95 SACCOM				
ONE WE	IT AOFIN			gallo	na WE		7. 92		R TOC	Well Vo			1 = 0.18 6-inch = 1.47 1 = 0.65 8-inch = 2.61
TME	ACTIVITY		PURGE RATE	PURGE VOLUME		,	FIELD	MEASUR	EMENTS			È	
	CODE	WATER (R)	(gpm)	(94)	MPH	Mtp	MSC	MEH	MPD			TURBIDITY	COMMENTS
	DBB	5.85		24	6.05	142	.873	-021	BKG			Н	GRAY BROWN
1025	DBB	15.69	نب	25	6.09	14.7	.861	-623		,		H	/1
1030	DBB	15.65	f	26	6.14	/5.0	. 846	-021	BKG			H	11 11
1040	DRB	15.70	_		6.12	15.1	.837	-Oi9				Н	$\frac{1}{t}$
1045	D&E	15.68		28	6.12	15.1	.841	-018	BKG		-	M	h.
					•								
													`
			<u>.</u>										
								<u>·</u>					
	·												
								1					
			·						N .	·		·	
·													
								•					
													7
		<u> </u>	·					·				[
							- ,						
	FINAL		<u> (0.5)</u>										
FINAL WEL	,	<u> </u>	wld	_ GPM		P RATE	- ESTIM	ATED	. 001	RRESPO	NDING	DRAWI	DOWN: DRY FT
I	DEVELO	PMENT	ACTIVIT	Y CODE	3	1	PELD N	EASU	REMEN	T COD	38		TURBOTY
DRB - Bagir DCB - Bagir DHB - Bagir DAB - Bagir DSB - Bagir DXB - Bagir Baacily other	Odis - Begin Builing DRE - End Builing DOB - Bugin Coerpumping DCE - End Overpumping DOB - Begin Rewhiding DRE - End Rewhiding XCB - Begin Recirculation DCE - End Recirculation XCB - Begin Hydraulic Jetting DHE - End Hydraulic Jettin DAB - Begin Air Surging DAE - End Air Surging XSB - Begin Surger Blocking DSE - End Surge Blocking XSB - Begin Surger Blocking DXE - End Other Becilly other method: Recilly other method:						MSC - Specific Conductances (Final should be - MPD - Protoinelizer (e.g., 1994) MFD - Plane tonizer (e.g., 094) MDO - Dissolved Oxygen Enter Conductive Ob MPH - pH MEH - Eh MMC - Injhoff Cone M - Meditanc Translus MO1 - Other;					refletye: Obeet/silons	
							MO2 - 01				N	+ None	Clear/No: Vielble 613

COMP		RFW		1		. w	ELL NO.:		Mw-	31		- 8	
CUENT		USACE				. 0	ATE:		1-05-9			- (202)	
		73886-	016-	037			OGGER:	1	VALEN			- 1	
SITE:		CWOZ				. 8	GNATURE	<u> </u>	Un	\cong			4
ONE WE	IT AOTON	AE: ^ (5.4	gallo	ne WE	ELL TD:	16	۰90	ft TOC	Well Volume (gallons/loot	2-Inch 4-Inch	1 = 0.16 6-inch = 1.47 1 = 0.65 8-inch = 2.61	
	ACTIVITY	DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENT8		E	el	1
TIME	CODE	WATER	(gpm)	VOLUME (gal)	1	MT P	MSC	MV	Hav		TURBOUT	COMMENTS	1,
1150	STANC	7.00	_	-	_	-	-	_	0.0		_	BAILTING - 3"-DIA.	Bailer
1200	DBB	16.00	Bailey	6	6.32	12.2	.HIZ	-017	0.3		н		1
	DBE	16.00										RECHARGE = 2/10 c. F A	EUT
1300	DSB	8.70										•	
1305	DBB	8.70'						, .			Н	Beginning To Clear	Ì
1340	DBB	16.35	-	31	5.90	16.2	.395	040	٥٠٥		H	Began surging.]
1350	DBB												
1355	DBB	7		32.5	6.04	15.9	.395	013	٥.٥		~		1
1400	D3 =	14.30									T		1
1420		11.20	BAILE	O DRY								Par Recuery	1
1055	DBB	6.75		14	6.0%	13.7	.533	-013	BK6		Н	GRAY BROWN	1
	DBB	12.02		18			.533		BKG	()	H	11	1
105	1)66	14.30)	1.0	6.21	14.4	.534	-010	BKG		H	//	1
	OBB	14.12	-	20	6.21	13.9	.518	-C18	SKG		14	11	1
1115	DBB	13.40	-	22	6.21	13.7	.517	-014	BK6		M	11	1
1120	DBB	13.24	• • •	24	618	13.6	.525	-010	BKG		m	11	1
1125	DBB	13.16)	25	6.21	13.8	,507	-003	BK6		M	II.	
												1 " ,	
Refe	none	or lug	Buo	K 0~	TH	DAT	E Fe	A S	-TAI	to Noi	65.		
	FINAL												œ
FINAL WE	LL YIELD:		0.5	GPM	PU	AP RATE	ESTI	MATED	00	RRESPONDIN	IG DRAW	DOWN: X FT	
	DEVELO	PMENT	ACTIV	TY COD	E9		FIELD	MEASU	REMEN	NT CODES		TURBIDITY	
DBS - Bag DOB - Bag DRS - Bag DCB - Bag DHB - Bag DAB - Bag DSB - Bag	in Overpu in Rawhid in Recircu in Hydrau in Air Surg in Surge B	ing lation lic Jetting ing	DOI DRI DCI DHI DAI DSI	End Ba End Cu End Ra End Ra End Hy End Air	erpump whiching circulati draulic . Surging tge Bloc	on Jetting	MSC - E MPD - F MPD - F	Hadoloon Terne tor Cleeotvec SH	ure Sonducte zer (e.g., Izer (e.g.	HNU) , OVA)	(Final Enter I H - High	Turbidity Meter Reading I should be < 5 NTU) OR Dissibilities Observations Copeque/Muddy/Sity Burn: Translucent/Cloudy	
DXB - Bagi Specify of FMT - Field	er method			- End Oe codes at			MMC - I MO1 - C MO2 - C	************			L-Low.	Transparent/Some Bitt Clear/No Visible Sitt	

COMP		RFL				. W	ÆLNO.:	`	MNS				_		=
CUEVI		USA		- 037		_	ATE:	-		24/35			_ 🖁		ਣ ਨ
PROJE	ਛਾ:		1602	- 0 57		_	OGGER:		<u> </u>	Acceli	Judi		- 2	Con the second	
	IT AOTA			gelio	na Wi		16.9		R TOC	Well Vol				6-inch -	
	ACTIVITY	DEPTH	PURGE	PURGE		-	FIELD	MEASUR	EMENTS	· ·	/100U	T	0.68	8-Inch'=	2.51
TIME	CODE	WATER (R)	RATE (gpm)	VOLUME (gab)	MPH	MTP	MSC	MEH	MPD		7	TABOUT	a	OMMENTS	3
1130	DBB	13.20		26	6.11	13.2	.505	000	ek6			M	BROWN SILT	GRA V	
1135	DBB	13.79	سر	27	613	13.4	.513	-001	BKG		 -	4	LT 61	RAY BRO	NN
1140	DBE	13.60			_		.511			-	,	4	1	11	
						1									
		-													
				<u> </u>											
					-										- <u>,</u>
			·						·					•	
										·					
								1							
														4.14.	-
														a ·	-d) 4.7
														,	:
														<i>i</i> .	• • •
		·												,	
															
							·								•
														· · · · ·	
	FINAL										\dashv		·	· · · · · ·	
FINAL WEL			. 1										<u> </u>	-	
		DRACAIT	ACTE OF	GPM			- ESTIM	, , , , , , , , , , , , , , , , , , , 		RESPON		DRAW	DOWN:		FT
Das-Badi)EVELO	PAIEN!								TCODE	8		TURBIC	HTY.	
DOS - Bagi	Overteur	abing .	DOE	• End Bud • End Ove	iqringi	79	MTP - Te MSC - Se	eche C				Enter T	urbidity M	A SAIL	ng:
DRS - Begir DCS - Begir	Recircul	tion		End Plan End Rec			MPD-P	roloion)	Sf (6.D.,	HNO					
DHB - Begir	: Hydrauli	c Jettina	OHE	· End Hyd	raulic J	etting	MFD • Fi MDO • DI	ecoived	Oxypen	OVA		Enlar C		Cheerasio	78
DAB - Begir DSB - Begir	Surge Bl	ng ocidna	DAE	End Air (End Sun	lurging - Ru		MPH - pt				н	#Hob:	Openue	Muddy/Sit	
DXB - Begin Specify care	Other		DXE	End On			MEH - E MMC - In		M			· Med	ant Iran	lucent/Clo	wdy
ENTER NO	Mocauren		ect from c	odee et el	ah B		MO1 - O1 MO2 - O1			4.4				int/Some 2 Visible Si	
OPYRIGHT 6							mVA A CI	1 (m) A	***************************************			***************************************			*******

COMP	NY:	RFW		<u></u>	<u>· · · · </u>	. c ¥	VELL NO.:		mu 3	3 2					
CUENT		WARE		. ,			MTE: _	<u>े त्र</u>	-05-	25				## ##	
PROJE			076 - C	31			OGGER:		Unti-						
SITE:		<u>دن به ۲</u>				. 8	IGNATURE	<u> </u>	V.V	~~		·			
ONE WE	IT AOT MY	/E:	7450	gallo	ne Wi	ELL TD:	16.9	υ <u>'</u>	RTÖC	Well V (gallon	okume is/foot)		h = 0.16 6-inch = 1.47 h = 0.65 6-inch = 2.61		
	ACTIVITY	DEPTH	PURGE	PURGE			FIELD	MEABUR	EMENTS			È		7	
TIME	CODE	WATER (%)	(gpm)	VOLUME (gel)	мрн	МТР	سىر	нν	Hvu			TURBIOITY	COMMENTS		
1155	STATIC	7.45		_	_		-	-		<u> </u>	<u>.</u>		3" 019 BATENS] -	
	DBB	7.45		2.5	6.31	15.1		००२	8.3			H	Dr. Gray SILTY WA	_] -}e`{{	
1205	DBE		RECV	ARGE	_~	2/10	of A	fost	PER	MIN	172-	1	-		
1300	Bed	8.00	<u>.</u>				-							1	
13ίο	DBB	કું .ગ્ડ						<u> </u>]	
1345	DBE	16.45	~	27.0	5.91	15.2	.459	038	0.0	,		H	BUT STILL HERY SIL	1	
1350	DSB		<u>.</u>					<u></u>					,]	
1355	DBB			-										7	
1400				28.0	5.92	14.6	.492	92U	0.0			Н	WATER STU(S.L.T	•	
1425	DBE	13.3			,								AOR RECOLETY]	
	- H	٠,5 ر	اختلا ع	S Hewl	2 4	F F	CTH	-W (3	نما کولا	14	يسرور	Las	m].	
1220	DBB	7.15	[END					<i>,</i>		7		1	
1225		14.12	_	10	5.09	13.9	.647	160	BKG		•	H	GRAY BROWN SILTY	1.	
1230	$\overline{}$	3.83	_	11.	5.56	14.3	.667	051	BK6			H	11	1	
1235		13.76			6.03	14.6	.645	014	BKG			\mathcal{H}	. <i>I</i> I	1	
		14.39	<u></u>		6.13	14.7	 	-003	BKG.		, .	Н	li .]	
1245		14.67	_	15		14.8	.652	-009	BKG			H	u]	
1250	DBB	14.25				15.2	.651	-012	BKG			H	Jı		
				W	ER										
	FINAL							<u> </u>				<u>`</u>	·		
FINAL WEL	T ALEID:		6.5	GPM	PU	AP RATE	- ESTIM	AATED	œ	RRESPO	NDING	DRAW	DOWN: X		
	DEVELO	PMENT	ACTIVI	LA COD	E3		FIELD	MEASU	REMEN	IT COC)E8		TURBIDITY		
DBS - Begin Setting DSE - End Batting DOS - Begin Overpumping DOE - End Overpumping DNS - Begin Revitationg DRE - End Revitation DOS - Begin Recirculation DCE - End Recirculation DNB - Begin Fytheusic Jesting DHE - End Hydrausic Jesting DAS - Begin Air Surging DAE - End Air Surging DSS - Begin Other DXE - End Other Specify other method: FMT - Field Measurements (select from codes at right)								MTP - Temperature MSC - Specific Condustance MPD - Photolonizer (e.g., HNs) MFD - Flame tonizer (e.g., OVA) MDC - Dissolved Oxygen MPH - pH MEH - Eh MMC - Imhoff Cone MO1 - Other:					Enter Turbidity Meter Reading (Final should be < 5 NTU): OR Enter Qualitative Observations H - High: Opeque/Muddy/Sky M - Medium: Translucent/Coudy L-Low::Transparent/Some Still		
FAMILY AND C	Modalier	neria (es	hed from	igh i j		MO2 - 0	ther				i - Non	e:: Car/No Viable Silk	335555		

COMP. CLIENT PROJE SITE:	r:	RFW VSAC - 18880 CVO	076-07	רנ		ro Di	ELL NO.: ATE: XGGER: GNATURE		21/2 Wn	24/95 SACCOMANDI L. SQ				
ONE WE	ELL VOLUM	1E 2	5.5	gailo	ne WE	LL, TD: _	16.9	0	n TOC	Well Vol. (gallons/		_	= 0.16 = 0.65	6-inch = 1.4 8-inch = 2.6
TIME	ACTIVITY	DEPTH TO WATER	PURGE RATE	PURGE VOLUME	MAL	2		MEASUR				numborry	0	OMMENTS
10		(40)	(gpm)	(ge)	1	MTP	-	MEH	WED			ļ .	7	- TOP NO. 11
1255	DBB	14.30	~	17		14.0	.659		BKG			M	515	TSC 24 N
1300	DRE	4.24	_	18	6.17	14.8	.647	-005	BKG			H	GRAY	BROWN
<u> </u>														
														
			_											
										-				
		,							,					
											÷			
,														•
	7													
	,													
														<u>. — — — — — — — — — — — — — — — — — — —</u>
	FINAL				<u> </u>	<u></u>								
FINAL WE	IT ALETO:	<u> </u>		GPN	A PUI	MP RATE	- ESTI	WATED	œ	RRESPO	NDIN	3 DRAY	VDOWN:	F
	DEVELO	OPMENT	ACTIV	TY COE	E9		FIELD	MEASL	REME	NT COD	E8		TURB	IDITY
DRB - Begin Belling DBE - End Belling DOB - Begin Overpumping DGE - End Overpum DRB - Begin Rewhilding DRE - End Rewhilding DCB - Begin Recirculation DCE - End Recirculation DHB - Begin Hydraulic Jetting DHE - End Hydraulic DAB - Begin Air Surging DAE - End Air Surging DSB - Begin Surge Blocking DSE - End Surge B DXB - Begin Other DXE - End Other Specify other method: FME - Field Measurements (select from codes at right)						on Jetting	MBC - 1 MPD - 1 MPD - 1 MDO - MPH - 1 MEH - 1	Tiologica Placetve pel Sh Innhoff C Other:	Conducti izer (e.g nizer (e.g d Oxyger	, H144) ,, OVA		(Fin Enter H.: Higi M.: Mer L.: Low	al should O Cassitativ n: Opaqu Sum: Tra Transpa	Moter Restling be < S NTU) R a Cheerusilom s/Muddy/Sity rekucent/Clou- trent/Some Sit No Visible Sit

N. 1

COPYRIGHT @ 1991 by Roy F. Weston, Inc.

G06121

CUENT	r:	2540 03880 Cerco	6.076	-031		. C	WELL NO.: DATE: DOGGER:	9	1-05-	95					
ONE WE	ELL VOLUE			gallo	ne Wi		16		n TOC	Well V			h = 0.16 h = 0.65	6-inch = 1.47 8-inch = 2.61	
TIME	ACTIVITY	WATER	PURGE RATE (gpm)	PURGE	1	Γ	T	T	EMENTS			UPBIOTY	0	OMMENTS	
		(4)		(94)	MPH	MTP	rusc	MU	How			2	 		
		8.53		-	-		-	_	0.0			_	-		1
1405		8.53				_	-	<u> </u>	-				Sug	3-Surge	1
		8.53		-	-	7 -	-	-	-			H		BALLED-3	10:4
1420			_	13.0		-	_					_	<u> </u>		
1425	DBB	DRY	-	16.0	/ "	<u> </u>						H		./	
1430	DSB	-											SWAS	3 Surge	
1435	DBB	254		8.0								H			
1440	DBB	D54		19.0	6.14	15.7	.557	-021	00			Н	TO C	e Biginni	7
	033		1	22.0	6.04	14.0	.460	010	0.0			I	BUT 17	17 72 (1077)	1
1550		DRY				2 -4						20.0		1	
1600	DBB	100		25.5	6.23	14.8	1478	72	٥. ١			M			1
1625	033			27.5	6.10	14.0	.468	-014	0.0			L			1
1630	DBE	1	>BA	LED	DRY									clearers (
1305	DBB	8.697	à	9	6.15	14.5	.941	-002	BK6	1		Н		BROWN TY	19.
1310	DBB	10-35		12	6-19	14.1	.863	-013	BK6			Н		CLEARING	
1315	DBB	12-41		14	6.18	14.5	861	-012	BKG			H	11		
1320	DBB	11.42		17	6.21	13.0			8KG			m	11		
		O	ER		-	2									
Ri	تسريس	20 6	g Boo	K.											
	FINAL														
FINAL WEL	T METD:	10	5.5	GPM	PUN	P RATE	- ESTIN	MTED	COF	RESPO	NDING	DRAW	DOWN:	DRYFT	
	DEVELO	PMENT	ACTIVI	TY CODE	-39		FIELD N	ÆASU	REMEN	T COD	ES		TURBIL	XTY	
DBB - Bagi DDB - Bagi DDB - Bagi DDB - Bagi DBB - Bagi DBB - Bagi DBB - Bagi DBB - Bagi DBB - Bagi TBB - Taid	n Overpun n Rewhidi n Rectroul n Hydraul n Air Surg n Surge B n Other er method	ng ation ic Jetting ing locking	DOE DRE DCE DHE DAE DSE DXE	- End Buil - End One - End Rec - End Rec - End Ak - End Sun - End Oth	erpumpi vhiding droulatio fraulic J Surging ge Biocl er	etting	MPD - PI	pecific C ixololoni erne ion lescived ii nhoff Co ther:	Sonducter ser (e.g., lzer (e.g., l Oxygen	-IN-UI	H	(Fina Enter C • High: • Medi • Low:	urbidity is OR Azalitetive Opeque urb: Tran Transpar	leter Reading o < 5 NTU) Observations Muddy/Sity slucent/Cloudy ort/Sorne Stit o Visible Stit	

Proteir-

ي روه.

bent Sli

No! 1 Sans Pai

(COMP/	wr:	<u>RF</u>		•			ÆLL NO.:	_	MW					
	HOUE HOUE			7886-0	376-03	7	-	ATE:			14/95 Sacre	MAN	, i\	_	
1	MTE:	"; —	<u> </u>	Cmo				OGGER: IGNATURE	<u> </u>	Shirt	2. <u>2</u>	2/1/4/N	, U.	- 3	
ON	E WEI	T AOF M	Æ <u>~</u>	5.0	gallo	na WE	LL TD:	/6.	07	ft TOC		/olume ne/foot)		h = 0.16	6-inch = 1.47 8-inch = 2.61
_		ACTIVITY	DEPTH TO	PURGE	PURGE			FIELD	MEABUR	EMENTS			È		
II	ME	CODE	WATER (R)	(gpm)	VOLUME (gal)	mph	MTP	msc	1	17			TURBIOITY		OMMENTS
13	72	DEB	1.79	<u> </u>	20	122	14.4	.776	-0იგ	BKG			M	BROWN	CLOUDY
13		NOB	12.21		22	6.25	<i>j</i> 4.5			BKG			M	. "	CLEARING
13		DBB	10.74		27	6.25	13.9	.691	-003	BKG			M	BROWN	GRAY
13	ا ي	1)888	1518	· - (29	6.19	<i>]5.</i>]	.740	-003	BK6			m	/1	•
13)BB	12.42			6.21	14.7	.696	-005	BKG			4	11	
133	50	DBE	12-34		33	6.43	14.3	.681	-008	BKG			4	ELITE A	TLY CLUDS
												,	,		
		. ,		,											
							`								
<u> </u>															
<u> </u>	_						•								
<u> </u>															
ļ	_														
	_														
<u> </u>															
	_			`											
<u> </u>	_							ر ب			`				
	\dashv		<u> </u>									\Box			
				 -											
		FINAL					·					<u> </u>			
FINAL	300 - 20 st	L YIELD:		0.6	GPM		P RATE	-ESTIM	ATED	, <u>coi</u>	RESPO	NDING	DRAW	DOWN:	DRYFT
	Σ	EVELO	PMENT	ACTIVIT	Y CODE	9	J	FIELD N	ŒASU	REMEN	TCCC	E8		TURBIC	ITY
DOB-	Begi	Belling Overpun	PAC	DOE	- End But - End Ove	ng		MTP . Te MSC . S					Enter 1	urbidity M	
DCB-	Begin Begin	Rewhidir Recircula	elon	DRE	End Ren End Rec	hiding		MPD - PI MPD - PI	IGIOIONI	of (6.D.,	HN-11			oreud b	i<\$NNJ
DAB.	Begin Begin	Hydrauli Air Surgi	Jetting Ng	OHE	End Hyd End Air (rautic J	Hing .	MDO - D	lescived	Схудел					Cheerysices
DSB -	Begin Begin	Surge Bl Other	ocking	DSE	End Sun End Othe	e Block	ing	MEH «B	•			### ## <u>\</u>	Med	un Tran	Nuccey/Sity Nuceral/Cloudy
Specif	y othe	rmethod		*****************	odee at s			MO1 - 0	707						m(Some Sit
		1991 by Ro	***************************************						4.007						

COMP	ANY:	RI	-w		1		VELL NO.:		MW	34				
CUENT	-	USA					ATE:	_	01-06		P In			*
PROJE			.76. Mw				OGGER:		CAL	ATE			_ #	
SITE:		CMOG	- ττω.	7		. 8	IGNATURE	<u> </u>	1.6	2			_ 🕮	
ONE WE	LL VOLUM	AE:	7.8	gallo	one WE	ELL TD:	16.8	15-	RTOC	Well Vi (gallon	olume e/loot		0.16	6-inch = 1.47 8-inch = 2.61
	ACTIVITY	DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENTS		-	È		
TIME	CODE	WATER (%)	(gpm)	(gal)	PH	Temp	(i~o	MV	Hwo			TURBIOT	4"w	OMMENTS
1035	STATIC	4.82	-	- 0		-	-	-	00	-	-		MEASI	REMENTS 1250 PIC
1040	DSB.	4.82	-			-,,	-	-	-	-	-		1	L SUAS SUEGN
1055	033	4.82	BATIES	5.0	4.72	11.5	.154	221	c .0				Hans J.	Al. GARNOH
1155	N.	7.50	BAILEY	45.0	5.10	11.9	.43	177	0.0			,	61.30/C	still still
1215	1		Bailen		5.17	11.7	.143	186	0.0				Creson	Still SA-Brown
	DOB	8,78	3gpm		5,45		.130	163	0.0			N		
1340	DOB	9.50	Зарм		5,43	12,5	1133	154	0.0			N	_	
1355	DOB	9,60	3gpm		5,36	130	.132	157	0.0			N	v.	
1415	DOB	9.60	3gpm 3gpm		5.35	B.6	133	162	0.0			2		
1430	DOB	9.45	3gpm		5,31	13,6	.133	166	0.0			N		
1435	DOE	2.	6							-				
			3				,							
		× 51			- 1									
											- 4			× ×
			·		;							P		
						- 2								
						1						=4		
	FINAL	1												. ,,.
FINAL WEL	T METD:	_^	-3	GPM	PUN	P RATE	ESTIM	ATED	001	RRESPO	NDING	DRAW	DOWN:	5 FT
~ I	DEVELO	PMENT	ACTIVIT	Y CODE	3 8		FIELD N	MEASU	REMEN	T COD	E8		TURBIC	YTK
DRS - Bugi DOS - Bugi DOS - Bugi DOS - Bugi DAS - Bugi DAS - Bugi DAS - Bugi DAS - Bugi Specify oth	r Overpur n Revhide n Recircul n Hydrauli n Air Surgi n Surge Bi n Other er method	ng atlon c Jetting ng ockling	DOE DRE DXE DHE DAE DSE DXE	- End Buil - End Ow - End Rac - End Rac - End Air - End Sur - End Op-	erpumpi whiching arculation draulic J Surging ge Block	n n stiling ding	MTP - Ta MSC - S MPD - Pl MFD - Pl MPH - pl MEH - Bl MMC - In MO1 - O MO2 - O	pacific C hatelonia tree lon lesolved H n nhoff Co ther;	onducter er (e.g., izer (e.g., Oxygen	HNU	H	(Final Enter C • High: • Medi • Low:	urbidity M ahould b OR kusitetive Opeque, um: Trans Transpare	leter Reading < 5 NTU) Observations /Muddy/Sity slucent/Cloudy ort/Some Bitt o Vielbie Sitt

COMP	YANY:	Kfu					VELL NO.:	_	Mu	З с					
CUEN		USAC	<u>5</u> -076 -	*2.7		-	MTE:		01-06				_		
SITE:		7w.9		05/		_	OGGER: IGNATUR	 E:	F. Vila	WII			-		
ONE WE	ETT AOF (n)	VE:		galic	one WE	ELL TD:	16,8	30	RTOC	Weil Vo			h = 0.16 h = 0.65	6-inch = 1.47 6-inch = 2.61	
	4677	DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENTS	-		T .	0.65	0-Inch = 2.51	1
TIME	CODE	WATER	RATE (gpm)	(gal)		MTP	MSC	MCH	MPD			TURBIOTY	α	DMMENTS.	
1235	DSB	4,97						11.02.	II V D			<u> </u>	 		1
245	DSE											-	 		$\left\{ \right.$
1245	DBB												-		ļ
1300	DBB	7.49		22921	5,18	8.7	158	.196				Н	DK G.	eenish	
1330	DBB			1/00	5,20		.161					M	16.	Sr Colo-	
1330	DBE					•									
1400	DBB	5.01							-			H	Green	ish brown	
H10	DBB			115					,	•		H		- LC /	
1430	DSE			160								M'			
1435	DOB		3gal		5.18	11,20	150	.212	0			γM	L+ grea	enish brown	
1455	DOB	6.26	4gal		5. 38	10.80	148	.219	6		1	M	10	` `\	
1505	DOB	10.4	5,5gal		5.44	11,80	146	,216	٥			M	Į,	11 (g.
1515	DOB	8,00	4991		540	12.70	145	.218	0			L			
1530	DeB	9.16	ه کړ		5,14	p.o	140	35 2	0			8			
1535	V-14	9,04	5.0		5.10	12,50	.140	268	0			N	Clea	F	
1545		9.05	5.0		4.93	12.70	.141	264	0			2			
550	DOB	9,04	5.0		4.88	12.9	.141	274	0			Ú			
550	DOE														
							•								
	FINAL							\rightarrow							
FINAL WEI	T MEID:	!-	<u>.5</u>	(GPM	PUN	IP RATE	-(ESTIN	MIED	- © I	RRESPO	NDING	DRAW	DOWN:	4 (1)	
	DEVELO	PMENT	ACTIVI	LA CODI	29		FIELD N	VEASU	REMEN	T CODI	38		TURBID	iΤΥ	
DBS - Begi DOS - Begi	in Overpu	gniger	DOE	- End Sud - End Ox	ling Moumbi	ma			ra onducia					oter Reading	
DAB - Begi DCB - Begi	n Recticul	etton	DRE	- End Play - End Rec	vhiding		MPD-P	hololonia	er (e.g., zer (e.g.,	1		(FA)	OR	CS ATU)	
DHB - Begi DAB - Begi	n Air Surg	na	OHE	• End Hyc • End Air	traulic J	etting	MDO - D	beviceek	Охудел	* 416.			******************	beervalions	
DSB - Begl DXB - Begl	Other	·····	DSE	End Sun	ge Bloci	4ng	MEH - E				M	• Med	un: Imm	Muddy/Sity lucent/Cloudy	
Specify oth FMT - Fleid			lect from	codes at d	ghi		MO1 - 0	ther:			L	Low	Transpare	ri/Some Sit	
OPYRIGHT (***************************************		***************************************		<u> </u>										

COMP	w: _\	MY	wes	<u>. 0x1/2</u>		. w	ELL NO.:				Nw-3	6
CUENT		PAK	, , , ,	. n L		۵ .	ATE:		_ _/-	6-9	<u> </u>	
PROJE	CT:	- W	<u>MM&</u>	WILT	 -		OGGER:		Ya	-eore		
412					<u> </u>		GNATURE		,			
ONE WE	IT AOTA	/E:		galio	ns Wi	ELL TD:	16.	69_	RTOC	Well Volu (gallons/l		ch = 0.16 6-inch = 1.47 ch = 0.65 8-inch = 2.61
	ACTIVITY	DEPTH	PURGE	PURGE		^	FIELD	MEABUR	EMENTS		È	
TIME	CODE	WATER (%)	RATE (gpm)	VOLUME (gat)		1	100	WUV	MCI		TURBOTY	COMMENTS
1025	550	1			WAL	<u>yinsc</u>	MTP	INPU	Inc.		_ F	
1035	D88	6,43	Dat							-		<u> </u>
1045	DSE	,	`					_`_				
1045	DBB		Bailing								Н	<u>Recharging</u>
1055	DBE							٧.			H	000000
1055	DSB						. 1					
1056	DSF			,								1
1056	DBB		Bailed	30cd						-	H	
17)59	DRY	~	-	+5gal	. 6	•						
1059	DSB			1 .yu	<u> </u>	<u> </u>					17	
1102	DSE	6,30			5.7	.189	10,4		175		M	
1140	DOB	10,2	14. 1	-		1117		0	175		14/	+
155			494		5.8 TA	114/	13.0	0	161		<u> </u>	
1715	DOB		الخان		<u> </u>	141	110	Ö	168	'-	N	
16	DOB	7,00	4gal		59	.142	10.6	0	171		N	Cleur-
1220	DOE											Pump shut downeds
										<u> </u>		
			· .									
·	,]					
,		<u> </u>										
	FINAL					,						
FINAL WEL	T AIEID:	3-	4	GPM	PU	AP RATE	- ESTIM	ATED	∞ı	RRESPON	DING DRAV	NDOWN: 3.5 FT
	DEVELO	PMENT	ACTIVI	N/COD	E 3		FIELD	MEASU		T CODE		TURBIDITY
D88 - B-4			DBE	+ End Bul	ling		MTP - Ti				Erter	Turbidity Meter Reading
DOB - Beg DAB - Beg	n Rawhidi	10	DRE	- End Ov - End Pan	whiding		MSC - 8 MPD - P	pedilic C	onducter ter (e.g.,	108 HN43		al should be < 5 NTU
DCB - Begi DHB - Begi	n Hectroui n Hydraul	lation le Jettine		. End Re . End Hy	circulati	etina	MFD . F	erne ton	bet (e.g., Oxygen	OVAL		Cus Native Observations
DAB - Begi DSB - Begi	n Air Surg	mg	DAE	- End Air - End Sur	Surpina		MPH - pl	H	way geil:			h: Opeque/Muddy/Sity
DO Back Spaces (con	Other		OXE	End Oth	4		MEH - EI MMC - Ir	nheff Co	88		M-Me	SU();::: (parelicers/Coud); ;:::(parelicers/Coud);
EUTEREN			lect from	codee at r	ight)		MO1 - 0 MO2 - 0					Serial Value Sit
	***************************************		******************								****	

COMP. CUENT PROJE BITE:	: _	DS	ina Are stou	Msv	D 1		MELL NO.: DATE: DOGGER: HIGNATUR	_	2	OW AND MAN	5		
ONE WE	LL VOLU	AE:		gallo	ons W	ELL TD:	16:	30	ft TOC	Well V	olume se/foot)	2-Inch	n = 0.16 6-inch = 1.47 n = 0.65 6-inch = 2.61
TIME	ACTIVITY CODE	DEPTH TO WATER	PURGE RATE (gpm)	PURGE VOLUME (gel)	ATC	molum	J my	Tou	EMENTS			UNBIONY	COMMENTS
0845	MB	435			IIMI	mer	Hich	INIA	MAG	ma		-	
7905	000	12.44	alley 1					7.0					
220	000	4-4-	logn				15 4	-38			174	1	Dansd 7
3935	DE		3		18. T								Kimped well I
942	DOG	49	laom		4.30	187	200	9	BY	Done	i pr	7200	
03		7.05	icon		44	1180	1	135	30	1219			Cloudy
1015		7.65	iapm	55	5.10	177	275	13.5	N	clean	p. 14	700	Clean
020		8.61	From		528	1179.	267	13.1	10	da			Ciai
025	12-20	7.62	Zom		521	IP9	269	14.0	Di.	Clocu		9-3	Clear
030		7.62	Sam		5.32	.170	766			cha			Clear
035		1611	Soon		4.94	0.180	Set Set	145	BAG	Clony			(leas
040	DOE	1.61	LSgan	• •	5-35	179	270	13.6	gkg	CEON			CIRAR
								-				-	
					1.0	18 P				Si .		1	P
148						7							
+		-	4				j						
	FINAL	\dashv					\dashv		-		77		
NAL WELL	YELD:			_(GPM)	PUM	P RATE	- ESTIM	ATED		RRESPO	NDING	DRAWE	own:3 FT
	EVELO	MENT.	ACTIVIT	Y CODE						T CODI			TURBIDITY
BB = Begin OB = Begin OB = Begin OB = Begin AB = Begin OB = Begin OB = Begin OB = Begin OB = Begin OB = Begin OB = Field I	Overpurt Rewhidin Recircula Hydraulik Air Surgit Surge Bk Other I method:	g tion Jetting ng xcking	DOE- DRE- DCE- DHE- DAE- DSE- DXE-	End Built End Ove End Plan End Red End Hyd End Air S End Sung End Othe	rpumpli hiding resistio resiste Ji lurging te Block	ng n stling	MTP - Ta MSC - Sp MPD - Pa MPD - Pa MPO - DI MPH - ph MEH - En MMC - let MO1 - Ot	mperatu secific C solotoniz une toni sectved i	ra onducta, or (e.g., zer (e.g., Oxygen	nce HNAA	H	Enter Tu (Final Snar Cu High: • Mediu • Low; 1	chickly Meter Reading should be < 5 NTU) OR called the Cheervalions Opeque/Muddy/Sity III. Translucent/Cloudy Fareparent/Some Still Clear/No Vielble Still

COMPA	wy:	Kri			1	w	ELL NO.:	_	MU	JOZB			- 6	7m
CUENT		USP	886-0	74-0	20		ATE:	_	7	719/95 Decom	200	11	- 6	1000
PROJEC BITE:	ot:	03	B2	76-0.	30	_	XGGER: GNATURE	<u> </u>	John L	SACCO!	o poc)/	- @	3
	IT AOTON			gallo	ne WE		7		RTOC	Well Vok	-		_	ch = 1.47
		DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENT8	7		È		
TIME	CODE	WATER	(gpm)	(gal)	MPH	МТР	MSC	MV	HNV	-		TURBIOTI	СОММЕ	INTS
1105	DSB	12.7							1.1					
1125	DBB									1 = -				
1135	DOB	12.90	1.5	\ ,	5.89	15.2	.424	080	BKG			TURB	VD	
1150		12.95	1.5	. 44	616	15.9	.422	014	BKG	1		TUR		
1205	-	13.24	2.0		6.30	15.0	.413	016	BKG			TUR	B10	
1220	ve .	13.15	2.6		6.33	16.0	2000	promote the second	Bra	•		TUK	BID	
1240	~	19.20	20	30	6.37		412	FOIL	BKG				BID	
1255		13.05			6.45	15.4			BKG				Y CLOU'S);
1305		13.05	2.0		6.57	14.5	447	-023	BKG				(CLOUD)	
1315	4.5	13.45	2.5	1 48	639	15.2	422	-026	BKG				Y CLOUD	
325	1	_	2.5	14	6.49	15.3	.419		BIG				OUDY	
1370	1	13.47	2.5		6.44	14.9	.423	-029	BKG				11	27770
1350		13.51	2.5		6.42	14.7	.422	-030	BKG	-		SLI	GATLY CL	CLDY
1400	DOE	13.53	2.5		6.37	15.4	-416	-030	BKG				CLEAR	
											- 1		C=-,,,	
						É								
							0.							
31	MES	IP	UMPEC) WE	ic D	OUN	70 16	FT	BY	INCREA	SIN	s F	LOW RATE	70
12 G	M TH	EN C	UT B	ACK T	02	GPM	TO A	LLOW	WEL					
	FINAL		12 10		7									1
FINAL WE	LL YIELD:	2	- 10	GPA	A PU	MP RATE	- ESTI	MATED	00	RRESPON	DING	DRAW	DOWN: 2	FT
	DEVELO	PMEN	T ACTIV	TY COE	E9		FIELD	MEASL	REME	VT CODE	.8	2	TURBIDITY	
Dead Bary Dord Bary Dord Bary Dord Bary Dord Bary DABUR	in Overpolin Rewhid in Rectrol in Hydreu in Air Surp in Surge i in Other her metho	ling Jation Ilic Jetting ging Blocking d:	DO DRI DC DH DA DSI	E - End Bu E - End O E - End Ru E - End Au E - End Au E - End Su E - End Ou	verpum; nwhiding scirculat vdraufic r Surgin; rige Bloc her	on Jetting	MPD-1 MPD-1 MPD-1 MPD-1 MPH-1 MEH-1 MMC- MO1-0	Photolon Plane to Dissolve oH Di Innoff C Other:	Conducts lzer (e.g. nizer (e.g d Oxyger	, HNU) ., OYA)		(Fina Enter (I - High I - Med - Low;	Curbidity Meter I d should be < 8 OR Qualitative Obse Opeque/Mude turn: Transluce Transparent-Sc :: Clear/No Val	rustions dy/Sity nt/Cloudy one Bitt
FMT=VFlok	A.//).			A	100		MO2 - (-/:\						

COMPA	NY:	<u>pfu</u>			<u> </u>		IT NO:		- 19-9.			`-	-		ĺ
CUENT:	· —	USACE		3 e-		_	TE: GGER:	7	VAren	<u> </u>			-		1
PROJEC	п: <u> </u>	3886. (B 3	066-0	<u> </u>			GGER: NATURE:		a	<u>_</u>				W	
SITE:												O lamb	_ 0.10	6-Inch = 1.47	1
ONE WEL	T AOLUM	E ~11	.1	gallo	ne WEL	⊥ το; _.	∑ 8.	55_	ft TOC	Well Vol			= 0.16 = 0.65		
÷		DEPTH	PURGE	PURGE	}		FIELD !	MEASURE	EMENT8			놑			
TIME	CODE	TO WATER (R)	RATE (gpm)	VOLUME (gel)	МРН	MP	MSC	MV	Hvu			TURBIOTY		OMMENTS	
1215	STATE	11.50			-	- /	-	-	-				· 		1
1220	DSB											· -	(NA 1	n- DR. Gray	}
1235	DSF/DB	В	مبانعت	14.0				,	0.0			H	SICTY C	NATER	1
1245	DBE	27.91							ļ				LET	2 FCHAGE	-
1248	· -	23.00		<u> </u>				ļ	ļ			↓ -		·	┨
1254	-	22.00				<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	602	TUNK GROW	1
1315	DBBD	જાના	Bailes	15.0	4.84	13.3	.388	204	0.0			H	2017	WATER	┨.
1335	DEB	27.14		24.0	5.28	13.7	.420	155	0.0			H		· .	-
	DBB	T-	I	27.0	J.35	13.3	416	137	0.0			#	<u> </u>		┨
	DBE			27.0	<u></u>							+/	LET	Por 4ARGE	┨
1510	DSB	25.40						<u> </u>	ļ	ļ			<u> </u>		
1535	DBB	27.58	BALLY	28.0	5.75	13.2	.448	059	0.0			H	veny	sww Reeda	7
	DBE			<u> </u>	<u>.</u>		<u>'</u>	<u>.</u>			<u> </u>	<u> </u>	ļ		4
					<u>.</u>		<u> </u>	. <u> </u>	<u> </u>				ļ	· · · · · · · · · · · · · · · · · · ·	↓
								<u> </u>			<u> </u>				4
									<u> </u>	ļ			ļ	<u> </u>	4
·		<u> </u>				ļ	ļ	ļ	1				 		┦.
			<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>		<u> (</u>	MUES CES	0~	VEX.	PAS	<u> </u>	+
			<u> </u>	·			<u> </u>	 	ļ		ļ	 	<u> </u>		\dashv
	FINAL		<u> </u>	- 47	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		4
FINAL W	ETT AJEN	D:		GF	PM > PL	JMP RAT	E - ES1	IMATED	•	XXRESP	IIONO	NG DRA	WDOWN	:F	
	DEVE	OPME	AT A CIT	VIIY 🗪	0E9		FIELE) MEAS	UREM	ENTI CO	DE8		TUR	BIDITY	
	7 (782 ml) 7 (782 ml)	pumping Haling Estation Bullic Leal Unting I Blockin	0 0 0 0 0 0 0	BIE - End OF - End RIE - End CE - End HE - End AE - End SIE - End XIE - End	Overpun Pawtikdir Recircula Hydrauli Air Surgi Surge Bi	ig Itlen c Jetting ng	MSC MPD MED AXDO MPH MEH MHC	Photoir Flame: Lleech	c Condu onizer (e conizer (e red Oxyr	o // HNLD LO // OVA		Ena 1000 W. W Velo	nal shoul r Caushe gh! Ope edium: I er: Trave	y Meter Reading of the < 5 NTU) OR the Cheervalions que/Muddy/Shy (spektycout/Cout paren/Sorons Sh	
*Seedly	edver med eks Media	red:						- Other: - Other:						U/No Vielbie Stit	

(x

COMPA	<u>۰</u>	RFW				WE	IL NO.:		Mus				<u>-</u> : 👹	
CUENT:		SAC	<u>F</u>			DAT		_	-24				- 🚆	(C)
PROJEC	7: <u> </u>	7888	-076	-03	٤		3GER:		VA 10	1	_		- 🌉	
SITE:		83				:810	NATURE:	_ <u></u>	<u></u>			===	<u></u>	
ONE WEL	T AOTAN	<u> </u>	/.1	gallor	wel		28.	55	n TOC	Well Vol		4-inch	= 0.16 = 0.65	6-inch = 1.47 8-inch = 2.61
	ACTIVITY	DEPTH	PURGE RATE	PURGE			FRELD	MEASURE	EMENTS			TURBEOTY	0	OMMENTS
TIME	CODE	WATER (P)	(gpm)	(ga)	nph	MTP	MSC.	m <i>e</i> H	our			2		
500	STATIC	11.05						<u> </u>		'		-	N/Z. (3.43)	DUTO GRAY.
	5 038		ઉજાલિ	1.0	539	12.2	.432	२२६	0.0	<u>. </u>		H	DE7 GIC	
1510 1512	D33		SALEN									<u> </u>		· ,
	D33	-	SAL K-1)	5.0	5.51	12.7	.444	220	0.0			A		
15 15'	033	-	Bailes	7.0	5.8	17.8	.446	214	0.0			11	<u> </u>	
1517	 	-	Pálo	90.0	C.38	13.1	,441	238	٥٠٥			H		
1520	1 .	1	1 2 1 2 N	14.0	Silla	13.5	,418	255	0.6			4		A (1-7)
	DBE		Biler	155	< u	134	.422	254	٥،٥			H	rery	stan Recy
1534	June	1324	130-151	17.1										
	-	-	1											
		+	-		1									
	-	+-	ļ. — —	 	ļ		1							
	 	-	1		†									
	┼	╁╌╴	-		<u> </u>									
		+	+			 	1-	,						
	-	+	 	+	+	1	1							
	+	+	+	+		1								
	+													
	 	┤─	1		1									
	FINAL			1										
FINAL V	VELL YIEL	D: (0.5	G	PM) P	UMP RA	TE · ES	TIMATE		CORRES	POND	ING DR	AWDOWI	N: -[XLY-1
			NT ACT	NITYC	DDES		FIEL	D MEA	SUREA	ABNT CX)0E9			BOTY
DOS S DOS S DAS S DAS S DAS S DAS S DAS S	agir Bulli agir Ore agir Flori agir Rec legir Hyd agir Air S agir Sing agir Ore adherina	pumping pumpin	ding (OSE : End OCE : End OCE : End OCE : End OHE : End OSE : End OSE : End OCE : End	Overpu Paretild Rectrou Hydrau Air Surge I Surge I Other	mping big lattori jie Jetting jing Blocking	MSC MPC MFC MCC MPF MB- MMC MMC	Tarvipa Specif Photo Parre O Diseo O piri O Elver C Enno 2 Other 2 Other	its Conditionizer (conizer (dved On) ff Cone	4. HAI (e.g., OV)	Š.	En Hai	Final shot ur Coulh light: Op Modrant our (sa	ity 3 Mayor 17 coding ind be -< 3 NIT(); OR dire. Observation conseniately/Sit (recolumnit/Consenseni/Sions 2 easy/Nic Visible (S

COPYPLIGHT @ 1991 by Roy F. Weston, Inc.

COMP	ANY:	Rim		;		_ v	VELL NO.:		سست	413			
CUENT		USAC		24		_ 0	MTE:		1-19-				
PROJE	CT:	<u>63886</u>	-076-	<u>03.8</u>		_	OGGER:		BILL				
SITE:		<u></u>		====		8	IGNATUR	<u>E:</u>	Dia_	\cong	<u> </u>		
ONE WE	EL VOLUA	4E: <u>~</u>	6,8	geik	one W	ELL TD: ,	17	<u>', 10</u>	R TOC	Well \ (gallor	/olume ne/loot		h = 0.16 6-inch = 1.47 h = 0.65 8-inch = 2.61
	ACTIVITY	DEPTH TO	FORME	1	L		PIELO	MEASUR	EMENTS			È	-
TIME	CODE	WATER (R)	(gpm)	(gal)	МРН	МТР	MSC	MV	4~0			TUMBROTTY	COMMENTS
০৭৩৩	STATE	671	-	<u> </u>					-				
090	DzB	,											
0420	DSE	B 6.71	BAILED		<u></u> :		<u> </u>	<u> </u>				Н	Cotes-UISH SINTY WATER.
0927	SOF	Dey	_	12.0		<u> </u>							WELL WONT Dey.
0929	-	13.10	<u> </u>			ļ							LET RUCHARGE
0930		11.40				<u> </u>							· ·
6935		10.10					<u> </u>					,	SET PUMP DOWN WELL 6" off Builton Greenii H Silty
0940	DoB	8.00	20.5	13,0	4.09	8,2	,271	316	0.0			Н	Greenvis H SILTY
<u> </u>	DOB	14.31	10.5	Z DD	3.85	11.7	.285	33 <i>5</i>	٥. ي			H	Luctros Flow Rate:
100U	Dra	10.80	حه، ج	3.5	4.11	12,2	.285	339	0.0		•	Н	with coming Back
1010	D 23	9.14	40.5	52.0	3.91	13.1	- २४ २	359	ں.ں			H	Creens But
1020	DOB	8.80	40.5	27.5	4.35	13.2	,287	331	0.0			*	Increased from Party, WATER BERNING TO CLEAR ?
1030	OcB	9.32		33, s			_		0.0			М	
1035	Dus	9.91	2.0	-35.5	4.00	14.3	1280	359	ں .ن			М	
1040		10.40		38·u					0.0			M	
1045	003			-40.5	4.39	/2.0			ა.ა			M	
1020	DUB	11.50	~0.5			13,7			ს. ა			M	
1055	Dog	11.91	~0.5	45.5	4.17	13.3	.288	353	ی.ر			M	
					Cu~	7~~	√ 0	~ 4	·uc	مر	PAJ	<u>-</u>	
	FINAL												
FINAL WEL	~			GPM		AP RATE	- ESTIA	MTED	<u></u>	RRESPO	ONDING	DRAW	DOWN: FT
l	DEVELO	PMENT	ACTIVI	LA CODI	53	200	FIELD	MEASU	REVIEN	TCO	E8		TURBIDITY
DBS - Bagi POS - Bagi DRS - Bagi PCS - Bagi DHS - Bagi DAS - Bagi DSS - Bagi DXS - Bagi	ri Overpun n Rawhidir n Recircula n Hydrauli n Air Surgi n Surge Bl	ng atlon c Jetting ng	DOE DRE DCE DHE DAE DSE	- End But - End Ow - End Pan - End Rec - End Hys - End Air - End Son	erpump whiching dreulation dreulic Surging ge Block	an letting	MSC - S MPD - P MPD - F MDO - E MPH - p MEH - E	izololonia Izme ion Xesolved H	enducter zer (e.g., izer (e.g., Oxygen	HNJ.		(Fina Enter C - High	Furbidity: Meter: Reading If should be < \$ ATLU; OR Absiliative Observations Opeque/Muddy/Sity turn: Translucers/Coudy.
Specify other	w method			- End Oth codes et d			MO1-C MO2-C				L	-Low.	// / / / / / / / / / / / / / / / / / /

CLIENT: PROJECT BITE:	π: <u>σ</u>	US ACE 3888 · C	76 - U		<u></u>	DA LO SIG	ELL NO.: TE: GGER: SNATURE			55°	_		
ONE WEL	T AOLAW	E 6.	71	gallo	ne WE	LL TD: _	17.1	0	R TOC	Well Vo	vicot)<	2-inch	= 0.16 6-inch = 1.47 = 0.65> 8-inch = 2.61
	ACTIVITY	DEPTH	PURGE		1		FIELD	MEASURE	EMENT8			UPBIDITY	COMMENTS
TIME	○○○ €	WATER (R)	(gpm)		MPH	Игр	MSC	чV	HNU	V.		2	COMMENTO .
Cunn	F Crg.	rm f	reviers	Page								_	
1100	D-30	12.17	20.5	48.0	11.24	13,1	,301	354	0.0			M	Pump Day / LET Re
1110			- ^									M	Prop Dey
11/1		Dey							_				Pump Day / LET Rec Pump Day LET RECHARGES Pump DRY
		9.04	<u> </u>	61.0	4.05	12.7	· 468	366	0.0	,		m	PupDRY
1121	DUE	Dey											×
7162.	Do€	-											. 2
7 .	7			112									2
		-				7							
_		. 1	-			-							
					-			-					
-		-			-	-	-	-	-			+	
	. 1				8	-	-	-	-			-	-
			_		-	-	-	-	┼	-		-	
					-	-		-	├	-		-	
					-	-	-	-	-			-	
					-	<u> </u>		-	-			+-	
				(_	-						-	
		_											
1,000 1,000 - 20	1 4											_	
	FINAL				À			<u></u>					
FINAL WE			10.5	GP		MP RAT						G DRA	wdown: - 0(1) - FT
	DEVEL	OPMEN	IT ACTIV	ATY CO	DES		FEO	MEAS	UREME	ent co	DES		TURBIDITY
DOS - B- DOS - B- DOS - B- DOS - B- DHS - B-	gin Overp gin Rawhi gin Recirc	umping ding ulation	7 DX	IE - End I DE - End (IE - End I JE - End I	Overpus Newtoldin Nectrouse	g don	MSC - MPD - MFD -	Phototo Plares t	Conduc	J., HINU) B., OVA)		F	r Turbidity Meter Reading hal should be < \$ NTU) OR Cassiliative Observations
DAB - Be DSB - Be DXB - Be Specify of FMT - Fie	gin Air Su gin Surge gin Other dser medi	rging Blocking od:) (X) (X)	VE - End / VE - End (VE - End (Vir Surgit Surge Bk Other	19	MPH MEH MMC MO1	pH				M·M L-Lo	ph: Opeque/Muddy/Sity actum: Translucent/Cloud or: Transparent/Some Stit one: Clear/No Visible Stit

COMP	ANY:	1/100				. w	ÆLL NO.:		MWC				
CUEN			FUE.	7 50		۵ .	ATE:			1/85			
PROJE	3CT:		-076-0	038			OGGER:		مزورات	ALCO	MAM	Di	
SITE:			B5			. 8	GNATUR	<u> </u>	John L	11	_	-	
ONE WE	ELL VOLUM	AE:		galio	ona WE	ELL TD: _	17.3	31	ft TOC	Well Vo			1 = 0.16 6-inch = 1.47 1 = 0.65 8-inch = 2.61
		DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENTS			٤	
TIME	CODE	WATER	RATE (gpm)	VOLUME (gel)	MPH	MEH	MSC	MPI	MI	MIP		TURBIOTI	COMMENTS
1425	DSB	5.01	.										
1430	DBB	11		D DR							Jul	BID	8 GAL
1500.	DBB	12.00	BAIL	ED DE							TV	BID	3 GAL
1530°	DBB	14.00			4.83	A AM	.291	BKG	TURRID	11.9			3 GAL
1535	DBB	15.30			5.11	1%	292	BKG			TUR	BID	
1540	DEB	15.85			5.18	193.		BKG			70.	()).]	1 GAL
1545	DOB	16.40			5.20	190	.2%		TUBERD		_		I GAL.
1550	DBB	16.65			5-23	189	.303		מבועד				1 G^L
1222	DBB	16.71			5.26	-			TURCIA				1 GAL
1600	DEB	16.80			5.26	183		ekg	_				1/2 GAL
16 05	NBB	6.74			5.34			BKG				_	1/2 GAL
1610	DBB	16.80			~			BKG					Yz GAL
1615	DOB	17.0			5.36			BKG		12.4			1/2 GAL
1620	DOB	MS 1				- 1	·		7				- , U/.L
											-1	-	
		- I								$\neg \uparrow$			
											7	7	
	FINAL]									
FINAL WEL	T MEID:	Bail	ed-L	O.SGPM	PUM	P RATE	- ESTIM	ATED	∞	RRESPO	NDING	DRAWI	DOWN: TO VET
	DEVELO	PMENT	ACTIVIT	Y CODE	39	F	IELD N	MEASU	REMEN	T CODI	E8		TURBIDITY
DBB - Bagi DOS - Bagi				End But			MTP.T	mperadu	f a				urbidity Meter Reading
DRB - Begi	n Rawhidir	10	DRE	End Ove End Pare	rhiding .		MBC - S MPD - PI	pacific C rotoloniz	ondunia at (e.s.	nos HNJ		(Final	should be <3 NTU)
DCB - Begi DHB - Begi				End Rec		n .		arne ton	201 (5.0.	OVÁ			veltebre Cheervellons
DAB - Begit	n Air Surgi	RΦ	DAE-	End Ar	umping		MPH - pl	leectved	CXYYG01				
DSB - Begi DXB - Begi	n Surger Bl n Other	ocking	DOE.	End Sun	» Bloci	ing	MEH - 8						Opeque/Muddy/Sity um: Translucent/Cloudy
Specify other	er method						MOY - O	nhoff.Co her:			L	Low	Transparent/Some Bitt
FMT - Floid	Measuren	rents (sel	ect from c	odes at ri	g hā		M02 - 0			***************************************	_ N	· None:	Clear/No Visible Stit
OPYRIGHT C	1001 by B	w E Wash	en Inc										

COM	PANY: _		FW			_	WELL NO.		MWI	26R	J		
CUE	NT: _		ACE				DATE:	_	1/2				
1	JECT: _	0333	6-037			_ 1	LOGGER:	_	J	SH/	(OM	וקחד	
BITE			D-6				BIGNATUR	E:	$\mathcal{Q}_{\mathbf{v}}$	L.	<u>v</u>		
ONE W	ELL VOLU	ME: ~	7	galk	one W	ELL TO:	16.	66	_ ft TOC		Volume		ch = 0.16 6-inch = 1.47 ch = 0.65 8-inch = 2.61
	ACTIVIT	DEPTH	PURGE	PURGE			FIELD	MEASU	REMENTS			1	- 0.55 - 041CH = 2.61
TIME	CODE	WATER (R)	(gpm)	VOLUME (ga)	MSH	MIF	MSC	MEA	MPD		1	Turbion.	COMMENTS
1605	BSB	4.64	-	-					BKG		+	+	1
1610	BBB	N/R	-	9					D.CC.	-	+	H	GRAY GREEN
1015	DBE	8.47	1 -	9				T			+-	H	VERY SILTY
1620	DOB	8.47	0:5	9	5.25	5.1	.160	274	sk6		+	11	11
1625	DOB	18.37		11.5	5.02	1.2	.194		BKG		+		11
1630	MB	9.18	0.5		7. 88	7.0	.204		B1(6		-	H	11
1635	DOB	9.21	~0.5		4.86	80	204	-	BKG		-	+	"
1640	DOB	9.26	_			10.3	,203			-	├	H	
1645	DOB	9.30	~0.5	, -	500	11.7	201		BKG	,	-	H	11 CLEACON
1650	DOB	9.33	20.5	21.0	-	12.6	.197	229	BKG		-	H	CEITIMING
1655	DOB		20.5	23.5	_			223	BKG		_	H	11 11
1700	DOB	9.39	~Q.5	25.0	_		.197		BKG			M	DK BROWN CLOUD
1705	DOB	9.42	20.5		5.26		.196	221	136			M	BROWN CLOUDY
1710	DOB	9.48	~0.5		5.20				BK6			L	CLOUDY
1715	DOB	9.53	~0.5	-	-		~	217	BK6			L	SUGHTLY (LUDY
1720	DOB	_			_	4-6	_	217	BKG			N	CLEAR
1730	DOE					7.7	-1 /	216	BKG			N	CLEAR
1730	DOL	1029	~0.5	37.5	,	4.5	.197	216	BKG			N	CLEAR
	13.4	15	100						-				
		0 13	DEGT	HTO	TOP	OF	PUN	PI	MMA	15	,51	OFF	BUTTUM
	FINAL												2 to v x
FINAL WE				GPM		PATE	ESTIM	ATED)	COR	RESPO	NDING	DRAWI	DOWN: FT
	DEVELO	PMENT	ACTIVIT	YCODE	9	F	TELD M	EASUF	REMENT	COC	E8		TURBIDITY
088 = Bag 008 = Bag	n Belling In Overpur	mina	DOF	End Built End Over	'		MTP . Te	nperatu				Enter T	urbidity Meter Reading
DRB = Begi DCB = Begi	n Rawhidii	2	DRE	End Paw	Ndina		MPD - Ph	ototoniz	onductenc or (e.g., H	No.		(Final	should be < 5 NTU)
HB - Begi	n Hydraull	c Jetting	DHE	End Reci	autic Je		MFD - Fla MDO - DM	ree toni	er le.p., ()VÁ)			OR Cheervalions
XB - Begi XSB - Begi	n Air Surgi a Surge Bi	ng ocidna	DAE	End Air S End Surg	unging		MPH - pH						Opeque/Muddy/Sky
98 - Bedi packy oth	Other		DXE.	End Other	A		MEH - En VIMC - Im	hoff Con			M	- Medit	an: Translucent/Cloudy
MIEVFIELS			ect from o	odes at the	h a		MO1 - OU MO2 - OU	* f:				LOW	(raneparent/Some Sit
PYRIGHT C		***************************************					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						·//**/:-3'-3*\
	I SEE I DY PK	7 F. Week	AL, MIC.										

COMPA	WY:	NTI VICA		•		W	ELL NO.:	. —	MIW			- Ru
CUENT		USAC	<u>)ε</u> β6-67(D24		D	NTE:			4/15 ECOMAN	ß.	
PROJE	CT:	<u>υς</u> β-		1-051			OGGER:		July 1		VI.	
SITE:							GNATURE		Ma. M	. 00		
ONE WE	LL VOLUM	(E:		gallo	ne WE	LL TD: _	16.5	6	RTOC	Well Volume (galions/foot)		= 0.16 6-inch = 1.47 = 0.65 8-inch = 2.61
	ACTIVITY	DEPTH TO	PURGE	PURGE			FIELD	MEASUR	EMENTS	<u>-</u>	È	
TIME	CODE	WATER (R)	(gpm)	(Gel)	MPH	MTP	nsc	MEH	MPD	_	TURBIOTY	COMMENTS
1400	DSB	9,01		—								
1410	DEB	NR	-	17			-				H	BROWN SILTY
1415	DOB	N/R	1	22	4.54	11.7	.380	269	BKG		H	1/
1420	DOB	12.81	2	32	4.67	12.3	.396	262	BIGG		M	11
1220-	14/30	ρσ	GAS	IN		VERAT						·
1430	DOB	10.41	30	32	4.86	12-2	.372	271	BKG		H	11 -
1435	DOB	13.07	2	42	4.39	12.5	.403	273	gK6		1	SLIGHTLY CLOUDY
1440	DUB	11.95	2		4.91	123	.420	277	BKG		N	CLEAR
1445	DOB	11.99	2	62	4-93	12. S	.426	279	BKG		N	CLEAR
1450	DUB	11.99	2		4.91	12-7	.420		BKG		N	CLEAR
1455	DOB	12-101	2	82	4.89	12-8	428	285	BK6		N	CLEAR
1500	DOB	12.03	2	92	4.89	12-8	.427	290	BKG		N	CLEAR
1205	DOB	12.05	2	102	4.88	13.0	.426		BKG		N	CLEAR
151)	DOB	12.07	`2	112	4.87	12.9	.429	278	BKG		N	CLEAR
1515		12.09	2	122	4.86	12.8	431	301	BK6		N	CLEAR
1517	DOE	N/I										
- ,									,			
							·					
	FINAL											
FINAL WE	LL YIELD:		<u> 2</u>	GPM	PU	AP RATE	- ESTIN	MIED	œ	RRESPONDIN	G DRAW	DOWN: 3 (FT)
	DEVELC	PMENT	ACTIVI	TY COD	E9		FIELD I	MEASU	REMEN	IT CODES	44	TURBIDITY
DBS - Bag			*************	• End Ba					*** ***********			Furbidity Mour Reading
DOB - Beg DRB - Beg	in Rawhid	Ing	DRE	• End O. • End Re	whiching		MPD-P	hatolon	onducia zar (e.g.,	HAI	(Fina	lieranidise (35) (17)
DCB Beg DHB Beg	in Hydrau	lic Jetting		End Re			MDO - I	arne for Xeeotve	iter (e.g. I Oxypen	.OVA)		Lialiativa Observations
DAB - Beg DSB - Beg			DAE	- End Air - End Su	Surging		MPH - p MEH - E	1			H-High	: Opeque/Muddy/Sky
DOB - Bed	n Other			ENI O			HIMC-I	mhoff O	***			(United Francisco de Cloudy)
Specify of			lect from	codes at	igh i		MO1 - C			·······		Char/No Velble Six
YOPAROLIT (***************	****************				***************************************					7

COMP	MY: _						WELL NO.:		MWU	δB			
PROJE		SACI	-U76-	- (172			DATE:		1.04.				
BITE:		B-8	C/h-	037	-85		LOGGER: NGNATUR		Valo				
ONE WE	ELL VOLUM	/E:	8.0	galk	one Wi	ELL TD:	17.						h = 0.16 6-inch = 1.47 h = 0.65 8-inch = 2.61
	ACTIVITY	DEPTH	PURGE	PURGE		٠.	FIELD	MEASUR	EMENTS		<u> </u>		
TIME	CODE	WATER (%)	(gpm)	(get)	1	мтр	nsc	MH	OUM			TURBIOTY	сомментs
0945	Stanc	4-82							0.0				\$-21 L
0950	DSB	4.82											
of IZ	DSE/08	34.82							-	0.0		H	SVITY WATER
1000	DBE	7.30	BAILED	15.0					-	C		H	WELL BETHATEL'S
1:05		4.74		16.0	4-26	9.70	.148	267	-	0.0		Н	Decent
1010	0.3	5.45	1.0	200				_	t	0.0			Sugar Rap
1015		_		٥٢.٠					L	0.3		<u> </u>	Surges Rup
1020	DiB	5.55		30.0			-		i-	0.3		H	INCREMED FILL TO
1036	DUB	6.2c	1.5	45.0					0.0			$\frac{H}{H}$	1.5-6:14
1040	טעא	6.13	1.5	60.0		_			0.0	\neg		1+	Beginning Te class
1045	1363	6.71		70.0					0.0		-	M	Row to 2 6PM
1055	0,3	6.72		90.0							\neg	M	Fem to 2.5 CPM
1102	Dia	7.69		403.0				335			\neg		Flau To J. GPM
1110	Dis	8121	3.0						υ.υ			M	Fine To 3.5 6 For
.115	DCB &	3.70	3.5	151.0	4.94	10,7	.132	347	0.0			M	
1120	D03	7.70	3.57	168.0	4.96	11.6	129	349	0.0		\rightarrow	,	Florazion up.
1125	173	9.68	40	189.0	4.96	11.5	.128	350	0.0			N	Che was up.
1130	DOE		4.0	209.0	4.95	11.6	128	351	6.0			~	
				2.1	4.		d						A a land
	FINAL												
FINAL WEL	L YIELD:	1	-4	_ GPM	PUM	P RATE	- ESTIM	ATED	∞I	RESPON	DING	DRAWI	DOWN: 5 (F)
1	DEVELO	PMENT	ACTIVIT	YCODE	3 8		FIELD N	ÆASU	REMEN	TODE	9		TURBIDITY
DBB - Burk DDB - Bugk DBB - Bugk DBB - Bugk DHB - Bugk NBB - Bugk NBB - Bugk NBB - Bugk NBB - Bugk DBB - Bugk	Coverpun Revenidir Recircule Hydraulic Air Surgi Surge Bla Other Ir method:	g ition Jetting ng ockling	DOE DRE DICE DHE DAE DAE DAE	End Bat End Ow End Par End Rec End Hyc End Ak End Sun End Oth	orpumpir vhiding dreutatio trautic Ja Surging ge Block of	ng n stting	MTP - Ta MSC - Sp MPD - Ph MPD - Ph MPH - ph MPH - ph MEH - E MMC - in MO1 - Ot MO2 - Ot	pecific Constants reference interpretation period interpretation period	onducter er (e.g., zer (e.g.,	-fresh	H M L-	(Final Inter C High: Madh Low:	urbidity Meter Reading I should be < 5 NTU) OR Lizaltative Observations Opeque/Muddy/Sity um: Translucent/Cloudy Transparent/Some Still Clear/No Velbie Still

CUEN PROJ BITE:	NT:	RF0 USA 07860 R-9	CE	76 - 0	WELL NO.: DATE: LOGGER: BIGNATURE:				-25-	95			
ONE W	ELL VOLU	ME:	5	gaik	one W				ft TOC	Well Vo		2-inc	ch = 0.16 6-inch = 1.4
TIME	ACTIVITY	DEPTH	PURGE	PURGE		4			EMENTS	(galiona	/foot)		th = 0.65 8-Inch = 2.6
	CODE	WATER (R)	(gpm)	(gal)	MYH	MTP	MSC	MEH	MPD	7	179	URBIOTY	COMMENTS
0921	0513	6.38						(-)				Á	12.8
0930	100		114	36in				1				1	YR.1314
0930	DBB	8.90			4,15	8.6	./7/	293	814		\neg		-6.38
0950	DOB	8.12							-			-	6.96
1000			JAIL .	56.11	4.10	8.6	.083	278	RC	2.1		_	6.96
(30	2313		100	1 2 2 2		104	10 110	240		\dashv			3480
1.74	12%	12.75	32/2	1	7.91	11,2		237	32	100°	\dashv	1	4176
10.72	635										\dashv		45240
103		11.54			rysider						+	4	10 2 40 DTW. 8.12
955	155	9	130	8 15			1						
100		_	112/L	15:41 4	.84	10.1	126	370	316	\neg	+	7	OT Top of pung
	DBB	9.50	2018	20,	,		T		BL	+	1	7	
				9.4	7.78	10.5	134		3,4	\neg	1	7	
120	236	1.68	3012	96119	1,78	13.	122 .	270	1.4	\dashv	1	$\overline{}$	1.2
		11:52	3412 3		200	0.1 .	17/	204	DIE	20	11	-	0
		7.57	3/- : 3	32 4	.59	10/	.4		?x_		1	\rightarrow	Certification
	333	1./5 3	AIL -	- 4	1.50	6.3 11		_	'L.	7	_	-	1 3666
13:00-	BE	- En 1.	7: :	/ 7	.55	3 1	7/ 3	2. 1	146				<i>a.</i>
		= 10,1	ne	2-12	120	747		77.4	49.5			12	No records
		Re 4	1 14-1		-11-		-41	1.6/2	5.7		+	1	brice Plane
INAL WELL	MELD:	20.	5	GPM	PUMP	RATE -	ESTIMA	_		ESPONDI	NG DE	AWD	OWN: DEV FT
D	EVELOP	MENTA	CTIVITY	CODES		FIE	LDME	EASURE		CODES		**********	TURBIDITY FT
BB - Bugin OB - Bugin OB - Bugin OB - Bugin OB - Bugin BB - Bugin OB - Bugin	Overpump Rawhiding Recirculati Hydraulic Vir Surging Surge Bloc Wher method:	on Jetting king	DOE - E DRE - E DHE - E DAE - E DSE - E DXE - E	and Batting and Overp and Pawhi and Rectro and Air Sun and Sunge and Other	oumping iding sulation ulic Jett rging Blockin	IMP ME MI MI MI MI MI MI MI MI MI MI MI	P - Terri SC - Spe D - Pho D - Plen XC - Dise YH - pH H - Bh	peratura catic Con sotonizer ne tonizer sotred On off Cone	ductance (e.g., HN		#-H M-M L-Io	er Tur Frad s er Cau Igh: () fedium	bidity Meter Reading hould be < 5 NTU) OR althetive Observations Deque/Muddy/Sity Translucent/Cloudy are parent/Some Stit Clear/No Velide Stit

COMI	PANY:	Erw		* * *		۰ ۱	WELL NO.:	· _	MWI	OB				
CUEN		USA				_ (ATE:		1-24-					今 [
PROJ	BCT:		2-076-	47Q		_ [OGGER:		K.VALL					57
SITE:		B-10				6	HONATUR	E:	1. Val	~~~				
ONE WI	ETT AOTA	ME: 2	8.0	gaik	ons W	ELL TD:	16.4	45	R TOC	Well Volu		nch = 0.1 nch = 0.6		
		DEPTH	PURGE	PURGE			FIELD	MEASUR	EMENTS	· · · · · · · · · · · · · · · · · · ·	Т.			
TIME	CODE	WATER	RATE (gpm)	VOLUME (gal)	мен	МГР		T	am				COMMENT	s
1215	STATIC	4.36												
1215	DEB	4.36										-	· · · · · ·	╼┪
1225	DE 1833	4.36										+		
1230	D3E	15785	BA: 11-3	12.0		00		1.	0.0		H	02.0	निक राम्	
1240	Dug	5.55	0.5	ن.13	5.01	9.9	.128	351	ن.ن		H //			
1245	De 3	6,49		:4.5				350	 		H		क्षा दे दिल	Ę
1257	003	6.50		<i>[7.</i> u							H	Siry	الجمار	
1300	Dug	664		~19.5							H	37.5	12 12 12 1	
1365	Dus	6.87		- <i>22.</i> 0				295	. — т	.	H	5-,90	-17 Plup.	-
1315	5.3	7.62		-27.0										\dashv
1320	100.3	8.22		-29.5				284			- #		 -	
1330	ნაც	9.14		~ 35. v							4	Surge	20.55~17.	
1340	003	૧.ચા	8.5	~ 4 v.0	८ ५५८	12.8	.150	278			M	1	2 e n A'l.7	TIE
1350	Don	9.40	0.5	-45.0	5117	129	.150	275	0.3		1	Clies	Q BLTSI	14774
1355	DU3	9.39	0.5	~47.5	5.46	13.0	-129	257	υ.υ		1	67.0	- Def .	\dashv'
1400	073	4.35	ر.ن	-50.0	5.41	13.0	.152	263	.J. 3			1	· ·	<u> </u>
1405	تسق		2.5			- 1		250	0.	,	~			
1410	Pos	7.53	0.0	-55. v	5.59	124	.153	255	ال. ۵		N			
]						
	FINAL]								
FINAL WEI	~	0	<u>·5</u>	GPM		P RATE	ESTIM	ATED	COF	RESPOND	ING DRA	WDOWN:	5	FT
	DEVELO	PMENT	ACTIVII	YCODE	39		EDA	ÆASU	REVIEN	T CODES		TURE	YTICK	
388 - 8-d 308 - 8-g	n Baling In Oversu	mha	DBE	End But End Ove	Ŋ		MTP - Ta	rvperat.	***************************************		Ens	.Turbidity	Meter Pead	100
XIB - Begi XXB - Begi	n Rewhidi n Rectroul	ng etion	DRE	End Par End Rec	rhidhra		MPD-P	rololoali	onducter of (e.g., l	TATA	(A	nai should	BOCSATI	
HB - Begi HB - Begi	n Hydraul	c Jettina	DHE	End Hyd	baulic J	etting	MDO - D	SECTION	zər (ə.g., Oxygen	OYA	-,-	*************	ra:Observatio	226
XSB - Begi IXB - Begi	a Gurge B	locking	DSE	End Ak	av Block	dng .	MPH - pi MBH - B	1			Hele	h: Opeq	us/Musicy/SI	
pacity of MT = Field	er method			End Offi			MMC - In MO1 - O1	Per:			L-Loy	r::Tranep	enelucent/Cl eren/Borne	B####
	****************		****************		. C.		MO2 - 01	ter			-N.The		No Valle S	
PYRIGHT C	7 ISBN DVR	ov F. Wast	on, inc.											

C-1 Groundwater Elevation Summary Main Post March, 1995

Well	Total Dept (ft)	Depth to Water (TOIC)		Water Level Elevation (ft, MSL)
Site- M2	(11)	(1010)	Clevation (it, mor	CIBASTION (II' MOT)
***************************************	04.00	7.54	24.24	40.50
MW-01	24.60	7.54	21.04	13.50
MW-02	19.64	10.43	15.50	5.07
MW-03	17.28	8.15	12.63	4.48
Site- M3				
MW-04	25.43	12.06	19.02	6.96
MW-05	18.50	8.40	13.30	4.90
MW-06	17.50	8.23	12.42	4.19
Site- M4				
MW-07	17.97	7.81	16.75	8.94
80-WM	20.30	6.84	10.68	3.84
MW-09	24.63	5.93	9.69	3.76
Site-M5				
MW-10	17.62	4.15	6.91	2.76
MW-11	17.12	7.04	11.70	4.66
Site- M8				
MW-12	17.67	9.26	15.20	5.94
MW-13	17.20	5.68	7.80	2.12
MW-14	17.23	7.78	14.91	7.13
MW-15	17.01	4.52	7.01	2.49
Site-M12				
MW-16	17.14	3.64	8.35	4.71
MW-17	17.21	4.42	7.87	3.45
MW-18	17.10	3.59	6.62	3.03
Site-M14				
MW-19	17.96	7.95	9.68	1.73
MW-20	17.25	6.78	9.29	2.51
MW-21	19.68	6.68	9.57	2.89
Site-M16				2.00
MW-22	17.02	2.75	7.25	4.50
Site- M18		2.70	7.20	1.00
MW-24	17.25	3.52	8.16	4.64
MW-25	17.06	4.62	8.28	3.66
	nd Locations		0.20	0.00
MW-01B	16.35	4.13	24.59	20.46
MW-02B	22.30	12.49	20.23	7.74
MW-03B	28.87	11.88	21.09	9.21
MW-04B	17.45	6.57	12.08	5.51
MW-05B	17.62	5.11	15.40	10.29
1414 - OOD	17.02	J.11	13.40	10.29

(TOIC) - Top of inner casing MSL - Mean Sea Level

C-2 Groundwater Elevation Summary Charles Wood March, 1995

Well	Total Dept	Depth to Water	(TOIC)	Water Level
ID	(ft)	(TOIC)	Elevation (ft, MSL	Elevation (ft, MSL)
Site-CW-	1			
MW-26	17.18	9.08	62.46	53.38
MW-27	17.19	9.11	62.56	53.45
MW-28	17.19	9.60	62.89	53.29
MW-29	17.17	9.32	62.44	53.12
Site- CW-	2			
MW-30	18.22	6.90	51.71	44.81
MW-31	17.20	6.75	51.58	44.83
MW-32	17.17	7.04	51.38	44.34
MW-33	16.36	8.64	51.09	42.45
Site-CW-	5			
MW-34	17.19	4.05	33.76	29.71
Site- CW-	9			
MW-35	17.17	4.37	31.43	27.06
MW-36	16.96	5.97	33.21	27.24
Backgrou	nd Locations			
MW-06B	16.94	4.67	37.37	32.70
MW-07B	17.21	9.21	66.31	57.10
MW-08B	17.37	4.79	48.90	44.11
MW-09B	14.18	6.63	45.31	38.68
MW-10B	16.75	4.60	53.14	48.54

APPENDIX D
SAMPLING RESULTS

ORGANIC GLOSSARY OF DATA QUALIFIERS AND ABBREVIATIONS

Organic Data Qualifiers

- A TIC is a suspected aldol-condensation product
- B Compound was found in the blank and the sample
- C Pesticide identification was confirmed by GC/MS
- D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis
- E Concentration exceeds the instrument calibration range and was subsequently diluted
- Appears on the "results spreadsheet" and "quant reports" to indicate an interference, or it appears on pesticide Form 8 to indicate an instrument blank without a surrogate
- J Result is an estimated value below the reporting limit or a tenatively identified compound (TIC)
- NQ Result was qualitatively confirmed, but not quantified
- P The percent difference between the results from two GC columns is greater than 25%, the lower of the two values is reported
- SP Blank Spike, Blank Spike Duplicate, Matrix Spike or Matrix Spike Duplicate
- T Compound was found in the TCLP extraction blank and the sample
- U Compound was not detected at or above the reporting limit
- X Other specific flags may be required to properly qualify the result
- * QC result was outside the laboratory control limits

Abbreviations

	•	•
RC	Blank Spike analysis was conducted on reagent grade water or a material	
DO	Didna Spike analysis was conducted on reagent grade water or a maj	triv free from the analyto(a) of interest
	i de la la la la la la la la la la la la la	the from the analyte(s) of interest.

BSD Blank Spike Duplicate

BRL Below Reporting Limit

Batch Identifies a specific extraction, digestion or preparation set (equivalent to Prep Batch)
CD Calculation Factor used by the laboratory's Information Management System (LIMS)

Contract Contract Laboratory Identification Code

DF Dilution Factor

DL Appears in the sample ID to indicate a secondary dilution

LCS/LC Denotes Laboratory Control Standard

LAB ID The full 12 character WESTON Laboratory Identification Number (equivalent to RFW#)

MB Method Blank or (PB) preparation blank

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable
NR Not Required
NS Not Spiked

RE Appears in the sample ID to indicate a Re-analysis

REP Replicate analysis

Reprep Sample was reprepared and then reanalyzed

RFW# The full 12 character WESTON Laboratory Identification Number (equivalent to LAB ID)

RFW Lot The first 8 characters of the RFW#

RPD Relative Percent Difference of duplicate analyses

RRF Relative Response Factor

RT Retention Time/Retention Time Window

WO# Work Order No. Weston Code used to define a specific clinet, job phase and task

NOTES:

- •One or a combination of these data qualifiers and abbreviations may appear in the analytical report.
- •Soil, sediment and sludge results are reported on a dry weight basis except when analyzed for landfill disposal or incineration parameters. All other results on a solid matrix are reported on an "as received" basis unless noted differently.
- •Reporting limits are adjusted for preparation sample size, sample dilutions, and sample moisture content if analyzed on a dry weight basis.

INORGANIC GLOSSARY OF DATA QUALIFIERS AND ABBREVIATIONS

Inorganic Data Qualifiers

- B Result is less than the CRDL, but greater than or equal to the instrument detection limit
- E Result is estimated due to interference
- M Analyte concentrations are greater than the CRDL, and the RSD of duplicate injections was greater than 20%
- N Matrix Spike recovery was outside the control limits
- S Result was determined by the Method of Standard Additions (MSA)
- T Analyte was found in the TCLP extraction blank and sample
- U Analyte was not detected at or above the reporting limit
- W Post-digestion spike was outside 85-115% control limits, sample absorbance is less than 50% of spike absorbance
- + MSA correlation coefficient is less than 0.995
- * Duplicate analysis was outside the control limits

Abbreviations

A Analyzed by flame A.A. direct aspiration

Batch Identifies a specific extraction, digestion or preparation set (equivalent to Prep Batch)

BS Blank Spike analysis was conducted on reagent grade water or a matrix free from the analyte(s) of interest

BSD Blank Spike Duplicate
BRL Below Reporting Limit

C Cyanide analyte flag on CLP forms
CCV Continuing Calibration Verification
CCB Continuing Calibration Blank

CD Calculation Factor used by the laboratory's Information Management System (LIMS)

CV Analyzed by the cold vapor generation method for Mercury

Contract Contract Laboratory Identification Code

DF Dilution Factor

F Analyzed by graphite furnace atomic absorption spectroscopy

ICV Initial Calibration Verification ICB Initial Calibration Blank

LCS/LC Denotes Laboratory Control Standard

LAB ID The full 12 character WESTON Laboratory Identification Number (equivalent to RFW#)

MB Method Blank or (PB) for Preparation Blank

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

NC Non-calculable precision due to insufficient concentration of analyte present in the sample

NR Not Required NS Not Spiked

P Analyzed by inductively coupled argon plasma

REP Replicate analysis

RFW# The full 12 character WESTON Laboratory Idenficiation number (equivalent to LAB ID)

RFW Lot The first 8 characters of the RFW#

RPD Relative Percent Difference of duplicate analyses

X Result obtained indirectly through calculation based on results from other analyses WO# Work Order No. Weston Code used to define a specific clinet, job phase and task

NOTES:

•One or a combination of these data qualifiers and abbreviations may appear in the analytical report.

•Soil, sediment and sludge results are reported on a dry weight basis except when analyzed for landfill disposal or incineration parameters. All other results on a solid matrix are reported on an "as received" basis unless noted differently.

•Reporting limits are adjusted for preparation sample size, sample dilutions, and sample moisture content if analyzed on a dry weight basis.

MAIN POST

MAIN POST SEDIMENT VOLATILES

Geographical Location	1		Γ	AO	C3	AOC	3	AOC	3	AOC	23
Sample				MP08-SE	001-A01	MP08-SD		MP08-SD0		MP08-SD	
Sample Type	1	, ;				Duplic		Trip BI		Field Rinsa	
Batch#	1			94120	3921	9412G		9412G		94120	
Prep#			 	94GV		94GVT		94GVE		94GVE	
RFW#				01		014		016		017	
Sample Depth				0-0		0-6		0-6'		0-6	
Dilution Factor				1.0		1.00		1.00		1.0	
Matrix				so		soi		wate	·	wat	
Units	mg/kg	mg/kg	mg/kg	mg		mg/k		mg/		mg	
Sampling Date				12/1		12/1/		12/1/9		12/1/	
Analysis Date				12/6	/94	12/6/		12/9/9		12/9/	
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical		Analytical		Analytical	CRQL
	fresh water	salt water		Result		Result	1	Result		Result	
											
Chloromethane			0.0073	0,018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Bromomethane			0.0067	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Vinyl Chloride			0.0079	0.018 U	0.018	-0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Chloroethane			0.0091	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Methylene Chloride			0.0027	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Acetone			0.0069	0.1 B	0,018	0.14 B	0.017	0.01 U	0.01	0.01 U	0.01
Carbon Disulfide			0.0044	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,1-Dichloroethene			0.0049	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,1-Dichloroethane			0,003	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,2-Dichloroethene (total)			0.0044	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0,01 U	0.01
Chloroform			0.0029	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,2-Dichloroethane	,		0.0024	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
2-Butanone			0.0041	0.02	0.018	0.014 J	0.017	0.01 U	0.01	0,01 U	0.01
1,1,1-Trichloroethane			0.0017	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Carbon Tetrachloride			0.0015	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Bromodichloromethane			0.002	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,2-Dichloropropane			0.0017	0.018 U	0.018	0.017 U	0.017	0,01 U	0.01	0.01 U	0.01
cis-1,3-Dichloropropene			0,003	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Trichloroethene	,		0.002	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Dibromochloromethane			0.0024	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,1,2-Trichloroethane			0.0043	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Benzene			0.0033	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
trans-1,3-Dichloropropene			0.0024	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Bromoform			0.0031	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
4-Methyl-2-pentanone		-	0.0055	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
2-Hexanone	· · · · · ·		0.0039	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Tetrachloroethene			0.004	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
1,1,2,2-Tetrachloroethane			0.0042	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Toluene			0.0027	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Chlorobenzene			0.0027	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Ethylbenzene			0.0031	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Styrene			0.0038	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Xylene (total)			0.0038	0.018 U	0.018	0.017 U	0.017	0.01 U	0.01	0.01 U	0.01
Method:TCL Volatiles											

MAIN POST SEDIMENT VOLATILES (OFFSITE DATA)

Geographical Location				Backgroun	d SS01	Backgroun	nd SS01	Backgroun	d SS02
Sample				SS01-SD0		SS01-SD0		SS01-SD0	
Batch#	 			9412G		94120		9412G	
Prep#	 			94GVT02		94GV		94GVT02	
DESAGE	+			005		009		005	
Sample Depth	 			0-6		0-6		0.6	
Dilution Factor				1.00		1.0		1.00	
								**	
Matrix				soil		soi		soil	
Units	mg/kg	mg/kg	mg/kg	mg/k	<u> </u>	mg/	-	mg/k	-
Sampling Date				12/1/		12/1/		12/1/9	
Analysis Date				12/6/		12/17		12/6/9	
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	fresh water	salt water		Result	· ·	Result		Result	
	ļ								
Chloromethane	ļ		0.0073	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Bromomethane	1		0.0067	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Vinyl Chloride	ļ		0.0079	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Chloroethane	<u> </u>		0.0091	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Methylene Chloride	1		0.0027	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Acetone_			0.0069	0.47 B	.074 *	0.17 B	0.035	0.47 B	.074 *
Carbon Disulfide		_	0.0044	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
1,1-Dichloroethene	Ţ <u>,</u>		0.0049	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
1,1-Dichloroethane			0.003	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
1,2-Dichloroethene (total)			0.0044	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Chloroform	<u> </u>		0.0029	0.015 U	0.015	0,035 U	0.035	0.015 U	0.015
1,2-Dichloroethane	<u> </u>	·	0.0024	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
2-Butanone	1		0.0041	0.1	0.015	0.041	0.035	0.1	0.015
1,1,1-Trichloroethane	<u> </u>		0.0017	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Carbon Tetrachloride	/		0.0015	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Bromodichloromethane	 		0.002	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
1,2-Dichloropropane	 		0.0017	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
cis-1,3-Dichloropropene	·		0.003	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Trichloroethene	 		0.002	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Dibromochloromethane			0.0024	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
1.1.2-Trichloroethane	 		0.0043	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Benzene	 	·	0.0033	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
trans-1,3-Dichloropropene	<u> </u>		0.0033	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Bromoform	 		0.0024	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
			0.0051			0.035 U	0.035		
4-Methyl-2-pentanone	-			0.015 U	0.015			0.015 U	0.015
2-Hexanone	-	ļ	0.0039	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Tetrachloroethene	<u> </u>		0.004	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
1,1,2,2-Tetrachloroethane	· · · · · ·		0.0042	,0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Toluene			0.0027	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Chlorobenzene			0.0027	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Ethylbenzene			0.0031	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Styrene			0.0038	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Xylene (total)			0.0038	0.015 U	0.015	0.035 U	0.035	0.015 U	0.015
Total Est. Conc. of TIC.				.05	*			.05	*
Dilution Factor				* = 5.	00			* = 5.	00
Method:TCL Volatiles					ļ				

MAIN POST SEDIMENT SEMIVOLATILES

Geographical Location	1			AOC	3	AO	СЗ	/ AOC	3
Sample				MP08-SD	01-A01	MP08-SD0	1-A01RE	MP08-SD0	01-C01
Sample Type								Duplic	ate
Batch#				9412G	921	94120	3921	941G9	
Prep#				94GBO	809	94GB	2809	94GBO	
RFW#				013	,	013		014	
Sample Depth				0-6'		0-6	5"	0-6'	
Dilution Factor	-			1.00)	1.0	10	1.00)
Matrix				soil		so	ił	soil	
Units	mg/kg	mg/kg	mg/kg	mg/k	g	mg/	kg	mg/k	g
Sampling Date				12/1/9	94	12/1	/94	12/1/9	
Analysis Date				12/22/	94	12/22	2/94	12/22/	94
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	fresh water	salt water		Result		Result		Result	
Phenol			0.234	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
bis(2-Chloroethyl) ether			0.32	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2-Chlorophenol			0.241	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
1,3-Dichlorobenzene			0.175	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
1,4-Dichlorobenzene	<u> </u>		0.158	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
1,2-Dichlorobenzene			0.188	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2-Methylphenol			0.221	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,2'-oxybis(1-Chloropropane)			0.231	0.58 U	0.58	0.57 U	0.57	0.061 J	0.54
4-Methylphenol			0.426	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
N-Nitroso-di-n-propylamine			0.264	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Hexachloroethane			0.175	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Nitrobenzene	ļ		0.244	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Isophorone			0.129	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2-Nitrophenol			0.231	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,4-Dimethylphenol			0.158	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
bis(2-Chloroethoxy) methane			0.201	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,4-Dichlorophenol			0.145	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
1,2,4-Trichlorobenzene		•	0.317	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Naphthalene			0.277	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
4-Chloroaniline			0.096	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Hexachlorobutadiene			0.152	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
4-Chloro-3-methylphenol			0.102	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2-Methylnaphthalene			0.287	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Hexachlorocyclopentadiene			0.119	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,4,6-Trichlorophenol			0.185	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,4,5-Trichlorophenol			0.155	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4
2-Chloronaphthalene			0.271	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2-Nitroaniline			0.201	1,5 U	1.5	1.4 U	1.4	1.4 U	1.4
Dimethylphthalate			0.145	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Acenaphthylene			0.198	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,6-Dinitrotoluene			0.172	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
3-Nitroaniline			0.172	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4
Acenaphthene			0.221	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,4-Dinitrophenol			0.152	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4
4-Nitrophenol	<u> </u>		0.248	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4

MAIN POST SEDIMENT SEMIVOLATILES

Geographical Location		,		AOC	3	AOC	23	AOC	3
Sample	1			MP08-SD0		MP08-SD0		MP08-SD0	
Sample Type								Duplica	
Batch#				9412G	921	94120	921	941G9	
Prep#				94GBO	809	94GB0	2809	94GBO	809
RFW#	1	· · · · · · · · · · · · · · · · · · ·		013		013		014	
Sample Depth				0-6"		0-6	5"	0-6"	
Dilution Factor	-			1.00)	1.0	0	1.00	
Matrix				soil		so	il	· soil	
Units	mg/kg	mg/kg	mg/kg	mg/k	q	mg/	kg	mg/k	g
Sampling Date				12/1/9		12/1		12/1/9	
Analysis Date				12/22/		12/22		12/22/	94
Analysis	Standard	Standard	MDL	Analytical		-Analytical	CRQL	Analytical	
	fresh water	salt water		Result	-	Result		Result	
) .	
Dibenzofuran			0.215	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
2,4-Dinitrotoluene			0.191	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Diethylphthalate			0.178	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
4-Chlorophenyl-phenylether			0.231	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Fluorene			0.208	0.58 U	0.58	0,57 U	0.57	0.54 U	0.54
4-Nitroaniline			0.211	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4
4,6-Dinitro-2-methylphenol			0.175	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4
N-Nitrosodiphenylamine (1)			0.139	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
4-Bromophenyl-phenylether			0.175	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Hexachlorobenzene			0.182	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Pentachlorophenol			0.132	1.5 U	1.5	1.4 U	1.4	1.4 U	1.4
Phenanthrene	0,225	0.74	0.165	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Anthracene			0.152	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Carbazole			0.145	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Di-n-butylphthalate			0.215	0.098 J	0.58	0.68 J	0.57	0.1 J	0.54
Fluoranthene	0.6	0.6	0.198	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Pyrene	0.35	0.665	0.178	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Butylbenzylphthalate;			0.175	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
3,3'-Dichlorobenzidine			0.092	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Benzo(a)anthracene	0.23	0.261	0.162	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Chrysene -	0.4	0.984	0.145	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
bis(2-Ethylhexy)phthalate			0.32	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Di-n-octyl phthalate			0.185	0.58 U	0.58	0.57 U	. 0.57	0.54 U	0.54
Benzo(b)fluoranthene			0.188	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Benzo(k)fluoranthene			0.205	- 0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Benzō(a)pyrene	0.4	0.43	0.162	0.58 U	0.58	0.57 U	0.57	0.079 J	0.54
Indeno(1,2,3-cd)pyrene			0.234	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Dibenzo(a,h)anthracene			0.198	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Benzo(g,h,i)perylene			0.224	0.58 U	0.58	0.57 U	0.57	0.54 U	0.54
Petroleum hydrocarbons						.`			
Total Est. Conc. of TIC				21.4	J	23.	5 J	16.2	J
Method:TCL Semivolatiles					ł		İ		

Geographical Location	T	· · · · · ·	Τ	Backgroun	d SS01	Backgroun	d SS02	
Sample	<u> </u>	<u> </u>		SS01-SD0		SS01-SD	_	
Batch#	 		-	9412G		9412G		
Prep#	· .			94GBO		94GB0		
RFW#	1			006		005		
Sample Depth	-			0-6'		0-6"		
Dilution Factor	 			1.00		1.00		
Matrix	·			soil		soil		
Units	mg/kg	mg/kg	mg/kg	mg/k		mg/k		
Sampling Date				12/2/		12/2/		
Analysis Date				12/22/		12/22/		
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical		
	fresh water	salt water	,	Result		Result	J.1.2.2	
Phenol			0.234	1.1 U	1.1	0.48 U	0.48	
bis(2-Chloroethyl) ether	Þ		0.32	- 1.1 U	1.1	0.48 U	0.48	
2-Chlorophenol			0.241	1.1 U	1.1	0.48 U	0.48	
1,3-Dichlorobenzene			0.175	1.1 U	1.1	0.48 U	0.48	
1,4-Dichlorobenzene			0.158	1.1 U	1.1	0.48 U	0.48	
1,2-Dichlorobenzene			0.188	1.1 U	1.1	0.48 U	0.48	
2-Methylphenol			0.221	1.1 U	1.1	0.48 U	0.48	
2,2'-oxybis(1-Chloropropane)			0.231	1.1 U	1.1	0.48 U	0.48	
4-Methylphenol			0.426	1.1 U	1.1	0.48 U	0.48	
N-Nitroso-di-n-propylamine			0.264	1.1 U	1.1	0.48 U	0.48	
Hexachloroethane			0.175	1.1 U	1.1	0.48 U	0.48	
Nitrobenzene			0.244	1.1 U	1.1	0.48 U	0.48	
Isophorone			0.129	1.1 U	1.1	0.48 U	0.48	
2-Nitrophenol			0.231	1.1 U	1.1	0.48 U	0.48	
2,4-Dimethylphenol			0.158	1.1 U	1.1	0.48 U	0.48	
bis(2-Chloroethoxy) methane			0.201	1.1 Ü	1.1	0.48 U	0.48	
2,4-Dichlorophenol	<u> </u>		0.145	1.1 U	1.1	0.48 U	0.48	
1,2,4-Trichlorobenzene			0.317	1.1 U	1.1	0.48 U	0.48	
Naphthalene			0.277	1.1 U	1.1	0.48 U	0.48	
4-Chloroaniline			0.096	1.1 U	1.1	0.48 U	0.48	
Hexachlorobutadiene		(0.152	1.1 U	1.1	0.48 U	0.48	
4-Chloro-3-methylphenol			0.102	1.1 U	1.1	0.48 U	0.48	
2-Methylnaphthalene			0.287	1.1 U	1.1	0.48 U	0.48	
Hexachlorocyclopentadiene			0.119	1.1 Ü	1.1	0.48 U	0.48	
2,4,6-Trichlorophenol			0.185	1.1 U	1.1	0.48 U	0.48	
2,4,5-Trichlorophenol			0.155	2.9 U	2.9	1.2 U	1.2	
2-Chloronaphthalene			0.271	1.1 U	1.1	0.48 U	0.48	
2-Nitroaniline			0.201	2.9 U	2.9	1.2 U	1.2	
Dimethylphthalate		,	0.145	1.1 U	1.1	0.48 U	0.48	
Acenaphthylene			0.198	1.1 U	1.1	0.48 U	0.48	
2,6-Dinitrotoluene			0.172	1.1 U	1.1	0.48 U	0.48	
3-Nitroaniline			0.172	2.9 U	2.9	1.2 U	1.2	
Acenaphthene			0.221	1.1 U	1.1	0.48 U	0.48	
2,4-Dinitrophenol			. 0.152	2.9 U	2.9	1.2 U	1.2	
4-Nitrophenol			0.248	2.9 U	2.9	1.2 U	1.2	

MAIN POST SEDIMENT SEMIVOLATILES (OFFSITE DATA)

Geographical Location				Backgroun	d SS01		
Sample				SS01-SD0		SS01-SD0	
Batch#]		- 9412G	922	9412G	922
Prep#				94GBO	809	94GBO	809
RFW#	1			006		005	
Sample Depth				0-6"		0-6'	
Dilution Factor				1.00)	1.00) ·
Matrix				soil	.,	soil	
Units	mg/kg	mg/kg	mg/kg	mg/k	g	mg/k	g
Sampling Date				12/2/9	94	12/2/	94
Analysis Date				12/22/	94	12/22/	94
Analysis	Standard	Standard	MDL	Analytical CRQL		Analytical	CRQ
	fresh water	salt water		Result		Result	
Dibenzofuran			0.215	1.1 U	1.1	0.48 U	0.48
2,4-Dinitrotoluene			0.191	1.1 U	1.1	0.48 U	0.48
Diethylphthalate			0.178	1.1 U	1.1	0.48 U	0.48
4-Chlorophenyl-phenylether			0.231	1.1 U	1.1	0.48 U	0.48
Fluorene			0.208	1.1 U	1.1	0.48 U	0.48
4-Nitroaniline			0.211	2.9 U	2.9	1.2 U	1.2
4,6-Dinitro-2-methylphenol			0.175	2.9 U	2.9	1.2 U	1.2
N-Nitrosodiphenylamine (1)			0.139	1.1 U	1.1	0.48 U	0.48
4-Bromophenyl-phenylether			0.175	1.1 U	1.1	0.48 U	0.48
Hexachlorobenzene			0.182	1.1 _. U	1.1 U 1.1		0.48
Pentachlorophenol			0.132	2.9 U	2.9	1.2 U	1.2
Phenanthrene	0.225	0.74	0.165	1.1 U	1.1	0.39 J	0.48
Anthracene			0.152	1.1 U	1.1	0.061 J	0.48
Carbazole			0.145	1.1 U	1.1	0.051 J	0.48
Di-n-butylphthalate			0.215	0.26 JB	1.1	0.086 JB	0.48
Fluoranthene	0.6	0.6	0.198	0.44 J	1.1	1.5	0.48
Pyrene	0.35	0.665	0.178	0.66 J	1.1	2	0.48
Butylbenzylphthalate			0.175	1.1 U	1.1	0.48 U	0.48
3,3'-Dichlorobenzidine		·	0.092	1.1 U	1.1	0.48 U	0.48
Benzo(a)anthracene	0.23	0.261	0.162	0.34 J	1.1	1.3	0.48
Chrysene	0.4	0.984	0.145	0.37 J	1.1	0.13 J	0.48
bis(2-Ethylhexy)phthalate			0.32	0.43 J	1.1	0.23 J	0.48
Di-n-octyl phthalate			0.185	1.1 U	1.1	0.48 U	0.48
Benzo(b)fluoranthene .			0.188	0.59 J	1:.1	1.8	0.48
Benzo(k)fluoranthene			0.205	0.21 J	1.1	0.58	0.48
Benzo(a)pyrene	0.4	0.43	0.162	0.27 J	1.1	1.2	0.48
Indeno(1,2,3-cd)pyrene			0.234	0.19 J	1.1	0.7	0.48
Dibenzo(a,h)anthracene			0.198	1.1 U	1.1	0.12 J	0.48
Benzo(g,h,i)perylene			0.224	0.19 J	1.1	0.67	0.48
Petroleum hydrocarbons							
Total Organic Carbon				5.7	0.10	3.7	0.11
Total Est. Conc. of TIC				71.5	71.5)
Method:TCL Semivolatiles							

MAIN POST SEDIMENT INORGANICS

Geographical Location			Pre-19	41 STP	AC	C3	AC)C3
Sample			MPST-S	D01-A01	MP08-S	D01-A01	MP08-S	D01-C01
Sample Type							Dup	licate
Batch#			9412	G921	9412	G921		G921
Prep#			94G1	ΓS473	94GT	S473	94G1	S473
RFW#			0	15	0.	13		14
Sample Depth			0-	-6"	0-	6"	0.	-6"
Dilution Factor			· 1.	00	1.	00	1.	00
Matrix			s	oil	S	oil	s	oil
Units	mg/kg	mg/kg	mg	/kg	mg	/kg		/kg
Sampling Date			12/	1/94		1/94		1/94
Analysis Date			12/19/94			9/94		9/94
Analysis	Standard	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
	fresh water	salt water	Result	Limit	Result	Limit	Result	Limit
% Solids			50.4	0.10	56.5	0.10	60.1	0.10
Silver	1	1	5.2	0.13	0.78 U	0.78	0.96 U	0.16
Aluminum	<u> </u>	•	9240	8.3	8830	6.7	8170	8.2
Arsenic	33	8.2	24.2	2.5 *	13.2	1.1 *	14.3	0.87 *
Barium		0.2	27.6	0.66	13.0	0.53	12.6	0.65
Beryllium	-		1.3	0.47	1.4	0.38	1.3	0.46
Calcium	 -		1010	3.8	1290	3.0	1240	3.7
Cadmium	5	1.2	4.2	1.1	0.86 U	0.86	1.0 U	1.0
Cobalt	 	1.2	13.5	0.88	5.5	0.88	4.7	0.86
Chromium	80	81	93.5	2.0	74.0	1.6	66.3	2.0
Copper	70	34	35.2	0.75	3.1	0.61	3.2	0.74
Iron	 		49200	1.5	40300	1.2	37600	1.4
Mercury	0.15	0.15	0.57	0.20	0.13 U	0.13	0.17 U	0.17
Potassium		0.10	6760	256	6640	207	5550	253
Magnesium			3390	11.9	3670	9.7	3070	11.8
Manganese	 	-	39.5	0.62	51.7	0.51	46.6	0.62
Sodium	+		2330	4.8	3090	3.9	2160	4.7
Nickel	30	20.9	26.5	4.0	14.0	3.2	11.8	3.9
Lead	35	46.7	59.0	9.9 **	6.5	2.1 **	5.7	1.7 **
Antimony			6.7 U	6.7	5.4 U	5.4	6.6 U	6.6
Selenium	 		0.88	0.28	0.42	0.30	0.58	0.25
Thallium	1		0.34 U	0.34	0.37 U	0.37	0.30 U	0.20
Vanadium	1		49.5	0.91	39.3	0.73	38.2	0.89
Zinc	120	150	386	0.88	68.8	0.71	57.8	0.86
Cyanide	† <u></u>		0.96	0.59	0.81 U	0.81	0.71 U	0.71
Dilution Factor	 			** = 20.0	* = 2.00.			** = 4.00
Method:TAL Metals, Cyanide	 		5.5,				2,00,	

MAIN POST SEDIMENT INORGANICS (OFFSITE DATA)

Geographical Location	· ·		Backgrou	ind SS01	Background SS02		
Sample			SS01-SI	D01-A01	SS01-SI	002-A01	
Batch#)	9412	G922	9412	G922	
Prep#			94GT	S473	94GT	S473	
RFW#			00)6	, 00)5	
Sample Depth			0-	6"	0-	6"	
Dilution Factor			. 1.0	00	1.0	00	
Matrix			` so	oil	SC	oil ,	
Units	mg/kg	mg/kg	mg	/kg	mg	/kg 🗀	
Sampling Date			12/1	1/94	- 12/1	/94	
Analysis Date			12/9	9/94	12/9	9/94	
Analysis	Standard	Standard	Analytical	Reporting	Analytical	Reporting	
	fresh water	salt water	Result	Limit	Result	Limit	
O. O. B.I.				0.40	00.4		
% Solids	1		28.7	0.10	68.1	0.10	
Silver	1	1	2.1 U	2.1	U 08.0	0.80	
Aluminum	ļ,	<u> </u>	9060	18.1	8200	6.9	
Arsenic	² 33	8.2	13.6 2.0 *		14.5	1.8 *	
Barium			87.6 1.4		76.6	0.54	
Beryllium			3.2 1.0		1.4	0.39	
Calcium			2060 8.1		3180	3.1	
Cadmium	5	1.2	2.3 U	2.3	0.88 U	0.88	
Cobalt			119	1.9	5.7	0.72	
Chromium	80	81	88.1	4.3	85.8	1.6	
Copper	70	34	48.4	1.6	5.5	0.62	
Iron			26500	3.2	61900	1.2	
Mercury	0.15	0.15	1.7	0.32	0.14 U	0.14	
Potassium			3410	555	10200	211	
Magnesium			1470	25.8	3280	9.8	
Manganese			67.4	1.4	70.2	0.52	
Sodium			189	10.4	77.5	4.0	
Nickel	30	20.9	131	8.7	11.8	3.3	
Lead	35	46.7	64.1	5.0 **	21.2	3.6 **	
Antimony			14.5 U	14.5	5.5 U	5.5	
Selenium			1.7	0.56	0.21	0.20	
Thallium			0.68 U	0.68	0.25 U	0.25	
Vanadium			49.1	2.0	47.0	0.75	
Zinc	120	150	162	1.9	117	0.72	
Cyanide			3.1	1.7	0.49 U	0.49	
Dilution Factor			* = 2.00,	** = 5.00	* = 5.00,	** = 10.0	
Method:TAL Metals, Cyanide				l			

MAIN POST SEDIMENT PESTICIDES/PCBS

Geographical Location	_	L	AC	C3 -	AC	C3	AOC3		
Sample			MP08-S	D01-A01	MP08-SD	01-A01RE	MP08-S	D01-C01	
Sample Type						~ .	Dupl	icate	
Batch#		-	9412	G921	9412	G921	9412	G921	
Prep#			94GF	21049	95GF	20044		1049	
RFW#			0	13	013	BRE	0	14	
Sample Depth			0-	·6"	0-	6"	0-	6"	
Dilution Factor		-	1.	<u>0</u> 0	1.	00	1.	00	
Matrix		,	S	pil	S	oil	S	oil	
Units	mg/kg	mg/kg	. mg	ı/kg	mg	/kg	mg	/kg	
Sampling Date			12/1/94			1/94		1/94	
Analysis Date	T		1/11/95		1/17	7/95		1/95	
Analysis	Standard	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	
	fresh water	salt water	Result	Limit	Result	Limit	Result	Limit	
alpha-BHC			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
beta-BHC		1	0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
delta-BHC		Ì	0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
gamma-BHC (Lindane)			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
Heptachior			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
Aldrin			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
Heptachlor epoxide			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
Endosulfan I			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
Dieldrin			0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
4,4'-DDE	0.002	0.0022	0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
Endrin			0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
Endosulfan II			0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
4,4'-DDD	0.002		0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
Endosulfan sulfate			0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
4,4'-DDT	0.00183	0.00158	0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
Methoxychlor			0.029 U	0.029	0.029 U	0.029	0.028 U	0.028	
Endrin ketone			0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
Endrin aldehyde		-	0.0059 U	0.0059	0.0058 U	0.0058	0.0055 U	0.0055	
alpha-Chlordane			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
gamma-Chlordane			0.0029 U	0.0029	0.0029 U	0.0029	0.0028 U	0.0028	
Toxaphene			0.29 U	0.29	0.29 U	0.29	0.28 U	0.28	
Aroclor-1016			0.059 U	0.059	0.058 U	0.058	0.055 U	0.055	
Aroclor-1221			0.12 U	0.12	0.12 U	0.12	0.11 U	0.11	
Aroclor-1232			0.059 U	0.059	0.058 U	0.058	0.055 U	0.055	
Aroclor-1242			0.059 U	0.059	0.058 U	0.058	0.055 U	0.055	
Aroclor-1248			0.059 U	0.059	0.058 U	0.058	0.055 U	0.055	
Aroclor-1254			0.059 U	0.059	0.058 U	0.058	0.055 U	0.055	
Aroclor-1260			0.059 U	0.059	0.058 U	0.058	0.055 U	0.055	
Method:TCL Pesticides/PCBs	<u> </u>								

MAIN POST SEDIMENT PESTICIDES/PCBS (OFFSITE DATA)

Geographical Location			Backgrou	ınd SS01	Backgrou	ind SS02
Sample			SS01-SI		SS01-SI	
Batch#				G922	9412	
Prep#				1049		1049
RFW#	 	<u>-</u>		06)5
Sample Depth	<u> </u>		0-		0-	
Dilution Factor			1.0	00	1.	
Matrix,				oil		oil
Units	mg/kg	mg/kg	mg	/ka		/kg
Sampling Date	" "			2/94		2/94
Analysis Date	†			2/95		2/95
Analysis	Standard	Standard	Analytical	Reporting	Analytical	Reporting
	fresh water	salt water	Result	Limit	Result	Limit
alpha-BHC	1		0.0057 U	0.0057	0.0024 U	0.0024
beta-BHC			0.0057 U	0.0057	0.0024 U	0.0024
delta-BHC	<u> </u>		0.0057 U	0.0057	0.0024 U	0.0024
gamma-BHC (Lindane)			0.0057 U	0.0057	0.0024 U	0.0024
Heptachlor			0.0057 U	0.0057	0.0024 U	0.0024
Aldrin			0.0057 U	0.0057 U 0.0057		0.0024
Heptachlor epoxide			0.0057 U	0.0057	0.014 P	0.0024
Endosulfan i			0.0057 U 0.0057		0.0024 J	0.0024
Dieldrin		•	0.011 U	0.011	0.0049 U	0.0049
4,4'-DDE	0.002	0.0022	0.0092 J	0.011	0.002 JP	0.0049
Endrin		,	0.011 U	0.011	0.0049 U	0.0049
Endosulfan II			0.011 U	0.011	0.0049 U	0.0049
4,4'-DDD	0.002		0.013	0.011	0.0049 U	0.0049
Endosulfan sulfate			0.011 U	0.011	0.0049 U	0.0049
4,4'-DDT	0.00183	0.00158	0.0057 JP	0.011	0.0024 JP	0.0049
Methoxychlor	•		0.057 U	0.057	0.024 U	0.024
Endrin ketone			0.011 U	0.011	0.0049 U	0.0049
Endrin aldehyde			0.011 U	0.011	0.0049 U	0.0049
alpha-Chlordane			0.011 P	0.0057	0.0024 P	0.0024
gamma-Chlordane			0.0092 P	0.0057	0.0015 JP	0.0024
Toxaphene			0.57 U	0.57	0.24 U	0.24
Aroclor-1016			0.11 U	0.11	0.049 U	0.049
Aroclor-1221			0.23 U	0.23	0.098 U	0.098
Aroclor-1232			0.11 U	0.11	0.049 U	0.049
Aroclor-1242			0.11 U	0.11	0.049 U	0.049
Aroclor-1248			0.11 U	0.11	0.049 U	0.049
Aroclor-1254			0.11 U	0.11	0.049 U	0.049
Aroclor-1260			0.11 U	0.11	0.049 U	0.049
Method:TCL Pesticides/PCBs		L				

MAIN POST SURFACE WATER VOLATILES

Geographical Location	1	γ	I	M2		M2		МЗ		M3		Мз		M14		B44	
Sample	 			MP02-SW		MP02-SW		MP06-SW	01 801	MP06-SW		MP10-SW		MP14-SW		M14	
Sample Type	 	ļ	- -	1011 02-044	01-701	1011 02-000	02-A01	IAIL 00-244	וטאיוט	Duplic		INIL 10-24A	UI-AUI	WP 14-544	UI-AUI	MP14-SW	U2-AU1
Batch#		-	 	9412G	921	9412G	921	9412G	021	9412G921		9412G922		9412G	024	9412G	
Prep#	 	·····		94GVE		94GVE		94GVE343		94GVE343		94GVE348		9412G 94GVE		9412G 94GVE	
RFW#	 			007		. 009		003		005		94GVE348 001					
Dilution Factor	 		 ,	1.00		1.00		1.00		1,00		1.00		1.00		011	
Matrix	 			wate			water			wate						1.00	
Units	ug/l	ug/l	ug/l	ug/l		ug/	<u> </u>	wate ug/l				wate		water '		wate	
Sampling Date	L ug/i	ugn	ugn	12/1/9		12/1/9		12/1/9		ug/l 12/1/9		ug/l		ug/l		ug/	
Analysis Date	·			12/7/9	<u> </u>	12/7/		12/7/9		12/7/9		12/1/3		12/1/		12/1/	
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical		Analytical	CRQL	Analytical	CRQL			Analytical	-		
	fresh water	salt water	IVIDE	Result	CITCLE	Result	CINCIL	Result	CRGL	Result	CRUL	Result	CRUL	Result	CRUL	Analytical Result	CRQL
	11301111			, toodit		TOODIC		Nosuit		TCSuit		Meant		Result	-	Result	+-+
Chloromethane	5.7		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane	48.4	4000	6.7	10 U	10	10 U	10	10 U	,10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	0.083	525	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane			9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2.49	1600	2.7	10 U	101	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone			6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 ⁻ U	10	10 U	10
Carbon Disulfide			4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene	4.81		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane			3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)			4.4	3 J	10	2 J	10	10 U	10	10 U	10	10 U	10	4 J	10	5 J	10
Chloroform	5.67	470	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	0.291	99	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone			4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	127		1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	0.363	6.31	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	0.266	22	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane			1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene			3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1.09	81	2.0	2 J	10	2 J	10	10 U	10	10 U	10	10 U	10	10 U	10	10 Ų	10
Dibromochloromethane	72.6		2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	13.5		4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	0.15	71	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.193 (1700	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4.38	360	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone			5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone			3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	0.388	4.29	4.0	5 J	10	5 J	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	1.72	22222	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	7440	200000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	22	21000	2.7	10 U	10	10 U	10	10 U	_10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	3030	27900	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	<u> </u>		3.8	10 U	10	10 U	10	10 U	_10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)			3.8	10 U	10	10 U '	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Method:TCL Volatiles																	

MAIN POST SURFACE WATER VOLATILES (OFFSITE DATA)

Geographical Location	T	_		Backgroun	SS01	Backgroun	d SS02
Sample				SS01-SW()1-A01	SS01-SW0	02-A01
Batch#	1			9412G	922	9412G	922
Prep#				94GGVE	348	94GGVE	348
RFW#	 	-		001		003	
Dilution Factor				1.00		1.00)
Matrix			 	wate		wate	
Units	ug/l	ug/l	ug/l	ug/l		ug/i	
Sampling Date			ug/.	12/1/9		12/1/9	
Analysis Date	 		 	12/9/9		12/9/9	
Analysis	Standard	Standard	MDL	Analytical		Analytical	
Allaiyolo	fresh water	salt water	IVIDE	Result	OITQL	Result	Ortal
	ilesii watei	Sait Water	ļ	Result		Result	-
Chloromethane	5.7	 	7.3	10 U	10	10 U	10
Bromomethane	48.4	4000	6.7	10 U	10	10 U	10
Vinyl Chloride	0.083	525	7.9	10 U	10	10 U	10
Chloroethane	 	† <u></u>	9.1	10 U	10	· 10 U	10
Methylene Chloride	2.49	1600	2.7	10 U	10	10 U	10
Acetone		1300	6.9	10 U	10	10 U	10
Carbon Disulfide	 	-	4.4	10 U	10	10 U	10
1.1-Dichloroethene	4.81		4.9	10 U	10	10 U	10
1.1-Dichloroethane	7.01	 `	3.0	10 U	10	10 U	10
1,2-Dichloroethene (total)	·		4.4	10 U	10	10 U	10
Chloroform	5.67	470	2.9	10 U	10	10 U	10
1.2-Dichloroethane	0.291	99	2.4	10 U	10	10 U	10
2-Butanone	0.231	33	4.1	10 U	10	10 U	10
1.1.1-Trichloroethane	127		. 1.7	10 U	10	10 U	10
Carbon Tetrachloride	0.363	6.31	1.5	10 U	10	10 U	10
Bromodichloromethane	0.266	22	2.0	10 U	10	10 U	10
1,2-Dichloropropane		 	1.7	10 U	10	10 U	10
cis-1,3-Dichloropropene		 	3.0	10 U	10	10 U	10
Trichloroethene	1.09	81	2.0	10 U	10	10 U	10
Dibromochloromethane	72.6		2.4	10 U	10	10 U	10
1,1,2-Trichloroethane	13.5	 	4.3	10 U	10	10 U	10
Benzene	0.15	71	3.3	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.193	1700	2.4	10 U	10	10 U	10
Bromoform	4.38	360	3.1	10 U	10	10 U	10
4-Methyl-2-pentanone	4.30	300	5.5	10 U	10	10 U	10
2-Hexanone	 	ļ	3.9	10 U	10	10 U	10
Z-riexarione Tetrachloroethene	0.388	4.29	4.0	10 U	10	10 U	10
1.1.2.2-Tetrachloroethane	1.72	4.29	4.0	10 U	10	10 U	10
Toluene	7440	200000	2.7	10 U	10	10 U	10
Chlorobenzene	22	21000	2.7	10 U	10		10
	3030		3.1		10	10 U	
Ethylbenzene Shrone	3030	27900	3.1	10 U	10	10 U	10
Styrene	 	 		10 U		10 U	10
Xylene (total)		ļ	3.8	10 U	10	10 U	10
Total Est. Conc. of TIC.			_		<u> </u>	ļ	
Method:TCL Volatiles			L	L	<u> </u>	i	

MAIN POST SURFACE WATER SEMIVOLATILES

Geographical Location	1			M2		M2	!	МЗ		M3		МЗ		M1	4	M14	4
Sample				MP02-SW	01-A01	MP02-SW	02-A01	MP06-SW	01-A01	MP06-SW	01-C01	MP10-SW01-A01		MP14-SW		MP14-SW	
Sample Type										Duplicate		 		† · · · · · · · ·			
Batch#				9412G	921	9412G	9412G921		9412G921		9412G921		9412G922		921	9412G921	
Prep#		1		94GBO	800	94GBC	0800	94GBC		94GBO		94GBC		94GBO809		94GBO800	
RFW#				007	007		3	003		005		001		018		011	
Dilution Factor		<u> </u>		1.00)	1.00	Ď	1.00		1.00		1.00		1.00		1.00	
Matrix	+			wate		wate		wate		wate		wate		water		water	
Units	ug/l	ug/l	ug/l	ug/		ug/		ug/		ug/		ug/		ug/	··		
Sampling Date	1		3	12/1/9		12/1/		12/1/		12/1/9		12/1/		12/1/		ug/l 12/1/94	
Analysis Date	· ·	 	 	12/22/		12/22		12/22		12/22/		12/22/		12/22		. 12/22	
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical			CRQL	Analytical	CRQL		CRQL		CROL		
,,	fresh water	salt water		Result	Ortal	Result	Ortal	Result	Ortal	Result	ORGE	Result	CRUZ	Result	CRUL	Result	CRUL
	11001111111111	Cuit Water		rtooun		rtesuit	 	- I (COUIL	 	result		Nesuit.	 	Result		Result	+
Phenol	20900	4600000	7.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
bis(2-Chloroethyl) ether	0.0311	1.4	9.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Chlorophenol	122	402	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,3-Dichlorobenzene	2620	22200	5.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.4-Dichlorobenzene	343	3159	4.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichlorobenzene	2520	16500	5.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Methylphenol	†	,,,,,,,	6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)			7.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methylphenol	 		12.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
N-Nitroso-di-n-propylamine			8.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Hexachloroethane	2.73	12.4	5.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Nitrobenzene	16	1900	7.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Isophorone	552	1000	3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	· 10	10 U	10
2-Nitrophenol	1 002		7.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2,4-Dimethylpheriol	 		4.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		 	6.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2,4-Dichlorophenol	92.7	794	4.4	10 U	10	10 U	.10	10`∪	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2,4-Trichlorobenzene	30.6	113	9.6	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Naphthalene	00.0	110	8.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Chloroaniline	+		2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Hexachlorobutadiene	6.94	 	4.6	10 U	10	10 U	10	.10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Chloro-3-methylphenol	 - 0.0,7	-	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Methylnaphthalene	+	 	8.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10		
Hexachlorocyclopentadiene	245	17000	3.6	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2,4,6-Trichlorophenol	2,14	6.53	5.6	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10				
2,4,5-Trichlorophenol	2580	9790	4.7	25 U	25	25 U	25	25 U	25	25 U	25	25 U		,10 U	10	10 U	10
2-Chloronaphthalene	2000	3130	8.2	10 U	10	10 U	10	10 U	10				25	25 U	25	25 U	25
2-Nitroaniline	 	<u> </u>	6.1	25 U	25	25 U	25	25 U		10 U	10	10 U	10	10 U	10	10 U	10
Z-Nitroaniline Dimethyl phthalate	313000	2900000	4.4	10 U	25 10	10 U			25	25 U	25	25 U	25	25 U	25	25 U	25
	313000	2900000					10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acenaphthylene	 		6.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2,6-Dinitrotoluene	 		5.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
3-Nitroaniline	 		5.2	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25
Acenaphthene	00.7	4 4000	6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10	10 U	10
2,4-Dinitrophenol	69.7	14000	4.6	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25
4-Nitrophenol		<u></u>	7.5	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25

MAIN POST SURFACE WATER SEMIVOLATILES

Geographical Location				M2		M2		M3		M3		МЗ		M14		M14	<u> </u>
Sample	 			MP02-SW	11-A01	MP02-SW	12-A01	MP06-SW	11-A01	MP06-SW	11-C01	MP10-SW	01-A01	MP14-SW		MP14-SW	
Sample Type	<u> </u>			1011 02 0774	317101	1111 02 0111	32 7.01	100 000	7,7,0	Duplica		100 100					
Batch#	,			9412G	321	9412G	921	9412G	921	9412G		9412G	922	9412G	921	9412G	921
Prep#	 	· · · · · ·		94GBO		94GBO		94GBO		94GBO		94GBO		94GBO		94GBO	800
RFW#	1			007		009		003		005		001		018		011	
Dilution Factor	 			1.00	1	1.00		1.00		1.00		1.00	}	1.00		1.00	<u> </u>
Matrix				wate		wate		wate		wate		wate		wate		wate	
Units	ug/i	ug/l	ug/l	ug/l	•	ug/i		ug/i		ug/l	·	ug/l		ug/l		ug/	
Sampling Date	-			12/1/9	34	12/1/9		12/1/9		12/1/9		12/1/9		12/1/9		12/1/	
Analysis Date				12/22/	94	12/22/	94	12/22/	94	12/22/	94	12/22/	94	12/22/	94	12/22/	/94
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	fresh water	salt water		Result		Result		Result		Result		Result		Result		Result	
									i –								
Dibenzofuran	 		6.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2,4-Dinitrotoluene	0,11	9.1	5.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Diethyl phthalate	21200	111000	5.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Chlorophenyl-phenylether	·		7.0	10 U	10	10 U	10	10 U	10 -	10 U	10	10 U	10	10 U	10	10 U	10
Fluorene	1340		6.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	· 10
4-Nitroaniline	1		6.4	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25
4,6-Dinitro-2-methylphenol	·		5.3	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25
N-Nitrosodiphenylamine (1)	İ		4.2	10 U	10	10 U	10	10 U	10	10.U	10	10 U	10	10 U	10	10 U	10
4-Bromophenyl-phenylether			5.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Hexachlorobenzene	0.000748	0.000775	5.5	10 U	10.	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Pentachlorophenol	0.282	7.9	4.0	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25	25 U	25
Phenanthrene			5.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Anthracene	9570	108000	4.6	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbazole			4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Di-n-butylphthalate	3530	15700	6.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Fluoranthene	310	393	6.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Pyrene	797	8970	5.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Butylbenzylphthålate	239	416	5.3	10 U	10	10 U	10	10 U	10	10 U ′	10	10 U	10	10 U	10	10 U	10
3,3'-Dichlorobenzidine	0.0386	0.0767	2.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(a)anthracene	0.0028	0.031	4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chrysene	0.0028	0.031	4.4	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	1.76	5.92	9.7	10 U	10	4 J	10	10 U	10	10 U	10	10 U	10	10 U	10	2 J	10
Di-n-octyl phthalate	L		5.6	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(b)fluoranthene	0.0028	0.031	5.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(k)fluoranthene	0.0028	0.031	6.2	10 U	10	10 U	10	10 U	`10	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(a)pyrene	0.0028	0.031	4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Indeno(1,2,3-cd)pyrene	0.0028	0.031	7.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 ·	10 U	10	10 U	10
Dibenz(a,h)anthracene	0.0028	0.031	6.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(g,h,i)perylene			6.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC				11		17		28		3		10		11		2	
Method:TCL Semivolatiles													1		<u> </u>		

Geographical Location						Backgroun	
Sample	_		<u> </u>	SS01-SW	01-A01	SS01-SW	02-A01
Batch#				9412G	921	9412G	922
Prep#				94GBC	800	94GBO	800
RFW#				001		003	
Dilution Factor				1.00)	1.00)
Matrix				wate	r	wate	r
Units	ug/l	ug/l	ug/l	ug/		ug/l	
Sampling Date				12/1/9	94	12/1/9	94
Analysis Date				12/22/	94	12/22/	94
Analysis	Standard	Standard	MDL	Analytical	CRQL	Analytical	CRQ
	fresh water	salt water	Ĺ	Result		Result	
Phenol	20900	4600000	7.1	10 U	10	10 U	10
bis(2-Chloroethyl) ether	0.0311	1.4	9.7	10 U	.10	10 U	10
2-Chlorophenol	122	402	7.3	10 U	10	10 U	10
1,3-Dichlorobenzene	2620	22200	5.3	10 U	10	10 U	10
1,4-Dichlorobenzene	343	3159	4.8	10 U	10	10 U	10
1,2-Dichlorobenzene	2520	16500	5.7	10 U	10	10 U	10
2-Methylphenol	2020	10000	6.7	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)			7.0	10 U	10	10 U	10
4-Methylphenol	- 	 	12.9	10 U	10	10 U	10
N-Nitroso-di-n-propylamine	·	 	8.0	10 U	10	10 U	10
Hexachloroethane	2.73	12.4	5.3	10 U			
Nitrobenzene	16	1900			10	10 U	10
Isophorone	552	1900	7.4 3.9	10 U	10	10 U	10
2-Nitrophenol	552	ļ	7.0			10 U	- :-
2,4-Dimethylphenol	 -	 	4.8	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		 	6.1	10 U		10 U	10
2,4-Dichlorophenol	92.7	704			10	10 U	10
1,2,4-Trichlorobenzene	30.6	794 113	4.4	10 U	10	10 U	10
Naphthalene	30.6	113	9.6	.10 U	10	10 U	10.
4-Chloroaniline		ļ	8.4	10 U	10	10 U	10
Hexachlorobutadiene	604	<u> </u>	2.9	10 U	10	10 U	10
	6.94	 	4.6	10 U	10	10 U	10
4-Chloro-3-methylphenol			3.1	10 U	10	10 U	10
2-Methylnaphthalene Hexachlorocyclopentadiene	745	47000	8.7	10 U	10	10 U	10
	245	17000	3.6	10 U	10	10 U	10
2,4,6-Trichlorophenol	2.14	6.53	5.6	10 U	10	10 U	10
2,4,5-Trichlorophenol	2580	9790	4.7	25 U	25	25 U	25
2-Chloronaphthalene	-	<u> </u>	8.2	10 U	10	10 U	10
2-Nitroaniline	-	0000000	6.1	25 U	25	25 U	25
Dimethylphthalate	313000	2900000	4.4	10 U	_10	10 U	10
Acenaphthylene			6.0	10 U	10	10 U	10
2,6-Dinitrotoluene			5.2	10 U	10	10 U	10
3-Nitroaniline	-	ļ	5.2	25 U	25	25 U	25
Acenaphthene	<u> </u>		6.7	10 U	10	10 U	10
2,4-Dinitrophenol	69.7	14000	4.6	25 U	25	25 U	25
4-Nitrophenol			7.5	25 U	25	25 U	25

MAIN POST SURFACE WATER SEMIVOLATILES (OFFSITE DATA)

Geographical Location		T		Backgroun	15501	Background	1.5502
Sample	-			SS01-SW		SS01-SW	
Batch#				9412G		9412G	
Prep#				94GBO		94GBO	
RFW#	 		-	001		003	
Dilution Factor				1.00	1	1.00	
Matrix			<u> </u>	wate		wate	
Units	ug/l	ug/l	ug/l	ug/l		ug/i	
Sampling Date	ug/i	ug/i	ug/i	12/1/9		12/1/9	
Analysis Date	 			12/1/3		12/1/3	
Analysis	Standard	Standard	MDL	Analytical		Analytical	
Allalysis	fresh water	salt water	MIDE	Result	CRUL	Result	CRUL
	ilesii watei	Sail Walei		Kesuit		Kesuit	
Dibenzofuran			6.5	10 U	10	10 U	10
2,4-Dinitrotoluene	0.11	9.1	5.8	10 U	10	10 U	10
Diethylphthalate	21200	111000	5.4	10 U	10	10 U	10
4-Chlorophenyl-phenylether			7.0	10 U	10	10 U	10
Fluorene	1340		6.3	10 U	10	10 U	10
4-Nitroaniline			6.4	25 U	25	25 U	25
4,6-Dinitro-2-methylphenol			5,3	25 U	25	25 U	25
N-Nitrosodiphenylamine (1)	1		4.2	10 U	10	10 U	10
4-Bromophenyl-phenylether			5.3	10 U	10	10 U	10
Hexachlorobenzene	0.000748	0.000775	5.5	10 U	10	10 U	10
Pentachlorophenol	0.282	7.9	4.0	25 U	25	25 U	25
Phenanthrene			5.0	10 U	10	10 U	10
Anthracene	9570	108000	4.6	10 U	10	10 U	10
Carbazole			4.4	10 U	10	10 U	10
Di-n-butylphthalate	3530	15700	6.5	10 U	10	10 U	10
Fluoranthene	310	393	6,0	10 U	10	10 U	10
Pyrene	797	8970	5.4	10 U	10	10 U	10
Butylbenzylphthalate	239	416	5.3	10 U	10	10 U	10
3,3'-Dichlorobenzidine	0.0386	0.0767	2.8	10 U	10	10 U	10
Benzo(a)anthracene	0.0028	0.031	4.9	10 U	10	10 U	10
Chrysene	0.0028	0:031	4.4	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	1.76	5.92	9.7	10 U	10	10 U	10
Di-n-octyl phthalate			5.6	10 U	10	10 U	10
Benzo(b)fluoranthene	0.0028	0.031	5.7	10 U	10	10 U	10
Benzo(k)fluoranthene	0.0028	0.031	6.2	10 U	10	10 U	10
Benzo(a)pyrene	0.0028	0.031	4.9	10 U	10	10 U	10
Indeno(1,2,3-cd)pyrene	0.0028	0.031	7.1	10 U	10	10 U	10
Dibenz(a,h)anthracene	0,0028	0.031	6.0	10 U	10	10 U	10
Benzo(g,h,i)perylene	1	1	6.8	10 U	10	10 U	10
Petroleum hydrocarbons			† - 	0.26 U	0.26	0.27 U	0.27
Total Est. Conc. of TIC			-	13		15	
Method:TCL Semivolatiles	1		 	 	ľ	 	

MAIN POST SURFACE WATER INORGANICS

Geographical Location			M:	2	ı	V12	М	2	N	1 2	МЗ			МЗ
Sample			MP02-SV	V01-A01	MP02-SW	01-A01 SOL	MP02-SV	V02-A01	MP02-SW	02-A01SOL	MP06-SW	01-A01	MP06-SW	/01-A01 SOL
Sample Type														
Batch#			94120	3921	9412	2G921	94120	3921	9412	G921	9412G	921	941	2G921
Prep#	-		94GC	N260	940	SI180	94GC	N260	940	1180	94GCN	264		GI180
RFW#			00	7	0	08	00)9	0	10	003			004
Dilution Factor			1.0	10	1	.00	1.0	00	1.	00	1.00)		1.00
Matrix			wat	er	water	filtered	wat	ter	water,	filtered	wate		water	, filtered
Units	ug/l	ug/l	ug	/1	u	ıg/l	ug	<u></u>	+ · · · · · · · · · · · · · · · · · · ·	g/l	ug/l			ug/l
Sampling Date			12/1			1/94	12/1	/94		1/94	12/1/9			2/1/94
Analysis Date			12/13	3/94	12/	19/94	12/1:	3/94		9/94	12/14/			/19/94
Analysis	Standard	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
	fresh water	salt water	Result		Result		Result		Result		Result		Result	
Silver	164		3.1 U	3.1	3.1 U	3.1	3.1 U	3.1	3.1 U	3.1	3,1 U	3.1	3.1 U	3.1
Aluminum			258	26.7	26.7,U	26.7	263	26.7	26.7 U	26.7	155	26.7	26.7 U	26.7
Arsenic	0.017	0.136	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1,6
Barium	2000		42.7	2.1	38.2	2.1	47	2.1	41.8	2.1	32.6	2.1	27.7	2.1
Beryllium		•	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Calcium			18000	12.0	17700	12.0	19400	12.0	19000	12.0	32100	12.0	30400	12.0
Cadmium	.10		3,4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4
Cobalt			4.5	2.8	4.1	2.8	4.8	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Chromium	160	3230	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4
Copper			3.1	2.4	4.2	2.4	2.9	2.4	4.9	2.4	2.4 U	2.4	2.4 U	2.4
Iron			2760	4.7	493	4.7	3020	4.7	681	4.7	2850	4.7	412	4.7
Mercury	0.144	0.146	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20 U	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium			2840	821	2860	821	2980	821	3180	821	5630	821	5170	821
Magnesium			2930	38.2	2860	38.2	3170	38.2	3070	38.2	9360	38.2	8840	38.2
Manganese	100		89.9	2.0	86.1	2.0	97.6	2.0	92.8	2.0	101	2.0	94.3	2.0
Sodium			25400	15.4	25200	15.4	27500	15.4	26900	15.4	52800	15.4	49800	15.4
Nickel	516	3900	12.8 U	12.8	14.7	12.8	12.8 U	12.8	12.8 U	12.8	12.8 U	12.8	12.8 U	12.8
Lead	5		3.1	1.6	7.6	1.6	2.3	1.6	1.6 U	1.6	4	1.6	1.6 U	1.6
Antimony	12.2	4300	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5
Selenium	10	. 71	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90 U	0.90 U	0:90	1.1	0.90	0.90 U	0.90
Thallium	1.7	6.22	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1
Vanadium			2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Zinc			29.1	2.8 -	19.4	2.8	· 32.9	2.8	21.1	2.8	12.1	2.8	7.8	2.8
Cyanide	5.2	1	10 U	10			10 U	10			10 U	10.0		
Method:TAL Metals, Cyanide					<u> </u>		-							

MAIN POST SURFACE WATER INORGANICS

Geographical Location			M3		Ň	13	МЗ			M3	M14		M14	
Sample			MP06-SW0	01-C01	MP06-SW0	01-C01 SOL	MP10-SWC	01-A01	MP10-SW	01-A01 SOL	MP14-SW	01-A01	MP14-SW01-	A01 SOL
Sample Type			Duplica	ate	Dup	licate								
Batch#			9412G9	921	9412	G921	9412G9	922	941:	2G922	9412G	921	9412G9	921
Prep#			94GCN	260	940	1180	94GCN2	264	940	GI186	94GCN	260	94GI18	80
RFW#			005		0	06	001		(002	018	-	019	
Dilution Factor			1.00		1.	00	1.00		1	.00	1.00)	1.00	•
Matrix			wate	r	water,	filtered	water	r	water	, filtered	wate	г	water	r
Units	ug/l	ug/i	ug/l		u	g/l	ug/l		ı	ıg/l	ug/l		ug/l	
Sampling Date			12/1/9	14	12/	1/94	12/1/9)4	12	/1/94	12/1/9	94	12/1/9	14
Analysis Date			12/13/	94	12/13/94		12/14/9	94	12/	21/94	12/13/	94	12/19/9	94
Analysis	Standard	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
	fresh water	salt water	Result		Result		Result		Result		Result		Result	
Silver	164		3.1 U	3.1	3.1 U	3.1	3.1 U	3.1	3.1 U	3.1	3.1 U	3.1	3.1 U	3.1
Aluminum			179	26.7	26.7 U	26.7	69.0	26.7	26.7 U	26.7	188	26.7	26.7 U	26.7
Arsenic	0.017	0.136	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6
Barium	2000		33.3	2.1	27.6	2.1	34.6	2.1	29.1	2.1	30.0	2.1	27.2	2.1
Beryllium			1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Calcium			32100	12.0	30300	12.0	30000	12.0	29400	12.0	16200	12.0	16300	12.0
Cadmium	10		3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4
Cobalt			2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Chromium	160	3230	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4
Copper			2.4 U	2.4	4.3	2.4	2.4 U	2.4	3.9	. 2.4	2.9	2.4	5.6	2.4
Iron			2940	4.7	465	4.7	2180	4.7	355	4.7	1920	4.7	839	4.7
Mercury	0.144	0.146	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium			6260	821	5840	821	4320	821	4280	821	4840	821	. 4240	821
Magnesium			9790	38.2	9030	38.2	5340	38.2	5160	38.2	9770	38.2	9540	38.2
Manganese	100		102	2.0	94.1	2.0	98.7	2.0	96.2	2.0	65.6	2.0	63.6	2.0
Sodium			56500	15.4	52300	15.4	18200	15.4	17700	15.4	70100	15.4	69100	15.4
Nickel	516	3900	12.8 U	12.8	12.8 U	12.8	12.8 U	12.8	12.8 U	12.8	14.2	12.8	12.8 U	12.8
Lead	5		4.8	1.6	1.6 U	1.6	1.6	1.6	1.6 U	1.6	3.4	1.6	3.1	1.6
Antimony	12.2	4300	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5
Selenium	10	71	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Thallium	1.7	6.22	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1
Vanadium			2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Zinc			12.2	2.8	2.8	2.8	16	2.8	7.9	2.8	23.7	2.8	14.4	2.8
Cyanide	5.2	1	10 U	10			10 U	10			10 U	10		
Method:TAL Metals, Cyanide		*												

Geographical Location			M14		M	14
Sample			MP14-SW	02-A01	MP14-SW	02-A01SOL
Sample Type						
Batch#			9412G9	921	9412	G921
Prep#			94GCN	260	940	1180
RFW#			011		0	12
Dilution Factor		-	1.00	1	1.	00
Matrix			wate	r	water,	filtered
Units	ug/i	ug/l	ug/l		u	g/l
Sampling Date			12/1/9	94	12/	1/94
Analysis Date			12/13/	94	12/1	9/94
Analysis	Standard	Standard	Analytical	MDL	Analytical	MDL
	fresh water	salt water	Result		Result	
Silver	164		3.1 U	3.1	3.1 U	3.1
Aluminum			205	26.7	26.7	26.7
Arsenic	0.017	0.136	1.6 U	1.6	1.6 U	1.6
Barium	2000		33.1	2.1	31.2	2.1
Beryllium			1.5 U	1.5	1.5 U	1.5
Calcium			20400	12.0	20300	12.0
Cadmium	10		3.4 U	3.4	3.4 U	3.4
Cobalt			2.8 U	2.8	2.8 U	2.8
Chromium	160	3230	6.4 U	6.4	6.4 U	6.4
Copper			5.3	2.4	4.9	2.4
Iron			2070	4.7	999	4.7
Mercury	0.144	0.146	0.20 U	0.20	0.20 U	0.20
Potassium		,	8320	821	8220	821
Magnesium			21400	38.2	21600	38.2
Manganese	100		68.4	2.0	66.1	2.0
Sodium			168000	15.4	171000	15.4
Nickel	516	3900	12.8 U	12.8	12.8 U	12.8
Lead	5		2.8	1.6	3.2	1.6
Antimony *	12.2	4300	21.5 U	21.5	21.5 U	21.5
Selenium	10	71	0.90 U	0.90	0.90 U	0.90
Tháilium	1.7	6.22	1.1 U	1.1	1.1 U	1.1
Vanadium			2.9 U	2.9	2.9 U	2.9
Zinc			23.4	2.8	13.2	2.8
Cyanide	5.2	1	10 U	10		
Method:TAL Metals, Cyanide						

MAIN POST SURFACE WATER INORGANICS (OFFSITE DATA)

Geographical Location		ļ	Backgro	und SS01	Backgr	ound SS01	Backgrou	und SS02	Backgro	und SS02
Sample			\$801-8	W01-A01	SS01-SV	V01-A01 SOL	SS01-S\	W02-A01	SS01-SW0	02-A01 SOL
Batch#			9412	2G921	941	12G921	9412	G922	9412	2G922 <
Prep#			94G	CN260	94	GI180	94G0	CN264	940	SI186
RFW#			C	001		002	0	03	0	04
Dilution Factor		`	1	.00	,	1.00	1.	.00	1.	.00
Matrix			W	ater	wate	r, filtered	Wa	ater	water,	filtered
Units	ug/l	ug/l	L	ıg/t		ug/i	u	g/l	u	g/l
Sampling Date			12	/1/94	12	2/1/94	12/	1/94	12/	1/94
Analysis Date			12/	12/13/94		/19/94	12/1	4/94	12/2	21/94
Analysis	Standard	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
	fresh water	salt water	Result		Result		Result		Result	-
Silver	164		ູ 3.1 ປ	3.1	3.1 U	3.1	3.1 U	3.1	3.1 U	3.1
Aluminum			388	26.7	26.7 U	26.7	748	26.7	26.7 U	26.7
Arsenic	0.017	0.136	1.6 U	1.6	1.6 U	1.6	2.6	1.6	1.6 U	1.6
Barium	2000		44.7	2.1	39.4	2.1	42.3	2.1	31.3	2.1
Beryllium			1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Calcium			17300	12.0	17400	12.0	31600	12.0	30900	12.0
Cadmium	10		3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4
Cobalt			8.1	2.8	4.1	2.8	2.8 U	2.8	2.8 U	2.8
Chromium	160	3230	6.4 U	6.4	6.4 U	6.4	7.5	6.4	6.4 U	6.4
Copper			3.2	2.4	4	2.4	3.1	- 2.4	3.1	2.4
iron			3010	4.7	405	4.7	6210	4.7	335	4.7
Mercury	0.144	0.146	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium			2990	821	2670	821	5060	821	4280	821
Magnesium	,		2880	38.2	2860	38.2	5440	38.2	5120	38.2
Manganese	100		93.3	2.0	90.7	2.0	113	2.0	98.6	2.0
Sodium			26700	15.4	26200	15.4	17600	15.4	17400	15.4
Nickel	516	3900	22.9	12.8	16.1	12.8	12.8	12.8	12.8 U	12.8
Lead	5		2.4	1.6	1.6 U	1.6	10.0	1.6	1.6 U	1.6
Antimony	12.2	4300	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5,
Selenium	10	71	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Thallium	1.7	6.22	1.1 U	1.1	1.1 ป	1.1	1.1 U	1.1	1.1 U	1.1
Vanadium	-		2.9 U	2.8	2.9 U	2.8	5.8	2.9	2.9 U	2.9
Zinc			35.1	2.9	23.8	2.9	31.8	2.8	8.8	2.8
Cyanide	5.2	1	10 U	10.0			10 U	10		
Method:TAL Metals, Cyanide						د				

MAIN POST SURFACE WATER PESTICIDES/PCBS

Geographical Location			l N	12	N	<u>//2</u>		<i>I</i> 3	· N	13	M	13	M	14	h/l	14
Sample		-	MP02-S1	W01-A01		W02-A01		W01-A02	MP06-S\		MP10-S\		MP14-SV	_	MP14-S\	
Sample Type										licate	1011 10-01	1101-701	1411 14-01	101-701	141-01	1402-701
Batch#			9412	G921	9412	G921	9412	G921	9412		9412	G922	9412	G921	9412	G921
Prep#			94GF	21038		21038		21038		21038	94GF		94GF		94GF	
RFW#			0	07	0	09	0	03		05	0(0		0,	
Dilution Factor			1.	00	1.	.00	1.	.00		00	1.	_	1.0		1.	
Matrix			wa	ater	Wa	ater	W	ater		iter	Wa		Wa		Wa	
Units	ug/l	ug/l	u,	g/l	u	g/l	u	g/l	u	g/l		g/l	uç		uş	
Sampling Date			12/	1/94	12/	1/94		1/94		1/94	12/		12/		12/	
Analysis Date			12/1	6/94	12/1	16/94	12/	16/94		6/94	12/1		12/1		12/1	
Analysis /	Standard	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting		Reporting		Reporting
	fresh water	salt water	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
	,										-					
alpha-BHC	0.00391	0.0131	0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
beta-BHC	0.137	0.460	0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
delta-BHC			,0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
gamma-BHC (Lindane)	0.08	0.16	0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
Heptachlor	0.000208	0.000214	0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
Aldrin	0.000135	0.000144	0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
Heptachlor epoxide	0.000103	0.000106	0.050 U	0.050	0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
Endosulfan I			0.050 U	0.050	0.050 U	0.050	0.054 U	0,054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
Dieldrin	0.000135	0.000144	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
4,4'-DDE	0.000588	0.000591	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
Endrin	0.0023	0.0023	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
Endosulfan II			0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
4,4'-DDD	0.000832	0.000837	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
Endosulfan sulfate	0.93	2.0	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U.	0.11	0.098 U	0.098	0.11 U	0.11
4,4'-DDT	0.000588	0.000591	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
Methoxychlor Endrin ketone	0.03	0.03	0.50 U	0.50	0.50 U	0.50	0.05 U	0.05	0.50 U	0.50	0.54 U	0.54	0.49 U	0.49	0.53 U	0.53
	0.76	0.04	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0,11 U	0.11
Endrin aldehyde		0.81	0.10 U	0.10	0.099 U	0.099	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.098 U	0.098	0.11 U	0.11
alpha-Chlordane gamma-Chlordane	0.000277	0.000283	0.050 U 0.050 U	0.050 0.050	0.050 U 0.050 U	0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
<u> </u>	0.00073	0.000747	5.0 U			0.050	0.054 U	0.054	0.050 U	0.050	0.054 U	0.054	0.049 U	0.049	0.053 U	0.053
Toxaphene Aroclor-1016	0.00073	0.000747	1.0 U	5.0 1.0	5,0 U 0,99 U	5.0	5.4 U	5.4	5.0 U	5,0	5.4 U	5.4	4.9 U	4.9	5.3 U	5.3
Aroclor-1016 Aroclor-1221	0.000244	0.000247				0.10	1.1 U	1.1	1.0 U	1.0	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1
Aroclor-1221 Aroclor-1232	0.000244	0.000247	2.0 U	2.0 1.0	2.0 U 0.99 U	2.0 0.10	2.2 U	2.2	2.0 U	2.0	2.2 U	2.2	2.0 U	2.0 U	2.1 U	2.1
Aroclor-1232 Aroclor-1242	0.000244	0.000247	1.0 U				1.1 U	1.1	1.0 U	1.0	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1
Aroclor-1242 Aroclor-1248	0.000244	0.000247	1.0 U	1.0	0.99 U 0.99 U	0.10	1.1 U	1.1	1.0 U	1.0	1.1 Ü	1.1	0.98 U	0.98	1.1 U	1.1
Aroclor-1248 Aroclor-1254	0.000244	0.000247	1.0 U	1.0		0.10	1.1 U	1.1	1.0 U	1.0	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1
Aroclor-1254 Aroclor-1260	0.000244	0.000247	1.0 U	1.0	0.99 U 0.99 U	0.10 0.10	1.1 U	1.1	1.0 U	1.0	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1
Method:TCL Pesticides/PCBs	0.000244	0.000247	1.0 0	1.0	0.99 U	U.1U	1.1 U	1.1	1.0 U	1.0	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1
INIGHIOG. TOL PESHCHES/POBS						1	<u></u>									

MAIN POST SURFACE WATER PESTICIDES/PCBS (OFFSITE DATA)

Geographical Location	-		Backgrou	ınd SS01	Backgrou	ınd SS02
Sample			SS01-S\	V01-A01		N02-A01
Batch#			9412	G921	9412	G922
Prep#			94GF	1038	94GF	21038
RFW#			0(01	. 00	03
Dilution Factor	1	<u> </u>	1.	00	1.	00
Matrix		,	wa	ter	Wa	iter
Units	ug/l	ug/l	u	g/l	U	g/l
Sampling Date			12/	1/94	12/	1/94
Analysis Date			12/1	6/94	1/1	7/95
Analysis	Standard ,	Standard	Analytical	Reporting	Analytical	Reporting
	fresh water	salt water	Result	Limit	Result	Limit
alpha-BHC	0.00391	0.0131	0.046 U	0.046	0.053 U	0,053
beta-BHC	0.137	0.460	0.046 U	0.046	0,053 U	0.053
delta-BHC			0.046 U	0.046	0.053 U	0.053
gamma-BHC (Lindane)	0.08	0.16	0.046 U	0.046	0.053 U	0.053
Heptachlor	0.000208	0.000214	0.046 U	0.046	0.053 U	0.053
Aldrin	0.000135	0.000144	0.046 U	0.046	0.053 U	0.053
Heptachlor epoxide	0.000103	0.000106	0.046 U	0.046	0.053 U	0.053
Endosulfan I			0.046 U	0.046	0.053 U	0.053
Dieldrin	0.000135	0.000144	0.091 U	0.091	0.11 U	0.11
4,4'-DDE	0.000588	0.000591	0.091 U	0.091	0.11 U	0.11
Endrin	0.0023	0.0023	0.091 U	0.091	0.11 U	0.11
Endosulfan II			0.091 U	0.091	0.11 U	0.11
4,4'-DDD	0.000832	0.000837	0.091 U	0.091	0.11 U	0.11
Endosulfan sulfate	0.93	2.0	0.091 U	0.091	0.11 U	0.11
4,4'-DDT	0.000588	0.000591	0.091 U	0.091	0.11 U	0.11
Methoxychlor	0.03	0.03	0.46 U	0.46	0.53 U	0.53
Endrin ketone			0.091 U	0.091	0.11 U	0.11
Endrin aldehyde	0.76	0.81	0.091 U	0.091	0.11 U	0.11
alpha-Chlordane	0.000277	0.000283	0.046 U	0.046	0,053 U	0.053
gamma-Chlordane	1		0.046 U	0.046	0.053 U	0.053
Toxaphene	0.00073	0.000747	4.6 U	4.6	5.3 U	5.3
Aroclor-1016	0.000244	0.000247	0.91 U	0.09	1.1 U	1.1
Aroclor-1221	0.000244	0.000247	1.8 U	1.8	2.1 U	2.1
Aroclor-1232	0.000244	0.000247	0.91 U	0.09	1.1 U	1.1
Aroclor-1242	0.000244	0.000247	0.91 U	0.09	1.1 U	1.1
Aroclor-1248	0.000244	0.000247	0.91 U	0.09	1.1 U	1.1
Aroclor-1254	0.000244	0.000247	0.91 U	0:09	1.1 U ,	1.1
Aroclor-1260	0.000244	0.000247	0.91 U	0.09	1.1 U	1.1
Method:TCL Semivolatiles	1	T	-			

MAIN POST SURFACE SOIL VOLATILES

D 1: 11 ::	_													
Geographical Location		ļ	M10		M10		M10		M1	_	M1		M16	
Sample			MP16-SS	U1-AU1	MP16-SS		MP16-SS		MP16-SS	02-A01	MP16-SS	03-A01	MP16-SS	04-A01
Sample Type	ļ				Trip B		Field Rinsa						L	
Batch#	<u> </u>		9411G		`9411G		9411G		9411G		94110		9411G	
Prep#	<u> </u>		94GV1		94GVE		94GVE		94GV1		94GV		94GVT	
RFW#			012		016		017		013		.01		014	
Sample Depth			0-6		0-6		0-6		0-6		0-6		0-6	
Dilution Factor		ļ	1.00		1.0		1.00		1.0		1.0	-	1.00	
Matrix			soi		wate		wate		soi		· so		soi	
Units	mg/kg	mg/kg	mg/i		mg.		mg/		mg/l		mg/i		mg/l	
Sampling Date		ļ. .	11/29		11/29		11/29		11/29		11/29		11/29	
Analysis Date			12/5/	 	12/6/		12/6/		12/6/		12/5/		12/5/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical		Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Res	ult	Result		Result	
				<u> </u>	1					<u> </u>		ļ		
Chloromethane	520	0.0073	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Bromomethane	79	0.0067	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Vinyl Chloride	2	0.0079	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Chloroethane		0.0091	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Methylene Chloride	49	0.0027	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0,011 U	0.011	0.012 U	0.012
Acetone	1000	0.0069	0.011 U	0.011	0.01 U	√0.01	0.01 U	0.01	0.018 B		0.011 U	0.011	0.012 U	0.012
Carbon Disulfide		0.0044	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,1-Dichloroethene	8	0.0049	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,1-Dichloroethane	570	0.003	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.0044	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Chloroform	19	0:0029	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,2-Dichloroethane	6	0.0024	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
2-Butanone	1000	0.0041	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,1,1-Trichloroethane	210	0.0017	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Carbon Tetrachloride	2	0.0015	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Bromodichloromethane	11	0.002	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,2-Dichloropropane	10	0.0017	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
cis-1,3-Dichloropropene	4	0.003	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Trichloroethene	23	0.002	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Dibromochloromethane	110	0.0024	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,1,2-Trichloroethane	,22	0.0043	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Benzene	3	0.0033	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
trans-1,3-Dichloropropene	4	0.0024	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Bromoform	86	0.0031	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
4-Methyl-2-pentanone	1000	0.0055	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
2-Hexanone		0.0039	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Tetrachloroethene	4	0.004	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
1,1,2,2-Tetrachloroethane	34	0.0042	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Toluene	1000	0.0027	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Chlorobenzene	37	0.0027	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Ethylbenzene	1000	0.0031	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Styrene	23	0.0038	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Xylene (total)	410	0.0038	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012
Method:TCL Volatiles			,											

MAIN POST SURFACE SOIL SEMIVOLATILES

Geographical Location			. м	15	M	15	М	16	M	16	M.	16	T BA	16
Sample	 		MP15-S		MP15-S		MP16-S		MP16-S		MP16-S		- 1	S04-A01
Batch#	·			G832		G832		G832	9411		9411			G832
Prep#				30796	94GE			30796	94GE	-		30796		30796
RFW#				10	0,02			12	0,		01			14
Sample Depth	<u> </u>			6"	0-		0-	<u> </u>	0-		0-			-6"
Dilution Factor				00	1.			00	25		1.0			.00
Matrix			Sc		Sc		S		Sc		so			oil
Units	mg/kg	mg/kg	mg		mg		mg		mg		mg		<u>-</u>	g/kg
Sampling Date	mg/kg	ilig/kg		9/94	11/2			0.01	11/2			9/94		3/kg 29/94
Analysis Date	 		12/2	-	12/2		12/2		12/2		12/2			21/94
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
, unanyono	Ciandala	IVIDE	Result	OitQL	Result	CKQL	Result	CROL	Result	CRQL	Result	CRUL	Result	CRUL
			· Nesult		Kesuit		Nesuit		Kesuit		Result		Result	
Phenol	10000	0.234	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
bis(2-Chloroethyl) ether	0.66	0.32	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2-Chlorophenol	280	. 0.241	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
1.3-Dichlorobenzene	5100	0.175	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
1,4-Dichlorobenzene	570	0.158	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
1,2-Dichlorobenzene	5100	0.188	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2-Methylphenol	2800	0.221	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2,2'-oxybis(1-Chloropropane)	2000	0.231	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
4-Methylphenol	2800	0.426	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
N-Nitroso-di-n-propylamine	0.66	0.264	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Hexachloroethane	6	0.175	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Nitrobenzene	28	0.244	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Isophorone	1100	0.129	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2-Nitrophenol	1100	0.231	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2,4-Dimethylphenol	1100	0.158	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
bis(2-Chloroethoxy) methane	1.755	0.201	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2,4-Dichlorophenol	170	0.145	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
1,2,4-Trichlorobenzene	68	0.317	0.39 U	0.39	0.41 U	0.41	0.37 U	. 0.37	9.9 U	9.9	0.37 Ü	0.37	0.38 U	0.38
Naphthalene	230	0.277	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
4-Chloroaniline	230	0.096	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Hexachlorobutadiene	1	0.152	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
4-Chloro-3-methylphenol	10000	0.102	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2-Methylnaphthalene	10000	0.102	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Hexachlorocyclopentadiene	400	0.119	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2,4,6-Trichlorophenol	62	0.115	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2,4,5-Trichlorophenol	5600	0:155	0.96 U	0.96	10	1	0.92 U	0.92	25 U	25	0.92 U	0.92	0.38 U	0.38
2-Chloronaphthalene	0000	0.271	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9,9 U	9.9	0.32 U	0.37	0.34 U	0.38
2-Nitroaniline	h	0.201	0.96 U	0.96	1 U	1	0.92 U	0.92	25 U	25	0.37 U 0.92 U	0.37	0.36 U	0.38
Dimethylphthalate	10000	0.145	0.39 U	0.39	0.41 U	0.41	0.92 U	0.37	9.9 U	9.9	0.92 U	0.92	0.38 U	0.38
Acenaphthylene	15500	0.198	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
2,6-Dinitrotoluene	1.	0.172	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
3-Nitroaniline	 ' 	0.172	0.96 U	0.96	10	1	0.92 U	0.92	25 U	25	0.37 U	0.37	0.38 U	0.38
Acenaphthene	3400	0.172	0.39 U	0.39	0.41 U	0.41	0.92 U	0.37	9.9 U	9.9	0.92 U	0.92	0.94 U	0.94
2,4-Dinitrophenol	110	0.152	0.96 U	0.96	10	1	0.92 U	0.92	25 U	25	0.37 U	0.37	0.38 U	0.38
4-Nitrophenol	110	0.132	0.96 U	0.96	10	<u>'</u>	0.92 U	0.92	25 U	25 25	0.92 U	0.92	0.94 U	0.94
Dibenzofuran	 	0.245	0.39 U	0.39	0.41 U	0.41	0.92 U	0.92	9.9 U	9.9	0.92 U	0.92	0.94 U	0.94
DIDUIZUIGIAII	L	0.210	0.55 0	0.39	U.+1U	U.4 I	U.37 U	U.3/	_ 5.5 U	9.9	U.3/ U	U.37	U.38 U	U.38

MAIN POST SURFACE SOIL SEMIVOLATILES

Geographical Location			M	15	М	15	M	16	М	16	М	16	M	16
Sample			MP15-S	S01-A01	MP15-S	S02-A01	MP16-S	S01-A01	MP16-S	S02-A01	MP16-S		MP16-S	
Batch#			9411	G832	9411	G832		G832		G832	9411			G832
Prep#			94GE	0796	94GE	30796	94GE	30796		0796		0796	+	30796
RFW#			01	10	0,	11	i O	12	Ō,		0			14
Sample Depth	1		0-	6"	0-	6"	0-	6"	0-		0-			·6"
Dilution Factor			1.0	00	1.0	00	1.	00	25	.0	1.	00		00
Matrix	1		so	oil .	SC	oil	S	oil	Sc	oil	Sc	oil		oil
Units	mg/kg	mg/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg	mg	/ka		/kg
Sampling Date			11/2	9/94	11/2			9/94	11/2		11/2			9/94
Analysis Date			12/2	1/94	12/2	1/94	12/2	1/94	12/2	1/94	12/2			1/94
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
2,4-Dinitrotoluene	1	0.191	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0,37 U	0.37	0.38 U	
Diethylphthalate	10000	0.178	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
4-Chlorophenyl-phenylether	10000	0.170	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38 0.38
Fluorene	2300	0.208	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
4-Nitroaniline		0.211	0.96 U	0.96	1 U	1	0.92 U	0.92	25 U	25	0.92 U	0.92	0.38 U	0.36
4,6-Dinitro-2-methylphenol		0.175	0.96 U	0.96	10	1	0.92 U	0.92	25 U	25	0.92 U	0.92	0.94 U	0.94
N-Nitrosodiphenylamine (1)	140	0.139	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9,9	0.32 U	0.37	0.34 U	0.38
4-Bromophenyl-phenylether	1	0.175	0.39 U	0,39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Hexachlorobenzene	0.66	0.182	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Pentachlorophenol	6	0.132	0.96 U	0.96	1 U	1	0.92 U	0.92	25 U	25	0.92 U	0.92	0.94 U	0.94
Phenanthrene	 	0.165	0.37 J		0.17 J		0.37 U	0.37	9.9 U	9.9	0.045 J	0,34	0.34 U	0.38
Anthracene	10000	0.152	0.041 J		0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Carbazole		0.145	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Di-n-butylphthalate	5700	0.215	0.1 JB		0.13 JB		0.086 JB		9.9 U	9.9	0.088 JB		0.55 C	
Fluoranthene	2300	0.198	0.53		0.36 J		0.046 J		9.9 U	9.9	0.1 J		0.073 J	
Pyrene	1700	0.178	0.72		0.43		0.06 J		9.9 U	9.9	0.14 J		0.096 J	
Butylbenzylphthalate	1100	0.175	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9,9	0.37 U	0.37	0.38 U	0.38
3,3'-Dichlorobenzidine	2	0.092	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Benzo(a)anthracene	0.9	0.162	0.31 J		0.18 J		0.37 U	0.37	9.9 U	9.9	0.069 J		0.039 J	
Chrysene	9	0.145	0.33 J		0.23 J		0.37 U	0.37	9.9 U	9,9	0.063 J		0.043 J	
bis(2-Ethylhexy)phthalate	49	0.32	0.069 J		0.077 J		0.084 J		1.1 J		0.26 J		0.64	
Di-n-octyl phthalate	1100	0.185	0.39 U	0.39	0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Benzo(b)fluoranthene	0.9	0.188	0.45		0.35 J		0.37 U	0.37	9.9 U	9.9	0.12 J		0.065 J	
Benzo(k)fluoranthene	0.9	0.205	0.13 J		0.11 J		0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Benzo(a)pyrene	0.66	0.162	0.27 J		0.2 J		0.37 U	0.37	9.9 U	9.9	0.057 J		0.046 J	
Indeno(1,2,3-cd)pyrene	0.9	0.234	0.16 J		0.12 J		0.37 U	0.37	9.9 U	9.9	0.049 J		0.04 J	
Dibenzo(a,h)anthracene	0.66	0.198	0.041 J		0.41 U	0.41	0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0,38
Benzo(g,h,i)perylene		0.224	0.16 J		0.11 J		0.37 U	0.37	9.9 U	9.9	0.37 U	0.37	0.38 U	0.38
Method:TCL Semivolatiles							1							

MAIN POST SURFACE SOIL INORGANICS

Geographical Location		MF	215	MF	P15
Sample		MP15-S	S01-A01	MP15-S	S02-A01
Batch#		9411	G832	9411	G832
Prep#		94GT	S468	94GT	S468
RFW#		0	10	0	11
Sample Depth	· · · · ·	0-	6"	0-	6"
Dilution Factor		1.	00	1.	00
Matrix	1	S	oil	SI	oit
Units	mg/kg	mg	/kg	mg	/kg
Sampling Date		11/2	9/94		9/94
Analysis Date		12/6	6/94	12/6	5/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit
0/ Colido		96.0	0.40	D4 2	0.40
% Solids Silver	110	86.2	0.10	81.3	0.10
Aluminum	110	1.4	0.56	1.5	0.61
	- 00	5300	4.8	5030	5.2
Arsenic	20	8.3	0.6 *	8.9	0.38
Barium	700	68.4	0.38	101	0.41
Beryllium	1	0.6	0.27	0.69	0.29
Calcium		815	2.2	1860	2.4
Cadmium	1	2.9	0.51	4.5	0.55
Cobalt		6.1	0.49	7.8	0.53
Chromium	200	109	0.54	95.5	0.59
Copper	600	34	0.42	66.5	0.45
lron ·		33400	0.85	37700	0.92
Mercury	14	0.11 U	0.11	0.12 U	0.12
Potassium		2990	149	` 2770	160
Magnesium		1560	4.4	1600	4.8
Manganese		159	0.36	187	0.39
Sodium		23.4	2.8	33.1	3
Nickel	250	8.3	2.3	6.9	2.5
Lead	400	5340	4.6	6130	4.9
Antimony	14	3.9 U	3.9	4.2 U	4.2
Selenium	63	0.45	0.17	2.1	0.21
Thallium	2	0.21 U	0.21	0.26 U	0.26
Vanadium	370	27.5	0.53	25.9	0.57
Zinc	1500	7750	0.51	12800	0.55
Dilution Factor		*=:	2.00		
Method:TAL Metals			•		

MAIN POST SURFACE SOIL PESTICIDES/PCBS

Geographical Location	Ī	. M	15	M	15	M	15	М	15	M	16	M	16
Sample		MP15-S	S01-A01	MP15-S	S01-A01	MP15-S	S02-A01	MP15-S			S01-A01		S01-A01
Batch#			G832		G832		G832		G832		G832		G832
Prep#		94GF	21033	94GF	21033		21033	1	1033		21033		21033
RFW#		0.	10		DL		11		DL	_	12		DL.
Sample Depth		0-	-6"	0-	-6"		-6"		-6"		·6"		6" .
Dilution Factor		10	0.0	50	00	<i>,</i> 1.	00	20	0.0	1.	00		0.0
Matrix		S	oil	s	oil	s	oil		oil		oil		oil
Units	mg/kg	mg	ı/kg	mg	ı/kg	mg	ı/kg	mg	ı/kg		ı/kg		ı/kg
Sampling Date		11/2	9/94		29/94		9/94		9/94		29/94		9/94
Analysis Date		12/1	7/94	12/1	4/94	12/1	7/94		4/94		7/94		3/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
alpha-BHC		0.019 U	0.019	0.95 U	. 0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
beta-BHC		0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
delta-BHC		0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
gamma-BHC (Lindane)	0.52	_0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0034		0.037 U	0.037
Heptachlor	0.15	0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
Aldrin	0.04	0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
Heptachlor epoxide		0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
Endosulfan I	340	0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.0019 U	0.0019	0.037 U	0.037
Dieldrin	0.042	0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.017		0.075 U	0.075
4,4'-DDE	2	3.1 C		6.6 CD		0.32 C		1 CD		0.27 C		.35 CD	
Endrin	17	0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.0037 U	0.0037	0.075 U -	0.075
Endosulfan II	340	0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.0037 U	0.0037	0.075 U	0.075
4,4'-DDD	3	0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.078		.13 D	•
Endosulfan sulfate		0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.0037 U	0.0037	0.075 U	0.075
4,4'-DDT	2	3.4 C	,	7.9 CD		0.35 C		1 CD	,	0.33 C		1.1 CD	
Methoxychlor	280	0.19 U	0.19	9.5 U	9.5	0.02 U	0.02	0.4 U	0.4	0.019 U	0.019	0.37 U	0.37
Endrin ketone		0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.0037 U	0.0037	0.075 U	0.075
Endrin aldehyde		0.038 U	0.038	1.9 U	1.9	0.004 U	0.004	0.081 U	0.081	0.0037 U	0.0037	0.075 U	0.075
alpha-Chlordane		0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.043		.05 D	,
gamma-Chlordane		0.019 U	0.019	0.95 U	0.95	0.002 U	0.002	0.04 U	0.04	0.046		.05 D	
Toxaphene	0.1	1.9 U	1.9	95 U	95	0.2 U	0.2	4 U	4	0.19 U	0.19	3.7 U	3.7
Aroclor-1016	0.49	0.38 U	0.38	19 U	19	0.04 U	0.04	0.81 U	0.81	0.037 U	0.037	0.75 U	0.75
Aroclor-1221	0.49	0.76 U	0.76	38 U	38	0.081 U	0.081	1.6 U	1.6	0.075 U	0.075	1.5 U	1.5
Aroclor-1232	0.49	0.38 U	0.38	· 19 U	19	0.04 U	0.04	0.81 U	0.81	0.037 U	0.037	0.75 U	0.75
Arocior-1242	0.49	0.38 U	· 0.38	19 U	19	0.04 U	0.04	0.81 U	0.81	0.037 U	0.037	0.75 U	0.75
Arocior-1248	0.49	0.38 U	0.38	19 U	19	0.04 U	0.04	0.81 U	0.81	0.037 U	0.037	0.75 U	0.75
Aroclor-1254	0.49	0.38 U	0.38	19 U	19	0.04 U	0.04	0.81 U	0.81	0.037 U	0.037	0.75 U	0.75
Aroclor-1260	0.49	0.38 U	0.38	19 U	19	0.04 U	0.04	0.81 U	0.81	0.037 U	0.037	0.75 U	0.75
Method:Pesticides/PCBs						,		~-					

MAIN POST SURFACE SOIL PESTICIDES/PCBS

Batch# 9411G832	Geographical Location	T	М	16	M	16	M	16	` М	16	М	16	М	16
Batch# 94110832	Sample		MP16-S	S02-A01	MP16-S	S02-A01	MP16-S	S03-A01					L	
Propiris 940P1033	Batch#		9411	G832	9411	G832								
RFW#	Prep#		94GF	21033	94Gi	21033								
Sample Depth Depth Def	RFW#		0	13	013	B DL								
Dilution Factor Dilution Factor Soil	Sample Depth		0-	6"	0-	-6"								
Matrix M	Dilution Factor		10	0.0	5	00	1.	00	50),0	2.	00		
Units	Matrix		s	oil	s	oil								
Sampling Date 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 11/29/94 12/17/94 12/18/94 12/1	Units	mg/kg	1											
Analysis	Sampling Date	<u> </u>												
Analysis Standard Analytical Reporting Result Limit Limit	Analysis Date	- 												
Result Limit Limit Result Limit Result Limit Limit Result Limit Limit Result Limit Limit Result Limit Limit Result Limit Limit Result Limit Limit Result Limit Limit Result Limit Limit Result Limit Limit Limit Result Limit Limit Limit Result Limit Limit Limit Result Limit Limit Limit Result Limi	Analysis	Standard												
alpha-BHC					 -									
beta-BHC 0.02 U 0.02 I 1 U 1 0.018 U 0.091 U 0.092 U 0.092 U 0.038 U 0.038 U 0.038 U 0.038 U 0.038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.005 U 0.0038 U 0.005 U 0.005 U 0.0038 U 0.005 U 0.005 U 0.0038 U 0.005 U 0.005 U 0.0038 U 0.005 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U 0.005 U 0.0038 U			-										1,555,1	
delta-BHC 0.02 U 0.02 I 1 U 1 0.018 U 0.092 U 0.092 U 0.038 U 0.0038 U 0.095 U 0.095 U 0.092 U 0.038 U 0.0038 U 0.095 U 0.095 U 0.092 U 0.0038 U	alpha-BHC		0.02 U	0.02	1 U	1	0.0018 U	0.0018	0.092 U	0.092	0.0038 U	0.0038	0.095 U	0.095
gamma-BHC (Lindane) 0.52 0.17 1 U 1 0.0059 0.092 U 0.092 U 0.0038 U 0.0038 U 0.093 U 0.092 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0038 U 0.0058 U 0.0092 U 0.002 U 0.0038 U 0.0095 U 0.0095 U 0.0092 U 0.0038 U 0.0038 U 0.0038 U 0.0095 U 0.0095 U 0.0092 U 0.0038 U 0.0038 U 0.0095 U 0.0095 U 0.0038 U 0.0038 U 0.0095 U 0.0095 U 0.0038 U <td>beta-BHC</td> <td></td> <td>0.02 U</td> <td>0.02</td> <td>1 U</td> <td>· 1</td> <td>0.0018 U</td> <td>0.0018</td> <td>0.092 U</td> <td>0.092</td> <td>0.0038 U</td> <td>0.0038</td> <td>0.095 U</td> <td>0.095</td>	beta-BHC		0.02 U	0.02	1 U	· 1	0.0018 U	0.0018	0.092 U	0.092	0.0038 U	0.0038	0.095 U	0.095
Heptachlor	delta-BHC		0.02 U	0.02	1 U	1	0.0018 U	0.0018	0.092 U	0.092	0.0038 U	0.0038	0.095 U	0.095
Aldrin 0.04 0.17 C 1 U 1 0.0018 U 0.0018 0.092 U 0.092 0.0038 U 0.0038 0.095 U 0.095 Heptachlor epoxide 0.02 U 0.02 1 U 1 0.0018 U 0.0018 0.092 U 0.092 0.0038 U 0.0038 0.095 U 0.095 Endosulfan I 0.04 1 9 C 2 CD 0.15 21 D 0.37 C 37 CD 4.4+DDE 2 2 C 3.5 CD 0.11 C .48 CD 0.46 C .57 CD 2 CD 0.44+DDE 2 2 C 0.0038 U 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.0037 U 0.0037 U 0.0037 U 0.0037 U 0.0076 U 0.0076 0.19 U 0.19 0.19 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.0037 U 0.0037 U 0.0037 U 0.0037 U 0.0076 U	gamma-BHC (Lindane)	0.52	0.17		1 U	1	0.0059		0.092 U	0.092	0.0038 U	0.0038	0.095 U	0.095
Heptachlor epoxide	Heptachlor	0.15	2 C	1	2.5 CD		0.0099		0.092 U	0.092				
Heptachlor epoxide	Aldrin	0.04	0.17 C		1 U	1	0.0018 U	0.0018	0.092 U	0.092				0.095
Endosulfan 340 0.02 U 0.02 1 U 1 0.0018 U 0.0028 0.092 U 0.092 0.0038 U 0.0038 0.095 U 0.095	Heptachlor epoxide		0.02 U	0.02	1 U	1	0.0018 U	0.0018	0.092 U	0.092				
Dieldrin Dieldrin	Endosulfan I	340	0.02 U	0.02	1 U	1	0.0018 U	0.0018	0.092 U	0.092				
4,4*DDE 2 2 C 3,5 CD 0.11 C .48 CD 0.46 C .57 CD Endrin 17 0.04 U 0.04 2 U 2 0.0037 U 0.0037 O 0.18 U 0.18 O.0076 U 0.0076 O 0.19 U 0.19 O.19 O.19 O.19 O.19 O.0037 O.18 U 0.18 O.0076 U 0.0076 O.19 U 0.19 O.19 O.19 O.19 O.19 O.19 O.19 O.19 O	Dieldrin	0.042	1.9 C		2 CD		0.15		.21 D					
Endosulfan II 340	4,4'-DDE	2	2 C		3.5 CD		0.11 C		.48 CD		0.46 C			
Endosulfan II 340 0.04 U 0.04 2 U 2 0.0037 U 0.0037 U 0.18 U 0.18 U 0.076 U 0.0076 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.0076 U </td <td>Endrin</td> <td>17</td> <td>0.04 U</td> <td>0.04</td> <td>2 U</td> <td>2</td> <td>0.0037 U</td> <td>0.0037</td> <td>0.18 U</td> <td>0.18</td> <td>0.0076 U</td> <td>0.0076</td> <td>0.19 U</td> <td>0.19</td>	Endrin	17	0.04 U	0.04	2 U	2	0.0037 U	0.0037	0.18 U	0.18	0.0076 U	0.0076	0.19 U	0.19
Endosulfan sulfate	Endosulfan II	340	0.04 U	0.04	2 U	2	0.0037 U	0.0037	0.18 U	0.18	0.0076 U	0.0076		
4,4'-DDT 2 3.3 C 23 CD 0.31 C 2 CD 0.66 C 1.7 CD Methoxychlor 280 0.2 U 0.2 10 U 10 0.018 U 0.018 U 0.92 U 0.92 0.038 U 0.038 0.95 U 0.95 U Endrin ketone 0.092 2 U 2 0.0037 U 0.0037 U 0.080 U 0.18 0.0076 U 0.0076 U 0.096 0.19 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U	4,4'-DDD	3 .	0.04 U	0.04	2 U	2	0.13		.22 D		0.68 C		1.6 CD	,
Methoxychlor 280 0.2 U 0.2 10 U 10 0.018 U 0.018 U 0.92 U 0.92 U 0.038 U 0.95 U	Endosulfan sulfate	1		0.04		2	0.0037 U	0.0037	0.18 U	0.18	0.0076 U	0.0076	0.19 U	0.19
Endrin ketone 0.092 2 U 2 0.0037 U 0.0037 0.18 U 0.18 0.0076 U 0.0076 0.19 U 0.19 Endrin aldehyde 0.04 U 0.04 2 U 2 0.0037 U 0.0037 0.18 U 0.18 0.0076 U 0.0076 0.19 U 0.19 alpha-Chlordane 1.9 C 11 CD 0.18 2 D 0.45 C 86 CD gamma-Chlordane 2 C 13 CD 0.18 2 D 0.45 C 92 CD Toxaphene 0.1 2 U 2 100 U 100 0.18 U 0.18 9.2 U 9.2 0.38 U 0.38 9.5 U 9.5 Arcolor-1016 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1232 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1242 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1248 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1254 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Arcolor-1260 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9	4,4'-DDT	2	3.3 C		23 CD		0.31 C		2 CD		0.66 C		1.7 CD	
Endrin aldehyde	Methoxychlor -	280	0.2 U	0.2	10 U	10	0.018 U	0.018	0.92 U	0.92	0.038 U	0,038	0.95 U	0.95
alpha-Chlordane 1.9 C 11 CD 0.18 .2 D 0.45 C .86 CD gamma-Chlordane 2 C 13 CD 0.19 .2 D 0.45 C .92 CD Toxaphene 0.1 2 U 2 100 U 100 0.18 U 0.18 9.2 U 9.2 0.38 U 0.38 9.5 U 9.5 Aroclor-1016 0.49 0.4 U / 0.4 20 U / 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9 Aroclor-1221 0.49 0.8 U 0.8 40 U 40 0.073 U 0.073 3.7 U 3.7 U 0.15 U 3.8 U	Endrin ketone		0.092		2 U	2	0.0037 U	0.0037	0.18 U	0.18	0.0076 U	0.0076	0.19 U	0.19
gamma-Chlordane 2 C 13 CD 0.19 .2 D 0.45 C .92 CD Toxaphene 0.1 2 U 2 100 U 100 0.18 U 0.18 U 9.2 U 9.2 U 9.2 U 0.38 U 0.38 U 9.5 U 9.2 U 9.2 U 9.0 U 9.0 U <	Endrin aldehyde		0.04 U	0.04		2	0.0037 U	0.0037	0.18 U	0.18	0.0076 U	.0,0076	0.19 U	0.19
Toxaphene 0.1 2 U 2 100 U 100 0.18 U 0.18 U 9.2 U 9.2 U 9.2 U 0.38 U 0.38 U 9.5 U 9.5 U Aroclor-1016 0.49 U 0.40 U 0.4 U 0.4 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.6 U 0.076 U 0.076 U 1.9 U	alpha-Chlordane		1.9 C		11 CD		0.18		.2 D		0.45 C			
Toxaphene 0.1 2 U 2 100 U 100 0.18 U 0.18 U 9.2 U 9.2 U 9.2 U 0.38 U 0.38 U 9.5 U 9.5 U Aroclor-1016 0.49 U 0.4U U 0.4 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9 U 1.9 U 1.9 U Aroclor-1221 0.49 U 0.4 U 0.4 U 0.4 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 0.076 U 1.9 U 1	gamma-Chlordane		2 C		13 CD									
Aroclor-1221 0.49 0.8 U 0.8 40 U 40 U 0.073 U 0.073 U 3.7 U 3.7 U 0.15 U 0.15 U 3.8 U 3.8 U 3.8 U Aroclor-1232 0.49 U 0.4 U 0.4 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9	Toxaphene	0.1	2 U	2	100 U	100	0.18 U	. 0.18	9.2 U .	- 9.2	0.38 U	0.38	9.5 U	9.5
Aroclor-1221 0.49 0.8 U 0.8 U 40 U 40 U 0.073 U 0.073 U 0.073 U 3.7 U 3.7 U 0.15 U 0.15 U 3.8 U	Aroclor-1016	0.49	0.4 U /	0.4	20 U ,	20	0.037 U	0.037	1.8 U	1.8				1.9
Aroclor-1232 0.49 0.4 U 0.4 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9 U	Aroclor-1221	0.49	0.8 U	0.8	40 U	40								
Aroclor-1242 0.49 0.4 U 0.4 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 0.076 U 1.9 U 1.9 U Aroclor-1248 0.49 0.4 U 0.4 U 20 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9	Aroclor-1232	0.49	0.4 U	0.4	20 U	20		0.037					1	
Aroclor-1248 0.49 0.4 U 0.4 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9 U 1.9 U Aroclor-1254 0.49 0.4 U 0.4 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9 U 1.9 U 1.9 U Aroclor-1260 0.49 0.4 U 0.4 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9 U 1.9 U 1.9 U	Aroclor-1242	0.49	0.4 U	0.4	20 U	20	0.037 U	0.037		1.8				
Aroclor-1254 0.49 0.4 U 0.4 20 U 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 0.076 U 0.076 U 0.076 U 1.9 U 1.9 U Aroclor-1260 0.49 0.4 U 0.4 20 U 20 U 0.037 U 0.037 U 1.8 U 1.8 U 1.8 U 0.076 U 0.076 U 1.9 U 1.9 U 1.9 U	Aroclor-1248	0.49	0.4 U	0.4	20 U	20	0.037 U	0.037						
Aroclor-1260 0.49 0.4 U 0.4 20 U 20 0.037 U 0.037 1.8 U 1.8 0.076 U 0.076 1.9 U 1.9	Aroclor-1254	0.49	0.4 U	0.4	20 U	20		0.037						
	Aroclor-1260	0.49	0.4 U	0.4										
	Method:Pesticides/PCBs													

Geographical Location	T		M-AO	~2	M-AO	22	M 40		14.40	00	1 11 16	200	11.15	-				
Sample			MPA3-SB0				M-AC		M-AO		M-AC		M-AC		M-A		M16	
Sample Type	<u> -</u>		MPA3-SBL	71-AU2	MPA3-SB0		MPA3-SB		MPA3-SB0		MPA3-SE	302-A02	MPA3-SB				MP16-SB	J1-A01
Batch#	 	-	9412G	120	Duplica 9412G1		Trip B		Field Rinsal		0.4400		Trip B		Field Rins			
Prep#			94GVT030		94GVT030		94120		9412G		94120		94120		95050		9412G	
RFW#	 ,		001	0 0 31		0 4 31	94GVE		94GVB		94GV		94GVE		95GV		94GVT	
Sample Depth (bgs)	<u> </u>	_		=-	002		009	?	003		00:		004	4	00	17	001	
Dilution Factor	_		6 - 9.6 1.00		6 - 9.5						6-9						0 - 2	
Matrix	ļ						1.0		1.00		1.0		1.0		1.0		1.00	
Units	malle		soil		soil		/ wate		wate		so		wat		wat		soil	
	mg/kg	mg/kg	mg/kg		mg/kg		mg		mg/		mg/		mg		mg		mg/k	
Sampling Date Analysis Date	ļ	· ·	12/14/		12/14/		12/15		12/14/		12/15		12/15		5/10		12/15	
	0	MDI	12/19/		12/19/9		12/20		12/19/		12/19		12/20		5/20		12/20/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	_Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		CRQL	Analytical	CRQL
	ļ		Result		Result		Result		Result	<u> </u>	Result		Result		Result		Result	
Chloromethane	500	0.0070	0.044.11	0.044	0.044.11	0.011	0.04.11			L.,.				L				
Bromomethane	520 79	0.0073	0.011 Ü 0.011 Ü	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 Ü	0.012
Vinyl Chloride	(2	0.0067	0.011 U 0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Chloroethane	\ 2	0.0079	0.011 U	0.011	0.011 U 0.011 U	0.011	0.01 U	0.01	0.01 U 0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Methylene Chloride	49	0.0037	0.011 U	0.011	0.011 U	0.011	0.01 U			0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Acetone	1000	0.0027	0.68 B	.056 *	2 B	110 *	0.01 U	0.01	0.01 U 0.24 B	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Carbon Disulfide	1000	0.0009	0.00 B	0.011	0.011 U	0.011	0.01 U			0.01	0.19 B	0.011	0.01 U	0.01	0.01 Ú	0.01	0.076 B	0.012
1,1-Dichloroethene	8	0.0044	0.011 U	0.011				0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1,1-Dichloroethane	570	0.0049	0.011 U	0.011	0.011 U 0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.003	0.011 U			0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Chloroform	19	0.0044	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethane	6	0.0029	0.011 U	0.011	0.011 U 0.011 U	0.011	0.01 U	0.01	0.006 J	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
2-Butanone.	1000	0.0024	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1,1,1-Trichloroethane	210	0.0041	0.011 U	0.011	0.011 U	0.011	0.01 U 0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Carbon Tetrachloride	210	0.0017	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Bromodichloromethane	11	0.0013	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1,2-Dichloropropane	10	0.002	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U 0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
cis-1,3-Dichloropropene	4	0.0017	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U		0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Trichloroethene	23	0.002	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 Ü	0.012
Dibromochloromethane	110	0.0024	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U 0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1.1.2-Trichloroethane	22	0.0024	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Benzene	3	0.0033	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U 0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
trans-1,3-Dichloropropene	4	0.0024	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011		_,_,	0.01 U	0.01	0.012 U	0.012
Bromoform	86	0.0024	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U		0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
4-Methyl-2-pentanone	1000	0.0055	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01		0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
2-Hexanone	1500	0.0039	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Tetrachloroethene	4	0.0039	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U 0.011 U		0.01 U 0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
1,1,2,2-Tetrachloroethane	34	0.0042	0.011 U	0.011	√0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011 0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Toluene	1000	0.0027	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01 0.01	0.01 U 0.01 U	0.01	0.012 U 0.012 U	0.012
Chlorobenzene	37	0.0027	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01		0.012
Ethylbenzene	1000	0.0027	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01		0.01	0.012 U	0.012
Styrene	23	0.0038	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U		0.012 U	0.012
Xylene (total)	410	0.0038	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.01 U						0.01 U	0.01	0.012 U.	0.012
Total Est, Conc. of TIC.	710	0.0000	0.009		.060 J		0.010		0.010	0.01	0.011 U	0.011	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012
Dilution Factor			* = 5.0		.000 J 10.0 = 10.0			- 1							<u> </u>			
Method:TCL Volatiles			- 5.0	<u>'</u>	- 10.1	Ÿ												├
MELIOU. FOL VUIQUIES		1																

Geographical Location			M16		M18	-	M18		M18		M18	T	M18		M18	_	M1	<u> </u>
Sample			MP16-SB0	1.402	MP18-SB0		MP18-SB0	1 002	MP18-SB0		MP18-SB0	2 402	MP18-SB0		MP18-SB0			
Sample Type			WIF 10-3B0	1-AUZ	MIL 10-200	11-AU1	WIF 10-300	1-AU2	WIP 10-3BU	2-AU I	WIP 10-380.	Z-AUZ	MP18-5BU	3-AU1	MP18-5BU	3-AU2	M18-SB	U4-AU1
Batch#	-		9412G1	EE	9501G6	222	9501G6	20	9501G6	200	9501G6	26	050400		05040		05044	2507
Prep#			94GVT0		95GVT01		95GVT01		95GVT				9501G6		9501G6		95010	
RFW#				130		0 04 0		0 64 9		Íng	95GVT016	3 & 9	95GVT00	8 & 9	95GVT0	JUB	95GV	
			002		003	_,	004		005		006		007		008		00	
Sample Depth (bgs) Dilution Factor			2 - 4'		1 - 1.5		2'		1 - 1.9		4 - 6'		1 - 1.5		4 - 7.5		1 - 1	
Matrix			1.00		1.00		1.00		1.00		1.00		1.00		1.00		1.0	
Units			soil		soil		soil		soil		soil		soil		soil		so	
l	mg/kg	mg/kg	mg/kg		mg/kg		mg/k		mg/k		mg/kg		mg/kg		mg/k		mg/	
Sampling Date			12/15/9		1/12/9		1/12/9		1/12/9		1/12/9		1/12/9		1/12/9		1/11	
Analysis Date		1451	12/19/9		1/18/9		1/18/9		1/19/9		1/18/9		1/19/9		1/19/9	-	1/16	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result	ļ	Result		Result	ļ	Result		Result	ļ	Result		Result	JJ
·																<u> </u>		
Chloromethane	520	0.0073	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	
Bromomethane	79	0.0067	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Vinyl Chloride	2	0.0079	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Chloroethane		0.0091	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	
Methylene Chloride	49	0.0027	0,013 U	0.013	0.012 _. U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Acetone	1000	0.0069	0.027 B	0.013	0.59 B	1.12 *	2.3 B	1.2 *	0.13 B	0.011	0.63 B	.62 *	0.34 B	0.06	0.074 B	0.012	0.011 U	0.011
Carbon Disulfide		0.0044	0.013 U	0.013	0.012 U	0.012	0.012 U	.0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,1-Dichloroethene	8	0.0049	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,1-Dichloroethane	570	0.003	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,2-Dichloroethene (total)	79	0.0044	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Chloroform	19	0.0029	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,2-Dichloroethane	6	0.0024	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
2-Butanone	1000	0.0041	0.013 U	0.013	0.039	0.012	0.054 B	12	0,023	0.011	0.14	0.012	0.13	0.012	0.013	0.012	0.011 U	0.011
1,1,1-Trichloroethane	210	0.0017	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Carbon Tetrachloride	2	0.0015	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	
Bromodichloromethane	11	0.002	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,2-Dichloropropane	10	0.0017	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
cis-1,3-Dichloropropene	4	0.003	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Trichloroethene	23	0.002	0,013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Dibromochloromethane	110	0.0024	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,1,2-Trichloroethane	22	0.0043	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Benzene	3	0.0033	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
trans-1,3-Dichloropropene	4	0.0024	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0:011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Bromoform	86	0.0031	0.013 Ü	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
4-Methyl-2-pentanone /	1000	0.0055	. 0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011.U	0.011
2-Hexanone		0.0039	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	· 0.012 U	0.012	0.011 U	0.011
Tetrachloroethene	4	0.004	0.013 U	C.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
1,1,2,2-Tetrachloroethane	34	0.0042	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Toluene	1000	0.0027	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011
Chlorobenzene	37	0.0027	0.013 U t	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	
Ethylbenzene	1000	0.0031	0.013 U `	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	
Styrene	23	0.0038	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0,011 U	0.011
Xylene (total)	410	0.0038	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.011 U	
Total Est. Conc. of TIC.			,				.008 J, .6				.009 J, .3		0.068		0.06			1
Dilution Factor					*= 10.0	00	* = 10				* = 50.		*= 5.0			.		
Method:TCL Volatiles										1	1	F				<u> </u>		

Geographical Location	1		M1	R	M1	Q	M1	ō	M1	0		M18	M.	10	M18			
Sample	 		M18-SB0		M18-SB		M18-SB		M18-SB			SB06-A02	MP18-SI		MP18-SB07	7 004	M18	
Sample Type	<u> </u>	 	14110-050	J4-AUZ	IVI 10-3D	03-701	W 10-3D	03-A02	W110-30	U0-AU I	WIIO	3BU0-AU2	WIP 10-51	BU7-AU1			MP18-SB2	24-AU1
Batch#		<u> </u>	94010	587	95010	2587	95010	2587	95010	2507	050	01G587	9501		Trip Blac 9501G6		9501G	
Prep#	<u> </u>	 	95GVF		95GV		95GV		95GVI			GVT008	95GV		95GVC0		95GVT	
RFW#	 		004		00		00		00		L	006	00		010	100	95671	009
Sample Depth (bgs)			4-1		1 - 1		2-		1 - 1			2 - 5'	1-		010	r——	1 - 1.	
Dilution Factor	· · · · · · · · · · · · · · · · · · ·		1.0		1.0		1.0	_	1.0			1.00	1.0		/ 1.00	L	1.00	
Matrix			soi		so		so		50			soil .	so		soil		soil	<u>'</u> ——
Units	mg/kg	mg/kg	mg/i		mg/		mg/		mg/			ng/kg	mg		mg/kg		mg/k	
Sampling Date			1/11/		1/11		1/11		1/11			/11/95			1/12/95		1/12/9	
Analysis Date			1/16/		1/17		1/16		1/16			/18/95	1/19		1/23/9		1/19/9	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	-	Analytical		Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result	1 -:	Result	1	Result		Result	10.1.2	Result	- CITTLE
	·											1		 				1
Chloromethane	520	0.0073	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Bromomethane	79	0.0067	0.011 U		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Vinyl Chloride	2	0.0079	0.011 U		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Chloroethane		0.0091	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Methylene Chloride	49	0.0027	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U´	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Acetone	1000	0.0069	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.03 B	0.012	0.049 B	0.014	0.24	0.011	0.01 U	0.01	0.012 U	0.012
Carbon Disulfide		0.0044	0.011 U	0.011	0.011 U	0.011	0,012 Ų	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,1-Dichloroethene	8	0.0049	0.011 U		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	.0.01 U	0.01	0.012 U	0.012
1,1-Dichloroethane	570	0.003	0.011 U		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.0044	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Chloroform	19	0.0029	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethane	6	0.0024	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
2-Butanone	1000	0.0041	0.011 U	0.011	0:011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.013 J	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,1,1-Trichloroethane	210	0.0017	0.011 U		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Carbon Tetrachloride	2	0.0015	0.011 U		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	.0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Bromodichloromethane 1,2-Dichloropropane	11	0.002	0.011 U 0.011 U	0.011	0.011 U	0.011	0.012 U 0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
cis-1,3-Dichloropropene	4	0.0017	0.011 U	0.011	0.011 U	0.011		0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Trichloroethene	23	0.003	0.011 U	0.011	0.011 U 0.011 U	0.011 0.011	0.012 U 0.012 U	0.012	0.012 U 0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Dibromochloromethane	110	0.0024	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,1,2-Trichloroethane	22	0.0024	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U 0.014 U	0.014	0.011 U 0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Benzene	3	0.0033	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011 0.011	0.01 U 0.01 U	0.01	0.012 U 0.012 U	0.012
trans-1,3-Dichloropropene	4	0.0024	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Bromoform	86	0.0024	0.011 U	0.011	0.011.U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
4-Methyl-2-pentanone	1000	0.0055	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
2-Hexanone		0.0039	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Tetrachloroethene	4	0.004	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1.1.2.2-Tetrachloroethane	34	0.0042	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Toluene	1000	0.0027	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0,011 U	0.011	0.01 U	0.01	0.012 U	0.012
Chlorobenzene	37	0.0027	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Ethylbenzene	1000	0.0031	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0,012 U	0:012	0.002 J	0.014	0.011 U	· 0.011	0.01 U	0.01	0.012 U	0.012
Styrene	23	0.0038	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Xylene (total)	° 410	0.0038	0.011 U	0.011	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.013 J	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Total Est. Conc. of TIC.		-		-, -								.15 J	0.00		· -		0.007	
Dilution Factor									-				7.5					
Method:TCL Volatiles												<u> </u>						
		,																

Geographical Location			M18		M18	3	M18	3	M18	3	B1		B1		B2	,	B2	
Sample			MR18-SB2	4-A02	MP18-SB		MP18-SB		MP18-SB		B1-SB0		B1-SB0		B2-SB0		B2-SB0*	
Sample Type			,	1				/ (Trip Bl			. ,	51020	. , , , ,		17101	D2 000	
Batch#			9501G6	32	9501G	656	9501G	656	9501G		95010	527	95010	527	95010	3500	9501G	500
Prep#	,		95GVT0	116	95GVT	010	95GVT	010	95GVC		95GVF		95GVF		95GVF01		95GVF	[
RFW#			002		001		002		003		00.		002		00		002	
Sample Depth (bgs)			2 - 4'		1 - 1.	5'	2 - 4			i	1-:		2 -		1 -		6 - 8	
Dilution Factor			1.00		1.00		1.0	-	1.00	<u>'</u>	1.0		1.0		1:0		1.00	
Matrix			soil		soi		soi		wate		soi	-	so		so		soi	
Units	mg/kg	mg/kg	mg/kg	,	mg/k		mg/l		mg/		mg/l		mg/		mg/		mg/l	
Sampling Date			1/12/9		1/13/		1/13/		1/13/		1/9/9		1/9/	_	1/6/		1/6/9	
Analysis Date			1/18/9	5	1/20/		1/20/		1/21/		1/15/		1/13/		1/13/		1/13/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical		Analytical	CRQL	Analytical	CRQL	Analytical		Analytical		Analytical	CRQL	Analytical	CRQL
<u> </u>			Result		Result		Result		Result		Result		Result	5.1.5	Result		Result	
										 			1,000		rtooun		- NOOGIL	
Chloromethane	520	0.0073	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Bromomethane	79	0.0067	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Vinyl Chloride	2	0.0079	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Chloroethane		0.0091	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0,011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Methylene Chloride	49	0.0027	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.015 B	0.012
Acetone	1000	0.0069	0.095 B	0.012	0.012 U	0.012	0.066 B	0.011	0.03	0.01	0.011 U	0.011	0.001 J	0.013	0.61 B	*	0.53	*****
Carbon Disulfide		0.0044	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0,011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,1-Dichloroethene	8	0.0049	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1.1-Dichloroethane	570	0.003	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0,011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.0044	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Chloroform	19	0.0029	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.003 J	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,2-Dichloroethane	6	0.0024	0.012 Ú	0.012	0.012 U `	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
2-Butanone	1000	0.0041	0.014	0.012	0.012 U	0.012	0.011	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,1,1-Trichloroethane	210	0.0017	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Carbon Tetrachloride	2	0.0015	0.012 U	0.012	0.012 U	0.012	0.011 Ü	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Bromodichloromethane	11	0.002	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,2-Dichloropropane	10	0.0017	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U\	0.012
cis-1,3-Dichloropropene	4	0.003	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	. 0.012 U	0.012	0.012 U	0.012
Trichloroethene	23	0.002	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Dibromochloromethane	110	0.0024	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,1,2-Trichloroethane	22	0.0043	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Benzene	3	0.0033	0.012 U	0.012	` 0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
trans-1,3-Dichloropropene	4	0.0024	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Bromoform	86	0.0031	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
4-Methyl-2-pentanone	1000	0.0055	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
2-Hexanone		0.0039	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Tetrachloroethene	4	0.004	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
1,1,2,2-Tetrachloroethane	34	0.0042	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0,011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Toluene	1000	0.0027	0.012 U	0.012	0.012 U	0.012	0.002 J	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Chlorobenzene	37	0.0027	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Ethylbenzene	1000	0.0031	0.012 U	0.012	0.012 U	0.012	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Styrene	23	0.0038	0.012 U	0.012	0.012 U	0.012	0.011 Ü	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Xylene (total)	410	0.0038	0.012 U	0.012	0.012 U	0.012	0.006 J	0.011	0.01 U	0.01	0.011 U	0.011	0.013 U	0.013	0.012 U	0.012	0.012 U	0.012
Total Est. Conc. of TIC.			0.064	J			0.118	J	0.008	j J								
Dilution Factor										ŀ		_			*=	?	*= 10	0.0
Method:TCL Volatiles										<u> </u>								
										1								1

Geographical Location	T		В3	3	В3		В3		В		B4		B4	·	E	34	B5	
Sample	1		B3-SB0		B3-SB0		B3-SB0		B4-SB0		B4-SB01	.A02	B4-SB0		B4-SB		B5-SB0*	
Sample Type	†		,	717101		1-700	Trip B		54-050	1-701	54-3501	-402	Dupli			Blank	B3-8B0	I-AUT
Batch#	 		95010	3500	95010	S500	94010		95010	527	9501G5	507	9501G				05040	507
Prep#	 . 	···	95GVF		95GVF		95GB		95GVF		95GVF012		95GVf			G527	9501G	
RFW#	 -	<u> </u>	00:		004		00		9364		004	2 04 13	9564		1	/E012	95GVF	
Sample Depth (bgs)	 	 	1 -		16 -			,	1 -		6 - 8	, –	uu:		- U	06	007	
Dilution Factor			1.0		1.0		1.0		1.0		1.00		4.0		 		1-2	
Matrix			so.		soi	· ·	wat		soi	<u> </u>			. 1.0			00	1.00	
Units	mg/kg	mg/kg	mg/		mg/l		mg				soil		so			ter	soil	
Sampling Date	ilig/kg_	mg/kg	1/6/		1/6/9		1/6/		mg/		mg/kg		mg/			g/l	mg/k	
Analysis Date			1/13/		1/12/		1/13		1/9/		1/9/9		1/9/		1	/95	1/11/	
Analysis	Standard	MDL	Analytical								1/15/9		1/15			2/95	1/18/	
Allalysis	Stariuaru	MDL	Result	CRUL	Result	CRUL	Analytical Result	CRUL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
ļ			Result	<u> </u>	Result		Result		Result		Result		Result		Result		Result	
Chloromethane	520	0.0073	0.011 Ü	0.011	0.014 U	0.014	0.01 U	0.01	0.044 II	0.044	004411	0.044	0.044.11	0.044	0.01.11			
Bromomethane	79	0.0073	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U 0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Vinyl Chloride	2	0.0079	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Chloroethane	-	0.0079	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U - 0.011 U	0.011	0.01 U 0.01 U	0.01	0.012 U	0.012
Methylene Chloride	49	0.0027	0.011 U	0.011	0.014 B	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U 0.012 U	0.012
Acetone	1000	0.0069	0.011 U	0.011	0.036	0.014	0.01 U	0.01	0.011 U	0.011	0.83 B	.27 *	0.0116	0.011	0.01 U	0.01		0.012
Carbon Disulfide	1000	0.0044	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.03 B	0.014	0.016 0.011 U	0.011			0.012 U	0.012
1.1-Dichloroethene	8	0.0049	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1.1-Dichloroethane	570	0.003	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.0044	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Chloroform	19	0.0029	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014					0.012 U	0.012
1,2-Dichloroethane	6	0.0023	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U 0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
2-Butanone	1000	0.0024	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1,1,1-Trichloroethane	210	0.0017	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U 0.01 U	0.01 0.01	0.012 U	0.012
Carbon Tetrachloride	2	0.0015	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Bromodichloromethane	11	0.002	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U 0.012 U	0.012
1,2-Dichloropropane	10	0.0017	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	
cis-1,3-Dichloropropene	4	0.003	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Trichloroethene	23	0.002	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Dibromochloromethane	110	0.0024	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
1.1.2-Trichloroethane	22	0.0043	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	
Benzene	3	0.0033	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012 0.012
trans-1,3-Dichloropropene	4	0.0024	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Bromoform	86	0.0031	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	
4-Methyl-2-pentanone	1000	0.0055	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
2-Hexanone		0.0039	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012 0.012
Tetrachioroethene	4	0.003	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01		
1,1,2,2-Tetrachloroethane	34	0.0042	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Toluene	1000	0.0042	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Chlorobenzene	37	0.0027	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.004 J 0.011 U	0.011	0.01 U	0.01	0.012 U 0.012 U	0.012 0.012
Ethylbenzene	1000	0.0027	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U	0.012
Styrene	23	0.0038	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01		
Xviene (total)	410	0.0038	0.011 U	0.011	0.014 U	0.014	0.01 U	0.01	0.011 U	0.011	0.014 U	0.014	0.011 U	0.011	0.01 U	0.01	0.012 U 0.012 U	0.012
Total Est. Conc. of TIC.	710	3.0000	3.0110	0.011	0.0140	3.014		0.01	0.0110	0.011	0.0140	0.014	0.004 J	0.011	U.UT U	U.U1		0.012
Dilution Factor					 						* = 20.	<u>_</u>					0.023	J
Method:TCL Volatiles											= 20.	<u>'</u>						 _
Metriod, FCL Volatiles	L																	ı I

Geographical Location			B	5	B:	5
Sample			B5-SB0		B5-SB0	
Sample Type				31,7102	Trip E	
Batch#	-		9501	G587	95010	
Prep#	 		95GV		95GV	
RFW#	 		3000		00	
Sample Depth (bgs)			2 -		- 00	
Dilution Factor	 		1.0	-	1,0	<u>. </u>
Matrix	 		1.0 S0		wat	
Units -	malle					
Sampling Date	mg/kg	mg/kg	mg		mg	
Analysis Date			1/11		1/11	
	Chandard	MDI			1/16	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL
			Result	-	Result	
Chloromethane	520	0.0073	0.012 U	0.012	0.01 U	0.01
Bromomethane	79	0.0067	0.012 U	0.012	0.01 U	0.01
Vinyl Chloride	2	0.0079	0.012 U	0.012	0.01 U	0.01
Chloroethane		0.0073	0.012 U	0.012	0.01 U	0.01
Methylene Chloride	49	0.0027	0.012 U	0.012	0.01 U	0.01
Acetone	1000	0.0069	0.012 U	0.012	0.01 U	0.01
Carbon Disulfide	1000	0.0044	0.012 U	0.012	0.01 U	0.01
1.1-Dichloroethene	8	0.0044	0.012 U	0.012	0.01 U	0.01
1,1-Dichloroethane	570	0.003	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethene (total)	79	0.0044	0.012 U	0.012	0.01 U	0.01
Chloroform	19	0.0029	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethane	6	0.0029	0.012 U	0.012	0.01 U	0.01
2-Butanone	1000	0.0024	0.012 U	0.012	0.01 U	0.01
1,1,1-Trichloroethane	210	0.0017	0.012 U	0.012	0.01 U	0.01
Carbon Tetrachloride	2	0.0017	0.012 U	0.012	0.01 U	0.01
Bromodichloromethane	11	0.002	0.012 U	0.012	0.01 U	0.01
1,2-Dichloropropane	10	0.0017	0.012 U	0.012	0.01 U	0.01
cis-1,3-Dichloropropene	4	0.003	0.012 U	0.012	0.01 U	0.01
Trichloroethene	23	0.002	0.012 U	0.012	0.01 U	0.01
Dibromochloromethane	110	0.0024	0.012 U	0.012	0.01 U	0.01
1,1,2-Trichloroethane	22	0.0043	0.012 U	0.012	0.01 U	0.01
Benzene	3	0.0033	0.012 U	0.012	0.01 U	0.01
trans-1,3-Dichloropropene	4	0.0024	0.012 U	0.012	0.01 U	0.01
Bromoform	86	0.0024	0.012 U	0.012	0.01 U	0.01
4-Methyl-2-pentanone	1000	0.0055	0.012 U	0.012	0.01 U	0.01
2-Hexanone	1000	0.0039	0.012 U	0.012	0.01 U	0.01
Tetrachloroethene	4	0.0039	0.012 U	0.012	0.01 U	0.01
1,1,2,2-Tetrachloroethane	34	0.0042	0.012 U		0.01 U	0.01
Toluene	1000			0.012		
Chlorobenzene	37	0.0027	0.012 U 0.012 U	0.012	0.01 U 0.01 U	0.01
				0.012		0.01
Ethylbenzene	1000	0.0031	0.012 U	0.012	0.01 U	0.01
Styrene	23	0.0038	0.012 U	0.012	0.01 U	0.01
Xylene (total)	410	0.0038	0.012 U	0.012	0.01 U	0.01
Total Est. Conc. of TIC.	 				<u> </u>	
Dilution Factor					ļ	
Method:TCL Volatiles	l			L	L	

Geographical Location			AC)C3	AC)C3	AC	C3	M1	6	M	16
Sample	1		MPA3-S	B01-A02		B01-C02		B02-A02	MP16-SB			B01-A02
Sample Type						icate	107.00	BOLTIOL	1811 10-01	0.1-701	IVIF 10-3	DU 1-AUZ
Batch#			9412	G130	<u> </u>	G130	9412	G155	9412G	155	0412	G155
Prep#	1	f		3O835		O 100		O835	94GB0			30835
RFW#	 			01 .		02	·	033	94360			
Sample Depth (bgs)	+		 	<u> </u>	 				001		- 0	02
Dilution Factor	 	<u> </u>	1	00	1.	On.	 		4.00	<u> </u>	ļ	
Matrix	 			oil	Si Si		+	00	1.00			00
Units	mg/kg	mg/kg	-				S		soi		S	
Sampling Date	ilig/kg	mg/kg		l/kg 4/94	mg	/кg 4/94	mg		mg/l			/kg
Analysis Date	-			4/94 27/94			12/1		12/15			5/94
Analysis Date	Ctandard	NATOL .				7/94		3/94	12/23			7/94
Arialysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result	
Phenol	10000	0.234	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.40
bis(2-Chloroethyl) ether	0.66	0.32	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2-Chlorophenol	280	0.241	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38		
1,3-Dichlorobenzene	5100	0.175	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
1.4-Dichlorobenzene	570	0.178	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
1,2-Dichlorobenzene	5100	0.188	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35			0.42 U	0.42
2-Methylphenol	2800	0.100	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0,38 U	0.38	0.42 U	0.42
2,2'-oxybis(1-Chloropropane)	2000	0.231	0.37 U	0.37	0.36 U	0.36	0.35 U		0.38 U	0.38	0.42 U	0.42
4-Methylphenol	2800	0.426	0.37 U	0.37	0.36 U	0.36		0.35	0.38 U	0.38	0.42 U	0.42
N-Nitroso-di-n-propylamine	0.66	0.420	0.37 U	0.37			0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Hexachloroethane	6	0.204	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Nitrobenzene	28	0.175	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Isophorone	1100	0.129	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2-Nitrophenol	1100	0.129	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0,38	0.42 U	0.42
2,4-Dimethylphenol	1100	0.231	0.37 U	0.37		0,36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
bis(2-Chloroethoxy) methane	1100	0.156			0.36 U	0.36	0.35 U	0.35	0.38 U	0,38	0.42 U	0.42
2,4-Dichlorophenol	170	0.201	0.37 U	0.37	0.36 U	0.36	0,35 U	0.35	0.38 U	0.38	0.42 U	0.42
1.2.4-Trichlorobenzene	68	0.145	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Naphthalene	230	-,-,,	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
		0.277	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
4-Chloroaniline	230	0.096	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Hexachlorobutadiene	1 1	0.152	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
4-Chloro-3-methylphenol	10000	0.102	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	. 0.42
2-Methylnaphthalene	455	0.287	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Hexachlorocyclopentadiene	400	0.119	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2,4,6-Trichlorophenol	62	0.185	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2,4,5-Trichlorophenol	5600	0.155	0.92 U	0.92	0.89 U	0,89	0.88 U	0.88	0,96 U	0.96	1 U	1
2-Chloronaphthalene	\longleftarrow	0.271	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2-Nitroaniline	ļ	0.201	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	1 U	1
Dimethylphthalate	10000	0.145	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Acenaphthylene		0.198	0.37 U	0.37	0.36 U	0,36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2,6-Dinitrotoluene	1	0.172	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
3-Nitroaniline	I	0.172	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	10	1
Acenaphthene	3400	0.221	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2,4-Dinitrophenol	110	0.152	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	1 U	1
4-Nitrophenol		0.248	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	10	1

Geographical Location			AC	C3	, AC	C3	AO	<u>C3</u>	M16		M	16
Sample			MPA3-S		MPA3-S		MPA3-SI		MP16-SB0		MP16-SE	
Sample Type			1011 720-0	DO 1-HOL	Dup	· · · · · · · · · · · · · · · · · · ·	1011 710-01	DUZ-NUZ	1611 10-000	71-NO1	10-01	301-7-02
Batch#		<u> </u>	9412	G130	9412		94120	G155	9412G	155	94120	2155
Prep#	+			O835		O835	94GB		94GB0		94GB	
RFW#	 	 	00		00		00		001		3435	
Sample Depth (bgs)	+			-	ļ		1		001		1	14
Dilution Factor	 -		1	00	1.	00	1.0	no.	1,00	ļ	1.0	nn
Matrix	+		Si Si		S		so		soil		so	
Units	mg/kg	mg/kg		/kg	mg		mg					
Sampling Date	під/ку	my/ky		4/94	<u> </u>	4/94	12/1		mg/k 12/15/		mg 12/1	
Analysis Date	 	ļ		4/94 17/94		4/94 7/94	12/1		12/13/		12/1	
Analysis Date	Standard	MDL		CRQL		CRQL	·					
Analysis	Standard	IVIDL	Analytical Result	CRUL	Analytical Result	CRQL	Analytical Result	CRQL	Analytical Result	CRQL	Analytical Result	CRQL
	ļ		Result		Result		Result		Result		Result	
Dibenzofuran	+	0.215	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
2.4-Dinitrotoluene	1	0.191	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Diethylphthalate	10000	0.178	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
4-Chlorophenyl-phenylether	1,000	0.231	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Fluorene	2300	0.208	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
4-Nitroaniline	1 2000	0.211	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	10	1
4,6-Dinitro-2-methylphenol	 	0.175	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	10	,
N-Nitrosodiphenylamine (1)	140	0.139	0.37 U	0.37	0.36 U	0.36	0,35 U	0.35	0.38 U	0.38	0.42 U	0.42
4-Bromophenyl-phenylether	1-1-0	0.175	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Hexachlorobenzene	0.66	0.182	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Pentachlorophenol	6	0.132	0.92 U	0.92	0.89 U	0.89	0.88 U	0.88	0.96 U	0.96	10	1
Phenanthrene	+ -	0.165	0.09 J	0.37	0.078 J	0.36	0.35 U	0.35	0.14 J	0.38	0.42 U	0.42
Anthracene	10000	0.152	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Carbazole	+	0.145	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Di-n-butylphthalate	5700	0.215	0.093 JB	0.37	0.17 JB	0.36	0.084 JB	0.35	0.092 JB	0.38	0.094 JB	0.42
Fluoranthene	2300	0.198	0,11 J	0.37	0.11 J	0.36	0.35 U	0.35	0.33 J	0.38	0.42 U	0.42
Pyrene	1700	0.178	0.15 J	0.37	0.14 J	0.36	0.35 U	0.35	0.22 J	0.38	0.42 U	0.42
Butylbenzylphthalate	1100	0.175	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0:38 U	0.38	0.42 U	0.42
3.3'-Dichlorobenzidine	2	0.092	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Benzo(a)anthracene	0.9	0.162	0.077 J	0.37	0.078 J	0,36	0.35 U	0.35	0.092 J	0.38	0.42 U	0,42
Chrysene	9	0.145	0.099 J	0.37	0.11 J	0.36	0.35 U	0.35	0.052 U	0.38	0.42 U	0.42
bis(2-Ethylhexy)phthalate	49	0.32	0.057 J	0.37	0.11 J	0.36	- 0.053 J	0.35	0.38 U	0.38	0.23 J	0.42
Di-n-octyl phthalate	1100	0.185	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.38 U	0.38	0.42 U	0.42
Benzo(b)fluoranthene	0.9	0.188	0.077 J	0.37	0.093 J	0.36	0.35 U	0.35	0.15 J	0.38	0.42 U	0.42
Benzo(k)fluoranthene	0.9	0.205	0.37 U	0.37	0.037 J	0.36	0.35 U	0.35	0.069 J	0.38	0.42 U	0.42
Benzo(a)pyrene	0.66	0.162	0.055 J	0.37	0.057 J	0.36	0.35 U	0.35	0.084 J	0.38	0.43	0.42
Indeno(1,2,3-cd)pyrene	0.00	0.102	0.035 J	0.37	0.069 J 0.057 J	0.36	0.35 U	0.35	0.067 J	0.38	0.43 0.42 U	0.42
Dibenzo(a,h)anthracene	0.66	0.234	0.040 J	0.37	0.36 U	0.36	0.35 U	0.35	0.087 J	0.38	0.42 U	0.42
Benzo(g,h,i)perylene	0.00	0.196	0.37 U	0.37	0.36 U	0.36	0.35 U	0.35	0.063 J	0.38	0.42 U	0.42
Petroleum hydrocarbons	 	0.224	0.043 3	. 0.37	0.055 3		0.35 0	0.33	0.003 J	0.30	0.72 0	0.42
Total Est. Conc. of TIC	 		1-	/.3	45	'.3	10 1 4	0.28 JB	14.8		14	2
Dilution Factor	+		1		111	,3	.10 J, 1	U.20 JD	14.0	1	14	······································
Method:TCL Semivolatiles	+						 		-	-	ł — — — — — — — — — — — — — — — — — — —	
Metriod. I OL Semivolatiles			l	<u> </u>	<u> </u>				L	1	1,	

Geographical Location			BAI	16	M ²	18	M1	8	M ₁	10	Т м	10		118	Т2	40
Sample	1			B02-A02	M18-SB		M18-SB		M18-SB		M18-SE					118
Sample Type	 '		1411 10-0	DOL-AUL	W110-0D	1 07-70	W110-351	U4-AU2	IAI 10-2D	05-A01	W110-5E	05-AUZ	M18-56	306-A01	M18-SE	306-A02
Batch#	 		9412	G155	95010	2597	95010	2507	95010	2507	0504	0507	0504	0500		
Prep#		ļ		30835	95GT		95GT		95GT		95010			G587		G587
RFW#	 			03	9301		95613				95GT			TS014		20035
Sample Depth (bgs)	-			T		 	- 00	4	00	1	UL)2	- 0	05	O	06
Dilution Factor	 		- 1	00	1.0	100	1.0	<u></u>	1.0	<u></u>			<u> </u>	<u> </u>		
Matrix	+			oil	. 50		so so				1.0		+	.00		.00
Units	mg/kg	mg/kg		/kg	+				so		. 50		+	oil		oil
Sampling Date	ing/ng	mg/kg	12/1		mg/ 1/11		mg/	<u>-</u>	mg/		mg			1/kg		ı/kg
Analysis Date	 			8/94	1/20		1/20/		1/11		1/11			1/95	+	1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL			1/20		+	0/95		2/95
rulayolo	Otandard	IVIDE	Result	CROL	Result	CRUL	Result	CRUL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result	 	Result		Result		Result		Result		Result	
Phenol	10000	0.234	0.35 U	0.35			 		ļ		 		-		0.4011	0.40
bis(2-Chloroethyl) ether	0.66	0.32	0.35 U	0.35	 		 	 			 		 		0.46 U 0.46 U	0.46
2-Chlorophenoi	280	0.241	0.35 U	0.35	 	 				-	 	 -	 			0.46
1,3-Dichlorobenzene	5100	0.175	0,35 U	0.35	 	 					 				0.46 U	0.46
1,4-Dichlorobenzene	570	0.158	0.35 U	0.35	 	 					 		 		0.46 U 0.46 U	0.46
1,2-Dichlorobenzene	5100	0.188	0.35 U	0.35	 				<u> </u>		 		 -		0.46 U	0.46 0.46
2-Methylphenol	2800	0.221	0.35 U	0.35	 								 			
2,2'-oxybis(1-Chloropropane)	 	0.231	0.35 U	0.35				-			 		 		0.46 U	0.46
4-Methylphenol	2800	0.426	0.35 U	0.35							 		 		0.46 U	0.46
N-Nitroso-di-n-propylamine	0.66	0.264	0.35 U	0.35	· · · · ·	-					 		 		0.46 U	0.46 0.46
Hexachloroethane	6	0.175	0.35 U	0.35			-		-		-		 		0.46 U	0.46
Nitrobenzene	28	0.244	0,35 U	0.35		 					ł·		<u> </u>		0.46 U	0.46
Isophorone	1100	0.129	0.35 U	0.35											0.46 U	0.46
2-Nitrophenol	1111	0.231	0.35 U	0.35						-					0.46 U	0.46
2,4-Dimethylphenol	1100	0,158	0.35 U	0.35							 		 		0.46 U	0.46
bis(2-Chloroethoxy) methane		0.201	0.35 U	0.35							 		1		0.46 U	0.46
2,4-Dichlorophenol	170	0.145	0.35 U	0.35							 				0.46 U	0.46
1,2,4-Trichlorobenzene	68	0.317	0.35 U	0.35			 - · · · ′ 					•			0.46 U	0.46
Naphthalene	230	0.277	0.35 U	0.35							 		 		1.2	0.46
4-Chloroaniline	230	0.096	0.35 U	0.35		-					 		łl		0.46 U	0.46
Hexachlorobutadiene	1	0.152	0.35 U	0.35	 	 					 		 		0.46 U	0.46
4-Chloro-3-methylphenol	10000	0.102	0.35 U	0.35							 		 		0.46 U	0.46
2-Methylnaphthalene	1	0.287	0.35 U	0.35					-		-				0.46 U	0.46
Hexachlorocyclopentadiene	400	0.119	0.35 U	0.35				-			 		 		0.27 U	0.46
2,4,6-Trichlorophenol	62	0.185	0.35 U	0,35							 		 		0.46 U	0.46
2,4,5-Trichlorophenol	5600	0.155	0.88 U	0.88				<u> </u>			 		 		1.1 U	1.1
2-Chloronaphthalene	1	0.271	0.35 U	0.35							 				0.46 U	0.46
2-Nitroaniline		0.201	0.88 U	0.88							 				1.1 U	
Dimethylphthalate	10000	0.145	0.35 U	0.35			,						 -		0.46 U	1.1 0.46
Acenaphthylene		0.198	0.35 U	0.35		-					 		 		0.46 U	0.46
2,6-Dinitrotoluene	1	0.172	0.35 U	0.35		-			-		 		 		0.46 U	0.46
3-Nitroaniline		0.172	0.88 U	0.88							 		 		1.1 U	
Acenaphthene	3400	0.221	0.35 U	0.35							 		 		1.1 U 52	1.1 9.2 *
2,4-Dinitrophenol	110	0.152	0.88 U	0.88			,		•				├── ┤		1.1 U	1.1
4-Nitrophenol	''-	0.248	0.88 U	0.88					-		 		l — —		1.1 U	1.1

Geographical Location			M	16	M1	8	M1	8	M	18		18	M	18	M	18
Sample				B02-A02	M18-SB		M18-SB		M18-SB		M18-SB		M18-SE		M18-SE	
Sample Type							10110 02	047102	11110 00		14110-02	100-70Z	14110-01	300-7101	14110-02	100-A02
Batch#			9412	G155	95010	3587	95010	3587	95010	G587	95010	G587	9501	G587	.9501	G587
Prep#	~ · · · · · · · · · · · · · · · · · · ·			30835	95GT		95GT		95GT		95GT			S014		20035
RFW#	_			03	00		00		00		3331			05		06
Sample Depth (bgs)	 			 	00	T	- 00	- 	- 00	-) <u>Z</u>	U		U	ם כו
Dilution Factor	-		1	00	1.0	10	1.0	10	1.0		4	00	 	00	-	00
Matrix			Si Si		SO		so		SO				+	00		00
Units	mg/kg	ma/ka									so			oil	 	oil
Sampling Date	iiig/kg	mg/kg	mg	5/94	mg/		mg/		mg		mg			/kg		/kg
Analysis Date	 			3/94 8/94	1/11		1/11		1/11			1/95		1/95		1/95
	Ct-u-d-u-d	NACO.							1/20)/95		0/95		2/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	`CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result		Result	
Dib	 	0.517			ļ			1		ļ					L	
Dibenzofuran	 	0.215	0.35 U	0.35	ļ	<u> </u>	<u> </u>			ļ	<u> </u>				31	9.2 *
2,4-Dinitrotoluene	1 1	0.191	0.35 U	0.35	ļ	L	ļ		<u> </u>						0.460 U	0.46
Diethylphthalate	10000	0.178	0.35 U	0.35	ļ		ļ								0.460 U	0.46
4-Chlorophenyl-phenylether		0.231	0.35 U	0.35					ļ		<u> </u>				0.460 U	0.46
Fluorene	2300	0.208	0.35 U	0.35				l	<u> </u>		ļ				40	9.2
4-Nitroaniline		0.211	0.88 U	0.88			<u> </u>								1.1 U	1.1
4,6-Dinitro-2-methylphenol		0.175	0.88 U	0.88	1			l		_					1.1 U	1.1
N-Nitrosodiphenylamine (1)	140	0.139	0.35 U	0.35											0.46 U	0.46
4-Bromophenyl-phenylether		0.175	0.35 U	0.35											0.46 U	0.46
Hexachlorobenzene	0.66	0.182	0.35 U	0.35											0.46 U	0.46
Pentachlorophenol	6	0.132	0.88 U	0.88			-								1.1 U	1.1
Phenanthrene		0.165	0.35 U	0.35											140	46 **
Anthracene	10000	0.152	0.35 U	0.35									-		16	9.2 *
Carbazole		0.145	0.35 U	0.35											4.8 J	9.2 *
Di-n-butylphthalate	5700	0.215	0.084 JB	0.35											0.36 JB	0.46
Fluoranthene	2300	0.198	0.35 U	0.35						1					46	9.2 *
Pyrene	1700	0.178	0.35 U	0.35	Ì								1		48	9.2 *
Butylbenzylphthalate	1100	0.175	0.35 U	0.35											0.45 J	0.46
3,3'-Dichlorobenzidine	2	0.092	0.35 U	0.35				1	1						0.46 U	0.46
Benzo(a)anthracene	0.9	0.162	0.35 U	0.35	1										11	9.2 *
Chrysene	9	0.145	0.35 U	0.35			 			· ·			<u> </u>		10	9.2 *
bis(2-Ethylhexy)phthalate	49	0.32	0.053 J	0.35				-			<u> </u>				0.17 J	0.46
Di-n-octyl phthalate	1100	0.185	0.35 U	0.35		T	1	<u> </u>		 					0.46 U	0.46
Benzo(b)fluoranthene	0.9	0.188	0,35 U	0,35			 				· ·		 		7.6 J	9.2 *
Benzo(k)fluoranthene	0.9	0.205	0,35 U	0.35							 		+		2.3	0.46
Benzo(a)pyrene	0.66	0.162	0.35 U	0.35			-								3.8 J	9.2 *
Indeno(1,2,3-cd)pyrene	0.9	0.234	0.35 U	0.35	<u> </u>	 	 	 	<u> </u>	 			+		2.1	0.46
Dibenzo(a,h)anthracene	0.66	0.198	0.35 U	0.35	f		 	 			<u> </u>	· · · · · · · · · · · · · · · · · · ·	 		0.45 J	0.46
Benzo(g,h,i)perylene	1 0.00	0.224	0.35 U	0.35		1	 	 			+		 		0.45 J	0.46
Petroleum hydrocarbons	+	,0.227	0.000	0.00	27.8 U	27.8	26.8 U	26.8	117	28.7	30.0 U	30.0	221	28.6	2300	348
Total Est. Conc. of TIC	+		10	46	27.00	27.0	20.00	20.0	11/	20.7	30.0 0	30.0	221	20.0		
Dilution Factor	+		10	.40	 	 	 	 	-	 	-		-		*= 20.0.	7.8
Method:TCL Semivolatiles	+				<u> </u>	 				 	-		 		== 20.0,	= 100
violitor i of Sellinoismes					<u> </u>	L	l	<u></u>	<u> </u>		<u> </u>		ــــــــــــــــــــــــــــــــــــــ	L		i

Cooperation in the second	-	-	``				·							
Geographical Location	 		M [*]		M [*]		M		1	18	M'			18
Sample	-		M18-SB0	6-A02RE	MP18-SI	B01-A01	MP18-S	B01-A02	MP18-S	B02-A01	MP18-SE	302-A02	MP18-S	B03-A01
Sample Type	-					<u> </u>								
Batch#	_	ļ	95010		94120			G632		G632	94120		9412	G632
Prep#			95GP		94GT			S038	94GT	S038	94GT	S038	94G1	S038
RFW#			00	6	00)3	0(04	0	05	00	16	. 00	06
Sample Depth (bgs)	ļ								1.					-
Dilution Factor			1.0		1.0	_	1.	00	1.	00	1.0	00	1.	00
Matrix			so		sc	oil	St	oil	se	oil	so	oil	se	oil
Units	mg/kg	mg/kg	mg/		mg.	/kg	mg	/kg	mg	/kg .	mg	/kg	mg	/kg
Sampling Date			1/11		1/12		1/12	2/95	1/12	2/95	1/12	/95	1/1:	2/95
Analysis Date			2/11	/95_	1/30)/95	1/30	0/95	1/30	0/95	1/30	/95	1/30	0/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
Dhanal	40000	0.007												
Phenol	10000	0.234	0.46 U	0.46										
bis(2-Chloroethyl) ether	0.66	0.32	0.46 U	0.46			ļ	ļ						
2-Chlorophenol	280	0.241	0.46 U	0.46	<u> </u>				L				ļ	
1,3-Dichlorobenzene	5100	0.175	0.46 U	0.46										
1,4-Dichlorobenzene	570	0.158	0.46 U	0.46							<u></u>			
1,2-Dichlorobenzene	5100	0.188	0.46 U	0.46			<u> </u>							
2-Methylphenol	2800	0.221	0.46 U	0.46										
2,2'-oxybis(1-Chloropropane)		0.231	0.46 U	0.46		•								
4-Methylphenol	2800	0.426	0.46 U	0.46										
N-Nitroso-di-n-propylamine	0.66	0.264	0.46 U	0.46										
Hexachloroethane	6	0.175	0.46 U	0.46										
Nitrobenzene	28	0.244	0.46 U	0.46	_									
Isophorone	1100	0.129	0.46 U	0.46										
2-Nitrophenol	L	0.231	0.46 U	0.46				-						
2,4-Dimethylphenol	1100	0.158	0.46 U	0.46										-
bis(2-Chloroethoxy) methane	Li	0.201	0.46 U	0.46				-						
2,4-Dichlorophenol	170	0.145	0.46 U	0.46										
1,2,4-Trichlorobenzene	68	0.317	0.46 U	0.46						-				
Naphthalene	230	0.277	0.94	0.46										
4-Chloroaniline	230	0.096	0.46 U	0.46					-					
Hexachlorobutadiene	1	0.152	0.46 U	0.46										
4-Chloro-3-methylphenol	10000	0.102	0.46 U	0.46									-	
2-Methylnaphthalene		0.287	0.18 J	0.46		· .								
Hexachlorocyclopentadiene	400	0.119	0.46 U	0.46							-			
2,4,6-Trichlorophenol	62	0.185	0.46 U	0.46										
2,4,5-Trichlorophénol	5600	0.155	1.2 U	1.2										
2-Chloronaphthalene		0.271	0.46 U	0.46									 	
2-Nitroaniline		0.201	1.2 U	1.2	-						-			
Dimethylphthalate	10000	0.145	0.46 U	0.46										
Acenaphthylene		0.198	0.46 U	0.46		-							 	
2,6-Dinitrotoluene	1	0.172	0.46 U	0.46	v									
3-Nitroaniline	<u> </u>	0.172	1.2 U	1.2										
Acenaphthene	3400	0.221	E	0.46										
2,4-Dinitrophenol	110	0.152	1.2 U	1.2									-	
4-Nitrophenol	 	0.248	1.2 U	1.2									<u> </u>	

Geographical Location	1		M.	18	M ¹	18	M	18	M	18	M1	8	M	18
Sample	1	-	M18-SB0		MP18-SE		MP18-SI		MP18-S		MP18-SE		MP18-S	
Sample Type	1		10110 020		1011 10 01	5017101	1711 10 01	5017102	1411 10-0	DOL-7101	1411 10-02	JOE TOE	1411 10-01	200-701
Batch#	1		9501	G587	94120	3632	9412	G632	9412	G632	94120	2632	9412	G632
Prep#	1		95GP		94GT		94GT		94GT		94GT			S038
RFW#	+			16 ·	00		00			0000 05	00			06
Sample Depth (bgs)	 	-	-			<u> </u>		1	1 0,					
Dilution Factor	 		1.0	L_\	1.0	ו <u>. </u>	1.0	nn	1	00	1,0	in .	4	00
Matrix			so		so		SC		+	oil	so			oil
Units	mg/kg	mg/kg	mg		mg			/kg		/kg	mg/			ı/kg
Sampling Date	ilig/kg	IIIg/kg	1/11		1/12			2/95		2/95	1/12			2/95
Analysis Date	 		2/11		1/30			2/95 D/95		0/95	1/12			2/95 0/95
Analysis Date	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
Allalysis	Statiualu	IVIDL	Result	CRUL	Result	CRQL	Result	CRUL	Result	CRUL	Result	CRUL	Result	CROL
-	 	-	Resuit		Result	ļ. 	Result		Result		Result		Result	
Dibenzofuran		0.215	E	0.46					-					
2.4-Dinitrotoluene	1	0.191	0.46 U	0.46		-					<u> </u>			
Diethylphthalate	10000	0.178	0.46 U	0.46				-	 		1			
4-Chlorophenyl-phenylether	10000	0.231	0.46 U	0.46	-			 						
Fluorene	2300	0.208	E E	0.46					<u> </u>		1		-	
4-Nitroaniline	2000	0.211	1.2 U	1.2					 					
4,6-Dinitro-2-methylphenol		0.175	1.2 U	1.2							<u> </u>			
N-Nitrosodiphenylamine (1)	140	0.179	0.46 U	0.46			 	 	+					
4-Bromophenyl-phenylether	140	0.175	0.46 U	0.46							-			<u> </u>
Hexachlorobenzene	0.66	0.173	0.46 U	0.46		-					ļ			'
Pentachlorophenol	6	0.132	1.2 U	1.2							-			
Phenanthrene	 	0.165	E E	0.46		-	 				 		<u> </u>	
Anthracene	10000	0.152	Ē	0.46					+	<u> </u>	 		 	
Carbazole	10000	0.145	E	0.46			<u> </u>		+		<u> </u>			
Di-n-butylphthalate	5700	0.215	1.6 B	0.46			<u> </u>			:	1		-	
Fluoranthene	2300	0.198	E	0.46	·				+		 			
Pyrene	1700	0.178	E	0.46		-		 	+				-	
Butylbenzylphthalate	1100	0.175	0.46 U	0.46		 	-							· · · · · · · · · · · · · · · · · · ·
3,3'-Dichlorobenzidine	2	0.092	0.46 U	0.46			 		 	 				<u> </u>
Benzo(a)anthracene	0.9	0.162	E E	0.46				 	 		 		 	
Chrysene	9	0.145	Ē	0.46		-		 	 		 		 	
bis(2-Ethylhexy)phthalate	49	0.32	0.18 J	0.46		 	·-··		 	 	 			———
Di-n-octyl phthalate	1100	0.185	0.46 U	0.46	···	 		 	+	 	 		 	
Benzo(b)fluoranthene	0.9	0.188	E	~0.46		 	 	<u> </u>	+	, -	 		 	
Benzo(k)fluoranthene	0.9	0.205	1.3	0.46		 		 	 	 	 		 	
Benzo(a)pyrene	0.66	0.162	3.1	0.46	-	 	 		+	<u> </u>	 		 	
Indeno(1,2,3-cd)pyrene	0.9	0.102	1.7	0.46	 	 		 	+		 		 	
Dibenzo(a,h)anthracene	0.66	0.234	0.46 U	0.46	<u> </u>	 		 	 		 		-	
Benzo(g,h,i)perylene	0.00	0.138	1.5	0.46		 		1	 	-	-		 	
Petroleum hydrocarbons		U.224	1.5.	0.40	367	27.5	84.9	28.5	188	27.8	612	30.6	6330	719
Total Est, Conc. of TIC			21	2	301	21.5	04.5	20.5	100	27.0	012	30.0	0330	113
Dilution Factor	+				 	 	1	 	 	 	-	·	 	
Method:TCL Semivolatiles	+				·,						 		-	
ivieniou, I OL Selliivolanies			L	l	L	<u> </u>	L	ł	<u> </u>	L				

Geographical Location	T		М	18	M	18	Т м	18	M	18	M	18
Sample			MP18-S	B03-A01		B07-A02		B24-A01	MP18-SI		MP18-SI	
Sample Type					10,0	0017102	1411 10-0	D24-7.01	1417 10-31	D24-AU2	IVIP 10-31	523-AU I
Batch#			9412	G632	9412	G632	9412	G632	9412	GE32	95010	CEEE
Prep#				S038		S038		S032	94GT		95GT	
RFW#			0.01			08		01		12	9561	
Sample Depth (bgs)	·							<u> </u>	- 0		U.	71
Dilution Factor	<u> </u>		1	00	1	00	-	00	1.0	00	40	0.0
Matrix	 		S(oil		oil	so		 	
Units	mg/kg	mg/kg	mg			/kg		ı/kg			SC	
Sampling Date	mg/kg	ing/ng	1/12			2/95		2/95	mg	7kg 2/95	mg 1/11	
Analysis Date			1/30			0/95		D/95		295 2/95	1/13	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		
, and you	Cidildaid	IVIDE	Result	ORGE	Result	ONGL	Result	CRUL	Result	CROL	Analytical Result	CRQL
	 		Rosuit		Result	-	Result		Result		Result	
Phenol	10000	0.234			 		 		 		 	
bis(2-Chloroethyl) ether	0.66	0.32					 		 		 	
2-Chlorophenol	280	0.241					+		 			<u>·</u>
1,3-Dichlorobenzene	5100	0.175		7			 					
1.4-Dichlorobenzene	570	0.158					-		-		 	
1,2-Dichlorobenzene	5100	0.188					 		 			
2-Methylphenol	2800	0.221		-					-			
2,2'-oxybis(1-Chloropropane)	1	0.231									l ·	
4-Methylphenol	2800	0.426			-		 		 		 	
N-Nitroso-di-n-propylamine	0.66	0.264									 	
Hexachloroethane	6	0.175									 - 	
Nitrobenzene	28	0.244					 				 	
Isophorone	1100	0.129					 	_			 	
2-Nitrophenol		0.231							-		 	
2,4-Dimethylphenol	1100	0.158							1			
bis(2-Chloroethoxy) methane		0.201				•	 		 		 	
2,4-Dichlorophenol	170	0.145					 		 		 	
1,2,4-Trichlorobenzene	68	0:317							 		 	
Naphthalene	230	0.277					 		 		1	
4-Chloroaniline	230	0.096					 	<u> </u>	 		 	
Hexachlorobutadiene	1	0.152					 		 		 	
4-Chloro-3-methylphenol	10000	0.102		-	-		 		 		 	
2-Methylnaphthalene		0.287					 		 		 	
Hexachlorocyclopentadiene	400	0.119					<u> </u>				1	
2,4,6-Trichlorophenol	62	0.185		-					 		 	
2,4,5-Trichlorophenol	5600	0.155					 	_	 		 	
2-Chloronaphthalene		0.271			-			_			 	
2-Nitroaniline		0.201				-	 		 		 	
Dimethylphthalate	10000	0.145					 		 		 	
Acenaphthylene		0.198			 		 		+		 	
2.6-Dinitrotoluene	1	0.172	- 1				 		 		 	
3-Nitroanilinė		0.172					 		 		 	
Acenaphthene	3400	0.221							 		 	
2,4-Dinitrophenol	110	0.152	-		 		 		 		 	
4-Nitrophenol		0.248					 		 		 	

Geographical Location			M1	18	M ¹	18	M	18	M1	8	M [*]	18 ·
Sample			MP18-SE	303-A01	MP18-SE		MP18-SI		MP18-SE		MP18-SI	
Sample Type					1		1		1			
Batch#			94120	3632	94120	3632	9412	G632	94120	3632	95010	G656
Prep#			94GT		94GT		94GT		94GT		95GT	
RFW#			00		00			01	00		00	
Sample Depth (bgs)			i i	<u>, </u>	 	·	1		1	<u> </u>	+	
Dilution Factor	-		1.0	าก	1.0	nn	1	00	1.0	10	10	0.0
Matrix			so		so			oil	so		so	
Units	mg/kg	mg/kg	mg		mg		mg		mg/		mg	
Sampling Date	mg/kg	mg/ng	1/12		1/12			2/95	1/12		1/11	
Analysis Date	+		1/30		1/30			0/95	1/30		1/13	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
- Indivola	Otalidaid	WIDE	Result	·	Result	ONGL	Result	ONGL	Result	CRQL	Result	CRUL
Dibarratura		0.045										
Dibenzofuran 2.4-Dinitrotoluene	- 4	0.215			1				1.		-	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.191					 		· · ·		-	
Diethylphthalate	10000	0.178	 		1		ļ <u>. </u>		 			
4-Chiorophenyi-phenylether		0.231	ļ	.		 			 		1	<u> </u>
Fluorene	2300	0.208			.l				ļ		1	
4-Nitroaniline		0.211							'		1	<u></u>
4,6-Dinitro-2-methylphenol		0.175	ļ							· · · · · · · · · · · · · · · · · · ·		ļ
N-Nitrosodiphenylamine (1)	140	0.139					<u> </u>		ļ		ν.	<u> </u>
4-Bromophenyl-phenylether		0.175										L
Hexachlorobenzene	0.66	0.182										
Pentachlorophenol	6	0.132			,							
Phenanthrene		0.165								` _		
Anthracene	10000	0.152			<u> </u>		ļ					
Carbazole		0.145										
Di-n-butylphthalate	5700	0.215										
Fluoranthene	2300	0.198										
Pyrene	1700	0.178										
Butylbenzylphthalate	1100	0.175	}									
3,3'-Dichlorobenzidine	2	0.092										
Benzo(a)anthracene	0.9	0.162	1.									
Chrysene	9	0.145										
bis(2-Ethylhexy)phthalate	49	0,32					1		1 1			
Di-n-octyl phthalate	1100	0.185			1							
Benzo(b)fluoranthene	0.9	0.188	1				1		1			
Benzo(k)fluoranthene	0.9	0.205]		1	······	1		†			i
Benzo(a)pyrene	0.66	0.162			<u> </u>		1		 		†	
Indeno(1,2,3-cd)pyrene	0.9	0.234			1		1		 		1	
Dibenzo(a,h)anthracene	0.66	0.198		•			-		1		+	
Benzo(g,h,i)perylene	 	0.224			1				1		1	
Petroleum hydrocarbons	 . 		1100	29.0	29.9	28.6	695	28.8	993	31.1	311	29.6
Total Est. Conc. of TIC	,		 		 		 	20.0	+	· · · · · ·	+	
Dilution Factor	+		 		These can be	found in the	Inorganics data	nackanes	+		+	
Method:TCL Semivolatiles	1		 		111030 0011 00	Todala III IIIO	IIIOI GAINOS GAIG	packages.	 		 	

Geographical Location	T		M	18	E	31	В	1	В	1		12
Sample		,	MP18-SI	B25-A02		01-A01		I-A01RE		01-A02	B2-SB	
Sample Type							B1-0B0	THOTILE	B1-3B1	01-702	DZ-3D	UI-AUI
Batch#			9501	G656	9401	G527	9401	G527	94010	GE27	0404	G500
Prep#	 		95GT			30017	95GE			30017	9401 95GE	
RFW#	 		00		0		9336			0017		
Sample Depth (bgs)	 					<u> </u>	U	·		32	0	J1
Dilution Factor	 		10	<u> </u>		00	1.				+	<u></u>
Matrix			so			oil	+		1.0			00
Units	mg/kg	mg/kg	mg		<u>-</u>		SC		so			oil
Sampling Date	mg/kg	тіулу	1/11			ı/kg 1/95	mg		mg		mg	
Analysis Date	 		1/13				 	/95	1/9		1/6	
Analysis	Standard	MDL				1/94	2/8		2/8			1/95
Miaiyaja	Standard	IVIDL	Analytical Result	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	 		Result	· · · · · · · · · · · · · · · · · · ·	Result		Result		Result		Result	
Phenol	10000	0.234			0.38 U	0.20	0.2011	- 0.00	 	0.40	 	
bis(2-Chloroethyl) ether	0.66	0.234		· · ·	0.38 U	0.38	0.38 U	0,38	0.42 U	0.42	0.41 U	0.41
2-Chlorophenol	280	0.32			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
1,3-Dichlorobenzene	5100	0.241	, ,			0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
1,4-Dichlorobenzene	570	0.175			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
1,2-Dichlorobenzene	5100				0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
		0.188			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2-Methylphenol	2800	0.221			0.38 U	0.38	0.38 U	0,38	0.42 U	0.42	0.41 U	0.41
2,2'-oxybis(1-Chloropropane)	2000	0.231			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
4-Methylphenol	2800	0.426			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
N-Nitroso-di-n-propylamine	0.66	0.264			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Hexachloroethane	6	0.175			0.38 U	0,38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Nitrobenzene	28	0.244			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Isophorone	1100	0.129			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2-Nitrophenol	ļ ļ	0.231		_:	0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2,4-Dimethylphenol	1100	0.158			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
bis(2-Chloroethoxy) methane	 	0.201			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2,4-Dichlorophenol	170	0.145			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
1,2,4-Trichlorobenzene	68	0.317		<u> </u>	0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Naphthalene	230	0.277			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
4-Chloroaniline	230	0.096			0.38 _. U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Hexachlorobutadiene	1	0.152			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
4-Chloro-3-methylphenol	10000	0.102			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2-Methylnaphthalene	<u> </u>	0.287			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Hexachlorocyclopentadiene	400	0.119			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	.0.41
2,4,6-Trichlorophenol	62	0.185			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2,4,5-Trichlorophenol	5600	0.155			0.94 U	0.94	0.94 U	0.94	1 υ	1	10	1
2-Chloronaphthalene		0.271			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2-Nitroaniline		0.201			0.94 U	0.94	0.94 U	0.94	10	1	1 U	1
Dimethylphthalate	10000	0.145			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Acenaphthylene		0.198			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2,6-Dinitrotoluene	1	0:172			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
3-Nitroaniline		0.172			0.94 U	0.94	0.94 U	0.94	10	1	10	1
Acenaphthene	3400	0.221			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
2,4-Dinitrophenol	110	0.152			0.94 U	0.94	0.94 U	0.94	1 U	1	10	1
4-Nitrophenol	 	0.248			0.94 U	0.94	0.94 U	0.94	10	. 1	10	' 1

					_		,··		,	*		
Geographical Location			M1		В		В		В	·	_	2
Sample	1		MP18-SE	325-A02	B1-SB0	01-A01	B1-SB0	I-A01RE	B1-SB0	01-A02	B2-SB	01-A01
Sample Type												
Batch#			95010		94010			G527	94010			G500
Prep#			95GT		95GB		95GE	80017	95GB	0017	95GE	30017
RFW#			00	2	00)1	00	01	00	12	0	01
Sample Depth (bgs)	ļ	1									1	,
Dilution Factor	·		10	.0	1.0	00	- 1)	00	1.0	00	1.	00
Matrix			so	il	sc	il	Sc	oil	so	oil	· S	oil
Units	mg/kg	mg/kg	mg/	/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg
Sampling Date			1/11	/95	1/9.	/95	1/9	/95	1/9/			/95
Analysis Date			1/13	/95	1/21	/94	2/8	/94	2/8/	/94	1/2	1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result	
Dibenzofuran	 	0.215			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.44.11	0.41
2,4-Dinitrotoluene	+ 1	0.191			0.38 U	0.38	0.38 U	0.38	0.42 U		0.41 U	7
Diethylphthalate	10000	0.178			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
4-Chlorophenyl-phenylether	10000	0.178								0.42	0.41 U	0.41
	0000	0.231			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Fluorene 4-Nitroaniline	2300		-		0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
		0.211			0.94 U	0.94	0.94 U	0.94	10	1	1 U	1
4,6-Dinitro-2-methylphenol		0.175			0.94 U	0.94	0.94 U	0.94	1 U	1	1 U	1
N-Nitrosodiphenylamine (1)	140	0.139			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
4-Bromophenyl-phenylether	- 	0.175			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Hexachlorobenzene	0.66	0.182			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Pentachlorophenol	6	0.132			0.94 U	0.94	0.94 U	0.94	10	1	1 U	1
Phenanthrene		0.165	\sim		0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.067 J	0.41
Anthracene	10000	0.152			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Carbazole		0.145			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Di-n-butylphthalate	5700	0.215			0.16 JB	0.38	0.11 JB	0.38	0.078 JB	0.42	0.068 JB	0.41
Fluoranthene	2300	0.198			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.042 J	0.41
Pyrene	1700	0.178			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.081 J	0.41
Butylbenzylphthalate	1100	0.175			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
3,3'-Dichlorobenzidine	2	0.092			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Benzo(a)anthracene	0.9	0.162			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Chrysene	9	0.145			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
bis(2-Ethylhexy)phthalate	49	0.32			0.041 J	0.38	0.083 J	0.38	0.42 U	0.42	0.067 J	0.41
Di-n-octyl phthalate	1100	0.185			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Benzo(b)fluoranthene	0.9	0.188			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41 -
Benzo(k)fluoranthene	0.9	0.205		· · · · · · · · · · · · · · · · · · ·	0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Benzo(a)pyrene	0.66	0.162			0.38 U	0.38	0,38 U	0.38	0.42 U	0.42	0.41 U	0.41
Indeno(1,2,3-cd)pyrene	0.9	0.234	-		0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Dibenzo(a,h)anthracene	0.66	0.198			0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Benzo(g,h,i)perylene	 -:	0.224			(0.38 U	0.38	0.38 U	0.38	0.42 U	0.42	0.41 U	0.41
Petroleum hydrocarbons	+ +	V.LL7	2500	141	0.500		0.50	5.00	5.72 0	y.72	0.410	5.71
Total Est. Conc. of TIC	 		2000		12	1	E	15	5.5	59	14	i.5
Dilution Factor			'		12		, 5.		3.5	 	 	
Method:TCL Semivolatiles					+		 		1		1	
Meniod. I CL Semivolatiles	1	1					<u> </u>	•	<u> </u>		<u> </u>	

Geographical Location		1 , -	B	2	B	33		33		34	T B	<u> </u>
Sample			B2-SB	01-A02		01-A01		01-A03		01-A01	B4-SB01	
Sample Type	1			31 7102		01-701	55-55	01-703	D4-5D	01-401	D4-SDU	I-AUTRE
Batch#			9401	G500	9401	G500	0401	G500	0404	G527	0.404	
Prep#	 	 	95GE			30017		30017			9401	
RFW#			93.62			03				30017	95GE	
Sample Depth (bgs)			- 00	JZ	U	U3	U	04	U	03	00)3
Dilution Factor	 			00		00	-		ļ			
Matrix		 -	1.1 SC			00		00		00	1.	
Units						oil	S		S		so	
Sampling Date	mg/kg	mg/kg	mg			/kg	mg		mg		mg	
	 		1/6			/95		3/95		/95	1/9	
Analysis Date	 	1.451	1/21			1/95		1/95	 	/94	2/9	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	 		Result		Result	, 	Result	·	Result		Result	
Phenol	10000	0.234	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0,38 U	0,38	0.38 U	0.38
bis(2-Chloroethyl) ether	0.66	0.32	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2-Chlorophenol	280	0.241	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
1,3-Dichlorobenzene	5100	0.175	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
1,4-Dichlorobenzene	570	0.158	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
1,2-Dichlorobenzene	5100	0.188	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	
2-Methylphenol	2800	0.221	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38		0.38
2,2'-oxybis(1-Chloropropane)	2000	0.231	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U		0.38 U	0.38
4-Methylphenol	2800	0.426	0.41 U	0.41	0.38 U	0.38				0.38	0.38 U	0.38
N-Nitroso-di-n-propylamine	0.66	0.426	0.41 U	0.41	0.38 U		0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Hexachloroethane	6	0.264	0.41 U		0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Nitrobenzene	28	0.175		0.41		0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
	1100		0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Isophorone 2-Nitrophenol	1100	0.129	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
	4400	0.231	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2,4-Dimethylphenol	1100	0.158	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
bis(2-Chloroethoxy) methane	ļ	0.201	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2,4-Dichlorophenol	170	0.145	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
1,2,4-Trichlorobenzene	68	0.317	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Naphthalene -	230	0.277	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
4-Chloroaniline	230	0.096	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Hexachlorobutadiene	1	0.152	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
4-Chloro-3-methylphenol	10000	0.102	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0,38
2-Methylnaphthalene	L	0.287	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Hexachlorocyclopentadiene	400	0.119	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2,4,6-Trichlorophenol	62	0.185	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2,4,5-Trichlorophenol	5600	0.155	1 U	1	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94
2-Chloronaphthalene		0.271	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2-Nitroaniline		0.201	1 U	1	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94
Dimethylphthalate	10000	0.145	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Acenaphthylene		0.198	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.039 J	0.38	0.38 U	0.38
2,6-Dinitrotoluene	1	0.172	0.41 U	0.41	0.38 U	0.38	0.45 U	- 0.45	0.38 U	0.38	0.38 U	0.38
3-Nitroaniline]	0.172	1 U	1	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94
Acenaphthene	3400	0.221	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
2,4-Dinitrophenol	110	0.152	1 U	1	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94
4-Nitrophenol		0.248	1 U	<u> </u>	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94

Geographical Location	1		В	2	В	3	В	3	Т - в	4	B ⁴	
Sample	 		B2-SB(D1-A02	B3-SB(B3-SB6		B4-SB0	-	B4-SB01-	
Sample Type	-			· · · · · ·				-				7.07.12
Batch#	+		9401	G500	9401	G500	94010	G500	94010	3527	94010	5527
Prep#	-		95GE		95GE		95GB		95GB		95GB	
RFW#	+			02	0000		00		00		00	
Sample Depth (bgs)	+			<u></u>	†····				1			
Dilution Factor	+		1.	00	1.0	nn	1.0		1.0	10	1.0	ın
Matrix	+		so		so		so		so		so	
Units	mg/kg	mg/kg	mg		mg		mg		mg		mg/	
Sampling Date	Illy/kg	mg/ng	1/6		1/6		1/6		1/9		1/9/	
Analysis Date			1/2		1/2		1/21		2/8		2/9/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
Atlalysis	Standard	INIDL	Result	CROL	Result	CRUL	Result	CRUL	Result	CROL	Result	CRQL
	+		Keznir		Resuit		Kesuit		Result		Result	
Dibenzofuran	1	0.215	0.41 U	0.41	0.38 U	0.38	0,45 U	0.45	0.38 U	0.38	0.38 U	0.38
2.4-Dinitrotoluene	 	0.213	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Diethylphthalate	10000	0.178	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
4-Chlorophenyl-phenylether	10000	0.178	0.41 U	0.41	√ 0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Fluorene	2300	0.208	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
4-Nitroaniline	2500	0.211	10	1	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94
4,6-Dinitro-2-methylphenol	 	0.175	10	1	0.94 U	0.94	1.1 U	1.1	0.94 U	0.94	0.94 U	0.94
N-Nitrosodiphenylamine (1)	140	0.173	0.41 U	0.41	0.34 U	0.38	0.45 U	0.45	0.34 U	0.38	0.38 U	0.38
4-Bromophenyl-phenylether	140	0.175	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
	0.66	0.175	0.41 U		0.38 U		0.45 U		0.38 U		0.38 U	
Hexachlorobenzene Pentachlorophenol	0.66	0.182	1 U	0.41 1	0.38 U	0.38 0.94		0.45 1.1	0.38 U	0.38 0.94		0.38
Phenanthrene		0.132	0.41 U	0.41	0.38 U	0.94	1.1 U 0.45 U	***			0.94 U	
Anthracene	10000	0.152	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45 0.45	0.39 0.092 J	0.38	0.37 J 0.071 J	0.38
Anthracene Carbazole	10000	0.152	0.41 U		0.38 U	0.38	0.45 U	0.45	0.092 J 0.38 U	0.38	0.071 J	0.38
	5700			0.41								
Di-n-butylphthalate	5700 2300	0.215	0.073 JB 0.41 U	0.41	0.058 JB	0.38	0.071 JB	0.45	0.056 JB	0.38	0.057 JB	0.38
Fluoranthene		0.198		0.41	0.07 J	0.38	0.45 U	0.45	0.44	0.38	0.46	0.38
Pyrene	1700	0.178	0.41 U	0.41	0.062 J	0.38	0.45 U	0.45	1.5	0.38	1.1	0,38
Butylbenzylphthalate	1100	0.175	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
3,3'-Dichlorobenzidine			0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Benzo(a)anthracene	0.9	0.162	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.54	0.38	0.65	0.38
Chrysene	9	0.145	0.41 U	0.41	0.38 U	0.38	- 0.45 U	0.45	0.64	0.38	0.58	0.38
bis(2-Ethylhexy)phthalate	49	0.32	0.047 J	0.41	0.38 U	0.38	0.078 J	0.45	0.069 J	0.38	0.064 J	0.38
Di-n-octyl phthalate	1100	0.185	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.38 U	0.38	0.38 U	0.38
Benzo(b)fluoranthene	0.9	0.188	0.41 U	0.41	0.055 J	0.38	0.45 U	0.45	0.83	0.38	0.83	0.38
Benzo(k)fluoranthene	0.9	0.205	0.41 U	0,41	0.38 U	0.38	0.45 U	0.45	0.37 J	0.38	0.43	0.38
Benzo(a)pyrene	0.66	0.162	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.51	0.38	0.57	0.38
Indeno(1,2,3-cd)pyrene	0.9	0.234	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.3 J	0.38	0.46	0.38
Dibenzo(a,h)anthracene	0.66	0.198	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.05 JB	0.38	0.38 U	0.38
Benzo(g,h,i)perylene		0.224	0.41 U	0.41	0.38 U	0.38	0.45 U	0.45	0.33 JB	0.38	0,54 B	0.38
Petroleum hydrocarbons												
Total Est. Conc. of TIC			11	.58	10	.47			4.	53	0.8	36
Dilution Factor												
Method:TCL Semivolatiles	,											

Geographical Location	Τ		В	14	В	4	В	4	В	4		5
Sample			_	D1-A02	_	1-A02RE	B4-SB0		B4-SB01		B5-SB	
Sample Type	1		2,02		54-050	- AULINE	Dupl			icate	D5-50	J 1-AU 1
Batch#	 		9401	G527	9401	G527	9401		94010		9501	CE07
Prep#	 			30017	1	30017	95GE		95GB		95GF	
RFW#	+			04	00)5)5	956	
Sample Depth (bgs)	 				- 00	J-1		,,, 	1	19		
Dilution Factor			4	00	1.0	00	1.1	00	1.0		 	
Matrix	 		SI SI		so so							00
Units	mg/kg						so		sc		so	
Sampling Date	mg/kg	mg/kg	mg 4/0	/kg /95	mg	/kg /95	mg 4/0		mg 4/2			/kg)
Analysis Date	 		<u> </u>				1/9		1/9			1/95
	04	· Marxi	2/8		2/9		2/8		2/9		2/10	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result	
Phenol	10000	0.234	0.42 J	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
bis(2-Chloroethyl) ether	0.66	0.32	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2-Chlorophenol	280	0.241	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
1.3-Dichlorobenzene	5100	0.175	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
1.4-Dichlorobenzene	570	0.158	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
1,2-Dichlorobenzene	5100	0.188	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2-Methylphenol	2800	0.221	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2,2'-oxybis(1-Chloropropane)	1	0.231	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
4-Methylphenol	2800	0.426	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
N-Nitroso-di-n-propylamine	0.66	0.264	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Hexachloroethane	6	0.175	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Nitrobenzene	28	0.244	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Isophorone	1100	0.129	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2-Nitrophenol	1.55	0.231	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2,4-Dimethylphenol	1100	0.158	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
bis(2-Chloroethoxy) methane	11.00	0.201	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2,4-Dichlorophenol	170	0.145	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
1,2,4-Trichlorobenzene	68	0.317	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Naphthalene	230	0.277	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
4-Chloroaniline	230	0.096	0.45 U	0.45	0.45 U	.0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Hexachlorobutadiene	1	0.050	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	l	0.39
4-Chloro-3-methylphenol	10000	0.102	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U		0.39 U	
2-Methylnaphthalene	10000	0.102	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Hexachlorocyclopentadiene	400	0.207	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2,4,6-Trichlorophenol	62	0.185	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2,4,5-Trichlorophenol	5600	0.155	1.1 U	1.1	1.1 U	1.1	0.37 U	0.37	0.37 U 0.93 U	0.37	0.39 U	0.39
2-Chloronaphthalene	3300	0.155	0.45 U	0.45	0.45 U	0.45	0.93 U	0.93	0.93 U 0.37 U			
2-Nitroaniline	 	0.271	1.1 U	1,1	1.1 U	1.1	0.37 U	0.37	0.37 U 0.93 U	0.37	0.39 U	0.39
Dimethylphthalate	10000	0.201	0.45 U	0.45	0.45 U	0.45				0.93	0.98 U	0.98
	10000	0.145					0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Acenaphthylene	 		0.45 U	0.45	0.45 U	0.45	0.041 J	0.37	0.37 U	0.37	0,39 U	0.39
2,6-Dinitrotoluene	1	0.172	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
3-Nitroaniline	7	0.172	1.1 U	1.1	1.1 U	1.1	0.93 U	0.93	0.93 U	0.93	0.98 U	0.98
Acenaphthene	3400	0.221	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
2,4-Dinitrophenol	110	0.152	1.1 U	1.1	1.1 U	1.1	0.93 U	0.93	0.93 U	0.93	0.98 U	0.98
4-Nitrophenol	1	0.248	1.1 U	1.1	1.1 U	1.1	0.93 U	0.93	· 0.93 U	0.93	0.98 U	0.98

Geographical Location Sample Sample Type Batch# Prep# RFW# Sample Depth (bgs) Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 5700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9 Chrysene 9	mg/kg MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	9401 95GE 01 1. si , mg	01-A02 G527 30017 04 00 oil J/kg //95 J/94 CRQL 0.45 0.45 0.45 0.45 1.1 1.1	9401 9505 00 1. s: mg 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	04 1-A02RE 1	B4-SB0 Dupli 94010 95GB 00 1.0 so mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	1-C01 cate S527 0017 5 10 ii kg 95 CRQL 0.37 0.37 0.37	8-8-SB01 Dupli 94010 95GB 00 1.0 S0 mg 1/9 2/9 Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	-C01RE icate G527 60017 055 000 oil //kg	95010 95010 95010 95010 00 1.0 500 mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U	01-A01 03587 0035 17 00 oiil //kg //95
Batch# Prep# RFW# Sample Depth (bgs) Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	9401 95GE 01 1. sc mg 1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	G527 30017 04 00 oil g/kg 9/95 8/94 CRQL 0.45 0.45 0.45 0.45	9401 95GE 00 1. s. mg 1/5 2/5 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	G527 30017 04 00 00 0il //kg //95 //94 CRQL 0.45 0.45 0.45 0.45	Dupli 94010 95GB 00 1.0 so mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	Cate S527 0017 5 10 10 11 18 19 19 10 10 11 10 10 11 10 10 10 10 10 10 10	Dupli 94010 95GB 00 1.0 50 mg. 1/9/ 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	icate 3527 3527 30017 35 00 00 00 01 01 07 08 09 09 09 09 09 09 09 09 09 09	95010 95GP 00 1.0 50 mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U	0035 0035 000 iil //kg /95 /95 CRQL
Batch# Prep# RFW# Sample Depth (bgs) Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	95GE 01 1. sc, mg 1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	00017 000 001 001 008 0095 8/94 CRQL 0.45 0.45 0.45 0.45 0.45	95GE 0 1. 1. si mg 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	00017 04 \ 000 0il //kg //95 //94 CRQL 	94010 95GB 00 1.0 so mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U	0017 5 0017 5 00 ii kg 95 95 CRQL 0.37 0.37 0.37	94010 95GB 00 1.0 50 mg. 1/9/ 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U	0017 0017 005 000 000 001 011 0/kg 0/95 0/95 CRQL 0.37 0.37	95GP 00 1.0 so mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U	0035 17 00 oiil /kg /95 /95 CRQL 0.39
Prep# RFW# Sample Depth (bgs) Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene Anthracene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	95GE 01 1. sc, mg 1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	00017 000 001 001 008 0095 8/94 CRQL 0.45 0.45 0.45 0.45 0.45	95GE 0 1. 1. si mg 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	00017 04 \ 000 0il //kg //95 //94 CRQL 	95GB 00 1.0 so mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U	0017 5 00 il kg 95 95 CRQL 0.37 0.37 0.37	95GB 00 1.0 50 mg. 1/9/ 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U	00017 05 00 00 0il //kg /95 /95 CRQL 0.37 0.37	95GP 00 1.0 so mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U	0035 17 00 oiil /kg /95 /95 CRQL 0.39
RFW# Sample Depth (bgs) Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorophenol 6 Pentachlorophenol 6 Pentachlorophenol 6 Phenanthrene Anthracene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	01 1. si mg 1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	04 00 oil g/kg i/95 i/94 CRQL 0.45 0.45 0.45 0.45 0.45 1.1	0 1. si mg 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	00 oil //kg //95 //94 CRQL 0.45 0.45 0.45 0.45	00 1.0 so mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	5 10 10 11 11 11 11 11 1	1.0 so mg. 1/9/2/9/2/9/2/9/2/9/2/9/2/9/2/9/2/9/2/9/	00 00 00 01 01 0/kg /95 /95 CRQL 0.37 0.37	00 1.0 so mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U 0.39 U	00 00 00 01 01 0/95 0/95 CRQL 0.39
Sample Depth (bgs) Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol 6-Phenanthrene Anthracene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	1. sq. mg 1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	00 oil g/kg 9/95 8/94 CRQL 0.45 0.45 0.45 0.45 0.45	1. s mg 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	000 bill //kg /95 /94 CRQL 0.45 0.45 0.45 0.45	1.0 so mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U	00 il kg 95 95 CRQL 0.37 0.37 0.37	1.0 so mg. 1/9, 2/9, Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	000 oil /kg /95 /95 CRQL 0.37 0.37	1.0 so mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U 0.39 U	00 oil /kg /95 /95 CRQL 0.39
Dilution Factor Matrix Units mg/kg Sampling Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorophenol 6-Pentachlorophenol 6-Pentachlorophenol Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	Signature Signat	0il g/kg 9/95 8/94 CRQL 0.45 0.45 0.45 0.45 0.45	Sing 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	oil /kg /95 /94 CRQL 0.45 0.45 0.45 0.45	90 mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	il kg 95 95 CRQL 0.37 0.37 0.37	90 mg 1/9 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	oil /kg /95 /95 CRQL 0.37 0.37	mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U 0.39 U	oil /kg /95 /95 CRQL 0.39
Matrix mg/kg Sampling Date mg/kg Analysis Date Standard Analysis Standard Standard Dibenzofuran 1 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Carbazole 1000 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	Signature Signat	0il g/kg 9/95 8/94 CRQL 0.45 0.45 0.45 0.45 0.45	Sing 1/9 2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	oil /kg /95 /94 CRQL 0.45 0.45 0.45 0.45	90 mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	il kg 95 95 CRQL 0.37 0.37 0.37	90 mg 1/9 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	oil /kg /95 /95 CRQL 0.37 0.37	mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U 0.39 U	oil /kg /95 /95 CRQL 0.39
Units mg/kg Sampling Date Analysis Date Analysis Date Standard Dibenzofuran 2,4-Dinitrotoluene 1 2,4-Dinitrotoluene 1 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenyl-phenylether 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthracene 10000 Carbazole 10in-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	Mg 1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U 1.1 U	0/kg 0/95 0/94 CRQL 0.45 0.45 0.45 0.45 0.45 0.45	75 2/5 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	/kg /95 /94 CRQL 0.45 0.45 0.45 0.45	mg/ 1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	kg 95 95 CRQL 0.37 0.37 0.37	Mg. 1/9. 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	/kg /95 /95 CRQL 0.37 0.37 0.37	Mg/ 1/11 2/10 Analytical Result 0.39 U 0.39 U 0.39 U	/kg /95 /95 CRQL 0.39 0.39
Sampling Date Analysis Date Analysis Date Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol Phenanthrene Anthracene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	MDL 0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	1/9 2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	0/95 8/94 CRQL 0.45 0.45 0.45 0.45 0.45 0.45	1/5 2/5 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	/95 /94 CRQL 0.45 0.45 0.45 0.45 0.45	1/9/ 2/8/ Analytical Result 0.37 U 0.37 U 0.37 U	95 95 CRQL 0.37 0.37 0.37 0.37	1/9/ 2/9/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	/95 /95 CRQL 0.37 0.37 0.37	1/11 2/10 Analytical Result 0.39 U 0.39 U 0.39 U	/95 //95 CRQL 0.39 0.39
Analysis Date Analysis Standard Dibenzofuran 1 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene Hexachlorophenol 6 Pentachlorophenol 6 Phenanthracene 10000 Carbazole 1000 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	2/8 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	0.45 0.45 0.45 0.45 0.45 0.45 0.45 1.1	2/9 Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 0.45 0.45	2/8/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	95 CRQL 0.37 0.37 0.37 0.37	2/9/ Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37 0.37	2/10 Analytical Result 0.39 U 0.39 U 0.39 U	0.39 0.39
Analysis Standard Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U 1.1 U	0.45 0.45 0.45 0.45 0.45 0.45 1.1	Analytical Result 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 0.45 0.45	Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37 0.37 0.37	Analytical Result 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37 0.37	Analytical Result 0.39 U 0.39 U 0.39 U	0.39 0.39
Dibenzofuran 2,4-Dinitrotoluene 1 Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene Anthracene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.99	0.215 0.191 0.178 0.231 0.208 0.211 0.175 0.139	0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 0.45 1.1	0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 0.45	0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37 0.37 0.37	0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37 0.37	0.39 U 0.39 U 0.39 U	0.39 0.39
2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 2300 4-Nitroaniline 140 4,6-Dinitro-2-methylphenol 140 4-Bromophenyl-phenylether Hexachlorobenzene Hexachlorophenol 6 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.191 0.178 0.231 0.208 0.211 0.175 0.139	0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 1.1	0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45	0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37 0.37	0.37 U 0.37 U 0.37 U 0.37 U	0.37 0.37	0.39 U 0.39 U 0.39 U	0.39
2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 2300 4-Nitroaniline 140 4,6-Dinitro-2-methylphenol 140 4-Bromophenyl-phenylether Hexachlorobenzene Hexachlorophenol 6 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.191 0.178 0.231 0.208 0.211 0.175 0.139	0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 1.1	0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45	0.37 U 0.37 U 0.37 U	0.37 0.37 0.37	0.37 U 0.37 U 0.37 U	0.37 0.37	0.39 U 0.39 U	0.39
2,4-Dinitrotoluene 1 Diethylphthalate 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 2300 4-Nitroaniline 140 4,6-Dinitro-2-methylphenol 140 4-Bromophenyl-phenylether Hexachlorobenzene Hexachlorophenol 6 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.191 0.178 0.231 0.208 0.211 0.175 0.139	0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45 1.1	0.45 U 0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 0.45	0.37 U 0.37 U 0.37 U	0.37 0.37 0.37	0.37 U 0.37 U 0.37 U	0.37 0.37	0.39 U 0.39 U	0.39
Diethylphthalate 10000 4-Chlorophenyl-phenylether 2300 4-Nitroaniline 2300 4-Nitroaniline 140 4,6-Dinitro-2-methylphenol 140 4-Bromophenyl-phenylether 140 Hexachlorobenzene 0.66 Pentachlorophenol 6 Pentachlorophenol 6 Phenanthrene 10000 Carbazole 0i-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.178 0.231 0.208 0.211 0.175 0.139	0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45 1.1	0.45 U 0.45 U 0.45 U 1.1 U	0.45 0.45 0.45	0.37 U 0.37 U	0.37 0.37	0.37 U 0.37 U	0.37	0.39 U	
4-Chlorophenyl-phenylether Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene Hexachlorophenol 6 Pentachlorophenol 6 Phenanthrene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.231 0.208 0.211 0.175 0.139	0.45 U 0.45 U 1.1 U 1.1 U	0.45 0.45 1.1	0.45 U 0.45 U 1.1 U	0.45 0.45	0.37 U	0.37	0.37 U			0.39
Fluorene 2300 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene Anthracene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.208 0.211 0.175 0.139	0.45 U 1.1 U 1.1 U	0.45 1.1	0.45 U 1.1 U	0.45						
4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Carbazole Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.211 0.175 0.139	1.1 U 1.1 U	1.1	1.1 U						0.39 U	0.39
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Anthracene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.175 0.139	1.1 U					0.37	0.37 U	0.37	0.39 U	0.39
N-Nitrosodiphenylamine (1) 140 4-Bromophenyl-phenylether 0.66 Pentachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.139] 1.1		1.1	0.93 U	0.93	0.93 U	0.93	0.98 U	0.98
4-Bromophenyl-phenylether Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Anthracene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	1	U.45 U	0.45	1.1 U	1.1	0.93 U	0.93	0.93 U	0.93	0.98 U	0.98
Hexachlorobenzene 0.66 Pentachlorophenol 6 Phenanthrene 10000 Anthracene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9		- 4- 11	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Pentachlorophenol 6 Phenanthrene 10000 Anthracene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	1	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Phenanthrene 10000 Anthracene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.182	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Anthracene 10000 Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.132	1.1 U	1,1	1.1 U	1.1	0.93 U	0.93	0.93 U	0.93	0.98 U	0.98
Carbazole 5700 Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.165	0.45 U	0.45	0.45 U	0.45	0.11 J	0.37	0.1 J	0.37	0.39 U	0.39
Di-n-butylphthalate 5700 Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.152	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.04 J	0.37	0.39 U	0.39
Fluoranthene 2300 Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.145	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Pyrene 1700 Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.215	0.22 JB	0.45	0.22 JB	0.45	0.062 JB	0.37	0.067 JB	0.37	0.082 JB	0.39
Butylbenzylphthalate 1100 3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.198	0.45 U	0.45	0.45 U	0.45	0.3 J	0.37	0.36 J	0.37	0.046 J	0.39
3,3'-Dichlorobenzidine 2 Benzo(a)anthracene 0.9	0.178	0.45 U	0,45	0.45 U	0.45	1.1	0.37	0.81	0.37	0.041 J	0.39
Benzo(a)anthracene 0.9	0.175	0.45 U	0.45	0.45 U	0.45	· 0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
	0.092	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Chrysene	0.162	0.45 U	0.45	0.45 U	0.45	0.54	0.37	0.58	0.37	0.39 U	0.39
	0.145	0.45 U	0.45	0.45 U	0.45	0.61	0.37	0.65	0.37	0.39 U	0.39
bis(2-Ethylhexy)phthalate 49	0.32	0.45 U	0.45	0.45 U	0.45	0.04 J	0.37	0.37 U	0.37	0.39 U	0.39
Di-n-octyl phthalate 1100	0.185	0.45 U	0.45	0.45 U	0.45	0.37 U	0.37	0.37 U	0.37	0.39 U	0.39
Benzo(b)fluoranthene 0.9	0.188	0.45 U	0.45	0.45 U	0.45	0.75	0.37	0.9	0.37	0.056 J	0.39
Benzo(k)fluoranthene 0.9	0.205	0.45 U	0.45	0.45 U	0.45	0.23 J	0.37	0.26 J	0.37	0.39 U	0.39
Benzo(a)pyrene 0.66	0.162	0.45 U	0.45	0.45 U	0.45	0.59	0.37	0.6	0.37	0.39 U	0.39
Indeno(1,2,3-cd)pyrene 0.9	0.234	0.45 U	0.45	0.45 U	0.45	0.26 J	0.37	0.44	0.37	0.39 U	0.39
Dibenzo(a,h)anthracene 0.66	0.198	0.45 U	0.45	0.45 U	0.45	0.058 JB	0.37	0.079 JB	0.37	0.39 U	0.39
Benzo(g,h,i)perylene		0.45 U	0.45	0.45 U	0.45	0.39 B	0.37	0.64 B	0.37	0.39 U	0.39
Petroleum hydrocarbons	0.224	1		† 		† · · · · · · · · · · · · · · · · · · ·		1		 	
Total Est. Conc. of TIC	0.224	4	88	5.	18	5.0	 6	5.0	12	6.3	 5
Dilution Factor	0.224	 	<u> </u>	 		 	<u> </u>	3.0	<u> </u>	0.5	-
Method:TCL Semivolatiles	0.224		i	 		 		 		 	-

Geographical Location			B	15	E	35	В	5
Sample			B5-SB0*	I-A01RE	B5-SB0	1-A01RE	B5-SB	01-A02
Sample Type								
Batch#			9501	G587	9501	G587	95010	G587
Prep#			95GF	20035	95GF	20035	95GF	0035
RFW#			00	07	Oi	08	00)8 ~
Sample Depth (bgs)		.,					-	
Dilution Factor			1.9	00	1.	00	1,0	00
Matrix			St	oil	S	oil	so	oil
Units	mg/kg	mg/kg	. mg	/kg	. mg	ı/kg	mg	/kg
Sampling Date			1/1	1/95	1/1	1/95		1/95
Analysis Date			2/10	0/95	2/1	1/95	2/10)/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result	
Phenol	10000	0.234	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
bis(2-Chloroethyl) ether	0.66	0.32	0.39 U	0.39	0.4 U	0.4	0.39 U	0,39
2-Chlorophenol	280	0.241	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,3-Dichlorobenzene	5100	0.175	0.39 U	0.39	0.4 U	0.4	0.39 U	0,39
1,4-Dichlorobenzene	570	0.158	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,2-Dichlorobenzene	5100	0.188	0.39 U	0,39	0.4 U	0.4	0.39 U	0.39
2-Methylphenol	2800	0.221	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,2'-oxybis(1-Chloropropane)		0.231	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Methylphenol	2800	0.426	0.39 U	0.39	0.4 U	0.4	0.39 Ú	0.39
N-Nitroso-di-n-propylamine	0.66	0.264	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Hexachloroethane	6	0.175	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Nitrobenzene	28	0.244	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Isophorone	1100	0.129	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Nitrophenol		0.231	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4-Dimethylphenol	1100	0.158	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
bis(2-Chloroethoxy) methane	1	0.201	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4-Dichlorophenol	170	0.145	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,2,4-Trichlorobenzene	68	0.317	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Naphthalene	230	0.277	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Chloroaniline	230	0.096	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Hexachlorobutadiene	1	0.152	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Chloro-3-methylphenol	10000	0.102	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Methylnaphthalene		0.287	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Hexachlorocyclopentadiene	400	0.119	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4,6-Trichlorophenol	62	0.185	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4,5-Trichlorophenol	5600	0.155	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98
2-Chloronaphthalene		0.271	0.39 U	0.39	.0.4 U	0.4	0.39 U	0.39
2-Nitroaniline		0.201	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98
Dimethylphthalate	10000	0.145	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Acenaphthylene		0.198	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,6-Dinitrotoluene	1	0.172	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
3-Nitroaniline		0.172	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98
Acenaphthene	3400	0.221	0.1 J	0.39	0.4 U	0.4	0.39 U	0.39
2,4-Dinitrophenol	110	0.152	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98
4-Nitrophenol		0.248	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98

MAIN POST SOIL BORING SEMIVOLATILES

Geographical Location			В	5	В	5	B!	5	
Sample			B5-SB01	-A01RE	B5-SB01	-A01RE	B5-SB0	1-A02	
Sample Type	1								
Batch#			95010	3587	9501	G587	95010	3587	
Prep#	1		95GP	0035	95GP	0035	95GP	0035	
RFW#			00	7	00	08	00	8	
Sample Depth (bgs)									
Dilution Factor		,	1.0	30	1.0	00	1.0	00	
Matrix			soil		Sc		soil		
Units	mg/kg	mg/kg	mg/kg		mg		mg/kg		
Sampling Date	1 10 10		1/11/95			1/95	1/11/95		
Analysis Date	<u> </u>		2/10/95		2/11/95		2/10		
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	
			Result		Result		Result		
Dibenzofuran		0.215	0.06 J	0.39	0.4 U	0.4	0.39 U	0.39	
2,4-Dinitrotoluene	1	0.191	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Diethylphthalate	10000	0.178	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
4-Chlorophenyl-phenylether	1.5555	0.231	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Fluorene	2300	0.208	0.074 J	0.39	0.4 U	0.4	0.39 U	0.39	
4-Nitroaniline	- 2000	0.211	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98	
4,6-Dinitro-2-methylphenol	+	0.175	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98	
N-Nitrosodiphenylamine (1)	140	0.139	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
4-Bromophenyl-phenylether		0.175	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Hexachlorobenzene	0.66	0.182	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Pentachlorophenol	6	0.132	0.98 U	0.98	0.99 U	0.99	0.98 U	0.98	
Phenanthrene		0.165	0.3 J	0.39	0.4 U	0.4	0.39 U	0.39	
Anthracene	10000	0.152	0,1 J	0.39	0.4 U	0.4	0.39 U	0.39	
Carbazole		0.145	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Di-n-butylphthalate	5700	0.215	1.8 B	0.39	2.2 B	0.4	0.094 JB	0.39	
Fluoranthene	2300	0.198	0.21 J	0,39	0.4 U	0,4	0.39 U	0.39	
Pyrene	1700	0.178	0.2 J	0.39	0.4 U	0.4	0.39 U	0.39	
Butylbenzylphthalate	1100	0.175	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
3,3'-Dichlorobenzidine	2	0.092	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Benzo(a)anthracene	0.9	0.162	0.047 J	0.39	0.4 U	0.4	0.39 U	0.39	
Chrysene	.9	0.145	0.056 J	0.39	0.4 U	0.4	0.39 U	0.39	
bis(2-Ethylhexy)phthalate	49	0.32	0.39 U	0.39	0.19 J	0.4	0.39 U	0.39	
Di-n-octyl phthalate	1100	0.185	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Benzo(b)fluoranthene	. 0.9	0.188	0.12 J	0.39	0.4 U	0.4	0.39 U	0,39	
Benzo(k)fluoranthene	0.9	0.205	0.12 J	0.39	0.4 U	0.4	0.39 U	0.39	
Benzo(a)pyrene	0.66	0.162	0.08 J	0.39	0.4 U	0.4	0.39 U	0.39	
Indeno(1,2,3-cd)pyrene	0.9	0.234	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Dibenzo(a,h)anthracene	0.66	0.198	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Benzo(g,h,i)perylene		0.224	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	
Petroleum hydrocarbons									
Total Est. Conc. of TIC			10.	.68	12	2.2	4.8	85	
Dilution Factor									
Method:TCL Semivolatiles			 				1		

Geographical Location		M-A	ОС3	M-A	OC3	M-A	OC3	M	16	M	16
Sample		MPA3-S	B01-A02	MPA3-S	B01-C02	MPA3-SI	B02-A02	MP16-S	B01-A01		B01-A02
Sample Type				Dup	licate		*				
Batch#		9412	G130	9412	G130	94120	3155	9412	G155	9412	G155
Prep#		94G1	TS484	94G1	TS484	94GT	S484		TS484		S484
RFW#		0	01	0(02	00	13		01		02
Sample Depth (bgs)					T						
Dilution Factor		1.	00	1.	00	1.0	00	1.	00	1.	00
Matrix		S	oil	S	oil	so	oil	s	oil		oil
Units	mg/kg	mg	/kg	mg	/kg	mg/	/kg	mo	ı/kg		ı/kg
Sampling Date			4/94		4/94	12/1			5/94		5/94
Analysis Date		12/2	2/94	12/2	2/94	12/2	2/94		2/94		2/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
								•			
% Solids		90.1	0.10	90.1	0.10	93.0	0.1	86.1	0.10	77.9	0.10
Silver	110	0.43 U	0.43	0.52 U	0.52	0.69	0.42	0.40 U	0.40	0.60 U	0.60
Aluminum		3000	1.8	3580	2.2	4020	1.8	6840	1.7	11900	2.6
Arsenic	20	2.8	0.31	3.4	0.27	4.2	0.33	8.8	0.31	16.0	2.0 *
Barium	700	14.4	0.14	11.6	0.17	12.5	0.14	36.3	0.13	29.7	0.20
Beryllium	1	0.34	0.072	0.39	0.087	0.63	0.069	0.84	0.067	0.80	0.10
Calcium		310	1.6	406	1.9	226	1.5	1500	1.5	. 1200	2.2
Cadmium	1	0.61 U	0.61	0.74 U	0.74	0.59 U	0.59	0.57 U	0.57	0.86 U	0.86
Cobalt		0.72	0.51	1.4	0.61	1.5	0.49	5.0	0.47	2.8	0.70
Chromium		39.9	1.2	45.2	1.4	61.0	1.1	54.6	1.1	59.5	1.6
Copper	600	1.9	0.43	1.9	0.52	1.7	0.42	24.2	0.40	11.7	0.60
Iron		15000	0.42	18900	0.50	21700	0.40	21300	0.39	36200	0.58
Mercury	14	0.09 U	0.09	0.073 U	0.073	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12
Potassium		1760	18.5	1950	22.3	4240	17.7	2990	17.2	3660	25.7
Magnesium		690	6.9	760	8.3	1490	6.6	1670	6.4	2340	9.6
Manganese		13.8	0.11	19.6	0.13	15.6	0.10	74.5	0.10	37.7	0.15
Sodium		17.4	2.4	21.6	2.9	18.6	2.3	283	2.2	232	3.3
Nickel	250	1.9	0.58	2.5	0.70	. 3.0	0.55	8.0	0.54	5.4	0.81
Lead	400	8.3	2.7 *	28.6	2.4 *	11.5	2.9	35.3	5.4 *	16.3	1.7
Antimony	14	2.1 U	2.1	2.5 U	2.5	2.0 U	2.0	1.9 U	1.9	2.9 U	2.9 *
Selenium	63	0.17·U	0.17	0.18	0.15	0.19 U (0.19	0.67	0.17	0.96	0.22
Thallium	2	0.21 U	0.21	0.19 U	0.19	0.23 U	0.23	0.21 U	0.21	0.27 U	0.27
Vanadium	370	28.0	0.38	28.4	0.46	32.9	0.36	37.6	0.35	43.5	0.53
Zinc	1500	19.1	0.38	25.3	0.46	30.8	0.36	93.0	0.35	42.1	0.53
Cyanide	1100	0.48 U	0.48	0.45 U	0.45	- -	-				
Dilution Factor		* = 1	0.0	* = 1	0.0			· * = ;	20.0	* = 5	5.00
Method:TAL Metals, Cyan	ide										-

MAIN POST SOIL BORING INORGANICS

Geographical Location		М	18	M	18	M	18	M	18	M	18
Sample		M18-SE	306-A02	MP18-S	B01-A01		B01-A02	MP18-S			B02-A02
Sample Type	1										
Batch#		9501	G587	9501	G632	9501	G632	9501	G632	9501	G632
Prep#		95G1	S013	95G1	rs038	95G1	S038	95GT	S038	95G1	rs038
RFW#		0	06	0	03	0	04	01	05	0	06
Sample Depth (bgs)											
Dilution Factor		1.	00	1.	00	1.	00	1.	00	1.	00
Matrix		S	oil	s	oil _	soil		S	oil	s	oil
Units	mg/kg	mg	/kg	mg	/kg	· mg	ı/kg	mg	ı/kg	mg	g/kg
Sampling Date		1/1	1/95	1/1:	2/95	1/1:	2/95		2/95		2/95
Analysis Date		1/1:	3/95	1/3	0/95	1/3	0/95	1/30	0/95	1/3	0/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		72.1	0.10	86.0	0.10	84.0	0.10	87.6	. 0.10	80.5	0.10
Silver	110	0.57 U	0.57								
Aluminum		6130	3.9								
Arsenic	20	5.8	0.44								
Barium	700	31.0	0.18								
Beryllium	1	0.07 U	0.07								
Calcium		11100	· 1.9								
Cadmium	1	0.66 U	0.66								
Cobalt		6.3	0.53								
Chromium		35.3	1.1								
Copper	600	218	0.92								
Iron		17700	0.57	`	ı						
Mercury	14	0.61	0.11	-					_		
Potassium		2190	15.6	,							
Magnesium		3380	7.9						[
Manganese		168	0.21								
Sodium		181	4.4						-		
Nickel	250	12.6	0.96								
Lead	400	127	4.6 *								
Antimony	14	2.5 U	2.5								
Selenium	63	0.78	0.35								
Thallium	2	0.16 U	0.16								
Vanadium ·	370	27.3	0.48								
Zinc	1500	72.6	0.44								
Cyanide	1100										
Dilution Factor		*=:	20.0					- ,			
Method:TAL Metals, Cyan	ide										ı

MAIN POST SOIL BORING INORGANICS

Geographical Location	· ·	M	18	M	18	. м	18	M	18) M	18
Sample		MP18-S	B03-A01		B03-A02		B07-A01		B24-A01		B24-A02
Sample Type											7
Batch#		9501	G632	9501	G632	9501	G632	9501	G632	9501	G632
Prep#		95G1	TS038		S038		TS038		TS038		TS038
RFW#		0	07		08		09		01	ļ	02
Sample Depth (bgs)	1 -		[I	-	<u> </u>	<u>_</u>	<u> </u>
Dilution Factor		1.	00	1.	00	1.	00	1.	00	1	.00
Matrix		s	oil	S	oil		oil		oil		oil
Units	mg/kg	mg	ı/kg	mg/kg			ı/kg		j/kg		g/kg
Sampling Date			2/95	1/12/95			2/95		2/95		2/95
Analysis Date		1/3	0/95	1/30	0/95	1/30/95			0/95		0/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
0(0 - 1) -1 -			,								
% Solids	 	83.1	0.10	85.0	0.10	87.7	0.10	86.3	0.10	80.8	0.10
Silver	110										
Aluminum	 		Ļ			,		,			
Arsenic	20		·								
Barium	700										
Beryllium	1										
Calcium											
Cadmium	1					(l
Cobalt											
Chromium											
Copper	600										
Iron	 										-
Mercury Potassium	14								•		·
		 									ļ .
Magnesium	-			'							-
Manganese Sodium		-									
	050										} -
Nickel Lead	250					· · ·	-				
	400		~ ,								
Antimony Selenium	14			<u> </u>							J
Seienium Thallium	63										
	370										· · · · · · · · · · · · · · · · · · ·
Vanadium										-	·
Zinc	1500										
Cyanide	1100				`						
Dilution Factor											
Method:TAL Metals, Cyan	iae								l. <u>.</u>		

MAIN POST SOIL BORING INORGANICS

Geographical Location	1	М	18	М	18	М	18	M	18	M	18
Sample		MP18-S	B25-A01	MP18-S	B25-A02	M18-SE	304-A01	M18-SE	304-A02	M18-SE	805-A01
Sample Type	1			, ,	•						
Batch#		95010	3G656	95010	G656	9501	G587	9501	G587	9501	G587
Prep#		95G1	S038	95GT	S038		S013		S013	95GT	
RFW#		0	01	00	02		03		04	00	
Sample Depth (bgs)				· · · · · ·							
Dilution Factor		1.	00	1.	00	1.	00	1.	00	1.	00
Matrix		s	oil	S	oil	S	oil	s	oil	s	oil
Units	mg/kg	mg	ı/kg	mg	/kg	mg	ı/kg	mg	ı/kg	mg	/kg
Sampling Date			3/95	1/13/95		1/11/95			1/95		1/95
Analysis Date		1/3	0/95	1/30/95		1/13/95		1/1:	3/95	1/1:	3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		83.0	0.10	90.4	0.40	00.7	0.40	,	0.40	07.4	0.40
Silver	110	63.0	0.10	88.4	0.10	92.7	0.10	90.8	0.10	87.4	0.10
Aluminum	110								· · · · · ·		
Arsenic	20										
Barium	700							<u> </u>			
Beryllium	1										-
Calcium	 '							 			
Cadmium	1			-			<u> </u>	·		· ·	
Cobalt	<u> </u>										
Chromium	-					<u>-</u>				<u> </u>	*
Copper	600				1				·····		
Iron				-				 			
Mercury	14										
Potassium	1							·			
Magnesium	<u> </u>				-		-	-			· ·
Manganese					•					7	
Sodium									-		
Nickel	250					,					
Lead	400										
Antimony	14										-
Selenium	63				•			<u> </u>			
Thallium	2	.2									
Vanadium	370										
Zinc	1500				,						
Cyanide	1100										
Dilution Factor											
Method:TAL Metals, Cyar	nide	•									

MAIN POST SOIL BORING INORGANICS

Geographical Location			18	М	18	М	18	, 8	11	E	31
Sample		M18-SE	305-A02	M18-SE	306-A01	MP18-M\	V03-A01	B1-SB	01-A01	B1-SB	01-A02
Sample Type			, , , ,					-			
Batch#	1	9501	G587	9501	G587	9505	G825	9512	G527	9512	G527
Prep#		95GT	S013	95GT	S013	95G	1713		S007		TS007
RFW#		0(02	0(05		06	00			02
Sample Depth (bgs)									l		i –
Dilution Factor		1.	00	1.	00	1.	00	1.	00	· 1.	00
Matrix		S	oil	S	oil	Wa	iter	S			oil
Units	mg/kg	mg	ı/kg	mg	ı/kg		/kg	mg			g/kg
Sampling Date			1/95	1/1			0/95		/95		9/95
Analysis Date		1/13	3/95	1/1:			4/95	1/1			1/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Resuit	Limit	Result	Limit	Result	Limit	Result	Limit
										.,	
% Solids		79.8	0.10	87.0	0.10	85.9	0.10	88.0	0.10	79.0	0.10
Silver	110			Ú				0.51 U	0.51	0.53 U	0.53
Aluminum		-					-	4780	3.4	4680	3.5
Arsenic	20							5.8	0.31	4.7	0.32
Barium	700	-					-	6.5	0.16	6.3	0.17
Beryllium	1	-			-			0.54	0.061	0.75	0.063
Calcium								170	1.7	96.1	1.8
Cadmium	1							0.59 U	0.59	0.61 U	0.61
Cobalt				_				0.79	0.47	1.4	0.49
Chromium	1							64.6	0,96	84.8	0.99
Copper	600							2.0	0.82	2.0	0.84
Iron								14700	0.51	17400	0.53
Mercury	14							0.095 U	0.095	0.094 U	0.094
Potassium								3110	13.9	2730	14.3
Magnesium								1130	7.0	1070	7.2
Manganese								9.4	0.18	8.2	0.19
Sodium	<u> </u>							15.1	3.9	12.6	4.0
Nickel	250							2.0	0.86	3.2	0.89
Lead	400							7.7	0.54 *	8.4	0.56 *
Antimony	14				-	-		2.2 U	2.2	2.3 U	2.3
Selenium	63	-	-					0.17 U	0.17	0.18 U	0.18
Thallium	2						-	0.21 U	0.17	0.22,U	0.10
Vanadium	370	-				·		43.9	0.43	94.1	0.44
Zinc	1500				,			20.2	0.49	19.6	0.40
Cyanide	1100	· · · · · ·				0.53 U	0.53	0.32 U	0.39	0.63 U	0.40
Dilution Factor	 					0.00 0	0.00	0.32 U		* = ;	
Method:TAL Metals, Cyar	ide								2.00		2.00

MAIN POST SOIL BORING INORGANICS

Geographical Location	ή	B	12	В	2	В	3	В	3	В	4
Sample		B2-SB	01-A01	B2-SB0	01-A02	B3-SB0)1-A01	B3-SB	01-A03	B4-SB	01-A01
Sample Type											
Batch#	1	9501	G500	9501	G500	95010	3500	9501	G500	9512	G527
Prep#		95GT	S007	95GT	S007	95GT	S007	95G1	S007	95G1	S007
RFW#	•	00	01	00	02	. 00	3	0(04	O	03 .
Sample Depth (bgs)											
Dilution Factor		1.	00	1.0	00	1.0	00	1.	00	1.	00
Matrix		S	oil	so	oil	so	il	s	oil ,	S	oil
Units	mg/kg	mg	/kg	mg	/kg	mg	/kg	mg	ı/kg	mg	/kg
Sampling Date		1/6	/95	1/6/95		1/6/	95		/95		/95
Analysis Date		1/10	0/95	1/10	0/95	1/10/95		1/10	0/95	· 1/1	1/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		81.2	0.10	80.1	0.10	88.1	0.1	73.3	0.10	88.8	0.10
Silver	110	0.88	0.64	0.86	0.66	0.73	0.59	1.1	0.70	0.52 U	0.52
Aluminum		9900	0.55	12700	. 5.7	7630	5.1	15200	6.0	4290	3.5
Arsenic	20	21.7	3.2 *	22.9	3.3 *	6.2	0.60 *	9.8	0.72 *	4.5	0.32
Barium	700	23.7	0.43	20.1	0.45	28.0	0.40	26.0	0.47	22.7	0.17
Beryllium	1	0.99	0.31	1.4	0.32	0.78	0.29	2.0	0.34	0.53	0.063
Calcium ·		427	2.5	343	2.6	921	2.3	511	2.7	642	1.8
Cadmium	1	0.57 U	0.57	0.60 U	0.60	0.53 U	0.53	0.63 U	0.63	0.60 U	0.60
Cobalt		1.6	0.55	1.1	0.58	1.0	0.52	0.97	0.61	0.98	0.48
Chromium		109	0.62	154	0.64	48.4	0.57	269	0.68	39.9	0.98
Copper	600	6.4	0.47	5.7	0.49	4.1	0.44	7.8	0.52	4.0	0.83
Iron		36800	0.96	39800	1.0	19700	0.90	55800	1.1	12900	0.52
Mercury	14	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11	0.13 U	0.13	0.11 U	0.11
Potassium		5840	169	9290	175	3090	157	15400	185	2580	14.2
Magnesium		3030	5.0	4400	5.2	1920	4.7	7320	5.5	1290	7.2
Manganese		34.2	0.41	29.9	0.43	90.7	0.38	9.9	0.45	18.4	0.19
Sodium		24.9	3.2	23.8	3.3	22.3	2.9	51.6	3.5	18.7	4.0
Nickel	250	8.4	2.6	5.5	2.7	5.1	2.4	6.6	2.9	2.8	0.88
Lead .	400	6.8	0.20	5.9	0.21	15.2	0.94 **	4.2	0.23	19.5	2.8 *
Antimony	14	4.4 U	4.4	4.6 U	4.6	4.1 U	4.1	4.8 U	4.8	2.3 U	2.3
Selenium	63	1.8	0.18	1.7	0.19	0.64	0.17	1.9	0.20	0.25	0.18
Thallium	2	0.22 U	0.22	0.23 U	0.23	0.21 U	0.21	0.25 U	0.25	0.22 U	0.22
Vanadium	370	39.4	0.60	53.9	0.62	29.1	0.55	50.3	0.65	19.9	0.44
Zinc	1500	39.9	0.57	39.1	0.60	35.0	0.53	81.4	0.63	24.1	0.40
Cyanide	1100	0.51 U	0.51	0.39 U	0.39	0.35 U	0.35	0.59 U	0.59	0.35 U	0.35
Dilution Factor		*=	10.0	*=1	10.0	* = 2.00,	** = 5.00	* =	2.00	*=	10.0
Method:TAL Metals, Cyar	nide								}		

Geographical Location		_	14		34		35	E	35
Sample		B4-SB	01-A02	B4-SB	01-C01	B5-SB	01-A01	B5-SB	01-A02
Sample Type				· Dup	licate				
Batch#		9512	G527	9512	G527	9501	G587	9501	G587
Prep#		95GT	S007	95GT	S007	95G1	S013	95G1	S013
RFW#		0(04	O	05	0	07	0	08
Sample Depth (bgs)			·						
Dilution Factor		1.	00	1.00		1.	00	1.	00
Matrix		S	oil	soil		s	oil	s	oil
Units	mg/kg	mg	/kg \	mg	/kg	mg	ı/kg	mo	/kg
Sampling Date		1/9	/95		/95		1/95		1/95
Analysis Date	-	1/1′	1/95	1/11/95		1/1:	3/95		3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids	1	74.3	0.10	89.3	0.10	84.4	0.10	83.1	0.10
Silver	110	0.45 U	0.10	0.47 U	0.10	0.49 U	0.10	0.50 U	0.10
Aluminum	 	11700	3.1	4570	3.2	8020	3.3	8450	3.3
Arsenic	20	10	0.72 *	3.7	0.27	7.4	0.74 *	8.0	{0.76}
Barium	700	32.3	0.72	/ 21.9	0.27	28.3	0.14	21.7	0.76}
Beryllium	1	1.7	0.055/	0.53	0.15	0.76	0.059	0.89	0.060
Calcium	 	104	1.5	601	1.6	738	1.7	517	1.7
Cadmium	1	0.53 U	0.53	0.55 U	0.55	0.57 U	0.57	0.58 U	0.58
Cobalt	<u> </u>	2.5	0.42	0.58	0.43	2	0.45	1.5	0.36
Chromium	+	143	0.42	42.8	0.43	<u></u> 54.8	0.45	80.4	0.48
Copper	600	8.0	0.73	2.7	0.75	6.2	0.79	3.4	0.80
Iron		41400	0.45	13800	0.75	21200	0.49	25700	0.50
Mercury	14	0.13 U	0.13	0.083 U	0.083	0.09 U	0.49	0.09 U	0.09
Potassium	17	11800	12.4	2940	12.8	3770	13.4	3990	13.5
Magnesium	· · · · · ·	5430	6.2	1440	6.5	1840	6.8	1880	6.8
Manganese	 	9.5	0.16	16.7	0.17	46	0.18	14.0	0.18
Sodium	+	40.5	3,5	13.7	3.6	33.9	3.8	22.9	3.8
Nickel	250	5.0	0.76	2.4	0.79	33.9	0.83	22.9 3.5	0.84
Lead	400	3.8	0.76	9.7	1.2 *	19.0	2.0 **	5.7	0.20
Antimony	14	2.0 U	2.0	2.1 U	2.1	2.2 U	2.0	2.2 U	2.2
Selenium	63	0.20 U	0.20	0.28	0.15	0.67	0.29	1.2	0.30
Thallium	2	0.25 U	0.25	0.28 0.18 U	0.15	0.67 0.14 U	0.29	0.14 U	0.30
Vanadium	370	23.7	0.23	19.0	0.10	35.1	0.14	46.9	
Zinc	1500	60.2	0.35	24.0	0.40	38.1	0.41	30.3	0.42 0.38
Cyanide	1100	0.45 U	0.35	0.49 U	0.36	0.35 U	0.35	30.3 0.39 U	0.38
Dilution Factor	1100			* = 5		* = 2.00,		0.39 U * = :	
Method:TAL Metals, Cyan				= ;	J.UU	= ≥.00,	= 10.0	*=;	2,00

Geographical Location		M-A			OC3		OC3	M-A	OC3		16		16
Sample		MPA3-S	B01-A02	MPA3-S	B01-C02	MPA3-S	B02-A02	MPA3-SB	02-A02DL	MP16-S	B01-A01	MP16-SB	01-A01DL
Sample Type				Dupl	icate								
Batch#		9412	G130	9412	G130	9401	G155	9401	G155	9401	G155	9401	G155
Prep#		94GF	1090	94GF	21090	94GF	21090	94GF	1090	94GF	21090	94GF	21090
RFW#		00)1	00	02	00)3	00	03	0	01	00	1DL
Sample Depth (bgs)													
Dilution Factor		1.	00	1.0	00	1.	00	10	0.0	10	0.0	10	00
Matrix		S	oil	St	oil	S	oil	S	oil	s	oil	s	oil
Units	mg/kg	mg	/kg	mg	/kg	mg	/kġ	mg	/kg	mg	g/kg	mg	J/kg
Sampling Date		12/1	4/94	12/1	4/94		5/94		5/94 ·		15/94		5/94
Analysis Date		1/3	/95	1/3	/95	1/3	/95	1/3	/95	1/3	3/95		1/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
									· · · · · · · · · · · · · · · · · · ·				
alpha-BHC		0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
beta-BHC		0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
delta-BHC		0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
gamma-BHC (Lindane)	0.52	0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
Heptachlor	0.15	0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
Aldrin	0.04	0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
Heptachlor epoxide		0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
Endosulfan I	340	0.0018 U	0.0018	0.0018 U	0.0018	0.0017 U	0.0017	0.017 U	0.017	0.019 U	0.019	0.19 U	0.19
Dieldrin	0.042	0.0037 U	0.0037	0.0036 U	0.0036	0.0035 U	0.0035	0.035 U	0.035	0.12	0.038	0.38 U	0.38
4,4'-DDE	2	0.044	0.0037	0.011	0.0036	0.022	0.0035	0.035 U	0.035	.1 C	0.038	0.65 CD	0.38
Endrin	17	0.0037 U	0.0037	0.0036 U	0.0036	0.0035 U	0.0035	0.035 U	0.035	0.038 U	0.038	0.38 U	0.38
Endosulfan II	340	0.0037 U	0.0037	0.0036 U	0.0036	0.0035 U	0.0035	0.035 U	0.035	0.038 U	0.038	0.38 U	0.38
4,4'-DDD	3	0.024	0.0037	0.0097	0.0036	0.016	0.0035	0.035 U	0.035	1.5 C	0.038	1.1 CD	~0.38
Endosulfan sulfate		0.0037 U	0.0037	0.0036 U	0.0036	0.0035 U	0.0035	0.035 U	0.035	0.04 U	0.038	0.38 U	0.38
4,4'-DDT	2	0.035 P	0.0037	0.017	0.0036	0.085	0.0035	.073 P	0.035	0.71 C	0.038	.62 D	0.38
Methoxychlor	280	0.018 U	0.018	0.018 U	0.018	0.02 U	0.017	0.17 U	0.17	0.19 U	0.19	1.9 U	0.38
Endrin ketone		0.0037 U	0.0037	0.0036 U	0.0036	0.0035 U	0.0035	0.035 U	0.035	0.038 U	0.038	0.38 U	0.38
Endrin aldehyde		0.0037 U	0.0037	0.0036 U	0.0036	0.0035 U	0.0035	0.035 U	0.035	0.038 U	0.038	0.38 U	0.38
alpha-Chlordane		0.0018 U	0.0018	0.0018 U	0.0018	0.0052	0.0017	0.017 U	0.017	0.042	0.019	0.19 U	0.19
gamma-Chlordane		0.0018 U	0.0018	0.0014 JP	0.0018	0.0035 P	0.0017	0.017 U	0.017	0.033 P	0.019	0.19 U	0.19
Toxaphene	0.1	0.18 U	0.18	0.18 U	0.18	0.17 U	0.17	1.7 U	1.7	1.9 U	1.9	19 U	19
Aroclor-1016	0.49	0.037 U	0.037	0.036 U	0.036	0.035 U	0.035	0.35 U	0.35	0.38 U	0.38	3.8 U	3.8
Aroclor-1221	0.49	0.073 U	0.073	0.072 U	0.072	0.07 U	0.07	0.7 U	0.7	0.77 U	0.77	7.7 U	7.7
Aroclor-1232	0.49	0.037 U	0.037	0.036 U	0.036	0.035 U	0.035	0.35 U	0.35	0.38 U	0.38	3.8 U	3.8
Aroclor-1242	0.49	0.037 U	0.037	0.036 U	0.036	0.035 U	0.035	0.35 U	0.35	0.38 U	0.38	3.8 U	3.8
Aroclor-1248	0.49	0.037 U	0.037	0.036 U	0.036	0.2 P	0.035	.25 JDP	0.35	0.38 U	0.38	3.8 U	3.8
Aroclor-1254	. 0.49	0.037 U	0.037	0.036 U	0.036	0.035 U	0.035	0.35 U	0.35	0.38 U	0.38	3.8 U	3.8
Aroclor-1260	0.49	0.037 U	0.037	0.036 U	0.036	0.035 U	0.035	0.35 U	0.35	0.38 U	0.38	3.8 U	3.8
Method:TCL Pesticides/PCBs		1							<u> </u>		†		



Geographical Location	1	М	16		16	М	18	M	18	F	31	i i	31
Sample		<u> </u>	B01-A02		01-A02DL	√M18-SE		M18-SB0		_	01-A01		01-A02
Sample Type	<u> </u>								- TOLDE	D1-0D	01-701	D1-0D	01-702
Batch#	<u> </u>	9401	G155	9401	G155	9501	G587	9501	G587	9501	G527	9501	G527
Prep#			21090		21090		20050	95GF			20028		20028
RFW#			02		2DL		06	006			0020		0020
Sample Depth (bgs)	<u> </u>				,		<u> </u>						<u> </u>
Dilution Factor		1.0	00	10	0.0 -	1	00	• 10	0.0	1	.00	1	00
Matrix			 oil		oil		oil	S			oil		oil
Units	mg/kg	mg			/kg		/kg		/kg		J/kg		ı/kg
Sampling Date	"	12/1			5/94		1/95		//95		9/95	. 1/9	
Analysis Date	1	1/3			3/95		/95	2/2			8/95		B/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
										1,004,0		- NOOUN	Carrice
alpha-BHC	1	0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
beta-BHC		0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
delta-BHC		0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
gamma-BHC (Lindane)	0.52	0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
Heptachlor	0.15	0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
Aldrin	0.04	0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
Heptachlor epoxide	<u> </u>	0.0021 U	0.0021	0.021 U	0.021	0.03 P	0.0023	.038 DP	0.023	0.0019 U	0.0019	0.0021 U	0.0021
Endosulfan I	340	0.0021 U	0.0021	0.021 U	0.021	0.0023 U	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
Dieldrin	0.042	0.0042 U	0.0042	0.042 U	0.042	0.0046 U	0.0046	0.046 U	0.046	0.0038 U	0.0038	0.0042 U	0.0042
4,4'-DDE	2	0.1	0.0042	.07 D	0.042	0.11	0.0046	.077 D	0.046	0.0038 U	0.0038	0.0042 U	0.0042
Endrin	17	0.0042 U	0.0042	0.042 U	0.042	0.0046 U	0.0046	0.046 U	0.046	0.0038 U	0.0038	0.0042 U	0.0042
Endosulfan II	340	0.0042 U	0.0042	0.042 U	0.042	0.0046 U	0.0046	0.046 U	0.046	0.0038 U	0.0038	0.0042 U	0.0042
4,4'-DDD	3	0.2	0.0042	.16 D	0.042	0.46 UX	0.0046	4.6 UX	0.046	0.0038 U	0,0038	0.0042 U	0.0042
Endosulfan sulfate		0.0042 U	0.0042	0.042 U	0.042	0.0046 U	0.0046	0.046 U	0.046	0.0038 U	0.0038	0.0042 U	0.0042
4,4'-DDT	2	0.072	0.0042	.063 D	0.042	0.032	0.0046	.038 JDP	0.046	0.0038 U	0.0038	0.0042 U	0.0042
Methoxychlor	280	0.021 U	0.021	0.21 U	0.21	0.023 U	0.023	0.23 U	0.23	0.019 U	0.019	0.021 U	0.021
Endrin ketone		0.0042 U	0.0042	0.042 U	0.042	0.0046 U	0.0046	0.046 U	0.046	0.0038 U	0.0038	0.0042 U	0.0042
Endrin aldehyde		0.0042 U	0.0042	0.042 U	0.042	0.0046 U	0.0046	0.046 U	0.046	0.0038 U	0.0038	0.0042 U	0.0042
alpha-Chlordane		0.0096	0.0021	0.021 U	0.021	0.0078	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
gamma-Chlordane		0.0088 P	0.0021	0.021 U	0.021	0.02 P	0.0023	0.023 U	0.023	0.0019 U	0.0019	0.0021 U	0.0021
Toxaphene	0.1	0.21 U	0.21	2.1 U	2.1	0.23 U	0.23	2.3 U	2.3	0.19 U	0.19	0.21 U	0.21
Aroclor-1016	0.49	0.042 U	0.042	0.42 U	0.42	0.046 U	0.046	0.46 U	0.46	0.038 U	0.038	0.042 U	0.042
Aroclor-1221	0.49	0.083 U	0.083	0.83 U	0.83	0.092 U	0.092	0.92 U	0.92	0.076 U	0.076	0.084 U	0.084
Aroclor-1232	0.49	0.042 U	0.042	0.42 U	0.42	0.046 U	0.046	0.46 U	0.46	0.038 U	0.038	0.042 U	0.042
Aroclor-1242	0.49	0.042 U	0.042	0.42 U	0.42	0.046 U	0.046	0.46 U	0.46	0.038 U	0.038	0.042 U	0.042
Aroclor-1248	0.49	0.042 U	0.042	0.42 U	0.42	0.046 U	0.046	0.46 U	0.46	0.038 U	0.038	0.042 U	0.042
Aroclor-1254	0.49	0.042 U	0.042	0.42 U	0.42	0.046 U	0.046	0.46 U	0.46	0.038 U	0.038	0.042 U	0.042
Aroclor-1260	0.49	0.042 U	0.042	0.42 U	0.42	0.046 U	0.046	0.46 U	0.46	0.038 U	0.038	0.042 U	0.042
Method:TCL Pesticides/PCBs													

,_

Geographical Location		В	2	В	2	В	3	B	3	В	4 '	В	4
Sample	,	\ B2-SB0	_	B2-SB0		B3-SB0		B3-SB	_	B4-SB		B4-SB0 ⁴	
Sample Type		_ D2-0B	01-701	DZ-0D(51-710Z	DO-0D	31-701	DO-OD	51-700	5705	01-A01	D+000	HOIDE
Batch#		9501	G500	95010	G500	95010	G500	9501	G500	9501	G527	9501	G527
Prep#		95GP		95GP		95GP		95GF		95GF			20028
RFW#		00		00		000.		00		00			03
Sample Depth (bgs)				`					<i>,</i> ,				
Dilution Factor		1.0	00	1.0	חח	1.0	nn	1.0	00	1.0	00	10	.00
Matrix		so		so		so		S		Sc			oil
Units	mg/kg	mg		mg		mg		., mg		mg			/kg
Sampling Date		1/6		1/6		1/6		1/6		1/9		1/9	
Analysis Date		1/18		1/18		1/18		1/18		1/18		1/18	
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
,,		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
										, , count			
alpha-BHC		0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0,018 U	0.018
beta-BHC		0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
delta-BHC		0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
gamma-BHC (Lindane)	0.52	0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
Heptachlor	0.15	0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
Aldrin	0.04	0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
Heptachlor epoxide		0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.037 U	0.037
Endosulfan I	340	0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0,0018	0.037 U	0.037
Dieldrin	0.042	0.004 U	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0037 U	0.0037	0.037 U	0.037
4,4'-DDE	2	0.004 U	0.004	0.0041 U	0.0041	0.0048 P	0.0037	0.0045 U	0.0045	0.086 P	0.0037	.097 D	0.037
Endrin	17	0.004 U	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0037 U	0.0037	0.037 U	0.037
Endosulfan II	340	0.004 U	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0037 U	0.0037	0.037 U	0.037
4,4'-DDD	3	0.0028 JP	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0096 P	0.0037	0.037 U	0.037
Endosulfan sulfate		0.004 U	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0037 U	0.0037	0.037 U	0.037
4,4'-DDT	2	0.0028 JP	0.004	0.0041 U	0.0041	0.0033 JP	0.0037	0.0045 U	0.0045	0.1 P	0.0037	.11 D	0.037
Methoxychlor	280	0.02 U	0.02	0.02 U	0.02	0.018 U	0.018	0.023 U	0.023	0.018 U	0.018	0.18 U	0.18
Endrin ketone		0.004 U	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0037 U	0.0037	0.037 U	0.037
Endrin aldehyde		0.004 U	0.004	0.0041 U	0.0041	0.0037 U	0.0037	0.0045 U	0.0045	0.0037 U	0.0037	0.037 U	0.037
alpha-Chlordane		0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
gamma-Chlordane		0.002 U	0.002	0.002 U	0.002	0.0018 U	0.0018	0.0023 U	0.0023	0.0018 U	0.0018	0.018 U	0.018
Toxaphene	0.1	0.2 U	0.2	0.2 U	0.2	0.18 U	0.18	0.23 U	0.23	0.18 U	0.18	1.8 U	1.8
Aroclor-1016	0.49	0.04 U	0.04	0.041 U	0.041	0.04 U	0.037	0.045 U	0.045	0.037 U	0.037	0.37 U	0.37
Aroclor-1221	0.49	0.08 U	0.08	0.082 U	0.082	0.07 U	0.074	0.09 U	0.09	0.074 U	0.074	0.74 U	0.74
Aroclor-1232	0.49	0.04 U	0.04	0.041 U	0.041	0.04 U	0.037	0.045 U	0.045	0.037 U	0.037	0.37 U	0.37
Aroclor-1242	0.49	0.04 U	0.04	0.041 U	0.041	0.04 U	0.037	0.045 U	0.045	0.037 U	0.037	0.37 U	0.37
Aroclor-1248	0.49	0.04 U	0.04	0.041 U	0.041	0.04 U	0.037	0.045 U	0.045	0.037 U	0.037	0.37 U	0.37
Aroclor-1254	0.49	0.04 U	0.04	0.041 U	0.041	0.04 U	0.037	0.045 U	0.045	0.037 U	0.037	0.37 U	0.37
Aroclor-1260	0.49	0.04 U	0.04	0.041 U	0.041	0.04 U	0.037	0.045 U	0.045	0.037 U	0.037	0.37 U	0.37
Method:TCL Pesticides/PCBs													

Geographical Location	T	В	4	В	14	В	4	В	5	F	35
Sample		B4-SB	01-A02	B4-SB	01-C01	B4-SB0	1-C01DL	B5-SB	-		01-A02
Sample Type					icate		icate				017102
Batch#		9501	G527	9501		9501		9501	G587	9501	G587
Prep#	T	95GF	0028		20028		20028		20050		20050
RFW#		00			<u> </u>)5		07		08
Sample Depth (bgs)					<u> </u>						
Dilution Factor	. /	1.4	00	1.	00	5.	00	. 1.	00	1.	00
Matrix .		Ş	oil .	, SI	oil	· s	oil		oil		oil
Units	mg/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg		j/kg
Sampling Date		1/9	/95	1/9	/95		/95 .		1/95		1/95
Analysis Date		1/18	3/95	1/18	3/95	1/18	3/95	2/3			1/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
alpha-BHC	'	0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
beta-BHC		0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
delta-BHC		0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
gamma-BHC (Lindane)	0.52	0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
Heptachlor	0.15	0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
Aldrin	0.04	0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
Heptachlor epoxide		0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
Endosulfan I	340	0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
Dieldrin	0.042	0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	0.0039	0.004 U	0.004
4,4'-DDE	2	0.0044 U	0.0044	0.072 P	0.0037	.085 D	0.018	0.028	0.0039	0.004 U	0.004
Endrin	17	0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	0.0039	0.004 U	0.004
Endosulfan II	340	0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	0.0039	0.004 U	0.004
4,4'-DDD	3	0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	0.0039	0.004 U	0.004
Endosulfan sulfate	,	0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	0.0039	0.004 U	0.004
4,4'-DDT	2	0.0044 U	0.0044	0.078 P	0.0037	.092 DP	0.018	0.043	0.0039	0.004 U	0.004
Methoxychlor	280	0.022 U	0.022	0.018 U	0.018	0.092 U	0.092	0.02 U	0.02	0.02 U	0.02
Endrin ketone		0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	0.0039	0.004 U	0.004
Endrin aldehyde		0.0044 U	0.0044	0.0037 U	0.0037	0.018 U	0.018	0.0039 U	· 0.0039	0.004 U	0.004
alpha-Chlordane		0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
gamma-Chlordane		0.0022 U	0.0022	0.0018 U	0.0018	0.0092 U	0.0092	0.002 U	0.002	0.002 U	0.002
Toxaphene	0.1	0.22 U	0.22	0.18 U	0.18	0.92 U	0.92	0.2 U	0.2	0.2 U	0.2
Aroclor-1016	0.49	0.044 U	0.044	0.037 U	0.037	0.18 U	0.18	0.039 U	0.039	0.04 U	0.04
Aroclor-1221	0.49	0.087 U	0.087	0.074 U	0.074	0.37 U	0.37	0.078 U	0.078	0.079 U	0.079
Aroclor-1232	0.49	0.044 U	0.044	0.037 U	0.037	0.18 U	0.18	0.039 U	0.039	0.04 U	0.04
Aroclor-1242	0.49	- 0.044 U	0.044	0.037 U	0.037	0.18 U	0.18	0.039 U	0.039	0.04 U	0.04
Aroclor-1248	0.49	0.044 U	. 0.044	0.037 U	0.037	0.18 U	0.18	0.039 U	0.039	0.04 U	0.04
Aroclor-1254	0.49	0.044 U	0.044	0.037 U	0.037	0.18 U	0.18	0.039 U	0.039	0.04 U	0.04
Aroclor-1260	0.49	0.044 U	0.044	0.037 U	0.037	0.18 U	0.18	0.039 U	0.039	0.04 U	0.04
Method:TCL Pesticides/PCBs			~								

Geographical Location	 		M	2		12	l N	in .		12		in .		10	1	12
Sample	+		MP02-M		MP02-M		MP02-M		MP02-M		MP02-M		N N N N N N N N N N N N N N N N N N N		M	
<u> </u>	1		MPUZ-W	VUT-AUT	MPUZ-M	WU1-AUZ	MPUZ-IVI	VUZ-AUT	MPUZ-M	VUZ-AUZ	MPU2-M	7VU3-AU1	MPU2-M	N03-A02	MP03-M	NU4-AU1
Sample Type Batch#	1		95020	0407	ores	G642	0550	0407	0700			- 1				
L	 					1	9502		9503		9502			G642	9502	
Prep# RFW#	 		95GV		95G\		95GV		95GV		95GV		l U	C054	95GV	
	-		00			01	00		00		00		-	05	00	
Dilution Factor	1		1.0			00	1.		1.0		1.0			00	1.0	
Matrix			wa		Wa		wa		wa		wa		+	ter	wa	
Units	ug/l	ug/l	ug			g/l	ug		uç		ug			g/l ·	<u> </u>	g/l
Sampling Date	1		2/15			/95	2/1		3/8		2/15		1	/95		3/95
Analysis Date	8444	1401				0/95	2/20		3/10		2/2			0/95		1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
77			Result		Result		Result		Result		Result	· · · · · · · · · · · · · · · · · · ·	Result		Result	
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10 [,]	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U .	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	. 10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 Ú	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	['] 3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 Ú	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U -	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10.	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	25	10	33	10	25	10	10	10	10	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 Ü	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.					20) J	10	J	20) J						
Method:TCL Volatiles																

Geographical Location			N	13	N	13	A.	13	i a	/3	Ī.	13		14	Ī Ā	<u></u>
Sample	 			W04-A02	1	W05-A01		W05-A02		W06-A01		W06-A02		W07-A01		W07-A02
Sample Type					1011 00 101		1011 00 101	11007102	1011 00 101	1100 7101	1011 00-101	1100-702	1911 04-161	1101-701	1411-0-4-141	9901-A02
Batch#			9503	G642	9502	G219	9503	G660	9502	G219	9503	G660	9502	G219	9503	G660
Prep#				/C054		/C030		/C055	1	/C030		/C055		/C030		/C055
RFW#				09		03		03		05		01		07		05
Dilution Factor			1.	00	1.	00 .		00		.00		.00		.00		.00
Matrix	1		Wa	ter	Wa	iter		ter	 	ater	· · · · · · · · · · · · · · · · · · ·	ter		ter		ater
Units	ug/l	ug/l	u	g/l		g/i		g/l		g/l	1	g/l	1	g/l	+	g/l
Sampling Date	1			/95		6/95		95	<u> </u>	6/95		9/95		6/95		9/95
Analysis Date			3/10	0/95		1/95		0/95		1/95		D/95		1/95		0/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	
			Result		Result		Result		Result		Result		Result		Result	
													1		111111	
Chloromethane	Ţ — — —	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	` 10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	~6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10 -	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene	ļ	4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	-10	10°U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1 '	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 ·
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 Ų	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1 1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	4 J	10	10 U	10	3 J	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	5 J	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.					30	J	30) J	30) J	30) J	ļ			
Method:TCL Volatiles	LL				l		L		<u> </u>		نــــــــــــــــــــــــــــــــــــــ		l.,			L

Geographical Location			1	Vi4	- N	14	1 N	<u> </u>	M		l M	4	M	là.	l iv	м
Sample				W07-C01		N07-C02	MP04-M		MP04-M		MP04-MV		MP04-M		MP04-M	
Sample Type	+			licate		icate		Blank	Field Rins		1411. 0-1-1411	1400-101	INT. OTTINI	1100-702	Tell 04-lell	103-701
Batch#				2G219		G660	1	G219		G219	95020	2210	9503	G642	9502	G219
Prep#	<u> </u>			VC030	1	C055	95GV		95GV		95GV		95GV		95GV	
RFW#				109		07	0		3334		01)7		16
Dilution Factor	 			.00	1	00	1	00	1.0		1.0		1.0	-		00
Matrix	+			ater		iter	wa		wa		wa		wa		1	ater
Units	ug/l	ug/l		ıg/l		g/l	iug		ug		ug		ug			g/l
Sampling Date	ugn	ug/i		6/95)/95		3/95		3/95	2/16			/95		6/95
Analysis Date				1/95		D/95		1/95	2/2		2/2			0/95		1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
·	- Ctantagra		Result	01142	Result		Result		Result		Result	01142	Result		Result	5,144
			rtodut		rtooun		Troudit		- NOULK		- THOOLIN		Hoodin		Trount	
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	13	10	10	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10.	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	. 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chioroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	27	10	27	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1 1	2.0	10 U	,10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10-	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10 10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U		10 U	10	10 U	10	10 U	10		<u> </u>
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	, 10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone	+	3.9	10 U	10	10 U	10	10 U	10	10 U	, 10 10	10 U	10	10 U	10	10 U	10
Tetrachioroethene	1 1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 10	10 U	10
1,1,2,2-Tetrachloroethane	1000	4.2	10 U	10 10	10 U	10	10 U	10	10 U	10	10 U	10 10	10 U	10	10 U	10
Toluene	 	2.7						10	10 U	10	10 U		10 U	10	10 Ü	10
Chlorobenzene	700	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 10	10 U	10	10 U	10
Ethylbenzene	700	3.1		10	10 U			10	10 U							
Styrene	100	3.8	10 U	10	10 U	10	10 U		10 U	10	10 U	10	10 U	10 10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	、 10	100	10	10 U	10	10 U	10	100	10
Total Est. Conc. of TIC.	 					<u> </u>	ļ		 		 		_		 	
Method:TCL Volatiles		i				<u> </u>					<u> L.,</u>		i	<u> </u>		

Geographical Location			. N	14		<u></u>		15	I N	 15	T N	15	N	15	1 8	1 5
Sample	1			W09-A02		W10-A01		W10-A02	MP05-M			N11-A02		N11-D02		W11-E02
Sample Type	1				1				1011 00 101		1011 00 101	111-702		Biank		sate Blank
Batch#			9503	G660	9502	G238	9503	G660	9502	G238	9503	G660		G660		G660
Prep#	1		95G\	/C055	·	/C032		/C055		/C032	4	C055		C055		/C055
RFW#			0	09	0	10	<u> </u>	11		12	0.			15		16
Dilution Factor			1.	00	1.	00		00		00	1.			00		00
Matrix			wa	iter	W	ater		ter	wa		wa			ter	wa	
Units	ug/l	ug/l	u	g/I	, u	g/l		g/l		g/l>	Lig			g/l		g/l
Sampling Date	_		3/9	/95		7/95		95		7/95	3/9	<u> </u>		/95		9/1 9/95
Analysis Date			3/1	1/95	2/2	2/95		1/95		2/95	3/1			1/95		1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical		Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result		Result		Result		Result		Result	Oital
														-		l
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide	<u> </u>	4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene	<u> </u>	4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	33	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10 ,	10 U	10	10 U	10	. 10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2:4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 [°] U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone	 	3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	130	10	88	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10.	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.																
Method:TCL Volatiles																

Geographical Location	1		M	3	M	3	M	18	N	18	N	18	l N	//8
Sample			MP08-MM	/12-A01	MP08-MV	V12-A02	MP08-M\	W12-C02	MP08-M	W12-D02	MP08-M	W12-E02	MP08-M	W13-A01
Sample Type							Dupi	licate	Trip	Blank	Field Rins	sate Blank	<u> </u>	
Batch#			95020	238	95030	3767	9503	G767	9503	G767	9503	G767	9502	G403
Prep#			95GV0	2033	95GVI	E072	95GV	/E072	95G\	/E072	95GV	/E072	95G\	/C041
RFW#	1		01-	4	00	1	00	03	00	05	00	06	0	01
Dilution Factor			1.0	o o	1.0	0	1.	00	1.	00	1.	00	1.	.00
Matrix			wat	er	wat	er	wa	iter	wa	ater	wa	iter	Wa	ater
Units	ug/l	ug/l	uga	1	ug	/1	uş	g/l	u	g/l	u	g/l	u	g/l
Sampling Date	† - - -		2/17/		3/15			5/95		5/95		5/95		2/95
Analysis Date	_		2/22	/95	3/20	/95	3/20	0/95	3/2	0/95	3/20	0/95	3/1	1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
												,	1	
Chloromethane		7.3	10 U	10	10 U	10	· 10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 Ú	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	. 10 U	10	10 U	10	10 U	10
Chloroethane	1	9.1	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	· 10	10,U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	· 10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	- 10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	. 10	10 U	10	10 U .	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 Ü	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	. 10	~ 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3,3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	· 10 U	10
Tetrachloroethene	1	4.0	40 -	10	52	10	54	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10`U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	_ 10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	· 10 U	10	10 U	10	10 U	10	10 U	10 .	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.														
Method:TCL Volatiles									-	1				

Geographical Location	1		N	18	N	18		18	I N	18	i M	18	. N	18	N	/18
Sample	-		MP08-M	W13-A02	MP08-M	W14-A01		W14-A02		W15-A01	MP08-M\			N15-C01		W15-D01
Sample Type	1		·								100, 00 100			icate	 	Blank
Batch#			9503	G767	9502	G219	9503	G767	9502	G403	9503	G767		G403		G403
Prep#	1.		95GV	/E072	95G\	/C031	95G\	/E072		/C041	1	E072		C042		/C042
RFW#	Ť		01	08	 	18		10		03	0.			05		07
Dilution Factor	1		1.	00		00		00		.00	1,0		1.			.00
Matrix	1		wa	iter	 	iter		ter		ter	wa		wa			ater
Units	ug/l	ug/l	u	g/l	<u>u</u>	g/l	Lice	g/l		g/l	ug			g/l		g/l
Sampling Date	† •			5/95		6/95		5/95		2/95	3/15		2/2			2/95
Analysis Date	1		3/2	1/95	2/2	1/95	3/20	0/95	1	/95	3/20		3/1			1/95
Analysis /	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical		Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result		Result		Result		Result	01142	Result	~ ·
	1															
Chloromethane	1	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 Ú	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 ·	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	20	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 Ü	10	10 U	10	10 U	10
1,2-Dichloroethene (total)	_[4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	. 10	` 10 U	10	10 U	10	10 U	10	10 U	10	37	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	, 10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10,	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	3 J	10	5 J	10	4 J	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone	 	3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	- 10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	4 J	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	8 J	10	33	10	39	10	36	10	10 U	10
Ethylbenzene	700	3.1	10 U	· 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	, 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.	 							J	10	J	15	J	10	J	1	
Method:TCL Volatiles	1															

G	1			10	1	40		40			1					
Geographical Location			N N		M		M		M [*]		M1		M		M	
Sample	}[<u>. </u>	MP08-M		MP12-M	W16-AD1	MP12-M	W16-A02	MP12-M	N17-A01	MP12-MV	V17-A02	MP12-M	V18-A01	MP12-M	N18-A02
Sample Type			Field Rins													
Batch#	ļ		9502			G299	9503		95020		95030		9502		9503	
Prep#	ļ			C042	95GV			/E063	95GV		95GV		95GV			/E063
RFW#			00		00		_	01		03	00		00			05
Dilution Factor	<u> </u>		1.			00		00	1.0		1.0		1.1			00
Matrix	ļ <u>.</u>		wa		. wa			ter	wa		wat		wa	·	wa	
Units	ug/l	ug/l	uç		uç			g/l	นดู		ug		ug			g/l
Sampling Date	1		2/22			0/95		0/95	2/20		3/10		2/20			0/95
Analysis Date	 			/95	 	3/95	 	4/95	2/23		3/14		2/23			4/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	 		Result		Result		Result		Result		Result		Result		Result	
lau	 		40.11	45	40.11	40	4011		4011		42.11			· · · · · · · · · · · · · · · · · · ·		⊢
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane	 	6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane	├	9.1	10 U	10 10	10 U	10	10 U	10 10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7			10 U	10	10 U		10 U	10	10 U	10	10 U	′10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene	<u></u>	4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10 . - 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone	30	4.1	10 U		10 U	10 10	10 U	10	10 U	·10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane Carbon Tetrachloride	2	1.7 .	10 U	10 10	10 U	10	10 U	10 10	10 U	10 10	10 U	10	10 U	10 10	10 U	10
Bromodichloromethane	1 1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1 1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1.2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
	1 1	3.3	10 U		10 U	10	10 U		1		10 U			10		
Benzene	0.2	2.4	10 U	10 10	10 U	10	10 U	10 10	10 U	10 10	10 U	10	10 U	10	10 U	10 10
trans-1,3-Dichloropropene	4	3.1	10 U	10	10 U	10	10 U	10		10	10 U		10 U	10	10 U	10
Bromoform	400		10 U		10 U	10	10 U		10 U	10		10	10 U			
4-Methyl-2-pentanone	400	5.5 3.9	10 U	10			10 U	10	10 U		10 U	10	10 U	10	10 U	10 10
2-Hexanone	 		10 U	10 10	10 U	10 10	10 U	10 10	10 U	10	10 U	10	10 U	10 10	10 U	
Tetrachloroethene	1	4.0				-		• -		10		10	10 U			10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.	 								ļ				ļ		<u> </u>	
Method:TCL Volatiles	1				1	l <u>.</u> .			I							

Geographical Location				114		114		114	M	14	M		M1-	4
Sample			MP14-M	W19-A01	MP14-M	W19-A02	MP14-M	W20-A01	MP14-M	W20-A02	MP14-MV	V20-D02	MP14-MW	/20-E02
Sample Type										-	Trip E	Blank	Field Rinsa	te Blank
Batch#			9502	G299		3G681	9502	G403	9503	G722	95030	3767	9503G	722
Prep#			95G\	/C034	95G\	√E063	95G\	/C042	95GV	/E071	95GV	E072	95GVE	:071
RFW#			0	07	Ö	07	0	10		1	01	14	3	
Dilution Factor		1	1.	.00	1	.00	1.	.00	1.	00	1.0	00	1.00	ō
Matrix			Wa	ater	W	ater	Wa	ater	wa	iter	wat	ter	wate	 ar
Units	ug/l	ug/l	u	g/l	u	g/l	u	g/l	uş	g/l	ug	ı/l	ug/	
Sampling Date			2/2	0/95	3/1	0/95	2/2	2/95		3/95	3/15		3/13/	
Analysis Date			2/2	3/95	3/1	4/95	3/1	/95	3/19	9/95	3/21	/95	3/19/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
Chloromethane	 	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	' 10 U	10
Bromomethane	 	6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane	-	9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U \	10	.10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide	4	4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)	ļ <u> </u>	4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 Ų	10	10 U	10	/10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	_ 10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	. 10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	·10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.					1									
Method:TCL Volatiles											· · · · · · · · · · · · · · · · · · ·	-		

Geographical Location			M14	,		14	l M	16		16	M ²	18	M	18	M ²	18
Sample			MP14-MW			N21-A02	MP16-M		MP16-M		MP18-MV		MP18-M		MP18-MV	
Sample Type	† · · · · · · · · · ·		1011 1 7 1010 0		100 1100		1011 10 1011		10.11 10 1011	7724 7 102	1411 10 1411	100 / 101	1011 10 101	100 7102		Blank
Batch#			9502G4	403	9503	G660	9502	G238	9503	G660	95050	3825	9505	G139	95050	
Prep#			95GVC		95GV		95GV		95GV		95GV			/B148	95GV	
RFW#			012			19		16	000		00		0000		00	
Dilution Factor	Ì	-	1.00		1.1		1.		1.0		1.0			00	1.0	
Matrix			wate		wa		wa		wa		wa		wa		wa	
Units	ug/l	ug/l	ug/l	·	us		ug	·-·	ug	·-·	ug	*-*		g/l	ug	
Sampling Date	ug,.	ug.	2/22/9		3/9		2/1	_	3/9		5/10			7/95	5/10	
Analysis Date			3/1/9		3/1		2/2		3/1		5/20			/95	5/20	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
- unaiyoio	Otanaara		Result	Oital	Result	Oital	Result	Ortal	Result	- Cital	Result	OITEL	Result	Ortal	Result	Oital
			rtoduit		1 (Count		Nosun		rtooun		HOSGIL		TCSuit		Nosun	
Chloromethane	† <u>-</u>	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	, 10	10 U	10	10 U	10	10 U	· 10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10,	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10 .	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	, 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	_ 1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 Ų	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3,3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 _
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U .	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	`-10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	.10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	11	4.0	10 U	10	10 U	10	10.U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	1,0 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40 .	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.								J.	ļ. <u>.</u>				L			
Method:TCL Volatiles			,)

Geographical Location	T	•	M	18	М	18	, M 1	18	Т м	18	M1	8		/18
Sample			MP18-M	N03-E01	MP18-M		MP18-MV			W24-C02	MP18-MW			W24-D02
Sample Type	1 1		Field Rins							licate	Trip B			Blank
Batch#	1		9505		9502	G238	95030	3681	9503		95020			3G681
Prep#			95GV			C032	95GV			/E063	95GV0			VE063
RFW#				14	01		00			11	00:			013
Dilution Factor	1		1.0		1.		1.0			00	1.0			.00
Matrix	i		wa			ter	wat		4	ter	wat			ater
Units	ug/l	ug/l	ug			g/l	ug		u		ug/		· · · · ·	ıg/l
Sampling Date		-3.)/95	2/1		3/10			0/95	2/17/			10/95
Analysis Date			5/20		2/2		3/14			4/95	2/21/			14/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result	UNICE	Result	- Ortal	Result	, ,
	<u> </u>								1.0==		,		1,000.	
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 Ü	10	10 U	, 10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	12	10	7 J	10	8 J	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10°
Chloroform	6 .	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	23	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3,1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	_ 10	10 U	10	10 U	[,] 10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	· 10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 /
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.				١.										
Method:TCL Volatiles														

Geographical Location	T		M1	8	M	18	M1	8	i M	18	M	18	B1	
Sample	· · · · ·		MP18-MV		MP18-M\		MP18-MV			W25-A02	MP18-M		B1-MW01	
Sample Type			Field Rins		Field Rins		1011 10 1010	120 / 101	10.110-101	,		icate	D1788801	
Batch#			95020		9503		95020	238	9503	G681		G238	9502G	160
Prep#	,		95GV		95GV		95GV			/E063		C032	95GVC	
RFW#	 		00		0.		00			16		08	001	
Dilution Factor			1.0		1.		1.0			00	1.		1.00	
Matrix			wai		wa		wat			iter	wa wa		wate	
Units	ug/l	ug/l	ug		ug		· ug			g/l		n/l	ug/	
Sampling Date			2/17		3/10		2/17			9/1 0/95	2/1		2/14/	
Analysis Date	1	i	2/21		3/14		2/21			4/95	2/2		2/19/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result	- Cital	Result	Ortal	Result	Ortage	Result	Ortal
·					riodun		Hooun		Ttosuit		Nosuit	-	Nosuit	
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane	 	6.7	10 U	10	10 U	10	10 U	10	10 U	10	.10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10	10	15	10	10 U	10	10 U	10
Carbon Disulfide	1	4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1-Dichloroethene	1	4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	· 10 U	10
1,2-Dichloroethene (total)	+	4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone	-	4.1	21	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1.1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	/ 10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	. 1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 Ü	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	-10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1.2.2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.	"		100		100	,,,		10	- 100		100	10	10.0	10
Method:TCL Volatiles					 		 	 	 -		+			· · ·
Toured, I OF Foldings	اـــــــــــــــــــــــــــــــــــــ				ــــــــــــــــــــــــــــــــــــــ			•	<u> </u>					

								_	,	·						
Geographical Location			В			12	В	2	В	3		3	В	3	B3	
Sample			B1-MW	01B-A02	B2-MW	02B-A01	B2-MW0	2B-A02	B3-MW0	03B-A01	B3-MW	03B-A02	B3-MW	03B-D01	B3-MW0	3B-D02
Sample Type													Trip	Blank	Trip B	lank
Batch#			9503	G616	9502	G169	95030	G616	95020	G169	9503	G740	9502	G169	9503G	616
Prep#			95GV	C053	. 95GV	C028	95GV	C053	95GV	C028	95GV	E072	95GV	C028	95GV0	2053
RFW#	li		00	08	00	03	01	0	00) 5	00)1	00)7	009	
Dilution Factor			1.0	00	1.1	00	1.0	00	1.0	00	1.0	00	1.	00	1.0	0
Matrix			wa	ter	wa	ter	wa	ler	wa	ter	wa	ter	wa	ter	wate	er
Units	ug/l	ug/l	ug	g/l	uç	g/l	ug	<u>/</u> /I	ug	g/l	ug	g/l	ug	g/l	ug/	1 .
Sampling Date			3/7	/95	2/14	4/95	3/7/	/95	2/14	1/95	3/14	1/95	2/13	3/95	3/7/9	3 5
Analysis Date			3/10)/95	2/19	9/95	3/10	/95	2/19	9/95	3/20)/95	2/19	9/95	. 3/9/9	3 5
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result		Result	
	`			,												
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10 ∖	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5 .	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	· 10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	· 10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone	ļl	4.1	10 U	10	10 U	10	10.U	10	10 U	10	10 U	10	15	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1 1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	.10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10°U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	. 10 U	10	10 Ú	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	. 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	- 10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	\ 10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.	L															
Method:TCL Volatiles														,		

Geographical Location			E	13	I 6	13	B	4	В	4	B5		T =	15
Sample	1.		B3-MW	_		03B-E02	B4-MW(B4-MW0		B5-MW0			05B-A02
Sample Type	<u> </u>			sate Blank		sate Blank		- 1.5 1 1.5 1			DO 111110		50 1111	000 7102
Batch#			9502	G169	9503	G616	9502	G169	95030	G616	95020	169	9503	G616
Prep#			4	C028		C053		C028	95GV		95GV0			C053
RFW#				08		06		10	01		01:			01
Dilution Factor				00		00		00	1.0		1.0			00
Matrix				ter		iter	wa		wa		wat		+	iter
Units	ug/i	ug/l		g/l		g/l		g/l	ug		ug		+	g/l
Sampling Date				3/95	<u> </u>	//95	2/13		3/7		2/13			7/95
Analysis Date	†			9/95		/95	2/19		3/10		2/19/			/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CROL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result	5.144	Result		Result	- Ortage	Result	- Ortal	Result	Oital
			11111111	····			7,004.1		1100011		Ttodan		Itouit	
Chloromethane	`	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane	1	6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	17	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	8 J	10	10 U	10	10 Ú	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Total Est. Conc. of TIC.						_						<u> </u>	†	
Method:TCL Volatiles						` `							 	

Geographical Location	T		N	12	M	2	M	2	M:	,	M2	
Sample				W01-A01	MP02-MV		MP02-MV		MP02-MV		MP02-MM	
Sample Type			1011 02 101	.,,,,,,,,	1011 02 1010	1017102	1011 02-1010	TOLTOI	1411 02-1414	102-1102	1911 02-19191	103-A01
Batch#	1		9502	G197	95030	3642	95020	3197	95030	642	95020	107
Prep#	 		1	30108	95GB		95GB		95GB		95GB(
RFW#			000		00		00		00		93686	
Dilution Factor	 			00	1.0		1.0		1.0		1.0	
Matrix			wa		wat		wat		wat		wat	
Units	ug/l	ug/l	ug		ug		ug		ug		ug	
Sampling Date	l dg/i	ug/i	2/1		3/8/		2/15		3/8/		2/15/	
Analysis Date	 	-		/95	3/24		3/4/		3/24		3/10/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
C	Oldridaid	. 14152	Result	Ortal	Result	Ortal	Result	OITGE	Result	Olice	Result	·
	1		rtoduit		rtocan				Result		1/esuit	
Phenol	4000	7.1	10 U	10	10 U	⁻ 10	10 U	10	10 U	10	12 U	12
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	. 12
2-Chlorophenol	40	7.3	10 U	10	10 U	10	10 U	10	.10 U	10	12 U	12
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	4 J	10	2 J	10	12 U	12
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2-Methylphenol		6.7	10 U	10	10 U	10	10 U	10	10 U	10	. 12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
4-Methylphenol		12.9	10 U	10	10 U	10	3 J	10	10 U	10 .	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Hexachloroethane	10	5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Nitrobenzene	10	7.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Isophorone	100	3.9	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2-Nitrophenol		7.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12 .
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Naphthalene		8.4	10 U	10	10 U	10	1 J	10	10 U	10	12 U	12
4-Chloroaniline		2.9	10 U	10	10 U	10	10 U	· 10	10 U	10	12 U	12
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	10 U (10	10 U	10	12 U	12
2-Methylnaphthalene		8.7	10 U	10	10 U	10	2 J	10	2 J	10	12 U	12
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2,4,6-Trichlorophenol		5.6	. 10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2,4,5-Trichlorophenol	700	4.7	25 U	25	25 U	25	24 U	24	24 U	24	30 U	30
2-Chloronaphthalene		8.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2-Nitroaniline		6.1	25 U	25	25 U	25	24 U	24	24 U	24	30 U	30
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Acenaphthylene	10	6.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
3-Nitroaniline		5.2	25 U	25	25 U	25	24 U	. 24	24 U	24	30 U	30
Acenaphthene	400	6.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2,4-Dinitrophenol	40 ,	4.6	25 U	25	25 U	25	24 U	24 -	24 U	24	30 U	30

Geographical Location	1			12	M2	2	M	2	T M:	,	M2	٠ د
Sample	 		MP02-M	W01-A01	MP02-MV		MP02-MV		MP02-MV		MP02-MW	
Sample Type	1		1			1017102	- · · · · · · · · · · · · · · · · · · ·	1027101	1011 02 1010	TOL NOL	1911 02-1919	00-701
Batch#	1		9502	G197	95030	3642	95020	3197	95030	3642	9502G	107 ·
Prep#	1	_		30108	95GB(95GB		95GB		95GB0	
RFW#	 			D1	00		00		00		005	
Dilution Factor	 			00	1.0	-	1.0		1.0		1.0	
Matrix	 			iter	wat		wat		wat		wate	
Units	ug/l	ug/l		g/l	ug		ug		ug		ug/	
Sampling Date				5/95	3/8/		2/15		3/8/		, 2/15/	
Analysis Date		i		1/95	3/24		3/4/		3/24		3/10/	
Analysis	Standard	MDL	Analytical	CRQL.	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result	51142	Result		Result	Ortal	Result	Ortal
	 		rtoodit		TOOUR		1 TOOUN		Nosuit		result	
4-Nitrophenol		7.5	25 U	25	25 U	25	24 U	24	24 U	24	30 U	30
Dibenzofuran		6.5	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Diethylphthalate	5000	₹ 5.4	1 J	10	1 JB	10	1 J	10	1 JB	10	12 U	12
4-Chlorophenyl-phenylether	,	7.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Fluorene	300	6.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
4-Nitroaniline		6.4	25 U	25	25 U	25	24 U	24	24 U	24	30 U	30
4,6-Dinitro-2-methylphenol		5.3	25 U	25	25 U	25	24 U	24	24 U	24	30 U	30
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
4-Bromophenyl-phenylether		5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Hexachlorobenzene	10	5.5	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Pentachlorophenol	1	4.0	25 U	25	25 U	25	24 U	24	24 U	24	30 U	30
Phenanthrene	10	5.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Anthracene	2000	4.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12·
Carbazole		4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U .	12
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Fluoranthene	300	6.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Pyrene	200	5.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	10 Ü	10	10 U	10	12 U	12
3,3'-Dichlorobenzidine ·	60	2.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Chrysene	20	4.4	10 U	10	10 U	10	10 U	10	10 U	. 10	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	2 J	10	1 J	10	10 U	10	10 U	10	12 U	12
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Benzo(b)fluoranthene	2 /	5.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	10 U	. 10	10 U	10	12 U	12
Велzо(а)ругеле	20	4.9	10 U	10	10 U	10	10 U	10	10 U	10	12 U	. 12
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12
Petroleum hydrocarbons												
Total Est. Conc. of TIC		`	4	7			63	3			9	
Dilution Factor												
Method:TCL Semivolatiles												

Geographical Location				12	l N	13	М	3	, , , ,	<u></u>		13	· i	//3
Sample			MP02-MN	N03-A02	MP03-M		MP03-MV			W05-A01	MP03-M	-		W06-A01
Sample Type	1		111111111111		1				1		10.00		00 11	10007101
Batch#			9503	G642	9502	G219	95030	G642	9502	G219	9503	G660	9503	G219
Prep#			95GE		95GE		95GB			30111	95GE			B0111
RFW#			00		00		00			03		03		05
Dilution Factor			1.0			00	1.0			.00	1.0			.00
Matrix			wa		wa		wai		.	ater	wa			ater
Units	ug/ī	ug/l	uç		ug		ug		 	g/l	uç			g/l
Sampling Date				/95	2/10		3/8/			6/95	3/9			6/95
Analysis Date			3/24		3/7		3/24			3/95	3/25		1	3/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result	Ortal	Result	Oital	Result	Ortal
	 		111111111		110000				1100011		- Trooun		TODUK	
Phenol	4000	7.1	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
bis(2-Chloroethyl) ether	10	9.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2-Chlorophenol	40	7.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
1,3-Dichlorobenzene	600	5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
1,4-Dichlorobenzene	75	4.8	10 U	10	11 U	11	11 U	11	10 U	· 10	10 U	10	10 U	10
1,2-Dichlorobenzene	600	5.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2-Methylphenol		6.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10 .
4-Methylphenol		12.9	10 U	10	11 U	11	.11 U	11	3 J	10	10 U	10	. 10 U	10
N-Nitroso-di-n-propylamine /	20	8.0	10 U	10	11 U	11	1,1 U	11	10 U	10	10 U	10	10 U	10
Hexachloroethane	10	5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	- 10
Nitrobenzene	10	7.4	10 U	10	.11 U	11	11 Ü	11	10 U	10	10 U	10	10 U	10
Isophorone ·	100	3.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2-Nitrophenol		7.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,4-Dimethylphenol	100	4.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		6.1	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,4-Dichlorophenol	20	4.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
1,2,4-Trichlorobenzene	9	9.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Naphthalene		8.4	10 U	10	11 U	11	11 U	11	1 J	10	10 U	10	10 U	10
4-Chloroaniline		2.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Hexachlorobutadiene	1	4.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
4-Chloro-3-methylphenol	20	3.1	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2-Methylnaphthalene		8.7	10 U	10	11 U	11	11 U	11	2 J	10	1 J	10	10 U	10
Hexachlorocyclopentadiene	50	3.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,4,6-Trichlorophenol		5.6	10 U	10 、	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,4,5-Trichlorophenol	700	4.7	24 U	24	28 U	28	26 U	26	24 U	24	25 U	25	24 U	24
2-Chloronaphthalene	ļl	8.2	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2-Nitroaniline		6.1	24 U	24	28 U	28	26 U	26	24 U	24 ,	25 U	25	24 U	24
Dimethylphthalate	7000	4.4	10 U	10	11 U	11	11 Ü	11	10 U	10	10 U	10	10 U	10
Acenaphthylene	10	6.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,6-Dinitrotoluene	10	5.2	10 U	10	11 U	11	11 U	11	10 U	_ 10	10 U	10	10 U	· 10
3-Nitroaniline		5.2	24 U	24	28 U	28	26 U	26	24 U .	24	25 U	25	24 U	24
Acenaphthene	400	6.7	10 U	10	11 U	11	11 U	11	2 J	10	2 J	10	10 U	10
2,4-Dinitrophenol	40	4.6	24 U	24	28 Ú	28	26 U	26	24 U	· 24	25 U	25	24 U	24

Geographical Location				12	T N	13 .	M	3	i N	13	M	3	<u> </u>	M3
Sample			MP02-M		MP03-M		MP03-MV			W05-A01	MP03-MN			W06-A01
Sample Type	1		10.02.00		100 00 10		1411 00-1411	TOTAL	1011 00-101	1100-701	1011 03-1011	100-102	1911 03-19	14400-701
Batch#	1		9503	G642	9502	G219	95030	G642	9502	G219	95030	G660	950	2G219
Prep#	1			30172		30111	95GB			30111	95GE			B0111
RFW#			1	05		D1	00			03	0000			105
Dilution Factor	1		1.0			00	1.0			.00	1.0			.00
Matrix	1		wa		- 	iter	wat			ater	wa			ater
Units	ug/l ,	ug/l		g/l	+	g/l	ug			g/l	uç			ıg/i
Sampling Date	 	g	3/8			6/95	3/8/			6/95	3/9			6/95
Analysis Date	1		3/24			7/95	3/24			3/95	3/25			8/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical		Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	- Ctanuara		Result	OITE	Result	Olican	Result	Oitae	Result	OITGE	Result	OITGE	Result	CITUL
			Nosuk		1 (COUNT		Nesun		Nosuit		Nosuk		· Nosuk	
4-Nitrophenol		7.5	24 U	24	28 U	28	26 U	26	24 U	24	25 U	25	24 U	24
Dibenzofuran		6.5	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
2,4-Dinitrotoluene	10	. 5.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Diethylphthalate	5000	5.4	10 U	10	11 U	11	1 JB	· 11	10 U	10	10 U	10	10 U	10
4-Chlorophenyl-phenylether		7.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Fluorene	300	6.3	10 U	. 10	11 U	11	11 U	11	2 J	10	1 J	10	10 U	10
4-Nitroaniline		6.4	24 U	24	28 U	28	26 U	26	24 U	24	25 U	25	24 U	24
4,6-Dinitro-2-methylphenol	1	5.3	24 U	24	28 U	28	26 U	26	24 U	24	25 U	25	24 U	24
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
4-Bromophenyl-phenylether		5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Hexachlorobenzene	10	5.5	10 U	10	11 U	11	11 U	11 ·	10 U	. 10	.10 U	10	10 U	10
Pentachlorophenol	1	4.0	24 U	24	28 U	28	26 U	26	24 U	24	25 U	25	24 U	24
Phenanthrene	10	5.0	10 U	10	11 U	- 11	11 U	11	3 J	10	3 J	10	10 U	10
Anthracene	2000	4.6	10 U	10	11 U	11	11 U	. 11	10 U	10	1 J	10	10 U	10
Carbazole		4.4	10 U	10	11 U	11	11 U	11 ·	1 J	10	10 U	10	10 U	10
Di-n-butylphthalate	900	6.5	10 U	10	11 U	11	11 U	11	, 10 U	10	10 U	10	10 U	10
Fluoranthene	300	6.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Pyrene	200	5.4	10 U	10	11 U	11	11 U	11	10 U	10	1 J	10	10 U	10
Butylbenzylphthalate	100	5.3	10 U	10	11 U	11	11 U	- 11	10 U	10	10 U	10	10 U	10
3,3'-Dichlorobenzidine	60	2.8	10 U	10	11 U	11	11 Ü	11	10 U	10	10 U	10	10 U	10
Benzo(a)anthracene	10	4.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Chrysene	20	4.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	3 J	10
Di-n-octyl phthalate	100	5.6	10 U	10	11 U	11	11 U .	11	10 U	. 10	10 U	10	10 U	10
Benzo(b)fluoranthene	2	5.7	· 10 U	10	11 U	-11	11 U	11	10 U	10	10 U	-10	10 U	10
Benzo(k)fluoranthene	2	6.2	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Benzo(a)pyrene	20	· 4.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	11 U	11	11 U	11.	10 U	10	10 U	10	10 U	10
Dibenzo(a,h)anthracene	20	6.0	10 U	10	11 U	.11	11 U	11	10 U	10	10 U	10	10 U	10
Benzo(g,h,i)perylene	20	6.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	10 U	10
Petroleum hydrocarbons	1	•			Ι.									
Total Est. Conc. of TIC			1		4	j			3	ВJ	43	J	1	8 J
Dilution Factor			1		†						1			
Method:TCL Semivolatiles	 										1	-		

Geographical Location			Ň	13	1 N	14	N	14	M4		i N	14	l N	14
Sample			MP03-M	W06-A02		W07-A01		W07-A02	MP04-MW		MP04-M			W07-E01
Sample Type									Duplic			icate		sate Blank
Batch#			9503	G660	9502	G219	9503	G660	9502G		9503			G219
Prep#			95GE	30174	95GI	30111		30174	95GB0			30174	1 .	30111
RFW#			 	D1		07		05	009		00			12
Dilution Factor			1	00	1.	00		00	1.00		1.			.00
Matrix	 		wa	ter	Wa	iter		iter	wate		wa			ater
Units	ug/l	ug/l		g/i		g/l	ug		ug/l		ug			g/l
Sampling Date	-3			/95		6/95		/95	2/16/		3/9			6/95
Analysis Date		•	3/2!		1'	/95		5/95	3/8/9		3/26			3/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
		ζ.	 		<u> </u>				1,55 4 2.10					-
Phenol	4000	7.1	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2-Chlorophenol	40	7.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	11 Ü	11	11 U	11	11 U	11	12 U	12
2-Methylphenol		6.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
4-Methylphenol		12.9	10 U	10	10 U	110	11 U	11	11 U	11	11 U	11	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Hexachloroethane	10	5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Nitrobenzene	10	7.4	10 U	10	10 U	10	11 U ,	11	11 U	11	11 U	11	12 U	12
Isophorone	100	3.9	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2-Nitrophenol		· 7.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	.11 U	11	11 U	11	11 U	11	12 U	12
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	√ 11 U	11	11 U	11	11 U	11	12 U	12
Naphthalene		8.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
4-Chloroaniline		2.9	10 U	10	10 U	10	11 U	11	11 U	> 11	, 11 U	11	12 U	12
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2-Methylnaphthalene		8.7	10 U	10	10 U	10	11 U	11	· 11 U	11	11 U	11	12 U	12
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10 、	11 U	11	11 U	11	11 U	11	12 U	12
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2,4,5-Trichlorophenol	700	4.7	24 U	24	26 U	26	26 U	26	26 U	26	26 U	26	30 U	30
2-Chloronaphthalene		8.2	10 U	10	10 U	10	11 U	· 11	11 U	11	11 U	11	12 U	12
2-Nitroaniline		6.1	24 U	24	26 U	26	26 U	26	26 U	26	26 U	26	30 U	30
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Acenaphthylene	10	6.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
3-Nitroaniline		5.2	24 Ü	24	26 U	26	26 Ú	26	26 U	26	26 U	26	30 U	30
Acenaphthene	400	6.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2,4-Dinitrophenol	40	4.6	24 U	24	26 U	. 26	26 U	26	26 U	26	26 U	. 26	30 U	30

Geographical Location	1	· · ·		13	M		M				. M	A .		14
Sample			MP03-M		MP04-M	•	MP04-M		MP04-MW	07 004	MP04-MV		MP04-M	
Sample Type	· ·		1911 03-1911	1100-702	INICOTAL	1401-VO1	IAIL 04-IAI	1VU1-AUZ	Duplic		Dupli			
Batch#			9503	GEED	95020	2210	95030	CEED	9502G		95030		<u> </u>	ate Blank
Prep#	+		95GE		95GB		95GE		95GB0		95U30		9502	
RFW#	-		00		9336		9300		93380				95GE	
Dilution Factor	 		1.0		1.0		1.0		1.00		1.0			12
Matrix	 		wa		wa		wa		wate		+			00
Units	ug/t	ug/l	ug		ug						wat			ter
Sampling Date	ug/i	ugn	3/9		2/16		3/9		ug/l 2/16/9		ug 3/9/			g/l
Analysis Date	1		3/25		3/9		3/25		3/8/9		3/9/		<u> </u>	5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		CRQL				/95
rolalysis	Glandard	IVIDL	Result	CROL	Result	CRUL		UKUL	Analytical	CRUL	Analytical	CRQL	Analytical	CRQL
· · · · · · · · · · · · · · · · · · ·	1		Result		Result		Result		Result		Result		Result	
4-Nitrophenol		7.5	24 U	24	26 U	26	26 Ú	26	26 U	26	26 U	26	30 U	30
Dibenzofuran	†	6.5	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Diethylphthalate	5000	5.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Fluorene	300	6.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
4-Nitroaniline	1	6.4	24 U	24	26 U	26	26 U	26	26 U	26	26 U	26	30 U	30
4,6-Dinitro-2-methylphenol		5.3	24 U	24	26 U	26	26 U	26	26 U	26	26 U	26	30 U	30
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
4-Bromophenyl-phenylether		5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Hexachlorobenzene	10	5.5	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Pentachlorophenol	1	4.0	24 U	24	26 U	26	26 U	26	26 U	26	26 U	26	30 U	30
Phenanthrene	10	5.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Anthracene	2000	4.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Carbazole		4.4	10 U	10	10 U	10	11 U	11	.11 U	11	11 U	11	12 U	12
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	11 U	11	11 U	11	-11 U	11	12 U	12
Fluoranthene	300	6.0	10 U	10	10 U	10	11 U	⁷ 11	11 U	11	11 U	11	12 U	12
Рутепе	200	5.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	,11	12 U	12
3,3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Chrysene	20	4.4	10 U	10	10 U	10	.11 U	11	11 U	11	11 U	11	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 Ú	12
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10 、	11 U	11	11 U	11	11 U	11	12 U	12
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11 、	12 U	12
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11	12 U	12
Petroleum hydrocarbons														
Total Est. Conc. of TIC			17	J					2 JA		1		11	JA
Dilution Factor														
Method:TCL Semivolatiles											1			

/27/95

Geographical Location			M	4	l M		l ñ	14	l M	A	M5			15
Sample	 		MP04-MV		MP04-MV	-	MP04-M		MP04-MV		MP05-MW		1	W10-A02
Sample Type			MILOAZAIA	וטאיטטי	INILOA-INIA	VUO-AUZ	IVIP-U4-IVI	VVU9-AU I	IVIPU4-IVIV	VU9-AUZ	MINDO-MIN	TIU-AUT	MIPUD-IVI	VV1U-AUZ
Batch#	1		95020	2210	95030	2642	0502	G219	95030	cen '	9502G	220	0500	G660
Prep#			95GB		95GB		95GE		95GB		95GB0			30174
RFW#	1		9308		9300			16	9308					
Dilution Factor	-		1.0		1.0		L	00	1.0		010			11
Matrix			Wat		wat		wa		, 1.0		1.00			00
Units	110/1	/I	+								wate		Wa	
Sampling Date	ug/l	ug/l	2/16		ug 3/8/			g/l	ug 3/9/		ug/ 2/17/			g/l
			3/9/		3/8/			6/95 /95	3/9/					95
Analysis Date	Ctandard	MDI							I		2/27/		1	6/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result		Result		Result		Result	 -
Phenol	4000	7.1	10 U	10	11 U	11	11 U	11	11 U	11	11 Ü	11	11 U	11
bis(2-Chloroethyl) ether	10	9.7	10 U	10	11 U	11	11 U	11	11 U	11	11 0	11	11 U	11
2-Chlorophenol	40	7.3	10 U	10	11 0	11	11 U	11	11 U	11	11 0	11	11 U	11
1,3-Dichlorobenzene	600	5.3	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
1.4-Dichlorobenzene	75	4.8	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
1.2-Dichlorobenzene	600	5.7	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2-Methylphenol	1	6.7	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2,2'-oxybis(1-Chloropropane)	1	7.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
4-Methylphenol		12.9	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Hexachloroethane	10	5.3	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Nitrobenzene	10	7.4	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Isophorone	100	3.9	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2-Nitrophenol		7.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2,4-Dimethylphenol	100	4.8	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
bis(2-Chloroethoxy) methane		6,1	10 U	10	11 U	11	11 U	11	11 U	11	11 U	· 11	11 U	11
2,4-Dichlorophenol	20	4.4	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
1,2,4-Trichlorobenzene	9	9.6	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Naphthalene		8.4	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
4-Chloroaniline		2.9	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Hexachlorobutadiene	1	4.6	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
4-Chloro-3-methylphenol	20	3.1	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	. 11 U	11
2-Methylnaphthalene		8.7	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Hexachlorocyclopentadiene	50	3.6	10 U	10 .	11 U	11	11 U	11	11 U	11	11 U	11	11 U	/11
2,4,6-Trichlorophenol		5.6	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2,4,5-Trichlorophenol	700	4.7	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U	27
2-Chloronaphthalene		8.2	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2-Nitroaniline		6.1	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U	27
Dimethylphthalate	7000	4.4	10 U	10	11 U	11	11 U	11	11 U	11	11 U ·	11	11 U	11
Acenaphthylene	10	6.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2,6-Dinitrotoluene	10	5.2	10 U	10	11 U	- 11	11 U	11	11 U	11	11 U	11	11 U	11
3-Nitroaniline		5.2	26 U	26	26 U	26	· 28 U	28	26 U	26	27 U	27	27 U	27
Acenaphthene	400	6.7	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2,4-Dinitrophenol	40	4.6	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U) 27

Geographical Location	1		M	14	M-	4		14		14	. M5		M	15
Sample			MP04-M		MP04-MV		MP04-M		MP04-M		MP05-MW			W10-A02
Sample Type		-	1111 5 1 1111		1 0 1 1		1011 0 7 101	1100 7,01	1011 04-1011	100-702	1911 03-19166	10-701	INIT OUT OIL	W 10-702
Batch#			9502	G219	95030	3642	9502	G219	9503	G660 ·	9502G	238	05030	G660
Prep#	-		95GE		95GB			30111		0174	95GB0			30174
RFW#			01		00			16	000	<u> </u>	010			11
Dilution Factor	1			00	1.0			00	·	00	1.00		1.0	
Matrix	· ·		wa		wat			iter	wa		wate		wa	
Units	ug/l	ug/l	ug		ug			g/l	ug		ug/			g/i
Sampling Date	-3.		2/16		3/8/			6/95		/95	2/17/			9/1 1/95
Analysis Date	1		3/9		3/24)/95	3/26		2/27/			6/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		-	Result		Result		Result		Result	01100	Result	Ortal	Result	- Oliver
			 		7,7==4.7		1		1100411		rtoodit	<u> </u>	1 (Oddit	
4-Nitrophenol	1	7.5	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U	27
Dibenzofuran	†	6.5	10 U	10 ·	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
2,4-Dinitrotoluene	10	5.8	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11-	11 U	11
Diethylphthalate	5000	5.4	10 U	10	2 JB	11	11 U	11	11 U	11	11 U	11	11 U	11
4-Chlorophenyl-phenylether		7.0	10 U	10	11 U	11	11 U	11	11 U	. 11	11 U	11	11 U	11
Fluorene	300	6.3	10 U	10	11 U	· 11	11 U	11	11 U	11	. 11 U	11	11 U	11
4-Nitroaniline		6.4	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U	27
4,6-Dinitro-2-methylphenol		5.3	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U	27
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	11 U	11	11 U	11	11 U	11	11 Ü	11	11 U	11
4-Bromophenyl-phenylether		5.3	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Hexachlorobenzene	10	5.5	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Pentachlorophenol	1	4.0	26 U	26	26 U	26	28 U	28	26 U	26	27 U	27	27 U	27
Phenanthrene	10	5.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	- 11 U	11
Anthracene	2000	4.6	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Carbazole		4.4	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	. 11 U	11
Di-n-butylphthalate	900	6.5	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Fluoranthene	300	6.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Pyrene	200	5.4	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Butylbenzylphthalate	100 ^	5.3	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
3,3'-Dichlorobenzidine	60	2.8	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Benzo(a)anthracene	10	4.9	10 U	10	11 U	11	11 U	11	11 Ú	11	11 U	11	11 U	11
Chrysene	20	4.4	10 U	10	11 U	11	11 U.	11	11 U	11	11 U	11	11 U	11
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	3 J	11	11 U	11	11 U	11	11 U `	11	11 U.	11
Di-n-octyl phthalate	100	5.6	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Benzo(b)fluoranthene	2	5.7	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Benzo(k)fluoranthene	2	6.2	10 U	10	11 U	11	11 U	11	1.1 U	11	11 U	11	11 U	11
Benzo(a)pyrene	20	4.9	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Dibenzo(a,h)anthracene	20	6.0	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Benzo(g,h,i)perylene	20	6.8	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11	11 U	11
Petroleum hydrocarbons	 		<u></u>		ļ		L	L					<u> </u>	
Total Est. Conc. of TIC			5	J	ļI		4	J			4 J		8	J
Dilution Factor														
Method:TCL Semivolatiles						_			L l					

Geographical Location				M5	N	15	M	15	N	18		18
Sample				/W11-A01		W11-A02	MP05-M		MP08-M			N12-A02
Sample Type	1						Field Rins		1011 00-1011	77 12-7101	1011 00-101	12-A02
Batch#	1 1		950	2G238	9503	G660	9503		9502	G238	9503	G767
Prep#				B0112		30174	95GE			30112		20263
RFW#	· .			012		13	01		0.		00	
Dilution Factor				1.00		00	1.0			00		00
Matrix				rater		iter	wa			ter	<u> </u>	iter
Units	ug/l	ug/l		ug/l		g/l	ug			g/l		g/l
Sampling Date	-3	~3		17/95		/95	3/9			7/95		5/95
Analysis Date	1			27/95		6/95	3/27			3/95		5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result	- Ontal	Result	Ortal	Result	Oital	Result	OITGE	Result	ONGL
	1		- Traduit		, toodii		, recount		Nosuk		Result	
Phenol	4000	7.1	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
bis(2-Chloroethyl) ether	10	9.7	10 U	10	12 U	12	10 U	10	11 U .	11	11 U	11
2-Chlorophenol	40	7.3	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
1,3-Dichlorobenzene	600	5.3	10 U	10	12 U	12	10 Ü	10	11 U	11	11 U	11
1,4-Dichlorobenzene	75	4.8	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
1,2-Dichlorobenzene	600	5.7	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2-Methylphenol		6.7	10 U	10 -	12 U	12	10 U	, 10	11 U	11	11 U	11 '
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
4-Methylphenol		12.9	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11 、
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Hexachloroethane	10	5.3	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Nitrobenzene	10	7.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Isophorone	100	3.9	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2-Nitrophenol		7.0	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2,4-Dimethylphenol	100	4.8	10 U	10	12 U	12	' 10 U	10	11 U	11	11 U	11
bis(2-Chloroethoxy) methane	ĺ	6.1	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2,4-Dichlorophenol	20	4.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
1,2,4-Trichlorobenzene	9	9.6	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Naphthalene		8.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
4-Chloroaniline		2.9	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Hexachlorobutadiene	1	4.6	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
4-Chloro-3-methylphenol	20	3.1	10 U	10	12 U	12	10 U	10 .	11 U	11	11 U	11
2-Methylnaphthalene		8.7	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Hexachlorocyclopentadiene	50	3.6	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2,4,6-Trichlorophenol		5.6	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2,4,5-Trichlorophenol	700	4.7	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
2-Chloronaphthalene		8.2	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2-Nitroaniline		6.1	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
Dimethylphthalate	7000	4.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Acenaphthylene	10	6.0	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2,6-Dinitrotoluene	10	5.2	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11 .
3-Nitroaniline		5.2	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
Acenaphthene	400	6.7	10 U	10	12 U	12	10 U	10	11 U	11	.11 U	11
2,4-Dinitrophenol	40	4.6	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26

Geographical Location	T		1 1	V15	M	 5	M	5	М	8	M	18
Sample		·	MP05-W	W11-A01	MP05-M	N11-A02	MP05-M	V11-E02	MP08-MV	V12-A01	MP08-M	N12-A02
Sample Type					24,111		Field Rins		 			
Batch#			9503	2G238	9503	G660	95030		95020	3238	9503	G767
Prep#			.1	B0112	95GE		95GE		95GB			0263
RFW#				112	O,		01		01		01	
Dilution Factor				.00		00	1.0		1.0			00
Matrix				ater	wa		wa		Wai			ter
Units	ug/l	ug/l	+	ıg/l	 	g/l	ug		ug			g/l
Sampling Date	ug/i	ugn		17/95	3/9		7 3/9		2/17		 	5/95
Analysis Date	+			27/95	7	3/95	3/27		2/28			5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
Milalysis	Giandara	HIDL	Result	Ortal	Result	ORGE	Result	Ortal	Result	Ortal	Result	Ortal
			Nosuit		· ·		IVESUIT		1 (Count		Nesult	
4-Nitrophenol		7.5	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
Dibenzofuran		6,5	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
2,4-Dinitrotoluene	10	5.8	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Diethylphthalate	5000	5.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
4-Chlorophenyl-phenylether	``	7.0	· 10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Fluorene	300	6.3	10 U	10	12 U	12	10 U	10 .	11 U	11	11 U	11
4-Nitroaniline		6.4	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
4,6-Dinitro-2-methylphenol	1	5.3	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
4-Bromophenyl-phenylether	<u> </u>	5.3	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Hexachlorobenzene	10	5.5	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Pentachlorophenol	1	4.0	26 U	26	31 U	31	26 U	26	26 U	26	26 U	26
Phenanthrene	10	5.0	10 U	10	. 12 U	. 12	, 10 U	10	11 U	11	11 U	11
Anthracene	2000	4.6	10 U	10	.12 U	12	10 U	10	11 U	11	11 U	11
Carbazole		4.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Di-n-butylphthalate	900	6.5	10 U	10	12 U	· 12	10 U	10	11 U	11	11 Ų	· 11
Fluoranthene	300	6.0	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Pyrene	200	5.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Butylbenzylphthalate	100	5.3	10 U	10	12 U	12 .	10 U	10	· 11 U	11	11 U	11
3,3'-Dichlorobenzidine	60	2.8	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Benzo(a)anthracene	. 10	4.9	10 U	10	12 U	12	10 U	10	- 11 U	11	11 U	11
Chrysene	20	4.4	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11 '
bis(2-Ethylhexy)phthalate	30	9.7	2 J	10	12·U	12	10 U	10	11 U	11	11 U	11
Di-n-octyl phthalate	100	5.6	10 U	, 10	12 U	12	10 U	10	11 U	11	11 U	11
Benzo(b)fluoranthene	2	5.7	. 10 U	10	12 U	12	10 U	10	11 U	11	. 11 U	11
Benzo(k)fluoranthene	2	6.2	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Benzo(a)pyrene	20	4.9	10 U	10	12 U	12	10 U	10	11 U	11	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	12 U	12	10 U	.10	11 U	11	11 U	11
Dibenzo(a,h)anthracene	20	6.0	10 U	10	12 U	12	- 10 U	10	11 U	11	11 U	11
Benzo(g,h,i)perylene	20	6.8	10 U	10	12 U	12	10 U	10	11 U	11	11 Ü	11
Petroleum hydrocarbons												
Total Est. Conc. of TIC			3	5 J	37	7 J	9	J	18	J	20	J
Dilution Factor		-				, ,					_	
Method:TCL Semivolatiles	· .		1	··· · · · · · · · · · · · · · · · · ·			1					

Geographical Location			\	18	<u> </u>	A8	M	3		18		18
Sample			MP08-M	W12-C02	MP08-M	W12-E02	MP08-MV		MP08-MW			W13-A02
Sample Type			Dup	licate	+	sate Blank		******	1		1111 00 111	11107102
Batch#			9503	G767	9503	G767	95020	3403	9502	G403	9503	G767
Prep#			95GF	20263		20263	95GB		95GE			20263
RFW#			0	03	<u> </u>	06	00		001			0200
Dilution Factor				00		.00	1.0		1.0			00
Matrix		_		iter		iter	wat		wa			iter
Units	ug/l	ug/l		g/l		g/l	ug		uç			g/l
Sampling Date	-9-			5/95		5/95	2/22		2/22			5/95
Analysis Date				5/95		5/95	3/15		3/16			5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	,	/	Result		Result	Unique	Result	- Oilas	Result	Ortor	Result	ORGL
							rtodut		Rosuk		Nosuk	
Phenol	4000	7.1	10 U	10	~ 10 U ÷	10	11 U	11	11 U	11	11 U	11
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2-Chlorophenol	40	7.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2-Methylphenol		6.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
4-Methylphenol		12.9	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Hexachloroethane	10	5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Nitrobenzene	10	7.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Isophorone	100	3.9	10 U	. 10	10 U	10	11 U	11	11 U	11	11 U	11
2-Nitrophenol		7.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	11 U	11	11 U	11	11 Ü	11
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	11 U	11	11 Ü	11	11 U	11
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Naphthalene		8.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
4-Chloroaniline		2.9	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2-Methylnaphthalene		8.7	10 U	10	10 U	. 10	11 U	11	11 U	11	11 U	11
Hexachlorocyclopentadiene	50	3.6	10 U	10 ·	10 U	10	11 U	11	11 U	11	11 U	11
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2,4,5-Trichlorophenol	700	4.7	26 U	26	26 U.	26	26 U	26	26 U	26	26 U	26
2-Chloronaphthalene		8.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2-Nitroaniline		6.1	26 U	26	26 U	26	26 U	26	26 U	26	, 26 U	26
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Acenaphthylene	10	6.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
3-Nitroaniline		5.2	26 U	26	26 U	26	26 U	26	26 U	26	26 U	26
Acenaphthene	400	6.7	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2,4-Dinitrophenol	40	4.6	26 U	26	26 U	26	26 U	26	26 U	26	26 U	26

Geographical Location	1		M	8	M	18	M8		M	18	M	8
Sample	 		MP08-MV	V12-C02	MP08-M	N12-E02	MP08-MM	/13-A01	MP08-MW	13-A01RE	MP08-M	V13-A02.
Sample Type	 		Dupl			sate Blank			1			
Batch#	 	-	95030		9503	G767	9502G	403	9502	G403	9503	G767
Prep#	1		95GP		95GF		95GB0			30129	95GF	
RFW#			00		00		00		001		C	
Dilution Factor	1		1.0			00	1.0			00	1.	
Matrix	1		wa		wa	ter	wate	эг	wa		wa	·····
Units	ug/l	ug/l	ug		ug		ug/		· ug		•	1/1
Sampling Date			3/15		3/1		2/22/			2/95		5/95
Analysis Date	 	······	4/15			5/95	3/15/	95		6/95		5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
· · · · · · · · · · · · · · · · · · ·			Result		Result		Result		Result		Result	
	1	•										
4-Nitrophenol	1	7.5	26 U	26	26 U	26	26 U	26	26 U	26	26 U	26
Dibenzofuran		6.5	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
2,4-Dinitrotoluene	10	5,8	10 U	10	10 U	.10	11 U	11	11 U	11	11 U	11
Diethylphthalate	5000	5.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Fluorene	300	6.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
4-Nitroaniline		6.4	26 U	26	26 U	26	26 U	26	26 U	26	26 U	26
4,6-Dinitro-2-methylphenol		5.3	26 U	26	26 U	26	26 U	26	26 U	26	26 U	26
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
4-Bromophenyl-phenylether		5,3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Hexachlorobenzene	10	5.5	10 U	10	10 U	· 10	11 U	11	11 U	11	11 U	11
Pentachiorophenol	1	4.0	26 U	26	26 U	26	26 U	26	26 U	26	26 U	26
Phenanthrene	10	5.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Anthracene	2000	4.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Carbazole	1	4.4	, 10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Fluoranthene	300	6.0	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Pyrene	200	5.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
3,3'-Dichlorobenzidine	60	2.8	10 U	10.	10 U	10	11 U	11	11 U	11	11 U	11
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Chrysene	20	4.4	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	2 J	10	2 JB	11	1 JB	11	11 U	11
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	11 U	11	11 Ü	11	11 U	11
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	11 U	11	11 U	11	11 U	11
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	11 Ú	11	11 U	11	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	11 U	11	11 U	.11	11 U	, 11
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	11 U	11	11 U	- 11	11 U	11
Benzo(g,h,i)perylene	20	6.8	10 U	10 🔻	10 U	10	11 U	11	11 U	11	11 U	11
Petroleum hydrocarbons												
Total Est. Conc. of TIC			. 22	l J	10) J	17 .	IA	20	JA		
Dilution Factor												
Method:TCL Semivolatiles												

Geographical Location	-			VI8	N	A8	N	/18	. M8		М	8
Sample			MP08-N	W14-A01	MP08-M	W14-A02		/14-A02RE	MP08-MW		MP08-MV	
Sample Type							1			107101	1411 00-1414	110-7102
Batch#			950	2G219	9503	G767	9503	G767	9502G	403	95030	3767
Prep#	1		95G	B0111	95GF	20263		P0263	95GB0		95GP	
RFW#	†		(018	0	10		10	003	 -	01	
Dilution Factor				.00		00		.00	1.00		1.0	_
Matrix	 	_		ater		iter		ater	wate		Wal	
Units	ug/l	ug/l		ıg/l		a/l		g/l	ug/i		ug	
Sampling Date	-3			6/95		5/95		5/95	2/22/9		3/15	
Analysis Date				3/95		5/95		5/95	3/16/9		4/15	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result	- OILGE	Result	, Ortal	Result	Oital	Result	CROL
			1		† · · · · · · · · · · · · · · · · · ·		TROUGH	· · ·	ROSUR		Nesuit	
Phenol	4000	7.1	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	10 U	10	11 0	11	12 U	12
2-Chiorophenol	40	7.3	10 U	10 .	10 U	10	10 U	10	11 U	11	12 U	12
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	10 U	10	2 J	11	12 U	12
1,4-Dichlorobenzene	75	4.8	3 J	10	3 J	10	3 J	10	5 J	11	4 J	12
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	10 U	10	1 J	11	12 U	12
2-Methylphenol		6.7	10 U	- 10	10 U	10	10 U	10	11 U	11	12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
4-Methylphenol		12.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachloroethane	10	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Nitrobenzene	10	7.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Isophorone	100	3.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2-Nitrophenol		7.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4-Dimethylphenol	100	- 4.8	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	10 U	10	11 U	11 ′	12 U	12
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Naphthalene		8.4	10 U	10	10 U	10	1 J	10	1 J	11	12 U	12
4-Chloroaniline		2.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12_
2-Methylnaphthalene		8.7	1 J	10	1 J	10	10 U	10	2 J	11	1 J	12
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4,5-Trichlorophenol	700	4.7	24 U	24	25 U	25	24 U	24	26 U	26	30 U	30
2-Chloronaphthalene		8.2	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2-Nitroaniline		6.1	24 U	24	25 U	25	24 U	24	26 U	26	30 U	30
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	10 U	10	, 11 U	11	12 U	12
Acenaphthylene	_ 10	6.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
3-Nitroaniline		5.2	24 U	24	25 U	25	24 U	24	26 U	26	30 U	30
Acenaphthene	400	6.7	2 J	10	2 J	10	2 J	10	17	11	14	12
2,4-Dinitrophenol	40	4.6	24 U	24	、 25 U	25	24 U	24	26 U	26	30 U	30

Geographical Location	T : 1		1 8	VI8	M	18	. N	//8	M8		Ma	
Sample	 			W14-A01	MP08-M			/14-A02RE	MP08-MW		MP08-MM	
Sample Type	 		1		11111111111		10 55 1				10 00 1414	7107102
Batch#	 		9502	2G219	95030	G767	9503	G767	9502G	403	95030	3767
Prep#				B0111	95GP			P0263	95GB0		95GP(
RFW#	1		·	118		10	0		003		01:	
Dilution Factor	 			.00	1.0			.00	1.00		1.0	
Matrix			·- ·- ·	ater	Wa			ater	wate		wat	
Units	ug/l	ug/l		ig/l	ug		1	g/i	ug/		uga	
Sampling Date	ug/i	ugn		16/95	3/15			9/1 5/95	2/22/9		3/15/	
Analysis Date	+			3/95	4/15			5/95	3/16/9		4/15/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		CRQL		
Allalysis	Standard	IAIDE	Result	CROL	Result	CROL	Result	CRUL	Analytical	CRQL	Analytical	CRQL
· · · · · · · · · · · · · · · · · · ·	+		Result		Resuit		Result		Result		Result	
4-Nitrophenol	 , 	7.5	24 U	24	25 U	25	24 U	24	26 Ü	26	30 U	30
Dibenzofuran	1	6.5	10 U	10	10 U	\ 10	10 U	10	7 J	11	5 J	12
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Diethylphthalate	5000	5.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Fluorene	300	6.3	10 U	10	10 U	10	10 U	10	9.J	11	7 J	12
4-Nitroaniline	 	6.4	24 U	24	25 U	25	24 U	24	26 U	26	30 U	30
4,6-Dinitro-2-methylphenol	†	5.3	24 U	24	25 U	25	24 U	24	26 U	26	30 U	30
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	10 U .	10	11 U	11	12 U	12
4-Bromophenyl-phenylether	 	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachlorobenzene	. 10	5.5	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Pentachlorophenol	1	4.0	24 U	24	25 U	25	24 U	24	26 U	26	30 U	30
Phenanthrene	10	5.0	10 U	10	10 U	10	10 0	10	11 U	11	12 U	12
Anthracene	2000	4.6	10 U	10	10 U	10	10 U	10	11 0	11	12 U	12
Carbazole	1	4.4	10 U	10	10 U	10	10 U	10	1 J ·	11	12 U	12
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Fluoranthene	300	6.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Pyrene	200	5.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
3.3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	10 U	10	110	11	12 U	12
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Chrysene	20	4.4	10 U	10	10 U	10	10 U	10	1 JB	11	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	10 U	\ 10	11 U	11	12 U	12
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	10`⊍	10		<u> </u>		
Petroleum hydrocarbons	- 20	0.0	100	10	100	10	100	10	11 U	11	12 U	12
Total Est. Conc. of TIC	 			13 J	ļ	<u> </u>		/O J		L		<u> </u>
Dilution Factor	 		 	13 J	142	2 J	 1/	U J	205 J	IA .	89	J
	+		 		 				 	ļ	· · · · · · · · · · · · · · · · · · ·	
Method:TCL Semivolatiles	<u> </u>						<u> </u>		<u> </u>	l		L

Geographical Location	T		l M	18	l N	18	M	8		18	Т м	12
Sample	1		MP08-MN	N15-C01		15-C01RE	MP08-MN			/15-E01RE	MP12-M	
Sample Type				icate		icate	Field Rins			sate Blank	1011 12-1011	10-701
Batch#			9502			G403	9502			G403	9502	2200
Prep#			95GE			30129	95GE			30129	95GE	
RFW#	1			05		RE	0002			RE	01	
Dilution Factor	 		1.0		1.0		1.0			.00		00
Matrix	1		wa		wa		wa			iter -	wa	
Units	ug/l	ug/l		1/I		g/l	ug			g/l		<u>1/l</u>
Sampling Date	g	<u> </u>	2/22			2/95	2/22		+	2/95	2/20	
Analysis Date			3/16			6/95	3/16			6/95		1/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	Gianaara		Result	Oital	Result	Oitar	Result	CITCL	Result	CINQL	Result	CRGL
	 		Rosuit		Nosuit		Nosuit		Result		Resuit	
Phenol	4000	7.1	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2-Chlorophenol	40	7.3	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
1,3-Dichlorobenzene	600	5.3	2 J	10	2 J	10	12 U	12	12 U	12	110	11
1,4-Dichlorobenzene	75	4.8	4 J	10	5 J	10	12 U	12	12 U	12	11 U	11
1,2-Dichlorobenzene	600	5.7	10 U	10	1J	10	12 U	.12	12 U	12	11 U	11
2-Methylphenol		6.7	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
4-Methylphenol		12.9	10 U	10	10 U	. 10	12 U	12	12 U	12	11 U	11
N-Nitroso-di-n-propylamine	20	8,0	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Hexachloroethane	10	5.3	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11 .
Nitrobenzene	10	7.4	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Isophorone	100	3.9	10 U	10	10 U	10	12 U	12	12 Ü	12	11 U	11
2-Nitrophenol		7.0	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	12 U	12	12 U	. 12	11 U	11
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Naphthalene		8.4	10 U	10	10 Ü	10	12 U	12	12 U	12	11 U	11
4-Chloroaniline		2.9	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2-Methylnaphthalene		8.7	10 U	10	2 J	10	12 U	12	12 U	12	11 U	11
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2,4,5-Trichlorophenol	700	4.7	26 U	26	26 U	26	30 U	30	30 U	30	26 U	26
2-Chloronaphthalene		8.2	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2-Nitroaniline	2	6.1	26 U	26	26 U	26	30 U	30	30 U	30	26 U	26
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	12 U	12	12 U	12	11 U .	11
Acenaphthylene	10	6.0	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
3-Nitroaniline		5.2	26 U	26 ,	26 U	26	30 U	30	30 U	30	26 U	26
Acenaphthene (400	6.7	16	10	14	10	12 U	12	12 U	12	11 U	. 11
2,4-Dinitrophenol	40	4.6	26 U	26	26 U	26	30 U	30	30 U	30	26 U	26

Geographical Location	1	_	M	 18	N	18	M	18	N	//8	M.	12
Sample	 		MP08-MV	T .		15-C01RE	MP08-M\			/15-E01RE	MP12-MV	
Sample Type	<u> </u>		Dupi		Dupl		Field Rins			sate Blank	100 12 1010	10-701
Batch#	i i		95020		9502		- 95020			G403	95020	3200
Prep#		•	95GE	-		30129	95GB		1	30129	95GB	
RFW#				05	005			08		RE	000	
Dilution Factor	 	-	1.9			00	1.0			.00	1.0	
Matrix			wa		 	ter	wa			ater	wa	
Units	ug/l	ug/l		<u>1</u> /l		g/l	ug			g/l	ug	
Sampling Date	-9.		2/22		2/2		2/22			2/95	2/20	
Analysis Date		•		5/95	3/10		3/16			6/95	3/11	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CROL
 	Junuaru		Result	01142	Result	Ortac	Result	OitQL	Result	ONGL	Result	ONGL
,			rtocun		- Acount		HOSUK		Nosuk	 	Nesuit	
4-Nitrophenol		7.5	26 U	26	26 U	26	30 U	30	30 U	30	26 U	26
Dibenzofuran		6.5	6 J	- 10	6 J	10	12 U	12	12 U	12	11 U	11
2,4-Dinitrotoluene	10	5,8	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Diethylphthalate	5000	5.4	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
4-Chlorophenyl-phenylether	1	7.0	10 U	10	10 U	10	12 Ü	12	12 U	12	11 U	11 -
Fluorene	300	6.3	8 J	10	8 J	10	12 U	12	12 U	12	11 U	11
4-Nitroaniline	1	6.4	26 U	26	26 U	26	30 U	30	30 U	30	26 U	26
4,6-Dinitro-2-methylphenol		5.3	26 U	26	· 26 U	26	30 U	30	30 U	7 30	26 U	26
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
4-Bromophenyl-phenylether		5.3	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Hexachlorobenzene	10	5.5	10 U	10	10 U	10	12 U	12	. 12 U	12	11 U	11
Pentachiorophenol	1	4.0	26 U	26	26 U	26	30 U	30	30 U	30	26 U	26
Phenanthrene	10	5.0	10 U	10	. 10 U	10	12 U	12	12 U	12	11 U	11
Anthracene	2000	4.6	10 U	10	10 U	10	. 12 U	12	12 U	12	11 U	11
Carbazole		4.4	1J	10	1 J	10	12 U	12	12 U	12	11,U	11
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Fluoranthene	300	6.0	10 U	10	10 U	10	12 U	-12	12 U	12	11 U	11
Pyrene	200	5.4	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Butylbenzylphthalate	100	5,3	10 U	10	10 U ,	10	12 U	12	12 U	12	11 U	11
3,3'-Dichlorobenzidine	60.	2.8	10 U	10	10 U	10	12 U	12	12 U	, 12	11 U	11
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Chrysene	20	4.4	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
bis(2-Ethylhexy)phthalate	30	9.7	1 JB	10	10 U	10	3 JB	12	3 JB	12	4 J	11
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	12 U	12	. 12 U	12	11 U	11
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Benzo(a)pyrene	20	4.9	10 U	10	-10 U	10	12 U	12	12 U	12	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	12 U	12	12 U	12	11 U	11
Petroleum hydrocarbons	1		1 .							 		<u> </u>
Total Est. Conc. of TIC	1		189	J	. 14	3 J	17	JA ·	15	JA	8	<u> </u>
Dilution Factor	1				† - 				 	<u> </u>		
Method:TCL Semivolatiles	:		 						· ·			

92

Geographical Location	T			112	M12	-	M1	2	NA:	12	M1	2
Sample	1			W16-A02	MP12-MW		MP12-MW			W17-A02	MP12-MV	
Sample Type	· ·	·	1011 12 10	107102		11-7101	1011 12-10100	11-AUINE	1411-12-1411	VV 17-AUZ	1917 12-1919	4 10-AU I
Batch#	 		9503	2G681	9502G	200	95020	2200	9502	C691	95020	200
Prep#	 			B0175	95GB0		95GB			30175	95GB	
RFW#				01	003		9338			03	95GB	
Dilution Factor			· · · · · · · · · · · · · · · · · · ·	.00	1.00		1.0			00	1.0	
Matrix			L		wate		wat		wa wa		wat	
Units	ug/l	ug/l		ig/l	ug/l		ug			q/l		
Sampling Date	ug/i			0/95	2/20/9		2/20			9/1 D/95	2/20	
Analysis Date	 			8/95	3/11/9		3/16			3/95	3/11	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		
rulalysis	Clandald	IVIDE	Result	CROL	Result	V CROL	Result	CRUL	Result	CRUL	Analytica! Result	CRQL
	 		Result		Nesult.	-	Result		Result		Result	
Phenol	4000	7.1	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
bis(2-Chloroethyl) ether	10	9.7	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2-Chlorophenol	40	7.3	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
1,3-Dichlorobenzene	600	5.3	11 U	11	12 U	12	11 U	11	12 U	12	11 U	-11
1,4-Dichlorobenzene	75	4.8	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
1,2-Dichlorobenzene	600	5.7	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2-Methylphenoi		6.7	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
4-Methylphenol		12.9	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
N-Nitroso-di-n-propylamine	20	8.0	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Hexachloroethane	10	5.3	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Nitrobenzene	10	7.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Isophorone	100	3.9	11 U	11	12 U	12	11.U	11	12 U	12	11 U	11
2-Nitrophenol		7.0	11 U	11	12 U	12	11 U -	11	12 U	12	11 U	11
2,4-Dimethylphenol	100	4.8	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
bis(2-Chloroethoxy) methane		6.1	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2,4-Dichlorophenol .	20	4.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
1,2,4-Trichlorobenzene	9	9.6	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Naphthalene		8.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
4-Chloroaniline		2.9	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Hexachlorobutadiene	1	4.6	11 U	, 11	12 U	12	11 Ú	11	12 U	12	11 U	11
4-Chloro-3-methylphenol	20	3.1	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2-Methylnaphthalene		8.7	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Hexachlorocyclopentadiene	50	3.6	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2,4,6-Trichlorophenol		5.6	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2,4,5-Trichlorophenol	700	4.7	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28
2-Chloronaphthalene		8.2	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2-Nitroaniline		6.1	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28
Dimethylphthalate	7000	4.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Acenaphthylene	_ 10	6.0	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2,6-Dinitrotoluene	10	5.2	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
3-Nitroaniline		· 5.2	26 U	26	31 U	31	26 U	26	31 U	31	. 28 U	28
Acenaphthene	400	6.7	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
2,4-Dinitrophenol	[,] 40	4.6	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28

Geographical Location	,		N	112	M12		M1	2	M	12	M1	2
Sample			MP12-M	W16-A02	MP12-MW		MP12-MW1		MP12-MV		MP12-MM	
Sample Type	† ·				10.1. 12.11111		1011 12 10120	7.01.1	1011 12 1010	111-702	1011 12-1040	710-7101
Batch#			9502	2G681	9502G2	299	95020	299	95020	G681	95020	299
Prep#		-		B0175	95GB01		95GB(95GB		95GB0	
RFW#	1	,		01	003		00		00		009	
Dilution Factor	- 	1		.00	1.00		1.0		1.0		1.0	
Matrix	1			ater	wate		wat		wa		wat	
Units	ug/l	ug/l		g/l	ug/l		ug		ug		ug	
Sampling Date				0/95	2/20/9		2/20		3/10		2/20/	
Analysis Date				8/95	3/11/9		3/16		3/26		3/11/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result	0.1142	Result	- Cital	Result	Oital
			- Trooun		TTODUIT		ROSER		Rosuit		rvoaun	
4-Nitrophenol	 	7.5	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28
Dibenzofuran		6.5	11 U	11	12 U- `	12	11 U	11	12 U	12	11 U	11
2,4-Dinitrotoluene	10	5.8	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Diethylphthalate	5000	5.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
4-Chlorophenyl-phenylether		7.0	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Fluorene	300	6.3	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
4-Nitroaniline		6.4	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28
4,6-Dinitro-2-methylphenol		5.3	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28
N-Nitrosodiphenylamine (1)	20	4.2	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11 ·
4-Bromophenyl-phenylether		5.3	11 U	11	12 U	· 12	11 U	11	12 U	12	· 11 U	11
Hexachlorobenzene	10	5.5	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Pentachlorophenol	1	4.0	26 U	26	31 U	31	26 U	26	31 U	31	28 U	28
Phenanthrene	10	5.0	11 U	\ 11	12 U	12	11 U	11	12 U	12	11 U	11
Anthracene	2000	4.6	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Carbazole		4.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Di-n-butylphthalate	900	6.5	11 U	11	12 U	12	11 U	11	12 U	12	11 U -	. 11
Fluoranthene	300	6.0	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Pyrene	200	5.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Butylbenzylphthalate	100	5.3	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
3,3'-Dichlorobenzidine	60	2.8	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Benzo(a)anthracene	10	4.9	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Chrysene	20	4.4	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
bis(2-Ethylhexy)phthalate	30	9.7	2 J	11	12 U	12	3 J	11 .	1 J	12	3 J	11
Di-n-octyl phthalate	100	5.6	11 U	11	, 12 U -	12	11 U	11	~ 12 U	12	11 U	11
Benzo(b)fluoranthene	· 2	5.7	11 U	11	12 U -	12	11 U	11	12 U	12	11 U	11
Benzo(k)fluoranthene	2	6.2	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Benzo(a)pyrene	20	4.9	. 11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11 -
Dibenzo(a,h)anthracene	20	6.0	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Benzo(g,h,i)perylene	20	6.8	11 U	11	12 U	12	11 U	11	12 U	12	11 U	11
Petroleum hydrocarbons	1						ļ					l
Total Est. Conc. of TIC	<u> </u>		5	J	52 J		22	J	10	J	3.	ļ
Dilution Factor												
Method:TCL Semivolatiles												

Geographical Location			T M1	12	M1	14	M	14		M14	· M	14
Sample	† †		MP12-MV	V18-A02	MP14-MV			W19-A02		1W20-A01		W20-A02
Sample Type	 				,		1013 1 7 301	77.107.102	1011 1-4-10	100 ZO-AO 1	1411- 1-3-141	**ZU-7/UZ
Batch#	1		95020	3681	95020	3299	9502	GR81	9501	2G403	0503	G722
Prep#	 		95GB		95GB			30175		B0129		30181
RFW#	 		0000		00			07)10	9996	
Dilution Factor			1.0		1.0	· <u>·</u>		00		,00		00
Matrix	 		wat		wat		ł	iter		ater		
Units	ug/l	ug/l	ug		ug		u					iter
Sampling Date	- ug/i	ug/i	3/10		2/20			9/1 D/95		ıg/l 22/95		g/I 3/95
Analysis Date	1		3/26	<u> </u>	3/12			7/95		16/95		3/95 9/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL		CRQL				
rulayala	Otandard	IVIDE	Result	CROL	Result	· CRUL	Analytical Result	CRUL	Analytical	CRQL	Analytical	CRQL
	 		Nosun		Result		Result	-	Result		Result '	
Phenol	4000	7.1	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
bis(2-Chloroethyl) ether	10	9.7	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2-Chlorophenol	40	7.3	12 U	12	11 U .	- 11	12 U	12	10 U	10	10 U	10
1,3-Dichlorobenzene	600	5.3	12 U	、 12	11 U	11	12 U	12	10 U	10	10 U	10
1,4-Dichlorobenzene	75	4.8	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
1,2-Dichlorobenzene	600	5.7	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2-Methylphenol		6.7	12 U	12	11 U	- 11	12 U	12	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
4-Methylphenol		12.9	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
N-Nitroso-di-n-propylamine	20	8.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Hexachloroethane	10	5.3	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Nitrobenzene	10	7.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Isophorone ,	100	3.9	12 U	12	11 U	11 -	12 U	12	10 U	10	10 U	10
2-Nitrophenol		7.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2,4-Dimethylphenol	100	4.8	12 U	12	11 U	11	12 Ü	12	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		6.1	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2,4-Dichlorophenol	20	4.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
1,2,4-Trichlorobenzene	9	9.6	12 U	12 .	11 U	11	12 U	12	10 U	10	10 U	10
Naphthalene		8.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
4-Chloroaniline		2.9	[/] 12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Hexachlorobutadiene	1	4.6	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
4-Chloro-3-methylphenol	20	. 3.1	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2-Methylnaphthalene		8.7	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Hexachlorocyclopentadiene	50	3.6	12 U	12	11 U	11	12 U	12 .	10 U	10	10 U	10
2,4,6-Trichlorophenol		5.6	12 U	12	11 U	11	12 U	12	10 U	10	10 U	- 10
2,4,5-Trichlorophenol	700	4.7	31 U	31	26 U	26	31 U	31	24 U	24	26 U	26
2-Chloronaphthalene		8.2	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2-Nitroaniline		6.1	31 U	31	26 U	26	31 U	31	24 U	24	26 U	26
Dimethylphthalate	7000	4.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Acenaphthylene	10	6.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2.6-Dinitrotoluene	10	5.2	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
3-Nitroaniline		5.2	31 U	31	26 U	. 26	31 U	31	24 U	24	26 U	26
Acenaphthene	400	6.7	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2,4-Dinitrophenol	40	4.6	31 U	31	26 U	26	31 U	31	24 U	. 24	26/U	26

Geographical Location	1		M1	2	M1	4	M1	14	M	14		14
Sample	1 1		MP12-MV		MP14-MV		MP14-MV		MP14-M		MP14-MV	
Sample Type	 		14.11.12.14.14		1	1101101	1911 1-7-1919	10.702	1011 1-3-101	7720-7101	1011 1-7-1010	1420-A02
Batch#			95020	3681	95020	3299	95020	3681	9502	G403	95030	G722
Prep#	 		95GB(95GB		95GB			30129	95GB	
RFW#	 		00		00		000			10	9335	
Dilution Factor	1		1,0		1.0		1.0			00	1.0	
Matrix	 	-	wat		wat		Wa			nter	wa	
Units	ug/l	ug/l	ug		, ug		ug			g/l		g/l
Sampling Date	ug/i	ug/i	3/10		2/20		3/10			9/1 2/95		3/1 3/95
Analysis Date	,		3/26		3/12		3/27			6/95	3/29	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		CRQL
rualysis	Glanuaru	IVIDE	Result	CROL	Result	CROL	Result	CROL	Result	CRUL	Analytical	CRUL
	 		Result		Kesuit		Result		Result		Result	
4-Nitrophenol	1	7.5	31 U	31	26 U	26	31 U	31	24 U	24	26 U	26
Dibenzofuran		6.5	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
2,4-Dinitrotoluene	10	5.8	12 U	12	11 U	11	12 U	12-	10 U	10	10 U	10
Diethylphthalate	5000	5.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
4-Chlorophenyl-phenylether		7.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Fluorene	300	6.3	12 U	12	11 U	11	12 U	12	10 U	10	10 U	- 10
4-Nitroaniline		6.4	31 U	31	26 U	26	31 U	31	24 U	24	26 U	26
4,6-Dinitro-2-methylphenol		5.3	31 U	31	26 U	26	31 U	31	24 U	24	26 U	26
N-Nitrosodiphenylamine (1)	20	4.2	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
4-Bromophenyl-phenylether		5.3	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Hexachlorobenzene	10	5.5	12 U	12 -	11 U	11	12 U	12	10 U	10	10 U	10
Pentachlorophenol	1	4.0	31 U	31	26 U	26	31 U	31	24 U	24	26 U	26
Phenanthrene	10	5.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Anthracene	2000	4.6	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Carbazole		4.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Di-n-butylphthalate	900	6.5	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Fluoranthene	300	6.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Ругеле	200	5.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Butylbenzylphthalate	100	5.3	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
3,3'-Dichlorobenzidine	60	2.8	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Benzo(a)anthracene	10	4.9	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Chrysene	20	4.4	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	12 U	12	3 J	11	12 U	12	1 JB	10	10 U	10
Di-n-octyl phthalate	100	5.6	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Benzo(b)fluoranthene	2	5.7	12 U	12	11 U	11	∖ 12 Ū	12	10 U	10	10 U	10
Benzo(k)fluoranthene	2	6.2	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Benzo(a)pyrene	20	4.9	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	12 U	12	11 U	11	12 U	12	10 U	· 10	10 U	10
Dibenzo(a,h)anthracene	20	6.0	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Benzo(g,h,i)perylene	20	6.8	12 U	12	11 U	11	12 U	12	10 U	10	10 U	10
Petroleum hydrocarbons	<u> </u>											· · ·
Total Est. Conc. of TIC	 				22	J	5	j	12	2 J	28	J
Dilution Factor	† <u>†</u>				 	^			1	- -		
Method:TCL Semivolatiles	1				 				 		1	

Geographical Location	T		M [.]	14	M14			V114	M14	,	M	116
Sample			MP14-M	N20-E02	MP14-MW	21-A01		/W21-A02	MP14-MW2	-		W22-A01
Sample Type				ate Blank			 		14,14,14,14	TAGINE	1011 10-101	**********
Batch#	1		9503		9502G	403	950	3G660	9502G	403	9502	G238
Prep#			95GE		95GB0			B0174	95GB0			30112
RFW#			00		012			019	012 F			16
Dilution Factor	i t		1.0		1.00			1.00	1.00			.00
Matrix			wa		wate			rater	wate			ater
Units	ug/l	ug/l	+	g/l	ug/l			ug/l	ug/l			g/l
Sampling Date	-g/.	~g/·	3/13		2/22/9			9/95	2/22/9			7/95
Analysis Date			3/18		3/16/9	· <u>·</u>		27/95	3/5/9			8/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CROL
·	Gtandard		Result	Olice	Résult	- Ortal	Result	ONGL	Result	CRGL	Result	CRUL
			1,000,		rtoduit		Nosun		iteauit		Result	-
Phenol	4000	7.1	11 U	11	10 U	10	10 U	10	10.U	10	10 U	10
bis(2-Chloroethyl) ether	10	9.7	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2-Chlorophenol	40	7.3	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
1,3-Dichlorobenzene	600	5.3	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
1,4-Dichlorobenzene	75	4.8	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichlorobenzene	600	5.7	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2-Methylphenol		6.7	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
4-Methylphenol		12.9	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
N-Nitroso-di-n-propylamine	20	8.0	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Hexachloroethane	10	5.3	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Nitrobenzene	10	7.4	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Isophorone	100	3.9	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2-Nitrophenol		7.0	11.U	11	10 U	10	10 U	10	10 U	10	10 U	10
2,4-Dimethylphenol	100	4.8	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		6.1	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2,4-Dichlorophenol	20	4.4	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
1,2,4-Trichlorobenzene	9	9.6	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Naphthalene		8.4	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
4-Chloroaniline		2.9	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Hexachlorobutadiene	1	4.6	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
4-Chloro-3-methylphenol	20	3.1	11 U	11	10 U	10	10 U	10	10 Ú	10	10 U	10
2-Methylnaphthalene		8.7	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Hexachlorocyclopentadiene	50	3.6	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2,4,6-Trichlorophenol		5.6	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2,4,5-Trichlorophenol	700	4.7	27 U	27	24 U	24	24 U	24	24 U	24	25 U	25
2-Chloronaphthalene		8.2	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2-Nitroaniline		6.1	27 U	27	24 U	24	24 U	24	24 U	24	25 U	25
Dimethylphthalate	7000	4.4	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Acenaphthylene	10	6.0	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
2,6-Dinitrotoluene	10	5.2	11 U	11	10 U	10	10 U	- 10	10 U	10	10 U	10
3-Nitroaniline		5.2	27 U	27	. 24 U	. 24	24 U	24	24 U	24	25 U	25
Acenaphthene	400	6.7	11 U	11	/10 U	. 10	10 U	10	10 U	10	10 U	10
2,4-Dinitrophenol	40	4.6	27 U	27 `	24 U	24	24 U	24	24 U	24	25 U	25

Geographical Location			M [*]	14	M14		M	14	M14		M1	16
Sample			MP14-MV	N20-E02	MP14-MW2			W21-A02	MP14-MW2		MP16-MV	
Sample Type			Field Rine		***************************************		110 170		100 (4 1010)		100 10 1010	VALT WIL
Setch#	1		95030		9502G4	103	9503	G660	9502G-	403	95020	2228
Prep#	1		95GB		95GB01			30174	95GB0		95GB	
RFW#			00		012	120		19	012 R		01	
Dilution Factor			1.0	_	1.00			00	1.00		1.0	
Matrix	1		wa		water			ater	wate		wa	
Unite	ug/l	ug/i	Ug		ug/l		7000	95E311	1,110,000		11000	
Sampling Date	ugri	Mg/r	3/13		2/22/9			g/l 9/95	ug/l		Ug	
Analysis Date			3/18		3/16/9		2500	7/95	3/5/9		2/17	
Analysis	Standard	MDL	Analytical	CROL	Analytical	CROL	Analytical	CROL			2/28	
	Cianosta	INDL	Result	CRUE,	Reguli	CRUL	Result	CROL	Analytical Result	CRQL	Analytical	CRQL
	+ +		rteeun		Keeun		Result		Sceanit		Result	
4-Nitrophenol	1	7.5	27 U	27	24 U	24	24 U	24	2411	24	0011	0.5
Dibenzofuran		6.5	11 U	11	10 U	10	10 U	10	24 U	24	25 U	25
2.4-Dinitrotoluene	10	5.8	11 0	11	10 U	10	10 U	10	10 U	10	10 U	10
Diethylphthalate	5000	5.4	11 U	11	10 U			- 4-	10 U	10	10 U	10
4-Chlorophenyl-phenylether	5000	7.0	11 U	11		10	10 U	10	10 U	10	10 U	10
Fluorene	300		11 U		10 U	10	10 U	10	10 U	10	10 U	10
4-Nitrogniline	300	6.4		11	10 U	10	10 U	10	10 U	10	10 U	10
	-		27 U	27	24 U	24	24 U	24	24 U	24	25 U	25
4,6-Dinitro-2-methylphenol		5.3	27 U	27	24 U	24	24 U	24	24 U	24	25 U	25
N-Nitrosodiphenylamine (1)	20	4.2	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
4-Bromophenyl-phenylether	40	5.3	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Hexachlorobenzene	10	5.5	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Pentachlorophenol	1	4.0	27 U	27	24 U	24	24 U	24	24 U	24	25 U	25
Phenanthrene	10	5.0	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Anthracene	2000	4.6	11 0	11	10 U	10	10 U	10	10 U	10	10 U	10
Carbazole		4.4	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Di-n-butylphthalate	900	6.5	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Fluoranthene	300	6.0	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Pyrene	200	5.4	11 U	- 11	10 U	10	10 U	10	10 U	10	10 U	10
Butylbenzylphthalate	100	5,3	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
3,3'-Dichlorobenzidine	60	2.8	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(a)anthracene	10	4.9	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Chrysene	20	4.4	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	11 U	11	1 JB	10	10 U	10	10 U	10	10 U	10
Di-n-octyl phthalate	100	5.6	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(b)fluoranthene	2	5.7	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(k)fluoranthene	2	6.2	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(a)pyrene	20	4.9	11 U	. 11	10 U	10	10 U	10	10 U	10	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Dibenzo(a,h)anthracene	20	6.0	11 U	- 11	10 U	10	10 U	10	10 U	10	10 U	10
Benzo(g,h,i)perylene	20	6.8	11 U	11	10 U	10	10 U	10	10 U	10	10 U	10
Petroleum hydrocarbons											1	
Total Est. Conc. of TIC			1		7 J				6.1		83	J
Dilution Factor							1			I	+	
Method:TCL Semivolatiles				-			1				+	

Geographical Location	1 ···· - 1		M	16	I M	18	М.	18	M	18	M18		M [*]	18
Sample				W22-A02	MP18-M	·-	MP18-M	 		W03-A02	MP18-MW		MP18-MV	
Sample Type	 		1011 10 101		1011 10-1011	7100-7101	Field Rins		1411 10-141	1100-702	1411 10-14144	24-701	IAIL IOJAIR	1424-AUZ
Batch#			9503	G660	9505	G825		G825	9505	G139	9502G	238	95020	G681
Prep#	1			30174	95GI		95GI			30112	95GB0		95GB	
RFW#	1			18	000,		00			01 .	001		3332	
Dilution Factor	1			00		00		00		00	1.00		1.0	
Matrix				ter	wa			iter		iter	wate		wa	
Units	ug/l	ug/l		g/l	us		ug			g/I	ug/l		ug	
Sampling Date	- 3.1)/95		0/95		0/95		7/95	2/17/9		.3/10	
Analysis Date			3/2			0/95	5/29			/95	3/1/9		3/28	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result		Result		Result	01142	Result	5.1.42
					1111111		11000.		1100411		rtosan		, ,	
Phenol	4000	7.1	10 U	10	11 U	11	11 U	11	. 10 U	10	10 U	10	11 U	11
bis(2-Chloroethyl) ether	10	9.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2-Chlorophenol	40	7.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
1,3-Dichlorobenzene	600	5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
1,4-Dichlorobenzene	75	4.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
1,2-Dichlorobenzene	600	5.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2-Methylphenol		6.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2,2'-oxybis(1-Chloropropane)		7.0	10 U	. 10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
4-Methylphenol		12.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	2 J	11
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Hexachloroethane	10	5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	_11 U	11
Nitrobenzene	10	7.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Isophorone	100 `	3.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	. 11
2-Nitrophenol		7.0	10 U	· 10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2,4-Dimethylphenol	100	4.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
bis(2-Chloroethoxy) methane		6.1	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2,4-Dichlorophenol	20	4.4	10 Ü	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
1,2,4-Trichlorobenzene	9	9.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Naphthalene		8.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
4-Chloroaniline		2.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Hexachlorobutadiene	1	4.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
4-Chloro-3-methylphenol	20	3.1	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2-Methylnaphthalene	<u> </u>	8.7	10 U	10	11 U .	11	11 U	11	10 U	10	10 U	10	11 U	11
Hexachlorocyclopentadiene	50	3.6	10 U	10	11 U	11	11 U	11	10 Ü	10	10 U	10	11 U	11
2,4,6-Trichlorophenol		5.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2,4,5-Trichlorophenol	700	4.7	24 U	24	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
2-Chloronaphthalene		8.2	10 U	10	11 U	11	11 U	11	10 Ù	10	10 U	10	11 U	11
2-Nitroaniline	/	6.1	24 U	24	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
Dimethylphthalate	7000	4.4	10 U	· 10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Acenaphthylene	10	6.0	10 U	10	11 U	-11	11 U	11	10 U	10	10 U	10	11 U	11
2,6-Dinitrotoluene	10	5.2	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
3-Nitroaniline		5.2	24 U	24 .	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
Acenaphthene	400	6.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2,4-Dinitrophenol	40	4.6	24 U	24	27 U	27	28 U	28	24 U	24	24 U .	24	26 U	26

Geographical Location	_	· ·) M	16	M [*]	18	M [*]	18	M	18	M18	1	l M	IĀ.
Sample	- 	,		N22-A02	MP18-M\		MP18-M		MP18-M\		MP18-MW		MP18-MV	
Sample Type			101111	1122-7-02	1911-10-1911	100-701	Field Rins		1411-10-1411	103-702	IAIL IO-IAIAA	27-71U I	IAIL IO-IAIA	124-1102
Batch#			9503	G660	95050	3835	9505		9505	2130	9502G	220	95020	2691
Prep#	-		95GE		95GI		95GI		95GE		95GB0		95GB	
RFW#	+			18	9301		936		3332		001		9300	
Dilution Factor	-			00	1.0		1.0		1.		1.00		1.0	
Matrix	1		Wa Wa		wa		wa		Wa		wate		wa	
Units		1				· · · · · · · · · · · · · · · · · · ·								
Sampling Date	ug/l	ug/l	U)	_{3/1} /95	 5/10		ug 5/10		ս։ 2/1		ug/ 2/17/		3/10	
	`			7/95	5/30		5/10		3/1					
Analysis Date	Dt	MDI									3/1/9		3/28	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result	<u> </u>	Result		Result		Result		Result		Result	
4-Nitrophenol		7,5	24 U	24	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
Dibenzofuran	 	6.5	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
2,4-Dinitrotoluene	10	5.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Diethylphthalate	5000	5.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11-U	11
4-Chlorophenyl-phenylether	3000	7.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Fluorene	300	6.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
4-Nitroaniline	300	6.4	24 U	24	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
4,6-Dinitro-2-methylphenol		5.3	24 U	24 \	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	. 11
4-Bromophenyl-phenylether	20	5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Hexachlorobenzene	10	5.5	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Pentachlorophenol	1	4.0	24 U	24	27 U	27	28 U	28	24 U	24	24 U	24	26 U	26
Phenanthrene	10	5.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Anthracene	2000	4.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Carbazole	2000	4.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	710	11 U	11
Di-n-butylphthalate	900	6.5	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Fluoranthene	300	6.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Pyrene	200	5.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Butylbenzylphthalate	100	5.3	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
3.3'-Dichlorobenzidine	60	2.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Benzo(a)anthracene	10	4.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Chrysene	20	4.4	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
bis(2-Ethylhexy)phthalate	30 、	9.7	1J	10	90 B	43	2 JB	43	2 JB	10	`4	10	1 J	. 11
Di-n-octyl phthalate	100	5.6	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Benzo(b)fluoranthene	2	5.7	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Benzo(k)fluoranthene	2	6.2	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Benzo(a)pyrene	20	4.9	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
	20	6.0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Dibenzo(a,h)anthracene	20	6.8	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10	11 U	11
Benzo(g,h,i)perylene	20	0.0	100	10	0.26 U	0,26	0.27 U	0.27	0,26 U	0.26		0.27	0.62	0.26
Petroleum hydrocarbons				L							1.3	1		
Total Est. Conc. of TIC	-		88	J	5.	מנ	10) J	29	J	12 .	J	29	, J
Dilution Factor	 						ļ				ļ		ļ	!
Method:TCL Semivolatiles			<u> </u>	L	L		L	<u> </u>	L			1	1	

Geographical Location			M	18	M	118	M	18	M	18	M ⁻	18		18
Sample			MP18-M	W24-C02	MP18-MM	/24-C02RE	MP18-M	N24-E01	MP18-M	N24-E02	MP18-MV	N25-A01		N25-A02
Sample Type			Dup	licate	Dup	licate	Field Rins	ate Blank	Field Rins	ate Blank			1	
Batch#				G681		G681	9502		9502		95020	G238	95020	G681
Prep#				30175		30175		0112	1	0175	95GB		95GE	
RFW#				11		RE)4	0,		00		0.0	
Dilution Factor				.00		.00	1.0		1.		1.0			00
Matrix				ater		ater	wa		wa		wa		-	iter
Units	ug/l	ug/l		g/l		g/l	ug		ug	-	uç		ug	
Sampling Date	Lay.	u g,.		9/1 0/95		0/95	2/17			0/95	2/17	<u> - </u>		0/95
Analysis Date	<u> </u>			7/95		8/95	2/27			7/95	2/28			B/95
Analysis	Standard	MDL	Analytical	·CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
, alaiyata	- Ctandard	W.D.C	Result	01146	Result '	0.142	Result		Result		Result	Ortal	Result	Ortal
·			Troodic		TOOLK		Hoodit		Nosun		ROSUR		Tresunt	
Phenol	4000	7.1	11 U	11	11 U	11	10 ⁻ U	10	11 U	11	10 U	10	12 U	12
bis(2-Chloroethyl) ether	10	9.7	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2-Chlorophenol	40	7.3	11 U	11	11 U	11	10 U	10	11 U .	11	10 U	10	12 U	12
1,3-Dichlorobenzene	600	5.3	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
1,4-Dichlorobenzene	75	4.8	11 U	11	11 U	11	10 U	10 .	11 U	11	10 U	10	12 U	. 12
1,2-Dichlorobenzene	600	5.7	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2-Methylphenol	-	6.7	11 U	11	. 11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	11 U	11	10 U	10	11 U	11	10 U	· 10	12 U	12
4-Methylphenol		12.9	2 J	11	2 J	11	10 U	10	11 U	11	10 U	10	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	11 Ü	11	11 U	11	10 U	10	11 U -	11	10 U	10	12 U	12
Hexachloroethane	10	5.3	11 U	11	11 Ü	11	10 U	10	11 U	11	10 U	10	12 U	12
Nitrobenzene	10	7.4	11 Ü	11	11 U	11	10 U	.10	11 U	11	10 U	10	. 12 U	12
Isophorone	100	3.9	11 U	11	11 U	11	10 U	10	11 U	- 11	-10 U	10	12 U	12
2-Nitrophenol		7.0	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,4-Dimethylphenol	100	4.8	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
bis(2-Chloroethoxy) methane		6.1	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,4-Dichlorophenol	20	4.4	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
1,2,4-Trichlorobenzene	9	9.6	11 U	11	11 Ü	11	10 U	10	11 U	11	10 U	10	12 U	12
Naphthalene		8.4	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
4-Chloroaniline		2.9	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Hexachlorobutadiene	1	4.6	11 Ü	11	11 U	11	10 U	10	11 U	11	10 U	. 10	12 U	12
4-Chloro-3-methylphenol	20	3.1	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2-Methylnaphthalene		8.7	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Hexachlorocyclopentadiene	50	3.6	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,4,6-Trichlorophenol		5.6	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,4,5-Trichlorophenol	700	4.7	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31
2-Chloronaphthalene		8.2	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2-Nitroaniline		6.1	26 U	-26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31
Dimethylphthalate	7000	4.4	11 Ü	11	11 U	11.	10 Ü	10	11 U	11	10 U	10	12 U	12
Acenaphthylene	10	6.0	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,6-Dinitrotoluene	10	5.2	11 U	11	11 U	. 11	10 U	10	11 U	11	10 U	10	12 U	12
3-Nitroaniline	-	5.2	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31
Acenaphthene	400	6.7	11 U	11	11 U	11 .	10 U	10	11 U	11	· 10 U	10	12 U	12
2,4-Dinitrophenol	40	4.6	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31

Geographical Location				118	M	18	M·	18	M.	18	M1	18	M1	8
Sample	1			W24-C02	MP18-MW	/24-C02RE	MP18-M\	N24-E01	MP18-M\	N24-E02	MP18-MV	-	MP18-MV	
Sample Type	 		· 	licate		licate	Field Rins		Field Rins				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Batch#				2G681		G681	9502		9502		95020	G238	95020	3681
Prep#			95G	B0175		30175	95GE		95GE		95GB		95GB	
RFW#		,		11		RE	00		01		00		01	
Dilution Factor				.00		00	1.0		1.0		1.0		1.0	
Matrix	1		 	ater		ater	wa		wa		wai		wat	
Units	ug/l [\]	ug/l	-	ig/l		g/l	uç		ug		ug		ug	
Sampling Date	-3.	~~~		0/95		0/95	2/17		3/10		2/17		3/10	
Analysis Date				7/95		8/95	2/2		3/27		2/28		3/28	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
, c.c.yero			Result	5.1.4.5	Result	0114	Result		Result		Result	- Ortal	Result	
			1,122411		- TOOLIN		- NOSEN				1100011		1,100411	
4-Nitrophenol		7.5	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	. 31
Dibenzofuran		6.5	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
2,4-Dinitrotoluene	10	5.8	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Diethylphthalate	5000	5.4	11 U	11	11·U	11	10 U	10	11 U	11	10 U	10	12 U	12
4-Chlorophenyl-phenylether	1	7.0	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	`− 12 U	12
Fluorene	300	6.3	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
4-Nitroaniline		6.4	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31
4,6-Dinitro-2-methylphenol		5.3	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31
N-Nitrosodiphenylamine (1)	20	4.2	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
4-Bromophenyl-phenylether		5.3	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Hexachlorobenzene	10	5.5	11 U	11	11 U	11	10 U	10	11 U	11	- 10 U	10	12 U	12
Pentachlorophenol	1	4.0	26 U	26	26 U	26	26 U	26	28 U	28	26 U	26	31 U	31
Phenanthrene	10	5.0	11 U	11	11 U	· 11	10 U	10	11 U	11	10 U	10	12 U	12
Anthracene	2000	4.6	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Carbazole		4.4	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Di-n-butylphthalate	900	6,5	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Fluoranthene	300	6.0	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Pyrene	200	5.4	11 U	11	11 U	11	10 U	10	11 U	·11	10 U	10	12 U	12
Butylbenzylphthalate	100	5.3	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
3,3'-Dichlorobenzidine	60	2.8	11 U	11	11 U	.11	10 U	10	11 U	11	10 U	10	12 U	12
Benzo(a)anthracene	10	4.9	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U .	12
Chrysene	20	4.4	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	11 U	11	11 U	11	10 U	10	140	22 *	10 U	10	12 U	12
Di-n-octyl phthalate	100	5.6	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Benzo(b)fluoranthene	2	5.7	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Benzo(k)fluoranthene	2	6.2	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Benzo(a)pyrene	20	4.9	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Indeno(1,2,3-cd)pyrene	20	7.1	11 U	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Dibenzo(a,h)anthracene	20	6.0	11 U	11	11 U	11	10 U	10	11,U	11	10 U	10	12 U	12
Benzo(g,h,i)perylene	20	6.8	11 Ü	11	11 U	11	10 U	10	11 U	11	10 U	10	12 U	12
Petroleum hydrocarbons			0.94	0.27	0.94	0.27	0.28	0.26	0.29 U	0.29	0.28	0.27	0.58	. 0.27
Total Est. Conc. of TIC			3	8 J	2.	4 J	4	j	7	J	72	J	59	J
Dilution Factor			T :						*=:	2.00				
Method:TCL Semivolatiles				1	T				ļ. ·					

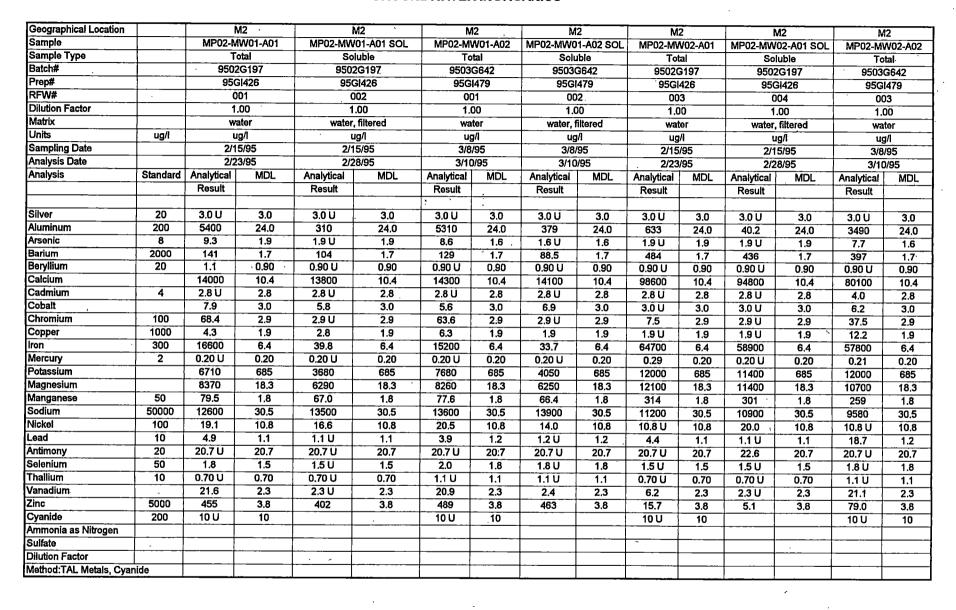
Geographical Location	T		M [*]	18	F	31	В.	1) , B	2 }	B		В	
Sample			MP18-MV		B1-MW		B1-MW0			02B-A01	B2-MW0		B3-MW0	
Sample Type	· · · · · ·		Dupli		57.10.00		D140000	TD-NOZ	DZ-WWW.	020-A01	DZ-WWW	20-702	D3-14144C	13D-W01
Batch#			95020		9502	G169	95030	3616	9502	G160	95030	2616	95020	G160
Prep#			95GB			30103	95GB		95GE		95GB		95GB	
RFW#	 		0000		0000		00		01		01		9308	
Dilution Factor			1.0			00	1.0			00	1.0		1.0	
Matrix	 		war		·	iter	wat		wa		wat		Wa	
Units	ug/l	ug/l	ug		ug		ug		Uį		ug		ug	
Sampling Date	ug/i	ug/i	2/17			4/95	3/7/		2/14		3/7/		2/14	
Analysis Date	 		2/28			7/95	3/26		3/7		3/30		3/7/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	- Ctanaara	14152	Result	Oital	Result	Ortal.	Result	OITGE	Result	OIGL	Result	CRGL	Result	UNGL
	1		Hoodin	'	- Nobuli		Rosun		Nosuk		Result		Keant	
Phenol	4000	7.1	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
bis(2-Chloroethyl) ether	10	9.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2-Chlorophenol	40	7.3	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
1,3-Dichlorobenzene	600	5.3	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
1,4-Dichlorobenzene	75	4.8	,11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
1,2-Dichlorobenzene	600	5.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2-Methylphenol		6.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
4-Methylphenol		12.9	11 U	11	1 12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
N-Nitroso-di-n-propylamine	20	.8.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Hexachloroethane	10	5.3	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Nitrobenzene	10	7.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Isophorone	100	3.9	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2-Nitrophenol		7.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2,4-Dimethylphenol	100	4.8	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
bis(2-Chloroethoxy) methane		6.1	11 U	11	12 Ü	12 '	12 U	12	10 U	10	12 U	12	10 U	10
2,4-Dichlorophenol	20	4.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
1,2,4-Trichlorobenzene	9	9.6	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Naphthalene		8.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
4-Chloroaniline		2.9	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10 .
Hexachlorobutadiene	1	4.6	11 U	11	12 U	12	12 U	12	10 U	10	, 12 U	12	10 U	10
4-Chloro-3-methylphenol	. 20	3.1	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2-Methylnaphthalene		8.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	'10 U	10
Hexachlorocyclopentadiene	50	3.6	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2,4,6-Trichlorophenol		5.6	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2,4,5-Trichlorophenol	700	4.7	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25
2-Chloronaphthalene		8.2	11 U	11	12 U	12	12 U	12	10 U	, 10	12 U	12	10 U	10
2-Nitroaniline		6.1	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25
Dimethylphthalate	7000	4.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Acenaphthylene	10	6.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2,6-Dinitrotoluene	10	5.2	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
3-Nitroaniline	1	5.2 -	26 U	26	30 U	30 ; ;	. 30 U	30	24 U	24	31 U	31	25 U	25
Acenaphthene	400	6.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	,10 U	10
2,4-Dinitrophenol	40	4.6	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25

Geographical Location	1		M'	18	В	1	B.	i	В	2	B2	,	В	3
Sample			MP18-MV		B1-MW0		B1-MW0		B2-MW		B2-MW0		B3-MW0	
Sample Type	 		Dupl			7.57.61	B110000	107102	DE MITT	7 <u>7</u> 0 / 10 1	D2-101010	20-A02	B3-101040	00-701
Batch#			95020		95020	G169	95030	3616	9502	G169	95030	2616	95020	3160
Prep#	· · · · · · · · ·		95GB		95GB		95GB			80103	95GB	-	95GB	
RFW#	-,		00		00		00		. 00		01		000	
Dilution Factor	 		1.0		1.0		1.0		1.		1.0		1.0	
Matrix	+	· · · · · · · · · · · · · · · · · · ·	wa		wa		wat		wa		wat		wa	
Units	ug/l	ug/l	ug		ug		ug		,vva Ug		ug		ug	
Sampling Date	+ ug/i	ugn	2/17		2/14		3/7/			4/95	3/7/		2/14	
Analysis Date	+		2/28		3/7		3/26		1	1/95 1/95	3/30		3/7/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
Altalysis	Statidard	MIDE	Result	CROL	Result	CROL	Result	CROL	Result	CRUL	Result	UKUL	Result	CRUL
	+		Nesull		, Resuit		Kesuit	<u> </u>	Resuit		Result		Result	
4-Nitrophenol	†	7.5	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25
Dibenzofuran	1	6.5	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
2,4-Dinitrotoluene	10	5.8	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Diethylphthalate	5000	5.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
4-Chlorophenyl-phenylether	1	7.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Fluorene	300	6.3	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
4-Nitroaniline		6.4	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25
4,6-Dinitro-2-methylphenol		5.3	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25
N-Nitrosodiphenylamine (1)	20	4.2	11 U	11	12 U	12	12 U	12	10·U	10	12 U	12	10 U	10
4-Bromophenyl-phenylether		5.3	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U 、	10
Hexachlorobenzene	10	5.5	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Pentachiorophenol	1	4.0	26 U	26	30 U	30	30 U	30	24 U	24	31 U	31	25 U	25
Phenanthrene	10	5.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Anthracene	2000	4.6	11 U -	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Carbazole		4.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Di-n-butylphthalate	900	6.5	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Fluoranthene	300	6.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Рутеле	200	5.4	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Butylbenzylphthalate	100	5.3	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
3,3'-Dichlorobenzidine	60	2.8	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Benzo(a)anthracene	10	4.9	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Chrysene	20	4.4	3 J	11	12 U	12	12 U	12	10 U	10	12 U	12.	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	100 B	20 *
Di-n-octyl phthalate	100	5.6	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Benzo(b)fluoranthene	2	5.7	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Benzo(k)fluoranthene	2	6.2	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Benzo(a)ругепе	20	4.9	11 U	· 11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	11 U	11	12 U	12	. 12 U	12	10 U	10	12 U	12	10 U	10
Dibenzo(a,h)anthracene	20	6.0	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Benzo(g,h,i)perylene	20	6.8	11 U	11	12 U	12	12 U	12	10 U	10	12 U	12	10 U	10
Petroleum hydrocarbons			0.30	0.27										
Total Est. Conc. of TIC			114	4 J	4		5	J		5	7.	J.	1	0
Dilution Factor													S	
Method:TCL Semivolatiles														



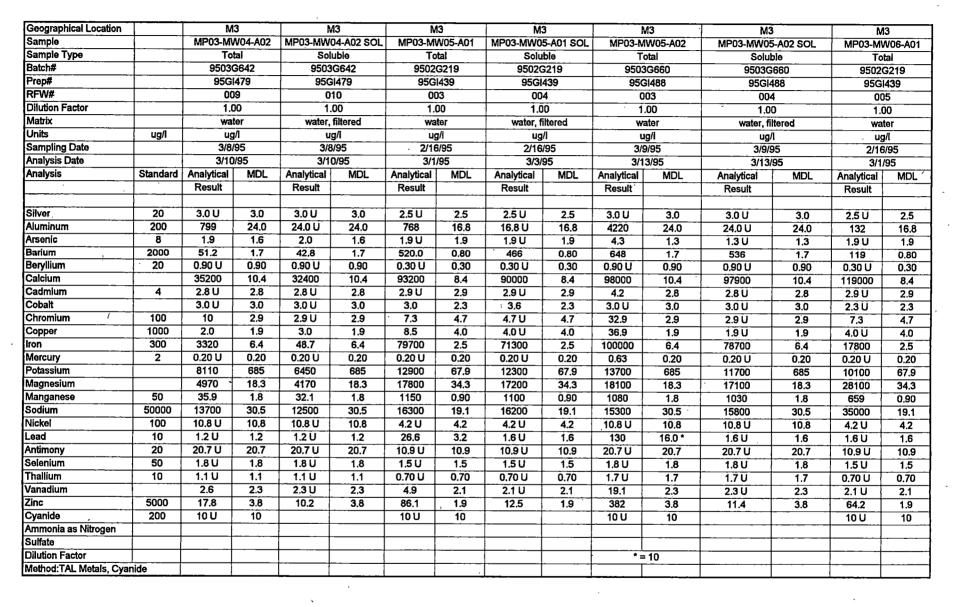
Geographical Location	1			33	T =	33	В:	<u> </u>	В	4	, <u>.</u>	34
Sample				03B-A02	L	03B-E01	B3-MW0		B4-MW0	•		04B-A02
Sample Type	1		55-14144	00D-A02		sate Blank	Field Rins		Delalas	74D-AU (D4-IAIAA	U4B-AU2
Batch#			9503	G740		G169	95030		95020	2160	0503	G616
Prep#	+			30181		30103	95GB		95GB			30166
RFW#				01		08	9300		9336			12
Dilution Factor				00		.00	1.0		1.0		<u> </u>	00
Matrix			1	ter		ater	wat		wa			nter
Units	ug/l	ug/l		g/i		g/l	ug		ug			
Sampling Date	L ug/i	ug/i		4/95	 `	3/95	3/7/		2/13			g/l 7/95
Analysis Date				9/95		7/95	3/25		3/7			6/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
rulalysis	Standard	IVIDE	Result	ONGL	Result	CRUL	Result	CROL	Result	CRUL	Result	CRUL
	+		INBOUR		Nesun		Result		Result		Result	
Phenol	4000	7.1	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2-Chlorophenol	40	7.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	10 U	10 ·	11 U	11	12 U	12
2-Methylphenol		6.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	10 Ü	, 10 >	10 U	10	10 U 🦳	10	11 U	11	12 U	12
4-Methylphenol		12.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	10 U	- 10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachloroethane	10	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Nitrobenzene	10	7.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Isophorone	100	3.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2-Nitrophenol		7.0	10 U	10	10 U	10	10 U	10	11 Ü	11	12 U	12
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	, 10 U	10	11 U	11	12 U	12
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	, 10	10 U	10	11 U	11	12 U	12
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Naphthalene		8.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
4-Chloroaniline		2.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachlorobutadiene	1	4.6	10 U	10	10 U	'10	10 Ú	10	11 U	11	12 U	12
4-Chioro-3-methylphenol	20	3.1	10 U	10	10 U	10	10 U	10	11 U	, 11	12 U	12
2-Methylnaphthalene		· 8.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachlorocyclopentadiene	50	3,6	10 U	10	10 U	10	10 U	10	11 U	11	ິ 12 U	12
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4,5-Trichlorophenol	700	4.7	25 U	25	26 U	26	24 U	24	27 U	27	31 U	31
2-Chloronaphthalene		8.2	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2-Nitroaniline	ļ	6.1	25 U	25	26 U	26	24 U `	24	27 U	27	31 U	31
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Acenaphthylene	10	6.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	10 U_	10	11 U	11	12 Ü	12
3-Nitroaniline		5.2	25 U	25	26 U	26	24 U	24	27 U	27	31 U	31
Acenaphthene	400	6.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4-Dinitrophenol	40	4.6	25 U	25	26 U	26	24 U	24	27 U	27	31 U	31

0			, ,		, <u></u>	_			,		-	
Geographical Location	-			33		13	В:		В	-	В	
Sample			B3-MW	03B-A02		03B-E01	B3-MW0		B4-MW	04B-A01	B4-MW0	4B-A02
Sample Type			ļ	·		sate Blank	Field Rins					
Batch#	-			G740		G169	95030		95020		95030	
Prep#				30181		30103	95GB		95GE		95GB	
RFW#				D1	<u> </u>	08	00		01		01	2
Dilution Factor				00	1.	00	1.0	10	1.0	00	1.0	00
Matrix			Wa	iter	Wa	iter	wat	er	wa	ter	wa	ter
Units	ug/l	ug/l	น	g/l	u	g/l _	ug	/I	uç	g/l	ug	/Л
Sampling Date				4/95	2/1	3/95	3/7/	95	2/13	3/95	3/7	/95
Analysis Date			3/2	9/95	3/7	//95	3/25	/95	3/7	/95	3/26	6/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result	
4-Nitrophenol		7.5	25 U	25	26 U	26	24 U	24 .	27 U	27	31 U	31
Dibenzofuran		6.5	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Diethylphthalate	5000	5.4	10 U	. 10	10 U	10	10 U	10	11 U	11	12 U	12
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Fluorene	300	6.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
4-Nitroaniline	1	6.4	25 U	25	26 U	26	24 U	24	27 U	27	31 U	31
4,6-Dinitro-2-methylphenol		5,3	25 U	25	26 U	26	24 U	24	27 U	27	31 U	31
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
4-Bromophenyl-phenylether	1	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Hexachlorobenzene	10	5,5	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Pentachlorophenol	1	4.0	25 U	25	26 U	26	24 U	24	27 U	27	31 U	31
Phenanthrene	10	5.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Anthracene	2000	4.6	10 U	10 ,	10 U	10	10 U	10	11 U	11	12 U	12
Carbazole		4.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Di-n-butyiphthalate	900	6.5	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Fluoranthene	300	6.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Pyrene	200	5.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
3.3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Chrysene	20	4.4	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	5 J	10	10 U	10	10 U	10	11 U	11	12 U	12
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	10 U	10	11 U	11	12 U	12
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10.	10 U	10	10 U	10	11 U			
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	10 U	10	11 U	11	12 U 12 U	12
Benzo(g/h,i)perylene	20	6.8	10 U	10	10 U	10	10 U	10		11		12
Petroleum hydrocarbons	20	0,0	100	10	100	טו	100	10	11 U	11	12 U	12
Total Est. Conc. of TIC	 		52		 		12	ļ 	ļ	<u></u>		· · · · · · · · · · · · · · · · · · ·
Dilution Factor	1		 52			3	10		<u> </u>	<u> </u>	6	J
	 		 			· · · · · ·		* = 2			,	
Method:TCL Semivolatiles			<u> </u>		`		<u> </u>					



Geographical Location	1		B.		B	5
Sample			B5-MW0	5B-A01	B5-MW0	5B-A02
Sample Type	1					
Batch#	1		95020	169	95030	3616
Prep#			95GB	0103	95GB	0166
RFW#			01	2	00	1
Dilution Factor			1.0	0	1.0	10
Matrix		-	wat	er	wat	er
Units	ug/l	· ug/l	ug	<u> </u>	ug	/I
Sampling Date			2/13	95	3/7/	95
Analysis Date			3/7/	95	3/25	/95
Analysis ,	Standard	. MDL	Analytical	CRQL	Analytical	CRQI
	·		Result		Result	
Phenol	4000	7.1	11 U	11	10 U	10
bis(2-Chloroethyl) ether	10	9.7	11 U	11	10 U	10
2-Chlorophenol	40	7.3	11 U	11	10 U	· 10
1,3-Dichlorobenzene	600	5.3	11 U	11	10 U	10
1,4-Dichlorobenzene	75	4.8	11 U	11	10 U	10
1,2-Dichlorobenzene	600	5.7	11 Ú	11	10 U	10
2-Methylphenol		6.7	11 U	11	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	10 U	10
4-Methylphenol		12.9	11 U	11	10 U	10
N-Nitroso-di-n-propylamine	20	8.0	11 U	11	10 U	10
Hexachloroethane	10	5.3	11 U	11	10 U	10
Nitrobenzene	10	7.4	11 U	11	10 U	10
Isophorone	100	3.9	11 U	11	10 U .	_ 10
2-Nitrophenol		7.0	11 U	. 11	10 U	10
2,4-Dimethylphenol	100	4.8	11 U	11	10 U	10
bis(2-Chloroethoxy) methane		6.1	11 U	` 11	10 U	10
2,4-Dichlorophenol	20	4.4	11 U	11 .	10 U	10
1,2,4-Trichlorobenzene	9	9.6	11 U	11	10 U	10
Naphthalene		8.4	11 U	11	10 U	10
4-Chloroaniline		2.9	11 U	11	10 U	10
Hexachlorobutadiene	1	4.6	11 U	11	10 U	10
4-Chloro-3-methylphenol	20	3.1	11 U	11	10 U	10
2-Methylnaphthalene		8.7	11 U	11	10 U	10
Hexachlorocyclopentadiene	50	3.6	11 U	11	10 U	10
2,4,6-Trichlorophenol		5.6	11 U	11	10 U	10
2,4,5-Trichlorophenol	700	4.7	26 U	26	25·U	25
2-Chloronaphthalene		8.2	11 U	11	10 U	10
2-Nitroaniline		6.1	26 U	`, 26	25 U	25
Dimethylphthalate	7000	4.4	11 U	11	10 U	10
Acenaphthylene	10	6.0	11 U	11	10 U	10
2,6-Dinitrotoluene	10	5.2	11 U	11	10 U	10
3-Nitroaniline		5.2	26 U	26	25 U	25
Acenaphthene	400	6.7	11 U	11	10 U	10
2,4-Dinitrophenol	40	4.6	26 U	26	25 U	25

Geographical Location			B5	<u> </u>	B	5
Sample	† †		B5-MW0	5B-A01	B5-MW0	5B-A02
Sample Type						,
Batch#	1		95020	169	95030	616
Prep#			95GB0	0103	95GB	
RFW#			01:	2	00	1
Dilution Factor	1		1.0	0	1,0	10
Matrix	1		wate	er	wat	er
Units	ug/l	ug/l	ugi	1	ug	/1
Sampling Date			2/13/	95	3/7/	95
Analysis Date			3/7/	95	3/25	/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL
		•	Result		Result	
4-Nitrophenol		7.5	26 U	26	25 U	25
Dibenzofuran	+ +	6.5	11 U	11	10 U	10
2,4-Dinitrotoluene	10	5.8	11 U	11	10 U	10
Diethylphthalate	5000	5.4	11 U	11	10 U	10
4-Chlorophenyl-phenylether	+	7.0	11 U	11	10 U	10
Fluorene	300	6.3	11 U	11	10 U	10
4-Nitroaniline		6.4	26 U	26	25 U	25
4,6-Dinitro-2-methylphenol		5.3	26 U	26	25 U	25
N-Nitrosodiphenylamine (1)	20	4.2	11 U	11	10 U	10
4-Bromophenyl-phenylether		5.3	11 U	11	10 U	10
Hexachlorobenzene	10	5.5	11 U	11	10 U	10
Pentachlorophenol	1 1	4.0	26 U	26	25 U	25
Phenanthrene	10	5.0	11 U	11	10 U	10
Anthracene	2000	4.6	11 U	11	10 U	10
Carbazole	1	4.4	11 U	11	10 U	10
Di-n-butylphthalate	900	6.5	11 U	11	10 U	10
Fluoranthene .	300	6.0	11 U	11	10 U	10
Pyrene	200	5.4	11 U	11	10 U	10
Butylbenzylphthalate	100	5.3	11 U	. 11	10 U	10
3,3'-Dichlorobenzidine	60	2.8	11 U	11	10 U	10
Benzo(a)anthracene	10	4.9	11 U	11	10 U	10
Chrysene	20	4.4	11 U	11	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	11 U	11	10 U	10
Di-n-octyl phthalate	100	5.6	11 U	11	10 U	10
Benzo(b)fluoranthene	,2	5.7	11 U	11	10 U	10
Benzo(k)fluoranthene	2	6.2	11 U	11	10 U	10
Benzo(a)ругеne	20	4.9	11 U	11	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	11 U	11	10 U	10
Dibenzo(a,h)anthracene	20	6.0	11 U	11	10 U	10
Benzo(g,h,i)perylene	20	6.8	- 11 U	11	10 U	10
Petroleum hydrocarbons						
Total Est. Conc. of TIC			5		4.	J
Dilution Factor						
Method:TCL Semivolatiles					١ ،	



Geographical Location	1	· · ·	M2	l M	2	M:	,	N.	12	M2			13	T	M3
Sample	· ·		02-A02 SOL	MP02-M\		MP02-MW0	_		W03-A02	MP02-MW03-A	.02 SOI	MP03-MI	·	1	04-A01 SOL
Sample Type	 		luble	To		Solu			tal	Soluble		To			luble
Batch#		9503	3G642	95020		95020			G642	9503G64		9502		1	2G219
Prep#	 	950	31479	95G		95GI			1479	95GI479		95G			GI439
RFW#	<u> </u>	C	004	00		00			05	006		00		-1	002
Dilution Factor		1	.00	1.0	00	1.0	0	1.		1.00		1.0			.00
Matrix		water	, filtered	wa	ter	water, f	iltered	wa	iter	water, filte	red	wa		1	, filtered
Units	ug/l	L	ıg/l	ug	_] /I	ug	/	u	g/l	ug/l		ug	7/1		ıg/l
Sampling Date		3/	8/95	2/15	/95	2/15	/95		/95	3/8/95		2/16		2/1	16/95
Analysis Date		3/1	0/95	2/23	3/95	2/28	/95	3/10	0/95	3/10/95	;	3/1	/95	3/	3/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		, Result		Result		Result	
			_									1			
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5
Aluminum	200	30.9	24.0	693	24.0	28.3	24.0	2540	24.0	24.0 U	24.0	611	16.8	29.3	16.8
Arsenic	8	1.8	1.6	1.9 U	1.9	1.9 U	1.9	3.4	1.6	1.6 U	1.6	1.9 U	1.9	1.9 U	1.9
Barium	2000	298	1.7	79.1	1.7	64.8	1.7	132	1.7	55.9	1.7	43.6	0.80	39.7	0.80
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30
Calcium		80000	10.4	63300	10.4	63800	- 10.4	65800	10.4	60600	10.4	32300	8.4	32300	8.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.5	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3
Chromium	100	2.9 U	2.9	5.6	2.9	2.9 U	2.9	24.9	. 2.9	2.9 U	2.9	8.1	4.7	4.7 U	4.7
Copper	1000	4.2	1.9	2.1	1.9	1.9 U	1.9	9.6	1.9	2.8	1.9	4.0 U	4.0	4.0 U	4.0
Iron	300	42500	6.4	15500	6.4	12000	6.4	25400	6.4	11800	6.4	2610	2.5	1030	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.29	0.20	0.20 U	0.20	0.20 U	0.20	. 0.20 U	0.20
Potassium		10000	685	10400	685	10200	685	11900	685	9540	685	7540	67.9	6730	67.9
Magnesium		9600	18.3	5180	18.3	5090	18.3	5960	18.3	4940 ;	18.3	4210	34.3	3920	34.3
Manganese	50	248	1.8	455	1.8	453	1.8	512	1.8	455	1.8	32.7	0.90	34.1	0.90
Sodium	50000	9710	30.5	8940	30.5	8990	30.5	9400	30.5	8770	30.5	12600	19.1	12600	19.1
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	5.9	4.2	4.2 U	4.2
Lead	10	1.2 U	1.2	8.0	1.1	1.1 U	1.1	21.6	1.2	3.9	1.2	1.6 U	1.6	1.6 U	1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5
Thallium	10,	5.5 U	5.5 *	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70
Vanadium Zinc	5000	2.3 U 6.6	2.3	5.1	2.3	2.3 U	2.3	14.3	2.3	2.3 U	2.3	4.0	2.1	2.6	2.1
	200	6.6	3.8	36.6	3.8	4.1	3.8	122	3.8	9.3	3.8	17.9	1.9	8.5	1.9
Cyanide	200			10 U	10		 ,	10 U	10			10 U	10	<u> </u>	
Ammonia as Nitrogen Sulfate										•		1		 	
Dilution Factor	 		5.0							•		ļ		 	
Method:TAL Metals, Cyar	1-1-		5.0						ļ					ļ	<u> </u>
INIEUTOG: I AL INIEURIS, CYAI	HQE										l	1		1	

Geographical Location		M3	3	M3	3	l N	13	M	4	M4	1	. A	<u>//4</u>	T N	14
Sample		MP03-MW06	S-A01 SOL	MP03-MV	V06-A02	MP03-MW	06-A02 SOL	MP04-MV	N07-A01	MP04-MW0		-	W07-A02		07-A02 SOL
Sample Type		Solul	ble	Tot	al		uble	To		Solu			otal		uble
Batch#		9502G	219	95030	3660	9503	G660	95020		95020		-	3G660		3G660
Prep#		95Gl4	139	95GI		95G	61488	95G		95GI4	439	950	31488	950	SI488
RFW#		006	3 .	00	1	0	02	00	7	00	8	o	05	0	06
Dilution Factor		1.00	0	1.0	0	1.	.00	1.0	00	1.0	0	1	.00	1.	.00
Matrix		water, fi	itered	wat	er	water,	filtered	wa	ter	water, fi	itered		ater	water,	filtered
Units	ug/l	ug/	1	ug	/1	ū	g/l	ug] /I	ug	/1		ıg/l	u	ıg/l
Sampling Date		2/16/	95	3/9/	95		9/95	2/16	3/95	2/16/			9/95		9/95
Analysis Date		3/3/9	95	3/13/	/95	3/1	3/95	3/1/	/95	3/3/	95	3/1	3/95	3/1	3/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result	•	Result		Result		Result		Result	
												,		1	
Silver	20	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0
Aluminum	200	16,8 U	16.8	816	24.0	24.0 U	24.0	9440	16.8	823	16.8	3150	24.0	851	24.0
Arsenic	8	1.9 U	1,9	1.3 U	1.3	1.3 U	1.3	8.0	1.9	1.9 U	1.9	2.2	1.3	1.3 U	1.3
Barium	2000	112	0.80	129 ′	1.7	113	1.7	91.6	0.80	60.5	0.80	68.5	1.7	62.3	1.7
Beryllium	20	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90	0.69	0.30	0.40	0.30	0.90 U	0.90	0.90 U	0.90
Calcium		117000	8.4	126000	10.4	126000	10.4	18600	8.4	18100	8.4	18100	10.4	18600	10.4
Cadmium	4	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8/
Cobalt	,	2.3 U	2.3	3.0 U	3.0	3.0 U	3.0	6.0	2.3	3.5	2.3	3.0 U	3.0	3.0 U	3.0
Chromium	100	4.7 U	4.7	8.2	2.9	2.9 U	2.9	94.9	4.7	4.7 U	4.7	22.1	2.9	2.9 U	2.9
Copper	1000	4.0 U	4.0	1.9 U	1.9	1.9 U	1.9	9.5	4.0	4.0 U	4.0	1.9 U	1.9	1.9 U	1.9
Iron	300	15900	2.5	23200	6.4	17200	6.4	29000	2.5	57.2	2.5	6870	6.4	169	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		9750	67.9	10500	685	10200	685	6810	67.9	1970	67.9	3150	685	2420	685
Magnesium		27400	34.3	29500	18.3	29100	18.3	9020	34.3	7090	34.3	7550	18.3	7290	18.3
Manganese	50	643	0.90	713	1.8	703	1.8	65.6	0.90	51.5	0.90	57.0	1.8	55.3	1.8
Sodium	50000	34400	19.1	33600	30.5	33400	30.5	54300	19.1	53000	19.1	46100	30.5	47400	30.5
Nickel	100	4.2 U	4.2	10.8 U	10.8	10.8 U	10.8	13.7	4.2	10.0	4.2	10.8 U	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	4.1	1.6	1.6 U	1.6	15.8	1.6	1.6 U	1.6	1.8	1.6	1.6 U	1.6
Antimony	20	10,9 U	10.9	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	1.7 U	1.7	1.7 U	1.7	0.70 U	0.70	0.70 U	0.70	1.7 U	1.7	1.7 U	1.7
Vanadium		2.1 U	2.1	6.2	2.3	2.3 U	2.3	54.1	2.1	2.8	2.1	13.8	2.3	2.3 U	2.3
Zinc	5000	53.3	1.9	59.9	3.8	34.4	3.8	60.1	1.9	34.2	1.9	38.4	3.8	34.6	3.8
Cyanide	200			10 U	10			10 U	10			10 U	10		
Ammonia as Nitrogen													-		
Sulfate															
Dilution Factor								•							
Method:TAL Metals, Cyar	nide														

Geographical Location			14	l N		M	4] i	M4	M	4	N	4	N	14
Sample		MP04-M	W07-C01	MP04-MW0	7-C01 SOL	MP04-MV	V07-C02	MP04-MW	07-C02 SOL	MP04-M	N07-E01	MP04-MW0	7-E01 SOL	MP04-M	W08-A01
Sample Type		Duplicat		Duplicate	- Soluble	Duplicate	e - Total	Duplicat	e - Soluble	Field Rins	ate - Total	Field Rinsa		To	otal
Batch#		9502			G219	95030	3660	950	3G660	9502		9502			G219
Prep#		95G		95G	1439	95GI	488	950	GI488	95G	1439	95G	1439	95G	1439
RFW#		00	9	01	10	00	17	(008	01	2	01	13	0	14
Dilution Factor		1.0	00	1.0	00	1.0	00	1	.00	1.0	00	1.0			00
Matrix		wa	ter	water,	filtered	wat	ter	water	filtered	wa	ter	water,			iter
Units	ug/l	ug	g/l	ug	g/î	ug	₁ /1		ıg/l	. ug	2/1	ug			g/l
Sampling Date		2/16	3/95	2/16	6/95	3/9/			9/95	2/16		2/16		2/16	
Analysis Date		3/1	/95	3/3	/95	3/13	/95	3/1	3/95	3/1	/95	3/1		3/1	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result	-	Result		Result	,	Result	
											-	† · · · · · ·			
Silver	20	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	9950	16.8	807	16.8	2890	24.0	856	24.0	18.1	16.8	16.8 U	16,8	1570	16.8
Arsenic	8	7.2	1.9	1.9 U	1.9	2.2	1.3	1.3 U	1.3	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	89.7	0.80	60.1	0.80	70.3	1.7	61.6	. 1.7	0.81	0.80	0.80 U	0.80	38.8	0.80
Beryllium	20	0.69	0.30	0.51	0.30	0.99	-0.90	0.90 U	0.90	0.30 U	0.30	0.31	0.30	0.30 U	0.30
Calcium		18200	8.4	17900	8.4	19000	10.4	18900	10.4	57.4	8.4	82.6	8.4	32700	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Cobalt		5.8	2.3	5.3	2.3	3.4	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3	2.8	2.3
Chromium	100	103	4.7	4.7 U	4.7	18.2	2.9	2.9 U	2.9	4.7 U	4.7	4.7 U	4.7	/ 17.9	4.7
Copper	1000	6.3	4.0	4.0 U	4.0	1.9 U	1.9	1.9 U	1.9	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0
Iron	300	30000	2.5	62.3	2.5	6420	6.4	131	6.4	62.7	2.5	4.3	2.5	17700	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		6690	67.9	1990	67.9	3230	685	2240	685	67.9 U	67.9	68.8	67.9	7500	67.9
Magnesium		9110	34.3	6990	34.3	7690	18.3	7430	18.3	34.3 U	34.3	34.3 U	34,3	5970	34.3
Manganese	50	64.6	0.90	51,0	0.90	58.2	1.8	55.2	1.8	0.90 U	0.90	0.90 U	0.90	110	0.90
Sodium	50000	52700	19.1	52100	19.1	47600	30.5	48600	30.5	116	19.1	81.4	19.1	9450	19.1
Nickel	100	12.0	4.2	9.2	4.2	10.8 U	10.8	10.8 U	10.8	4.2 U	4.2	4.2 U	4.2	4.2 U	4.2
Lead	10	15.8	1.6	1.6 U	1.6	2.2	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	7.4	1.6
Antimony	20	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7	10.9 U	10,9	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1,5	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	1.7 U	1.7	1.7 U	1.7	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium		56.1	2.1	2.1 U	2.1	12.2	2.3	2.3 U	2.3	2.1 U	2.1	2.1 U	2.1	6.0	2.1
Zinc	5000	. 59.6	1.9	34.0	1.9	39.2	3.8	33.2	3.8	3.8	1.9	2.4	1.9	30.0	1.9
Cyanide	200	10 U	10			10 U	10	† · · · · · · · · · · · · · · · · · ·		10 U	10			10 U	10
Ammonia as Nitrogen															
Sulfate		-						1							
Dilution Factor								11		-					
Method:TAL Metals, Cyar	ide							 							

Geographical Location		M	1	М	4	M4		N	14	M4		N	14	N N	14
Sample		MP04-MW08	B-AQ1 SOL	MP04-MV	V08-A02	MP04-MW08	3-A02 SOL	MP04-M	W09-A01	MP04-MW09	-A01 SOL	MP04-M	W09-A02	MP04-MW	09-A02 SOL
Sample Type		Solu	ble	To	al	Solul	ole	To	ital	Solul	ole	To	otal	Sol	uble
Batch#		95020	219	95030	3642	9503G	642	9502	G219	9502G	219	9503	G660	9503	G660
Prep#		95GI	439	95G	479	95Gl4	179	95GC	N045	95Gl4	39	950	1488	950	S1488
RFW#		01:	5	00	17	000	3 '	0	16	017	, 		09	0	10
Dilution Factor		1.0	0	1.0	00	1.00		1.	00	1.00)	1.	.00	1.	.00
Matrix		water, fi	itered	wa	ter	water, fi	ltered	Wa	iter	water, fi	tered	W	ater	water,	filtered
Units	ug/i	ug		ug		ug/			g/l	ug/			g/l		g/l
Sampling Date		2/16		3/8/		3/8/9			6/95	2/16/			9/95		9/95
Analysis Date		3/3/		√ 3/10		3/10/			/95	3/3/9			3/95		3/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result	,	Result		Result		Result		Result	
<u> </u>		<u> </u>												<u> </u>	
Silver	20	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	. 2.5 U	2.5	3.0 U	3.0	3.0 U	3.0
Aluminum	200	16.8 U	16.8	1640	24.0	24.0 U	24.0	182	16.8	16.8 U	16.8	76.2	24.0	24.0 U	24,0
Arsenic	8	1.9 U	1.9	2.1	1.6	1.6 U	1.6	1.9 U	1.9	1.9 U	. 1.9	1.3 U	1.3	1.3 U	1.3
Barium	2000	27.7	0.80	41.0	1.7	28.0	1.7	60.0	0.80	39,3	0.80	55.8	1.7	38.8	1.7
Beryllium	20	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90
Calcium		31900	8.4	33500	10.4	33100	10.4	45300	8.4	44000	8.4	47700	10.4	46300	10.4
Cadmium	4	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 Ü	2.8
Cobalt		2.3 U	2.3	3.8	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3	3.0 U	3.0	3.0 U	3.0
Chromium	100	4.7 U	4.7	16.6	2.9	2.9 U	2.9	6.0	4.7	4.7 U	4.7	2.9 U	2.9	2.9 U	2.9
Copper	1,000	4.0 U	4.0	3.0	1.9	2.6	1.9	4.0 U	4.0	4.0 U	4.0	1.9 U	1.9	1.9 U	1.9
Iron	300	10900	2.5	18100	6.4	10600	6.4	21500	2.5	12500	2.5	21900	6.4	13500	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0,20 U	0.20
Potassium		6150	67.9	7670	685	6570	685	8640	67.9	8350	67.9	9210	685	8010	685
Magnesium		5290	34.3	6320	18.3	5760	18.3	6070	34.3	5870	34.3	6420	18.3	6170	18.3
Manganese	50	101	0.90	111	1.8	104	1.8	81.3	0.90	77.2	0.90	88.7	1.8	85.5	1.8
Sodium	50000	9230	19.1	9550	30,5	9580	30.5	9760	19.1	9580	19.1	10800	30.5	10500	30.5
Nickel	100	4.2 U	4.2	10.8 U	10.8	10.8 U	10.8	4.2 U	4.2	4.2 U	4.2	10.8 U	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	6.7	1.2	1.2 U	1.2	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6
Antimony	20	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	1.7 U	1.7	1.7 U	1.7
Vanadium		2.1 U	2.1	7.9	2.3	2.3 U	2.3	2.1 U	2.1	2.1 U	2.1	2.3 U	2.3	2.3 U	2.3
Zinc	5000	3.0	1.9	33.5	3.8	5.7	3.8	3.9	1.9	1.9 U	1.9	3.8 U	3.8	4.5	3.8
Cyanide	200			10 U	10			10 U	10			10 U	10		
Ammonia as Nitrogen						ļ		ļ		1					
Sulfate	<u> </u>											ļ'		ļ	
Dilution Factor	<u> </u>					ļ		ļ				ļ		'	
Method:TAL Metals, Cyar	nide	L				<u> </u>		<u> </u>		<u> </u>	<u>'</u>	Ļ			

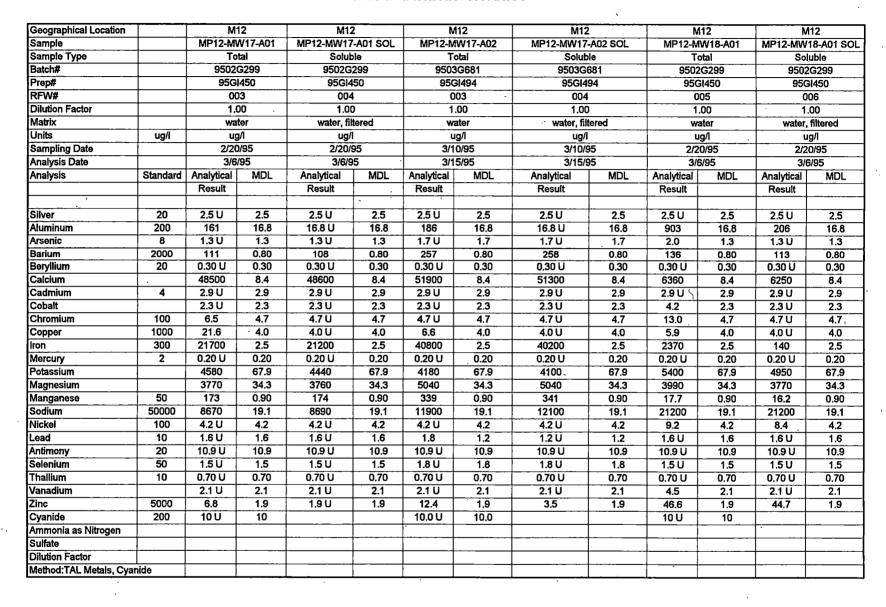
Geographical Location		N	15	М	5	N	15	, i	VI5	M	5	M:	5	M	5
Sample		MP05-M	W10-A01	MP05-MW1	0-A01 SOL	MP05-M	W10-A02	MP05-MW	10-A02 SOL	MP05-M\	N11-A01	MP05-MW1	1-A01 SOL	MP05-MV	-
Sample Type	1	То	tal	Solu	ıble	То	tal	Sol	lubie	То		Solu		To	
Batch#		9502	G238	95020	3238	9503	G660	9503	3G660	9502		95020		95030	
Prep#		95GC	N045	95GI	397	95G	1488 -	950	SI488	95GC	N045	95GI		95GI	
RFW#		01	10	01	1	0	11		12	01	2	01		01	·
Dilution Factor		1.0	00	1.0	00	1./	00		.00	1.0	00	1.0		1.0	
Matrix		wa	ter	water, f	iltered	wa	ter	water,	filtered	wa		water, f		Wat	
Units	ug/l	ug	3/1	ug	//	· ug	g/l	u	ıg/l	ug	i/l	ug		ug	
Sampling Date		2/17		2/17		3/9			9/95	2/17		2/17		3/9/	
Analysis Date		3/1.	/95	2/22	/95	3/13			3/95	。 3/1		2/22		3/13	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL.
1		Result		Result		Result	,	Result		Result		Result	,	Result	
					-							· · ·		,	
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	212	24.0	30.7	24.0	99.6	24.0	24.0 U	24.0	1160	24.0	57.4	24.0	945	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.3 U	1.3	1.3 U	1.3	1.9 U	1.9	1.9 U	1.9	1.3 U	1.3
Barium	2000	101	1.7	36.7	1.7	131	1.7	44.9	1.7	16.8	1.7	13.2	1.7	15,3	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Calcium		16000	10.4	15400	10.4	17000	10.4	15900	10.4	11100	10.4	11100	10.4	11100	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Chromium	100	5.5	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	15.4	2.9	2.9 U	2.9	10.4	2.9
Copper	1000	10.9	1.9	2.5	1.9	3.2	1.9	1.9 U	1.9	2.9	1.9	2.0	1.9	1.9 U	1.9
Iron	300	8310	6.4	4200	6.4	10100	6.4	4490	6.4	5150	6.4	19.3	6,4	4220	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		10100	685	10000	685	7600	685	7430	685	3590	685	2230	685	3020	685
Magnesium		14100	18.3	14100	18.3	13000	18.3	12400	18.3	4260	18.3	3760	18.3	4180	18.3
Manganese	50	127	1.8	117	1.8	166	1.8	148	1.8	14.8	1.8	12.0	1.8	14.2	1.8
Sodium	50000	85400	30.5	85100	30.5	80200	30.5	77000	30.5	18400	30.5	18500	30.5	17500	30.5
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	12.4	10.8	10.8 U	10.8
Lead	10	5.4	1.6	1.6 U	1.6	5.9	1.6	1.6 U	1.6	2.2	1.6	1.6 U	1.6	1.6 U	1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.8	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.8 U)	1.8
Thallium	10	0.70 U	0.70	0.70 U	0.70	1.7 U	1.7	1.7 U	1.7	0.70 U	0.70	0.70 U	0.70	1.7 U	1.7
Vanadium		2.3 U	2.3	2,3 U	2.3	2.6	2.3	2.3 U	2.3	5,5	2.3	2.3 U	2.3	6.2	2.3
Zinc	5000	10.5	3.8	5.9	3.8	5.0	3.8	4.3	3.8	168	3.8	160	3.8	178.0	3.8
Cyanide	200	10 U	10			10 U	10			10 U	10			10 U	10
Ammonia as Nitrogen												.			
Sulfate		18.8	5.0			10.8	5.0	,		49.2	10.0 *	· ·		38.3	10.0
Dilution Factor	'									*=	2				
Method:TAL Metals, Cyar	nide			1				† 		1					

Geographical Location		N	15	М	5	M5	ı	M	8	M	B	, M	В
Sample		MP05-MW	11-A02 SOL	MP05-M\	N11-E02	MP05-MW11	-E02 SOL	MP08-M\	N12-A01	MP08-MW1	2-A01 SOL	MP08-MV	V12-A02
Sample Type		Sol	uble	Field Rins	ate - Total	Field Rinsate		To		Solu	ble	Tot	
Batch#		9503	G660	95030	G660	9503G	660	9502	G238	95020	3238	95030	3767
Prep#		95G	1488	95G	1488	95Gl4	88	95GC	N045	95GI	397	95GI	509
RFW#		0	14	01	6	017		01	14	01	5	00	1
Dilution Factor		1.	00	1.0	00 .	1.00)	1.0	00	1.0	0	1.0	00
Matrix		water,	filtered	wa	ter	water, fil	tered	wa	ter	water, f	iltered	wa	ter
Units	ug/l		g/l	ug]/]	ug/		ug	g/l	ug	//	ug	//
Sampling Date		3/9	/95	3/9	/95	3/9/9	5	2/17	7/95	2/17	//95	3/15	/95
Analysis Date		3/1:	3/95	3/13	3/95	3/13/	95	3/1	/95	2/22	/95	3/21	/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result	,	Result		Result	
									,				
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	45.8	24.0	24.0 U	24.0	24.0 U	24.0	186	24.0	25.8	24.0	1290	24.0
Arsenic	8	1.3 U	1.3	1.3 U	1.3	1.3 U	1.3	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	11.7	1.7	1.7 U	1.7	1.7 U	1.7	6.8	1.7	4.6	1.7	10.8	1.7
Beryllium	20	0.90 U	. 0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	. 0.90	0.90 U	0.90	0.90 U	0.90
Calcium		10900	10.4	289	10.4	55.4	10.4	9210	10.4	8940	10.4	8580	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Chromium	100	2.9 U	2.9	/2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	14.5	2.9
Copper	1000	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	3.2	1.9	2.4	1.9	1.9 U	1.9
Iron	300	17.3	6.4	6.4 U	6.4	6.4 U	6.4	529	6.4	23.6	6.4	5430	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		2320	685	737	685	685 U	685	2540	685	2460	685	3090	685
Magnesium		3670	18.3	18.3 U	18.3	18.3 U	18.3	2400	18.3	2290	18.3	2570	18.3
Manganese	50	9.5	1.8	1.8 U	1.8	1.8 U	1.8	9.9	1.8	8.0	1.8	10.6	1.8
Sodium	50000	17200	30.5	165	30.5	147	30.5	22000	30.5	21200	30.5	20500	30.5
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.0	1.0
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20,7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	1.7 U	1.7	1.7 U	1.7	1.7 U	1.7	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1
Vanadium		2.3 U	2.3	2.3 U	2.3	2.3 U	2.3	2.3 U	2.3	2.3 U	2.3	11.4	2.3
Zinc,	5000	165	3.8	3.8 U	3.8	3.8 U	3.8	4.4	3.8	3.8 U	3.8	7.7	3.8
Cyanide	200			10 U	10			10 U	10			10 U	10
Ammonia as Nitrogen		;						0.20 U ,	0.20			0.20 U	0.20
Sulfate				5.0 U	5.0			40.4	10.0			35.9	5.0
Dilution Factor								*=	2				
Method:TAL Metals, Cyar	nide					<u></u>	,						

Geographical Location		M		N		` M8	3	N	18	N	//8	. N	18		M8
Sample		MP08-MW12	2-A02 SOL	MP08-M\	N12-C02	MP08-MW12	2-C02 SOL	MP08-M	W12-E02	MP08-MW	12-E02 SOL	MP08-M\	_		13-A01 SOL
Sample Type		Solul		Duplicat		Duplicate -		Field Rins	ate - Total		te - Soluble	To			luble
Batch#		9503G	767	9503	G767	95030		9503	G767		G767	9502			2G403
Prep#		95GI5	510	95G		95GI	512	95G	1513		ii514	95GC		-1	31460
RFW#		002	2	00)3	004	4	00	06	0	07	00)1	- 0	002
Dilution Factor		1.00	0	1.0	00	1.0	0	1.0	00	1.	.00	1.0	00	1	.00
Matrix		water, fi	ltered	wa	ter	water, fi	Itered	wa	ter	water,	filtered	wa			filtered
Units	ug/l	ug/	1	ug	3/1	ug/	1	. ug	g/l	u	g/l	ug	g/l		 ıg/l
Sampling Date		3/15/		3/15	5/95	3/15/	95	3/15	5/95	3/1	5/95	2/22			2/95
Analysis Date		3/21/		3/21	/95	3/21/	95	3/21	1/95	3/2	1/95	3/7	/95	3/	8/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result		Result	
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	24.0 U	24.0	1090	24.0	36.1	24.0	27.0	24.0	24.0 U	24.0	363	24.0	24.0 U	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	4.0	1.7	10.8	1.7	3.9	1.7	1.7 U	1.7	1.7 U	1.7	204	1.7	174	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Calcium		7980	10.4	8750	10.4	8550	10.4	109	10.4	95.7	10.4	144000	10.4	139000	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	.2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt	<u>-</u>	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Chromium	100	2.9 U	2.9	11.1	2.9	3.3	2.9	2.9 U	2.9	2.9 U	2.9	4.1	2.9	2.9 U	2.9
Copper	1000	2.5	1.9	1.9 U	1.9	2.3	1.9	2.1	1.9	1.9 U	1.9	7.9	1.9	1.9 U	1.9
Iron	300	26.6	6.4	4780	6.4	21.3	6.4	13.2	6.4	7.4	6.4	31900	6.4	25600	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.62	0.20	0.20 U	0.20
Potassium		1980	685	2920	685	2660	685	685 U	685	685 U	685	22100	685	21300	685
Magnesium		1960	18.3	2450	18.3	2160	- 18.3	18.3 U	18.3	18.3 U	18.3	69600	18.3	67900	18.3
Manganese	50	7.9	1.8	10.6	1.8	7.0	1.8	1.8 U	1.8	1.8 U	1.8	573	1.8	550	1.8
Sodium	50000	19500	30.5	21100	30.5	20900	30.5	87.3	30.5	120	30.5	295000	30.5	288000	30,5
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	, 10.8	10.8 U	10.8	10.8 U	10.8
Lead	10	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	2.8	1.6	1.6 U	1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70
Vanadium		3.2	2.3	8.6	2,3	3.8	2.3	3.0	2.3	2.3 U	2.3	5.6	2.3	3.4	2.3
Zinc	5000	8.6	3.8	8.7	3.8	4.2	3.8	3.8 U	3.8	4.1	3.8	11.9	3.8	3.8 U	3.8
Cyanide	200			10 U	10			10 U	10	<u> </u>		10 U	10		
Ammonia as Nitrogen				0.20 U	0.20			0.20 U	0.20	L		2.6	0.20		
Sulfate				41.4	10.0 *			5.0 U	5.0	L		14.0	5.0		
Dilution Factor	<u> </u>			*=	2				• •					<u> </u>	
Method:TAL Metals, Cyar	nide		•												

1 441 - .

Geographical Location		М	8	M	8	M	8	M	3	М	8	M	3
Sample		MP08-MV	V13-A02	MP08-MW1	3-A02 SOL	MP08-MV	V14-A01	MP08-MW14	4-A01 SOL	MP08-MV	N14-A02	MP08-MW1	4-A02 SOL
Sample Type		To	tal	Solu	ıble	Tof	al	Solu	ble	То	tal	Solu	ble
Batch#		95030	3767	9503	G767	95020	3219	95020	219	95030	G767	95030	3767
Prep#		95GI	515	95G	1516	95GC	N045	95GI	439	95G	I 517	. 95GI	518
RFW#		00	18	. 00)9	01	8	01:	9	01	0	01	1
Dilution Factor		1.0	00	1.0	00	1.0	0	1.0	0	1.0	00	1.0	10
Matrix		wa		water,	filtered	wat	er	water, fi	Itered	wa	ter	water, f	iltered
Units	ug/l	ug		uç		ug	/l	ug		ug	g/l	ug	Л
Sampling Date		3/15		3/15		2/16		2/16		3/15		3/15	
Analysis Date		3/21	/95	, 3/21	1/95	3/1/	95	3/3/	95	3/21	1/95	3/21	/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result	^	Result		Result		Result	
`													· .
Silver	20	3.0 U	3.0	3,0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0
Aluminum	200	661	24.0	44.4	24.0	2220	16.8	30.4	16.8	2480	24.0	46.9	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	4.3	1.9	1.9 U	1.9	3.2	1.9	1.9 U	1.9
Barium	2000	260	1.7	180	1.7	372	0.80	304	0.80	448	1.7	356	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.70	0.30	0.39	0.30	0.90 U	0.90	0.90 U	0.90
Calcium		171000	10.4	165000	10.4	162000	8.4	165000	8.4	157000	10.4	164000	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	3.0	2.9	2,9 U	2.9	2.9	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	4.8	2.3	2.5	2.3	3.8	3.0	3.0 U	3.0
Chromium	100	4.3	2.9	2.9 U	2.9	23.1	4.7	4.7 U	4.7	24.9	2.9	3.1	2.9
Copper	1000	5.1	1.9	1.9 U	1.9	4.0 U	· 4.0	4.0 U	4.0	5.2	1.9	4.4	1.9
Iron	300	48100	6.4	27900	6.4	57700	2.5	41400	2.5	57000	6.4	35100	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0,20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		17800	685	17200	685	65100	67.9	64300	67.9	65200	685	67500	685
Magnesium		58300	18.3	57500	18.3	79000	34.3	78700	34.3	75100	18.3	78200	18.3
Manganese	50	737	1.8	703	1.8	277	0.90	263	0.90	275	1.8	271	1.8
Sodium	50000	171000	30.5	172000	30.5	421000	19.1	424000	19.1	346000	762 *	365000	762 *
Nickel	100	10.8 U	10.8	10.8 U	10.8	4.9	4.2	4.2 U	4.2	10.8 U	10.8	10.8 U	10.8
Lead	10	3.7	1.0	1.0 U	1.0	9.3	1.6	1.6 U	1.6	10.2	1.0	1.0 U	1.0
Antimony	20	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1
Vanadium		3.8	2.3	2.3 U	2.3	12.9	2.1	2.1 U	2.1	15.4	2.3	4.6	2.3
Zinc	5000	27.3	3.8	3.9	3.8	49.6	1.9	3.8	1.9	57.2	3.8	4.8	3.8
Cyanide	200	10 U	10			10 U	10			-10 U	10	 	
Ammonia as Nitrogen	ļ	2.9	0.20			75.2	20.0 *			72.6	4.0 **	ļ	
Sulfate	ļ	34.3	10.0 *			6.8	5.0			22.8	5.0		
Dilution Factor	<u> </u>	**	2		'	*=1	00			*=25,	**=20	*=2	25
Method:TAL Metals, Cya	nide ^					<u> </u>	<u> </u>	1 .					


Geographical Location		M8		l N	18	N	18	M8		M	8	N.	18
Sample	1 1	MP08-MW1	5-A01	MP08-MW	15-A01 SOL	MP08-M		MP08-MW15		MP08-MV			15-E01 SOL
Sample Type	†	Total			uble		te - Total	Duplicate -		Field Rins			te - Soluble
Batch#		9502G4	03	9502	G403		G403	9502G		95020			G403
Prep#		95GCN0	53	95G	1460		N053	95GI4		95GC			1460
RFW#		003		0	04	00	05	006		00	8	0	09
Dilution Factor		1.00		1.	.00	1.	00	1.00)	1.0	00	1.	00
Matrix	1	water		water,	filtered	wa	ter	water, fil		wa			filtered
Units	ug/l	ug/l	-	u	g/l	u	g/l	ug/		ug	1/1	u	g/l
Sampling Date	T	2/22/9	5		2/95	- 2/2	2/95	2/22/		2/22			2/95
Analysis Date		3/7/95	5	3/8	3/95	3/7	/95	3/8/9	15	3/7	/95	3/8	3/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result	
			,					',					
Silver	20	3.0 U	3,0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	540	24.0	24.0 U	24.0	515	24.0	24.0 U	24.0	24.0 U	24.0	24.0'U	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	260	1.7	173	1.7	261	1.7	174	1.7	.1.7 U	1.7	1.7 U	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Calcium		310000	10.4	305000	10.4	315000	10.4	315000	10.4	107	10.4	57.1 ·	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Chromium	100	3.9	2.9	2.9 U	2.9	4.3	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Copper	1000	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
iron	300	27200	6.4	18100	6.4	27300	6.4	18200	6.4	6.4 U	6.4	6.4 U	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium	<u> </u>	34700	685	33500	685	34900	685	34000	685	685 U	685	685 U	685
Magnesium	<u></u>	71500	18.3	71000	18.3	73000	18.3	73000	18.3	18.3 U	18.3	18.3 U	18.3
Manganese	50	375	1.8	363	1.8	380	1.8	375	1.8	1.8 U	1.8	1.8 U	1.8
Sodium	50000	226000	30,5	225000	30.5	230000	30.5	231000	30.5	140	30.5	156	30.5
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	11.4	10.8	10.8 U	10.8
Lead	10	2.9	1.6	1.6 U	1.6	2.6	1.6	11.1	1.6	1.6 U	1.6	1.6 U	1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium	l	7.4 .	2.3	3.4	2.3	6.0	2.3	3,1	2.3	2.3 U	2.3	2.3 U	2.3
Zinc	5000	13.5	3.8	3.8 U	3.8	13.9	3.8	3.8 U	3.8	3.8 U	3.8	3.8 U	3.8
Cyanide	200	10 U	10	1		10 U	10			10 U	10		
Ammonia as Nitrogen	ļ	31.8	0.20			31.9	0.20		·	0.20 U	0.20		
Sulfate		71.5	5.0			72.7	5.0			5.0 U	5.0		
Dilution Factor	<u> </u>					-		,					
Method:TAL Metals, Cyar	nide			L									

Geographical Location		. м	8	M	В	M [*]	12	M	12	M12	2	M1:	2
Sample		MP08-MV	N15-A02	MP08-MW1	5-A02 SOL	MP12-M\	N16-A01	MP12-MW1	6-A01 SOL	MP12-MW	16-A02	MP12-MW16	-A02 SOL
Sample Type		To		Solu		То		Solu		Tota		Solut	
Batch#		95030	G767	95030	3767	9502	G299	95020	G299	9503G	681	9503G	681
Prep#		95G	1519	95GI	519	95G	450	95G	1450	95Gl4	194	95Gl4	194
RFW#		01	2	01	3	00)1	ÖC)2	001		002	2
Dilution Factor		1.0	00	1.0	10	1.0	00	1.0	00	1.00	O	1.00	0
Matrix		Wa	ter	water, f	iltered	wa	ter	water,	filtered	wate	er	water, fi	tered
Units	ug/i	ug	y/ i	ug	/1	ug	3 /1	ug	3/ I	ug/	l	ug/	1
Sampling Date		3/15	5/95	3/15	/95	2/20)/95	2/20)/95	3/10/	95	3/10/	95
Analysis Date		3/21	/95	3/21	/95	3/6	/95	3/6	/95	3/15/	95	3/15/	95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
16		Result		Result		Result		Result		Result		Result	
				1									
Silver	20	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	596	24.0	28.9	24.0	1460	16.8	73.3	16.8	462	16.8	32.9	16.8
Arsenic	8	1.9 U	1.9	1.9 U	1.9	4.8	1.3	2.7	1.3	3.3	1.7	1.9	. 1.7
Barium	2000	277	1.7	190	1.7	50.3	0.80	40.7	0.80	43.9	0.80	38.6	0.80
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30
Calcium		357000	10.4	328000	10.4	7840	8.4	7720	8.4	7880	8.4	8040	8.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	3.5	2.9	3.3	2.9
Cobalt		3.0 U	3,0	3.0 U	3.0	2.9	2.3	2.9	2.3	2.3 U	2.3	2.3 U	2.3
Chromium	100	4.2	2.9	2.9 U	2.9	21.7	4.7	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7
Copper	1000	1.9 U	1.9	1.9 U	1.9	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0
iron .	300	24300	6.4	15100	6.4	21000	2.5	15700	2.5	18300	2.5	15500	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.31	0.20	0.20 U	0.20	0.20 U	0.20	0,20 ⊍	0.20
Potassium		36000	685	32700	685	3360	67.9	2660	67.9	2720	67.9	2600	67.9
Magnesium		75000	18.3	69100	18.3	6320	34.3	5900	34.3	5920	34.3	5780	34.3
Manganese	50	382	1.8	345	1.8	47.0	0.90	44.3	0.90	45.1	0.90	43.7	0.90
Sodium	50000	228000	30.5	210000	30.5	17300	19.1	17500	19.1	17000	19.1	17000	19.1
Nickel	100	10.8 U	10.8	10.8 U	10.8	5.4	4.2	6.0	4.2	4.2 U	4.2	4.2 U	4.2
Lead	10	1.3	1.0	1.0 U	1.0	1.6 U	1.6	1.6 U	1.6	1.4	1.2	· 1.2 U	1.2
Antimony	20	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8
Thallium	10	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium		8.0	2.3	3.3	2.3	8.8	2.1	2.1 U	2.1	3.9	2.1	2.1 U	2.1
Zinc	5000	28.3	3.8	3.8 U	3.8	22.4	1.9	18.2	1.9	19.1	1.9	19.2	1.9
Cyanide	200	10 U	10		,	10 U	, 10			10 U	10		
Ammonia as Nitrogen		28.6	2.0 *										
Sulfate		· 90.0	25.0 **										
Dilution Factor		*=10,	**=5										
Method:TAL Metals, Cyar	nide									•			

Geographical Location		M12		T N	112		14		114 .		1.4	M1	14
Sample	t	MP12-MW			18-A02 SOL	MP14-M			19-A01 SOL	MP14-M\	· ·	MP14-MW1	
Sample Type	 	Total		+	luble		otal		uble	To		Solu	
Batch#	1	9503G6			3G681		G299		G299	9503		95030	
Prep#	 	95GI49		1	31494		1450		1450	95G		95GI	
RFW#		005			06		07		08	000		00	
Dilution Factor		1.00			.00		00		.00	1.0		1.0	
Matrix		water		water.	filtered		nter		filtered	wa		water, f	
Units	ug/i	ug/l			ıg/i		g/l		g/l	ug		ug	
Sampling Date	1	3/10/9	5	. 3/1	0/95		D/95		0/95	3/10		3/10	
Analysis Date		3/15/9	5	3/1	5/95	3/6	/95	3/6	3/95	3/15		3/15	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytica!	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result	
				i	,								
Silver	20	2.5 U	2.5	2.5 Ų	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	563	16.8	195	16.8	266	16.8	27.2	16.8	520	16.8 /	16.8 U	16.8
Arsenic	8	1.7 U	1.7	1.7 U	1.7	1.3 U	1.3	1.3 U	1.3	1.7 U	1.7	1.7 U	1.7
Barium	2000	131	0.80	114	0.80	223	0.80	215	0.80	206	0.80	182	0.80
Beryllium	20	0.30 U	0.30	0.34	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30
Calcium		6110	8.4	6250	8.4	37900	8.4	37700	8.4	39500	8.4	39000	8.4
Cadmium	4	3.4	2.9	3.5	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Cobalt		2.3 U	2.3	2.3 U	2.3	2.9	2.3	2.3 U	2.3	2.3 U	2.3	2.3 U	2.3
Chromium	100	4.7 U	4.7	4.7 U	4.7	7.5	4.7	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7
Copper	1000	4.3	4.0	4.8	4.0	8.6	4.0	4.0 U	4.0	7.7	4.0	4.0 U	4.0
iron	300	1220	2.5	55.9	2.5	40900	2.5	38800	2.5	41900	2.5	37600	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		4830	67.9	4700	67.9	4640	67.9	4460	67.9	4680	67.9	4480	67.9
Magnesium		3880	34.3	3810	34.3	5240	34.3	5160	34.3	5130	34.3	4980	34.3
Manganese	50	15.9	0.90	15.0	0.90	547	0.90	543	0.90	554	0.90	538	`0.90
Sodium	50000	20900	19.1	20900	19.1	. 8900	19.1	8940	19.1	8730	19,1	8440	19.1
Nickel	100	6.4	4.2	4.7	4.2	4.6	4.2	4.2 U	4.2	4.2 U	4.2	4.2 U	4.2
Lead	10	5.4	1.2	1.2 U	1.2	13.8	1.6	1.6 U	1.6	23.7	1.2	1.2 U	1.2
Antimony	20	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10,9 U	10.9
Selenium	50	1.8 U	1.8	1.8 U	1.8	1,5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium	F000	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1
Zinc	5000	44.0	1.9	42.5	1.9	66.9	1.9	1.9 U	1.9	112	1.9	3.3	1.9
Cyanide	200	10.0 U	10.0	ļ — I		10 U	10	 		10.0 U	10.0		
Ammonia as Nitrogen Sulfate										<u></u>			
	<u> </u>			 				ļ					
Dilution Factor				 									
Method:TAL Metals, Cyar	HOS			<u>i. </u>			<u> </u>			<u> </u>			

1/27/95

Geographical Location	1	M	14	Т М	14	M	14	M	14	M ⁻	14) M1			14
Sample		MP14-M		MP14-MW2			W20-A02	MP14-MW		MP14-M\		MP14-MW2			W21-A01
Sample Type			tal		uble		tal		uble	Field Rins		Field Rinsat			otal
Batch#	ļ -	9502			G403		G722		G722	9503		95030			G403
Prep#	<u> </u>	95GC			1460	95G			1503	95G		95GI			N053
RFW#	<u> </u>	01		0,		00			02	00		00		9360	
Dilution Factor	 	1.0		1.0		1.0		1	00	1.0		1.0		1.	
Matrix		wa		water,		wa			filtered	wa		water, f			iter
Units	ug/l	` ug		· · · ·	g/l	ug			g/l	ug		water, i			
Sampling Date		2/22		2/22			3/95		3/95	3/13		3/13		u _i	9/1 2/95
Analysis Date		3/7			/95		5/95		5/95	3/15	-	3/15			295 795
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL		
		Result	11102	Result	10106	Result	MIDL	Result	MIDE	Result	IVIDE	Result	MIDL	Analytical	MDL
	<u> </u>	- 1100411		7100011		1105011		result		Nesult		Result		Result	
Silver	20	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0
Aluminum	200	1290	24.0	63.0	24.0	517	16.8	85	16.8	16.8 U	16.8	16.8 U	16.8	1130	24.0
Arsenic	8	2.4	1.9	1.9 U	- 1.9	10.2	1.3	8.8	1.3	1.3 U	1.3	1.3 U	1.3	1.9 U	1.9-
Barium	2000	53.4	1.7	25.6	1.7	44.0	0.80	31.1	0.80	0.80 U	0.80	1.2	0.80	27.0	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.34	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90
Calcium		30400	10.4	28300	10.4	33300	8.4	32500	8.4	103	8.4	102	8.4	32400	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3	2.3 U	2.3	2.3 U	2.3	3.0 U	3.0
Chromium	100	16.9	2.9	2.9 U	2.9	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7	10.8	2.9
Copper	1000	4.7	1.9	1.9 U	1.9	11.9	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	1.9 U	1.9
Iron	300	8890	6.4	4480	6.4	7030	2.5	5350	2.5	9.6	2.5	9.2	2.5	4880	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		5340	685	4230	685	5292	67.9	3800	67.9	67.9 U	67.9	67.9 U	67.9	6920	685
Magnesium		4330	18.3	3720	18.3	4210	34.3	4010	34.3	34.3 U	34.3	34.3 U	34.3	3930	18.3
Manganese	50	186	1.8	171	1.8	213	0.90	209	0.90	0.90 U	0.90	0.90 U	0.90	62.5	1.8
Sodium	50000	23300	30.5	22100	30.5	21900	19.1	20600	19.1	56.3	19.1	142	19.1	6360	30.5
Nickel	100	10.8 U	10.8	10.8 U	10.8	9.2	4.2	4.2 U	4.2	4.2 U	4.2	4.2 U	4.2	10.8 U	10.8
Lead	10	3.8	1.6	1.6 U	1.6	5.5	1.1	1.1 U	1.1	1.5	1.1	1.1 U	1.1	3.1	1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium		8.5	2.3	4.0	2.3	4.0	2.1	3.1	2.1	2.1 U	2.1	2.1 U	2.1	7.1	2.3
Zinc	5000	7.2	3.8	3.8 U	3.8	21.8	1.9	10.1	1.9	3.9	1.9	4.2	1.9	11.1	3.8
Cyanide	200	10 U	10			10 U	10			10 U	10			10 U	10
Ammonia as Nitrogen				-]					-						
Sulfate							-	,							
Dilution Factor															
Method:TAL Metals, Cyar	ide									-					•

Geographical Location		M1	4	М	14	M1	4	M	18	М	18	M ²	18	M:	18
Sample		MP14-MW2	1-A01 SOL	MP14-M	W21-A02	MP14-MW2	1-A02 SOL	MP18-M	N03-A01	MP18-MW0	3-A01 SOL	MP18-M\		MP18-MW0	
Sample Type		Solu	ble	То	tal	Solu	ble	To	otal		uble	То		Solu	
Batch#	1	95020	3403	9503	G660	95030	3660	9505	G825		G825	9505		95050	
Prep#		95Gl4	460	95G	1488	95GI		1 .	1713		1713	95G		95G	
RFW#		013	3	01	19	02	0	, 00	D1		02	00		00	
Dilution Factor		1.0	0	1.0	00	1.0	00		00	1.	00	1.0		1.0	
Matrix		water, fi	iltered	wa	ter	water, f	iltered	wa	iter	water,	filtered	wa	ter	water.	filtered
Units	ug/l	ug/	/i	uç	g/l	ug	/	u	g/l		g/l	ug		ug	
Sampling Date		2/22/	/95	3/9	/95	3/9/	95	5/10		5/10	0/95	5/25		5/25	
Analysis Date		3/8/9	95	3/13	3/95	3/13	/95	5/24	4/95	5/2	4/95	6/7	/95	6/7	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL.	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result	·	Result		Result	
·		,													
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Aluminum	200	24.0 U	24.0	1630	24.0	24.0 U	24.0	6410	15.7	368	15.7	8980	15.7	251	15.7
Arsenic	8	1.9 U	1.9	3.7	1.3	1.8	1.3	4.5	1.4	1.4 U	1.4	5.1	1.7	1.7 U	1.7
Barium	2000	23.3	1.7	43.4	1.7	22.4	1.7	12.1	0.80	2.3	0.80	15.2	0.80	1.5	0.80
Beryllium	20 ′	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.77 U	0.30	0.30 U	0.30	1.2	0.30	0.30 U	0.30
Calcium		32600	10.4	33200	10.4	33900	10.4	5650	13.4	5270	13.4	5290	13.4	4320	13.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	3.9 U	3.9	3.9 U	3.9	3.9 U	3.9	4.7	3.9
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.3	1.4	2.5	1.4	5.0	1.4	3.1	1.4
Chromium	100	36.6	2.9	14.5	2.9	2.9 U	2.9	75.7 U	3.8	7.9	3.8	107.0	3.8	12.5	3.8
Copper -	1000	1.9 U	1.9	2.7	1.9	1.9 U	1.9	2.7	1.8	3.1	1.8	3	1.8	1.8 U	1.8
Iron	300	625	6.4	6490	6.4	407	6.4	33000	3.6	2110	3.6	46900	3.6	1500	3.6
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		6610	685	8060	685	7110	685	9770	81.2	3340	81.2	11700	81.2	3280	81.2
Magnesium		3600	18.3	4190	18.3	3780	18.3	5850	37.2	3170	37.2	6440	37.2	2600	37.2
Manganese	50	56.4	1.8	66.4	1.8	56.7	1.8	32.6	0.70	18.6	0.70	44.0	0.70	16.7	0.70
Sodium	50000	6460	30.5	7040	30.5	7850	30.5	58700	11.8	58600	11.8	53200	11.8	53500	11.8
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8	6.4	5.4	5.4	5.4	8.2	5.4	6.0	5.4
Lead	10	1.6 U	1.6	3.8	1.6	1.6	1.6	6.1	0.80	0.80 U	0.80	10,3	0.90	0.90 U	0.90
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	12.0 U	12.0	12.0 U	12.0	12.0 U	12.0	14.6	12.0
Selenium	50	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	1.7 U	1.7	1.7 U	1.7	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium	~	2.3 U	2.3	10.4	2.3	4.6	2.3	35.9	1.5	2.2	1.5	53.6	1.5	5.3	1.5
Zinc	5000	3,8 U	3.8	15.9	3.8	3.8 U	3.8	78.2	2.2	33.9	2.2	99.6	2.2	28.4	2.2
Cyanide	200			10 U	10										
Ammonia as Nitrogen													1		
Sulfate															
Dilution Factor															
Method:TAL Metals, Cyar	nide											T :			

Geographical Location			18	M			18	1	18		18	M1	8 .
Sample		MP18-MI			3-E01 SOL		W24-A01	MP18-MW2		MP18-M	W24-A02	MP18-MW2	4-A02 SOL
Sample Type		Field Rins			te - Soluble		otal		uble	.I.	tal	Solu	ble
Batch#			G825	1	G825		G238		G238	9503		95030	3 681
Prep#			1713	95G			1397	95G		95G	1494	95GI	494
RFW#		00		00			01	00	_	00	09	01	0
Dilution Factor		1.0	00	1.		1.	00	1.	00	1.	00	1.0	0
Matrix	,		ter	water,	filtered		iter	water,	filtered	Wa	iter	water, f	itered
Units	ug/l	uç			g/l	u	g/l	uş	g/l	ug	g/l	ug	/1
Sampling Date		5/10		5/10			7/95	2/17	7/95	3/10	0/95	3/10/	/95
Analysis Date		5/24		5/24		` 2/2:	2/95	2/22	2/95	3/15	5/95	3/15/	/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result	•	Result		Result		Result	
Silver	20	1.9 U	1.9	1.9 U	1.9	3.0 U	7	0011	0.0	0.511			
Aluminum	200	33.2	15.7				3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5
Arsenic	8	33.2 1.4 U		20.5	15.7	3790	24.0	46.2	24.0	7440	16.8	50.2	16.8
Barium	2000	0.92	0.80	1.4 U 0.80 U	1.4	13.0	1.9	3.7	1.9	20.3	1.7	4.9	1.7
Bervilium	2000	0.92 0.30 U	0.80	0.80 U	0.80 0.30	272 1.6	1.7	183	1.7	262	0.80	169	0.80
Calcium	20	65.6	13.4				0.90	1.2	0.90	1.4	0.30	0.56	0.30
Cadmium	4	3.9 U		45.4	13.4	714000	10.4	680000	10.4	787000	42.0 *	748000	42.0 *
Cobalt	4	2.2	3.9 1.4	3.9 U	3.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9
Chromium	100	3.8 U	3.8	2.2	1.4	3.0 U	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3
	1000			4.1	3.8	33.8	2.9	3.6	2.9	62.5	4.7	4.7 U	4.7
Copper	300	2.9 19.3	1.8 3.6	1.8 U 13.1	1.8 3.6	9.4	1.9	4.6	1.9	7.5	4.0	4.0 U	4.0
Mercury	2	0.20 U			1	37900	6.4	15300	6.4	42100	2.5	16300	2.5
Potassium			0.20	0.20 U	0.20	0.20 U	0.20	0.20	0.20	0.20 U	0.20	0.20 U	0.20
		81.2 U	81.2	81.2 U	81.2	18900	685	16800	685	19500	67.9	16200	67.9
Magnesium	50	37.2 U	37.2	37.2 U	37.2	54300	18.3	51400	18.3	45200	34.3	47900	34.3
Manganese	50	1.1	0.70	0.72	0.70	756	1.8	697	1.8	668	0.90	666	0.90
Sodium	50000	101	11.8	94.1	11.8	47100	30.5	45700	30.5	36900	19,1	38400	19.1
Nickel	100	5.4 U	5.4	5.4 U	5.4	10.8 U	10.8	10.8 U	10.8	11.4	4.2	4.2 U	4.2
Lead Antimony	10	0.80 U	0.80	0.80 U	0.80	28.6	1.6	1.6 U	1.6	40.8	2.4 **	1.2 U	1.2
Selenium	20	12.0 U	12.0	12.0 U	12.0	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9
	50	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	2.4	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium		1.5 U	1.5	1.5 U	1.5	22.3	2.3	2.3 U	2.3	36.0	2.1	2.4	2.1
Zinc	5000	2.2 U	2.2	2.2 U	2.2	80.5	3.8	4.2	3.8	101	1.9	12.6	1.9
Cyanide	200												
Ammonia as Nitrogen Sulfate	 					·						,	
	ļl	· .						· .					
Dilution Factor	Ļ <u></u>							, ,		* = 5,	** = 2	*=:	5
Method:TAL Metals, Cya	nide		•										

Geographical Location		M1	8	M18	3	M:	18	M1	8	M1	8	M1	8	M1	18
Sample		MP18-MV	/24-C02	MP18-MW24	-C02 SOL	MP18-M\	N24-E01	MP18-MW24	1-E01 SOL	MP18-MV	/24-E02	MP18-MW24	4-E02 SOL	MP18-MV	N25-A01
Sample Type		Duplicate	- Total	Duplicate -	Soluble	Field Rins	ate - Total	Field Rinsate	e - Soluble	Field Rinsa	te - Total	Field Rinsate	e - Soluble	To	tai
Batch#		95030	681	9503G	681 ~	95020		9502G	238	95030	681	95030	681	95020	G238
Prep#		95GI	494	95GI4	94	95G	1397	95GK	397	95GI4		95GI	494	95GI	397
RFW#		01	1	012	2	00)4	009	5	014	4	01:	5	00)6
Dilution Factor	T	1.0	0	1.00)	1.0	00	1.0	0	1.0	0	1.0	0	1.0	00
Matrix		wat	ег	water, fil	tered	wa	ter	water, fi	Itered	wat	er	water, fi	iltered	wa	ter
Units	ug/l	ug	/1	ug/	<u> </u>	. ug] /i	ug	/1	ug	/1	ug	/I	ug	j/ l
Sampling Date		3/10		3/10/		2/17		2/17/		3/10/		3/10/		2/17	
Analysis Date		3/15		3/15/	95	2/22	2/95	2/22/		3/15/	95	3/15/		2/22	2/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result		Result	
Silver	20	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0
Aluminum	200	7330	16.8	36.2	16.8	25.0	24.0	28.4	24.0	20.0	16.8	16.8 U	16.8	293	24.0
Arsenic	8	20.6	3.4 **	6.4	1.7	1.9 U	1.9	1.9 U	1.9	1.7 U	1.7	1.7 U	1.7	6.3	1.9
Barium	2000	262	0.80	158	0.80	1.7 U	1.7	1.7 U	1.7	0.80 U	0.80	0.80 U	0.80	64.4	1.7
Beryllium	20	1.7	0.30	0.57	0.30	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90
Calcium		780000	42.0 *	727000	42.0 °	282	10.4	161	10.4	460	8.4	106	8.4	167000	- 10.4
Cadmium	4	4.1	2.9	2.9	2.9	2.8 U	2.8	, 2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8
Cobalt		2.8	2.3	2.3 U	2.3	3.0 U	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3	3.0 U	3.0
Chromium	100	64.7	4.7	4.7 U	4.7	2.9 U	2.9	2.9 U	2.9	4.7 U	4.7	4.7 U	4.7	3.9	2.9
Copper	1000	9.2	4.0	4.0 U	4.0	1.9 U	1.9	2.7	1.9	5.4	4.0	4.0	4.0	2.1	1.9
Iron	300	43800	2.5	15200	2.5	13.4	6.4	13.5	6.4	24.5	2.5	15.7	2.5	7540	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		19100	67.9	15100	67.9	685 U	685	685 U	685	67.9 U	67.9	67.9 U	67.9	26500	685
Magnesium		45100	34.3	44300	34.3	20.0	18.3	23.9	18.3	34.3 U	34.3	34.3 U	34.3	63100	18.3
Manganese	50	680	0.90	, 634	0.90	1.8 U	1.8	1.8 U	1.8	0.90 U	0.90	0.90 U	0.90	1050	1.8
Sodium	50000	35800	19.1	35600	19.1	160	30.5	118	30.5	75.8	19.1	97.2	19.1	293000	30.5
Nickel	100	11.3	4.2	4.2 U	4.2	10.8 U	10.8	10.8 U	10.8	4.2 U	4.2	4.2 U	4.2	10.8 U	10.8
Lead	10	44.6	2.4 **	1.2 U	1.2	1.6 U	1.6	1.6 U	1.6	1.2 U	1.2	1.2 U	1.2	1.6 U	1.6
Antimony	20	10.9 U	10.9	10.9 U	10.9	21	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7
Selenium	50	1.8	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	- 0.70	0.70 U	0.70	0.70 U	0.70
Vanadium	E000	37.1	2.1	2.1 U	2.1	2.3 U	2.3	2.3 U	2.3	2.1 U	2.1	2.1 U	2.1	6.7	2.3
Zinc	5000	103	1.9	13.7	1.9	3.8 U	3.8	3.8 U	3.8	1.9 U	1.9	1.9 U	1.9	4.0	3.8
Cyanide	200	_												<u> </u>	
Ammonia as Nitrogen						ļ				-				 	
Sulfate						ļi		ļ				<u> </u>			
Dilution Factor	<u> </u>	° = 5, 1	-=2	*=	<u> </u>	<u> </u>		ļ						<u> </u>	
Method:TAL Metals, Cya	nide							1				I			

Geographical Location		M1			18	√ M1		M	18	M	18
Sample		MP18-MW25		MP18-M	W25-A02	MP18-MW25	5-A02 SOL	MP18-M\	N25-C01	MP18-MW2	5-C01 SOL
Sample Type		Solul		1	tal	Solul		Duplicat		Duplicate	- Soluble
Batch#		9502G		9503		95030			G238	9502	G238
Prep#		95GI3			1494	95Gl4	194	95G	1397	95G	1397
RFW#		007		L.	16	018	5	00	08	00)9
Dilution Factor	1	1.00		1.0	00	1.0	0	1.0	00	1.0	00
Matrix		water, fi	tered	wa	ter	water, fi	Itered	wa	ter	water,	filtered
Units	ug/l	ug/		u	g/i	ug/	1	Ug	g/l	ug	g/I ·
Sampling Date		2/17/			0/95	3/10/	95	2/17	7/95	2/17	
Analysis Date		2/22/	95	3/15	5/95	3/15/	95	2/22	2/95	2/22	2/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytica!	MDL
		Result		Result	1	Result		Result		Result	
Silver	20	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0
Alumińum	200	30.8	24.0	7640	16.8	16.8 U	16.8	566	24.0	28.3	24.0
Arsenic	8	6.0	1.9	16.5	1.7	4.8	1.7	5.8	1.9	5.3	1.9
Barium	2000	57.3	1.7	117	0.80	60.2	0.80	68.8	1.7	66.1	1.7
Beryllium	20	0.90 U	0.90	0.91	0.30	0.35	0,30	0.90 U	0.90	0.90 U	0.90
Calcium	<u> </u>	163000	10.4	162000	8.4	161000	8.4	176000	10.4	159000	10.4
Cadmium	4	2.8 U	2.8	5.8	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	2.5	2.3	2.3 Ü	2.3	3.0 U	3.0	3.0 U	3.0
Chromium	100	2.9 U	2.9	40.7	4.7	4.7 U	4.7	5.7	2.9	2.9 U	2.9
Copper	1000	2.1	1.9	4.0 U	4.0	4.0 U	4.0	3.2	1.9	2.7	1.9
Iron	300	5100	6.4	49700	2.5	11700	2.5	6650	6.4	11000	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		25000	685	33300	67.9	29400	67.9	26300	685	34700	685
Magnesium		60600	18.3	75000	34.3	70100	34.3	63100	18.3	81000	18.3
Manganese	50	1030	1.8	830	0.90	730	0.90	1030	1.8	874	1.8
Sodium	50000	277000	30.5	434000	19.1	412000	19.1	284000	30.5	488000	30.5
Nickel	100	10.8.U	10.8	14.6	4.2	4.2 U	4.2	10.8 U	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	21.6	6.0 *	1.2 U	1.2	1.7	1.6	1.6 U	1.6
Antimony	20	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium		2.4	2.3	41.6	2.1	5.3	2.1	8.1	2.3	4.4	2.3
Zinc	5000	3.8 U	3.8	62.4	1.9	3.4	1.9	4.7	3.8	3.8 U	3.8
Cyanide	200				-			-			
Ammonia as Nitrogen											
Sulfate											
Dilution Factor				*=	5						
Method:TAL Metals, Cya	nide			1							

Geographical Location	1	В	31	В	1	В	1	В	1	B2			2
Sample	 	B1-MW		B1-MW01E		B1-MW		B1-MW018		B2-MW02		B2-MW02E	
Sample Type		1	tal	Solu		То			ıble -	Tota		Solu	
Batch#			G169	95020			G616	95030		9502G		95020	
Prep#			1422	95G		95G		95G		95GI4		95G	
RFW#	-	00		00		00		00		003		00	
Dilution Factor	T	1.0	00	1.0		1.0		1.0		1.00		1.0	
Matrix		wa	iter	water,		wa		water,		wate		water,	
Units	ug/l.	. ug	g/l	ug		uç		ug		ug/		ug	
Sampling Date		2/14		2/14		3/7		3/7		2/15/		2/15	5/95
Analysis Date		2/23	3/95	2/27	7/95	3/13	3/95	3/13		2/23/		2/27	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
-		Result		Result		Result		Result		Result		Result	
	1				 ·								
Silver	20	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	2430	16.8	146	16.8	634	16.8	116	16.8	1070	16.8	40.9	16.8
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	4.8	1.9	1.9 U	1.9
Barium	2000	68.5	0.80	62.5	0.80	62.9	0.80	60.2	0.80	73.9	0.80	67.3	0.80
Beryllium	20	0.43	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30
Calcium		5130	8.4	5090	8.4 ^	4910	8.4	5040	8.4	40300	8.4	40200	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Cobalt		6.4	2.3	4.6	2.3	4.5 `	2.3	4.9	2.3	4.0	2.3	2.3 U	2.3
Chromium	100	43.8	. 4.7	4.7 U	4.7	12.9	4.7	4.7 U	4.7	7.4	4.7	4.7 U	4.7
Copper	1000	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0
Iron	300	12300	2.5	18.0	2.5	2430	2.5	20.9	2.5	40100	2.5	26600	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 Ū	0.20
Potassium	,	3640	67.9	2880	67.9	3110	67.9	2910	67.9	9100	67.9	8790 ·	67.9
Magnesium		9050	34.3	8640	34.3	8880	34.3	8850	34.3	7250	34.3	6730	34.3
Manganese.	50	56.7	0.90	46.6	0.90	47.2	0.90	45.4	0.90	148	0.90	118	0.90
Sodium	50000	7070	19.1	7120	19.1	7020	19.1	7110	19.1	6170	19.1	6270	19.1
Nickel	100	40.1	4.2	35.4	4.2	32.0	4.2	33.2	4.2	5.8	4,2	6.4	4.2
Lead	10	2.8	1.6	1.6 U	1.6	1.2 U	1.2	1.2 U	1.2	2.7	1.6	1.6 U	1.6
Antimony	20	16.7	10.9	10.9 U	10.9	10.9 U	10.9	11.0	10.9	12	10.9	15.1	10.9
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	· 1.8	1.5 U	1.5	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	3.5 U	3.5	0.70 U	0.70
Vanadium		50.4	2.1	2.1 U	2.1	10.6	2.1	2.1 U	2.1	13.6,	2.1	2.1 U	2.1
Zinc	5000	35.8	1.9 、	24.4	1.9	24.5	1.9	23.4	1.9	13.6	1.9	8.4	1.9
Cyanide	200	10 U	10			10 U	1 10			10 U	10	1	
Dilution Factor													
Method:TAL Metals, Cyar	nide												

28

MAIN POST

GROUND WATER INORGANICS

Geographical Location		В		B2			3	В	3	В	3
Sample		B2-MW0	2B-A02	B2-MW02B-A02	SOL	B3-MW0	03B-A01	B3-MW03E	3-A01 SOL	B3-MW	03B-A02
Sample Type		То		Soluble		To	tal	Solu	ıble	To	tal
Batch#		95030	3616	9503G616	,	9502	G169	95020	3169	9503	G740
Prep#		95G		95Gl475		95G	1422	95G	422	95G	1519
RFW#		01	0	011		00	05	00	9	. 00	01
Dilution Factor	Ţ	1.0	00	1.00		1.0	00	1.0	00	1.	00
Matrix		wa	ter	water, filtere	d	wa	ter	water,	filtered	wa	ter
Units	ug/l	ug	/l	ug/l	·	, ug	g/l	ug		u	g/l
Sampling Date		3/7/	95	3/7/95		2/15		2/13		3/14	
Analysis Date		3/13	/95	3/13/95	1	2/23	3/95	2/27	7/95	3/2	1/95
Analysis	Standard-	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result	,	Result		Result		Result		Result	
						1					_
Silver	20	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0
Aluminum	200	454	16.8	16.8 U	16.8	5010	16.8	16.8 U	16.8	121000	24.0
Arsenic	8	3.9	1.9	1.9 U	1.9 、	7.1	1.9	1.9 U	1.9	89.3	9.5 *
Barium	2000	75.2	0.80	72.3	0.80	144	0.80	0.80 U	0.80	556	1.7
Beryllium	20	0.30 U	0.30	0.30 U	0.30	0.78	0.30	0.30 U	0.30	15.1	0.90
Calcium		41000	8.4	41100	8.4	27600	8.4	83.8	8.4	45400	10.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	9.5	2.8
Cobalt	İ	2.3 U	2.3	2.3 U	2.3	9.4	2.3	2.3 U	2.3	50.0	3.0
Chromium	100	4.7 U	4.7	4.7 U	4.7	61.6	4.7	4.7 U	4.7	1600	2.9
Copper	1000	4.0 U	4.0	4.0 U	4.0	5.2	4.0	4.0 U	4.0	65.6	1.9
Iron	300	35000	2.5	28000	2.5	18800	2.5	9.4	. 2.5	431000	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		9180	67.9	9300	67.9	18400	67.9	67.9 U	67.9	137000	685
Magnesium		7300	34.3	7200	34.3	8230	34.3	34.3 U	34.3	62700	18.3
Manganese	50	129	0.90	119	0.90	106	0.90	0.90 U	0.90	331	1.8
Sodium	50000	6660	19.1	6820	19.1	21500	19.1	93.3	19.1	19600	30.5
Nickel	100	4.2 U	4.2	4.2 U	4.2	66.3	4.2	4.2 U	4.2	187	/ 10.8
Lead	10	1.2 U	1.2	2.1	1.2	2.9	1.6	1.6 U	1.6	76.6	5.0 *
Antimony	20	10.9	10.9	10.9 U	10.9	14.1	10.9	16.8	10.9	20.7 U	20.7
Selenium	50	1.8 U	1.8	1.8 U	1.8	4.2	1.5	1.5 U	1.5	22	3.0 **
Thallium	10	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	5.5	5.5 *
Vanadium	†	4.7	2.1	2.1 U	2.1	23.1	2.1	2.1 U	2.1	452	2.3
Zinc	5000	9.7	1.9	. 5,8	1.9	63.0	1.9	4.0	1.9	801	3.8
Cyanide	200	10 U	10			10 U	10	· · · ·		10 U	10.0
Dilution Factor		 ,								* = 5,	
Method:TAL Metals, Cyan	ide				<u>.</u>	 		 			

Geographical Location		В	33	В	3	<u></u>	33	В	3	B3		B-	4
Sample		B3-MW03I	B-A02 SOL	B3-MW0		B3-MW03	B-E01 SOL	B3-MW0		B3-MW03B		B4-MW0	
Sample Type			uble -	Field Rinsate		Field Rinsate		Field Rinsat		Field Rinsate		Tol	
Batch#		9503	G740	95020		9502	G169	95030		9503G		95020	
Prep#		95G	1519	95G			1422	95G		95GI4		95GI	
RFW#		0(02	OC	8	00	06	00		007		01	
Dilution Factor		1.	00	1.0	00		00	1.0		1.0		1.0	
Matrix		water,	filtered	wa	ter	water,	filtered	wa	ter	water, fi		wat	
Units	ug/l	u	g/l	ug	γ/ Ι	u	g/l	ug]/l	ug/		ug	//
Sampling Date		3/14	4/95	2/14	l/95	2/1	4/95	3/7		3/7/9		2/13	
Analysis Date		3/2	1/95	2/23	3/95	2/2	7/95	3/13	3/95	3/13/	95	2/23	/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result	
Silver	20	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	2.5 U	- 0.5	0.511		0.511	
Aluminum	200	84.1	24.0	26.2	16.8	173	16.8	2.5 0	2.5	2.5 U	2.5	2.5 U	2.5
Arsenic	- 8	2.1	1.9	1.9 U	1.9	1.9 U		1.9 U	16.8	17.2	16.8	1890	16.8
Barium	2000	93.1	1.7	1.90	0.80	1.90	0.80	0.80 U	1.9	1.9 U	1.9	1.9 U	1.9
Beryllium	2000	0.90 U	0.90	0.30 U	0.80	0.30 U	0.30	0.80 U	0.80	0.80 U 0.30 U	0.80	56.8 0.36	0.80
Calcium	20	24900	10.4	123	8.4	25400	8.4	368	8.4	163	0.30		0.30
Cadmium	4	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	8.4 2.9	4460 2.9 U	8.4 2.9
Cobalt	7	4.4	3.0	2.3 U	2.3	7.3	2.3	2.3 U	2.3	2.9 U	2.9	2.90	2.9
Chromium	100	2.9 U	2.9	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7	18.4	4.7
Copper	1000	2.9	1.9	4.0 U	4.0	4.7 U	4.0	4.7 U	4.0	4.7 U	4.7	4.0 U	4.7
Iron	300	10000	6.4	16.5	2.5	109	2.5	10.1	2.5	9.3	2.5	4510	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.26	0.20
Potassium	,	8400	685	67.9 U	67.9	13200	67.9	67.9 U	67.9	67.9 U	67.9	4690	67.9
Magnesium		6390	18.3	34.3 U	34.3	5790	34.3	46.0	34.3	61.3	34.3	7430	34.3
Manganese	50	104	1.8	0.90 U	0.90	90.1	0.90	0.90 U	0.90	0.90 U	0.90	11.8	0.90
Sodium	50000	20100	30.5	820	19.1	20800	19.1	296	19.1	179	19.1	12600	19.1
Nickel	100	33.3	10.8	4.2 U	4.2	61.5	4.2	4.2 U	4.2	4.2 U	4.2	8.5	4.2
Lead	10	1.0 U	1.0	1.6 U	1.6	1.6 U	1.6	1.2 U	1.2	1.2 U	1.2	1.6 U	1.6
Antimony	20	20.7 U	20.7	10.9 U	10.9	16.7	10.9	10.9,U	10.9	10.9 U	10.9	12.1	10.9
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5
Thallium	10	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70
Vanadium		2.3 U	2.3	2.1 U	2.1	2.1.U	2.1	2.1 U	2.1	2.1 U	2.1	6.6	2.1
Zinc	5000	39.4	3.8	2.0	1.9	27.0	1.9	1.9 U	1.9	1.9 U	1.9	51.4	1.9
Cyanide	200	,		10 U	10		· · · · · · · · · · · · · · · · · · ·	10 U	10			10 U	10
Dilution Factor			*										: <u>-</u>
Method:TAL Metals, Cyan	nide										· · · · · · · · · · · · · · · · · · ·		
											L .	<u> </u>	

Geographical Location		В	4	В	4	В	4	B5		B5		В	35
Sample		B4-MW04E	3-A01 SOL	B4-MW	04B-A02	B4-MW04E	3-A02 SOL	B5-MW05	B-A01	B5-MW05B-A0	01 SOL	B5-MW	05B-A02
Sample Type		Solu	ıble `	To	tal	Solu	ıble	Tota	ıl	Soluble		To	otal
Batch#		95020	G169	9503	G616	95030	3616	9502G	169	9502G16	59	9503	G616
Prep#		95G	1422	95G	1475	95G	475	95GI4	22	95GI422	2	95G	1475
RFW#		01	1	01	12	01	3	012		013		00)1
Dilution Factor		1.0		1.0	00	` 1.0	00	. 1.00)	1.00		1.	00
Matrix		water, 1	filtered	. wa	ter	water,	filtered	wate	r	water, filte	red	wa	iter
Units	ug/l	ug	<u>1/l</u>	ug]/ · 	ug	ı/l	ug/		ug/l		u	g/l
Sampling Date		2/13	3/95	3/7	/95	3/7/	95	2/13/9	95	2/13/95		3/7	7/95
Analysis Date		2/27	7/95	3/13	3/95	3/13	/95	2/23/9	95	2/27/95		3/13	3/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result	
Silver	20	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	605	16.8	3700	16.8	673	16.8	5630	16.8	113	16.8	26000	16.8
Arsenic	8	1.9 U	1.9	2.1	1.9	1.9 U	1.9	15.8	1.9	1.9 U	1.9	56	9.5 *
Barium	2000	43.9	0.80	71.5	0.80	48.2	0.80	299	0.80	147	0.80	699	0.80
Beryllium	20	0.30 U	0.30	0.35	0.30	0.30 U	0.30 '	0.67	0.30	0.30 U	0.30	2.1	0.30
Calcium		4540	8.4	5160	8.4	5040	8.4	13800	8.4	13600	8.4	16400	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	3.8	2.9	2.9 U	2.9	4.6	2.9
Cobalt ·		2.3 U	2.3	3.5	2.3	2.3 U	2.3	15.6	2.3	13.3	2.3	18.3	2.3
Chromium	100	4.7 U	4.7	42.2	4.7	4.7 U	4.7	33.9	4.7	4.7 U	4.7	191	4.7
Copper	1000	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	10.0	4.0	4.0 U	4.0	43.0	4.0
iron	300	18.5	2.5	10500	2.5	19.3	2.5	15500	2.5	277	2.5	72100	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		3580	67.9	6830	67.9	3810	67.9	8730	67.9	6910	67.9	16800	67.9 ^
Magnesium		7030	34.3	9460	34.3	8120	34.3	7050	34.3	5900	34.3	12400	34.3
Manganese	50	10.8	'0.90	14.5	0.90	11.0	0.90	· 166	0.90	: 145	0.90	233	0.90
Sodium	50000	12900	19.1	13900	19.1	14300	19.1	15900	19.1	16200	19.1	17900	19.1
Nickel	100	9.2	4.2.	5.4	4.2	6.2	4.2	96.7	4.2	89.8	4.2	120	4.2
Lead	10	1.6 U	1.6	2.4	1.2	1.2 U	1.2	5.8	1.6	1.6 U	1.6	22.7	1.2
Antimony	20	12.9	10.9	10.9 U	10.9	12.3	10.9	14.5	10.9	15.8	10.9	12.1	10.9
Selenium	50	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8	8.0	1.5	4.1	1.5	29.6	3.6 **
Thallium	10	0.70 U	0.70	1.1 U	1.1	1.1,U ,	1.1	0.70 U	0.70	0.70 U	0.70	5.5 U	5.5 *
Vanadium		2.1 U	2.1	14.8	2.1	2.1 U	2.1	22.8	2.1	2.1 U	2.1	108	2.1
Zinc	5000	44.8	1.9	63.7	1.9	55.5	1.9	115	1.9	74.3	1.9	233	1.9
Cyanide /	200			10 U	10			10 U	10			10 U	10
Dilution Factor									1		•	* = 5.0,	** = 2.0
Method:TAL Metals, Cyar	nide				1 .		2.2						

Geographical Location	1	В	5
Sample		B5-MW05E	3-A02 SOL
Sample Type		Solu	
Batch#		95030	
Prep#		95G	
RFW#		00)2
Dilution Factor		1.0	00
Matrix		water,	
Units	ug/i	ug	
Sampling Date		3/7	
Analysis Date		3/13	
Analysis	Standard	Analytical	MDL
	1	Result	
Silver	20	2.5 U	2.5
Aluminum	200	108	16.8
Arsenic	8	1.9 U	1.9
Barium	2000	99.6	0.80
Beryllium	20	0.30 U	0.30
Calcium	-	14100	8.4
Cadmium	4	3.7	2.9
Cobalt		11.6	2.3
Chromium -	100	4.7 U	4.7
Copper	1000	4.0 U	4.0
Iron	300	300	2.5
Mercury	2	0.20 U	0.20
Potassium		6280	67.9
Magnesium		6420	34.3
Manganese	50	146	0.90
Sodium	50000	17200	19.1
Nickel	100	76.9	4.2
Lead	10	1.2 U	1.2
Antimony	-20	10.9 U	10.9
Selenium	50	4.4	1.8
Thallium	10	1.1 U	1.1
Vanadium		2.1 U	2.1
Zinc	5000	82.4	1.9
Cyanide	200		
Dilution Factor			•
Method:TAL Metals, Cyar	ide		-

Geographical Location		M	12	I N	12	. N	12		12		12	N.	<u>.</u> //2
Sample	,	MP02-M\	N01-A01	MP02-M	W01-A02	MP02-M	N02-A01		W02-A02	MP02-M			W03-A02
Sample Type	<u> </u>					<u> </u>						02 10	1100 1102
Batch#		9502	G197 /	9503	G642	9502	G197	9503	G642	9502	G197	9503	G642
Prep#		95GP	0119	95GF	20229	95GF			0229		20119	1	20229
RFW#		00)1	00	01	00			03		03	1	05
Dilution Factor		1.0	00	1.	00	1.			00		00		00
Matrix	ļ	wa	ter	wa	iter	wa		·	iter		iter		ater
Units	ug/l	ug	1/ 1	ug	g/l	ug		u		ug			g/l
Sampling Date		2/15		3/8		2/15			/95	2/1			3/95
Analysis Date		3/4	/95	3/19		3/4		3/19		3/4			9/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	7 511.52
			-									1100411	
alpha-BHC	0.02	0.050 U	0.050	0.048 U	0.048	0.047 Ú	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
beta-BHC	0.2	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
delta-BHC		0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
gamma-BHC (Lindane)	0.2	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
Heptachlor	0.4	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
Aldrin	0.04	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
Heptachlor epoxide	0.2	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
Endosulfan I	0.4	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
Dieldrin	0.03	. 0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
4,4'-DDE	0.1	0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
Endrin	2	0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
Endosulfan II	0.4	0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
4,4'-DDD	0.1	0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
Endosulfan sulfate	0.4	0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
4,4'-DDT	0.1	0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
Methoxychlor	40	0.50 U	0.50	0.48 U	0.48	0.47 U	0.47	0.48 U	0.48	0.52 U	0.52	0.56 U	0.56
Endrin ketone		0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
Endrin aldehyde		0.10 U	0.10	0.095 U	0.095	0.094 U	0.094	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11
alpha-Chlordane		0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0.056
gamma-Chlordane	0.5	0.050 U	0.050	0.048 U	0.048	0.047 U	0.047	0.048 U	0.048	0.052 U	0.052	0.056 U	0,056
Toxaphene	3	5.0 U	5.0	4.8 U	4.8	4.7 U	4.7	4.8 U	4.8	5.2 U	5.2	5.6 U	5.6
Aroclor-1016	2	1.0 U	1.0	0.95 U	0.95	0.94 U	0.94	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1
Aroclor-1221	2	2.0 U	2.0	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	2.1 U	2.1	2.2 U	2.2
Aroclor-1232	2	1.0 U	1.0	0.95 U	0.95	0.94 U	0.94	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1
Aroclor-1242	2	1.0 U	1.0	0.95 U	0.95	0.94 U	0.94	0.95 U	0.95	1.8 P	1.0	1.1 U	1.1
Aroclor-1248	2	1.0 U	1.0	0.95 U	0.95	0.94 U	0.94	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1
Aroclor-1254	2	1.0 U	1.0	0.95 U	0.95	0.94 U	0.94	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1
Aroclor-1260	2	1.0 U	1.0	0.95 U	0.95	0.94 U	0.94	. 0.95 U	0.95	1.0 U	1.0	1.1 U	1.1
Method:TCL Pesticides/PCBs													

Geographical Location	T	M	3	T M	<u> </u>	M	13	M	3	М	3	М	3
Sample		MP03-MV	V04-A01	MP03-M\	N04-A02	MP03-M\	N05-A01	MP03-MV	V05-A02	MP03-MV	V06-A01	MP03-MV	
Sample Type		-											10077102
Batch#	†	95020	G219	9503	G642	9502	G219	95030	G660	95020	G219	95030	3660
Prep#		95GP	0127	95GP	0229	95GP	P0127	95GP	0233	95GP	0127	95GP	0233 、
RFW#	 	00)1	00)9	00)3	00		00		00	
Dilution Factor		1.0	00	1.0	00	1.0	00	1.0	00	1.0		1.0	
Matrix		wat	ter	wa	ter		ter	wa		wa		wa	
Units	ug/l	ug	<u>/</u> /	· ug	<u>y/l · · \</u>	ug	g/l ·	ug	1/I	ug	1/1	ug	ı/l
Sampling Date		2/16	i/95	3/8	/95	2/16		3/9		2/16		3/9/	
Analysis Date		3/14	/95	3/20)/95	3/14	1/95	3/20)/95	3/14		3/20	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	
alpha-BHC	0.02	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
beta-BHC	0.2	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
delta-BHC		0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
gamma-BHC (Lindane)	0.2	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
Heptachlor	0.4	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
Aldrin	0.04	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
Heptachlor epoxide	0.2	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
Endosulfan i	0.4	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
Dieldrin	0.03	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
4,4'-DDE	0.1	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 ป	0.11	0.098 U	0.098	0.096 U	0.096
Endrin	2	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
Endosulfan II	0.4	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
4,4'-DDD	0.1	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
Endosulfan sulfate	0.4	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
4,4'-DDT	0.1	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
Methoxychlor	40	0.54 U	0.54	0.52 U	0.52	0.47 U	0.47	0.56 U	0.56	0.49 U	0.49	0.48 U	0.48
Endrin ketone		0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
Endrin aldehyde		0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.098 U	0.098	0.096 U	0.096
alpha-Chlordane		0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
gamma-Chlordane	0.5	0.054 U	0.054	0.052 U	0.052	0.047 U	0.047	0.056 U	0.056	0.049 U	0.049	0.048 U	0.048
Toxaphene	3	5.4 U	5.4	5.2 U	5.2	4.7 U	4.7	5.6 U	5.6	4.9 U	4.9	4.8 U	4.8
Aroclor-1016	2	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.98 U	0.98	0.96 U	0.96
Aroclor-1221	2	2.2 U	2.2	2.1 U	2.1	1.9 U	1.9	2.2 U	2.2	2.0 U	2.0 U	1.9 U	1.9
Aroclor-1232	2	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.98 U	0.98	0.96 U	0.96
Aroclor-1242	2	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.98 U	0.98	0.96 U	0,96
Aroclor-1248	2	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.98 U	0.98	0.96 U	0.96
Aroclor-1254	2	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1 `	0.98 U	0.98	0.96 U	0.96
Aroclor-1260	2	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1 <	0.98 U	0.98	0.96 U	0.96
Method:TCL Pesticides/PCBs													

27/95

Sample MP04-MW07-A01 MP04-MW07-A02 MP04-MW07-C02 MP04-MW07-MW07-MW07-MW07-MW07-MW07-MW07-MW07	Geographical Location		N	14	· B.	14	T 8	14	N/	14				
Sample		<u> </u>												
Batch# 95026219 95036660 95026219 95036660 95026219 95036660 95026219 95036660 95026219 95036660 95026219 95036660 95026219 95036219			1011 0 1 1011	71017101	1411 0 7 141	1101-702	 		 				IVIPU4-IVI	7VUO-AU I
Preprint	D-A-L#		9502	G219	9503	G660.	 -		<u> </u>				0500	0010
RFW#		-						_						
Dilution Factor 1.00 1.							.1							
Matrix		 									_		1	
Units					+									
Sampling Date 2/16/95 3/9/95 3/16/95		uo/l					-l				<u> </u>			
Analysis Date Standard Analytical CRDL CRDL														
Analytical CRDL Result														
Result R		Standard	·											CRDL
alpha-BHC						- CINDL		ONDE		OINDL		CKDL		CRDL
alpha BHC			1100		·	 			result		Itesuit		Nesult	<u> </u>
Deta-BHC	alpha-BHC	0.02	0.052 U	0.052	0.053 U	0.053		0.052	0.053 U	0.053	0.052 U	0.052	0.06211	0.062
delta-BHC	beta-BHC	0.2		0.052	0.053 U	0.053		0.052						0.062
Gamma-BHC (Lindane) 0.2 0.052 0.052 0.053 0.053 0.052 0.053 0.052 0.053 0.052 0.052 0.052 0.052 0.052 0.052 0.053 0.052	delta-BHC													0.062
Heptachlor	gamma-BHC (Lindane)	0.2	0.052 U	0.052	0.053 U	l	.1							0.062
Aldrin	Heptachlor	0.4	0.052 U	0.052	0.053 U	0.053								0.062
Heptachlor epoxide	Aldrin	0.04	0.052 U	0.052	0.053 U			0.052						0.062
Endosulfan 0.4 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.053 0.052 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.053 0.052 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.062 U 0.052 0.063 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.062 U 0.052 0.063 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0.052 0.062 U 0.052 0.062 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0.052 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0.052 0.052 U 0.052 0.052 U 0.052 0.052 U 0.052 0.053 U 0.053 0.052 U 0.052 0.052 U 0	Heptachlor epoxide	0.2	0.052 U	0.052	0.053 U	0.053								0.062
Dieldrin Dieldrin	Endosulfan I	0.4	0.052 U	0.052	0.053 U									0.062
4,4-DDE 0.1 0.10 U 0.10 U 0.11 U 0.11 U 0.10 U 0.10 U 0.11 U <td>Dieldrin</td> <td>0.03</td> <td>0.10 U</td> <td>0.10</td> <td>0.11 U</td> <td>0.11</td> <td>0.10 U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.12</td>	Dieldrin	0.03	0.10 U	0.10	0.11 U	0.11	0.10 U							0.12
Endrin 2	4,4'-DDE	0.1	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10						0.12
Endosulfan II	Endrin	2	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10						0.12
4,4"-DDD 0.1 0.10 U 0.10 U 0.11 U 0.11 U 0.10 U 0.10 U 0.11 U </td <td></td> <td>0.4</td> <td>0.10 U</td> <td>0.10</td> <td>0.11 U</td> <td>0.11</td> <td>0.10 U</td> <td>0.10</td> <td>0.11 U</td> <td>0.11</td> <td>, 0.10 U</td> <td>0.10</td> <td></td> <td>0.12</td>		0.4	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	, 0.10 U	0.10		0.12
Endosulfan sulfate 0.4 0.10 U 0.10 0.11 U 0.11 0.10 U 0.10 0.11 U 0.11 0.10 U 0.10 0.11 U 0.11 0.10 U 0.10 0.12 U 0.4 U 0.4 U 0.19 0.10 0.19 0.10 0.11 U 0.11 0.32 0.10 0.11 U 0.11 0.10 U 0.10 0.12 U 0.10 U	4,4'-DDD	0.1	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11				0.12
4,4-DDT 0.1 0.19 0.10 0.11 U 0.11 0.32 0.10 0.11 U 0.11 U 0.11 U 0.11 U 0.10 U 0.12 U Methoxychlor 40 0.52 U 0.52 U 0.53 U 0.52 U 0.52 U 0.53 U 0.52 U 0.52 U 0.52 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.01 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.11 U 0.12 U 0.02 U <t< td=""><td>Endosulfan sulfate</td><td>0.4</td><td>0.10 U</td><td>0.10</td><td>0.11 U</td><td>0.11</td><td>0.10 U</td><td>0.10</td><td>0.11 U</td><td>0.11</td><td>0.10 U</td><td></td><td></td><td>0.12</td></t<>	Endosulfan sulfate	0.4	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.10 U			0.12
Methoxychlor 40 0.52 U 0.52 0.53 U 0.53 U 0.52 U 0.53 U 0.52 U 0.52 U 0.52 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.62 U 0.01 U 0.11 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U	4,4'-DDT	-0.1	0.19	0.10	0.11.U	0.11	0.32	0.10	0.11 U	0.11	0.10 U	~		0.12
Endrin ketone 0.10 U 0.10 U 0.11 U 0.11 U 0.10 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.10 U 0.10 U 0.12 U 0.05 U 0.052 U 0.052 U 0.053 U 0.052 U 0.053 U 0.053 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.053 U 0.052 U 0.052 U 0.052 U 0.053 U 0.053 U 0.053 U 0.052 U 0.053 U	Methoxychlor	40	0.52 U	0.52	0.53 U	0.53	0.52 U	0.52	0.53 U	0.53	0.52 U	0.52		0.62
Endrin aldehyde			0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10		0.12
alpha-Chlordane 0.052 U 0.052 U 0.053 U 0.053 U 0.052 U 0.053 U 0.052 U				0.10	0.11 U	0.11	0.10 U	0.10	0.11 U			<u>, </u>		0.12
gamma-Chlordane 0.5 0.052 U 0.052 U 0.053 U 0.053 U 0.052 U 0.052 U 0.053 U 0.052 U 0.053 U 0.052 U	alpha-Chlordane		0.052 U	0.052	0.053 U	0.053	0.052 U	0.052	0.053 U	0.053	0.052 U	0.052		0.062
Toxaphene 3 5.2 U 5.2 5.3 U 5.3 5.2 U 5.2 5.3 U 5.2 U 5.3 U 5.3 U 5.2 U 5.3 U 5.2 U 5.3 U 5.2 U 5.2 U 5.3 U 5.2 U		0.5		0.052	0.053 U	0.053	0.052 U	0.052	0.053 U	0.053	0.052 U	0.052	0.062 U	0.062
Aroclor-1016 2 1.0 U 1.0 1.1 U 1.1 1.0 U 1.0 U 1.1 U	Toxaphene	3		5.2	5.3 U	5.3	5.2 U	· 5.2	5.3 U	5.3	5.2 U	5.2		6.2
Aroclor-1221 2 2.1 U 2.1 2.1 U 2.1 2.1 U		2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	1.1 U.	1.1	1.0 U	1.0	1.2 U	1.2
Aroclor-1232 2 1.0 U 1.0 1.1 U 1.1 1.0 U 1.1 U								2.1	2.1 U	2.1	2.1 U			2.5
Aroclor-1242 2 1.0 U 1.0 1.1 U 1.1 I.0 U 1.0 U 1.1 U								1.0	1.1 U					1.2
Aroclor-1248 2 1.0 U 1.0 1.1 U 1.0 U 1.0 U 1.1 U 1.1 U 1.1 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.1 U 1.2 U								1.0	1.1 U	1:1	1.0 U			1.2
Aroclor-1254 2 1.0 U 1.0 1.1 U 1.1 1.0 U 1.0 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.2 U							1.0 U	1.0	1.1 U	1.1	1.0 U			1.2
Aroclor-1260 2 1.0 U 1.0 1.1 U 1.1 1.0 U 1.0 1.1 U 1.1 1.0 U 1.0 1.1 U 1.0 U 1.0 1.2 U	Aroclor-1254							1.0	1.1 U	1.1	1.0 U			1.2
14.4 1701 P. 4.11 (POP)	Aroclor-1260	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0		1.2 ′
<u> </u>	Method:TCL Pesticides/PCBs	3			/									

Geographical Location		М	4	M	4	М	4	M	5	M	5	. м	5
Sample	1	MP04-MV		MP04-M\		MP04-MV		MP05-MV	V10-A01	MP05-MV		MP05-MV	V11-A01
Sample Type	T												
Batch#	1	95030	3642	9502	G219	95030	3660	95020	G238	95030	3660	95020	3238
Prep#		95GP	0229	95GP	0127	95GP	0233	95GP	0135	95GP	0233	95GP	0135
RFW#	 	00	7	01	16	00	9	01	0	01	1	01	2
Dilution Factor	1	1.0	00	1.0	00	1.0	00	1.0	00	1.0	30	1.0	20
Matrix	 	wa	ter	wa	ter	wa	ter	· wa	ter	wa		wa	
Units	ug/l	ug	ı/I	ug	g/l	ug	<u>/</u> /	ug	γ /1	ug	1/1	ug	J/I
Sampling Date		3/8/		2/16		3/9		2/17		3/9/		2/17	
Analysis Date		. 3/20	/95	3/14	1/95	3/26	3/95	3/11	/95	3/26	5/95	3/11	/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
	1.	Result		Result	 - 	Result		Result		Result		Result	
		 				1							
alpha-BHC	0.02	0.053 U	0.053	· 0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
beta-BHC	0.2	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
delta-BHC		0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
gamma-BHC (Lindane)	0.2	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 ป	0.051	0.052 U	0.052	0.052 U	0.052
Heptachlor	0.4	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Aldrin	0.04	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Heptachlor epoxide	0.2	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Endosulfan I	0.4	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Dieldrin	0.03	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDE	0.1	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endrin	2	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endosulfan II	0.4	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDD	0.1	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endosulfan sulfate	0.4	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDT	0.1	0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Methoxychlor	40	0.53 U	0.53	0.62 U	0.62	0.52 U	0.52	0.51 U	0:51	0.52 U	0.52	0.52 U	0.52
Endrin ketone		0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endrin aldehyde		0.11 U	0.11	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
alpha-Chlordane		0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
gamma-Chlordane	0.5	0.053 U	0.053	0.062 U	0.062	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Toxaphene	3	5.3 U	5.3	6.2 U	6.2	5.2 U	5.2	5.1 U	5.1	5.2 U	5.2	5.2 U	5.2
Aroclor-1016	2	1.1 U	1.1	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1221	2	2.1 U	2.1	2.5 U	2.5	2.1 U	2.1	2.0 U	2.0	2.1 U	2.1	2.1 U	2.1
Aroclor-1232	2	1.1 U	1.1	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1242	2	1.1 U	1.1	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1248	2	, 1.1 U	1.1	1.2 U	1.2	1.0 U -	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1254	2	1.1 U	1.1	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1260	2	1.1 U	1.1	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.0 U -	1.0	1.0 U	1.0
Method:TCL Pesticides/PCB	s												

Geographical Location	,	N	15		15	l N	18		18	M	18	, N	18
Sample		MP05-M\	W11-A02	MP05-M	W11-E02	MP08-M\	N12-A01	. MP08-M\	N12-A02	MP08-M\	N12-C02		W12-E02
Sample Type	<u> </u>			Field Rins	sate Blank					Dupl		Field Rins	sate Blank
Batch#		(9503	G660	9503	G660	9502	G238	9503	G767	9503		9503	G767
Prep#		95GF	0233	95GF	20233	95GF	0135	94GP	0262	94GF	0262	94GF	20262
RFW#		01	13	0	16	01	4	00)1	00	03	01	06
Dilution Factor		1.0	00	1.	00	1.0	00	1.0	00	1.0	00		.00
Matrix		wa	ter	wa	iter	wa	ter	wa	ter	wa	ter	wa	ater
Units	ug/l	ug	g/l	U	g/l	ug	<u>1/l</u>	ug] /l	ug	g/l	u	g/l
Sampling Date		3/9	/95	3/9	/95	2/17		3/15		3/15			<u>-</u> 5/95
Analysis Date		3/26	5/95	3/28	3/95	3/11	/95	4/15	5/95	4/15	5/95	4/1:	5/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result	-	Result	-
			,										
alpha-BHC	0.02	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
beta-BHC	0.2	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
delta-BHC		0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
gamma-BHC (Lindane)	0.2	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
Heptachlor	0.4	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
Aldrin	0.04	0.052 U	0.052	0.051 Ü	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
Heptachlor epoxide	0.2	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
Endosulfan i	0.4	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
Dieldrin	0.03	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDE	0.1	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endrin	2	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endosulfan II	0.4	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDD	0.1	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endosulfan sulfate	0.4	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDT	0.1	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Methoxychlor	40	0.52 U	0.52	0.51 U	0.51	0.52 U	0.52	0.52 U	0.52	0.52 Ú	0.52	0.52 U	· 0.52
Endrin ketone		0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endrin aldehyde		0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
alpha-Chlordane		0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
gamma-Chlordane	0.5	0.052 U	0.052	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052
Toxaphene	3	5.2 U	5.2	5.1 U	5.1	5.2 U	5.2	5.2 U	5.2	5.2 U	5.2	- 5.2 U	5.2
Aroclor-1016	2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1221	2	2.1 U	2,1	2.0 U	2.0	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1
Aroclor-1232	2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1242	2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0 ·	1.0 U	1.0
Aroclor-1248	2	1.0 U	1.0	1.0 U	. 1.0	1.0.U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1254	2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0.	1.0 U	1.0	1.0 U	1.0
Aroclor-1260	2	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Method:TCL Pesticides/PCBs						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							

Geographical Location	T	M	8	М	8	l M	8	М	<u></u> 8	M	8	M	8
Sample		MP08-M\		MP08-MV		MP08-MV		MP08-MV	_	MP08-MV	_	MP08-MV	
Sample Type	<u> </u>	1011 00 1011	1107101	1011 00 1011		1011 00 1011	11.17.01	1011 00 1011	1147102	1011 00 1010	1107101	1011 00 1017	110 /102
Batch#		95020	3403	95030	G767	95020	3219	95030	3767	95020	3403	95030	3767
Prep#		95GP		94GP		95GP		94GP		95GP		94GP	
RFW#		00		00		01		01		00		01	
Dilution Factor		1.0		1.0		1.0		1.0		1.0	_	1.0	
Matrix		wa		wa		. wa		wa		wa		wat	
Units	ug/l	ug		ug		ug		ug		ug		ug	
Sampling Date	-3.	2/22		3/15		2/16		3/15		2/22		3/15	
Analysis Date		3/14		4/15		3/14		4/15		3/14		4/15	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
, <u></u> ,		Result		Result	01122	Result	- CIVIL	Result	- U.V.D.L	Result		Result	
· · · · · · · · · · · · · · · · · · ·						1100411		11000.1		1100011		1100011	
alpha-BHC	0.02	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
beta-BHC	0.2	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
delta-BHC		0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
gamma-BHC (Lindane)	0.2	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
Heptachlor	0.4	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
Aldrin	0.04	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
Heptachlor epoxide	0.2	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
Endosulfan I	0.4	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
Dieldrin	0.03	0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
4,4'-DDE	0.1	0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
Endrin	2	0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
Endosulfan II .	0.4	0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	. 0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
4,4'-DDD	0.1	0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
Endosulfan sulfate	. 0.4	0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
4,4'-DDT	0.1	0.10 U	0.10	0.10 U	. 0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
Methoxychlor	40	0.52 U	0.52	0.52 U	0.52	0.48 U -	0.48	0.46 U	0.46	0.52 U	0.52	0.53 U	0.53
Endrin ketone		0.10 U	0.10	0.10 U	0,10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
Endrin aldehyde		0.10 U	0.10	0.10 U	0.10	0.097 U	0.097	0.092 U	0.092	0.10 U	0.10	0.11 U	0.11
alpha-Chlordane		0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
gamma-Chlordane	0.5	0.052 U	0.052	0.052 U	0.052	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.053 U	0.053
Toxaphene	3	5.2 U	5.2	5.2 U	5.2	4.8 U	4.8	4.6 U	4.6	5.2 U	5.2	5.3 U	5.3
Arocior-1016	2	1.0 U	1.0	1.0 U	1.0	0.97 U	0.97	0.92 U	0.92	1.0 U	1.0	1.1 U	1.1
Aroclor-1221	2	2.1 U	2.1	2.1 U	2.1	1.9 U	1.9	1.8 U	1.8	2.1 U	2.1	2.1 U	2.1
Aroclor-1232	2	1.0 U	1.0	1.0 U	1.0	0.97 U ¹	0.97	0.92 U	0.92	1.0 U	1.0	1.1 U	. 1.1
Aroclor-1242	2	1.0 U	1.0	1.0 U	1.0	0.97 U	0.97	0.92 U	0.92	1.0 U	,1.0	1.1 U	1.1
Arocior-1248	2	1.0 U	1.0	1.0 U	1.0	0.97 U	0.97	0.92 U	0.92	1.0 U	1.0	1.1 U	1.1
Aroclor-1254	2	1.0 U	1.0	1.0 U	1.0	0.97 U	0.97	0.92 U	0.92	1.0 U	1.0	1.1 U	1.1
Aroclor-1260	2	1.0 U	1.0	1.0 U	1.0	0.97 U	0.97	0.92 U	0.92	1.0 U	1.0	1.1 U	1.1
Method:TCL Pesticides/PCBs												1	

MAIN POST

		•											
Geographical Location	·		18		18		12		12	M	12	M	12
Sample		MP08-M\	W15-C01	MP08-M	W15-E01	MP12-M	W16-A01	MP12-M\	N16-A02	MP12-M	W17-A01	MP12-M	W17-A02
Sample Type			icate		sate Blank								11.9
Batch#		9502			G403		G299	9503	G681	9503	G299	9503	G681
Prep#		95GP	20164		20164	95GF	0154	95GF	0247	95GF	20154	95GF	20247
RFW#		00		1	08	0		00	01	00	03	0	03
Dilution Factor			00	1.	00	1.	00	1.0	00	1.	00	1.	00
Matrix	-	wa	ter	Wa	iter	Wa	iter	wa	ter	wa	ter	Wa	ater
Units	ug/l	ug	g/l	U,	g/l	u,	g/l	uç	g/l	Ug	<u>1</u> /l	u	g/i
Sampling Date		2/22			2/95	2/20	0/95	3/10)/95	2/20			0/95
Analysis Date		3/14	1/95	3/15	5/95	3/1	5/95	3/29	9/95	3/15	5/95	3/2	9/95
Analysis	Standard	Analytica!	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	
alpha-BHC	0.02	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
beta-BHC	0.2	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
delta-BHC		0.052 U	0.052	0.054 U	0:054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
gamma-BHC (Lindane)	0.2	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
Heptachlor	0.4	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
Aldrin	0.04	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
Heptachlor epoxide	0.2	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	-0.052 U	0.052
Endosulfan I	0.4	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	. 0.052	0.052 U	, 0.052
Dieldrin	0.03	0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
4,4'-DDE	0.1	0.10 U	0.10	0.11 U	0.11	0.11-U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endrin	2	0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endosulfan II	0.4	0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
4,4'-DDD	0.1	0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endosulfan sulfate	0.4	0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
4,4'-DDT	0.1	0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11 /	0.10 U	0.10	0.10 U	0.10
Methoxychlor	40	0.52 U	0.52	0.54 U	0.54	0.53 U	0.53	0.53 U	0.53	0.52 U	0.52	0.52 U	0.52
Endrin ketone		0.10 U	0.10	0.11 U	0.11	· 0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endrin aldehyde		0.10 U	0.10	0.11 U	0.11	0.11 U	0.11	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
alpha-Chlordane		0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
gamma-Chlordane	0.5	0.052 U	0.052	0.054 U	0.054	0.053 U	0.053	0.053 U	0.053	0.052 U	0.052	0.052 U	0.052
Toxaphene	3	5.2 U	5.2	5.4 U	5.4	5.3 U	5.3	5.3 U	5.3	5.2 U	5.2	5.2 U	5.2
Aroclor-1016	2,	1.0 U	1.0	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
Aroclor-1221	2	2.1 U	2.1	2.2 U	2.2	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1
Aroclor-1232	2	1.0 U	1.0	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
Aroclor-1242	2	1.0 U	1.0	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
Arocior-1248	2	1.0 U	1.0	1.1 U	. 1.1	1.1·U	1.1	1.1 U	1.1	1.0 U	1.0	1.0 U	~1.0
Aroclor-1254	2	1.0 U	1.0	1.1 U	1.1	1.1 U	1.1	1.1'U	1.1	1.0 U	1.0	1.0 U	1.0
Aroclor-1260	2	1.0 U	1.0	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
7100101-1200 I	*											1 (1) 11 1	

Geographical Location		M1	2	M ⁻	12	M [*]	4	M1	14	M ¹	14	M.	14
Sample		MP12-MV	V18-A01	MP12-M\		MP14-M\		MP14-MV		MP14-MV	-	MP14-M\	
Sample Type				<u> </u>								-	
Batch#	1	95030	3299	9503	G681	9503	G299	95030	3681	95020	G403	9503	G722
Prep#	1	95GP	0154	95GP	0247	95GP	0154	95GP	0247	95GP	0164	95GF	0247
RFW#	,	00	5	00)5	00)7	00	7	01	0	00	я —
Dilution Factor		1.0)0	1.0	00	1.0	00	1.0	00	1.0	00	1.0	00
Matrix	1	wat	ter	wa	ter	wa	ter·	wa	ter	wa	ter ·	wa	ter
Units	ug/l	ug	/1	uç	g/l	ug	<u>1/1</u>	ug	 / .	ug	 /l	ug	g/l
Sampling Date		2/20	/95	3/10)/95	2/20)/95	3/10		2/22		3/13	
Analysis Date		3/15	/95	3/29	9/95	3/15	5/95	3/29	/95	3/15	5/95 [*]	3/29	9/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
	Ì	Result		Result		Result		Result	· · · · · · · · · · · · · · · · · · ·	Result		Result	
	1					/							
alpha-BHC	0.02	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
beta-BHC	0.2	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
delta-BHC		0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
gamma-BHC (Lindane)	0.2	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
Heptachlor	0.4	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
Aldrin	0.04	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
Heptachlor epoxide	0.2	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
Endosulfan I	0.4	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
Dieldrin	0.03	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
4,4'-DDE	0.1	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
Endrin	2	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
Endosulfan II	0.4	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
4,4'-DDD	0.1	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
Endosulfan sulfate	0.4	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
4,4'-DDT	0.1	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
Methoxychlor	40	0.56 U	0.56	0.52 U	0.52	0.52 U	0.52	0.52 U	0.52	0.46 U	0.46	0.60 U	0.60
Endrin ketone		0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
Endrin aldehyde		0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.093 U	0.093	0.12 U	0.12
alpha-Chlordane		0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
gamma-Chlordane	0.5	0.056 U	0.056	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.046 U	0.046	0.060 U	0.060
Toxaphene	3	5.6 U	5.6	5.2 U	5.2	5.2 U	5.2	5.2 U	5.2	4.6 U	4.6	6.0 U	6.0
Aroclor-1016	2	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	0.93 U	√ 0.93	1.2 U	1.2
Aroclor-1221	2	2.2 U	2.2	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	1.9 U	1.9	2.4 U	2.4
Aroclor-1232	2	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	0.93 U	0.93	1.2 U	1.2
Aroclor-1242	2	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	0.93 U	0.93	1.2 U	1.2
Aroclor-1248	2	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	0.93 U	0.93	1.2 U	1.2
Aroclor-1254	2	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	0.93 U	0.93	1.2 U	1.2
Arocior-1260	2	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	0.93 U	0.93	1.2 U	1.2
Method:TCL Pesticides/PCBs						٠.							

Geographical Location		М	14	M	14	М	14	M	16	M	16		18
Sample		MP14-M	W20-E02	MP14-M		MP14-M	W21-A02	MP16-M			W22-A02		W03-A01
Sample Type		Field Rins	sate Blank										
Batch#		9503	G722	9502	G403	9503	G660	9502	G238	9503	G660	9505	G825
Prep#		95GF	0247	95GF	20164	95GF	0233		20135		20233		20510
RFW#		00)3	0.	12	0.	19		16		18		01
Dilution Factor		1.0	00	1:	00	1.	00		00 .		00		00
Matrix		, wa	ter	. wa	iter	wa	iter ·		iter		ter		ter
Units	ug/l	ug	j /l ~	Ug	g/l	u	g/l	u	g/l	· u			g/l
Sampling Date		3/13	3/95	2/22			/95		7/95		/95)/95
Analysis Date		3/29	9/95	3/15	5/95	3/28		3/1		3/28			9/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
-		Result		Result		Result		Result		Result		Result	
									-				
alpha-BHC	0.02	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
beta-BHC	0.2	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
delta-BHC		0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
gamma-BHC (Lindane)	0.2	0.052 U	` 0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
Heptachlor	0.4	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
Aldrin	0.04	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
Heptachlor epoxide	0.2	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
Endosulfan I	0.4	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
Dieldrin	0.03	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
4,4'-DDE	0.1 /	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
Endrin	2	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
Endosulfan II	0.4	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
4,4'-DDD	0.1	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
Endosulfan sulfate	0.4	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
4,4'-DDT	0.1	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
Methoxychlor	40	0.52 U	0.52	0.47 U	0.47	0.54 U	0.54	0.48 U	0.48	0.52 U	0.52	0.54 U	0.54
Endrin ketone		0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
Endrin aldehyde		0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.095 U	0.095	0.10 U	0.10	0.11 U	0.11 U
alpha-Chlordane		0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
gamma-Chlordane	0.5	0.052 U	0.052	0.047 U	0.047	0.054 U	0.054	0.048 U	0.048	0.052 U	0.052	0.054 U	0.054
Toxaphene	3	5.2 U	5.2	4.7 U	4.7	5.4 U	5.4	4.8 U	4.8	5.2 U	. 5.2	5.4 U	5.4
Aroclor-1016	,2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1 U
Aroclor-1221	2	2.1 U	2.1	1.9 U	1.9	2.2 U	2.2	1.9 U	1.9	2.1 U	. 2.1	2.2 U	2.2
Aroclor-1232	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1 U
Aroclor-1242	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1 U
Aroclor-1248	2	1.0 U	1.0	0.94 U	0.94	1.1 _° U	1.1	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1 U
Aroclor-1254	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1 U
Aroclor-1260	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	0.95 U	0.95	1.0 U	1.0	1.1 U	1.1 U
Method:TCL Pesticides/PCBs													

Geographical Location	1	M ⁻	18	M	18	M	18	M ²	18	M ¹	18	M	8
Sample		MP18-M\	N03-E01	MP18-M\	W03-A02	MP18-M	W24-A01	MP18-M\		MP18-MV	N24-C02	MP18-MV	
Sample Type	<u> </u>	Field Rins	ate Blank							Dupli		Field Rins	
Batch#	1	9505	G825	9505	G139	9502	G238	9503	G681	95030		95020	
Prep#		95GP	0510	95GF	0580	95GF	0135	95GP	0247	95GP	0248	95GP	
RFW#		00)1	00	01	0(01	00		01		OC	
Dilution Factor		1.0	00	1.0	00 /	1.	00	1.0	00	1.0	00	1.0	00
Matrix		wa	ter	wa	ter	Wa	iter	wa		wa		wa	
Units	ug/l	ug	3/1	Uç	g/l	U,	g/l	ug	g/l	ug	1/1	. ug	
Sampling Date		5/10)/95	5/25	5/95		7/95	3/10		. 3/10		2/17	
Analysis Date		5/19	9/95	6/1	/95	3/10	0/95	3/29	9/95	3/29	9/95	3/10	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result	-	Result		Result	
					,							,	
alpha-BHC	0.02	0.054 U	0.054	0.048 U	0:048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
beta-BHC	0.2	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
delta-BHC		0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
gamma-BHC (Lindane)	0.2	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
Heptachlor	0.4	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
Aldrin	0.04	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
Heptachlor epoxide	0.2	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
Endosulfan I	0.4	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
Dieldrin	0.03	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0,094
4,4'-DDE	0.1	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0.094
Endrin	2	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0.094
Endosulfan II	0.4	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0.094
4,4'-DDD	0.1	0.11 U	0.11 U	0.095 U	0.095	0.18	0.093	0.10 U	0.10	0.11 P	0.10	0.094 U	0.094
Endosulfan sulfate	0.4	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0.094
4,4'-DDT	0.1	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10.U	0.10	0.094 U	0.094
Methoxychlor	40	0.54 U	0.54	0.48 U	0.48	0.46 U	0.46	0.52 U	0.52	0.52 U	0.52	0.47 U	0.47
Endrin ketone	4	0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0.094
Endrin aldehyde		0.11 U	0.11 U	0.095 U	0.095	0.093 U	0.093	0.10 U	0.10	0.10 U	0.10	0.094 U	0.094
alpha-Chlordane		0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
gamma-Chlordane	0.5	0.054 U	0.054	0.048 U	0.048	0.046 U	0.046	0.052 U	0.052	0.052 U	0.052	0.047 U	0.047
Toxaphene	3	5.4 U	5.4	4.8 U	4.8	4.6 U	4.6	5.2 U	5.2	5.2 U	5.2	4.7 U	4.7
Aroclor-1016	2	1.1 U	1.1 U	0.95 U	0.95	0.93 U	0.93	1.0 U	1.0	1.0 U	1.0	0.94 U	0.94
Aroclor-1221	2	2.2 U	2.2	1.9 U	1.9	1.9 U	1.9	2.1 U	2.1	2.1 U	2.1	1.9 U	1.9
Aroclor-1232	2	1.1 U	1.1 U	0.95 ປ	0.95	0.93 U	0.93	1.0 U	1.0	1.0 U	1.0	0.94 U	0.94
Aroclor-1242	2	1.1 U	1.1 U	0.95 U	0.95	0.93 U	0.93	1.0 U	1.0	1.0 U	1.0	0.94 U	0.94
Aroclor-1248	2	1.1 U	1.1 U	0.95 U	0.95	0.93 U	0.93	1.0 U	1.0	1.0 U	1.0	0.94 U	0.94
Aroclor-1254	2	1.1 U	1.1 U	0.95 U	0.95	0.93 U	0.93	1.0 U	1.0	1.0 U	1.0	0.94 U	0.94
Aroclor-1260	2	1.1 U	1.1 U	0.95 U	0.95	0.93 U	0.93	1.0 U	1.0	1.0 U	1.0	0.94 U	0.94
Method:TCL Pesticides/PCBs													

MAIN POST

Geographical Location	T	М	18	∖ M	18	M1	8	M1	8	Е	31
Sample		MP18-M	W24-E02	MP18-M	W25-A01	MP18-MV	V25-A02	MP18-MV			01B-A01
Sample Type		Field Rins	sate Blank			,		Dupli			
Batch#		9503	G681	9502	G238	95030	3681	95020		9502	G169
Prep#		95G	20247	95GF	P0135	95GP	0247	95GP			20119
RFW#		0	14	O	06 .	01	6	00	8	L	01
Dilution Factor	•	1.	00	1.	00	1.0	0	1.0		1	00
Matrix		Wa	ater	Wa	iter	wat	er	wai	ter		ater
Units	ug/l	u	g/i	u	g/l	ug	/1	ug	/I	u	g/l
Sampling Date		3/1	0/95	2/1	7/95	3/10		2/17			4 /95
Analysis Date		3/2	9/95	`3/10	0/95	3/29		3/11			1/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result	·
											`
alpha-BHC	0.02	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
beta-BHC	0.2	0.056 U .	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
delta-BHC		0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
gamma-BHC (Lindane)	0.2	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
Heptachlor	0.4	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
Aldrin	0.04	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
Heptachlor epoxide	0.2	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.041 J	0.052
Endosulfan I	0.4	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
Dieldrin	0.03	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
4,4'-DDE	0.1	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endrin	2	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endosulfan II	0.4	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
4,4'-DDD	0.1	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endosulfan sulfate	0.4	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10-
4,4'-DDT	0.1	0.11 U	0.11	0.094 U	0.094	0,11 U	0.11	0.10 U	0.10	0.10 U	0.10 _
Methoxychlor	40	0.56 U	0.56	0.47 U	0.47	0.53 U	0.53	0.51 Ü	0.51	0.52 U	0.52
Endrin ketone		0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
Endrin aldehyde		0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10
alpha-Chlordane		0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
gamma-Chlordane	0.5	0.056 U	0.056	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052
Toxaphene	3	5.6 U	5.6	4.7 U	4.7	5.3 U	5.3	5.1 U	5.1	5.2 U '	5.2
Aroclor-1016	2	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	1.0 Ü	1.0	1.0 U	1.0
Aroclor-1221	₹ 2	2.2 U	2.2	1.9 U	1.9	2.1 U	2.1	2.0 U	2.0	2.1 U	2.1
Aroclor-1232	2	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
Aroclor-1242	2	1.1 U	1.1	. 0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0'
Aroclor-1248	2	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
Aroclor-1254	2	1.1 U	1.1	0.94 U	0.94	1.1 U	1,1	1.0 U	1.0	1.0 U	1.0
Aroclor-1260	2	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0
Method:TCL Pesticides/PCI	Bs										

Geographical Location		В	1	B2		F	32	i B	3	B3	
Sample		B1-MW0		B2-MW02		_	02B-A02	B3-MW	_	B3-MW0	
Sample Type			7107102	DZ 111110Z		DZ-14144	OZD-NOZ	DO-14144	00D-NO1	DO-141440.	
Batch#	 	95030	G616	9502G	169	9503	G616	9502	G169	95030	740
Prep#		95GP		95GP0			20219		20119	95GP0	
RFW#		OC		003			10		05	. 00	
Dilution Factor		1.0	00	1.00			00		00	1.0	
Matrix	<u> </u>	wa	ter	wate	:r		ater		iter	wate	
Units	ug/l	, ug	1/1	ug/l		u	g/l	U	g/l	uga	
Sampling Date		3/7/		2/14/9			7/95		4/95	3/14/	
Analysis Date		3/17	//95	3/4/9	15	3/1	7/95	3/4	/95	4/12/	95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result	
alpha-BHC	0.02	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
beta-BHC	0.2	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
delta-BHC		0.051 U	0.051	0.056 U	0.056	0.052 ป	0.052	0.047 U	0.047	0.050 U	0.05
gamma-BHC (Lindane)	0.2	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
Heptachlor	0.4	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
Aldrin	0.04	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
Heptachlor epoxide	0.2	0.041 J	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
Endosulfan I	0.4	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
Dieldrin	0.03	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
4,4'-DDE	0.1	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.050 JP	0.10
Endrin	2	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
Endosulfan II	0.4	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
4,4'-DDD	0.1	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
Endosulfan sulfate	0.4	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
4,4'-DDT	0.1	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
Methoxychlor	40	0.51 U	0.51	0.56 U	0.56	0.52 U	0.52	0.47 U	0.47	0.50 U	0.5
Endrin ketone		0.10 U	0:10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
Endrin aldehyde		0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.094 U	0.094	0.10 U	0.10
alpha-Chlordane		0.051 U	0.051	0.056 ป	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
gamma-Chiordane	0.5	0.051 U	0.051	0.056 U	0.056	0.052 U	0.052	0.047 U	0.047	0.050 U	0.05
Toxaphene	3	5.1 U	5.1	5.6 U	5.6	5.2 U	5.2	4.7 U	4.7	5.0 U	5.0
Aroclor-1016	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.0 U	1.0
Aroclor-1221	2	2.0 U	2.0	2.2 U	2.2	2.1 U	2.1	1.9 U	1.9	2.0 U	2.0
Aroclor-1232	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.0 U	1.0
Aroclor-1242	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.0 U	1.0
Aroclor-1248	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.0 U	1.0
Aroclor-1254	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.0 U	1.0
Aroclor-1260	2	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	0.94 U	0.94	1.0 U	1.0
Method:TCL Pesticides/PCBs											

Geographical Location		B	3	E	33	В	4	В	4	В	5	В	35
Sample	 	B3-MW	03B-E01	B3-MW	03B-E02	B4-MW0		B4-MW0		B5-MW0		1	05B-A02
Sample Type	1		sate Blank		sate Blank					55 1	7027101		700 7102
Batch#	1	9502	G169		G616	95020	3169	95030	G616	9502	G169	9503	G616
Prep#	,	95GF	0119	95GF	P0219	95GP		95GP		95GP			0219
RFW#		.00	08		06	01		01		01		00	
Dilution Factor		1.5	00	1.	.00	1.0		1.0		1.0			00
Matrix		wa	ter	Wa	ater	wat	ter	wa	ter	wa	•	wa	
Units	ug/l	uį	<u>g/l</u>	u	g/l ^	ug	<u> </u> /l	ug	<u> /</u>	uç			g/l
Sampling Date		2/13	3/95		7/95	2/13		3/7/		2/13		3/7	
Analysis Date		3/4	/95	. 3/1	7/95	3/4/	95	3/17	7/95	3/4	/95	3/17	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL.
		Result		Result		Result		Result		Result		Result	
							ı						
alpha-BHC	0.02	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	√ 0.052 U	0.052	0.058 U	0.058
beta-BHC	0.2	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
delta-BHC		0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
gamma-BHC (Lindane)	0.2	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
Heptachlor	0.4	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
Aldrin	0.04	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
Heptachlor epoxide	0.2	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
Endosulfan I	0.4	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
Dieldrin	0.03	0.095 U	0.095	0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
4,4'-DDE	0.1	0.095 U	0.095	0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
Endrin	2	0.095 U	0.095	0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
Endosulfan II	0.4	0.095 U	0.095	0.096 U	0.096	0.12 U	0,12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
4,4'-DDD	0.1	0.095 U	0.095	0,096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
Endosulfan sulfate	0.4	0.095 U	0.095	0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
4,4'-DDT	0.1	0.095 U	0.095	0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	[⊥] 0.10	0.12 U	0.12
Methoxychlor	40	0.48 U	0.48	0.48 U	0.48	0.62 U	0.62	0.52 U	0.52	0.52 U	0.52	0.58 U	0.58
Endrin ketone		0.095 U	0.095	≠ 0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
Endrin aldehyde		0.095 U	0.095	0.096 U	0.096	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10	0.12 U	0.12
alpha-Chlordane		0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
gamma-Chlordane	0.5	0.048 U	0.048	0.048 U	0.048	0.062 U	0.062	0.052 U	0.052	0.052 U	0.052	0.058 U	0.058
Toxaphene	3	4.8 U	4.8	4.8 U	4.8	6.2 U	6.2	5.2 U	5.2	5.2 U	5.2	5.8 U	5.8
Aroclor-1016	2	0.95 U	0.95	0.96 U	0.96	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.2 U	1.2
Aroclor-1221	2	1.9 U	1.9	1.9 U	1.9	2.5 U	2.5	2.1 U	2.1	2.1 U	2.1	2.3 U	2.3
Aroclor-1232	2	0.95 ป	0.95	0.96 U	0.96	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.2 U	1.2
Aroclor-1242	2	0.95 U	0.95	0.96 U	0.96	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	⁻ 1.2 U	1.2
Aroclor-1248	2	0.95 U	0.95	0.96 U	0.96	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.2 U	1.2
Aroclor-1254	2	0.95 U	0.95	0.96 U	0.96	1.2 U	1.2	1.0 U,	1.0	1.0 U	1.0	1.2 U	1.2
Aroclor-1260	2	0.95 U	0.95	0.96 U	0.96	1.2 U	1.2	1.0 U	1.0	1.0 U	1.0	1.2 U	1.2
Method:TCL Pesticides/PCBs								<u> </u>					

MAIN POST TRANSFORMERS AND CONCRETE - PCBs

Geographical Location		Buildir	ng 292	Buildit	ng 686	Buildi	ng 718	Buildin	g 1002	Buildin	g 1002	Building	g 1004
Sample		MPT5-T		ļ	R01-A01	MPT4-T		MPT7-C	*	MPT7-C		MPT8-TI	
Sample Type	,		former	<u> </u>	former		former		crete		licate	Transf	
Batch#			G832		G832		G832		G922		G922	94110	
Prep#			21024		21024		1024					94GP	
RFW#	-				08		06	0,	10	0	11	00	
Sample Depth								-					<u> </u>
Dilution Factor		2	.5	0	.5	0	.5	250	000	25	000	5.	.0
Matrix		S	oil	S	oil	s	oil ·	Con	crete	Con	crete	so	oil
Units	mg/kg	mg	/kg	mg	/kg	mg	ı/kg	mg	/kg	mg	/kg	mg	/kg
Sampling Date		11/2	9/94	11/2	9/94	11/2	9/94					11/2	
Analysis Date		12/2	11/29/94 12/21/94		1/94	12/2	2/94	12/3	1/94	12/3	1/94	12/2	1/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		81.3	0.10	89.4	0.10	77.7	0.10			-	· ·	88.2	0.10
Aroclor-1016	0.055	0.24 U	0.24	0.045 U	0.045	0.051 U	0.051	2000 U	2000	1900 U	1900	0.45 U	0.45
Aroclor-1221	0.055	0.24 U	0.24	0.045 U	0.045	0.051 U	0.051	2000 U	2000	1900 U	1900	0.45 U	0.45
Aroclor-1232	0.055	0.24 U	0.24	0.045 U	0.045	0.051 U	0.051	2000 U	2000	1900 U	1900	0.45 U	0.45
Aroclor-1242	0.055	0.24 U	0.24	0.045 U	0.045	0.051 U	0.051	2000 U	2000	1900 U	1900	0.45 U	0.45
Aroclor-1248	0.055	0.24 U	0.24	0.045 U	0.045	0.051 U	0.051	8400	2000	6300	1900	0.45 U	0.45
Aroclor-1254	0.055	0.48 U	0.48	0.089 U	0.089	0.1 U	0.1	3900 U	3900	3900 U	3900	0.89 U	. 0.89
Aroclor-1260	0.055	0.68		0.18		0.059 J	0.1	3900 U	3900	3900 U	3900	0.89 U	0.89
Method:TCL PCBs				,						,			

MAIN POST TRANSFORMERS AND CONCRETE - PCBs

Geographical Location	1	Buildin	g 1208	Buildin	ng 1208	Buildir	g 1209	Ruldin	g 1220	Buldin	g 1220	Bulding	1220
Sample	 		C01-A01		01-A01DL		C01-A01		R01-A01		R02-A01	MPT3-TF	
Sample Type	<u> </u>		crete		crete		crete		former		former	Transf	
Batch#	 												
		9412	G922	9412	G922	9412	G922		G832		G832	94110	
Prep#								94GF	1024	94GF	21024	94GP	1024
RFW#		009	9DL	0	09	0	80	0	D1	100	02	00	13
Sample Depth													
Dilution Factor		25	000	50	000	50	000	0	.5	0	.5	0.	5
Matrix		Con	crete	Con	crete	Con	crete	S	oil	· s	oil	so	oil
Units	mg/kg	mg	/kg	mg	g/kg	mg	ı/kg	mg	ı/kg	mg	ı/kg	mg/	/kg
Sampling Date						1	IA .	11/2	9/94	11/2	9/94 .	11/29	9/94
Analysis Date		12/3	1/94	12/3	31/94	12/3	1/94	12/2	1/94	12/2	1/94	12/2	1/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids								88.3	0.10	96.4	0.10	84.9	0.10
Aroclor-1016	0.055	2000 U	2000	NA	NA	400 U	400	0.045 U	0.045	0.041 U	0.041	0.047 U	0.047
Aroclor-1221	0.055	2000 U	2000	NA	NA	400 U	400	0.045 U	0.045	0.041 U	0.041	0.047 U	0.047
Aroclor-1232	0.055	2000 U	_ 2000	NA	NA	400 U	400	0.045 U	0.045	0.041 U	0.041	0.047 U	0.047
Aroclor-1242	0.055	2000 U	2000	NA	NA	400 U	400	0.045 U	0.045	0.041 U	0.041	0.047 U	0.047
Aroclor-1248	0.055	2000 U	2000	NA	NA	400 U	400	0.045 U	0.045	0.041 U	0.041	0.047 U	0.047
Aroclor-1254	0.055	4000 U	4000	NA	NA	790 U	790	0.089 U	0.089	0.082 U	0.082	0.094 U	0.094
Aroclor-1260	0.055	E		19000	8000	1500	790	0.015 J	0.089	0.082 U	0.082	0.063 J	0.094
Method:TCL PCBs										 .			

MAIN POST TRANSFORMERS AND CONCRETE - PCBs

	Building 1220		Buldin	Building 1220		g 1220
	MPT3-TR04-A01		MPT3-TR04-C01		MPT3-CC01-A01	
	Transl	ormer	Dup	icate	Concrete	
	9411	G832	9411	G832	9412G922	
	94GP	1024	94GF	1024		
	00	14	0)5	00)7
	0.	5	0.5		0.50	
	so	oil	8	oil	Cone	crete
mg/kg	mg	/kg	mg	/kg	mg/kg	
	11/2	11/29/94 11/29/94		NA		
	12/2	1/94	12/2	2/94	12/31/94	
Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
	Result	Limit	Result	Limit	Result	Limit
	87.9	0.10	88.0	0,10		
0.055	0.045 U	0.045	0,045 U	0.045	0.04 U	0.04
0.055	0.045 U	0.045	0.045 U	0.045	0.04 U	0.04
0.055	0.045 U	0.045	0.045 U	0.045	0.04 U	0.04
0.055	0.045 U	0.045	0.045 U	0.045	0.04 U	0.04
0.055	0.045 U	0.045	0.045 U	0.045	0,04 U	0.04
0.055	0.090 U	0.09	0.089 U	0.089	0.08 U	0.079
0.055	0.087 J	0.09	0.07 J	0.089	0.026	0.079
	0.055 0.055 0.055 0.055 0.055 0.055	MPT3-Ti Transi 94110 94GP 00 00 00 00 00 00 00 00 00 00 00 00 00	MPT3-TR04-A01 Transformer 9411G832 94GP1024 004 005 0.5 soil mg/kg mg/kg 11/29/94 Standard Analytical Reporting Result Limit 87.9 0.10 0.055 0.045 U 0.045 0.055 0.045 U 0.045 0.055 0.045 U 0.045 0.055 0.045 U 0.045 0.055 0.045 U 0.045 0.055 0.045 U 0.045 0.055 0.045 U 0.045 0.055 0.045 U 0.045	MPT3-TR04-A01 MPT3-TI Transformer Dupl 9411G832 9411 94GP1024 94GP 004 00 0.5 0.5 0 soil see mg/kg mg/kg mg 11/29/94 11/2 12/21/94 12/2 Standard Analytical Reporting Analytical Result Limit Result 87.9 0.10 88.0 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U 0.055 0.045 U 0.045 0.045 U	MPT3-TR04-A01 MPT3-TR04-C01 Transformer	MPT3-TR04-A01 MPT3-TR04-C01 MPT3-C01 Transformer

CHARLES WOOD

Geographical Location	T		Background E		Backgro	ound	cw	5
Sample		-	CW02-SD		CW05-SD		CW06-SD01-A0	
Batch#	 		9412G		9412G923		9412G	
Prep#	+		94GVT		94GVT028		94GVT	
RFW#	·		005		006		006	
Sample Depth			0-6		D-6"		0-6	
Dilution Factor			1.00		1.00		1.00	
Matrix	 		soil		soil		soil	
Units	mg/kg	mg/kg	mg/k		mg/k		mg/l	
Sampling Date	,grig	mgmg	12/1/		12/1/		12/1/	
Analysis Date	+		12/9/		12/9/		12/9/	
Analysis	Standard	MDL	Analytical		Analytical		Analytical	CROL
7	014114414		Result		Result	Ortal	Result	Ortuc
			TACOUR		Tresuit		resur	
Chloromethane		0.0073	0,014 U	0.014	0.018 U	0.018	0.013 U	0.013
Bromomethane	1	0.0067	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Vinvi Chloride	1	0.0079	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Chloroethane	\vdash	0.0073	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Methylene Chloride		0.0027	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Acetone	 	0.0069	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Carbon Disulfide		0.0044	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1.1-Dichloroethene	+	0.0049	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,1-Dichloroethane	<u> </u>	0.003	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,2-Dichloroethene (total)	 	0.0044	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Chloroform	 	0.0029	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,2-Dichloroethane	 	0.0024	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
2-Butanone	<u> </u>	0.0041	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,1,1-Trichloroethane		0.0017	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Carbon Tetrachloride		0.0015	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Bromodichloromethane	 	0.002	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,2-Dichloropropane		0.0017	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
cis-1,3-Dichloropropene	 	0.003	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Trichloroethene		0.002	0.014 U	0.014	0.018 U	0.018	0,013 U	0,013
Dibromochloromethane		0.0024	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,1,2-Trichloroethane	 	0.0043	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Benzene		0.0043	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
trans-1,3-Dichloropropene	 	0.0033	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Bromoform	 	0.0024	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
4-Methyl-2-pentanone	 	0.0055	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
2-Hexanone		0.0033	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Tetrachloroethene		0.0039	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
1,1,2,2-Tetrachloroethane		0.0042	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Toluene	·	0.0042	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Chlorobenzene		0.0027	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Ethylbenzene	 	0.0027	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Styrene	 	0.0031	0.014 U	0.014	0.018 U	0.018	0.013 U	
Xylene (total)	ļ	0.0038	0.014 U	0.014	0.018 U	0.018	0.013 U	0.013
Total Est. Conc. of TIC.	ļ	0.0038	0.014 0	0.014			0.013 0	0.013
Method:TCL Volatiles					0.02	2		
Metriou. ICL volatiles								

CHARLES WOOD SEDIMENT SEMIVOLATILES

Geographical Location			Backgro	und	Backgro	ound	Backgro	und	CW	5
Sample								CW05-SD01-A01R		01-A01
Batch#			9412G	9412G923		9412G923		9412G923		923
Prep#	-		94GBO	800	94GBO800		94GBO800		94GBC	
RFW#		-	005		006		006		007	
Sample Depth			0-6"	1	0-6'		0-6"		0-6'	-
Dilution Factor			1.00)	1.00) ,	1.00	1	1.00	,
Matrix			soil		soil		soil	-	soil	
Units	mg/kg	mg/kg	mg/k	g	mg/k	g	mg/k	g	mg/k	g
Sampling Date			12/1/9	34	12/1/9	94	12/1/9		12/1/	94
Analysis Date			12/22/	94	12/22/	94	12/22/	94	12/22	94
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result	
									,	
Phenol		0.234	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
bis(2-Chloroethyl) ether		0.32	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2-Chlorophenol		0.241	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
1,3-Dichlorobenzene		0.175	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
1,4-Dichlorobenzene		0.158	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
1,2-Dichlorobenzene		0.188	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2-Methylphenol		0.221	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,2'-oxybis(1-Chloropropane)		0.231	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
4-Methylphenol		0.426	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
N-Nitroso-di-n-propylamine		0.264	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Hexachloroethane		0.175	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Nitrobenzene		0.244	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Isophorone	L	0.129	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2-Nitrophenol		0.231	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,4-Dimethylphenol		0.158	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
bis(2-Chloroethoxy) methane		0.201	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,4-Dichlorophenol		0.145	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
1,2,4-Trichlorobenzene		0.317	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Naphthalene		0.277	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
4-Chloroanifine	ļ <u> </u>	0.096	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Hexachlorobutadiene		0.152	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
4-Chloro-3-methylphenol		0.102	0.47 Ü	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2-Methylnaphthalene		0.287	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Hexachlorocyclopentadiene		0.119	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,4,6-Trichlorophenol		0.185	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,4,5-Trichlorophenol		0.155	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	10	1
2-Chloronaphthalene		0.271	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2-Nitroaniline		0.201	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	1 U	1
Dimethylphthalate	`	0.145	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.4 J	0.42
Acenaphthylene		0.198	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,6-Dinitrotoluene		0.172	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
3-Nitroaniline		0.172	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	1 U	1
Acenaphthene		0.221	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
2,4-Dinitrophenol		0.152	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	10	1

CHARLES WOOD SEDIMENT SEMIVOLATILES

Geographical Location			Backgro	und	Backgro	ound	Backgro	ound	CW!	5
Sample				CW02-SD01-A01				CW05-SD01-A01R		01-A01
Batch#	+			9412G923		9412G923		9412G923		923
Prep#	 -			94GBQ800		94GBO800		94GBO800		800
RFW#	+		005		006		006		007	
Sample Depth	 		0.6"		0-6'		0-6"		0-6"	
Dilution Factor	+		1.00		1.00		1.00		1.00	
Matrix	 		soil		soil		soil		soil	
Units	mg/kg	mg/kg	mg/k		mg/k		mg/k			
Sampling Date	ing/kg	my/kg	12/1/9		12/1/9		12/1/9		mg/k 12/1/9	
Analysis Date			12/22/		12/1/3		12/1/3		12/22/	
Analysis	Standard	MDL	Analytical		Analytical		Analytical			
Allalysis	Statitualu	MIDL	Result	CRUL		CRUL	Result	CRQL	Analytical	CRQL
			Result		Result		Result		Result	
4-Nitrophenol		0.248	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	1 U	1
Dibenzofuran	1	0.215	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	. 0.42 U	0.42
2,4-Dinitrotoluene		0.191	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Diethylphthalate		0.178	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
4-Chlorophenyl-phenylether		0.231	0.47 U	0.47	0.61 U	0.61	0,61 U	0.61	0.42 U	0.42
Fluorene		0.208	0.47 U	0.47	0,61 U	0.61	0.61 U	0.61	0.42 U	0.42
4-Nitroaniline		0.211	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	1 U	1
4,6-Dinitro-2-methylphenol	 	0.175	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	10	1
N-Nitrosodiphenylamine (1)		0.139	0.47 U	0.47	0,61 U	0.61	0.61 U	0.61	0.42 U	0.42
4-Bromophenyl-phenylether	 	0.175	0.47 U	0.47	0,61 U	0.61	0.61 U	0.61	0.42 U	0.42
Hexachlorobenzene		0.182	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Pentachlorophenol	 	0.132	1.2 U	1.2	1.5 U	1.5	1.5 U	1.5	1 U	1
Phenanthrene	0.225	0.165	0:47 U	0.47	0.079 J	0.61	0.074 J	0.61	0.098 J	0.42
Anthracene	1	0.152	0.47 U	0.47	0,61 U	0.61	0.61 U	0.61	0.42 U	0.42
Carbazole	 	0.145	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Di-n-butylphthalate	<u> </u>	0.215	0.47 U	0.47	0.12 J	0.61	0.12 JB	0.61	0.081 J	0.42
Fluoranthene	0.6	0.198	0.47 U	0.47	0.12 J ·	0.61	0.12 J	0.61	0.16 J	0.42
Pyrene	0.35	0.178	0.47 U	0.47	0.24 J	0.61	0.41 J	0.61	0.19 J	0.42
Butylbenzylphthalate	 	0.175	0.47 U	0.47	0,61 U	0.61	0.61 U	0.61	0.42 U	0.42
3.3'-Dichlorobenzidine		0.092	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.42 U	0.42
Benzo(a)anthracene	0.23	0.162	0.47 U	0.47	0.09 J	0.61	0.083 J	0.61	0.079 J	0.42
Chrysene	0.4	0.145	0.47 U	0.47	0.11 J	0.61	0.14 J	0.61	0.087 J	0.42
bis(2-Ethylhexy)phthalate	 •	0.32	0.47 U	0.47	0.11 J	0.61	0.14 J	0.61	0.45	0.42
Di-n-octyl phthalate	+	0.185	0.47 U	0.47	0.61 U	0.61	0.61 U	0.61	0.45 0.11 J	0.42
Benzo(b)fluoranthene	+	0.188	0.47 U	0.47	0.01 J	0.61	0.01 U	0.61	0.113 0.1 J	0.42
Benzo(k)fluoranthene	+	0.100	0.47 U	0.47	0.61 U	0.61	0.10 U	0.61	0.13 0.42 U	0.42
Benzo(a)pyrene	0.4	0.162	0.47 U	0.47	0.61 U	0.61	0.01 J	0.61	0.42 U	0.42
Indeno(1,2,3-cd)pyrene		0.102	0.47 U	0.47	0.01 J	0.61	0.19 J	0.61	0.42 U	0.42
Dibenzo(a,h)anthracene	+	0.198	0.47 U	0.47	0.17 J	0.61	0.19 J	0.61	0.42 U	0.42
Benzo(g,h,i)perylene		0.198	0.47 U	0.47	0.81 U	0.61	0.81 U 0.21 J	0.61	0.42 U	0.42
Organic Carbon %	 	0.224	0.77 0	0.47	1.3	0.06	0.413	0.01	U.42 U	U.4Z
% solids					76.3	0.10		-		
Total Est, Conc. of TIC	 	• •	10.1	, ~ '	76.3		39.7	<u> </u>	. 0.20	
Method:TCL Semivolatiles	 		10.1	-	28.2	J	39.7	,	9.39	<u>, </u>
ivietilod: I CL Semivolatiles										

CHARLES WOOD SEDIMENT INORGANICS

		•		•					
Geographical Location			round	Backg	ground	Backo	round	CV	V5
Sample		CW02-S	CW02-SD01-A01		CW05-SD01-A01		CW05-SD01-A01		D01-A01
Batch#		9412	G923		9505G138		9412G923		G923
Prep#	-	94G1	S473	95GTS327		94GTS473		94GTS473	
RFW#		005		00	01	006		007	
Sample Depth		0-	6"	0-	6"	0-	6"	, 0-	
Dilution Factor		1.	00	1.	00	1.	00	1.	00
Matrix		S	oil	Si	oil	S	oil	S	
Units	mg/kg	mg	/kg	mg	/kg .,	mg	/kg	mg	
Sampling Date	,	12/	1/94	5/25	5/95		1/94		1/94
Analysis Date		12/9	9/94	6/1	/95	12/9	9/94	12/9	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result	
		,						,	
% Solids		71.3	0.10	76.3	0.10	54.5	0.10	79.3	0.10
Silver	1	0.63 U	0.63			1.1 U	1.1	0.70 U	0.7
Aluminum		1910	5.5	1		6660	9.1	866	6.1
Arsenic	33	1.1	0.38			5.8	0.54	0.74	0.35
Barium		8.4	0.43			45.7	0.71	9.6	0.48
Beryllium		0.31 U	0.31			0.51 U	0.51	0.34 U	0.34
Calcium		343	2.5		-	2960	4.1	509	2.7
Cadmium	5	0.70 U	0.70			1.2 U	1.2	0.77 U	0.77
Cobalt		0.88	0.57			4.2	0.95	1.3	0.64
Chromium	80	24.4	1.3			36.9	2.2	7.8	1.5
Copper	70	2.2	0.49			24.5	0.82	7.4	0.55
Iron		5860	0.96			19600	1.6	6910	1.1
Mercury	0.15	0.10 U	0.10			0.15 U	0.15	0.084 U	0.084
Potassium		1700	168			1410	279	256	186
Magnesium		640	7.8			2560	13.0	320	8.7
Manganese		5,4	0.41			65.1	0.68	25.8	0.45
Sodium		37.4	3.2			271 -	5.2	54.0	3.5
Nickel	30	2.6 U	2.6		,	11.3	4.3	2.9 U	2.9
Lead	35	6.4	1.5 *			142	10.8 *	9.3	1.8 *
Antimony		4.4 U	4.4			7.3 U	7.3	4.9 U	4.9
Selenium		0.21 U	0.21		-	0.68	0.30	0.20 U	0.2
Thallium		0.26 U	0.26			0.37 U	0.37	0.24 U	0.24
Vanadium		11.3	0.59			39.5	0.99	5.4	0.66
Zinc	120	14.3	0.57			126	0.95	22.5	0.64
Cyanide	1	1.1	0.63			0.87 U	0.87	0.47 U	0.47
Dilution Factor	(* = 4	1.00			*=2		* = 5	
Method:TAL Metals, Cyanide						1			

41/27/95

CHARLES WOOD SEDIMENT PESTICIDES/PCBS

Geographical Location		Backg		Backg	round	Backg	round	CV	V5
Sample		CW02-S	D01-A01	CW05-S	D01-A01	CW05-SD01-A01DL		CW06-SD01-A01	
Batch#		9412	G923	9412	G923	9412	9412G923		G923
Prep#		94GP	1049	94GP	1049	94GP	1049	94GP1049	
RFW#		00)5	00)6	006DL		00	7
Sample Depth		0-	6"	0-	6"	0-	6"	0-	6"
Dilution Factor		1.0	00	1.0	00	2.0	00	1.0	00 .
Matrix		so	oil	so	oil .	so	oil	S	oil
Units	mg/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg
Sampling Date		12/1		12/1		12/1		12/1	/94
Analysis Date		1/12	2/95 .	1/12	2/95	1/12	2/95	1/12	2/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result	
							•		
alpha-BHC		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
beta-BHC		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
delta-BHC		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
gamma-BHC (Lindane)		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
Heptachlor		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
Aldrin		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
Heptachlor epoxide		0.0023 Ú	0.0023	0.003 U	0.003	0.006 U	0.006	0.0042 P	0.0021
Endosulfan I		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
Dieldrin		0.0047 U	0.0047	0.006 U	0.006	0.012 U	0.012	0.0042 U	0.0042
4,4'-DDE	0.002	0.0028 J	0.0047	0.096	0.006	.085 D	0.012	0.0067	0.0042
Endrin ~		0.0047 U	0.0047	0.006 U	0.006	0.012 U	0.012	0.0042 U	0.0042
Endosulfan II		0.0047 U	0.0047	0.006 U	0.006	0.012 U	0.012	0.0042 U	0.0042
4,4'-DDD	0.002	0.0065	0.0047 _	0.013 P	0.006	.015 PD	0.012	0.005 P	0.0042
Endosulfan sulfate		0.0047 U	0.0047	0.006 U	0.006	0.012 U	0.012	0.0042 U	0.0042
4,4'-DDT	0.00183	0.007	0.0047	0.11	0.006	11 D	0.012	0.0029 JP	0.0042
Methoxychlor		0.023 U	0.023	0.03 U	0.03	0.06 U	0.06	0.021 U	0.021
Endrin ketone	-	0.0047 U	0.0047	0.006 U	0.006	0.012 U	0.012	0.0042 U	0.0042
Endrin aldehyde		0.0047 U	0.0047	0.006 U	0.006	0.012 U	0.012	0.0042 U	0.0042
alpha-Chlordane		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
gamma-Chlordane		0.0023 U	0.0023	0.003 U	0.003	0.006 U	0.006	0.0021 U	0.0021
Toxaphene		0.23 U	0.23	0.3 U	0:3	0.6 U	0.6	0.21 U	0.21
Aroclor-1016		0.047 U	0.047	0.06 U	0.06	0.12 U	0.12	0.042 U	0.042
Aroclor-1221		0.093 U	0.093	0.12 U	0.12	0.24 U	0.24	0.084 U	0.084
Aroclor-1232		0.047 U	0.047	0.06 U	0.06	0.12 U	0.12	0.042 U	0.042
Aroclor-1242		0.047 U	0.047	0.06 U	0.06	0.12 U	0.12	0.042 U	0.042
Aroclor-1248		0.047 U	0.047	0.06 U	0.06	0.12 U	0.12	0.042 U	0.042
Aroclor-1254		0.047 U.	0.047	0.06 U	0.06	0.12 U	0.12	0.042 U	0.042
Aroclor-1260		0.047 U	0.047	0.06 U	0.06	0.12 U	0.12	0.042 U	0.042
Method:TCL Pesticides/PCBs		,							

153

CHARLES WOOD SURFACE WATER VOLATILES

Geographical Location			Backgro	ound	Backgro	und
Sample			CW02-SW	01-A01	CW05-SW	01-A01
Batch#			9412G	923	9412G	923
Prep#	-		94GVE	348	94GVE	348
RFW#			001		003	
Dilution Factor			1.00)	1.00	
Matrix			wate	er e	wate	r
Units	ug/l		ug/		ug/l	
Sampling Date			12/1/9	94	12/1/9	14
Analysis Date			12/9/9	94	12/9/9	94
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL
			Result		Result	
				12		
Chloromethane	5.7	7.3	10 U	10	10 U	10
Bromomethane	48.4	6.7	10 U	10	10 U	10
Vinyl Chloride	0.083	7.9	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10
Methylene Chloride	2.49	2.7	10 U	10	10 U	10
Acetone		6.9	10 U	10	10 U	10
Carbon Disulfide	<u> </u>	4.4	10 U	10	10 U	10
1,1-Dichloroethene	4.81	4.9	10 U	10	10 U	10
1,1-Dichloroethane		3.0	10 U	10.	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10
Chloroform	5.67	2.9	10 U	10	10 U	10
1,2-Dichloroethane	0.291	2.4	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U .	10
1,1,1-Trichloroethane	127	1.7	10 U	10	10 U	10
Carbon Tetrachloride	0.363	1.5	10 U	10	10 U	10
Bromodichloromethane	0.266	2.0	10 U	10	10 U	10
1,2-Dichloropropane	_	1.7	10 U	10	10 U	10
cis-1,3-Dichloropropene		3.0	10 U	10	10 U	10
Trichloroethene	1.09	2.0	10 U	10	10 U	10
Dibromochloromethane	72.6	2.4	10 U	10	10 U	10
1,1,2-Trichloroethane	13.5	4.3	10 U	10	10 U	10
Benzene	0.15	3.3	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.193	2.4	10 U	10	10 U	10
Bromoform	4.38	3.1	10 U	10	10 U	10
4-Methyl-2-pentanone	T - T	5.5	. 10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10
Tetrachloroethene	0.388	4.0	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	1.72	4.2	10 U	10	10 U	10
Toluene	7440	2.7	10 U	10	10 U	10
Chlorobenzene	22	2.7	10 U	10	10 U	10
Ethylbenzene	3030	3.1	10 U	10	10 U	10
Styrene		3.8	10 U	10	10 U	10
Xylene (total)		3.8	10 U	10	10 U	10
Method:TCL Volatiles	1					T

1/27/95

CHARLES WOOD SURFACE WATER SEMIVOLATILES

Geographical Location				ground	Background	
Sample	· · ·			W01-A01	CW05-S1	
Batch#				G923		G923
Prep#				30800	94GB	
RFW#			001		003	
Dilution Factor		1	1.00		1.00	
Matrix		<u> </u>	Wa	ater	wa	ter
Units	ug/l	ug/l		g/l	ug	g/l
Sampling Date			12/	1/94	12/1	1/94
Analysis Date			12/2	2/94	12/2	2/94_
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL
		1	Result		Result	•
Phenol	20900	7.1	10 U	10	10 U	. 10
bis(2-Chloroethyl) ether	0.0311	9.7	10 U	10	10 U	10
2-Chlorophenol	122	7.3	10 U	10	10 U	10
1,3-Dichlorobenzene	2620	5.3	10 U	10	10 U	10
1,4-Dichlorobenzene	343	4.8	10 U	10	10 U	10
1,2-Dichlorobenzene	2520	5.7	10 U	10	10 U	10
2-Methylphenol	2020	6.7	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)	 	7.0	10 U	10	10 U	10
4-Methylphenol	+	12.9	10 U	10	10 U	10
N-Nitroso-di-n-propylamine	 	8.0	10 U	10	10 U	10
Hexachloroethane	2.73	5.3	10 U	10	10 U	10
Nitrobenzene	16	7.4	10 U	10	10 U	10
Isophorone	552	3.9	10 U	10	10 U	10
2-Nitrophenol	 	7.0	10 U	10	10 U	10
2,4-Dimethylphenol	+	4.8	10 U	10	10 U	10
bis(2-Chloroethoxy) methane	+	6.1	10 U	10	10 U	10
2,4-Dichloropheno!	92.7	4.4	10 U	10	10 U	10
1,2,4-Trichlorobenzene	30.6	9.6	10 U	10	10 U	10
Naphthalene		8.4	10 U	10	10 U	10
4-Chloroaniline	 	2.9	10 U	10	10 U	10
Hexachlorobutadiene	6.94	4.6	10 U	10	10 U	10
4-Chloro-3-methylphenol	 	3.1	10 U	10	10 U	10
2-Methylnaphthalene		8.7	10 U	10	10 U	10
Hexachlorocyclopentadiene	245	3.6	10 U	10	10 U	10
2,4,6-Trichlorophenol	2.14	5.6	10 U	10	10 U	10
2,4,5-Trichlorophenol	2580	4.7	25 U	25	25 U	25
2-Chloronaphthalene	T	8.2	10 U	10	10 U	10
2-Nitroaniline	†	6.1	25 U	25	25 U	25
Dimethylphthalate	313000	4.4	\ 10 U	10	10 U	10
Acenaphthylene	1 - · · · · · ·	6.0	10 U	10	10 U	10
2,6-Dinitrotoluene		5.2	10 U	10	10 U	10
3-Nitroaniline	1-	5.2	25 U	25	25 U	25
Acenaphthene		6.7	10 U .	10	10 U	10
2,4-Dinitrophenol	69.7	4.6	25 U	25	25 U	25
4-Nitrophenol	1	7.5	25 U	25	25 U	25

CHARLES WOOD SURFACE WATER SEMIVOLATILES

r 			· · · · ·				
Geographical Location		<u> </u>		ground	Background		
Sample				W01-A01		W01-A01	
Batch#			9412	G923	9412	G923	
Prep#			94GE	30800	94GE	00808	
RFW#			O	01	01	03	
Dilution Factor			1.	.00	1.	00	
Matrix			Wa	ater	Wa	iter	
Units	ug/l	ug/i	u	g/l	.u	g/l	
Sampling Date			12/	1/94		1/94	
Analysis Date			12/2	22/94	12/2	2/94	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	
			Result		Result		
2		1					
Dibenzofuran		6.5	10 U	10	10 U	10	
2,4-Dinitrotoluene	0.11	5.8	10 ⊎	10	10 U	10	
Diethylphthalate	21200	5.4	10 U	10 .	10 U	10	
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	
Fluorene	1340	6.3	25 U	25	25 U	25	
4-Nitroaniline		6.4	25 U	25	25 U	25	
4,6-Dinitro-2-methylphenol		5.3	10 U	10	10 U	10	
N-Nitrosodiphenylamine (1)		4.2	10 U	10	10 U	10	
4-Bromophenyl-phenylether		5.3	10 U	10	10 U	10	
Hexachlorobenzene	0.000748	5.5	25 U	25	25 U	25	
Pentachlorophenol	0.282	4.0	10 U	10	10 U	10	
Phenanthrene		5.0	10 U	10	10 U	10	
Anthracene	9570	4.6	10 U	10	10 U	10	
Carbazole		4.4	10 U	10	10 U	10	
Di-n-butylphthalate	3530	6.5	10 U	10	10 U	10	
Fluoranthene	310	6.0	10 U	10	10 U	10	
Pyrene	797	5.4	10 U	10	10 U	10	
Butylbenzylphthalate	239	5.3	10 U	10	10 U	10	
3,3'-Dichlorobenzidine	0.0386	2.8	10 U	.10	10 U	10	
Benzo(a)anthracene	0.0028	4.9	10 U	10	10 U	10	
Chrysene	0.0028	4.4	10 U	10	10 U	10	
bis(2-Ethylhexy)phthalate	1.76	9.7	1 J	10	1 J	10 JB	
Di-n-octyl phthalate		5.6	10 U	10	10 U	10	
Benzo(b)fluoranthene	0.0028	5.7	10 U	10	10 U	10	
Benzo(k)fluoranthene	0.0028	6.2	10 U	10	10 U	10	
Benzo(a)pyrene	0.0028	4.9	10 U	10	10 U	10	
Indeno(1,2,3-cd)pyrene	0.0028	7.1	10 U	10	10 U	10	
Dibenzo(a,h)anthracene	0.0028	6.0	10 U	10	10 U	10	
Benzo(g,h,i)perylene		6.8	10 U	10	10 U	10	
Total Est. Conc. of TIC	 			0	150	''	
Method:TCL Semivolatiles	+	\vdash					

11/27/95

CHARLES WOOD SURFACE WATER INORGANICS

Geographical Location	Ĭ	Backg	round	Back	ground	Backg	round	Back	ground	
Sample		CW02-S\	N01-A01	CW02-SW	CW02-SW01-A01 SOL		CW05-SW01-A01		CW05-SW01-A01 SOL	
Sample Type		То	tal	Soluble		Total		Soluble		
Batch#		9412	G923	9412	2G923	94120	3923	9412	G923	
Prep#		94GC	N264	940	SI186	94GC	N264	940	SI186	
RFW#		00	01	0	02	00	3	0	04	
Dilution Factor		1.0	00	1	.00	1.0	00	1	.00	
Matrix	,	wa	ter	water,	filtered	wa	ter	water,	filtered	
Units	ug/l	ug	j/ l	u	g/l	ug	1/1 -		g/l	
Sampling Date		12/1	/94	12/	1/94	12/1	/94 -		1/94	
Analysis Date		12/1	4/94	12/2	21/94	12/1	4/94	12/2	21/94	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	
		Result	,	Result		Result		Result		
	1						,			
Silver	164	3.1 U	3.1	3.1 U	3.1	3.1 U	3.1	3.1 Ü	3.1	
Aluminum	ļ	134	26.7	86.6	26.7	265	26.7	160	26.7	
Arsenic	0.017	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	
Barium	2000	77.1	2.1	78.2	2.1	60.6	2.1	60.3	2.1	
Beryllium		1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	
Calcium		15100	12.0	15700	12.0	22900	12.0	24000	12	
Cadmium	10	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	3.4 U	3.4	
Cobalt		2.8	2.8	2.8 U	2.8	. 2.8 U	2.8	2.8 U	2.8	
Chromium	160	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	6.4 U	6.4	
Copper		2.4 U	2.4	4.8	2.4	8.0	2.4	10.2	2.4	
Iron		608	4.7	352	4.7	715	4.7	435	4.7	
Mercury	0.144	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	
Potassium		3590	821	4040	821	1110	821	1030	821	
Magnesium		7050	38.2	7390	38.2	4150	38.2	4280	38.2	
Manganese	100	97.4	2.0	100	2.0	43.0	2.0	44.4	2.0	
Sodium		156000	15.4	164000	15.4	10700	15.4	11200	15.4	
Nickel	516	12.8 U	12.8	12.8 U	12.8	12.8 U	12.8	12.8 U	12.8	
Lead	5	2.2	1.6	1.8	1.6	4.7	• 0.8	3.9	0.8	
Antimony	12.2	26.8	21.5	21.5 U	21.5	21.5 U	21.5	21.5 U	21.5	
Selenium	10	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	
Thallium	1.7	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1	
Vanadium	~	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	
Zinc		55.1	2.8	58.8	2.8	204	2.8	215	2.8	
Cyanide	5.2	10.0 U	10.0			10.0 U	10.0			
Method:TAL Metals, Cyar	nide									

CHARLES WOOD SURFACE WATER PESTICIDES/PCBS

Geographical Location			round	Background	
Sample		CW02-S		CW05-S	
Batch#		9412	G923	9412	G923
Prep#		94GF	1038	94GF	1038
RFW#		. 01	01	00	03
Dilution Factor		1.	00 '	1.0	00
Matrix		water		wa	ter
Units	ug/l	u	g/i	uį	g/l
Sampling Date		12/	1/94	12/	1/94
Analysis Date		12/1	7/94	12/1	7/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting
-		Result	Limit	Result	Limit
alpha-BHC	0.00391	0.050 U	0.050	0.040 U	0.040
beta-BHC	0.137	0.050 U	0.050	0.040 U	0.040
delta-BHC	<u> </u>	0.050 U	0.050	0.040 U	0.040
gamma-BHC (Lindane)	0.08	0.050 U	0.050	0.040 U	0.040
Heptachlor	0.000208	0.050 U	0.050	0.040 U	0.040
Aldrin	0.000135	0.050 U	0.050	0.040 U	0.040
Heptachlor epoxide	0.000103	0.050 U	0.050	0.040 U	0.040
Endosulfan I		0.050 U	0.050	0.040 U	0.040
Dieldrin	0.000135	0.1 U	0.10	0.080 U	0.080
4,4'-DDE	0.000588	0.1 U	0.10	0.080 U	0.080
Endrin	0.0023	0.1 U	0.10	0.080 U	0.080
Endosulfan II	-	0.1 U	0.10	0.080 U	0.080
4,4'-DDD	0.000832	0.1 U	0.10	0.080 U	0.080
Endosulfan sulfate	0.93	0.1 U	0.10	U 080.0	0.080
4,4'-DDT	0.000588	0.1 U	0.10	0.080 U	0.080
Methoxychlor	0.03	0.5 U	0.50	0.40 U	0.4
Endrin ketone		0.1 U	0.10	0.080 U	0.080
Endrin aldehyde	0.76	0.1 U	0.10	0.080 U	0.080
alpha-Chlordane	0.000277	0.050 U	0.050	0.040 U	0.040
gamma-Chlordane		0.050 U	0.050	0.040 U	0.040
Toxaphene	0.00073	5 U	5	4 U	4
Aroclor-1016	0.000244	1 U	1	0.80 U	0.8
Aroclor-1221	0.000244	2 U	2	1.6 U	1.6
Aroclor-1232	0.000244	1 U	1 .	0.80 U	0.80
Aroclor-1242	0.000244	1 U	1	0.80 U	0.80
Aroclor-1248	0.000244	1 U	1	0.80 U	0.80
Aroclor-1254	0.000244	1 Ü	1	0.80 U	0.80
Aroclor-1260	0.000244	1 U '	1	0.80 U	0.80
Method:TCL Pesticides/PCBs			-	,	

CHARLES WOOD SURFACE SOIL VOLATILES

Geographical Location			CW	6	CW:	9	CW	9
Sample			CW06-SS	01-A01	CW09-SS	01-D01	CW09-SS	
Sample Type					Duplic		Field Rinsa	
Batch#			9412G	854	9412G		9412G	
Ргер#			94GVT	027	94GVE		94GVE	
RFW#			014		001		002	
Sample Depth	<u> </u>		0-6		0-6"		0-6'	
Dilution Factor			1.00		1.00		1.00	
Matrix			soil		wate		wate	
Units	mg/kg	mg/kg	mg/k		mg/		mg/	
Sampling Date			11/30/		11/30/		11/30/	
Analysis Date			12/5/94		12/7/9		12/7/9	
Analysis	Standard	MDL			Analytical		Analytical	CRQL
	Result		Result	٥١١٩٢	Result	Ona		
			rtocalt		7,0001		TOSUIT	
Chloromethane	520	0.0073	0.022 U	0.022	0.01 U	0.01	0.01 U ¹	0.01
Bromomethane	79	0.0067	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Vinyl Chloride	2	0.0079	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Chloroethane		0.0091	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Methylene Chloride	49	0.0027	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Acetone	1000	0.0069	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Carbon Disulfide		0.0044	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,1-Dichloroethene	8	0.0049	0.022 U	0.022	0.01 U	0.01	0,01 U	0.01
1,1-Dichloroethane	570	0.003	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,2-Dichloroethene (total)	79	0.0044	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Chloroform	19	0.0029	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,2-Dichloroethane	6	0.0024	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
2-Butanone	1000	0.0041	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,1,1-Trichtoroethane	210	0.0017	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Carbon Tetrachloride	2	0.0015	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Bromodichloromethane	11	0.002	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,2-Dichloropropane	10	0.0017	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
cis-1,3-Dichloropropene	4 .	0.003	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Trichloroethene	23	0.002	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Dibromochloromethane	110	0.0024	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,1,2-Trichloroethane	22	0.0043	0.022 U	0.022	0.01 U	0.01	0.01 U	. 0:01
Benzene	3	0.0033	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Irans-1,3-Dichloropropene	. 4	0.0024	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Bromoform	86	0.0031	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
4-Methyl-2-pentanone	1000	0.0055	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
2-Hexanone		0.0039	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Tetrachloroethene	4	0.004	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
1,1,2,2-Tetrachloroethane	34	0.0042	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Toluene	1000	0.0027	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Chlorobenzene	. 37	0.0027	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Ethylbenzene	1000 ;	.0.0031	0.022 U.s.	0.022	0.01 U	0.01	0.01 U	0.01
Styrene	23	0.0038	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Xylene (total)	410	0.0038	0.022 U	0.022	0.01 U	0.01	0.01 U	0.01
Avierie iloiau							J.U I U I	0.01

CHARLES WOOD SURFACE SOIL SEMIVOLATILES

Geographical Location	i -		CW	6
Sample			CW06-SS	01-A01
Batch#			9412G	854
Prep#			94GB0	796
RFW#		;	014	
Sample Depth			0-6'	
Dilution Factor			10.0	0
Matrix			soil	
Units	mg/kg	mg/kg	mg/k	g
Sampling Date			11/30/	
Analysis Date			12/21/	94
Analysis	Standard	MDL	Analytical	CRQL
			Result	
Phenol	10000	0.234	7.2 U	7.2
bis(2-Chloroethyl) ether	0.66	0.32	7.2 U	7.2
2-Chlorophenol	280	0.241	7.2 U	7.2
1,3-Dichlorobenzene	5100	0.175	7.2 U	7.2
1,4-Dichlorobenzene	570	0.158	7.2 U	7.2
1,2-Dichlorobenzene	5100	0.188	7.2 U	7.2
2-Methylphenol	2800	0.221	7.2 U	7.2
2,2'-oxybis(1-Chloropropane)		0.231	7.2 U	7.2
4-Methylphenol	2800	0.426	7.2 U	7.2
N-Nitroso-di-n-propylamine	0.66	0.264	7.2 U	7.2
Hexachloroethane	6	0.175	7.2 U	7.2
Nitrobenzene	28	0.244	7.2 U	7.2
Isophorone	1100	0.129	7.2 U	7.2
2-Nitrophenol		0.231	7.2 U	7.2
2,4-Dimethylphenol	1100	0.158	7.2 U	7.2
bis(2-Chloroethoxy) methane		0.201	7.2 U	7.2
2,4-Dichlorophenol	170	0.145	7.2 U	7.2
1,2,4-Trichlorobenzene	68	0.317	7.2 U	7.2
Naphthalene	230	0.277	7.2 U	7.2
4-Chloroaniline	230	0.096	7.2 U	7.2
Hexachlorobutadiene	1	0.152	7.2 U	7.2
4-Chloro-3-methylphenol	10000	0.102	7.2 U	7.2
2-Methylnaphthalene		0.287	7.2 U	7.2
Hexachlorocyclopentadiene	400	0.119	7.2 U	7.2
2,4,6-Trichlorophenol	62,	0.185	7.2 U	7.2
2,4,5-Trichlorophenol	5600	0.155	18 U	18
2-Chloronaphthalene		0.271	7.2 U	7
2-Nitroaniline	1	0.201	18 U	18
Dimethylphthalate	10000	0.145	7.2 U	7
Acenaphthylene		0.198	7.2 U	7
2,6-Dinitrotoluene	1	0.172	7.2 U	7
3-Nitroaniline		0.172	18 U	18
Acenaphthene	3400	0.221	7.2 U	7
2,4-Dinitrophenol	110	0.152	18 U	18

1/27/95

Geographical Location			CW	6
Sample		1	CW06-SS	01-A01
Batch#			9412G	854
Prep#			94GB0	796
RFW#	1		014	
Sample Depth			. 0-6'	
Dilution Factor			10.0	D
Matrix			soil	
Units	mg/kg	mg/kg	mg/k	g
Sampling Date	,		11/30/	94
Analysis Date			12/21/	94
Analysis	Standard	MDL	Analytical	CRQL
7	.		Result	
4-Nitrophenol		0.248	18 U	18
Dibenzofuran		0.215	7.2 U	7.2
2,4-Dinitrotoluene	1	0.191	7.2 U	7.2
Diethylphthalate	10000	0.178	7.2 U	7.2
4-Chlorophenyl-phenylether		0.231	7.2 U	7.2
Fluorene	2300	0.208	7.2 U	7.2
4-Nitroaniline		0.211	18 U	18
4,6-Dinitro-2-methylphenol		0.175	18 U	18
N-Nitrosodiphenylamine (1)	140	0.139	7.2 U	7.2
4-Bromophenyl-phenylether		0.175	7.2 U	7.2
Hexachlorobenzene	0.66	0.182	7.2 U	7.2
Pentachiorophenol	.6	0.132	18 U	18
Phenanthrene		0.165	7.2 U	7.2
Anthracene	10000	0.152	7.2 U	7.2
Carbazole		0.145	7.2 U	7.2
Di-n-butylphthalate	5700	0.215	7.2 U	7.2
Fluoranthene	2300	0.198	7.2 U	7.2
Pyrene	1700	0.178	7.2 U	7.2
Butylbenzylphthalate	1100	0.175	7.2 U	7.2
3,3'-Dichlorobenzidine	2	0.092	7.2 U	7.2
Benzo(a)anthracene	0.9	0.162	7.2 U	7.2
Chrysene	9	0.145	7.2 U	7.2
bis(2-Ethylhexy)phthalate	49	0.32	0.76 J	
Di-n-octyl phthalate	1100	0.185	7.2 U	7.2
Benzo(b)fluoranthene	0.9	0.188	7.2 U	7.2
Benzo(k)fluoranthene	0.9	0.205	7.2 U	7,2
Benzo(a)pyrene	0.66	0.162	7.2 U	7.2
Indeno(1,2,3-cd)pyrene	0.9	0.234	7.2 U	7.2
Dibenzo(a,h)anthracene	0.66	0.198	7.2 U	7.2
Benzo(g,h,i)perylene		0.224	7.2 U	7.2
Method:TCL Semivolatiles			,	

CHARLES WOOD SURFACE SOIL INORGANICS

Geographical Location		CV	V4`	·CV	V6 .	CV	V9 .	CV	V9	CV	V9	CV	N9 .
Sample		CW04-S	\$01-A01	CW06-S	S01-A01	CW09-S	S01-A01	CW09-S	S01-C01	CW09-S	S02-A01	CW09-S	S03-A01
Sample Type								Dupi	licate				-
Batch#	ļ	9412	G854	9412	G854	9412	G854	9412	G854	9412	G854	9412	G854
Prep#		94GT	S467	94GT	S467	94GT	S467	94G1	S467	94GT	S467	94G1	TS467
RFW#		0,	13	0.	14	00	03	0(04	00	<u> </u>	0(06
Sample Depth	<u> </u>	0-	6"	0-	·6"	0-	·6"	0-	·6"	0-	6"	0-	-6"
Dilution Factor		1.	00	1.	00	1.	00 ,	1.	00	1.	00	1.	.00
Matrix		S	oil	. SI	oil	S	oil	S	oil	S	oil	S	oil
Units	mg/kg	mg	/kg ^	mg	ı/kg	mg	ı/kg	mg	ı/kg `	mg	ı/kg	mg	ı/kg
Sampling Date		11/3	0/94	11/3	0/94	11/3	0/94	11/3	0/94	11/3	0/94	11/3	30/94
Analysis Date		12/0	6/94	12/6	6/94	12/6	6/94	12/0	6/94	12/6	6/94	12/	6/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		90.1	0.10	46.0	0.10	77.4	0.10	78.8	0.10	80.5	0.10	78.6	0.10
Silver	110	0.76	0.5	1.5	1.3	2.5	0.72	2.4	0.64	2.8	0.53	0.65 U	0.65
Aluminum		6870	4.3	5130	. 11	7350	6.2	7470	`5.6	5730	4.6	3600	5.6
Arsenic	20	7.8	0.58 *	11.6	0.61	13.6	1.9 *	14.1	0.76 *	12.1	0.69 *	6.9	0.33
Barium	700	17.7	0.34	72.2	0.86	23.4	0.49	24.1	0.44	28.9	0.36	65.4	0.44
Beryllium	1	0.76	0.24	0.62 U	0.62	0.73	0.35	0.91	0.31	0.68	0.26	0.57	0.32
Calcium		699	1.9	4430	5	2680	2.8	2620	2.5	2650	2.1	1960	2.5
Cadmium	1	0.45 U	0.45	4.4	1.1	0.65 U	0.65	0.58 U	0.58	0.48 U	0.48	0.59 U	0.59
Cobalt		0.62	0.43	1.1 U	1.1	0.63 U	0.63	1.2	0.56	0.46 U	0.46	0.57 U	0.57
Chromium		58.3	0.48	65.8	1.2	56.7	0.7	60.6	0.62	57.2	0.51	24.9	0.63
Copper	600	3.2	0.37	69.8	0.94	9.6	0.54	9.7	0.48	10.3	0.39	5	0.48
Iron		19700	0.76	10900	1.9	20600	1.1	22100	0.98	18200	0.81	10800	0.99
Mercury	14	0.10 U	0.1	6	0.35 *	0.2	0.12	0.19	0.091	0.23	0.099	0.094 U	0.094
Potassium		2720	132	1420	337	1600	191	1630	171	2620	141	1460	173
Magnesium		1450	3.9	1260	10	1910	5.7	1920	5.1	2010	4.2	815	5.1
Manganese		26.2	0.32	78.8	0.82	85.1	0.47	91	0.42	46.8	0.34	22.3	0.42
Sodium	 	16	2.5	103	6.3	35.6	3.6	33.1	3.2	33.9	2.6	77.4	3.2
Nickel	250	2.3	2.1	5.30 U	5.3	6	3	4.6	2.7	3.3	2.2	2.7 U	2.7
Lead	400	8.9	0.58 *	203	10.3	19.9	3.8 **	20.1	3.8 **	30.1	4.3	13.5	1.6 *
Antimony	14	3.50 U	3.5	8.8 U	8.8	5.0 U	5	4.5 U	4.5	3.7 U	3.7	4.5 U	4.5
Selenium	63	0.33	0.16	0.7	0.34	0.56	0.21	0.97	0.21	0.62	0.19	0.75	0.18
Thallium	2	0.20 U	0.2	0.42 U	0.42	0.26 U	0.26	0.26 U	0.26	0.24 U	0.24	0.22 U	0.22
Vanadium	370	37.3	0.47	21.8	1.2	45.7	0.68	48.5	0.6	34	0.5	15.7	0.61
Zinc	1500	24.6	0.45	463	1.1	53.7	0.65	45.9	0.58	61.2	0.48	25.8	0.59
Dilution Factor	ļ	*=:	2.00	*=:	2.00	* = 5.0,	** = 10.0	* = 2.00,	** = 10.0	*=	2.00	·=	5.00
Method:TAL Metals	J									l		1	

CHARLES WOOD SURFACE SOIL INORGANICS

Geographical Location	_	CI	V 9	C/	V 9		N9	CV	M/O	CI	V9	CI	W9
Sample		CW09-S		CW09-S			S06-A01	CW09-S		CW09-S			SS09-A01
Sample Type		04403-0	00+A01	04409-0			1000°A01	CVV09-3	301-A01	C.VV09-3	300-A01	CVV09-3	1309-A01
Batch#		9412	G854	9412	G854	9412	G854	0/12	G854	0/12	G854	0/12	:G854
Prep#			S467	94GT			S467		S467	94GT			TS467
RFW#			07	00			09		10	0			12
Sample Depth		0-		0-			·6"	0-		0-			-6"
Dilution Factor			00	1.			00		00		00		.00
Matrix		s		Si			oil	S:		S			oil
Units	mg/kg	mg		mg	·		ı/kg		/kg	mg			g/kg
Sampling Date			0/94		0/94		0/94		0/94		0/94		30/94
Analysis Date	 		5/94	12/6			6/94		5/94		5/94		6/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
				. "	·								
% Solids		71.9	0.10	79.7	0.10	82.3	0.10	68.5	0.10	83.2	0.10	86.4	0.10
Silver	.110	0.58 U	0.58	· 0.77	0.57	0.71	0.59	1.2	0.85	3.3	0.56	1.3	0.51
Aluminum		4380	5	6930	4.9	5450	5.1	3910	7.4	4070	4.9	7700	4.4
Arsenic	20	6.3	0.52 *	15.6	1.4	9.3	0.62 *	10.5	0.46	7.2	0.67 *	7.7	0.36
Barium	700	51.2	0.39	32.5	0.38	33	0.4	40.7	0.58	19.2	0.38	40.8	0.34
Beryllium	1	0.55	0.28	0.9	0.27	0.72	0.29	0.58	0.41	0.56	0.27	1	0.24
Calcium		19600	2.3	3570	2.2	3610	2.3	4370	3.3	1630	2.2	3440	2
Cadmium	1	0.53 U	0.53	0.51 U	0.51	0.54 U .	0.54	2.6	0.77	0.51 U	0.51	0.46 U	0.46
Cobalt		1.3	0.51	1.9	0.49	1.7	0.52	0.74 U	0.74	0.49 U	0.49	1.8	0.44
Chromium		28.3	0.56	60.5	0.55	46.9	0.57	164	0.83	56.2	0.55	70	0.49
Copper	600	17.7	0.43	8.8	0.42	11.1	0.44	17.4	0.63	9	0.42	9.6	0.37
iron		12200	0.88	22200	0.86	17900	0.9	9880	1.3	11300	0.86	25600	0.77
Mercury	14	0.11 U	0.11	0.14	0.1	0.09 U	0.09	7.9	1.2 *	0.69	0.12	0.093 U	0.093
Potassium	ļ <u>.</u>	2060	154	3950	150	3180	157	1720	226	1250	149	5130	134
Magnesium		2260	4.6	2280	4.5	1720	4.7	1620	6.7	893	4.4	2590	4
Manganese		106	0.38	59.2	0.37	56	0.38	140	0.55	37	0.36	69.5	0.33
Sodium		118	2.9	49.7	2.8	49.7	2.9	40.6	4.2	34.5	2.8	60.9	2.5
Nickel	250	5.7	2.4	6.9	2.3	4.9	2.4	4.3	3.5	2.4	2.3	5.8	2.1
Lead	400	56.8	4.7	27.4	2.7 *	17	3.1 **	82.3	6.9	35.5	4.6	20.1	3.6 *
Antimony	14	4.0 U	4	3.90 U	3.9	4.10 U	4.1	5.90 U	5.9	3.90 U	3.9	3.5 U	3.5
Selenium	63	0.28	0.15	0.63	0.15	0.41	0.17	0.57	0.26	0.6	0.19	0.48	0.2
Thallium	2	0.18 U	0.18	0.19 U	0.19	0.21 U	0.21	0.32 U	0.32	0.23 U	0.23	. 0.24 U	0.24
Vanadium	370	22.9	0.54	33.1	0.53	30.3	0.55	15.6	0.8	29.3	0.53	32	0.47
Zinc	1500	92.5	0.53	47.8	0.51	62.3	0.54	77	0.77	36	0.51	48.1	0.46
Dilution Factor	ļi	*=2	2.00	" = 1	0.0	* = 2.00,	; = 10.0	*=	10.0	*=:	2.00	*=1	10.0
Method:TAL Metals										L			<u> </u>

CHARLES WOOD SURFACE SOIL PESTICIDES/PCBS

Geographical Location		, CI	V6	CV	V6	
Sample		CW06-S	S01-A01	CW06-SS	01-A01DL	
Batch#		9412	G854	9412	G854	
Prep#		94GF	1033	94GF	1033	
RFW#		0	14	014	DL	
Sample Depth		0-	6"	. 0-	6"	
Dilution Factor		5.	00	50	.00	
Matrix		S	ọil	S	oil	
Units	mg/kg	mg	/kg	mg	/kg	
Sampling Date		11/3	0/94	11/3	0/94	
Analysis Date		12/1	8/94	12/1	4/94	
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	
		Result	Limit	Result	Limit	
alpha-BHC		0.018 U	0.018	0.18 U	0.18	
beta-BHC		0.018 U	0.018	0.18 U	0.18	
delta-BHC		0.018 U	0.018	0.18 U	0.18	
gamma-BHC (Lindane)	0.52	0.018 U	0.018	0.18 U	0.18	
Heptachlor	0.15	0.018 U	0.018	0.18 U	0.18	
Aldrin	0.04	0.018 U	0.018	0.18 U	0.18	
Heptachlor epoxide		0.032		0.18 U	0.18	
Endosulfan I	340	0.018 U	0.018	0.18 U	0.18	
Dieldrin	0.042	0.036 U	0.036	0.36 U	0.36	
4,4'-DDE	2	0.13		0.36 U	0.36	
Endrin	17	0.036 U	0.036	0.36 U	0.36	
Endosulfan II	340	0.036 U	0.036	0.36 U	0,36	
4,4'-DDD	3	0.86 C		.66 CD		
Endosulfan sulfate		0.036 U	0.036	0.36 U	0.36	
4,4'-DDT	2	0.81 C		.79 CD		
Methoxychlor	280	0.180 U	0.18	1.8 U	1.8	
Endrin ketone		0.036 U	0.036	0.36 U	0.36	
Endrin aldehyde		0.036 U	0.036	0.36 U	0.36	
alpha-Chlordane		0.85 C		.87 CD		
gamma-Chlordane	,	0.81 C		.8 CD		
Toxaphene	0.1	1.8 U	1.8	18 U	18	
Aroclor-1016	0.49	0.36 U	0.36	3.6 U	3.6	
Aroclor-1221	0.49	0.72 U	0.72	7.2 U	7.2	
Aroclor-1232	0.49	0.36 U	0.36	3.6 U	3.6	
Aroclor-1242	0.49	0.36 U	0.36	3.6 U 3.6		
Aroclor-1248	0.49	0.36 U	0.36	3.6 U	3.6	
Aroclor-1254	0.49	0.36 U	0.36	3.6 U 3.6		
Aroclor-1260	0.49	0.36 U	0.36	3.6 U	3.6	
Method:Pesticides/PCBs						

D-164

Geographical Location			AO	O7	1 00)C7	I AO	.07	AC	107	. AOC	7	AOC	-		
Sample	 	ļ	CWA7-S			B02-A02	CWA7-S			B04-A02	CWA7-SB		CWA7-SB	<u> </u>	AOC CWA7-SE	
Sample Type	 		CVVAI-S	DU 1-AU2	CVVA7-S	BUZ-AUZ	CVVA/-S	DU3-AUZ	CVVA7-S	BU4-AU2			CVVA7-SB	05-A02	CVVA7-SE	306-A03
Batch#	 		9412	COSA	0.412	G264	9412	C264	9412	0064	Trip Bla		9412G	2004	04406	2004
Prep#	<u> </u>		94GVT0			/T034	94GVT0		9412 94GV		9412G		9412G		94120 94GV	
RFW#			943710			03	943710			06	94678					
Sample Depth (bgs)	 		10 -	-		- 12'	6 -			10'	007		004 8 -1		00	
Dilution Factor			1.0			00	1.0		1.0		4.00				12 -	
Matrix			1.0 S0		.						1.00		1.0		1.0	
Units	· mallea	·			S		, sc		S		wate		soi		so	
	mg/kg	mg/kg	mg 400			g/kg	mg			/kg	mg/		mg/l		mg/	
Sampling Date	ļ		12/2 12/2			21/94	12/2		1	1/94	12/21/		12/21		12/21	
Analysis Date	Ohan daad	MDI				7/94	12/2	· · · · · · · · · · · · · · · · · · ·		7/94	12/28/		12/27		12/27	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		CRQL	Analytical	CRQL
			Result		Result		Result	-	Result		Result		Result	ļ	Result	
Object of the second se	500	0.0070	0.044.11	0.044	0.044.11	0.044	0.04411	0.044	0.044.11		2 24 11			<u> </u>		
Chloromethane Bromomethane	520 79	0.0073	0.011 U 0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
Vinyl Chloride	2	0.0067	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U 0.011 U	0.011 - 0.011	0.01 U 0.01 U	0.01	0.011 U 0.011 U	0.011	0.011 U	0.011
Chloroethane		0.0079	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U 0.011 U	0.011
Methylene Chloride	49	0.0091	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0:011 U 0:011 U	0.011
Acetone	1000	0.0027	0.68 B	0.011	0.011 O	0.011	0.011 B	0.011	0.011 B	0.011	0.01 U	0.01	0.011 O		0.043 B	
Carbon Disulfide	1000	0.0069	0.00 B	0.11	0.063 B	0.011	0.11 B	0.022	0.019 B	0.011	0.01 U	0.01	0.060 B	0.011		0.011
1,1-Dichloroethene	8	0.0044	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
1.1-Dichloroethane	570	0.0049	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U		0.01 U				0.011 U	0.011
	79	0.003	0.011 U	0.011	0.011 U					0.011		0.01	0.011 U	0.011	0.011 U	0.011
1,2-Dichloroethene (total) Chloroform	19	0.0044	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
1.2-Dichloroethane	6	0.0029	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011			0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
2-Butanone	1000	0.0024	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U 0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
1.1.1-Trichloroethane	210	0.0041	0.011 U	0.011	0.002 J	0.011	0.011 U	0.011	0.011 U	0.011 0.011	0.01 U 0.01 U	0.01	0.011 U 0.011 U	0.011 0.011	0.011 U	0.011
Carbon Tetrachloride	2	0.0017	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U 0.011 U	0.011
Bromodichloromethane	11	0.0013	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
1,2-Dichloropropane	10	0.002	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
cis-1,3-Dichloropropene	4	0.003	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	
Trichloroethene	23	0.003	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
Dibromochloromethane	110	0.0024	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
1,1,2-Trichloroethane	22	0.0024	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
Benzene	3	0.0033	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	
trans-1,3-Dichloropropene	4	0.0033	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
Bromoform	86	0.0024	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
4-Methyl-2-pentanone	1000	0.0055	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
2-Hexanone	1000	0.0039	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
Tetrachloroethene	4	0.0039	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0.011
1.1.2.2-Tetrachloroethane	34	0.0042	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U					
Toluene	1000	0.0042	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U 0.011 U	0.011 0.011	0.011 U 0.011 U	0.011
Chlorobenzene	37	0.0027	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01·U	0.01		0.011		0.011
Ethylbenzene	1000	0.0027	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01	0.011 U 0.011 U	0.011	0.011 U 0.011 U	0.011
Styrene	23	0.0038	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011	0.01 U	0.01		0.011		
Xviene (total)	410	0.0038	0.011 U	0.011	0.011 U	0.011	0.011 U	0.011					0.011 U		0.011 U	0.011
Total Est. Conc. of TIC.	410	0.0038	0.011 0 0.0		0.011 0		.006.		0.011 U	0.011	0.01 U	0.01	0.011 U	0.011	0.011 U	0,011
					U.U	101							0.00	b		
Dilution Factor			*=1	U.U	 		*= 2	.UU								
Method:TCL Volatiles					L	L	L .		[

Geographical Location	_		CW1		CW1		CW1		CW1		, CW1		CW2		CW	
Sample	 	·	CW01-SB2		CW01-SB2		CW01-SB2	7-402	CW01-SB2	R AD2	CW01-SB29	1 402	CW02-SB3			
Sample Type	+		O1101-0D2	.0-702	Trip Bla		CVV01-362	7-AUZ	CVV01-362	0-AUZ	CVV01-3B28	9-AUZ.	CVVU2-5B3	U-AU2	CW02-SB	31-AU2
Batch#	 	-	9412G9	22	9412G9		9412G2	16	9412G2	16	9412G21	16	9412G1	00	9412G	
Prep#	†		94GVT0		94GVE3		94GVT0		94GVT0		94GVT03		94GVT0		9412G	
RFW#	 		004		005		002	,,,,	003	33	001	23	002	131		
Sample Depth (bgs)	 		7 - 9'		000	T	7 - 9'		7 - 9'		7 - 9'		7 - 9'		003	
Dilution Factor	,		1.00		1.00		1.00		1.00		1.00		1.00		7 - 9	
Matrix	 		soil		water		soil		soil		soil		soil		1.00	
Units	mg/kg	mg/kg	mg/kg	,	mg/i		mg/kg		mg/kg						soi	
Sampling Date	mg/ng	mg/ng	12/19/9		12/19/9	24	12/19/9		12/19/9		mg/kg 12/19/9	-	mg/kg		mg/l	
Analysis Date	 		12/13/9		12/13/3		12/19/5		12/19/9		12/19/9		12/16/9		. 12/16 12/20	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL				
7 trialyolo	Otaridaid		Result	CITORL	Result	·	Result	CROL	Result	CRUL	Result	CRUL	Analytical	CRQL	Analytical	CRQL
	<u> </u>		Nesun		Result	-	Result	 	Result	 	Result		Result		Result	1
Chloromethane	520	0.0073	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.044
Bromomethane	79	0.0073	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Vinyl Chloride	2	0.0079	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Chloroethane	-	0.0073	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Methylene Chloride	49	0.0027	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 0	0.012	0.014 0	0.014
Acetone	1000	0.0069	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 B	0.012	0.013 O	0.013	98 B	12 *	0.066 0.74 B	0.68 *
Carbon Disulfide	1000	0.0044	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.037 B	0.012	0.120 B	0.013	0.012 U	0.012	0.74 B	
1.1-Dichloroethene	8	0.0049	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014 0.014
1.1-Dichloroethane	570	0.003	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
1,2-Dichloroethene (total)	79	0.0044	0,013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	·		
Chloroform	19	0.0029	0,013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012 0.012	0.014 U 0.014 U	0.014 0.014
1,2-Dichloroethane	6	0.0024	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
2-Butanone	1000	0.0041	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
1,1,1-Trichloroethane	210	0.0017	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.012 U	0.014
Carbon Tetrachloride	2	0.0015	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	7 0.014 U	0.014
Bromodichloromethane	11	0.002	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
1,2-Dichloropropane	10	0.0017	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
cis-1,3-Dichloropropene	4	0.003	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Trichloroethene	23	0.002	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Dibromochloromethane	110	0.0024	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
1,1,2-Trichloroethane	22	0.0043	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0,013 U	0.013	0.012 U	0.012	-0.014 U	0.014
Benzene	3	0.0033	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
trans-1,3-Dichloropropene	4	0.0024	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Bromoform	86	0.0031	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
4-Methyl-2-pentanone	1000	0.0055	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
2-Hexanone		0.0039	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Tetrachioroethene	4	0.004	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
1,1,2,2-Tetrachloroethane	34	0.0042	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Toluene	1000	0.0027	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Chlorobenzene	37	0.0027	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Ethylbenzene	1000	0.0031	0.013 U	0.013	0.01-U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Styrene	23	0.0038	,0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0,012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Xylene (total)	410	0.0038	0.013 U	0.013	0.01 U	0.01	0.013 U	0.013	0.012 U	0.012	0.013 U	0.013	0.012 U	0.012	0.014 U	0.014
Total Est. Conc. of TIC.						1	0.007						.008, 6		.9*	
Dilution Factor	İ							T		 		1 1	*= 100		* = 50	
Method:TCL Volatiles												† • •		-	- 50	
		-,- ,- , 		<u> </u>			`	ш						<u> </u>		

Geographical Location			cw	· · · ·	CW	12	CW2		CW	10	CV	vn	CW	2	CW	4
Sample	+	-	CW02-SB		CW02-SE		CW02-SB3	_	CW02-SE		CW02-Si		CW02-SB		CW04-SB	
Sample Type			Trip B		Field Rins		CVV02-SBC	JZ-MUZ	CVV02-3E	33-AUZ	CVV02-31	D33-A02	Trip BI		C4404-2B	01-A02
Batch#	 		9412G		94120		9412G	102	94120	1454	94120	2454	9412G		9412G	
Prep#	 		94GVI		94GV		94GVT		94GVT03		94GVT0					
RFW#	+		004		9437		001	1001	9464103				94GVE		94GVT03	
Sample Depth (bgs)	+		00.	-	- 00	-	7-9				00		003	5	008	
Dilution Factor	+		1.0	2	1.0		1.00		7 - 9		7 -				4 -6	
Matrix	 		wate	·	wat			<u>'</u>	1.0		1.0		1.00		1.00	
Units							soil		soi		sc.		wate		soil	
	mg/kg	mg/kg	mg.		mg		mg/k		mg/l		mg/		mg/		mg/k	
Sampling Date	<u> </u>	·	12/16		12/16		12/16/		12/15		12/1		12/16		12/21	
Analysis Date	<u> </u>		12/21		12/12		12/20/	-	12/19		12/19		12/20		12/27	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result	 	Result		Result		Result		Result	
Chloromethane	520	0.0073	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Bromomethane	79	0.0067	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Vinyl Chloride	2	0.0079	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U'	0.01	0.012 U	0.012
Chloroethane	† ·	0.0091	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Methylene Chloride	49	0.0027	0.01 U	0.01	0.01 U	0.01	0.017	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Acetone	1000	0.0069	0.01 U	0.01	0.11	0.01	5.9 B	1.2	0.98 B	.24*	2.1 B	0.12	0.01 U	0.01	1.4 B	12 *
Carbon Disulfide	<u> </u>	0.0044	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1.1-Dichloroethene	8	0.0049	0.01 U	0.01	0.01 U	0.01	0,012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1,1-Dichloroethane	570	0.003	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.0044	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Chloroform	19	0.0029	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1,2-Dichloroethane	6	0.0024	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
2-Butanone	1000	0.0041	0.01 U	0.01	0.01 U	0.01	0.008 J -	0.012	0.012 U	0.012	0.012 0	0.012	0.01 U	0.01	0.012 U	0.012
1.1.1-Trichloroethane	210	0.0017	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Carbon Tetrachloride	2	0.0015	0.01 U	0.01	0,01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	. 0.012 U	0.012
Bromodichloromethane	11	0.002	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1,2-Dichloropropane	10	0.0017	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
cis-1,3-Dichloropropene	4 ·	0.003	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Trichloroethene	23	0.002	0.01 U	0.01	0.01 U	0.01	0.012 Ú	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Dibromochloromethane	110	0.0024	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1.1.2-Trichloroethane	22	0.0043	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Benzene	3	0.0033	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
trans-1,3-Dichloropropene	4	0.0024	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Bromoform	86	0.0031	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
4-Methyl-2-pentanone	1000	0.0055	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
2-Hexanone		0.0039	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Tetrachloroethene	4	0.004	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0,012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
1,1,2,2-Tetrachloroethane	34	0.0042	0.01 U	0.01	0,01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Toluene	1000	0.0027	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Chlorobenzene	37	0.0027	0,01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Ethylbenzene	1000	0.0031	0.01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Styrene	23	0.0038	0.01 U	0.01	, 0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Xylene (total)	410	0.0038	0,01 U	0.01	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012
Total Est. Conc. of TIC.							9.5.2.5	1 5.5,2	3.5,2 5	3.0,2	5.012.0	0.012		3.51	.06	
Dilution Factor		+					* = 100	10	* = 20	10	*=1	0.0	\vdash		* = 10	
Method:TCL Volatiles							 	<u> </u>				5.5	 		- 10	
	<u> </u>						<u> </u>						1			

Coornelies I costice		т	,	·	1 50	i.e			0.110					. т		
Geographical Location	ļ	L	CV		CV		CW5		CW6		CW		CW6		CW	
Sample	!		CW05-SI	B01-A02	CW05-S		CW05-SB0	2-A02	CW06-SB0	2-A01	CW06-SE	334-A01	CW06-SB3	4-A02	CW06-SB	
Sample Type	ļ				 -	Blank								_	Trip Bl	
Batch#	-		94120		9412		9412G2		9505G8		95010		9501G4		9501G	
Prep#	ļ		94GVT0		94GV		94GVT035	& 99	95GVB1	38	95GV		95GVT0	02	95GVT	
RFW#			00		00)3	001		001		00		002		003	\$
Sample Depth (bgs)		,	6 -				6 - 8'		0.5 - 1	'	` 0-2		2-4'			
Dilution Factor			1.0		5.0		1.00		1.00		1.0		1.00		1.00	
Matrix			sc		wa		soil		soil		S0		soil		wate	
Units	mg/kg	mg/kg	mg.		me		mg/kg		mg/kg		mg/		. mg/kg		mg/	
Sampling Date			12/2	_		12/20/94		94	5/10/9		1/3/		1/3/95		1/3/9	
Analysis Date			12/2			12/28/94		94	5/24/9		1/5/		1/5/95		1/6/9	
Analysis	Standard	MDL.	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	L		Result		Result		Result		Result	ļ	Result		Result		Result	
								ļ								
Chloromethane	520	0.0073	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromomethane	79	0.0067	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Vinyl Chloride	2	0.0079	0.012 U	0.012	0.01 U	∖ 0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chloroethane		0.0091	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Methylene Chloride	49	0.0027	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Acetone	1000	0.0069	2.7 B	0.23	0.01 U	0.01	0.57 B	0.06	0.016 B	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Carbon Disulfide		0.0044	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1-Dichloroethene	8	0.0049	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1-Dichloroethane	570	0.003	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethene (total)	79	0.0044	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chloroform	19	0.0029	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethane	6	0.0024	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U -	0.01
2-Butanone	1000	0.0041	0.013	0.012	0.01 U	0.01	0.01 J	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,1-Trichloroethane	210	0.0017	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Carbon Tetrachloride	2	0.0015	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromodichloromethane	11	0.002	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01 /
1,2-Dichloropropane	10	0.0017	0.012 U	0.012	0.01 U .	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
cis-1,3-Dichloropropene	4	0.003	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Trichloroethene	23	0.002	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Dibromochloromethane	110	0.0024	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,2-Trichloroethane	22	0.0043	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Benzene	3	0.0033	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
trans-1,3-Dichloropropene	4	0.0024	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 Ú	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromoform	86	0.0031	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	. 0.01
4-Methyl-2-pentanone	1000	0.0055	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
2-Hexanone		0.0039	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0:012 U	0.012	0.01 U	0.01
Tetrachloroethene	4	0:004	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,2,2-Tetrachloroethane	34	0.0042	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Toluene	1000	0.0027	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chlorobenzene	37	0.0027	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	'0.01
Ethylbenzene	1000	0.0031	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Styrene	23	0.0038	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Xylene (total)	410	0.0038	0.012 U	0.012	0.01 U	0.01	0.012 U	0.012	0.014 U	0.014	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Total Est. Conc. of TIC.			0.0				0.007									
Dilution Factor			•= 2	20.0			* = 5.0	Ō		Ь	ļ					
Method:TCL Volatiles		ŀ					i]						

Geographical Location	1	Γ	CW	10	l cw	0	Cv	10		A/O				20		
Sample			CW09-SE		CW09-SB		CW09-SE		CW09-SB	N9	B		1	36	B 57.00	
Sample Type	ļ		CVVU9-SE	301-AUZ							B6-SB0	J1-AU1	B6-SE	301-A02	B7-SB	01-A01
Batch#	-		95010	3450	Trip Bi 9501G		Field Rins			sate Blank	0504					
Prep#	 		95GVI		9501G		95010 95GV			G450	95010			IG553	9501	
RFW#	<u> </u>	-			 					/F009	95GV			VF013		/F012
	 		00		003	· · ·	002	DF	U	02	00			119	, 00	
Sample Depth (bgs)	ļ		2-		4.0						1-			- 4'	1-	
Dilution Factor	ļ		1.0		1.00		50			00	1.0			.00	1.0	
Matrix			so		wate		wat			ater	sc			soil	Sc	
Units	mg/kg	mg/kg	mg/		mg.		mg			g/l	mg	. •		g/kg	 	/kg
Sampling Date	<u> </u>	,	1/4/		1/4/9		1/4/		-	1/95	1/10			0/95	1/10	
Analysis Date			1/13		1/10/		1/10			0/95	1/16			6/95		5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL		CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
·	<u> </u>		Result		Result	ļ	Resuit		Result		Result		Result		Result	
0	520	0.0073	0.012 U	0.040	0.04.11	0.04					/					
Chloromethane				0.012	0.01 U	0.01	0.01 U	0.01	NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Bromomethane Vinyl Chloride	79 2	0.0067	0.012 U 0.012 U	0.012	0.01 U 0.01 U	0.01	0.01 U	0.01	NA NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Chloroethane		0.0079	0.012 U	0.012	0.01 U		0.01 U 0.01 U	0.01	NA .	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
	40					0.01		0.01		NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Methylene Chloride Acetone	1000	0.0027	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA .	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Carbon Disulfide	1000	0.0069	0.012 U		0.01 U	0.01	E	0.01	5.2		0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
				0.012	0,01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	.0.012	0.012 U	0.012
1,1-Dichloroethene	8	0.0049	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
1,1-Dichloroethane	570	0.003	0.012 Ü	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
1,2-Dichloroethene (total)	79	0.0044	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Chloroform	19	0.0029	0.012 U	0.012	0.01 U	0.01	0.003 J	0.01	. NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
1,2-Dichloroethane 2-Butanone	6	0.0024	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
	1000 210	0.0041	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	- 0.012
1,1,1-Trichloroethane		0.0017	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA ·	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Carbon Tetrachloride Bromodichloromethane	11		0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
	10	0.002	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA ,	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
1,2-Dichloropropane	4		0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011'U	0.011	0.012 U	0.012	0.012 U	0.012
cis-1,3-Dichloropropene Trichloroethene	23	0.003	0.012 U 0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Dibromochloromethane	110	0.0024	0.012 U	0.012	0.01 U 0.01 U	0.01	0.01 U	0.01	NA NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
1.1.2-Trichloroethane	22	0.0024	0.012 U	0.012	0.01 U	0.01	0.01 U 0.01 U	0.01 0.01	NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Benzene	3	0.0043	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
trans-1,3-Dichloropropene	4	0.0033	0.012 U	0.012	0.01 U				NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Bromoform	86					0.01	0.01 U	0.01	NA NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
	1000	0.0031	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
4-Methyl-2-pentanone	1000	0.0055	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
2-Hexanone		0.0039	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Tetrachloroethene	4	0.004	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
1,1,2,2-Tetrachloroethane	34	0.0042	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Toluene	1000	0.0027	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Chlorobenzene	37	0.0027	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Ethylbenzene	1000	0.0031	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Styrene	23	0.0038	0.012 U	0.012	0.01 U	0.01	0.01 U	0.01.	į .NA	NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Xylene (total)	410	0.0038	0:012 U	0.012	0.01 U	0.01	0.01 U	0.01	NA	NA NA	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012
Total Est. Conc. of TIC.	,										0.0	06			<u> </u>	
Dilution Factor			` *= 10	0.0												
Method:TCL Volatiles			٠										·			

Geographical Location	T -		. B7		В		B8		В		l B		· · · · ·		T	
Sample			B7-SB01	-002	B8-SB0		B8-SB0*		B9-SB		J			9	B9	
Sample Type		<u> </u>	57-350	1-AUZ	B0-3BI	UI-AUI	B0-SB0	1-A02	B9-5B	U1-AU1	B9-SB0	J1-AU2		01-C02	B9-SB0	
Batch#			9501G	EEO	9501	CEE2	9501G	<i>EE</i> 0	0504	0004	9594			icate	Trip B	
Prep#	 		95GVF			/F012	9501G 95GVF		9501		95010		9501		95010	
RFW#	 	·	007		9567				95GV		95GV		<u> </u>	/T020	95GV0	
Sample Depth (bgs)	 		4 - 8				005		00		00		0()3	00	5
Dilution Factor	 		1.00		1-		4-6		1 -		6 -					<u> </u>
Matrix			soil		1.0		1.00		1.		1.0			00 '	1.0	
Units					so		soil		S		so			oil	wat	
	mg/kg	mg/kg	mg/k		mg		mg/k		mg		mg			/kg	mg	
Sampling Date Analysis Date			1/10/		1/10		1/10/		1/23		1/23			3/95	1/23	
	Chandard	MDL	1/16/		1/15		1/15/		2/1		2/1			/95	2/1/	
Analysis	Standard	MUL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	-		Result		Result		Result		Result		Result		Result		Result	L
Chloromethane /	520	0,0073	0.012 U	0.012	0.011 U	0.011	0.04011	0.012	0.04011	0.046	0.040	0.040		2.212	,	 _
Bromomethane	79	0.0067	0.012 U	0.012	0.011 U	0.011	0.012 U 0.012 U	0.012	0.012 U 0.012 U	0.012 0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Vinyl Chloride	2	0.0079	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012		0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chloroethane	-	0.0079	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U 0.012 U		0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Methylene Chloride	49	0.0027	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012 0.012	0.012 U 0.014 B	0.012 0.012	0.012 U	0.012	0.01 U	0.01
Acetone	1000	0.0027	0.012 O	0.012	0.011 U	0.011	0.012 0	0.012	0.012 U	.3 *	0.014 B		0.012 U	0.012	0.01 U	0.01
Carbon Disulfide	1000	0.0003	0.013 U	0.012	√0.011 U	0.011	0.002 J	0.012	0.9 B			0.012	0.012 U	0.012	8300	1000 *
1.1-Dichloroethene	8	0.0044	0.012 U	0.012	0.011 U	0.011	0.002 J 0.012 U	0.012		0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1-Dichloroethane	570	0.0049	0.012 U	0.012	0.011 U	0.011	0.012 U		0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethene (total)	79	0.0044	0.012 U	0.012	0.011 U	0.011		0.012	0.012 U	0.012	0.012 U	0.012	0.012 U,	0.012	0.01 U	0.01
Chloroform	19	0.0044	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethane	6	0.0029	0.012 U	0.012	0.011 U	0.011	0.012 U 0.012 U	0.012 0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
2-Butanone	1000	0.0024	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U 0.012 U	0.012 0.012	0.012 U 0.012 U	0.012 0.012	0.012 U 0.012 U	0.012 0.012	0.01 U	0.01
1.1.1-Trichloroethane	210	0.0017	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Carbon Tetrachloride	2	0.0015	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromodichloromethane	11	0.002	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloropropane	10	0.0017	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
cis-1,3-Dichloropropene	4	0.003	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Trichloroethene	23	0.002	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Dibromochloromethane	110	0.0024	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,2-Trichloroethane	22	0.0043	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Benzene	3	0.0033	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.010 0.006 J	0.01
trans-1,3-Dichloropropene	4	0.0024	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.006 J	0.01
Bromoform	86	0.0031	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	
4-Methyl-2-pentanone	1000	0.0055	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01 0.01
2-Hexanone	1000	0.0039	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Tetrachioroethene	4	0.003	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012		0.012		
1.1.2.2-Tetrachloroethane	34	0.0042	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	√0.012 U 0.012 U	0.012	0.01 U 0.01 U	0.01 0.01
Toluene	1000	0.0042	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chlorobenzene	37	0.0027	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012		
Ethylbenzene	1000	0.0027	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Styrene	23	0.0031	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012	0.012 U	0.012					0.01 U	0.01
Xylene (total)	410	0.0038	0.012 U	0.012	0.011 U	0.011	0.012 U	0.012			0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Total Est. Conc. of TIC.	710	0.0036	0.0120	0.012	0.0110	0.011	0.012.0	0.012	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	, 0.01
Dilution Factor	<u> </u>								.008				<u>'</u>			
Method:TCL Volatiles									*=2	(D.U	 				* = 100	טטטע
wed lod. I CL Volatiles						•		L			l .		i i			{

Geographical Location		<u> </u>	В	9	B	10	B1	0	B	10	B ²	0
Sample			B9-SB0		B10-SE		B10-SB0		B10-SB		B10-SB	
Sample Type			Field Rins				1 525				Trip 6	
Batch#			95010		9501	G553	95010	3553	95010	G553	9501	
Prep#			95GV			/F012	95GV		95GV		95GV	
RFW#	 	 	00		00		001		00		00	
Sample Depth (bgs)				<u> </u>		. 2'	1		2 -		 	
Dilution Factor	 	l	1.0	10		00	1.0	າດ	1.0		1.0	n -
Matrix .			wa			oil	sc		so		wa	
Units	mg/kg	mg/kg	mg		mg		mg		mg		m	
Sampling Date	1113113	1113113	1/23			0/95	1/10		1/10		- 1/10	·
Analysis Date	 		2/1/			5/95	1/16		1/15		1/12	
Analysis	Standard	MDL	Analytical	CROL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
7 mayers	- Ctaridara		Result	0,142	Result	Ortal	Result	Ortal	Result	Oittal	Result	OI (GL.
			, reedit		rtoodk		I TOOLE		result		result	
Chloromethane	520	0.0073	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromomethane	79	0.0067	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Vinyl Chloride	2	0.0079	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chloroethane	1	0.0091	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Methylene Chloride	49	0.0027	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Acetone ,	1000	0.0069	0.13	.02 *	0.012 U	0.012	0.016 B	0.012	0.24	0.012	0.022	0.01
Carbon Disulfide		0.0044	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1-Dichloroethene	8	0.0049	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1-Dichloroethane	570	0.003	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethene (total)	79	0.0044	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chloroform	19	0.0029	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloroethane	6	0.0024	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0,012 U	0.012	0.01 U	0.01
2-Butanone	1000	0.0041	0.01 U	0.01	0.012 U	0.012	0,012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,1-Trichloroethane	210	0.0017	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Carbon Tetrachloride	2	0.0015	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromodichloromethane	11	0.002	0.01 U	0.01	0.012 U	0.012	0,012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,2-Dichloropropane	10	0.0017	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
cis-1,3-Dichloropropene	4	0.003	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Trichloroethene '	23	0.002	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Dibromochloromethane	110	0.0024	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,2-Trichloroethane	22	0.0043	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Benzene	3	0.0033	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
trans-1,3-Dichloropropene	4	0.0024	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Bromoform	86	0.0031	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
4-Methyl-2-pentanone	1000	0.0055	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
2-Hexanone		0.0039	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Tetrachloroethene	4	0.004	0.01 U	0.01	0.012.U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
1,1,2,2-Tetrachloroethane	34	0.0042	0.01 U .	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Toluene	1000	0.0027	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Chlorobenzene	37	0.0027	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Ethylbenzene	1000	0.0031	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Styrene	23	0.0038	0.01 U	0.01.	0.012 U	, 0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Xylene (total)	410	0.0038	0.01 U	0.01	0.012 U	0.012	0.012 U	0.012	0.012 U	0.012	0.01 U	0.01
Total Est. Conc. of TIC.												
Dilution Factor			*= 2	.00			\vdash					
Method:TCL Volatiles			Ī				 		†			
	L											

Geographical Location	Ī	AO	C7	AO		AO	C7	AO	C7	AOC	:7	AO	Ċ7	CV	M1
Sample	+	CWA7-S		CWA7-S		CWA7-S			B04-A02	CWA7-SB		CWA7-S		CW01-S	
Sample Type	+	0117.1-0	D01-A02	01171-0	D02-A02	CVVAI-3	D03-A02	CVVA	D04-A02	CVVAI-SB	00-702	CVVAI-S	D00-A03	CVVUI-3	DZU-MUZ
Batch#	 	94120	G264	9412	2264	94120	G264	0/12	G264	9412G	264	94120	0264	94120	0246
Prep#	 	94GB		94GB		94GB			O852	94GBC		94GB		94GB	
RFW#	 	9498		. 00		9498			06	+		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	 	- 00	11	U		U)2	U	JO	004	•	00	15	00	14
Sample Depth (bgs)	 					-			<u></u>			<u> </u>			<u></u>
Dilution Factor		1.0		1.0		1.0		÷	00	1.0		1.0		1.0	
Matrix	 -	sc		so		so			oil	soi		so		sc	
Units	mg/kg	mg		mg		. mg			/kg	mg/l		mg		mg	
Sampling Date	ļ	12/2			1/94	12/2			1/94	12/21			1/94	12/1	
Analysis Date		1/3		1/3		1/3		1/3	/95	1/3/9		1/3	/95	1/5	/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	ļ:	Result		Result	·	Result		Result		Result		Result		Result	
Phenol	10000	0.37 U	0.37	0.37 U	. 0.37	0.36 U	0.36	0.0711	0.07	0.0011	0.00	00011		0.4011	0.40
bis(2-Chloroethyl) ether	0.66	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2-Chlorophenol	280	0.37 U	0.37					0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
1,3-Dichlorobenzene	5100			0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
1,4-Dichlorobenzene	570	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
1,2-Dichlorobenzene	5100	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2-Methylphenol	2800	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2,2'-oxybis(1-Chloropropane)	[0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
4-Methylphenol	2800	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
N-Nitroso-di-n-propylamine	0.66	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Hexachloroethane	6	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Nitrobenzene	28	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Isophorone	1100	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0:36 U	0.36	0.36 U	0.36	0.42 U	0.42
2-Nitrophenol		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2,4-Dimethylphenol	1100	0.37 U	√ 0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
bis(2-Chloroethoxy) methane		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U `	0.36	0.36 U	0.36	0.42 U	0.42
2,4-Dichlorophenol	170	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
1,2,4-Trichlorobenzene	68	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Naphthalene	230	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
4-Chloroaniline	230	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Hexachlorobutadiene	1	0.37 U	0,37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0,36 U	0.36	0.36 U	0.36	0.42 U	0.42
4-Chloro-3-methylphenol	10000	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2-Methylnaphthalene		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Hexachlorocyclopentadiene	400	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2,4,6-Trichlorophenol	62	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2,4,5-Trichlorophenol	5600	0.92 U	0.92	0.92 U	0.92	0.91 U	0.91	0.92 U	0.92	0.9 U	0.9	0.9 U	0.9	1.1 U	1.1
2-Chloronaphthalene	 	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2-Nitroaniline		0.92 U	0.92	0.92 U	0.92	0.91 U	0.91	0.92 U	0.92	0.50 U	0.9	0.9 U	0.30	1.1 U	1.1
Dimethylphthalate	10000	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.40 U	0.42
Acenaphthylene		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2,6-Dinitrotoluene	1	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
3-Nitroaniline	'	0.92 U	0.92	0.92 U	0.92	0.36 U	0.36	0.92 U	0.37	0.36 U	0.9	0.36 U	0.36		1.1
Acenaphthene	3400	0.37 U	0.92	0.92 U	0.92	0.91 U	0.36	0.92 U						1.1 U	
	110	0.37 U 0.92 U	0.37	0.37 U					0.37	0.36 U `	0.36	0.36 U	0.36	0.42 U	0.42
2,4-Dinitrophenol	170				0.92	0.91 U	0.91	0.92 U	0.92	0.9 U	0.9	0.9 U	0.9	1.1 U	1.1
4-Nitrophenol		0.92 ⁻ U	0.92	0.92 U	0.92	0.91 U	0.91	0.92 U	0.92	0.9 U	0.9	0.9 U	0.9	1.1 U	1.1

Geographical Location	1	AO	C7	AC	DC7	AC	C7	AC	DC7	AOC	27	AC)C7	CI	W1
Sample		CWA7-S			B02-A02		B03-A02		B04-A02	CWA7-SE			B06-A03		B26-A02
Sample Type										1		011711		00000	DEG FIOE
Batch#		94120	G264	9412	G264	9412	G264	9412	G264	94120	264	9412	G264	9412	G216
Prep#		94GB	O847		0847	94GB			30852	94GB0			0207		30835
RFW#		00			D3		02		06	004			05		04
Sample Depth (bgs)	+					 			1		i —			 	
Dilution Factor	 	1.0	00	1	00	1	00	1	.00	1.0	l	· 1	00	1	.00
Matrix		sc			oil	Si			oil	soi			oil		oil
Units	mg/kg	mg			/kg	mg		<u> </u>	a/kg	mg/			ı/kg		g/kg
Sampling Date	- mg/ng	12/2			1/94		1/94	·	21/94	12/21		<u> </u>	<u>// Ny</u> 21/94		9/kg 19/94
Analysis Date	 	1/3			/95		/95		3/95	1/3/			/95		5/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	
, unaryono	Otandara	Result	ONGL	Result	OITOL	Result	ORGE	Result	CROL	Result	CROL	Result	CRUL	Result	CRUL
						1100011		- Nooun	 	- Result		Rosult		Noaun	
Dibenzofuran		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
2,4-Dinitrotoluene	1	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Diethylphthalate	10000	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 Ú	0.37	0.36 U	0.36	0.36 U	0,36	0.42 U	0.42
4-Chlorophenyl-phenylether		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Fluorene	2300	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
4-Nitroaniline		0.92 U	0.92	0.92 U	0.92	0.91 U	0.91	0.92 U	0.92	0.9 U	0.9	0.9 U	0.9	1.1 U	1.1
4,6-Dinitro-2-methylphenol		0.92 U	0.92	0.92 U	0.92	0.91 U	0.91	0.92 U	0.92	0.9 U	0.9	0.9 U	0.9	1.1 U	1.1
N-Nitrosodiphenylamine (1)	140	0.37 ป	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
4-Bromophenyl-phenylether		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Hexachlorobenzene	0.66	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Pentachlorophenol	6	0.92 U	0.92	0.92 U	0.92	0.91 U	0.91	0.92 U	0.92	0.9 U	0.9	0.9 U	0.9	1.1 U	1.1
Phenanthrene		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0,36 U	0,36	0.42 U	0.42
Anthracene	10000	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Carbazole		0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Di-n-butylphthalate	5700	0.23 JB	0.37	1.5 B	0.37	0.48 B	0.36	0.09 J	0.37	2 B	0.36	1.8 B	0.36	0.081	0.42
Fluoranthene	2300	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Pyrene	1700	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Butylbenzylphthalate	1100	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0,36	0.42 U	0.42
3,3'-Dichlorobenzidine	2	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Benzo(a)anthracene	0.9	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Chrysene	9	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
bis(2-Ethylhexy)phthalate	49	0.075 J	0.37	0.37 U	0.37	0.34 J	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.075 J	0.42
Di-n-octyl phthalate	1100	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Benzo(b)fluoranthene	0.9	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Benzo(k)fluoranthene	0.9	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Benzo(a)pyrene	0.66	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Indeno(1,2,3-cd)pyrene	0.9	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0,37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Dibenzo(a,h)anthracene	0.66	0.37 U	0.37	0.37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Benzo(g,h,i)perylene		0.37 U	0.37	0,37 U	0.37	0.36 U	0.36	0.37 U	0.37	0.36 U	0.36	0.36 U	0.36	0.42 U	0.42
Petroleum hydrocarbons						<u> </u>						5.55		0.720	V.72
Total Est. Conc. of TIC	† †	6.6	52	5.4	44	6.4	14 ,, .,	. 5	63	3.6	В	. 4.	87	6.3	39
Method:TCL Semivolatiles	1					†	1 · ·	· · · · · · · · · · · · · · · · · · ·		1		 	·	 :	

$\begin{array}{c} \textbf{CHARLES WOOD} \\ \textbf{SOIL BORING SEMIVOLATILES} \end{array}$

Geographical Location		CV	V1	C\	N/1	CV	N/4	CV	1/2	CV	<u> </u>	CV	NO
Sample	1	CW01-S	• •	<u></u>	B28-A02		B29-A02		B30-A02	CW02-S			B32-A02
Sample Type	 	CVVUI-G	D21-AU2	CAAG 1-3	DZO-AUZ	CAA01-2	D29-A02	CVVUZ-S	D3U-AUZ	CVVU2-5	B31-AU2	CVVU2-S	B32-AU2
Batch#	 	94120	2216	0/12	G216	9412	C216	0442	G182	94120	2402	0440	0400
Prep#	 	94GB		9412 94GE		9412 94GB						9412	
RFW#		9498			03			94GB		94GB		94GB	
Sample Depth (bgs)	<u> </u>		2	U	J3	00	וע	U)2	00	13	0()1
Dilution Factor		1.0								ļ		ļ	
Matrix				-	00	1.0		1.		1.0		1.	
	ļ	so		S		so		so		so		S	
Units	mg/kg	mg.		mg		mg		mg		mg			/kg
Sampling Date	ļ	12/1			9/94	12/1		12/1		12/1			6/94
Analysis Date	ļ	1/5/		1/5		1/5		12/2		12/2		12/2	8/94
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	ļ	Result		Result		Result		Result		Result		Result	
Phenol	10000	0.44 U	0.44	0.41 U	0.41	0.4011		0.00.11	0.00			<u> </u>	
bis(2-Chloroethyl) ether	0.66	0.44 U	0.44	0.41 U		0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2-Chlorophenol	280	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
1.3-Dichlorobenzene	5100	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
1.4-Dichlorobenzene	570				0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
1,2-Dichlorobenzene	5100	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2-Methylphenol	2800	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	'0.4 U	0.4
2,2'-oxybis(1-Chloropropane)		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
4-Methylphenol	2800	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
N-Nitroso-di-n-propylamine	0.66	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Hexachloroethane	6	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Nitrobenzene	28	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Isophorone	1100	0:44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2-Nitrophenol		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	D.44	0.4 U	0.4
2,4-Dimethylphenol	1100	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
bis(2-Chloroethoxy) methane		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2,4-Dichlorophenol	170	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0,39	0.44 U	0.44	0.4 U	0.4
1,2,4-Trichlorobenzene	68	0.44 U	0.44	.0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Naphthalene	230	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.15 J	0.39	0.44 U	0.44	0.4 U	0.4
4-Chloroaniline	230	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Hexachlorobutadiene	· 1	0.44 U	0.44	. 0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
4-Chloro-3-methylphenol	10000	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2-Methylnaphthalene		0.44 Ü	0.44	0.41 U	0.41	0.43 U	0.43	0.1 J	0.39	0.44 U	0.44	0.4 U	0.4
Hexachlorocyclopentadiene	400	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2,4,6-Trichlorophenol	62	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2,4,5-Trichlorophenol	5600	1.1 U	1.1	1 U	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	1 U	1
2-Chloronaphthalene		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2-Nitroaniline		1.1 U	1.1	1 U	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	1 U	1
Dimethylphthalate	10000	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Acenaphthylene		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
2,6-Dinitrotoluene	1	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.98 U	0.39	0.44 U	0.44	0.4 U	0.4
3-Nitroaniline		1.1 U	· 1.1	1 U	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	10	1
Acenaphthene	3400	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.17 J	0.39	0.44 U	0.44	0.4 U	0.4
2,4-Dinitrophenol	110	1.1 U	1.1	1 U	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	10	1
4-Nitrophenol		1.1 U	1.1	10	1	1.1 U	1.1	0,98 U	0.98	1.1 U	1.1	10	1

D-174

Geographical Location		CV	V1	C	W1	CI	N1	CV	Ñ2	C	V2	CI	N2
Sample		CW01-S	B27-A02	CW01-S	B28-A02	CW01-S	B29-A02	<u> </u>	B30-A02	CW02-S			B32-A02
Sample Type										1			
Batch#	· .	94120	3216	9412	G216	9412	G216	9412	G182	9412	G182	9412	G182
Prep#		94GB	0835	94GE	30835		O835	94GB			O835		0835
RFW#		00	2	 	03		01		12	+	03		01
Sample Depth (bgs)	1							<u>-</u>		 		-	<u> </u>
Dilution Factor	<u> </u>	1.0	00	1.	.00	1.	00	1.0	00	1	00	1	00
Matrix		SC			oil		oil	so		S			oil
Units	mg/kg	mg			J/kg	mg		mg		mg			/kg
Sampling Date	,	12/1			9/94		9/94	12/1		12/1			6/94
Analysis Date	 	1/5/			5/95		/95	12/2		12/2			8/94
Analysis	Standard	Analytical	CRQL	Analytical	CROL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		Result		Result		Result	Ortal	Result	Ortal	Result	ONGL	Result	ORQL
 Dibenzofuran		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.093 J	0.39	0.44 U	0.44	0.4 U	0.4
2.4-Dinitrotoluene	1 1	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.093 J	0.39	0.44 U	0.44	0.4 U	0.4
Diethylphthalate	10000	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
4-Chlorophenyl-phenylether		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Fluorene	2300	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.21 J	0.39	0.44 U	0.44	0.4 U	0.4
4-Nitroaniline		1.1 U	1.1	1 U	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	10	1
4,6-Dinitro-2-methylphenol		1.1 U	1.1	10	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	10	1
N-Nitrosodiphenylamine (1)	140	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
4-Bromophenyl-phenylether		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Hexachlorobenzene	0.66	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Pentachlorophenol	6	1,1 U	1.1	1 U	1	1.1 U	1.1	0.98 U	0.98	1.1 U	1.1	1·U	1
Phenanthrene	†	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	1.3	0.39	0.44 U	0.44	0.4 U	0.4
Anthracene	10000	0.44 U	0.44	0.41 U	0.41	0.43 U	- 0.43	0.33 J	0.39	0.44 U	0.44	0.4 U	0.4
Carbazole		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.18 J	0.39	0.44 U	0.44	0.4 U	0.4
Di-n-butylphthalate	5700	0.086	0.44	0.077	0.41	0.13 JB	0.43	0.081	0.39	0.12 JB	0.44	0.079	0.4
Fluoranthene	2300	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	1.5	0.39	0.44 U	0.44	0.4 U	0.4
Pyrene	1700	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	1.1	0.39	0.44 U	0.44	0.4 U	0.4
Butylbenzylphthalate	1100	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	- 0.4
3,3'-Dichlorobenzidine	2	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Benzo(a)anthracene	0.9	0.44 U	0.44	0.41 U	0.41	0,43 U	0.43	0.69	0.39	0.44 U	0.44	0.4 U	0.4
Chrysene	9	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.71	0.39	0.44 U	0.44	0.4 U	0.4
bis(2-Ethylhexy)phthalate	49	0.09 J	0.44	0.41 U	0.41	0.43 U	0.43	0.16 J	0.39	0.1 J	0.44	0.059 J	0.4
Di-n-octyl phthalate	1100	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.39 U	0.39	0.44 U	0.44	0.4 U	0.4
Benzo(b)fluoranthene	0.9	0.44 U	0.44	0.41 U	0.41	0.07 J	0.43	0.79	0.39	0.44 U	0.44	0.4 U	0.4
Benzo(k)fluoranthene	0.9	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.28 J	0.39	0.44 U	0.44	0.4 U	0.4
Benzo(a)pyrene	0.66	0.44 U	0.44	0.41 U	0.41	0.073 J	0.43	0.62	0.39	0.13 J	0.44	0.053 J	0.4
Indeno(1,2,3-cd)pyrene	0,9	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.37 J	0.39	0.44 U	0.44	0.4 U	0.4
Dibenzo(a,h)anthracene	0.66	0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.089 J	0.39	0.44 U	0.44	0.4 U	0.4
Benzo(g,h,i)perylene		0.44 U	0.44	0.41 U	0.41	0.43 U	0.43	0.35 J	0.39	0.44 U	0.44	0.4 U	0.4
Petroleum hydrocarbons	<u> </u>			,						5,,,,,	*****		
Total Est. Conc. of TIC		6.	7	6.	19	9.	19	11	.4	22	.8	18	.1
Method:TCL Semivolatiles		Ī				-	 	 		<u> </u>	·-	 	••

Geographical Location	T	CV	V2	CV	N4	. CV	V4	CV	V5	CV	V5	CV	V5
Sample	1	CW02-S	B33-A02	CW04-S	B01-A02	CW04-S	B04-A02	CW05-S		CW05-SB		CW05-S	
Sample Type	 							3,,,,,	5017.02		O I-AOZINE	- 01103-0	DOZ-AUZ
Batch#	1	9412	G154	9412	G264	94120	G264	9412	G245	94120	G245	9412	G245
Prep#			50835		O847	95GI		94GB		94GB		94GB	
RFW#	<u> </u>	00			08	1 000.		00		000		00	
Sample Depth (bgs)		7-		<u>-</u>	1	 					<u>, i</u>	1	
Dilution Factor	 	1.0		1	00	 		17	00	1.0	20	 	00
Matrix		so		Si		wa	ter	so		so		Si Si	
Units	mg/kg	mg			ı/kg	m		mg		mg			
Sampling Date		12/1			1/94	N N			0/94	12/2		mg	0/94
Analysis Date	-	12/2			1/95	1/5			/95	1/3			/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
r transco	Otanidard	Result	· Ortal	Result	CROL	Result	CRQL	Result	CRQL	Result	CRUL		CRUL
· · · · ·	·	Nosun		Nesuit		Result		Resuit		Result		Result	
Phenoi	10000	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
bis(2-Chloroethyl) ether	0.66	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2-Chlorophenol	280	0.41 U	0.41	0.39 U	0.39		-	0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
1,3-Dichlorobenzene	5100	0.41 U	0.41	0.39 U	0.39	1		0,38 U	0.38	0.38 U	0.38	0.39 U	0.39
1,4-Dichlorobenzene	570	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
1,2-Dichlorobenzene	5100	0.41 U	0.41	0.39 U	0.39	1		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2-Methylphenol	2800	0.41 U	0.41	0.39 U	0.39		-	0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2,2'-oxybis(1-Chloropropane)		0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
4-Methylphenol	2800	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
N-Nitroso-di-n-propylamine	0.66	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Hexachloroethane	6	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Nitrobenzene	28	0.41 U	0.41	0.39 U	0.39	1		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Isophorone	1100	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2-Nitrophenol		0.41 U	0.41	0.39 U	0,39	i i		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2,4-Dimethylphenol	1100	0.41 U	0.41	0.39 U	0.39	t i		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
bis(2-Chloroethoxy) methane		0.41 U	0.41	0.39 U	0.39	<u> </u>	(0.38 U	0.38	0.38 U	0,38	0.39 U	0,39
2,4-Dichlorophenol	170	0.41 U	0.41	0.39 U	0.39	1		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
1,2,4-Trichlorobenzene	68	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Naphthalene	· 230	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
4-Chloroaniline	230	0.41 U	0.41	0.39 U	0.39	1		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Hexachlorobutadiene	1	0.41 U	0.41	0.39 U	0.39			0.38 U	0,38	0.38 U	0.38	0.39 U	0.39
4-Chloro-3-methylphenol	10000	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2-Methylnaphthalene		0.41 U	0.41	0.39 U	0.39	1		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Hexachlorocyclopentadiene	400	0.41 U	0.41	0,39 U	0.39	ì		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2,4,6-Trichlorophenol	62	0.41 U	0.41	0.39 U	0.39	· · · · · ·		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2,4,5-Trichlorophenol	5600	1 U	1	0.98 U	0.98	<u> </u>		0.95 U	0.95	0.95 U	0.95	0.98 U	0.98
2-Chloronaphthalene		0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2-Nitroaniline		1 U	1	0.98 U	0.98	 		0.95 U	0.95	0.95 U	0.95	0.98 U	0.98
Dimethylphthalate	10000	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Acenaphthylene		0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2,6-Dinitrotoluene	1	0.41 U	0.41	0,39 U	0.39	+ +		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
3-Nitroaniline		1 U	1	0.98 U	0.98	 		0.95 U	0.95	0.95 U	0.95	0.98 U	0.98
Acenaphthene	3400	0.41 U	0.41	0.39 Ü	0.39	 	t	0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
2,4-Dinitrophenol	110	1 U	1	0.98 U	0.98	 		0.95 U	0.95	0.95 U	0.95	0.98 U	7 0.98
4-Nitrophenol	1	1 U	1	0.98 U	0.98	 		0.95 U	0.95	0.95 U	0.95	0.98 U	0.98

Geographical Location		CV	N2	CI	N4	CV	N4	CV	V5	CV	V5		W5
Sample		CW02-S	B33-A02	CW04-S	B01-A02	CW04-S	B04-A02	CW05-S			01-A02RE		SB02-A02
Sample Type	,			-		1				1			,
Batch#		94120	G154	9412	G264	9412	G264	9412	G245	9412	G245	9412	2G245
Prep#		94GB	S0835		30847		R002	94GB		94GB			30847
RFW#		00)2	01	08			00		00			01
Sample Depth (bgs)	1	7-	9'			1				†		 	
Dilution Factor		1.0	00	1.	00			1.0	20	1.0	00	1	.00
Matrix	1	SC			oil ·	wa	ıter	so		so		 :	oil
Units	mg/kg	mg			/kg	m		mg		- mg			g/kg
Sampling Date		12/1			1/94	N N	<u> </u>	12/2		12/2			20/94
Analysis Date	 	12/2			1/95		i/95	1/3		1/3			3/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		Result		Result		Result	Oite	Result	OINGL	Result	ORGL	Result	CROL
•	1			1		1	-	1.0001		, toodit		1 (Goult	
Dibenzofuran		0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0,38 U	0.38	0.39 U	0.39
2,4-Dinitrotoluene	1	0.41 U	0.41	0.39 U	0.39	+		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Diethylphthalate	10000	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
4-Chlorophenyl-phenylether		0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Fluorene	2300	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0,38 U	0.38	0.39 U	0.39
4-Nitroaniline		10	1	0.98 U	0.98			0.95 U	0.95	0.95 U	0.95	0.98 U	0.98
4,6-Dinitro-2-methylphenol		1 U	1	0.98 U	0.98			0.95 U	0.95	0.95 U	0.95	0.98 U	0.98
N-Nitrosodiphenylamine (1)	140	0.41 U	0.41	0.39 U	0.39	-		0.38 U	0.38	0,38 U	0.38	0.39 U	0.39
4-Bromophenyl-phenylether	T	0.41 U	0.41	0.39 U	0.39	 		0.38 U	0.38	0,38 U	0.38	0.39 U	0.39
Hexachlorobenzene	0,66	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Pentachlorophenol	6	1 U	1	0.98 U	0.98			0.95 U	0.95	0.95 U	0.95	0.98 U	0.98
Phenanthrene		0,075 J	0.41	0.39 U	0.39	 		0.085 J	0.38	0.086 J	0.38	0.39 U	0.39
Anthracene	10000	0.41 U	0.41	0.39 U	0.39	1. —		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Carbazole		0.41 U	0.41	0.39 U	0,39	 		0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Di-n-butylphthalate	5700	0.42 B	0.41	2.5 B	0.39	1		0.16 JB	0.38	0.17 JB	0.38	0.18 JB	0.39
Fluoranthene	2300	0.073 J	0.41	0.39 U	0.39	,		0.21 J	0.38	0.22 J	0.38	0.39 U	0.39
Ругеле	1700	0.067 J	0.41	0.39 U	0.39	1		0.25 J	0.38	0.24 J	0.38	0.39 U	0.39
Butylbenzylphthalate	1100	0.41 U	0.41	0.23 J	0.39	1		0.38 U	0.38	0.38 U	0.38	0.39 U	0,39
3,3'-Dichlorobenzidine	2	0.41 U	0.41	0.39 U	0.39			0,38 U	0.38	0.38 U	0.38	0.39 U	0.39
Benzo(a)anthracene	0.9	0.41 U	0.41	0.39 U	0.39			0.14 J	0.38	0.13 J	0.38	0.39 U	0.39
Chrysene	9	0.043 J	0.41	0.39 U	0.39	†	-,	0.15 J	0.38	0.15 J	0.38	0.39 U	0.39
bis(2-Ethylhexy)phthalate	49	0.41 U	0.41	0.39 U	0.39			0.21 J	0.38	0.21 J	0.38	0.39 U	0.39
Di-n-octyl phthalate	1100	0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Benzo(b)fluoranthene	0.9	0.41 U	0.41	0.39 U	0.39		· · · · ·	0.2 J	0.38	0,22 J	0.38	0.39 U	0.39
Benzo(k)fluoranthene	0.9	0.41 U	0.41	0.39 U	0.39	T		0.084 J	0.38	0.089 J	0.38	0.39 U	0.39
Benzo(a)pyrene	0.66	0.094 J	0.41	0,39 U	0.39	† <u> </u>		0.11 J	0.38	0.1 J	0.38	0.39 U	0.39
Indeno(1,2,3-cd)pyrene	0.9	0.41 U	0.41	0.39 U	0.39	†···		0.066 J	0.38	0.38 U	0.38	0.39 U	0.39
Dibenzo(a,h)anthracene	0.66	0.41 U	0.41	0.39 U	0.39	† 	-	0.38 U	0.38	0.38 U	0.38	0.39 U	0.39
Benzo(g,h,i)perylene		0.41 U	0.41	0.39 U	0.39			0.38 U	0.38	0.38 U	0.38	0.39 U ~	0.39
Petroleum hydrocarbons	1					29 U	29	0.000		0.000		0.000	0.03
Total Est. Conc. of TIC				5		 		9.3	10	10.	00	10	.65
I Otal Est. Conc. of TIC													

Geographical Location	, 		N6	- 01	110		***		,			_	
Sample	+				N6		N6 .	CW		В			6
	 	CWU6-S	B02-A01	CW06-S	B34-A01	CW06-S	B34-A02	CW09-SE	301-A02	B6-SB0	01-A01	B6-SB0	I-A01RE
Sample Type Batch#						·						<u> </u>	
			G840		G423		G423	95010		94120		9412	G553
Prep#	 		30323		30017	95GE		95GB(94GTS	30035	94GT	50083
RFW#		0	01	0	01	0	02	00	1	00	18	00	08
Sample Depth (bgs)													
Dilution Factor			00	1.	00_	1.	00	1.0	0	1.0	00	1.	00
Matrix			oil	. 50	lio	, se	oil	so	il .	so	oil	Sc	oil .
Units	mg/kg		/kg	mg	/kg	mg	/kg	mg/	kg	mg	/kg	mg	/kg
Sampling Date	· .		0/95	1/3	3/95	1/3	/95	1/4/	95	1/10	/95	1/10	0/95
Analysis Date		5/3	0/95	1/20	0/95	1/20	0/95	1/21/	95	2/9	/95	2/9	/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		Result		Result.		Result		Result		Result		Result	
				}				1			 -	1	
Phenol	10000	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
bis(2-Chloroethyl) ether	0.66	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0,38 U	0.38	0.38 U	0.38
2-Chlorophenol	280	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
1,3-Dichlorobenzene	5100	0.47 U	, 0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
1,4-Dichlorobenzene	570	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
1,2-Dichlorobenzene	5100	0.47 U	0.47	0.4 U	0.4	· 0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2-Methylphenol	2800	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2,2'-oxybis(1-Chloropropane)		0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
4-Methylphenol	2800	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
N-Nitroso-di-n-propylamine	0.66	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0,38 U	0.38
Hexachioroethane	6	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Nitrobenzene	28	0.47 U	0,47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Isophorone	1100	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2-Nitrophenol	1	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2,4-Dimethylphenol	1100	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
bis(2-Chloroethoxy) methane	1	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2,4-Dichlorophenol	170	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
1,2,4-Trichlorobenzene	68	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Naphthalene	230	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	
4-Chloroaniline	230	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U			0.38
Hexachlorobutadiene	1	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
4-Chloro-3-methylphenol	10000	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38		0.38	0.38 U	0.38
2-Methylnaphthalene	10000	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U		0.38 U	0.38	0.38 U	0.38
Hexachlorocyclopentadiene	400	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2,4,6-Trichlorophenol	62	0.47 U	0.47	0.4 U	0.4	0.38 U			0.38	0.38 U	0.38	0.38 U	0.38
2,4,5-Trichlorophenol	5600	1.2 U	1.2				0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2-Chloronaphthalene	2000	0.47 U ~	0.47	1 U 0.4 U	1	0.96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94
2-Nitroaniline	+				0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Dimethylphthalate	10000	1.2 U 0.47 U	1.2	10	1 .	0.96 U	0.96	0.96 U	0.96	0.94 U	` 0.94	0.94 U	0.94
	10000		0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Acenaphthylene	 	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2,6-Dinitrotoluene	1	0.47 U	0.47	0.4/U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
3-Nitroaniline	L	1.2 U	1.2	1 U	1	0.96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94
Acenaphthene	3400	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
2,4-Dinitrophenol	110	1.2 U	1.2	1 U	11	0.96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94
4-Nitrophenol	<u> </u>	1.2 U	1.2	1 U	1	0.96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94

Geographical Location		CV	V6.	CV	V6	CV	N6	CW	/9	B	6	Е	16
Sample		·CW06-S	B02-A01	CW06-S	B34-A01		B34-A02	CW09-SE		B6-SBI			1-A01RE
Sample Type							,						
Batch#	1	9505	G840	9501	G423	9501	G423	95010	3450	94120	3553	9412	G553
Prep#			30323		30017		30017	95GB(-	94GT			50083
RFW#		00		00		+	02	00	•	00			08
Sample Depth (bgs)		-					· ·		i	1		† <u>-</u> -	
Dilution Factor	1	1.	00	1.	00	1.	00	1.0	0	1.0	10	1	00
Matrix	1.	S		so			oil	so		so			oil
Units	mg/kg	mg		mg		mg		mg/		mg	**		/kg
Sampling Date	1.3.0	5/10			/95		/95	1/4/		1/10			0/95
Analysis Date	 		0/95		0/95		0/95	1/21		2/9			/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		Result		Result		Result	511.4	Result	51145	Result		Result	Onde
Dibenzofuran		0.47 U	0.47	0.4 U	0.4	0.38 U	0,38	0.38 U	0,38	0.38 U	0.38	0.38 U	0.38
2,4-Dinitrotoluene	1 1	0.47 U	0.47	0.4 U	0.4	0.38 U	0,38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Diethylphthalate	10000	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
4-Chlorophenyl-phenylether	1	0.47 U	0.47	0.4 U	\ 0.4	0.38 U	0,38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Fluorene	2300	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
4-Nitroaniline	 	1.2 U	1.2	1 U	1	0.96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94
4,6-Dinitro-2-methylphenol	· · · · · · · · · · · · · · · · · · ·	1,2 U	1.2	1 U	1	0.96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94
N-Nitrosodiphenylamine (1)	140	0.47 U	0.47	0.4 U	0.4	0.38 U	0,38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
4-Bromophenyl-phenylether	 	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Hexachlorobenzene	0.66	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Pentachlorophenol	6	1.2 U	1.2	1 U	1	0,96 U	0.96	0.96 U	0.96	0.94 U	0.94	0.94 U	0.94
Phenanthrene	 	0.47 U	0.47	0.4 U	0.4	0.24 J	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Anthracene	10000	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0,38 U	0.38
Carbazole		0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Di-n-butylphthalate	5700	0.55 B	0.47	0.081	0.4	0.066	0,38	0.076	0.38	0.14 JB	0.38	1.2 B	0.38
Fluoranthene	2300	0.47 U	0.47	0.049 J	0.4	0.18 J	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Pyrene	1700	0.47 U	0.47	0.056 J	~ 0.4	0.27 J	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Butylbenzylphthalate	1100	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
3,3'-Dichlorobenzidine	2	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Benzo(a)anthracene	0.9	0.47 U	0.47	0.4 U	0.4	0.16 J	0.38	0.38 U	0.38	0,38 U	0.38	0.38 U	0.38
Chrysene	9	0.47 U	0.47	0.4 U	0.4	0.15 J	0.38	0.38 U	0.38	0.38 U	0.38	0,38 U	0.38
bis(2-Ethylhexy)phthalate	49	0.07 JB	0.47	0.21 J	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.042 J	0,38
Di-n-octyl phthalate	1100	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0,38 U	0.38	0.38 U	0.38
Benzo(b)fluoranthene	0.9	0.47 U	0.47	0.4 U	0.4	0.11 J	0.38	0,38 U	0.38	0.38 U	0.38	0.38 U	0.38
Benzo(k)fluoranthene	0.9	0.47 U	0.47	0.4 U	0.4	0.38 U	0,38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Benzo(a)pyrene	0.66	0.47 U	0.47	0.4 U	0.4	0.087 J	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Indeno(1,2,3-cd)pyrene	0.9	0.47 U	0.47	0.4 U	0.4	0.054 J	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Dibenzo(a,h)anthracene	0.66	0.47 U	0.47	0.4 U	0.4	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Benzo(g,h,i)perylene	† †	0.47 U	0.47	0.057	0.4	0.066	0.38	0.38 U	0.38	0.38 U	0.38	0.38 U	0.38
Petroleum hydrocarbons	1				··	† · · · · · · · · · · · · · · · · · · ·				1		1	
Total Est, Conc. of TIC	 	35	.9	12	.2	. 10	1.3	9.5	8	7.0	12	6.0	03
Method:TCL Semivolatiles	† ·			· · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			 	·-	†i	

Geographical Location		В	6	В	6	В	7	В	7	В	7	В	7
Sample		B6-SB0			I-A02RE	B7-SB		B7-SB01	·	B7-SB0	•	B7-SB01	·
Sample Type	 							D. 000	-71011112		717702	B1-050	I-MUZITE
Batch#	1	94120	G553	9412	G553	9412	G553	94120	3553	94120	2553	9412	C553
Prep#	 	94GTS		94GT		94GT		94GT		94GTS		94GT	
RFW#		00			09		06	00		. 00		9431	
Sample Depth (bgs)			 					- 00	,	1 00			
Dilution Factor	<u> </u>	1.0		1.0	no	1	00	1.0	<u> </u>	1.0	10	1,	00
Matrix	 	so		so		so so		- sc		so		SO	
Units	mg/kg	mg		mg		mg		mg		mg		mg	
Sampling Date	1.0.0	1/10		1/10)/95	1/10		1/10		1/10	
Analysis Date		2/9/			/95	2/9	*	2/9		2/9/	•	2/9	
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	· Analytical	CRQL	Analytical	CRQL
		Result		Result	0.1.42	Result	01142	Result	OITGE	Result	ORGE	Result	ONGL
				,rtoodit		rtosun		Rosuit		Result		Result	<u>'</u>
Phenol	10000	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
bis(2-Chloroethyl) ether	0.66	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Chlorophenol	280	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,3-Dichlorobenzene	5100	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,4-Dichlorobenzene	570	'0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,2-Dichlorobenzene	5100	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Methylphenol	2800	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,2'-oxybis(1-Chloropropane)		0.39 U	0,39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Methylphenol	2800	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
N-Nitroso-di-n-propylamine	0.66	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Hexachloroethane	6	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Nitrobenzene	28	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Isophorone	1100	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Nitrophenol		0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4-Dimethylphenol	1100	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0,39 U	0.39
bis(2-Chloroethoxy) methane		0.39 U	0.39	~ 0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0,39 U	0.39
2,4-Dichlorophenol	170	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
1,2,4-Trichlorobenzene	68	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Naphthalene	230	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Chloroaniline	230	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Hexachlorobutadiene	1	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Chioro-3-methylphenol	10000	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Methylnaphthalene		0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	.0.39	0.4 U	0.4	0.39 U	0.39
Hexachlorocyclopentadiene	400	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4,6-Trichlorophenol	62	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4,5-Trichlorophenol	5600	0.96 U	0,96	0.98 U	0.98	0.97 U	0.97	0.97 U	0.97	10	1	0.98 U	0.98
2-Chloronaphthalene		0.39 U	0.39	0.39 U	0.39	0.39 Ü	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2-Nitroaniline		0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	. 0.97 U	0.97	10	1	0.98 U	0.98
Dimethylphthalate	10000	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Acenaphthylene		0.39 U	0.39	0.39 U	0,39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,6-Dinitrotoluene	1	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
3-Nitroaniline	1	0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	0.97 U	0.97	10	1	0.98 U	0.98
Acenaphthene	3400	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
2,4-Dinitrophenol	110	0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	0.97 U	0.97	1 U	1	0.98 U	0.98
4-Nitrophenol		0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	0.97 U	0.97	10	1	0.98 U	0.98

Geographical Location		E	36	E	36	E	37	T E	37		37	· ·	37
Sample		B6-SB	01-A02	B6-SB0	1-A02RE	B7-SB	01-A01	B7-SB0	1-A01RE	B7-SB	01-A02		1-A02RE
Sample Type				1						1			.,
Batch#		9412	G553	9412	G553	9412	:G553	9412	:G553	9412	G553	9412	G553
Prep#		94GT	S0035	94GT	S0083	94GT	S0035		S0083		S0035		S0083
RFW#	1	0	09	0	09		06		06		D7		07
Sample Depth (bgs)			,	-	l		T	-		† · · · · · · · · ·	1	 	-
Dilution Factor	1	1.	00	1.	00	1.	.00	1	.00	1	00	 	.00
Matrix		S	oil	S	oil		oil		oil	.	oil		oil
Units	mg/kg	mo	ı/kg	mo	ı/kg		g/kg		:- g/kg		j/kg		1/kg
Sampling Date	<u> </u>		0/95		0/95	+	0/95		0/95		D/95		0/95
Analysis Date		2/9	/95	2/9	95		9/95		9/95		/95		9/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		Result		Result		Result	-	Result		Result	Ortal	Result	ONGL
Dibenzofuran		0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.20	0.411	0.4	0.2011	0.00
2.4-Dinitrotoluene	1	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39 0.39	0.4 U	0.4	0.39 U	0.39
Diethylphthalate	10000	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Chlorophenyl-phenylether	10000	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Fluorene	2300	0.39 U	· 0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
4-Nitroaniline	2000	0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	0.39 U	0.39	1 U	1	0.39 U	0.39
4,6-Dinitro-2-methylphenol		0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	0.97 U	0.97	10	1	0.98 U	0.98
N-Nitrosodiphenylamine (1)	140	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.98
4-Bromophenyl-phenylether	 	0.39 U	0.39	0.39 U	(0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Hexachlorobenzene	0.66	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Pentachlorophenol	6	0.96 U	0.96	0.98 U	0.98	0.97 U	0.97	0.97 U	0.97	1 U	1	0.39 U	0.39
Phenanthrene	† 	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Anthracene	10000	0,39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Carbazole		0.39 U	0.39	0.39 U	0,39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Di-n-butylphthalate	5700	0.17 JB	0.39	1.7 B	0.39	0.37 JB	0.39	0.75 B	0.39	0.4 U	0.4	1 B	0.39
Fluoranthene	2300	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.042 J	0.39	0.4 U	0.4	0.39 U	0.39
Pyrene	1700	0.39 U	0,39	0.39 U	0.39	0.39 U	0.39	0.048 J	0.39	0.4 U	0.4	0.39 U	0.39
Butylbenzylphthalate	1100	0.39 U	0,39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
3,3'-Dichlorobenzidine	2	0.39 U	0.39	0,39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Benzo(a)anthracene	0.9	0.39 U	0,39	0.046 J	0.39	0.39 U	0,39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Chrysene	9	0.044 J	0.39	0.083 J	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
bis(2-Ethylhexy)phthalate	49	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.46 0.076 J	0.4	0.39 U	0.39
Di-n-octyl phthalate	1100	0.39 U	0.39	0,39 U	0.39	0.39 U	0.39	0,39 U	0.39	0.4 U	0.4	0.39 U	0.39
Benzo(b)fluoranthene	0.9	0.078 J	0.39	0.06 J	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Benzo(k)fluoranthene	0.9	0.041 J	0.39	0,39 U	0.39	0.39 U	0.39	0,39 U	0.39	0.4 U	0.4	0.39 U	0.39
Benzo(a)pyrene	0.66	0.39 U	0,39	0.047 J	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Indeno(1,2,3-cd)pyrene	0.9	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Dibenzo(a,h)anthracene	0.66	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Benzo(g,h,i)perylene	1	0.39 U	0.39	0.042 J	0.39	0.39 U	0.39	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39
Petroleum hydrocarbons										5.70	V.7 ·	0.000	0,00
Total Est. Conc. of TIC		6.	19	9.6	64 :	6.	74	6.	59	6.5	54	7	19
Method:TCL Semivolatiles	1				•	<u> </u>	-	- "		 		 	

Geographical Location	T	В		В	 	В				· · · · ·	<u>- ' ' </u>		
Sample	┼	B8-SB	<u> </u>					B 22.022		В			9
	 	B8-5B	U1-AU1	B8-SB01	I-AUIRE	B8-SB0	01-AU2	B8-SB01	-A02RE	B9-SB	01-A01	B9-SB	01-A02
Sample Type			0770	2442								<u> </u>	
Batch#		9412		94120		94120		94120		9501		9501	
Prep#	ļ	94GT		94GT		94GT		94GTS		95GE		95GE	
RFW#		00)4 .	00)4 .	00)5	OC)5	00	01	00	02
Sample Depth (bgs)				[<u>.</u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·						
Dilution Factor	<u> </u>	1.0		1.0	-	1.0		1.0		1.	00	1.0	00
Matrix		so		so		so		so	oil	so	oil	so	oil
Units	mg/kg	mg		mg		mg		mg		mg			/kg
Sampling Date	')/95	1/10		1/10		1/10		1/23		1/23	3/95
Analysis Date		2/9		2/9		2/9		2/9	/95	2/11	1/95	2/22	2/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		Result		Result	-	Result		Result		Result		Result	
											_		
Phenol	10000	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0,38	0.4 U	0.4
bis(2-Chloroethyl) ether	0.66	0.36 U	0.36	0,36 U	0.36	ΟU	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2-Chlorophenol	280	0.36 U	0.36	0.36 U	0.36	0∕∩	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
1,3-Dichlorobenzene	5100	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
1,4-Dichlorobenzene	570	0.36 U	0.36	0.36 U	0.36	0 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
1,2-Dichlorobenzene	5100	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2-Methylphenol	2800	0.36 U	0.36	0.36 U	0.36	OU	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2,2'-oxybis(1-Chloropropane)	, ,	0.36 U	0.36	0.36 U	0.36	ου .	0.39	0.39 U	0.39	0.38 U	0,38	0.4 U	0.4
4-Methylphenol	2800	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
N-Nitroso-di-n-propylamine	0.66	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Hexachloroethane	6 '	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Nitrobenzene	28	0.36 U	0.36	0.36 U	0.36	ου	0.39	0,39 U	0.39	0.38 U	0,38	0.4 U	0.4
Isophorone	1100	0.36 U	0.36	0.36 U	0.36	οŪ	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2-Nitrophenol		0.36 U	0,36	0.36 U	0.36	0.0	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2,4-Dimethylphenol	1100	0.36 U	0.36	0.36 U	0.36	0 U	0.39	0.39 U	0.39	0.38 U	0,38	0.4 U	0.4
bis(2-Chloroethoxy) methane		0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0,38	0.4 U	0.4
2,4-Dichlorophenol	170	0.36 U	0.36	0.36 U	0.36	OU (0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
1,2,4-Trichlorobenzene	68	0.36 U	0.36	0.36 U	0.36	οU	0.39	0.39 U	0.39	0,38 U	0,38	0.4 U	0.4
Naphthalene	230	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
4-Chloroaniline	230	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Hexachlorobutadiene	1	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
4-Chloro-3-methylphenol	10000	0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2-Methylnaphthalene		0.36 U	0.36	0.36 U	0,36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	~ 0.4
Hexachlorocyclopentadiene	400	0.36 U	0.36	0.36 U	0.36	OU	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2,4,6-Trichlorophenol	62	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2,4,5-Trichlorophenol	5600	0,9 U	0.9	0.91 U	0.91	10	0.96	0.98 U	0.98	0.96 U	0.96	0.99 U	0.99
2-Chloronaphthalene		0.36 U	0.36	0.36 U	0.36	ου	0.39	0.39 U	0.39	0.38 U	0.38	0.55 U	0.4
2-Nitroaniline	1	0.9 U	0.9	0.91 U	· 0.91	10	0.96	0.98 U	0.98	0.96 U	0.96	0.99 U	0.99
Dimethylphthalate	10000	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.99 U	0.99
Acenaphthylene		0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
2.6-Dinitrotoluene	1	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
3-Nitroaniline	 ' 	0.9 U	0.9	0.91 U	0.30	10	0.96	0.39 U	0.39	0.36 U	0.38	0.4 U	0.99
Acenaphthene	3400	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.96	0.99 U	0.99
2,4-Dinitrophenol	110	0.30 U	0.30	0.36 U	0.50	10	0.39	0.98 U	0.39	0.38 U	0.38	0.4 U	0.4
4-Nitrophenol	110	0.9 U	0.9	0.91 U	0.91	10	0.96	0.98 U	0.98			4	
7-1411001101		0.5 0	0.9	0.510	0.91	10	0.90	0.86 0	0.90	0.96 U	0.96	0.99 U .	0.99

Geographical Location	1	В	8 -	Е	38	В	8	В	8	l B	3	T	19
Sample		B8-SB	01-A01		1-A01RE		01-A02	B8-SB01		B9-SB0			01-A02
Sample Type	-					T							
Batch#		9412	G553	9412	G553	94120	G553	94120	3553	95010	3831	9501	G831
Prep#		94GT	50035		S0083	94GT		94GTS		95GB			30064
RFW#	 	. 00			04	00		00		00			02
Sample Depth (bgs)	+	· ·				 		1 3		i i	•		
Dilution Factor	 	1.0	00	1	00	1.0	00	1.0	10	1.0	<u> </u>	1	00 .
Matrix		so		Si		so		so		so			oil
Units	. mg/kg	mg		mg		mg		mg/		mg/			ı/kg
Sampling Date	gg	1/10			D/95	1/10		1/10		1/23			3/95
Analysis Date	1	2/9)/95	2/9		2/9/		2/11			2/95
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
Principals	Standard	Result	ONGL	Result	ONGL	Result	CRUL	Result	CRQL	Result	CRUL	Result	CROL
Dibenzofuran	-	0.36 U	0.36	0.36 U	0,36	00	0.39	0.39 U	0.39	0,38 U	0.38	0.4 U	0,4
2.4-Dinitrotoluene	1 1	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Diethylphthalate	10000	0.36 U	0.36	0.36 U	0.36	/ OU	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
4-Chlorophenyl-phenylether	10000	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Fluorene	2300	0,36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
4-Nitroaniline	1 2000	0.9 U	0.9	0.91 U	0.91	10	0.96	0.98 U	0.98	0.96 U	0.96	0.99 U	0.99
4,6-Dinitro-2-methylphenol	+	0.9 U	0.9	0.91 U	0.91	10	0.96	0.98 U	0.98	0.96 U	0.96	0.99 U	0.99
N-Nitrosodiphenylamine (1)	140	0.36 U	0.36	0.36 U	0.36	1 00	0.39	0.39 U	0.39	0.38 U	0.38	0.59 U	0.99
4-Bromophenyl-phenylether	140	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Hexachlorobenzene	0.66	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Pentachlorophenol	6	0.9 U	0.9	0.91 U	0.91	10	0.96	0.98 U	0.98	0.96 U	0.96	0.99 U	0.99
Phenanthrene	+	0.36 U	0.36	0.36 U	0.36	10	0.39	0.39 U	0.39	0.38 U	0.38	0.99 U	0.99
Anthracene	10000	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Carbazole	10000	0.36 U	0.36	0.36 U	0.36	00	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Di-n-butylphthalate	5700	0.72 B	0.36	0.14 JB	0.36	0.59 B	0.39	0.39 C	0.39	0.12 JB	0.38	0.4 U	0.4
Fluoranthene	2300	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.12 3D	0.38	0.1 JB	0.4
Pyrene	1700	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Butylbenzylphthalate	1100	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
3,3'-Dichlorobenzidine	2	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Benzo(a)anthracene	0.9	0.36 U	0.36	0.36 U	0.36	0,39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Chrysene	9	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
bis(2-Ethylhexy)phthalate	49	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Di-n-octyl phthalate	1100	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.113 0.38 U	0.38	0.073 J	0.4
Benzo(b)fluoranthene	0.9	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Benzo(k)fluoranthene	0.9	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Benzo(a)pyrene	0.66	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Indeno(1,2,3-cd)pyrene	0.9	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Dibenzo(a,h)anthracene	0.66	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Benzo(g,h,i)perylene	0.00	0.36 U	0.36	0.36 U	0.36	0.39 U	0.39	0.39 U	0.39	0.38 U	0.38	0.4 U	0.4
Petroleum hydrocarbons	 	0.550	0.30	0.56 0	0.30	0.35	0.38	0.39 0	0.38	0.38 0	U.30	0.40	0.4
Total Est. Conc. of TIC	+ +		าย	11.	26	7.0	16	7.2	7	0.5	·e	10	00
Method:TCL Semivolatiles	1			11.	,£U ,.	 		1.2	.1	0.5	0	10	.ບສ
Meniod, I CL Settivolatiles						11		1		L			

Geographical Location	Γ	В	<u> </u>	- R-	10		10	D,	10	B1	· ·
Sample	-		01-C02	B10-SE	<u> </u>		1-A01RE		01-A02	B10-SB0	
Sample Type	1		icate	B10-36	, , , , , , , , , , , , , , , , , , , ,	D 10-300	I-AUIKE	B10-30	001-AUZ	B10-5B0	I-AUZRE
Batch#		9501		9412	GEE3	0412	G553	9412	CEE2	94120	OFF2
Prep#	+	95GE		94GT		<u> </u>	S0083		S0035		
RFW#			33	7 00			01 -		02	94GT	
Sample Depth (bgs)	-		, <u>,</u>	- 0			VI -	00	J <u>Z</u>	00	<u>''</u>
Dilution Factor		1.	nn.	1.	00	4	00		00		
Matrix		Si Si		S(+		!	00	1.0	
Units	mg/kg			 		<u> </u>	oil		oil	so	
Sampling Date	mg/kg	mg)/kg D/95		/kg	mg		mg	
Analysis Date	 	2/2:			/95		0/95		0/95)/95
	Ctandard						/95		/95	2/9	
Analysis	Standard	Analytical	CRQL	Analytical	CROL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	-	Result		Result	/	Result		Result		Result	
Phenol	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
bis(2-Chloroethyl) ether	0.66	0.4 U	0.4	0,39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2-Chlorophenol	280	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
1,3-Dichlorobenzene	5100	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
1,4-Dichlorobenzene	570	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
1,2-Dichlorobenzene	5100	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0,39 U	0.39	0.39 U	0.39
2-Methylphenol	2800	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2,2'-oxybis(1-Chloropropane)		0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
4-Methylphenol	2800	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
N-Nitroso-di-n-propylamine	0.66	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Hexachloroethane	6	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Nitrobenzene	28	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Isophorone	1100	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0,39
2-Nitrophenol		0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2,4-Dimethylphenol	1100	0,4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
bis(2-Chloroethoxy) methane		0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2,4-Dichlorophenol	170	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0,39 U	0.39	0.39 U	0.39
1,2,4-Trichlorobenzene	68	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Naphthalene	230	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
4-Chloroaniline	230	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Hexachlorobutadiene	1	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
4-Chloro-3-methylphenol	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2-Methylnaphthalene	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Hexachlorocyclopentadiene	400	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2,4,6-Trichlorophenol	62	0.4 U	0,4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2,4,5-Trichlorophenol	5600	1 U	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.97	0.98 U	0.98
2-Chloronaphthalene	1	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2-Nitroaniline	f	1 U	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.97	0.98 U	0.98
Dimethylphthalate	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Acenaphthylene		0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2.6-Dinitrotoluene	1 1	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
3-Nitroaniline	 	10	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.39	0.98 U	0.98
Acenaphthene	3400	0.4 U	0.4	0.39 U	0.39	0.4 U	0.99	0.39 U	0.39	0.38 U	0.39
2,4-Dinitrophenol	110	10	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.97	0.98 U	0.98
											
4-Nitrophenol	L	1 U	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.97	0.98 U	0.98

1/27/95

Geographical Location			39	В	10	В	10	B	10	B1	0
Sample		B9-SB	01-C02	B10-SE	301-A01	B10-SB0	11-A01RE	B10-SE	301-A02	B10-SB0	-A02RE
Sample Type		Dup	licate								
Batch#		9501	G831	9412	G553	9412	G553	9412	G553	94120	3553
Prep#	,	95GI	30064	94GT	S0035	94GT	S0083	94GT	S0035	94GTS	0083
RFW#		0	03	G	01	C	D1	00	02	. 00	
Sample Depth (bgs)	-					· · · · · · ·	<u> </u>			1 - 1	-
Dilution Factor		1.	.00	1.	00	1.	00	1	00	1.0	in .
Matrix	1	s	oil		oil	ļ	oil		oil	so	
Units	mg/kg		ı/kg		ı/kg		ı/kg		/kg	mg	
Sampling Date	133		3/95		0/95		D/95		0/95	1/10	
Analysis Date			2/95)/95)/95		/95	2/9/	
Analysis	Standard	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
rulaiyaia	Clandard	Result	CAGE	Result	CRGL	Result	CRQL	Result	CROL		CRUL
	+	1.count	-	IVASUR	-	Leanit		Result		Result	
Dibenzofuran		0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
2.4-Dinitrotoluene	1	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Diethylphthalate	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	· 0.4	0.39 U	0.39	0.39 U	0.39
4-Chlorophenyl-phenylether		0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Fluorene	2300	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
4-Nitroaniline		1 U	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.97	0.98 U	0.98
4,6-Dinitro-2-methylphenol	-	1 U	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.97	0.98 U	0.98
N-Nitrosodiphenylamine (1)	140	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
4-Bromophenyl-phenylether	1,0	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Hexachlorobenzene	0.66	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Pentachlorophenol	6	1 U	1	0.98 U	0.98	0.99 U	0.99	0.97 U	0.39	0.39 U	0.39
Phenanthrene	+	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.98 U	0.39
Anthracene	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Carbazole	10000	0.4 U	0.4	0.39 U	0.39	0.4 U	0.4	0.39 U	0.39	0.39 U	0.39
Di-n-butylphthalate	5700	0.088	0.4	2 B	0.39	0.40 0 JB	0.4	1.6 B	0.39	0.39 U	0.39
Fluoranthene	2300	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39	0.2 JB 0.39 U	
Pyrene	1700	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39	0.39 U	0.39
Butyibenzylphthalate	1100	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39	0.39 U	
3,3'-Dichlorobenzidine	2	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39	0.39 U	0.39
Benzo(a)anthracene	0.9	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39		0.39
Chrysene	9	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U		0.39 U	
bis(2-Ethylhexy)phthalate	49	0.043 J	0.4	0.057 J	0.39	0 U			0.39	0.39 U	0.39
Di-n-octyl phthalate	1100	0.043 J	0.4	0.057 J 0.39 U	0.39	0 U	0.4	0.39 U 0.39 U	0.39	0.17 J	0.39
Benzo(b)fluoranthene	0.9	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39	0.39 U	0.39
Benzo(k)fluoranthene	0.9	0.4 U	0.4	0.39 U	0.39	00			0.39	0.39 U	0.39
Benzo(k)lluorantnene Benzo(a)pyrene	0.66	0.4 U	0.4				0.4	0.39 U	0.39	0.39 U	0.39
	0.66			0.39 U	0,39	0.0	0.4	0.39 U	0.39	0.39 U	0.39
ndeno(1,2,3-cd)pyrene	 	0.4 U	0.4	0.39 U	0.39	0 U	0.4	0.39 U	0.39	0.39 U	0.39
Dibenzo(a,h)anthracene	0.66	0.4 U	0.4	0.39 U	0.39	0 U	0.4	0.39 U	0.39	0.39 U	0.39
Benzo(g,h,i)perylene	-	0.4 U	0.4	0.39 U	0.39	00	0.4	0.39 U	0.39	0.39 U	0.39
Petroleum hydrocarbons	 										
Total Est. Conc. of TIC	-}	8.	97	4.	57	13	.06	4.	74	9.4	.
Method:TCL Semivolatiles	11										

CHARLES WOOD SOIL BORING INORGANICS

Coopenhinal Laurtina	T				07								
Geographical Location	ļ		C7		C7		C7		C7		C7	AO	
Sample	<u> </u>	CWA7-S	B01-A02	CWA7-S	B02-A02	CWA7-S	B03-A02	CWA7-S	B04-A02	CWA7-S	B05-A02	CWA7-S	B06-A03
Sample Type			1										
Batch#			G264		G264		G264		G264		G264		G264
Prep#			1211	94G		94G		94G		94G		94G	
RFW#		00		00	03	00)2	, 00	06	0	04	00	05
Sample Depth (bgs)		7.							<u></u>				l
Dilution Factor		L	00		00	1.			00		00		00
Matrix	<u> </u>		oil		oil	S			oil		oil		oil
Units	mg/kg		/kg	- mg			/kg		ı/kg		/kg		/kg
Sampling Date		l -	1/94		1/94		1/94		1/94		1/94		1/94
Analysis Date			/95		/95		/95		/95		/95		/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		90.0	0.10	90.6	0.10	90.8	0.10	89.8	0.10	90.5	0.10	89.8	-0.10
Silver	110	0.49 U	0.49	0.50 U	0.50	0.46 U	0.46	0.51 U	0.51	0,47 U	0.47	0.48 U	0.48
Aluminum		3650	2.1	4340	2.1	3820	1.9	5170	2.2	3490	2.0	3610	2.0
Arsenic	20	8.6	1.5 *	1.7	0.29	8.4	0.34	12.7	1.0 *	2.8	0.28	5.9	0.32
Barium	700	2.5	0.16	4.5	0.17	4.5	0.15	6.2	0.17	3.6	0.16	2.4	0.16
Beryllium	1	0.31	0.082	0.29	0.084	0.28	0.076	0.45	0.086	0.30	0.079	0.26	0.080
Calcium		69	1.8	91.9	1.8	134	1.7	275	1.9	63.9	1.7	43.7	1.7
Cadmium	1	0.70 U	0.7	0.71 U	0.71	0.65 U	0.65	0.73 U	0.73	0.67 U	0.67	0.68 U	0.68
Cobalt		0.58 U	0.58	0.94	0.59	0.68	0.53	0.60 U	0.6	0.55 U	0.55	0.56 U	0.56
Chromium		61.1	1.3	61.6	1.3	73.6	1.2	83.4	1.4	64.7	1.3	61.1	1.3
Copper	600	1.6	0.49	1.6	0.5 _i	1.8	0.46	2.2	0.51	1.4	0.47	1.3	0.48
Iron		10800	0.47	12400	0.48	11100	0.44	15900	0.49	11400	0.45	11000	0.46
Mercury	14	0.10 U	0.10	0.085 U	0.085	0.09 U	0.09	0.10 U	0.10	0.10 U	0.10	0.09 U	0.09
Potassium		2060	21.1	2360	21.5	1740	19.4	2570	21.9	2200	20.2	2280	20.5
Magnesium		694	7.9	852	8	602	7.3	919	8.2	720	7.5	766	7.7
Manganese		3.6	0.12	8.2	0.13	12.7	0.11	11.3	- 0.13	2.8	0.12	1.8	0.12.
Sodium		18.8	- 2.7	12.0	2.8	11.7	2.5	13.8	2.8	14.7	2.6	11.5	2.6
Nickel	250	1.8	0.66	2.6	0.67	1.9	0.61	2.1	0.69	1.6	0.63	1.3	0.64
Lead ·	400	6.3	0.27	6.9	0.26	4.5	0.3	8.5	1.5 **	6.3	1.2 *	4.9	0.28
Antimony	14	2.3 U	2.3	2.4 U	2.4	2.2 U	2.2	2.4 U	2.4	2.2 U	2.2	2.3 U	2.3
Selenium	63	0.26	0.17	0.18	0.17	0.19 U	0.19	0.3	0.19	0.26	0.16	0.18 U	0.18
Thallium	2	0.21 U	0.21	0.20 U	[^] 0.2	0.23 U	0.23	0.23 U	0.23	0.19 U	0.19	0.22 U	0.22
Vanadium'	370	93.5	0.43	79.8	0.44	78.4	0.4	95.1	0.45	92.8	0.41	81.7	0.42
Zinc	1500	8.9	0.43	12.0	0.44	10.5	0.4	15.8	0.45	9.0	0.41	9.1	0.42
Cyanide	1100												
Dilution Factor		*=!	5.00					* = 3.00,	** = 5.00	* =	5.00		
Method:TAL Metals								<u> </u>					

D-186

(1)27/95

CHARLES WOOD SOIL BORING INORGANICS

Geographical Location		CV	/ 1	CI	N1	CV	V1 -	CV	V1	CV	N2	C	N2
Sample		CW01-Si	326-A02	CW01-S	B27-A02	CW01-S	B28-A02	CW01-S	B29-A02		B30-A02		B31-A02
Sample Type			-										
Batch#		94120	3216	9412	G216	9412	G216	9412	G216	9412	G182	9412	G182
Prep#		94GT	S484	94G1	S484	94GT	S484		S484		S484		S484
RFW#		00	4	0(02	00)3	00	01	0(02		03
Sample Depth (bgs)				,	T							:	
Dilution Factor		1.0	00	1.	00 -	1.0	00	1.	00	1.	00	1.	00
Matrix		so	il	S	oil	S	oil	S	oil lic	S	oil		oil
Units	mg/kg	mg/	ikg	mg	ı/kg	mg	/kg	mg	/kg	mg	ı/kg	mg	j/kg
Sampling Date		12/19		12/1	9/94	12/1	9/94	12/1	9/94	12/1	6/94		6/94
Analysis Date		12/22	2/94	12/2	2/94	12/2	2/94	12/2	2/94	12/2	2/94	12/2	22/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
•		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		77.9	0.10	75.5	0.10	81.2	0.1	76.7	0.10	83.1	0.1	74.2	0.10
Silver	110	0.46 U	0.46	0.53 U	0.53	0.47 U	0.47	0.50 U	0.50	0.54 U	0.54	0.60 U	0.6
Aluminum		4070	1.9	5120	2.3	4850	2.0	4010	2.1	6450	2.3	5430	2.6
Arsenic	20	4.1	0.30	4.5	0.35	5.6	0.31	2.2	0.36	5.7	0.31	8.5	0.76 *
Barium	700	3.4	0.15	4.4	0.18	4.2	0.16	2.7	0.17	36.2	0.18	58.6	0.20
Beryllium	1	0.41	0.076	0.45	0.088	0.84	0.079	0.33	0.084	0.58	0.090	0.51	0.10
Calcium		236	1.7	283	1.9	229	1.7	669	1.8	655	2.0	976	2.2
Cadmium	1	0.65 U	0.65	0.75 U	0.75	0.67 U	0.67	0.71 U	.0.71	0.76 U	0.76	0.86 U	0.86
Cobalt		0.53 U	0.53	0.73	0.62	0.86	0.55	0.59 U	0.59	0.95	0.63	4.20	0.71
Chromium		52.2	1.2	71.7	1.4	59.7	1.3	46.4	1.3	69.9	1.4	48.6	1.6
Copper	600	1.8	0.46	2	0.53	1.1	0.47	1.2	0.50	2.7	0.54	2.9	0.60
Iron		10800	0.44	14500	0.51	12900	0.45	9440	0.48	20400	0.52	19200	0.58
Mercury	14	0.10 U	0.10	0.11 U	0.11	0.21	0.091	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11
Potassium		2700	19.5	3540	22.6	3660	20.2	2700	21.5	4210	23.0	2610	25.8
Magnesium		960	7.3	1310	8.4	1310	7.5	943	8.0	1720	8.6	1270	9.6
Manganese	ļ	7.2	0.11	10.6	0.13	8.0	0.12	5.4	0.13	25.1	0.13	24.8	0.15
Sodium		33.4	2.5	29.7	2.9	20.4	2.6	15.5	2.8	34.8	2.9	45.8	3.3
Nickel	250	1.5	0.61	3.1	0.71	2.7	0.63	1.4	0,67	4.9	0.72	11.2	0.81
Lead	400	3.9	0.26	5.9	0.30	3.9	0.27	3.2	0.31	8.1	0.54 *	7.5	0.33
Antimony	14	2.2 U	2.2	2.5 U	2.5	2.2 U	2.2	2.4 U	2.4	2.6 U	2.6	2.9 U	2.9
Selenium	63	0.19	0.17	0.20 U	0.20	0.17 U	0.17	0.20 U	0.20	0.29	0.17	0.70	0.21
Thallium	2	0.20 U	0.20	0.24 U	0.24	0.21 U	0.21	0.25 U	0.25	0.21 U	0.21	_0.26 U	0.26
Vanadium	370	28.8	0.40	42.4	0.46	31.8	0.41	26.7	0.44	36.6	0.47	29.1	0.53
Zinc	1500	12.8	0.40	16.2	0.46	15.2	0.41	11.7	0.44	27.8	0.47	44.2	0.53
Cyanide	1100			•									
Dilution Factor										* = 2	2.00	* = :	2.00
Method:TAL Metals							•						

CHARLES WOOD SOIL BORING INORGANICS

Geographical Location		CI	N2	CV	N2	·C\	N2	CI	N4	. C/	N5	CI	N5
Sample		CW02-S	B32-A02	CW02-S			B33-A02		B01-A02		B01-A02		B02-A02
Sample Type									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01100-0	001-702	04400-0	002-702
Batch#		9412	G182	9412	G154	9412	G154	9412	G264	9412	G245	9412	G245
Prep#		94GT	TS484	95GT			TS001		1211		<u> </u>	0712	D2-10
RFW#	1	. 00	01	00			02		08	0(01	01	02
Sample Depth (bgs)				2.	4'		-9')	<u> </u>		
Dilution Factor		` 1 .	00	1.	00		00	1.	00	1.	00	1	00
Matrix		S	oil	S	oil		oil		oil		oil		oil
Units	mg/kg	mg	ı/kg	mg	/kg		ı/kg		/kg		ı/kg		/kg
Sampling Date			6/94		5/94		5/94		1/94				
Analysis Date		12/2	2/94	1/3	/95		/95		/95				
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
										1	,		
% Solids		80.7	0.1	84.4	0.10	80.0	0.10	83.2	0.10	86.1	0.10	83.9	0.10
Silver	110	0.52 U	0.52			0.5 U	0.5	0.52 U	0.52	7.4	0.47	0.40 U	0.40
Aluminum		2920	2.2			7310	2.1	5030	2.2	3920	2.0	3400	1.7
Arsenic	20	2.6	0.34			15.7	1.9 *	1.5	0.31	3.8	0.34	1.5	0.29
Barium	700	23.6	0.17			326	0.17	2.7	0.17	36.2	0.16	21.0	0.13
Beryllium	1	0.28	0.087			1.5	\0.083	0.47	0.087	0.14	0.079	0.32	< 0.067
Calcium		502	1.9			1270	1.8	302	1.9	1000	1.7	851	1.5
Cadmium	1	0.74 U	0.74			0.9	0.71	0.74 U	0.74	0.67 U	0.67	0.57 U	0.57
Cobalt		0.91	0.61			5.9	0.58	0.61 U	0.61	1.0	0.55	0.47 U	0.47
Chromium		32.2	1.4		,	56.5	1.3	63.5	1.4	42.2	1.3	38.3	1.1
Copper	600	2.7	0.52			5.5	0.5	379	0.52	21.5	0.47	2.0	0.40
Iron		11100	0.50			17600	0.48	11500	0.50	8950	0.45	5930	0.39
Mercury	14	0.083 U	0.083			0.12 U	0.12	0.09 U	0.09	0.63	0.12	0.09 U	0.09
Potassium		1980	22.2			3350	21.3	3490	22.2	944	20.1	1880	17.2
Magnesium		776	8.3			1880	8	1320	8.3	527	7.5	717	6.4
Manganese		12.5	0.13			35.1	0.12	8.8	0.13	19.7	0.12	7.2	0.10
Sodium		40.8	2.8			42.7	2.7	15.3	2.8	28.9	2.6	13.5	2.2
Nickel	250	2.6	0.70			23.2	0.67	1.5	0.69	2.7	0.63	1.6	0.54
Lead	400	3.1	0.29			5.6	1.7 *	1440	5.8	20.7	3.0 *	3.3	0.25
Antimony	14	2.5 U	2.5			2.4 U	2.4	2.5	2.5	2.2 U	2.2	1.9 U	1.9
Selenium	63	0.20	0.19			4.2	0.44 *	0.17 U	0.17	0.40	0.19	0.35	0:16
Thallium	2	0.23 U	0.23			0.27 U	0.27	0.21 U	<i>y</i> 0.21	0.24 U	0.24	0.33	0.20
Vanadium	370	19.4	0.46			23.6	0.44	20.6	0.45	20.7	0.41	21.4	0.35
Zinc	1500	19.3	0.46			63.9	0.44	46.2	0.45	40.4	0.41	11.4	0.35
Cyanide	1100									0.43 U	0.43	0.33 U	0.33
Dilution Factor		* = 1	0.0			* = {	5.00			* = *	10.0		
Method:TAL Metals			. ′										

SOIL BORING INORGANICS

Geographical Location		C	W6	C\	N6	C	W6	CI	N9	T E	36
Sample	,	CW06-5	SB34-A01	CW06-S	B34-A02	CW06-9	B34-A02		B01-A02	B6-SB	01-A01
Sample Type								·— · · · · · · · · · · · · · · · · · ·			
Batch#		9501	G423	9501	G423	9505	G840	9501	G450	9501	G553
Prep#		95G	TS006	· 95GT	S006	95G1	TS285		S006		S013
RFW#		0	01	00	02	0	01		03		08
Sample Depth (bgs)						-					
Dilution Factor		1:	.00	1.	00	/ 1.	00	1.	00	1	00
Matrix		s	oil	Si	oil	s	oil		oil		oil
Units	mg/kg	mg	g/kg	mg	/kg		j/kg		ı/kg		ı/kg
Sampling Date			3/95		/95		0/95		/95		0/95
Analysis Date		1/9	9/95	1/9	/95		6/95		/95		3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
·	-	-				,					
% Solids		83.8	0.10	86.6	0.10	70.9	0.10	86.9	0,10	88.0	0.1
Silver	110			-				0.93	0.50	0.45 U	0.45
Aluminum			1				-	3830	2.1	4220	3.1
Arsenic	20		,					2.6	0.33	4.6	0.35
Barium	7,00						-	6.6	0.17	6.3	0.15
Beryllium	1							0.39	0.084	0.055 U	0.055
Calcium								366	1.8	303	1.5
Cadmium	1						-	0.71 U	0.71	0.53 U	0.53
Cobalt		-						1.0	0.59	0.59	0.42
Chromium								44.0	1.3	51.8	0.85
Copper	600							2.3	0.50	1.4	0.73
Iron								9720	0.48	11000	0.45
Mercury	14							0.12	0.11	0.095 U	0.095
Potassium								1480-	21.4	2570	12.3
Magnesium								698	8.0	1040	6.2
Manganese								11.9	0.13	5.6	0.16
Sodium					-			21.4	2.7	24.2	3.5
Nickel	250							2.8	0.67	1.9	0.76
Lead	400							3.9	0.29	1.9	0.18
Antimony	14							2.4 U	2.4	2.0 U	2.0
Selenium	63							0.19 U	0.19	0.4	0.27
Thallium	2						· · · · · · · · · · · · · · · · · · ·	,0.36 U	0.36	0.13 U	0.13
Vanadium	370							27.4	0.44	25.6	0.38
Zinc	1500							12.8	0.44	18.4	0.35
Cyanide	1100								~~*	.0.42 U	0.42
Dilution Factor		,					•				
Method:TAL Metals	,	,									

CHARLES WOOD SOIL BORING INORGANICS

Geographical Location		B	36	В	7	E	37	В	8	В	18	В	39
Sample		B6-SB	01-A02	B7-SB	01-A01		01-A02	B8-SB	01-A01		01-A02		01-A01
Sample Type	†						•			 			
Batch#		9501	G553	9501	G553	9501	G553	9501	G553	9501	G553	9501	G831
Prep#	†	95GT	TS013	95GT	S013		S013		S013		S013		
RFW#		00	09	00	D6		07		04		05	00	01
Sample Depth (bgs)	İ						T ·	-					
Dilution Factor		1.	00	1.	00	1.	00 ,	1.	00	1.	00	1.	00
Matrix		. S	oil	S	oil	S	oil .	S	oil		oil		oil
Units	mg/kg	mg	ı/kg	mg	/kg	mg	ı/kg	mg	/kg	mg	ı/kg	ma	ı/kg
Sampling Date			0/95	1/10	0/95		0/95		0/95		0/95		
Analysis Date		1/1:	3/95	1/13	3/95	1/1:	3/95	1/1:	3/95	1/1:	3/95		
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
									(,		
% Solids		84.6	0.1	85.5	0.1	83.4	0.10	91.2	0.1	84.8	0.10	84.7	0.10
Silver	110	0.49 U	0.49	0.49 U	0.49	0.48 U	0.48	0.44 U	0.44	0.48 U	0.48	0.58 U	0.58
Aluminum		6800	3.3	15700	3.3	2220	3.2	4510	3.0	5800	3.2	7800	3.9
Arsenic	20	4.3	0.38	10.3	0.72 *	1.3	0.38	3.5	0.35	7.5	0.73 *	19.5	2.0 **
Barium	700	5.0	0.16	25.9	0.16	2.3	0.15	3.3	0.14	8.8	0.15	40.1	0.19
Beryllium	1	0.72	0.059	1.1	0.059	0.06 U	0.06	0.053 U	0.053	0.76	0.058	0.85	0.070
Calcium		235	1.7	653	. 1.7	76.2	1.6	44.8	1.5	76	1.6	746	2.0
Cadmium	1	0.57 U	0.57	0.57 U	0.57	0:56 U	0.56	0.51 U	0.51	0.56 U	0.56	0.58 U	0.68
Cobalt		1.1	0.45	4.5	0.45	0.54	0.44	0.65	0.41	1.1	0.44	3.0	0.54
Chromium		77.5	0.93	66.1	0.92	33.6	0.90	48.0	0.83	64.7	0.91	76.5	1.1
Copper	600	1.8	0.79	6.6	0.79	0.77 U	0.77	1.2	0.71	1.7	0.77	5.1	0.94
Iron		16700	0.49	32000	0.49	6100	0.48	11800	0.44	16000	0.48	28300	0.58
Mercury	14	0.11 U	0.11	0.1 U	0.1	0.09 U	0.09	0.081 U	0.081	0.12 U	0.12	0.14	0.10
Potassium		3900	13.4	2780	13.3	1710	13.0	2410	12.0	3740	13.1	4080	15.9
Magnesium		1710	6.8	2390	6.7	622	6.6	932	6.1	1450	6.6	1890	8.0
Manganese		9.4	0.18	122	0.18	2.8	0.17	3.4	0.16	6.8	0.17	48.7	0.21
Sodium		56.8	3.8	37.7	3.8	39.9	3.7	22.4	3.4	18.7	√3.7	29.8	4.5
Nickel	250	3.1	0.83	8.3	0.83	1.4	0.81	2.2	0.74	3	0.81	5.6	0.98
Lead	400	3.5	0.20	11.1	0.95 **	1.7	0.20	2.7	0.18	4.1	0.19	12.1	0.56 *
Antimony	14	2.1 U	2.1	2.1 U	2.1	2.1 U	2,1	1.9 U	1.9	2.1 U	2.1	2.5 U	2.5
Selenium	63	0.30 U	0.30	0.85	0.29	0.30 U	0.30	0.49	0.28	0.55	0.29	0.90	0.35
Thallium	2	0.14 U	0.14	0.13 U	0.13	0.14 U	0.14	0.13 U	. 0.13	0.14 U	0.14	0.26 U	0.26
Vanadium	370	35.0	0.41	59.6	0.41	17.3	0.40	25.0	0.37	35.1	0.41	23.5	0.49
Zinc	1500	20.3	0.37	34.3	0.37	6.9	0.36	11.6	0.34	17.5	0.37	47.7	0.44
Cyanide	1100	0.51 U	0.51	0.41	0.41	0.39 U	0.39	0.38 U	0.38	0.55 U	0.55	0.47 U	0.47
Dilution Factor				* = 2.00,	** = 5.00					*=:	2.00	* = 2.00,	** = 5.00
Method:TAL Metals												-	

CHARLES WOOD SOIL BORING INORGANICS

Geographical Location		В	9	Ē	19	В	10	В	10
Sample		B9-SB	01-A02	B9-SB	01-C02	B10-SE	01-A01	B10-SE	301-A02
Sample Type									
Batch#		9501	G831	9501	G831	9501	G553	9501	G553
Prep#	1					95G1	S013	95G1	S013
RFW#		00	02	01	03	0(01	0	02
Sample Depth (bgs)									
Dilution Factor		1.	00	1.	00	1.	00	1.	00
Matrix		S	oil	S	oil	S	oil	s	oil
Units	mg/kg	mg	/kg	mg	ı/kg	mg	/kg	mg	ı/kg
Sampling Date			, .		1	1/10	0/95	1/1	0/95
Analysis Date	-					1/1:	3/95	1/1:	3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		83.4	0.10	81.9	0.10	84.1	0.1	84.9	0.1
Silver	110	0.58 U	0.58	0.47 U	0.47	0.49 U	0.49	0.48 U	0.48
Aluminum		6250	3.9	6520	3.1	9790	3.3	10200	3.2
Arsenic	20	22.7	2.6 *	20.4	1.6*	31.6	3.8 *	24.9	3.7 *
Barium	700	39.2	0.18	35.3	0.15	22.3	0.16	26.0	0.15
Beryllium	1	0.68	0.069	0.74	0.056	1.7	0.058	1.6	0.058
Calcium	 	297	1.9	244	1.6	517	1.6	501	1.6
Cadmium	1	0.67 U	0.67	0.54 U	0.54	0.57 Ü	0.57	0.56 U	0.56
Cobalt		2.9	0.53	2.8	0.43	3.3	0.45	3.4	0.44
Chromium		69.2	1.1	70.0	0.88	126	0.92	128	0.91
Copper	600	3.5	0.92	3.4	0.75	3.3	0.78	3.1	0.77
iron	 	25200	0.58	23800	0,47	45500	0.49	43200	0.48
Mercury	14	0.32	0.092	0.12 U	0.12	0.10 U	0.10	0.10 U	0.10
Potassium	<u> </u>	3300	15.7	4080	12.7	10600	13.2	10400	13.1
Magnesium		1490	7.9	1830	6.4	3920	6.7	3960	6.6
Manganese		25.1	0.21	25.9	0.17	31.0	0.18	23.6	0.17
Sodium		19.8	4.4	20.3	3.6	55.2	3.7	44.6	3.7
Nickel ,	250	5.6	0.97	6.0	0.78	7.1	0.82	7.4	0.81
Lead	400	6.1	0.19	5.6	0.23	5.1	0.20	4.5	0.19
Antimony	14	2.5 U	2.5	2.0 U	2.0	2.1 U ·	2.1	2.1 U	2.1
Selenium	63	0.49	0.23	0.50	0.29	0.56	0.30	0.61	0.29
Thallium	2	0.17 U	0.17	0.21 U	0.21	0.14 U	0.14	0.14 U	0.14
Vanadium	370	25.6	0.48	20.6	0.39	42.9	0.41	40.9 0.	
Zinc	1500	49.4	0.44	49.8	0.35	55.6	0.37	53.6 0.	
Cyanide	1100	0.42 U	0.42	0.40 U	0,40	0.56 U	0.56	0.49 U	0.49
Dilution Factor		*=1	0.00	. *=!	5.00	*=	10.0	*=	10.0
Method:TAL Metals	†								

CHARLES WOOD SOIL BORING PESTICIDES/PCBS

Geographical Location	Γ	AO	C7	AC	C7	AC	C7	AC	C7	AC	OC7	ÁC	DC7
Sample		CWA7-S	B01-A02	CWA7-S	B02-A02		B03-A02	CWA7-S			B05-A02		SB06-A03
Sample Type										0.11,11			
Batch#		9412	G264	9412	G264	9412	G264	9412	G264	9412	G264	9412	
Prep#		94GF	1108	94GF			21108	94GF			21108		P1108
RFW#	·	00)1	- 00			02		06		04	ļ	05
Sample Depth (bgs)		-									· · · · · · · · · · · · · · · · · · ·	_	
Dilution Factor		1.0	00	1.	00	1.	00	1.	00	1.	00	1.	.00
Matrix	ļ	Sc	oil	S	oil	S	oil		oil		oil		oil
Units	mg/kg	mg	/kg	mg	/kg		/kg	mg	/ka	mg	/ka		g/kg
Sampling Date	,		1/94		1/94		1/94		1/94		1/94		21/94
Analysis Date		1/4	/95	1/4	/95	1/4	/95	1/4		1/4			1/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
alpha-BHC		0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	√0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
beta-BHC		0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0,0018 U	0.0018
delta-BHC		0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
gamma-BHC (Lindane)	0.52	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
Heptachlor	0.15	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0,0018	0.0018 U	0.0018
Aldrin	0.04	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
Heptachlor epoxide		0.0018 U	0.0018	⁻ 0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
Endosulfan I	340	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
Dieldrin	0.042	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
4,4'-DDE	2	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
Endrin	17	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
Endosulfan II	340	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
4,4'-DDD	3	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
Endosulfan sulfate		0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
4,4'-DDT	2	0.0037 U	0.0037	0.0036 U	0.0036	0.004	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
Methoxychlor	280	0.018 U	0.018	0.018 U	0.018	0.018 U	0.018	0.018 U	0.018	0.018 U	0.018	0.018 U	0.018
Endrin ketone		0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
Endrin aldehyde		0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036	0.0037 U	0.0037	0.0036 U	0.0036	0.0036 U	0.0036
alpha-Chlordane		0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
gamma-Chlordane		0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018	0.0018 U	0.0018
Toxaphene	0.1	0.18 U	0.18	0.18 U	0.18	0.18 U	0.18	0.18 U	0.18	0.18 U	0.18	0.18 U	0.18
Aroclor-1016	0.49	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036
Arocior-1221	0.49	0,073 U	0.073	0.073 U	0.073	0.072 U	0.072	0.073 U	0.073	0.073 U	0.073	0.073 U	0.073
Aroclor-1232	0.49	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036
Aroclor-1242	0.49	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036
Aroclor-1248	0.49	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036	0.037 U	. 0.037	0.036 U	0.036	0.036 U	0.036
Aroclor-1254	0.49	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036
Aroclor-1260	0.49	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036	0.037 U	0.037	0.036 U	0.036	0.036 U	0.036
Method:TCL Pesticides/PCBs		,											

CW pp

CHARLES WOOD SOIL BORING PESTICIDES/PCBS

Geographical Location		CI			N 1	CI	<i>N</i> 1	C/	N1	CV	N2	C/	N2
Sample		CW01-S	B26-A02	CW01-S	B27-A02	CW01-S	B28-A02	CW01-S	B29-A02	CW02-S	B30-A02	CW02-SB	30-A02DL
Sample Type													
Batch#		9412	G216	9412	G216	9412	G216	9412	G216	9412	G182	9412	G182
Prep#		94GF	21108	94GF	21108	94GF	21108	94GF	21108	94GF	1090	94GF	21090
RFW#		00	04	0(02	01	03 .	0			02		2DL
Sample Depth (bgs)													Ī
Dilution Factor		1.	00	1.	00	1.	00	1.	00	1.	00	5	.0
Matrix		S	oil	S	oil	S	oil		oil	Si	oil		oil
Units	mg/kg	mg	/kg	mg	/kg		ı/kg	mo	ı/kg	mg	/ka		ı/kg
Sampling Date			9/94		9/94	12/1			9/94		6/94		6/94
Analysis Date		1/4	/95		1/95		/95	1/4		1/3			3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
	 	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
												1100011	
alpha-BHC		0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
beta-BHC		0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
delta-BHC		0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
gamma-BHC (Lindane)	0.52	0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
Heptachlor	0.15	0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
Aldrin	0.04	0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
Heptachlor epoxide	,	0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
Endosulfan I	340	0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	`0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
Dieldrin	0.042	0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0039 U	0.0039	0.019 U	0.019
4,4'-DDE	2	0.0038 J	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0035 JP	0.0039	0.019 U	0.019
Endrin	17	0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0039 U	0.0039	0.019 U	0.019
Endosulfan II	340	0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0039 U	0.0039	0.019 U	0.019
4,4'-DDD	3	0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.012 P	0.0039	.014 JD	0.019
Endosulfan sulfate		0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0039 U	0.0039	0.019 U	0.019
4,4'-DDT	2	0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.062 P	0.0039 /	.053 DP	0.019
Methoxychlor	280	0.021 U	0.021	0.022 U	0.022	0.02 U	0.02	0.022 U	0.022	0.019 U	0.019	0.097 U	0.097
Endrin ketone		0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0039 U	0.0039	0.019 U	0.019
Endrin aldehyde		0.0042 U	0.0042	0.0043 U	0.0043	0.0041 U	0.0041	0.0043 U	0.0043	0.0039 U	0.0039	0.019 U	0.019
alpha-Chlordane	-	0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
gamma-Chlordane		0.0021 U	0.0021	0.0022 U	0.0022	0.002 U	0.002	0.0022 U	0.0022	0.0019 U	0.0019	0.0097 U	0.0097
Toxaphene	0.1	0.21 U	0.21	0.22 U	0.22	0.2 U	0.2	0.22 U	0.22	0.19 U	0.19	0.97 U	0.0037
Aroclor-1016	0.49	0.042 U	0.042	0.043 U	0.043	0.041 U	0.041	0.043 U	0.043	0.039 U	0.039	0.19 U	0.19
Aroclor-1221	0.49	0.085 U	0.085	0.047 U	0.087	0.082 U	0.082	0.086 U	0.086	0.039 U	0.039	0.19 U	0.19
Aroclor-1232	0.49	0.042 U	0.042	0.043 U	0.043	0.041 U	0.041	0.043 U	0.043	0.070 U	0.039	0.19 U	0.19
Aroclor-1242	0.49	0.042 U	0.042	0.043 U	0.043	0.041 U	0.041	0.043 U	0.043	0.039 U	0.039	0.19 U	0.19
Aroclor-1248	0.49	0.042 U	0.042	0.043 U	0.043	0.041 U	0.041	0.043 U	0.043	0.039 U	0.039	0.19 U	0.19
Aroclor-1254	0.49	0.042 U	0.042	0.043 U	0.043	0.041 U	0.041	0.043 U	0.043	0.039 0	0.039	.75 D	0.19
Aroclor-1260	0.49	0.042 U	0.042	0.043 U	0.043	0.041 U	0.041	0.043 U	0.043	0.039 U	0.039	0.19 U	0.19
Method:TCL Pesticides/PCBs	0.70	0.072 0	0,072	0.0-70 0	0.070	0.0410	Q.U-T1	0.040.0	0.040	0.009 0	0.009	0.180	0.18
MICHION, I OL I COLLUCATIODS							l .	l	1				i

CHARLES WOOD . SOIL BORING PESTICIDES/PCBS

Geographical Location	<u> </u>		N2		N2		N2		N2		N4		V 5
Sample		CW02-S	B31-A02	CW02-S	B32-A02	CW02-S	B33-A02	CW02-SB	33-A02DL	CW04-S	B01-A02	CW05-S	B01-A02
Sample Type			•										
Batch#		9412	G182	9412	G182	9412	G154	9412	G154	9412	G264	9412	G245
Prep#		94GF	21090	94GF	21090	94GF	1090	94GF	21090	94GF	1108	94GF	1108
RFW#		0(03	0	01	01	02	002	2DL	0	08	0(01
Sample Depth (bgs)						7.	-9'	7.	-9'				, .
Dilution Factor		1.	00	1.	00	1.	00	10	0.0	1.	00	1.	00
Matrix		S	oil ,	s	oil	· S	oil ·	S	oil	S	oil	S	oil
Units	mg/kg	mg	/kg	mg	ı/kg	·ˈmg	/kg	mg	/kg	mg	ı/kg	mg	/kg
Sampling Date		12/1	6/94		6/94		5/94		IA.		1/94		0/94
Analysis Date		1/3	/95	1/3	/95	1/3	/95	1/3	/95	1/4	1/95	1/4	/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
				,					/	,			
alpha-BHC		0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
beta-BHC		0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
delta-BHC		0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
gamma-BHC (Lindane)	0.52	0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
Heptachlor	0.15	0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
Aldrin	0.04	0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
Heptachlor epoxide		0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
Endosulfan I	340	0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0019 U	0.0019
Dieldrin	0.042	0.0044 U	0.0044	0.0041 U	0.0041	0.0041 U	0.0041	0.041 U	0.041	0.004 U	0.004	0,0038 U	0.0038
4,4'-DDE	2	0.0044 U	0.0044	0.0041 U	0.0041	0.0083 P	0.0041	0.041 U	0.041	0.004 U	0.004	0.21 P	0.0038
Endrin	17	0.0044 U	0.0044	0.0041 U	0.0041	0.0041 U	0.0041	0.041 U	0.041	0.004 U	0.004	0.0038 U	0.0038
Endosulfan II	340	0.0044 U	0.0044	0.0041 U	0.0041	0.0041 U	0.0041	0.041 U	0.041	0.004 U	0.004	0.0038 U	0.0038
4,4'-DDD	3	0.0098	0.0044	0.0073	0.0041	0.26	0.0041	.2 D	0.041	0.004 U	0.004	0.087	0.0038
Endosulfan sulfate		0.0044 U	0.0044	0.0041 U	0.0041	0.0041 U	0.0041	0.041 U	0.041	0.004 U	0.004	0.0038 U	0.0038
4,4'-DDT	2	0.0058	0.0044	0.0041 U	0.0041	0.046	0.0041	.043 D	0.041	0.004 U	0.004	0.087	0.0038
Methoxychlor	280	0.022 U	0.022	0.02 U	0.02	0.021 U	0.021	0.21 U	0.21	0.02 U	0.02	0.0038 U	0.0038
Endrin ketone		0.0044 U	0.0044	0.0041 U	0.0041	0.0041 U	0.0041	0.041 U	0.041	0.004 U	0.004	0.0038 U	0.0038
Endrin aldehyde		0.0044 U	0.0044	0.0041 U	0.0041	0.0041 U	0.0041	0.041 U	0.041	0.004 U	0.004	0.0038 U	0.0038
alpha-Chlordane		0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0084 P	0.0019
gamma-Chlordane		0.0022 U	0.0022	0.002 U	0.002	0.0021 U	0.0021	0.021 U	0.021	0.002 U	0.002	0.0092	0.0019
Toxaphene	0.1	- 0.22 U	0.22	0.2 U	0.2	0.21 U	0.21	2.1 U	2,1	0.2 U	0.2	0.19 U	0.19
Aroclor-1016	0.49	0.044 U	0.044	0.041 U	0.041	0.041 U	0.041	0.41 U	0.41	0.04 U	0.04	0.038 U	0.038
Aroclor-1221	0.49	0.089 U	0.089	0.082 U	0.082	0.083 U	0.083	0.83 U	0.83	0.079 U	0.079	0.077 U	0.077
Aroclor-1232	0.49	0.044 U	0.044	0.041 U	0.041	0.041 U	0.041	0.41 U	0.41	0.04 U	0.04	0.038 U	0.038
Aroclor-1242	0.49	0.044 U	0.044	0.041 U	0.041	0.041 U	0.041	0.41 U	0.41	0.04 U	0.04	0.038 U	0.038
Aroclor-1248	0.49	0.044 U	0.044	0.041 U	0.041	0.041 U	0.041	· 0.41 U	0.41	0.04 U	0.04	0.038 U	0.038
Aroclor-1254	0.49	0.044 U	0.044	0.041 U	0.041	0.041 U	0.041	0.41 U	0.41	0.04 U	0.04	0.17	0.038
Aroclor-1260	0.49	0.044 U	0.044	0.041 U	0.041	0.041 U	0.041	0.41 U	0.41	0.04 U	0.04	0.15	0.038
Method:TCL Pesticides/PCBs					. ,					- · · · · ·	1		

CHARLES WOOD SOIL BORING PESTICIDES/PCBS

Geographical Location		CV	N5	C\	N 5	CI	V6	CV	V6	CV	V6	C/	N6
Sample		CW05-SB	01-A02DL		B02-A02	CW06-S	B02-A01	CW06-SB		CW06-S			34-A01DL
Sample Type	· · · · · · · · · · · · · · · · · · ·					,						0110000	
Batch#		9412	G245	9412	G245	9505	G840	9505	G840	9501	G423	9501	G423
Prep#		94GF	21108	94GF	21108		0512	95GF		95GF			20028
RFW#		001	IDL	0	02	0(01	001		00			IDL
Sample Depth (bgs)													
Dilution Factor		10	0.0	1.	00	1.	00	1.0	00	1.	00	10	0.0
Matrix		S	oil	s	oil	S	oil	Sc		S	oil		oil
Units	mg/kg	mg	/kg	mg	ı/kg	mg	/kg	mg	/kg		/kg		/kg
Sampling Date		12/2			0/94	5/10		5/10		1/3			/95
Analysis Date		1/5	/95	1/4	1/95	5/29	9/95	5/29	9/95	1/17	7/95	1/18	3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
alpha-BHC		0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	0.02 U	0.02
beta-BHC		0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	0.02 U	0.02
delta-BHC		0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	0.02 U	0.02
gamma-BHC (Lindane)	0.52	0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	, 0.02 U	0.02
Heptachlor	0.15	0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	0.02 U	0.02
Aldrin	0.04	0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	0.02 U	0.02
Heptachlor epoxide		0.019 U	0.019	0.0019 U	0.0019	0.0078 P	0.0023	0.23 U	0.23	0.018 P	0.002	0.02 U	0.02
Endosulfan I	340	0.019 U	0.019	0.0019 U	0.0019	0.0023 U	0.0023	0.23 U	0.23	0.002 U	0.002	0.039 U	0.039
Dieldrin	0.042	0.038 U	0.038	0.0039 U	0.0039	0.0046 U	0.0046	0.46 U	0.46	0.0047 P	0.0039	.061 DP	0.039
4,4'-DDE	2	.18 D	0.038	0.0058	0.0039	0.11 CP	0.0046	.34 JCD	0.46	0.074 P	0.0039	0.039 U	0.039
Endrin	17	0.038 U	0.038	0.0039 U	0.0039	0.0046 U	0.0046	0.46 U	0.46	0.0039 U	0.0039	0.039 U	0.039
Endosulfan II	340	0.038 U	0.038	0.0039 U	0.0039	0.0046 U	0.0046	0.46 U	0.46	0.0039 U	0.0039	0.039 U	0.039
4,4'-DDD	3	.069 D	0.038	0.0035 J	0.0039	0.21 CP	0.0046	2.9 CD	0.46	0.0095 P	0.0039	0.039 U	0.039
Endosulfan sulfate		0.038 U	0.038	0.0039 U	0.0039	0.0046 U	0.0046	0.46 U	0.46	0.0039 U	0.0039	0.039 U	0.039
4,4'-DDT	2	.067 D	0.038	0.0039 U	0.0039	0.46 UZ	0.0046	0.46 UZ	0.46	0.16 P	0.0039	.18 DP	0.039
Methoxychlor	280	0.19 U	0.19	0.019 U	0.019	0.023 U	0.023	2.3 U	2.3	0.02 U	0.02	0.2 U	0.2
Endrin ketone		0.038 U	0.038	0.0039 U	0.0039	0.0046 U	0.0046	0.46 U	0.46	0.0039 U	0.0039	0.039 U	0.039
Endrin aldehyde		0.038 U	0.038	0.0039 U	0.0039	0.0046 U	0.0046	0.46 U	0.46	0.0039 U	0.0039	0.039 U	0.039
alpha-Chlordane		0.019 U	0.019	0.0019 U	0.0019	0.043	0.0023	.07 JD	0.23	0.14 P	0.002	.14 DP	0.02
gamma-Chlordane		0.019 U	0.019	0.0019 U	0.0019	0.047	0.0023	.068 JD	0.23	0.11 P	0,002	.11 DP	0.02
Toxaphene	0.1	1.9 U	1.9	0.19 U	0.19	0.23 U	0.23	23 U	23	0.2 U	0.2	2 U	2
Aroclor-1016	0.49	0.38 U	0.38	0.039 U	0.039	0.046 U	0.046	4.6 U	4.6	0.039 U	0.039	0.39 U	0.39
Aroclor-1221	0.49	0.77 U	0.77	0.077 U	0.077	0.092 U	0.092	9.2 U	9.2	0.079 U	0.079	0.79 U	0.79
Aroclor-1232	0.49	0.38 U	0.38	0.039 U	0.039	0.046 U	0.046	4.6 U	4.6	0.039 U	0.039	0.39 U	0.39
Aroclor-1242	0.49	0.38 U	0.38	0.039 U	0.039	0.046 U.,	0.046	4.6 U	4.6	0.039 U	0.039	0.39 U	0.39
Aroclor-1248	0.49	0.38 U	0.38	0.039 U	0.039	0.046 U	0.046	4.6 U	4.6	0.039 U	0.039	0.39 U	0.39
Aroclor-1254	0.49	.2 JD	0.38	0.039 U	0.039	0.046 U	0.046	4.6 U	4.6	0.039 U	0.039	0.39 U	0.39
Aroclor-1260	0.49	.18 JD	0.38	0.039 U	0.039	0.046 U	0.046	4.6 U	4.6	0.039 U	0.039	0.39 U	0.39
Method:TCL Pesticides/PCBs				•									

CHARLES WOOD SOIL BORING PESTICIDES/PCBS

Geographical Location		CI	V6	C/	N9	B	16	F	36	-	<u>. </u>	Ē	37
Sample	T	CW06-S			B01-A02		01-A01		01-A02		1-A02DL		01-A01
Sample Type	<u> </u>							5005	017102	50-050	I-NOZDE	01-00	01-401
Batch#		9501	G423	9501	G450	9501	G553	9501	G553	9501	G553	9501	G553
Prep#	<u> </u>	95GF			20028		20050		20050		20050		20050
RFW#			02	00		1	08		09		9DL		06
Sample Depth (bgs)										-			1
Dilution Factor		1.	00	1.	00	1.	00	1.	00	- 5.	00	1	00
Matrix		S	oil	S		S	oil ·		oil		oil		oil
Units	mg/kg	mg	/kg	mg	/kg	mg			ı/kg		/kg	<u> </u>	ı/kg
Sampling Date	 	1/3			/95	1/10			0/95		0/95		0/95
Analysis Date		1/17	7/95	. 1/17	7/95	1/26			6/95		6/95		6/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
,		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
alpha-BHC		0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U ·	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
beta-BHC		0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
delta-BHC		0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
gamma-BHC (Lindane)	0.52	0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
Heptachlor	0.15	0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
Aldrin	0.04	0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
Heptachlor epoxide		0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
Endosulfan I	340	0.0019 U	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
Dieldrin ·	0.042	0.0038 U	0.0038	0.0038 U	0.0038	0.0037 U	0.0037	0.0039 U	0.0039	0.02 U	0.02	0.0038 U	0.0038
4,4'-DDE	. 2	0.0038 U	0.0038	0.0076 P	0.0038	0.028	0.0037	0.071	0.0039	.066 D	0.02	0.023	0.0038
Endrin	17	0.0038 U	0.0038	0.0038 U	0.0038	0.0037 U	0.0037	0.0039 U	0.0039	0.02 U	0.02	0.0038 U	0.0038
Endosulfan II	340	0.0038 U	0.0038	0.0038 U	0.0038	0.0037 U	0.0037	0.0039 U	0.0039	0.02 U	0.02	0.0038 U	0.0038
4,4'-DDD	3	0.0038 U	0.0038	0.0038 U	0.0038	0.0037 U	0.0037	0.0039 U	0.0039	0.02 U	0.02	0.0038 U	0.0038
Endosulfan sulfate		0.0038 U	0.0038	0:0038 U	0.0038	0.0037 U	0.0037	0.0039 U	, 0.0039	0.02 U	0.02	0.0038 U	0.0038
4,4'-DDT	2	0.011 P	0.0038	0.008 P	0.0038	0.032	0.0037	0.053	0.0039	.047 D	0.02	0.013	0.0038
Methoxychlor	280 -	0.019 U	0.019	0.019 U	0.019	0.018 U	0.018	0.02 U	0.02	0.098 U	0.098	0.019 U	0.019
Endrin ketone	,*	0.0038 U	0.0038	0.0038 U	0.0038	0.0037 U	0.0037	0.0039 U	0.0039	0.02 U	0.02	0.0038 U	0.0038
Endrin aldehyde		0.0038 U	0.0038	0.0038 U	0.0038	0.0037 U	0.0037	0.0039 U	0.0039	0.02 U	0.02	0.0038 U	0.0038
alpha-Chlordane		0.0034 P	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U-	0.0019
gamma-Chlordane		0.0027 P	0.0019	0.0019 U	0.0019	0.0018 U	0.0018	0.002 U	0.002	0.0098 U	0.0098	0.0019 U	0.0019
Toxaphene	0.1	0.19 U	0.19	0.19 U	0.19	0.18 U	0.18	0.2 U	0.2	0.98 U	0.98	0.19 U	0.19
Arocior-1016	0.49	0.038 U	0.038	0.038 U	0.038	0.037 U	0.037	0.039 U	0.039	0.2 U	0.2	0.038 U	0.038
Aroclor-1221	0.49	0.076 U	0.076	0.076 U	0.076	0.074 U	0.074	0.078 U	0.078	0.39 U	0.39	0.077 U	0.077
Aroclor-1232	0.49	0.038 U	0.038	0.038 U	0.038	0.037 U	0.037	0.039 U	0.039	0.2 U	0.2	0.038 U	0.038
Aroclor-1242	0.49	0.038 U	0.038	0.038 U	0.038	0.037 U	0.037	0.039 U	0.039	0.2 U	0.2	0.038 U	0.038
Aroclor-1248	0.49	0.038 U	0.038	0.038 U	0.038	0.037 U	0.037	0.039 U	0.039	0.2 U	0.2	0.038 U	0.038
Aroclor-1254	0.49	0.038 U	0.038	0.038 U	0.038	0.037 U	0.037	0.039 U	0.039	0.2 U	0.2	0.038 U	0.038
Arocior-1260	0.49	0.038 U	0.038	0.038 U	0.038	0.037 U	0.037	0.039 U	0.039	0.2 U \	0.2	0.038 U	0.038
Method:TCL Pesticides/PCBs										-	,		

CHARLES WOOD

SOIL BORING PESTICIDES/PCBS

Geographical Location		В	37	. В	8	В	18	E	9		39	F	39
Sample	<u> </u>	B7-SB	01-A02	B8-SB	01-A01	B8-SB	01-A02	<u> </u>	01-A01	_	01-A02	_	01-C02
Sample Type													licate
Batch#		9501	G553	9501	G553	9501	G553	9501	G831	9501	G831		G831
Prep#	<u> </u>		20050	95GF	20050	95GF	20050		20079		20079		20079
RFW#		00	7		04	00	05	0(02		03
Sample Depth (bgs)		-							<u> </u>		<u> </u>		1
Dilution Factor		1.	00	1.	00	1.	00	1.	00	1.	00	1	.00
Matrix		S	oil ,	S	oil	S	oil		oil		oil		oil
Units	mg/kg	mg	/kg	mg	/kg	mg	/kg		/kg	I	ı/kg		g/kg
Sampling Date		1/10		1/10			0/95		3/95		3/95		3/95
Analysis Date		1/26	5/95	1/26			5/95	2/3			3/95		3/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
		<u> </u>										7,000	
alpha-BHC		0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
beta-BHC		0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
delta-BHC		0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
gamma-BHC (Lindane)	0.52	0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
Heptachlor	0.15	0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0,002 U	0.002
Aldrin	0.04	0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
Heptachlor epoxide		0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
Endosulfan I	340	0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
Dieldrin	0.042	0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U	0.004	0.004 U	0.004
4,4'-DDE	2	0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.011	0.0039	0.004 U	0.004	0.0044	0.004
Endrin	17	0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U	0.004	0.004 U	0.004
Endosulfan II	340	0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U	0.004	0.004 U	0.004
4,4'-DDD	3	0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U	0.004	0.004 U	0.004
Endosulfan sulfate		0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U	0.004	0.004 U	0.004
4,4'-DDT	2	0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.02	0.0039	0.0024 J	0.004	0.0053	0.004
Methoxychior	280	0.019 U	0.019	0.018 U	0.018	0.019 U	0.019	0.019 U	0.019	0.02 U	0.02	0.02 U	0.02
Endrin ketone		0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U.	0.004	0.004 U	0.004
Endrin aldehyde		0.0039 U	0.0039	0.0036 U	0.0036	0.0038 U	0.0038	0.0039 U	0.0039	0.004 U	0.004	0.004 U	0.004
alpha-Chlordane		0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
gamma-Chlordane		0.0019 U	0.0019	0.0018 U	0.0018	0.0019 U	0.0019	0.0019 U	0.0019	0.002 U	0.002	0.002 U	0.002
Toxaphene	0.1	0.19 U	0.19	0.18 U	0.18	0.19 U	0.19	0.19 U	0.19	0.2 U	0.2	. 0.2 U	0.2
Aroclor-1016	0.49	0.039 U	0.039	0.036 U	0.036	0.038 U	0.038	0.039 U	0.039	0.04 U	0.04	0.04 U	0.04
Aroclor-1221	0.49	0.078 U	0.078	0.072 U	0.072	0.077 U	0.077	0.078 U	0.078	0.079 U	0.079	0.081 U	0.081
Aroclor-1232	0.49	0.039 U	0.039	0.036 U	0.036	0.038 U	0.038	0.039 U	0.039	0.04 U	0.04	0.04 U	0.04
Aroclor-1242	0.49	0.039 ป	0.039	0.036 U	0.036	0.038 U	, 0.038	0.039 U	0.039	0.04 U	0.04	0.04 U	0.04
Aroclor-1248	0.49	0.039 U	0.039	0.036 U	0.036	0.038 U	0.038	0.039 U	0.039	0.04 U	0.04	0.04 U	0.04
Aroclor-1254	0.49	0.039 U	0.039	0.036 U	0.036	0.038 U	0.038	0.039 U	0.039	0.04 U	0.04	0.04 U	0.04
Aroclor-1260	0.49	0.039 U	0.039	0.036 U	0.036	0.038 U	0.038	0.039 U	0.039	0.04 U	0.04	0.04 U	0.04
Method:TCL Pesticides/PCBs	•												

CHARLES WOOD SOIL BORING PESTICIDES/PCBS

Geographical Location		В	10	В	10	-√ B′	10
Sample		B10-SE	01-A01	B10-SE	01-A02	B10-SB0	1-A02RE
Sample Type						٠	
Batch#		9501	G553	9501	G553	9501	G553
Prep#	,	95GF	20050	95GF	20050	95GF	0079
RFW#		0(01		02	002	RE
Sample Depth (bgs)			·····				1
Dilution Factor		1.	00	1.	00	1.0	00
Matrix		S	oil	S	oil	St	oil
Units	mg/kg	mg	/kg	mg	/kg	mg	/kg
Sampling Date		1/10	0/94	1/10	0/95	1/10	0/95
Analysis Date		1/20	3/95	1/26	5/95	2/3	/95
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit
alpha-BHC		0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
beta-BHC		0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
delta-BHC		0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
gamma-BHC (Lindane)	0.52	0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
Heptachlor	0.15	0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
Aldrin	0.04	0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
Heptachlor epoxide		0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
Endosulfan I	340	0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
Dieldrin	0.042	0.0039 U	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
4,4'-DDE	2	0.0035 J	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
Endrin	17	0.0039 U	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
Endosulfan II	340	0.0039 U	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
4,4'-DDD	3	0.0039 U	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
Endosulfan sulfate		0.0039 U	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
4,4'-DDT	2	0.0024-J	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
Methoxychlor	280	0.02 U	0.02	0.019 U	0.019	0.019 U	0.019
Endrin ketone		0.0039 U	0.0039	0.0039 U	0.0039	0.0039 U	0.0039
Endrin aldehyde		0.0039 U	0.0039	0.0039 Ü	0.0039	0.0039 U	0.0039
alpha-Chlordane	,	0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
gamma-Chlordane		0.002 U	0.002	0.0019 U	0.0019	0.0019 U	0.0019
Toxaphene	0.1	0.2 U	0.2	0.19 U	0.19	0.19 U	0.19
Aroclor-1016	0.49	0.039 U	0.039	0.039 U	0.039	0.039 U	0.039
Aroclor-1221	0.49	0.079 U	0.079	0.078 U	0.078	0.077 U	0.077
Aroclor-1232	0.49	0.039 U	0.039	0.039 U	0.039	0.039 U	0.039
Aroclor-1242	0.49	0.039 U	0.039	0.039 U	0.039	0.039 U	0.039
Aroclor-1248	0.49	0.039 U	0.039	0.039 U	0.039	0.039 U	0.039
Aroclor-1254	0.49	0.039 U	0.039	0.039 U	0.039	0.039 U	0.039
Aroclor-1260	0.49	0.039 U	0.039	0.039 U	0.039	0.039 U	0.039
Method:TCL Pesticides/PCBs							

Geographical Location	<u> </u>		CI	N1 ·	CV	V1	CV	V1	CV	V1	CI	N1	CV	N1	C	W1
Sample	-			W26-A01	CW01-M		CW01-M		CW01-M			W27-A01		W27-A02		/W28-A01
Sample Type	 						Trip E		Field Rins		0000110	****	01101111	1127 7102	3,131-1	111207101
Batch#			9502	G358	95030	G739	95030		95030		9502	G358	9503	G739	9503	2G358
Prep#			95GV	/C041	95GV	E071	95GV		95GV			/C039		/E071		VC039
RFW#				01	00		00		00			03		01		005
Dilution Factor				00 .	1.0		1.0		1.0			00		00		.00
Matrix	,		wa	ter	wa	ter	wa		wa			iter		ter		ater
Units	ug/l	ug/l	ug	g/l	ug		ug		ug		u			g/l		ıg/l
Sampling Date				1/95	3/14		3/14		3/14			1/95		4/95		21/95
Analysis Date			3/1	/95	3/19	/95	3/19	/95	3/19	/95	2/2	7/95		9/95		27/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
			Result		Result	,	Result		Result		Result	Limit	Result	Limit	Result	Limit
Chloromethane		[∫] 7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	. 10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	`10	- 10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	- 10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 Ü	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	′10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10·U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	23	.10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	. 10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	4 J	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 ,
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	,10 ,	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dilution Factor			,													
Method:TCL Volatiles													<u> </u>			

Geographical Location	1		C	N1	C	N1	C	W1	CV	N/4	CV	N/4		N2	· ·	16/0
Sample	 			W28-A02		W29-A01		W29-A02		W29-D01	CW01-M			W30-A01	_	W2 W30-A02
Sample Type	 		0110174	1120-AUZ	CAAGI-IA	VVZ5-7401	C4401-14	1VV29-AU2		Blank	Field Rins		CVVUZ-IVI	W-30-A01	CVVUZ-IV	NV3U-AUZ
Batch#	 	 .	9503	G739	9502	G358	0503	G739		G358	9502		0502	G358	0502	3G739
Prep#				/E071		C039		071 & 62		C039	95GV			/C041	1	VE071
RFW#				D8		07		10		09	9567			12 .		12
Dilution Factor				00		00		.00		00 .	1.0			00		.00
Matrix	 			ıter	+	iter		ater		iter	wa				·	
Units	ug/l	ug/l	U		+	g/l		g/i		g/l				ater		ater
Sampling Date	Lug/i	ugri		4/95		1/95		4/95		1/95	ug 2/21			g/l		ig/l
Analysis Date	 			9/95		7/95		9/95		7/95		7/95 /		1/95 1/95		4/95 9/95
Analysis	Standard	MDL	Analytical	Reporting												Reporting
rulalysis	Otandard	IVIDE	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit		Limit
	-		Result	Lillin	Result	Lillin	Resuit	Liiriit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	40	40.11	40
Bromomethane	 	6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10 .	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane	 	9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	20	10	10 U	10	10 U	10	10 U	· 10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1-Dichloroethene		4.9	10 U	10	10 U	10	4 J	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	110	10	360	50 *	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.2-Dichloroethane	2	2.4	-10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone	-	4.1	10 U	10	10 U	10	10 U	10	36	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1,5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	48	10	780	100 *	990	50 *	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	.10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	. 10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 Ü	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dilution Factor					*=	10	*.	= 5							<u> </u>	
Method:TCL Volatiles					<u> </u>								-	 	(

Geographical Location	7		CW			N2	<u> </u>	N2	<u> </u>	N2	C	W2		N2	01	V6 .
Sample			CW02-MM			W31-A02		W32-A01	CW02-M			W33-A01		W33-A02	CW06-M	
Sample Type		-	01102 11111		01002-101	TTO I AUE	01102-11	1102-701	CVVUZ-IVI	4432-MUZ	C4402-14	18822-MU1	CVVUZ-IVI	19933-MUZ	CAAGO-IAI	VVU1-AU1
Batch#	1		9502G	358	9503	G739	9502	G358	9503	G730	9502	G358	0502	G739	OEOE	G840
Prep#	1		95GVC			/E072		C041		/E072		/C041		/E072	95GV	
RFW#			014			14		16		16		18		18	9367	
Dilution Factor	 		1.00		l	00		00		00		.00		.00	1.0	
Matrix	1		wate			iter	wa		wa			ater		ater	wa	
Units	ug/l	ug/l	ug/			g/l		g/l	u _i			g/l		g/l	uç	
Sampling Date			2/21/			4/95		1/95	3/14			9/1 1/95		9/1 4/95	5/10	
Analysis Date	· · · · · · · · · · · · · · · · · · ·		3/1/9			0/95		/95	3/20			1/95		0/95	5/16	
Analysis	Standard	MDL	Analytical	Reporting		Reporting	Analytical	Reporting				Reporting				Reporting
	1		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
													1100011		- TOOUN	
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	·10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10′	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	`10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)	1	4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	.10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0) 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	11	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone	1	3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	3 J	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	700	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	2 J	10
Styrene	100	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	4 J	10
Dilution Factor	 , 															
Method:TCL Volatiles	<u> </u>															

CW voa

Geographical Location	1 1		ĊV	V6	CV	V6	CI	N6	CV	V6	CV	V6	C	W6
Sample	1		CW06-M	W01-A02	CW06-M	W01-E02	CW06-M	W01-D02	, CM09-W		CW06-M			W34-D01
Sample Type	T				Field Rins			Blank				11017102		Blank
Batch#		-	9505	G138	9505			G138	9502	G300	9503	G723		G300
Prep#			95GV	B148	95GV			/B148	95GV		95GV			/C034
RFW#			00)2	. 00			04	00		00			02
Dilution Factor			1.0		1.0			00	1.		1.0			.00
Matrix			wa	ter	wa			iter		ter	wa			ater
Units	ug/l	ug/l	uç		ug			g/l	· us		u			g/l
Sampling Date			5/25		5/25			5/95	2/20		3/13			0/95
Analysis Date	. 1		6/1	/95	6/1			/95	2/23		3/19		_	3/95
Analysis	Standard	MDL	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting				Reporting
			Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
						-	- toouit		rtooun		Nosuk	Little	Treatit	
Chloromethane	1	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane	1	9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	· 10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1-Dichloroethene	1 1	4.9	10 U	10	10 U	10	10 U .	10	10 U	10	10 U	10	10 U	10
1.1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)	1 	4.4	10 U	10 .	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.2-Dichloroethane	2	2.4	10 U	10	10 U	~ 10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	30	10
1.1.1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	·10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1 1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	· 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone	 	3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1 1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1.1.2.2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene.	100	3.8	10 U	. 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	> 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dilution Factor		0.0	100	- ,0	100	, io	100	¹⁰	100	10	100	10	10.0	<u>!U</u>
Method:TCL Volatiles	 							 			 		· -	
HOLLION, I OL ACIALIES											í l			1 .

Geographical Location			ı CV	V9	l C/	N9	C)	N9	CI	N9 i	C	V9		36
Sample	1		CW09-M\			W35-A02		W35-E01		W36-A01		W36-A02		06B-A01
Sample Type					1 - 1112			sate Blank	0110010	1100-701	01103-111	**************************************	DOJAIAA	000-701
Batch#			95020	G300	9503	G723		G300	9502	G300	9503	G723	0502	G198
Prep#	 		95GV		95G\			/C036		C036	95GV			/C029
RFW#			00			02		07		D5	00			03
Dilution Factor			1.0			00		.00	_	00	1.0			00
Matrix			wat		- i-		<u> </u>	ter		iter	w		1	ater
Units	ug/l	ug/l	ug		u			g/l		g/l	u vva			g/l
Sampling Date		<u>ug, r</u>	2/20			3/95		0/95		9/1 D/95		3/95		9/I 5/95
Analysis Date			2/23			9/95		4/95		4/95		9/95		0/95
Analysis	Standard	MDL	Analytical	Reporting		Reporting		Reporting		Reporting	Analytical	Reporting		Reporting
	Julian	11102	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
			rtooun	Link	Nosun		ixosuit	Laint	Nosuit	Lillin	Result	Lam	Result	Linin
Chloromethane		7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	-10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	12	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	25	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10 '	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloropropane	` 1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10 ·	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10 ,	10 U	10	10 U	10	10 U	10	10 U	10.	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dilution Factor		- 1			- '									
Method:TCL Volatiles														

Geographical Location			B6			37	-	17		10						
Sample	+		B6-MW06			07B-A01				38	В		В	_		39
Sample Type	 	-	DO-IVIVVUC	DD-AUZ	D/-WW	U/B-AU1	B1-MM	07B-A02	B8-MM	08B-A01	B8-MVV	D8B-A02	B9-MW0)9B-A01	B9-MW	09B-A02
Batch#-	 		9503G	644	0500		0500	0047	0500	0400						
Prep#	 		95GVC			G198 /C029		G617		G198	9503		9502			G617
RFW#	 		93670					/C052		/C029		C053	95GV			/C052
Dilution Factor	-		1.00			05 00		03		07		03	00			01
Matrix			wate		+	·		00		00	1.		1.0		1	.00
Units	ug/l	ug/l	ug/			ter		ter - a		ater	wa		wa		1	ater
Sampling Date	ug/i	ugn	3/8/9			g/l 5/95		g/I '/95		g/l 5/95		g/l i/95	Ug			g/l
Analysis Date			3/10/	-		0/95		/95		0/95	3/8		2/15			7/95
Analysis	Standard	MDL	Analytical	Reporting				Reporting								9/95
, maryoro	Clandard	IVIDE	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Reporting Limit	Analytical Result	Reporting Limit		Reporting
			Nesult	Liliit	Nosuit	LHIIK	Resuit	Lililit	Result	LIIIII	Result	Limit	Result	Limit	Result	Limit
Chloromethane	 	7.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Brómomethane		6.7	10 Ú	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	2 J	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U .	10
1,2-Dichloropropane	`1	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 Ü	10	10 Ù	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10,	10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	× 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	1	3.3	10 U	10	- 10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2:4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform 4-Methyl-2-pentanone	400	3.1 5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone	400			10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Z-nexanone Tetrachloroethene	 	3.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane Toluene	1000	4.2 2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	-10 U	10	10 U	10
Ethylbenzene Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
'	100			10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Dilution Factor	40	3.8	ט טר	10	10 U	10	-10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Method:TCL Volatiles			·		<u> </u>			·	-						,	
IVICTION. I OF ADISTILES	L				L						1			L		

11/2

Geographical Location	<u> </u>		B	10	B	10	В	10	B.	10	B	10	B1	n 1
Sample	 	•	B10-MW		B10-MW	•-		/10B-D01	B10-MW			10B-E01	B10-MW1	
Sample Type	 			1007101		1007102		Blank	Trip			sate Blank	Field Rins	
Batch#			9502	G198	9503	G641		G198	9503			G198	95030	
Prep#			95GV			C053		/C030	95GV			C030	95GV	
RFW#	 			09		05		11	3330			12	00	
Dilution Factor		_	1.		1.			.00	1.			00	1.0	
Matrix			wa		wa			iter	wa			ter	wat	
Units	ug/l	ug/l	u			g/l		g/l	us			g/l	ug	
Sampling Date	 	<u>~g</u>		5/95		/95	<u> </u>	3/95	3/8	•		3/95	3/8/	
Analysis Date	 		2/2			0/95		1/95	3/10			1/95	3/10	
Analysis	Standard	MDL	Analytical		Analytical	Reporting			Analytical		-		Analytical	Reporting
	1		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11000		1100011		TOOUR		, toolik	
Chloromethane		7.3	10 U	· 10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromomethane		6.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Vinyl Chloride	5	7.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chloroethane		9.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Methylene Chloride	2	2.7	10 U	, 10	10 U	10	10 U	10	10 U	10 ~	10 U	10	10 U	10
Acetone	700	6.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	- 10	10 U	10
Carbon Disulfide		4.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10	10 U	10
1,1-Dichloroethene		4.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10.	10 U	10
1,1-Dichloroethane	70	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethene (total)		4.4	10 U	10	10 U	10	10 U -	10	10 U	10	10 U	. 10	10 U	10
Chloroform	6	2.9	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,2-Dichloroethane	2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Butanone		4.1	10 U	10	10 U	10	14	10	10 U	· 10	15	10	10 U	10
1,1,1-Trichloroethane	30	1.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Carbon Tetrachloride	2	1.5	10 U	10	10 U	10 ′	10 U	10	10 U	10	10 U	10	10 U	10
Bromodichloromethane	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	. 10
1,2-Dichloropropane	1	1.7	10 U	10	10 U	10	10 U	10	. 10 U	10	10 U	10	10 U	10
cis-1,3-Dichloropropene	0.2	3.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Trichloroethene	1	2.0	10 U	10	10 U	10	10 U	10	10 U	10	. 10 U	10	10 U	10
Dibromochloromethane	10	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2-Trichloroethane	3	4.3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Benzene	. 1	3,3	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
trans-1,3-Dichloropropene	0.2	2.4	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Bromoform	4	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
4-Methyl-2-pentanone	400	5.5	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
2-Hexanone		3.9	10 U	10	10 U .	10	10 U	10	10 U	10	10 U	10	10 U	10
Tetrachloroethene	1	4.0	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
1,1,2,2-Tetrachloroethane	2	4.2	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Toluene	1000	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Chlorobenzene ·	4	2.7	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Ethylbenzene	700	3.1	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10	10 U	10
Styrene	100	3.8	10 U	10	10 U	10	;10 U	10	10 U	10	10 U	10	10 U	10
Xylene (total)	40	3.8	10 U	10	10 U	10	10 U	. 10	10 U	10	10 U	10	10 U	10
Dilution Factor														
Method:TCL Volatiles					,									

Geographical Location	T		CN				1	1	T				- 2,5	
Sample	-				CV		CV		CW		CM		CM	
Sample Type	 	}	CW01-MV	W26-AU1	CW01-M	W26-AU2	CW01-M		CW01-MV	V27-A01	CW01-MV	N27-A02	CW01-MV	N28-A01
Batch#		ļ	0500				Field Rins							
	1		95020		9503		95030		95020		95030		95020	
Prep#	-	ļ .	95GB		95GE		95GB		95GB(95GB		95GB	
RFW#			00		00		00		00		00		00	
Dilution Factor			1.0		1.		1.0		1.0		1.0		1.0	
Matrix			wat		wa		wat		wat		wat		wat	er (
Units	ug/l	ug/l	ug		uį		ug		ug		ug		ug	
Sampling Date	ļ .		2/21		3/14		3/14		2/21		3/14		2/21	
Analysis Date			3/12		3/30		3/29		3/13		3/29		3/15	/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	ļ		Result		Result		Result		Result		Result		Result	
		<u>-</u> -											<u> </u>	
Phenol	4000	7.1	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
bis(2-Chloroethyl) ether	10	9.7	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2-Chiorophenol	40	7.3	11 U	11	10 U	10	11 U	11	11 U	11	" 11 U	11	11 U	11
1,3-Dichlorobenzene	600	5.3	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
1,4-Dichlorobenzene	75	4.8	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
1,2-Dichlorobenzene	600	5.7	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2-Methylphenol		6.7	11 U	11	10 U	10	11 U	. 11	11 U	11.	11 U	11	11 U	11
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	10 U	10	11 U	11	11 U	11\	11 U	11	11 U	11
4-Methylphenol		12.9	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
N-Nitroso-di-n-propylamine	20	8.0	11 U	11	10 U	10	11 U	11	11 U	11	11 U	-11	11 U	11
Hexachloroethane	10	5.3	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
Nitrobenzene	10	7.4	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U,	11
Isophorone	100	3.9	11 U	11	10 U	10	11 U	11	11 U	11	11 U	2,11	11 U	11
2-Nitrophenol		7.0	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2,4-Dimethylphenol	100	4.8	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
bis(2-Chloroethoxy) methane		6.1	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2,4-Dichlorophenol	20	4.4	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
1,2,4-Trichlorobenzene	9	1 9.6	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	· 11 U	11
Naphthalene		8.4	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
4-Chloroaniline		2.9	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
Hexachlorobutadiene	1	4.6	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
4-Chloro-3-methylphenol	20	3.1	11 U	11	10 Ú	10	11 U	11	11 U	11	11 U	11.	11 U	11
2-Methylnaphthalene		8.7	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
Hexachlorocyclopentadiene	50	3.6	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2,4,6-Trichlorophenol		5.6	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2,4,5-Trichlorophenol	700	4.7	26 U	26	25 U	25	28 U	28	26 U	26	26 U	26	27 U	27
2-Chloronaphthalene		8.2	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
2-Nitroaniline		6.1	26 U	26	25 U	25	28 U	28	26 U	26	26 U	26	27 U	27
Dimethylphthalate	7000	4.4	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
Acenaphthylene	10	6.0	11 U	11	10 U	10	11 U	11	- 11 U	11	11 U	11	11 U	11
2,6-Dinitrotoluene	10	5.2	11 U	11	10 U	10	11 U	11	11 U	11	11 U	11	11 U	11
3-Nitroaniline		5.2	26 U	26	25 U	25	28 U	28	26 U	26	26 U	26	27 U	27
Acenaphthene	400	6.7	11 Ü	11	10 U	10 '	11 U	11	11 U	11	11 U	11	11 U	11
2,4-Dinitrophenol	40	4.6	26 U	26	25 U	25	28 U	28	26 U	26	26 U	26	27 U	27

Cample C			W1	1 (20)	N1
Sample Type	CW1 CW01-MW27-A01		W27-A02	CW01-M	
Batch## 9502G358 9503G739 9503G739 Prep# 95GB0123 95GB0181 95				01101-111	1120-7101
Prop# 95GB0123 95GB0181 95GB0181 95GB0181 95GB0181 95GB0181 95GB0181 001 003 006 00	9502G358	95030	G739	9502	G358
RFW# 001	95GB0123		30181	95GE	
Dilution Factor	003		01	00	
Matrix	1.00		.00		00
Units	water		ater	wa	
Sampling Date 2/21/95 3/14/95 3/14/95 3/14/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/12/95 3/14/95 3/14/95 3/12/95 3/14/95	ug/l		g/l		g/l
Analysis Standard MDL Analytical CRQL Analytical CRQL CR	2/21/95		4/95		1/95
Analysis	3/13/95	/	9/95		5/95
Result	Analytical CRQL	Analytical	CRQL	Analytical	CRQL
A-Nitrophenol 7.5 26 U 26 25 U 25 28 U 28	Result	Result	OITGE	Result	CINCIL
Dibenzofuran	TOOUR	Nosuit	 	Nosuit	
Dibenzofuran	26 U 26	26 U	26	27 U	27
2,4-Dinitrotoluene	11 U 11	11 U	11	11 U	11
Diethylphthalate	11 U 11	11 U	11	11 U	11
4-Chlorophenyl-phenylether 7.0 11 U 11 10 U 10 11 U 11 Fluorene 300 6.3 11 U 11 10 U 10 11 U 11 4-Nitroaniline 6.4 26 U 26 25 U 25 28 U 28 4,6-Dinitro-2-methylphenol 5.3 26 U 26 25 U 25 28 U 28 N-Nitrosodiphenylamine (1) 20 4.2 11 U 11 10 U 10 11 U 11 4-Bromophenyl-phenylether 5.3 11 U 11 10 U 10 11 U 11 4-Bromophenyl-phenylether 5.3 11 U 11 10 U 10 11 U 11 4-Bromophenyl-phenylether 5.3 11 U 11 10 U 10 11 U 11 4-Bromophenyl-phenylether 5.3 11 U 11 10 U 10 11 U 11 4-Bromophenyl-phenylether 5.3 11 U 11 10 U <t< td=""><td>11 U 11</td><td>11 U</td><td>11</td><td>11 U</td><td>11</td></t<>	11 U 11	11 U	11	11 U	11
Fluorene 300 6.3 11 U 11 10 U 10 11 U 11 11	11 U 11	- 11 U	11	11 U	11
4-Nitroaniline 6.4 26 U 26 25 U 25 28 U 28 4-G-Dinitro-2-methylphenol 5.3 26 U 26 25 U 25 28 U 28 N-Nitrosodiphenylamine (1) 20 4.2 11 U 11 10 U 10 11 U 11 4-Bromophenyl-phenylether 5.3 11 U 11 10 U 10 11 U 11 Hexachlorobenzene 10 5.5 11 U 11 10 U 10 11 U 11 Pentachlorophenol 1 4.0 26 U 26 25 U 25 28 U 28 Phenanthrene 10 5.0 11 U 11 10 U 10 11 U 11 Anthracene 2000 4.6 11 U 11 10 U 10 11 U 11 Carbazole 4.4 11 U 11 10 U 10 11 U 11 Carbazole 4.4 11 U 11 10 U <t< td=""><td>11 U 11</td><td>11 U</td><td>11</td><td>11 U</td><td>11</td></t<>	11 U 11	11 U	11	11 U	11
A,6-Dinitro-2-methylphenol 5.3 26 U 26 25 U 25 28 U 28 N-Nitrosodiphenylamine (1) 20 4.2 11 U 11 10 U 10 11 U 11 11	26 U 26	26 U	26	27 U	27
4-Bromophenyl-phenylether 5.3 11 U 11 10 U 10 11 U 11 Hexachlorobenzene 10 5.5 11 U 11 10 U 10 11 U 11 Pentachlorophenol 1 4.0 26 U 26 25 U 25 28 U 28 Phenanthrene 10 5.0 11 U 11 10 U 10 11 U 11 Anthracene 2000 4.6 11 U 11 10 U 10 11 U 11 Carbazole 4.4 11 U 11 10 U 10 11 U 11 Di-n-butylphthalate 900 6.5 11 U 11 10 U 10 11 U 11 Piuroanthene 300 6.0 11 U 11 10 U 10 11 U 11 Pyrene 200 5.4 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 100 5.3 11 U	26 U 26	26 U	26	27 U	27
Hexachlorobenzene 10 5.5 11 U 11 10 U 10 11 U 11 11	11 U 11	11 U	11	11 U	11
Hexachlorobenzene	11 U 11	11 U	11	11 U	11
Pentachlorophenol	11 U 11	11 U	11	11 U	11
Phenanthrene 10 5.0 11 U 11 10 U 10 11 U 11 11	26 U 26	26 U	26	27 U	27
Anthracene 2000 4.6 11 U 11 10 U 10 11 U 11 Carbazole 4.4 11 U 11 10 U 10 11 U 11 Di-n-butylphthalate 900 6.5 11 U 11 10 U 10 11 U 11 Fluoranthene 300 6.0 11 U 11 10 U 10 11 U 11 Pyrene 200 5.4 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 100 5.3 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 60 2.8 11 U 11 10 U 10 11 U 11 3,3'-Dichlorobenzidine 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 <t< td=""><td>11 U 11</td><td>11 U</td><td>11</td><td>11 U</td><td>11</td></t<>	11 U 11	11 U	11	11 U	11
Carbazole 4.4 11 U 11 10 U 10 11 U 11 Di-n-butylphthalate 900 6.5 11 U 11 10 U 10 11 U 11 Fluoranthene 300 6.0 11 U 11 10 U 10 11 U 11 Pyrene 200 5.4 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 100 5.3 11 U 11 10 U 10 11 U 11 3,3'-Dichlorobenzidine 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 <td>11 U 11</td> <td>11 U</td> <td>11</td> <td>11 U</td> <td>11</td>	11 U 11	11 U	11	11 U	11
Di-n-butylphthalate 900 6.5 11 U 11 10 U 10 11 U 11 Fluoranthene 300 6.0 11 U 11 10 U 10 11 U 11 Pyrene 200 5.4 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 100 5.3 11 U 11 10 U 10 11 U 11 3,3'-Dichlorobenzidine 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene	11 U 11	11 U	11	11 U	11
Fluoranthene 300 6.0 11 U 11 10 U 10 11 U 11 Pyrene 200 5.4 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 100 5.3 11 U 11 10 U 10 11 U 11 3,3'-Dichlorobenzidire 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene	11 U 11	5 J	11	11 U	11
Pyrene 200 5.4 11 U 11 10 U 10 11 U 11 Butylbenzylphthalate 100 5.3 11 U 11 10 U 10 11 U 11 3,3'-Dichlorobenzidire 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene	11 U 11	11 U	11	11 U	11
Butylbenzylphthalate 100 5.3 11 U 11 10 U 10 11 U 11 3,3'-Dichlorobenzidire 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
3,3'-Dichlorobenzidire 60 2.8 11 U 11 10 U 10 11 U 11 Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U 11 Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
Benzo(a)anthracene 10 4.9 11 U 11 10 U 10 11 U	11 U 11	11 U	11	11 U	11
Chrysene 20 4.4 11 U 11 10 U 10 11 U 11 bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
bis(2-Ethylhexy)phthalate 30 9.7 2 J 11 10 U 10 11 U 11 Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 Ü	11	11 U	11
Di-n-octyl phthalate 100 5.6 11 U 11 10 U 10 11 U 11 Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	2 J 11	2 J	11	2 J	11
Benzo(b)fluoranthene 2 5.7 11 U 11 10 U 10 11 U 11 Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
Benzo(k)fluoranthene 2 6.2 11 U 11 10 U 10 11 U 11 Benzo(a)pyrene 20 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
Benzo(a)pyrene 20 , 4.9 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
	11 U 11	11 U	11	11 U	11
	11 U 11	11 U	11	11 U	11
Dibenzo(a,h)anthracene 20 6.0 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11
Benzo(g,h,i)perylene 20 6.8 11 U 11 10 U 10 11 U 11	11 U 11	11 U	11	11 U	11 .
Total Est. Conc. of TIC 8 JB 5 J 5 J	5J	- 110	+ ''-	40	
Dilution Factor	 	 	 	1	-
Method:TCL Semivolatiles	6 JB	+	+	5.5	

Geographical Location	1		CI	W1	CV	V4		W1	, CV			<u> </u>		
Sample	 			W28-A02	CW01-M			W29-A02	CW01-M		CV			N2
Sample Type			377374	11120-7102	0001401	1423-701	CAAGI-IA	14429-MUZ	Field Rins		CW02-MV	V3U-AU1	CW02-M	W30-A02
Batch#		``,	9503	G739	95020	2358	0503	G739	95020		05000	2050	- 0500	
Prep#	1			30181	95GB			30181	95020 95GB		95020 95GB			G739
RFW#	 			08	3330			10	9306				95GE	
Dilution Factor				.00	1.0			.00	1.0		01			12
Matrix	 		<u> </u>	ater	wai			ater			1.0			00
Units	ug/l	ug/i	U		ug			g/i	wai		wat		Wa	
Sampling Date	-3.		· · · · · · · · · · · · · · · · · · ·	4/95	2/21			4/95	2/21		ug			g/l
Analysis Date	1 .	· · · · · · · · · · · · · · · · · · ·		9/95	3/15			9/95	3/15		2/21 3/15			4/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL				9/95
	- Januara		Result	ORGE	Result	ORGE	Result	CROL	Result	CRUL	Analytical Result	CRQL	Analytical	CRQL
		-	rtodut		- INGSUR		Kesuit		Result		Result		Result	
Phenol	4000	7.1	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2-Chlorophenol	40	7.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2-Methylphenol	1	6.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
4-Methylphenol		12.9	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	. 12 U	12
Hexachloroethane	10	5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Nitrobenzene	10	7.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Isophorone	100	3.9	10 U	10	. 10 U	10	10 Ü	10	10 U	10	12 U	12	12 U	12
2-Nitrophenol	1	7.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
1,2,4-Trichlorobenzene	9	9.6	10 U	10	3 J	10	5 J	10	10 U	10	12 U	12	12 U	12
Naphthalene		8.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
4-Chloroaniline		2.9	10 U	10	10 U	10 .	10 U	10	10 U	10	12 U	12	12 U	12
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	10 U	10	10 U	10	-12 U	12	12 U	12
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2-Methylnaphthalene		8.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,4,5-Trichlorophenol	700	4.7	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
2-Chloronaphthalene	LI	8.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2-Nitroaniline		6.1	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Acenaphthylene	10	6.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
3-Nitroaniline		5.2	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
Acenaphthene	400	6.7	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,4-Dinitrophenol	40	4.6	26 U	26	24 U	24	26 U	26	24 U	24	31 U ′	31	30 U	30

Geographical Location	1		CV	W1	CM	V1	C	W1	CM	/1	CN	12	CI	N2
Sample	-	-		W28-A02	CW01-MV			W29-A02	CW01-MV		CW02-MV			W30-A02
Sample Type	-	-	1						Field Rins		31102 1111	700 7101	O1102-111	,
Batch#			9503	G739	95020	3358	9503	G739	95020		95020	3358	9503	G739
Prep#	-		<u> </u>	30181	95GB			30181	95GB		95GB			30181
RFW#				08	00		<u> </u>	10	01		01			12
Dilution Factor			 	00	1.0			.00	1.0		1.0			00
Matrix				nter	wat			ater	wat		wat			iter
Units	ug/l	ug/l	 	g/l	ug			g/l	ug		ug			g/l
Sampling Date	l ugn	ag/i		4/95	2/21			9/1 4/95	2/21		2/21			4/95
Analysis Date	+			9/95	3/15			9/95	3/15		3/15			9/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
, alaiyoto	Staridard	WIDE	Result	CITAL	Result	Oital	Result	Ortal	Result	OILGE	Result	Oital	Result	CNGL
			TOSUR		·		Tosuit		TOSUIT		rtesuit	,	Result	
4-Nitrophenol	 	7.5	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
Dibenzofuran	+	6.5	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
2,4-Dinitrotoluene	10	- 5.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Diethylphthalate	5000	5.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
4-Chlorophenyl-phenylether	1 3333	7.0	10 U	10	10 U	` 10	10 U	10	10 U	10	12 U	12	12 U	12
Fluorene	300	6.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
4-Nitroaniline	1 000	6.4	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
4,6-Dinitro-2-methylphenol	+	5.3	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
4-Bromophenyl-phenylether	1 20	5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Hexachlorobenzene	['] 10	5.5	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Pentachlorophenol	1 1	4.0	26 U	26	24 U	24	26 U	26	24 U	24	31 U	31	30 U	30
Phenanthrene	10	5.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Anthracene	2000	4.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Carbazole	2000	4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	10·U	10	10 U	10	12 U	12	2 J	12
Fluoranthene	300	6.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Pyrene	200	5.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
3,3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Chrysene	20	4.4	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	1J	10	1 J	10	10 U	. 10	10 U	10	2 J	12	2 J	12
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	10 U	10 ~′	10 U	10	12 U	12	12 U	12
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
	20	7.1	10 U	10	10 U	10								12
Indeno(1,2,3-cd)pyrene	20						10 U	10	10 U	10	12 U	12	12 U	12
Dibenzo(a,h)anthracene	1	6.0	10 U	10	10 U	10	10 U	10	10 U	10	12 U	12	12 U	12
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	10 U	10	10 U	10	-12 U	12	12 U	12
Total Est. Conc. of TIC			ļ.		2.	J		J	99	J	78	J	3	J
Dilution Factor	l				<u> </u>	<u></u>	* * *		<u> </u>			<u> </u>	<u> </u>	
Method:TCL Semivolatiles	l				5 J	R		<u> </u>	5 J	В	6 J	В .		

Geographical Location			CW	12	CV	N2	CW	2	CV	V2	CV	V/2	C	N2
Sample	1		CW02-MV		CW02-M		CW02-MW		CW02-M		CW02-M			W33-A02
Sample Type	,		01111				07702 11110	027101	31102-111	TOL TOL	, OTTO2-1016	1100-701	01102-111	*****
Batch#			95020	3358	95030	G739	9502G	358	9503	G739	95020	3358	9503	G739
Prep#			95GB		95GB		95GB0		95GE		95GB			30181
RFW#	 		01		01		016		0,		01			18
Dilution Factor	1		1.0		1.0		1.00			00	1.0			00
Matrix	1		wat		wa		wate		wa		wat			iter
Units	ug/l	ug/l	ug		ug		ug/l		ug		ug		. u	
Sampling Date			2/21		3/14		2/21/9			1/95	2/21			4/95
Analysis Date			3/15		3/29		3/15/9		3/29		3/15			9/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
	1		Result		Result		Result	5,142	Result	Ortal	Result	Ortal	Result	ORGE
~	†				- Nooun		, tooan		7100011		ROSUR		rtosuit	
Phenol	4000	7.1	10 U	10	10 U	10	11 U	11	12 U	. 12	11 U	11	12 U	12
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2-Chlorophenol	40	7.3	10 U	10	10 U	10	11 U	11	12 U	12	11.0	11	12 U	12
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
1.2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2-Methylphenol	1	6.7	10 U	10	10 U	10	11 U	11	12 U	· 12	11 U	11	12 U	12
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
4-Methylphenol	1	12.9	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Hexachloroethane	10	5.3	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Nitrobenzene	10	7.4	10 U	10	10 U	10	11 U	11	12 U	12	11 Ü	11	12 U	12
Isophorone	100	3.9	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2-Nitrophenol		7.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,4-Dimethylphenoi	100	4.8	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
bis(2-Chioroethoxy) methane	1	6.1	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
1,2,4-Trichlorobenzene	9	9.6	10 U	10	5 J	10	11 U	11	12 U	12	11 U	11	12 U	12
Naphthalene	T	8.4	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12 .
4-Chloroaniline	1	2.9	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2-Methylnaphthalene	<u> </u>	8.7	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,4,6-Trichlorophenol	1	5.6	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,4,5-Trichlorophenol	700	4.7	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30 ,
2-Chloronaphthalene	† †	8.2	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2-Nitroaniline		6.1	25 U	25	26 U	26	26 U	- 26	30 U	30	26 U	26	30 U	30
Dimethylphthalate	7000	4.4	10 U	` 10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Acenaphthylene	10	6.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
3-Nitroaniline	†	5.2	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30
Acenaphthene	400	6.7	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,4-Dinitrophenol	40	4.6	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30

Geographical Location	T		CW	12	CV	V2	CW	2	cv	V2	CV	12	CV	N2
Sample			CW02-MV		CW02-M		CW02-MW		CW02-M		CW02-MV		CW02-M	
Sample Type		-			1		002 11.10	027101	01102-111	102 702	00002-1010	100-701	C 1 1 0 2 - 1 1 1	**************************************
Batch#	-		95020	358	95030	G739	9502G	358	95030	3739	95020	3358	95030	G739
Prep#			95GB		95GB		95GB0		95GB		95GB		95GB	
RFW#	 		01		01		016		01		9335		9336	
Dilution Factor	 		1.0		1.0		1.00		1.0	_	1.0		1.0	
Matrix	-	- 	wat		wa		wate		wa		wat		wa	
Units	ug/l	ug/l	ug		ug		ug/l		ug	· · · · · · · · · · · · · · · · · · ·	ug		uç	
Sampling Date	ug/i	ug/i	2/21		3/14		2/21/9		3/14		2/21		/ 3/14	
Analysis Date	· · · · ·		3/15		3/29		3/15/9		3/14		3/15			9/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL		CRQL		
Allalysis	Glandard	WIDE	Result	CRGL	Result	CRUL	Result	CRUL	Result	CRQL	Analytical Result	CRUL	Analytical Result	CRQL
	+		Kesuit		Result		Result		Result		Result		Result	
4-Nitrophenol	†	7.5	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30
Dibenzofuran		6.5	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Diethylphthalate	5000	5.4	10 U	10	10 ∪	10	11 U	. 11	12 U	12	11 U	11	12 U	12
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Fluorene	300	6.3	10 U	10	10 U	10	_11 U	11	12 U	12	11 U	11	12 U	12
4-Nitroaniline		6.4	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30
4,6-Dinitro-2-methylphenol	<u> </u>	5.3	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
4-Bromophenyl-phenylether		5.3	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Hexachlorobenzene	10	5.5	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Pentachlorophenol	1	4.0	25 U	25	26 U	26	26 U	26	30 U	30	26 U	26	30 U	30
Phenanthrene	10	5.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Anthracene	2000	4.6	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Carbazole	-	4.4	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Di-n-butylphthalate	900	6.5	10 U	10	11	10	11 U	11	2 J	12	11 U	11	2 J	12
Fluoranthene	300	6.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Pyrene	200	5.4	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	11 U	. 11	12 U	12	11 U	11	12 U	12
3,3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Chrysene	20	4.4	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	10 U	10	1 J	11	2 J	12	1 J	11	2 J	12
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11 .	12 U	12
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Велго(а)ругеле	20	4.9	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11	12 U	12
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	11 U	11	12 U	12	11 U	11 /	12 U	12,
Total Est. Conc. of TIC	1		4 J			-	5 JB			: <u>*</u>	3.			
Dilution Factor	 		† -	-	,		0.00				 	•		
Method:TCL Semivolatiles	†	ζ,					-				5 J	R		
	1				l l		<u> </u>		· ·					

Geographical Location		_		N6	CV	NG	-	W6		NC	T \ 0	1	T	140
Sample			CW06-M		CW06-M	-		W01-E02	CV			N6	CV	
Sample Type	 		CAADO-IAI	VVUI-AUI	CAAAAAAA	VVU1-AUZ			CW06-M	VV34-AU1	CWU6-M	W34-A02	CW09-M	W35-A01
Batch#	 		OFOE	G840	oror	0400		sate Blank	0500				<u> </u>	
Prep#				30319		G138		G138	9502			G723	95020	
RFW#				02	95GE			B0350		0118		30181	95GB	
Dilution Factor					00	_		03	00			01	00	
Matrix			1.		1.0		<u> </u>	.00		00		00	1.0	
Units			wa		wa			ater	wa			ter	wa	
Sampling Date	ug/l	ug/l	ug	3/1	uç			ıg/l	ug			g/l	ug	
Analysis Date			5/10 5/29		5/25			5/95	2/20		1	3/95	2/20	
	C444	MEN			6/2			2/95	3/15			7/95	3/15	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
Phenoi	4000	7.1	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
bis(2-Chloroethyl) ether	10	9.7	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2-Chlorophenol	40	7.3	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
1,3-Dichlorobenzene	600	5.3	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
1,4-Dichlorobenzene	75	4.8	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
1,2-Dichlorobenzene	600	5.7	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2-Methylphenol		6.7	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	11 U	11	10 U	10	11 U	. 11	10 U	10	11 U	11	10 U	10
4-Methylphenol	1	12.9	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
N-Nitroso-di-n-propylamine	20	8.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Hexachloroethane	10	5.3	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Nitrobenzene	, 10	7.4	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Isophorone	100	3.9	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	100	10
2-Nitrophenol		7.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,4-Dimethylphenol	100	4.8	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
bis(2-Chloroethoxy) methane		6.1	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,4-Dichlorophenol	20	4.4	11 U	11	10 U	10	11 U	11	10 U	\ 10	11 U	11	10 U	10
1,2,4-Trichlorobenzene	9	9.6	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Naphthalene		8.4	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
4-Chloroaniline		2.9	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Hexachlorobutadiene	1	4.6	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
4-Chloro-3-methylphenol	20	3.1	11 U	11	10 U	10	11 U	11	10 U	· 10	11 U	11	10 U	10
2-Methylnaphthalene		8.7	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Hexachlorocyclopentadiene	50	3.6	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,4,6-Trichlorophenol		5.6	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,4,5-Trichlorophenol	` 700	4.7	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24
2-Chloronaphthalene		8.2	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2-Nitroaniline		6.1	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24
Dimethylphthalate	7000	4.4	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Acenaphthylene	10	6.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,6-Dinitrotoluene	10	5.2	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
3-Nitroaniline		5.2	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24
Acenaphthene	400	6.7	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
2,4-Dinitrophenol	40	4.6	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24

Geographical Location			CV	V6	CV	V6	C	W6	CV	V6	CV	V6	CV	/9
Sample			CW06-M	W01-A01	CW06-M	W01-A02	CW06-N	W01-E02	CW06-M	N34-A01	CW06-M	W34-A02	CW09-MV	
Sample Type	·						+	sate Blank					1	
Batch#			95050	G840	95050	G138		G138	95020	3300	9503	G723	95020	3300
Prep#	1		95GB		95GB			B0350	95GB			30181	95GB	
RFW#			00		00			03	00		. 00		00	
Dilution Factor			1.0		1.0		1	.00	1.0			00	1.0	
Matrix			wa		wa		-	ater	wat		wa		wat	
Units	ug/l	ug/l	ug		ug			g/l	ug			g/l	ug	
Sampling Date	<u> </u>	-9/-	5/10		5/25			5/95	2/20			3/95	2/20	
Analysis Date	-		5/29		6/2			2/95	3/15			7/95	3/15	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
radiyolo	Otandard	MOL	Result	Ortal	Result	Origin	Result	ONGL	Result	CITCL	Result	ORQL	Result	CRUL
			resur		rtosun		Nosun		Nesult		Result		Result	
4-Nitrophenol	-	7.5	28 U	28	24 U	24	` 27 U	27	24 U	24	26 U	26	24 U	24
Dibenzofuran		6.5	11 U	11	10 U	10	11 U	`11	10 U	10	11 U	11	10 U	10
2,4-Dinitrotoluene	10	5.8	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Diethylphthalate	5000	5.4	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
4-Chlorophenyl-phenylether		7.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Fluorene	300	6.3	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
4-Nitroaniline		6.4	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24
4,6-Dinitro-2-methylphenol		5.3	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24
N-Nitrosodiphenylamine (1)	20	4.2	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
4-Bromophenyl-phenylether		5.3	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Hexachlorobenzene	10	5.5	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Pentachlorophenol	1	4.0	28 U	28	24 U	24	27 U	27	24 U	24	26 U	26	24 U	24
Phenanthrene	10	5.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Anthracene	2000	4.6	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Carbazole		4.4	11 U	11	10 U	10	11 U	11	10 U	10 /	11 U	11	10 U	10
Di-n-butyiphthalate	900	6.5	11 U	11	10 Ü	10	11 U	11	10 U	10	11 U	11	10 U	10
Fluoranthene	300	6.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Pyrene	200	5.4	11 U	11	10 U	10	11 U	11	10 U	10	11 U	. 11	10 U	10
Butylbenzylphthalate	100	5.3	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
3,3'-Dichlorobenzidine	60	2.8	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Benzo(a)anthracene	10	4.9	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Chrysene	20	4.4	11 U	11	10 U	10	11 U	11	10 U	10	· 11 U	11	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	11 U	11	21 B	10 '	1 JB	11	2 J	10	11 U	11	10 U	10
Di-n-octyl phthalate	100	5.6	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Benzo(b)fluoranthene	2	5.7	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Benzo(k)fluoranthene	2	6.2	11 U	11	10 U	_10	11 U	11	10 U	10	11 U	11	10 U	10
Benzo(a)pyrene	20	4.9	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	11 U	11	10 U	10	.11 U	11	10 U	10	11 U	11	10 U	10
Dibenzo(a,h)anthracene	20	6.0	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Benzo(g,h,i)perylene	20	6.8	11 U	11	10 U	10	11 U	11	10 U	10	11 U	11	10 U	10
Total Est. Conc. of TIC			 	::	29				6.		300		'00	10
Dilution Factor			 		23			<u>, , , , , , , , , , , , , , , , , , , </u>	 		300			- -
			1		l								I	

Geographical Location			 	W9	CW	10	CM		CV	4/0	50		1 5	
Sample ·	 			W35-A02	CW09-MV						B6		Bearing	
Sample Type	 		CVVU9-N	14435-AUZ			CW09-MV	V36-AU1	CW09-M	VV36-AU2	B6-MW06	B-AU1	B6-MW0	5B-AU2
Batch#	 		OFO	3G723	Field Rinsa		95020	2000	0500	0700	05000	400		
Prep#	<u> </u>			B0181	9502G 95GB0		95020 95GB			G723	9502G		95030	
RFW#							1			30181	95GB0		95GB0	
Dilution Factor		•		02	00	-	00		00	- •	003		00	
Matrix	 	·		.00	_1.0		. 1.0			00	1.00		1.0	
Units		0		ater _	wate		wat		wa		wate		wat	
Sampling Date	. ug/i	ug/l		g/l 3/95	ug/		ug		uç		ug/		ug	
	<u> </u>				2/20/		2/20		3/13		2/15/		3/8/	
Analysis Date	Standard	MDL		7/95	3/15/		3/15		3/2		3/7/9		3/25/	
Analysis	Standard	MIDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
) .		Result		Result		Result		Result	· · · · · ·	Result		Result	
Phenol	4000	7.1 ·	10 U	10	10 U	10	10 U	10	11 U	11	10 U	40	4011	40
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10 10
2-Chlorophenol	40	7.3	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
1.3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
1.4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	10 U	10	11 U	11	10 U			1
1,2-Dichlorobenzene	600	5.7	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10 10	10 U	10
2-Methylphenoi	000	6.7	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,2'-oxybis(1-Chloropropane)		7.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
4-Methylphenol		12.9	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	
Hexachloroethane	10	5.3	10 U	10	10 U	10	10 U	10	11 U		10 U	10	10 U	10
Nitrobenzene	10	7.4	10 U	10	10 U	10	10 U	10	11 U	11 11	10 U	10	10 U	10 10
Isophorone	100	3.9	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2-Nitrophenol	100	7.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	/ 10	10 U	10	11 U	11	10 U	10	10 U	10
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	- 10
Naphthalene		8.4	10 U	10	10 U.	10	10 U	10	11 U	11	10 U	10	10 U	10
4-Chloroaniline		2.9	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
4-Chloro-3-methylphenol	20	3.1	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2-Methylnaphthalene	20	8.7	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,4,5-Trichlorophenol	700	4.7	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
2-Chloronaphthalene	700	8.2	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2-Nitroaniline		6.1	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Acenaphthylene	10	6.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,6-Dinitrotoluene	10	5.2	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
3-Nitroaniline		5.2	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
Acenaphthene	400	6.7	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,4-Dinitrophenol	400	4.6	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
4,7 Dilitiophichol	י ידי	7.0	Z4 U		40 U		240		_ 20 U	_ ∠0	∠ 5 U	Z5	24 U	1 44

Geographical Location		-		W9	CW	19	CV	V9	CV	V9	Be		Be	
Sample				W35-A02	CW09-MV		CW09-MV		CW09-M		B6-MW0		B6-MW0	<u> </u>
Sample Type	+		1 2000		Field Rins				31103 111	7700-7102	50-1414-0	<u> </u>	BO-WITTO	00-702
Batch#			9503	3G723	95020		95020	3300	95030	3723	95020	198	95030	3641
Prep#				B0181	95GB(95GB		95GE		95GB0		95GB	
RFW#				02`	00		00	_:	00		003		00	
Dilution Factor	-			.00	1.0		1.0		1.0		1.0		1.0	
Matrix	1			ater	wat		wat		wa		wat		wat	
Units	ug/l	ug/l		g/l	ug		ug		ug		ug		ug	
Sampling Date				3/95	2/20		2/20		3/13		2/15/		3/8/	
Analysis Date	 			7/95	3/15		3/15		3/27		3/7/9		3/25	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		11.22	Result	01142	Result	- Ontal	Result	- United	Result	OITQL	Result	ONGL	Result	CITCL
	1		rtodan		. Itobuit		·		Result		Nesuit		Result	
4-Nitrophenol	1.	7.5	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
Dibenzofuran	†	6.5	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Diethylphthalate	5000	5.4	10 U	10	10 U	10	10 U	10	11 U	11	1 J	10	1 JB	10
4-Chlorophenyl-phenylether		7.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Fluorene	300	6.3	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
4-Nitroaniline	1	6.4	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
4,6-Dinitro-2-methylphenol	1	5,3	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
N-Nitrosodiphenylamine (1)	20	4.2	_10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
4-Bromophenyl-phenylether	T	5,3	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Hexachlorobenzene	10	5.5	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Pentachlorophenol	1 1	4.0	24 U	24	26 U	26	24 U	24	28 U	28	25 U	25	24 U	24
Phenanthrene	10	5.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Anthracene	2000	4.6	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Carbazole		4.4	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Fluoranthene	300	6.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Pyrene	200	5.4	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
3,3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Benzo(a)anthracene	10	4.9	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Chrysene	20	4.4	10 U	10	` 10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	10 U	10	2 J	10	6J	11	10 U	10	10 U	10
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	10 U	10	11 U	11	10 U	10	10 U	10'
Total Est. Conc. of TIC	1		·	0 J	13		4,		430		11 J		 	
Dilution Factor	 		1		<u> </u>	-	<u> </u>				110	<u>-</u>	 	
Method:TCL Semivolatiles	+ +		 		1		 		 			 	 	

Geographical Location	T		В	37	B7	7	В	8	В	8	В	9	BS	
Sample				07B-A01	B7-MW0		B8-MW0		B8-MW0		B9-MW0		B9-MW0	,
Sample Type	` -		†· · · · ·						7					
Batch#			9502	G198	95030	617	95020	3198	9503	G641	95020	3198	95030	617
Prep#			95GE	30108	95GB(95GB		95GB		95GB		95GB0	
RFW#	1		00	05	. 00		00		00		00		00	
Dilution Factor				00	(.1.0	0	1.0		1.0		1.0		1.0	
Matrix			wa	ter	wat	er	wat	er	wa	ter	wa		wat	
Units	ug/i	ug/l	uş	g/l	ug	<u>/l</u>	ug	/1	ug	2/1	ug		uge	
Sampling Date			2/19	5/95	3/7/	95	2/15	/95		/95	2/15		3/7/	
Analysis Date			3/7	7/95	3/26	/95	3/7/	95	3/26	5/95	3/7	95	3/26/	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
		•	Result		Result		Result		Result		Result		Result	
Phenol	4000	7.1	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
bis(2-Chloroethyl) ether	10	9.7	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2-Chlorophenol	40	7.3	10 U	10	10 U	10	. 11 U	11	11 U	11 ``	10 U	10	10 U	10
1,3-Dichlorobenzene	600	5.3	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
1,4-Dichlorobenzene	75	4.8	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
1,2-Dichlorobenzene	600	5.7	10 U	1,0	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2-Methylphenol		6.7	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	-10
2,2'-oxybis(1-Chloropropane)		7.0	10 U 🗸	10	10 U	10	11 U	11	11 U	11	. 10 U	10	10 U	10
4-Methylphenol		12.9	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
N-Nitroso-di-n-propylamine	20	8.0	10 U	10	10 U	10	11 U	11	11 U	,11	10 U	10	10 U	10
Hexachloroethane	10	5.3	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Nitrobenzene	10	7.4	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Isophorone	100	3.9	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2-Nitrophenol		7.0	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2,4-Dimethylphenol	100	4.8	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
bis(2-Chloroethoxy) methane		6.1	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2,4-Dichlorophenol	20	4.4	10 U	10	10 U	10	11 U	11	11.U	11	10 U	10	10 U	10
1,2,4-Trichlorobenzene	9	9.6	10 U	10	10 U	10	11 U	11	11 U	11	10 U	⁻ 10	10 U	· 10
Naphthalene		8.4	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
4-Chloroaniline		2.9	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Hexachlorobutadiene	1	4.6	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
4-Chloro-3-methylphenol	20 '	3.1	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2-Methylnaphthalene	1	8.7	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Hexachlorocyclopentadiene	50	3.6	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2,4,6-Trichlorophenol		5.6	10 U	10	10 U	10	11 U	11	11 U	11′	10 U	10	10 U	10
2,4,5-Trichlorophenol	700	4.7	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24	24 U	24
2-Chloronaphthalene	ļl	8.2	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2-Nitroaniline		6.1	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24	24 U	24
Dimethylphthalate	7000	4.4	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Acenaphthylene	10	6.0	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2,6-Dinitrotoluene	10	5.2	, 10 U	10	10 U	10	11 U	11	11 Ü	11	10 U	10	10 U	· 10
3-Nitroaniline		5.2	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24-	24 U	24
Acenaphthene	400	6.7	10 U	10	· 10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2,4-Dinitrophenol	40	4.6	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24	24 U	24

Congraphical Landing	T		<u>_</u>	-		_								
Geographical Location Sample	 		B7-MW0		B		B		В	-		9 -/	BS	
Sample Type	 		B/-MVV	J/8-AU1	B7-MW0	7B-A02	B8-MW0	8B-A01	B8-MW0)8B-A02	B9-MW0	09B-A01	B9-MW0	9B-A02
	 				ļ									
Batch#	 		9502		95030		95020		95030		95020		95030	
Prep#			95GE		95GB		95GB		95GB		95GB		95GBI	
RFW#	ļi		00		00		00		00		00		00	1 '-
Dilution Factor			1.0		1.0		1.0		1.0	00	\ 1.0	00	1.0	0
Matrix			wa		wat		wat	er	wa	ter	wa	ter	wat	er
Units	ug/l	ug/l	ug		ug		ug		ug		ug]/	ug	/1
Sampling Date			2/15		3/7/	95	2/15	/95	3/8/	95	2/15	5/95	3/7/	95
Analysis Date			3/7		3/26	/95	3/7/	95	3/26	/95	3/7/	/95	3/26	/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result		Result		Result		Result	
<u> </u>													<u> </u>	
4-Nitrophenol		7.5	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24	24 U	24
Dibenzofuran		6.5	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
2,4-Dinitrotoluene	10	5.8	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Diethylphthalate	5000	5.4	1 J	10	10 U	10	11 U	11	2 JB	11	1 J	10	10 U	10
4-Chlorophenyl-phenylether		7.0	10 U	. 10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Fluorene	300	6.3	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
4-Nitroaniline		6.4	26 U	26	26 U	- 26	26 U	26	26 U	26	24 U	24	24 U	24
4,6-Dinitro-2-methylphenol		5.3	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24	24 U	24
N-Nitrosodiphenylamine (1)	20	4.2	10 U	10	10 U	10	11 U	11	11 U	11 ·	10 U	10	10 U	-10
4-Bromophenyl-phenylether		5.3	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Hexachlorobenzene	10	5.5	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Pentachlorophenol	1	4.0	26 U	26	26 U	26	26 U	26	26 U	26	24 U	24	24 U	24
Phenanthrene	10	5.0	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Anthracene	2000	4.6	10 U	10	10 U	10	11 U -	11.	11 U	11	10 U	10	10 U	10
Carbazole		4.4	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Di-n-butylphthalate	900	6.5	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Fluoranthene	300	6.0	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Рутепе	200	5.4	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Butylbenzylphthalate	100	5.3	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
3,3'-Dichlorobenzidine	60	2.8	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Benzo(a)anthracene	10	4.9	10 U	10 .	10 U	c 10	11 U	11	11 U	11	10 U	10	10 U	10
Chrysene	20	4.4	10 U	10	10 U	10	11 U	11	11 U.	11	10 U	10	10 U	10
bis(2-Ethylhexy)phthalate	30	9.7	10 U	10	1 J	10	11 U	11	11 U	11	10 U	10	10 U	10
Di-n-octyl phthalate	100	5.6	10 U	10	10 U	10	11 U	11	11 U	- 11	10 U	10	10 U	10
Benzo(b)fluoranthene	2	5.7	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Benzo(k)fluoranthene	2	6.2	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Benzo(a)pyrene	20	4.9	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	,10 U	10
Indeno(1,2,3-cd)pyrene	20	7.1	10 U	10	10 U	10	11 0	11	11 U	11	10 U	· 10	10 U	10
Dibenzo(a,h)anthracene	20	6.0	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10		10
Benzo(g,h,i)perylene	20	6.8	10 U	10	10 U	10	11 U	11	11 U	11	10 U	10	10 U	10
Total Est. Conc. of TIC	20	0,0	61		. 2.		5 JI							
Dilution Factor	 					<u>'</u>		D	3.		8 J	В	3 J	
Method:TCL Semivolatiles	1		 		· · · · · · · · · · · · · · · · · · ·			-	-					
Monda, I CL Semiyolanies	<u> </u>													

Geographical Location			В	10	В	10	В	10	B.	10
Sample			B10-MW	10B-A01	B10-MW	10B-A02		/10B-E01	B10-MW	·
Sample Type			1		 		Field Rin	sate Blank	Field Rins	
Batch#	<u> </u>		9502	G198	9503	G641		G198	9503	
Prep#		-		30108		30172	-	B0108	95GE	
RFW#			0	09		05		12	00	
Dilution Factor				00		00		.00	1.	
Matrix	1			ter		iter		ater	wa	
Units	ug/l	ug/l		g/l		g/l		g/i	ug	
Sampling Date				5/95		/95		3/95	3/8	<u></u>
Analysis Date	 			7/95		5/95		7/95	3/25	
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
			Result		Result		Result	Ortal	Result	OILGE
		<u> </u>	1.55		1100011		recur	h	- ROSUR	
Phenol	4000	7.1	12 U	12	11 U	11	11 U	11	11 U	11
bis(2-Chloroethyl) ether	10	9.7	12 U	12	11 U	11	11 U	11	11 U	11
2-Chlorophenol	40	7.3	12 U	12	11 U	11	11 U	11	11 U	11
1,3-Dichlorobenzene	600	5.3	12 U	12	11 U	11	11 U	11	11 U	11
1,4-Dichlorobenzene	75	4.8	12 U	12	11 U	11	11 U	11	11 U	11
1,2-Dichlorobenzene	600	5.7	12 U	-12	11 U	11	11 U	11	11 U	
2-Methylphenol		6.7	12 U	12	11 U	11	11 U	11	11 U	11
2,2'-oxybis(1-Chloropropane)		7.0	12 U	12	11 U	11	11 U	11	11 U	11
4-Methylphenol		12.9	12 U	12	11 U	11	11 U	11	11 U	11
N-Nitroso-di-n-propylamine	20	8.0	12 U	12	11 U	11	11 U	11	11 U	11
Hexachloroethane	10	5.3	12 U	12	11 U	11	11 U	11	11 U	11
Nitrobenzene	10	7.4	12 U	12	11 U	11	11 U	11	, 11 U	11
Isophorone	100	3.9	12 U	12	11 U	11	11 U	11	11 U	11
2-Nitrophenol	1	7.0	12 U	12	11 Ü	11	11 U	11	11 U	11
2,4-Dimethylphenol	100	4.8	12 U	12	11 U	11	11 U	11	11 U	11
bis(2-Chloroethoxy) methane		6.1	12 U	12	11 U	11	11 U	11	11 U	11
2,4-Dichlorophenol	20	4.4	12 U	12	11 U	11	11 U	11	11 U	11
1,2,4-Trichlorobenzene	9	9.6	12 U	12	11 U	11	11 U	11	11 U	11
Naphthalene	1	8.4	12 U	12	11 U	11	11 U	11	11 U	11
4-Chloroaniline		2.9	12 U	12	11 U	11	11 U	11	11 U	11
Hexachlorobutadiene	1	4.6	12 U	12	11 U	11	11 U	11	11 U	11
4-Chloro-3-methylphenol	20	3.1	12 U	12	11 U	11	11 U	11	11 U	- 11
2-Methylnaphthalene		8.7	12 U	12	11 U	11	11 U	11	11 U	11
Hexachlorocyclopentadiene	50	3.6	12 U	12	11 U	11	11 U	11	11 U	11
2,4,6-Trichlorophenol	<u> </u>	5.6	12 U	12	11 U	11	11 U	11	11 U	11
2,4,5-Trichlorophenol	700	4.7	30 U	30	26 U	26	28 U	28	28 U	28
2-Chloronaphthalene		8.2	12 U	12	11 U	11	11 U	 11	11 U	11
2-Nitroaniline		6.1	30 U	30	26 U	26	28 U	28	28 U	28
Dimethylphthalate	7000	4.4	12 U	12	11 U	11	11 U	11	11 U	11
Acenaphthylene	10	6.0	12 U	12	11 U	11	11 U	11	11 U	11
2,6-Dinitrotoluene	10	5.2	12 U	<u>12</u>	11 U	11	11 U	11	11 U	11
3-Nitroaniline	1	5.2	30 U	30	26 U	26	28 U	28	28 U	28
Acenaphthene	400	6.7	12 U	12	11 U	11	11 U	11	11 U	11
2,4-Dinitrophenol	40	4.6	30 U	30	26 U	26	28 U	28	28 U	28

Geographical Location			B	10	B	10	B	10	В	10
Sample			B10-MW	10B-A01	B10-MW	10B-A02	B10-MW	/10B-E01	B10-MW	10B-E02
Sample Type				_			Field Rin	sate Blank		sate Blank
Batch#			9502	G198	9503	G641	9502	G198 .	9503	G641
Prep#			95GE	30108 ~-	95GE	30172	95GI	B0108		30172
RFW#			00)9	00	05		12		08
Dilution Factor	1		1.0	00	1.0	00		.00		00
Matrix	1 1	·	wa	ter	wa	ter		ater		ter
Units	ug/l	ug/l	uç	1/1	ug			g/l		g/l
Sampling Date	1		2/15		<u> </u>	/95		3/95		/95
Analysis Date	1		3/7			5/95		7/95		5/95
Analysis	Standard	MDL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL	Analytical	CRQL
,	1		Result		Result		Result	0.142	Result	Ontal
	1		11000		- 1100011		rtocar		Rosuit	
4-Nitrophenol	 	7.5	30 U	30	26 U	26	28 U	28	28 U	28
Dibenzofuran	1	6.5	12 U	12	11 U	11	11 U	11	11 U	11
2,4-Dinitrotoluene	10	5.8	12 U	12	11 U	11	11 U	11	11 U	11
Diethylphthalate	5000	5.4	12 U	12	1 JB	11	11 U	11	2 JB	11
4-Chlorophenyl-phenylether	T	7.0	12 U	12	11 U	11	11 U	11	11 U	11
Fluorene	300	6.3	12 U	12	11 U	11	11 U	11	11 U	· 11
4-Nitroaniline		6.4	30 U	30	26 U	26	28 U	28	28 U	28
4,6-Dinitro-2-methylphenol		5.3	30 U	30	26 U	26	28 U	28	28 U	28
N-Nitrosodiphenylamine (1)	20	4.2	12 U	12	11 U	11	11 U	11	11 U	11
4-Bromophenyl-phenylether		5.3	12 U	12	11 U	11	11 U	11	11 U	11
Hexachlorobenzene	10	5.5	12 U -	12	11 U	11	11 U	11	11 U	11
Pentachlorophenol	1	4.0	30 U	30	26 U	26	28 U	28	28 U	28
Phenanthrene	10	5.0	12 U	12	11 U	11	11 U	11	11 U	11
Anthracene	2000	4.6	12 U	12	11 U	11	11 U	11 .	· 11 U	11
Carbazole		4.4	12 U	12	11 U	11	11 U	11	11 U	11
Di-n-butylphthalate	900	6.5	12 U	12	11 U	_11	11 U	11	11 U	11
Fluoranthene	300	6.0	12 U	12	11 U	11	11 U	11	11 U	11
Pyrene	200	5.4	12 U	12	11 U	11	11 U	11	11 U	11
Butylbenzylphthalate	100	5.3	12 U	12	11 U	11	11 U	11	11 U	11
3,3'-Dichlorobenzidine	60	2.8	12 U	12	11 U	11	11 U	11	11 U	11
Benzo(a)anthracene	10	4.9	12 U	12	11 U	11	11 U	11	11 U	11
Chrysene	20	4.4	12 U	12	11 U	11	11 U	11	11 U	11
bis(2-Ethylhexy)phthalate	30	9.7	12 U	12	600	110 *	11 U	11	11 U	11
Di-n-octyl phthalate	100	5.6	12 U	12	11 U	11	11 U	11	11 U	11
Benzo(b)fluoranthene	2	5.7	12 U	12	11 U	11	11 U	11	11 U	11
Benzo(k)fluoranthene	2	6.2	12 U	12	11 U	11	11 U	_ , 11	11 U	11
Benzo(a)pyrene	20	4.9	12 U	12	11 U	11	11 U	11	11 U	11
Indeno(1,2,3-cd)pyrene	20	7.1	12 U	12	11 U	11	11 U	11	11 U	11
Dibenzo(a,h)anthracene	20	6.0	12 U	. 12	11 U	11	11 U	11	11 U	11
Benzo(g,h,i)perylene	20	6.8	12 U	12	11 U	11	11 U	11	11 U	11
Total Est. Conc. of TIC			9.	JB			15	JB		
Dilution Factor						*	= 10			-
Method:TCL Semivolatiles			, .		i				1	

Geographical Location		CV		CM		CV		C	W1	CW	1 1.
Sample		CW01-M\	N26-A01	CW01-MW2	6-A01 SOL	CW01-M	W26-A02	CW01-N	1W26-A02	CW01-MW2	6-A02 SOL
Sample Type		To		Solu	ble	То	tal	Т	otal	Solu	ble
Batch#		95020	3358	95020	358	95020	G739	9502	2G739	95020	739
Prep#		95GI	454	95GI	454	95G	1508	950	31508	95GI	508
RFW#		00	1	00:	2 `	. 00)2	C	003	00-	4
Dilution Factor		1.0)O ·	1.0	0	1.0	00	1	.00	1.0	0
Matrix		wa	er	wat	er	wa	ter	w	ater	wat	er
Units	ug/l	ug	/I	ug	1 '	ug	3/ I	L	ıg/l	ug	1
Sampling Date		2/21	/95	- 2/21/	/95	3/14			4/95	3/14/	
Analysis Date		3/8/	95	3/8/	95	3/8	/95	3/	8/95	3/8/	95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result	,
Silver	20	3,0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	6830	24.0	279	24.0	885	16.8	4990	16.8	375	16.8
Arsenic	8	7.8	1.9	1.9 U	1.9	1.9 U	1.9	3.8	1.9	1.9 U	1.9
Barium	2000	81.4	1.7	62.9	1.7	116	0.80	99.3	0.80	86.7	0.80
Beryllium	2000	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.56	0.30	0.30 U	0.30
Calcium	20	25800	10.4	24500	10.4	24900	8.4	32700	8.4	31300 -	8.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Cobalt	+	6.0	3.0	5.1	3.0	13.2	2.3	8.0	2.3	4.2	2.3
Chromium	100	79.7	2.9	2.9 U	2.9	4.7 U	4.7	54.0	4.7	4.7 U	4.7
Copper	1000	1.9 U	1.9	1.9 U	1.9	8.1	4.0	8.9	4.0	5.7	4.0
Iron	300	15500	6.4	25.0	6.4	93.3	2.5	10700	2.5	18.6	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		13100	685	9970	685	11800	67.9	14500	67.9	12300	67.9
Magnesium	· · · · · · · · · · · · · · · · · · ·	4810	18.3	3390	18.3	13500	34.3	5340	34.3	4240	34.3
Manganese	50	68.3	1.8	45.2	1.8	114	0.90	71.8	0.90	54.6	0.90
Sodium	50000	55300	30.5	53100	30.5	73800	19.1	58600	19.1	56800	19.1
Nickel	100	24.6	10.8	10.8 U	10.8	15.0	4.2	7.9	4.2	8.7	4.2
Lead	10	5.6	1.6	1.6 U	1.6	2.2	1.2	4.1	1.2	1.2	1.2
Antimony	20	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	10,9 U	10.9
Selenium	50	1.8 U	1.8	1.8 U	- 1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	1.1 U	1.1
Vanadium	<u> </u>	57.7	2.3	2.3 U	2.3	2.1 U	2.1	39.7	2.1	2.1 U	2,1
Zinc	5000	39.0	3:8	14.4	3.8	32.5	1.9	35.6	1.9	17.2	1.9
Cyanide	200			1				 			
Method:TAL Metals, Cyar	_							+			

Geographical Location		CV	V1	CI	N1	CV	V1 \		W1	CV	V1 .
Sample		CW01-M	W26-E02	CW01-MW	26-E02 SOL	CW01-M	W27-A01	CW01-MV	V27-A01 SOL	CW01-M	W27-A02
Sample Type		Field Rins	ate - Total	Field Rinsa	te - Soluble	То	otal		oluble	To	
Batch#		9502	G739	9502	G739	9502	G358		2G358		G739
Prep#		95G	1508	95G	1508	95G	1454		GI454		1508
RFW#		00	04	0	07	00	03	1	004	00	
Dilution Factor		1.0	00	1.	00	1.0	00	-	1.00	1.	00
Matrix		wa	ter	Wa	iter	wa	ter	· v	<i>r</i> ater	wa	ter
Units	ug/l	ug	g/l .	. U	g/l	uç	g/l		ug/l	u(g/l
Sampling Date		3/14	1/95		4/95	2/21			21/95	3/14	
Analysis Date		3/8	/95	3/8	/95	3/8	/95	3,	/8/95	3/8	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	` Analytical	MDL
		Result		Result		Result		Result	ر	Result	
Silver	20	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5
Aluminum	200	20.2	16.8	18.4	16.8	3770	24.0	653	24.0	7620	∠.5 16.8
Arsenic	8	1.9 U	1.9	1.9 U	1.9	5.0	1.9	1.9 U	1.9	4.4	1.9
Barium	2000	0.80 U	0.80	0.80 U	0.80	112	1.7	95.6	1.7	142	0.80
Beryllium	20	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90	0.99	0.30
Calcium		105	8.4	115	8.4	22000	· 10.4	21500	10.4	26200	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9
Cobalt	<u> </u>	2.3 U	2.3	2.3 U	2.3	12.4	3.0	12.2	3.0	16.6	2.3
Chromium	100	4.7 U	4.7	4.7 U	4.7	34.5	2.9	2.9 U	2.9	76.6	4.7
Copper	1000	~4.0 U	4.0	4.0 U	4.0	1.9 U	1.9	1.9 U	1.9	10.4	4.0
Iron	300	12.0	2.5	16.8	2.5	7190	6.4	122	6.4	15400	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	. 0.20	0.20 U	0.20
Potassium		67.9	67.9	119	67.9	11400	685	10500	685	14500	67.9
Magnesium		34.3	34.3	47.6	34.3	11700	18.3	10900	18.3	15600	34.3
Manganese	50	0.90 U	0.90	0.90 U	0.90	110	1.8	98.4	1.8	140	0.90
Sodium	50000	132	19.1	156	19.1	64300	30.5	62700	30.5	79100	19.1
Nickel	100	4.2 U	4.2	4.2 U	4.2	11.9	10.8	20.4	10,8	30.0	4.2
Lead	10	2.6	1.2	1.5	1.2	5.6	1.6	1.6 U	1.6	11.0	1.2
Antimony	20	10.9 U	10.9	13.2	10.9	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1
Vanadium		, 2.1 U	2.1	2.1 U	2.1	34.4	2.3	2.3 U	2.3	71.5	2.1
Zinc	5000	1.9 U	1.9	. 1.9 U	1.9	41.9	3,8	33.4	3.8	56.6	1.9
Cyanide	200										
Method:TAL Metals, Cyar	ide			:				 			-

Geographical Location		CV	V1	CV	V1	CV	V1	CV	V1 -	CV	V1
Sample		CW01-MW	27-A02 SOL	CW01-M	W28-A01	CW01-MW	•	CW01-M	W28-A02	CW01-MW2	<u> </u>
Sample Type		Sol	uble	To	tal	Soli		То		Solu	
Batch#		9503	G739	95020	G358	9502	G358		G739	9502	
Prep#		95G	1508	95G	1454	95G	1454	95G		95G	
RFW#		00	02	00)5	00	06	- 00	08	00	
Dilution Factor		1.0	00	1.0	00	1.0	00	1.0	00	1.0	00
Matrix		wa	ter	wa	ter	wa	iter	wa	ter	wa	ter
Units	ug/i	uç	g/I	ug	y/l	uç	g/l		g/l	ug	a/l
Sampling Date		3/14		2/21		2/21		3/14		3/14	
Analysis Date		3/8	/95	-3/8/	/95		/95	3/8		3/8	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result	-	Result	
									· · · · · · · · · · · · · · · · · · ·		
Silver	20	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	^{2.5} U	2.5
Aluminum	200	885	16.8	3480	24.0	510	24.0	4150	16.8	498	16.8
Arsenic	8	1.9 U	1.9	4.3	1.9	1.9 U	1.9	3.7	1.9	1.9 U	1.9
Barium	2000	116	0.80	54.3	1.7	49.3	1.7	51.8	0.80	39.7	0.80
Beryllium	20	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.33	0.30
Calcium	<u> </u>	24900	8.4	15300	10.4	15100	10.4	14800	8.4	14500	8.4
Cadmium	4	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9
Cobalt	ļ	13.2	2.3	7.5	3.0	4.7	3.0	6.4	2.3	4.4	2.3
Chromium	100	4.7 U	4.7	27.1	2.9	2.9 U	2.9	29.2	4.7	4.7 U	4.7
Copper	1000	8.1	4.0	1.9 U	1.9	1.9 U	1.9	4.4	4.0	4.0 U	4.0
Iron	300	93.3	2.5	5760	6.4	8.4	6.4	6610	2.5	28.6	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 Ü	0.20	0.20 U	0.20
Potassium		11800	67.9	12900	685	12100	685	12900	67.9	11600	67.9
Magnesium)	13500	34.3	3890	18.3	3380	18.3	4270	34.3	3580	34.3
Manganese `	50	114	0.90	44.0	1.8	36.3	1.8	48.7	0.90	39.5	0.90
Sodium	50000	73800	19.1	17000	30.5	17100	30.5	19200	19.1	19000	19.1
Nickel	100	15.0	4.2	11.5	10.8	17.2	10.8	6.0	4.2	7.2	4.2
Lead	10	2.2	1.2	2.7	1:6	1.6 U	1.6	3.6	1.2	1.5	1.2
Antimony	20	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1:8 U	1.8
Thallium	10	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	1.1 Ü	1.1	1.1 U	1.1
Vanadium	1	2.1 U	2.1	23.4	2,3	2.3 U	2.3	24.4	2.1	2.1 U	2.1
Zinc	5000	32.5	1.9	21.9	3.8	13.1	3.8	27.8	1.9	14.4	1.9
Cyanide	200										
Method:TAL Metals, Cyar	nide								-		

Geographical Location		CV		C	:W1	CV	V1	CV	V1	CW1	
Sample		CW01-M	W29-A01	CW01-MW	/29-A01 SOL	CW01-M	W29-A02	CW01-MW2	29-A02 SOL	CW01-MW2	9-E01
Sample Type		То	tal	So	luble	То	tal	Solu	uble	Field Rinsate	
Batch#		95020	G358	9502	2G358	95020	G739	9502	G739	9502G35	
Prep#		95G	1454	950	GI454	95G	1508	95G	1508	95GI45	
RFW#		00)7	(008	01	10	01	11	010	_
Dilution Factor		1.0	00	1	.00	1.0	00	1.0	00	1.00	
Matrix		wa	ter	w	ater	wa	ter	wa	ter	water	
Units	ug/l	ug	<u> /l</u>	ı	ig/l	ug	<u></u>	ug	g/l	ug/l	
Sampling Date		2/21	/95	2/2	21/95	3/14	1/95	3/14	1/95	2/21/95	5
Analysis Date		3/8/	95	3/	8/95	3/8	/95	3/8	/95	3/8/95	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Resuit		Result	
		١									
Silver	20	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0
Aluminum	200	1980	24.0	118	24.0	2760	16.8	143	16.8	24.0 U	24.0
Arsenic	8	2.3	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	46.3	1.7	37.6	1.7	55.3	0.80	46.0	0.80	1.7 U	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90
Calcium		25400	10.4	25000	10.4	31300	8.4	31400	8.4	113	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8
Cobalt	<u> </u>	4.4	3.0	3.6	3.0	5.2	2.3	4.1	2.3	3.0 U	3.0
Chromium	100	17.5	2.9	2.9 U	2.9	21.9	4.7	4.7 U	4.7	2.9 U	2.9
Copper	1000	1.9 U	1.9	1.9 U	1.9	4.0 U	4.0	4.0 U	4.0	1.9 U	1.9
Iron	300	3810	6.4	134	6.4	5300	2.5	238	2.5	6.4 U	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		10700	685	9660	685	11300	67.9	11000	67.9	685 U	685
Magnesium		4940	18.3	4520	18.3	6100	34.3	5890	34.3	18.3 U	18.3
Manganese	50	65.8	1.8	60.5	1.8	75.3	0.90	70.3	0.90	1.8 U	1.8
Sodium	50000	28000	30.5	27600	30.5	30800	19.1	33500	19.1	321	30.5
Nickel	100	15.4	10.8	10.8 U	10.8	4.8	4.2	5.8	4.2	10.8 U	10.8
Lead	10	1.6 U	1.6	1.6 U	1.6	2.3	1.2	1.2	1.2	1.6 U	1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70
Vanadium		14.5	2.3	2.3 U	2.3	16.7	2.1	, 2.1 U	2.1	2.3 U	2.3
Zinc	5000	21.4	3.8	15.8	3.8	23.8	1.9	16.3	1.9	3.8 U	3.8
Cyanide	200						· · · ·				
Method:TAL Metals, Cyan	ide				,			 			

Geographical Location			:W1	CW		CW	<u></u>	CV	V2	CV	N2	CW	12
Sample			V29-E01 SOL	CW02-MV		CW02-MW3		CW02-M		CW02-MW3		CW02-MV	
Sample Type	<u> </u>	!	ate - Soluble	Tot		Solu		To		Solu		Tot	
Batch#		950	2G358	95020	3358	95020		9502		9502		95020	
Prep#	<u> </u>	950	GI454 -	95GI	454	95GI		95G			1508	95GI	
RFW#			011	. 01		01		01			13	01-	
Dilution Factor		1	.00	1.0		1.0		1.0		1,0		1.0	
Matrix	, ,	W	rater	wat	er	wat	er	wa		wa		wat	
Units	ug/l	ı	ug/l	ug	<u>/l</u>	ug	//	Ug	p/l		g/l	ug	
Sampling Date			21/95	2/21		2/21		3/14			4/95	2/21/	
Analysis Date		3/	8/95	3/8/	95	3/8/	95	3/8	/95	3/8		3/8/	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result	_	Result		Result	
							,					-	
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0
Aluminum	200	24.0 U	24.0	127	24.0	24.0 U	24.0	-131	16.8	22.2	16.8	24.0 U	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9.U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	1.7 U	1.7	227	1.7	219	1.7	240	0.80	235	0.80	170	1.7
Beryllium	20	0.90 U	0.90	0.90 Ù	0.90	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90
Calcium		72.3	10.4	61200	10.4	59100	10.4	66000	8.4	66000	8.4	37100	10.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	2.3 U	2.3	2.3 U	2.3	3.0 U	3.0
Chromium	100	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	4.7 U	4.7	4.7 U	4.7	2.9 Ú	2.9
Copper	1000	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	7.6	4.0	8.2	· 4.0	1.9 U	1.9
Iron	300	6.4 U	6.4	42800	6.4	40500	6.4	48700	2.5	47500	2.5	34600	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0:20 U	0.20	0.20 U	0.20
Potassium		685 U	685	9460	685	9590	685	10500	67.9	10600	67.9	8270	685
Magnesium		18.3 U	18.3	6770	18.3	6560	18.3	7320	34.3	7300	34.3	4500	18.3
Manganese	50	1.8 U	1.8	352	1.8	340	1.8	378	0.90	375	0.90	212	1.8
Sodium	50000	137	30.5	18000	30.5	17600	30.5	16200	19.1	16200	19.1	9650	30.5
Nickel	100	12.9	10.8	16.7	10.8	21.1	10.8	4.6	4.2	4.2 U	4.2	26.0	10.8
Lead	10	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.2 U	1.2	1.8	1.2	1.6 U	'1.6
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	12.7	10.9	20.7 U	20.7
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	、1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70
Vanadium		2.3 U	2.3	3.2	2.3	2.3 U	2.3	2.1 U	2.1	2.1 U	2.1	2.3 U	2.3
Zinc	5000	3.8 U	3.8	6.6	3.8	5.1	3.8	. 4.8	1.9	6.1	1.9	5.6	3.8
Cyanide	200												
Method:TAL Metals, Cyan	ide												

Geographical Location	·	CW		CV	 .	CV	V2	CV		CV	/2
Sample		CW02-MW3	1-A01 SOL	CW02-M	W31-A02	CW02-MW3	31-A02 SOL	CW02-MV	V32-A01	CW02-MW3	2-A01, SOL
Sample Type		Solu	ble	To	tal	Solu	ıble	Tot	al	Solu	ble
Batch#		95020	358	9502	G739	95020	3739	95020	358	95020	3358
Prep#		95GI		95G	1508	95G	508	95GI	454	95GI	454
RFW#		015	5	01	14	01	5	01	6	01	7
Dilution Factor		1.0	0	1.0	00	, 1.0	00	1.0	0 /	1.0	10
Matrix		wate	er	wa	ter	wa	ter	wat	er	wat	er
Units	ug/l	ug/		ug		ug	<u> / </u>	ug	/1	ug	/I
Sampling Date		2/21/		3/14	1/95	3/14	/95	2/21/	/95	2/21	
Analysis Date		3/8/9	95	3/8	/95	3/8/	95	3/8/	95	3/8/	95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
·	<u> </u>	Result		Result		Result		Result		Result	
Silver	20	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0
Aluminum	200	24.0 U	24.0	35.3	16.8	26.1	16.8	530	24.0	24.0 U	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	169	1.7	191	0.80	183	0.80	216	1.7	187	1.7
Beryllium	20	0.90 U	0.90	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90
Calcium		37600	10.4	40400	8.4	39500	8.4	45800	10.4	43700	10.4
Cadmium	4	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	2.3 U	2.3	2.3 U	2.3	3.0 U	3.0	3,0 U	3.0
Chromium	100	2.9 U	2.9	4.7 U	4.7	4.7 U	4.7	2.9 U	2.9	2.9 U	2.9
Copper	1000	1.9 U	1.9	4.3	4.0	4.0 U	4.0	1.9 U	1.9	1.9 U	1.9
Iron	300	33300	6.4	38100	2.5	34200	2.5	47700	6.4	38300	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		8210	685	9150	67.9	8930	67.9	9480	685	9210	685
Magnesium		4540	18.3	5050	34.3	4960	34.3	5560	18.3	5230	18.3
Manganese	50	214,	1.8	233	0.90	228 ·	0.90	266	1.8	250	1.8
Sodium	50000	9790	30.5	11000	19.1	10900	19.1	11500	30.5	11000	30.5
Nickel	100	26.4	10.8	4.2 U	4,2	14.7	4.2	10.8 U	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	1.2 U	1.2	1.7	1.2	1.6 U	1.6	1.6 U	1.6
Antimony	20	20.7 U	20.7	10.9 U	10.9	15.8	10.9	20.7 U	20.7	22.3	20.7
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70
Vanadium		2.3 U	2.3	2.1 U	2.1	2.1 U	2.1	3.9	2.3	2.3 U	2.3
Zinc	5000	3.8 U	3.8	2.2	1.9	5.4	1.9	14.2	3.8	4.1	3.8
Cyanide	200										
Method:TAL Metals, Cyan	ide			1							

Geographical Location		CV	V2	CV	V2	CW	2 .	CW	2	CV	V2
Sample		CW02-M\		CW02-MW3		CW02-MV		CW02-MW33		CW02-M	
Sample Type		To		Solu		Tota		Solui		To	
Batch#	 	95020		9502		95020		9502G		9502	
Prep#		95G	1508	95G		95GI		95Gl4		95G	
RFW#		01	16	01		018		019		01	
Dilution Factor		1.0		1.0		1.0		1.0		1.0	
Matrix	1	_ wa		wa		wate	···	wate		wa	
Units	ug/l	ug] /l	ug	g/l	ug/	1 .	ug/	<i>i</i>	ug	z/l
Sampling Date		3/14		3/14		2/21/		2/21/		3/14	
Analysis Date		3/8/	/95	3/8		3/8/9		3/8/9		3/8	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result	
101											
Silver	20	2.5 U	2.5	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5
Aluminum	200	365	16.8	16.8	16.8	651	24.0 ,	24.0 U	24.0	701	16.8
Arsenic	8	1.9 U	1.9	1.9 U	1.9	3.0	1.9	1.9 U	1.9	1.9 U	1.9
Barium	2000	206	0.80	189	0.80	235	1.7	184	1.7	233`	0.80
Beryllium	20	0.30 U	0.30	0.30 U	0.30	0.90 U	0.90	0.90 U	0.90	0.30 U	0.30
Calcium		46700	8.4	47100	8.4	49300	10.4	48600	10.4	53200	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9
Cobalt		2.3 U	2.3	2.5	2.3	3.0 U	3.0	3.0 U	3.0	5.8	2.3
Chromium	100	4.7 U	4.7	4.7 U	4.7	4.3	2.9	2.9 U	2.9	4.7 U	4.7
Copper	1000	4.0	4.0	4.4	4.0	8.4	1.9	1.9 U	1.9	15.4	4.0
Iron	300	50200	2.5	42700	2.5	54900	6.4	39700	6.4	54000	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		9680	67.9	9720	67.9	8030	685	8130	685	8880	67.9
Magnesium		5630	34.3	5670	34.3	5890	18.3	5710	18.3	6310	34.3
Manganese	50	271	0.90	270	0.90	252	1.8	248	1.8	294	0.90
Sodium	50000	12100	19.1	12300	19.1	12800	30.5	12600	30.5	15900	19.1
Nickel	100	23.5	4.2	6.1	,4.2	10.8 U	10.8	10.8 U	10.8	5.4	4.2
Lead	10	1.4	1.2	1.2	1,2	1.6 U	1.6	1.6 U	1.6	6.6	1.2
Antimony	20	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Thallium	10	1.1 U	1.1	1.1 U	1.1	0,70 U	0.70	0.70 U	0.70	1.1 U	1.1
Vanadium		2.7	2.1	2.1 U	2.1	4.5	2.3	2.3 U	2.3	5.8	2.1
Zinc	5000	13.5	1.9	4.5	1.9	14.0	3.8	6.1	3.8	37.2	1.9
Cyanide	200										
Method:TAL Metals, Cyan	ide -								· · ·		

Geographical Location	_		V2		V9	CV		C	W9	CI	N 9
Sample		CW02-MW		CW09-M	W35-A01	CW09-MW3	35-A01 SOL	CW09-N	W35-A02	CW09-MW	35-A02 SOL
Sample Type		Sol		To	tal	Solu	ıble	To	otal	Sol	uble
Batch#		9502		9502	G300	95020	G300	9503	3G723		G723
Prep#		95G	1508	, 95G	1450	95G	1450	950	31503	950	G1503
RFW#		0,	19	00	03	00)4	0	02	0	03
Dilution Factor		1.0	00	1.	00	1.0	00	1.	.00		.00
Matrix		wa	ter	wa	ter	wa	ter	Wa	ater		ater
Units	ug/l	uç]/ 	uį	g/l	ug	1/1	u	g/l	, u	g/l
Sampling Date		3/14	1/95	2/20	0/95	2/20			3/95		3/95
Analysis Date		3/8	/95	3/6	/95	3/6/	/95		5/95		5/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result	
Silver	20	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	25.6	16.8 -	242	16.8	85.2	16.8	210	16.8	91.0	16.8
Arsenic	8	1.9 U	1.9	1.3 U	1.3	1.3 U	1.3	1.3 U	1.3	1.3 U	1.3
Barium	2000	192	0.80	40.5	0.80	36.8	0.80	34.0	0.80	35.4	0.80
Beryllium	20	0.30 U	0.30	0,30 U	0.30	0.30 U	0.30	0.35	0.30	0.33	0.30
Calcium	- 	51800	8.4	21800	8.4	20700	8.4	25000	8.4	25800	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9	2.9 U	2.9
Cobalt	1	4.0	2.3	4.9	2.3	4.2	2.3	2.3 U	2.3	2.3 U	2.3
Chromium	100	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7	4.7 U	4.7
Copper	1000	7.7	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	6.5	4.0
Iron	300	38900	2.5	123	2.5	17.1	2.5	85.4	2.5	30.1	2.5
Mercury	2	0.20 U	0.20	0,20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium	 	8700	67.9	2110	67.9	1990	67.9	1960	67.9	2180	67.9
Magnesium	1	6140	34.3	5770	34.3	5360	34.3	5980	34.3	6200	34.3
Manganese	50	284	0.90	43.9	0.90	40.2	0.90	36.3	0.90	37.9	0.90
Sodium	50000	15900	19.1	7300	19.1	6760	19.1	6660	19.1	7080	19.1
Nickel	100	4.3	4.2	11.3	4.2	9.6	4.2	4.2 U	4.2	9.3	4.2
Lead	10	5.6	1.2	1.6 U	1.6	1.6 U	1.6	1.1 U	1.1	1.1 U	1.1
Antimony	20	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.8 U	1.8	1.5 ህ	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium	 	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1	2.1 U	2.1
Zinc	5000	25.4	1.9	60.1	1.9	55.0	1.9	51.6	1.9	58.4	1.9
Cyanide	200	,				 				00.7	1.5
Method:TAL Metals, Cyar					·	 			-	 	

Geographical Location		CV	V 9	CV	V9 .	CW9		CV	V9	C	N9
Sample		CW09-M	W35-E01	CW09-MW3	35-E01 SOL	CW09-MW	36-A01	CW09-MW3	86-A01 SOL	CW09-M	W36-A02
Sample Type		To	tal	Solu	iple	Total		Solu	ıble	\ To	otal
Batch#	· ·	9502	G300	95020	G300	9502G3	00	95020	G300	9503	G723
Prep#		95G	1450	95G	1450	95GI45	50	95G	1450	950	3I503
RFW#		00)7	00)8	005		00	06		04
Dilution Factor	1	1.0	00	1.0	00	1.00		1.0	00		.00
Matrix		wa	ter	wa	ter	water	,	wa	ter	Wa	ater
Units	ug/l	uç	<u>y/l</u> .	ug]/	ug/l		ug	<u>1</u> /l	u	g/l
Sampling Date		2/20		2/20		2/20/9	5	2/20			3/95
Analysis Date	1	3/6	/95	3/6/	/95	3/6/95	5	3/6		3/1	5/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	, MDL	Analytical	MDL
		Result		Result		Result		Result	<u>``\</u>	Result	
										† · · · · · · · · · · · · · · · · ·	
Silver	20	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5	2.5 U	2.5
Aluminum	200	231	16.8	16.8 U	16.8	460	16.8	39.5	16.8	645	16.8
Arsenic	8	1.3 U	1.3	1.3 U	1.3	1.3 U	1.3	1.3 U	1.3	1.3 U	1.3
Barium	2000	40.8	0.80	U 08.0	0.80	33.2	0.80	28.3	0.80	29.4	0.80
Beryllium	20	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30	0.30 U	0.30
Calcium		21100	8.4	191	8.4	37400	8.4	37600	8.4	32700	8.4
Cadmium	4	2.9 U	2.9	2.9 U	2.9	2.9 U	- 2.9	2.9 U	2.9	2.9 U	2.9
Cobalt		4.0	2.3 ·	2.3 U	2.3	3.2	2.3	4.2	2.3	2.5	2.3
Chromium	100	4.7 U	4.7	4.7 U	4.7	6.4	\ 4.7	6.5	4.7	5.0	4.7
Copper	1000	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0	4.0 U	4.0
Iron	300	85.8	2.5	3.8	2.5	1120	2.5	44.1	2.5	1420	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		2090	67.9	82.5	67.9	4180	67.9	4110	67.9	3820	67.9
Magnesium		5580	34.3	34.3 U	34.3	8200	34.3	8170	34.3	7470	34.3
Manganese	50	43.9	0.90	0.90 U	0.90	239 ^	0.90	240	0.90	195	0.90
Sodium	50000	7230	19.1	654	19.1	5990	19.1	6120	19.1	5810	19.1
Nickel	100	10.8	4.2	4.2 U	4.2	6.4	4.2	8.3	4.2	4.9	4.2
Lead	10	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	1.6 U	1.6	4.1	1.1
Antimony	20	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70
Vanadium	T	2.1 U	2.1	2.8	2.1	3.5	2.1	2.1 U	2.1	4.2	. 2.1
Zinc	5000	60.7	1.9	2.6	∖ 1.9	25.7	1.9	24.9	1.9	28.3	1.9
Cyanide -	200				'' 			-			
Method:TAL Metals, Cyan	ide	_						 		† 	

Geographical Location			W9	В		В	6	E	36	В	6	В	7
Sample		CW09-MW	/36-A02 SOL	B6-MW	06B-A01	B6-MW06E	3-A01 SOL	B6-MW	06B-A02	B6-MW06	B-A02 SOL	B7-MW0	7B-A01
Sample Type		So	luble	To	tal	Solu	ıble	To	otal	Solt	uble	То	tal
Batch#		9503	3G723	9502	G198	95020	G198	9503	G641	9503	G641	95020	G198
Prep#			31503	95G	1427	95G	1427	95G	1479	95G	1479	95G	1427
RFW#		0	05	00	03	00)4	0	01	00	02	00)5
Dilution Factor		1	.00	1.0	00	1.0	00	1.	00 /	1.0	00	1.0	00
Matrix		W	ater	wa	ter	wa	ter	Wa	ater	wa	ter	wa	ter
Units	ug/l	u	ıg/l	uį	j /l	ug	J/I	u	g/l	ug	g/l	ug	<u> </u> /
Sampling Date			3/95	2/15	5/95	2/15	/95	3/8	3/95	3/8		2/15	
Analysis Date		3/1	5/95	2/23	3/95	2/28	/95	3/1	4/95	3/10	0/95	2/23	/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result	
	<u> </u>												
Silver	20	2.5 U	2.5	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	36.2	16.8	7500	24.0	152	24.0	8210	24.0	245	24.0	1360	24.0
Arsenic	8	1.3 U	1.3	14.6	1.9	1.9 U	1.9	25.1	1.6	2.3	1.6	1.9 U	1.9
Barium ·	2000	22.6	0.80	170	1.7	50.8	1.7	192	1.7	34.9	1.7	71.0	1.7
Beryllium	20	0.35	0.30	2.3	0.90	0.90 U	0.90	2.8	0.90	0.94	0.90	0.90 U	0.90
Calcium		31700	8.4	5270	10.4	5050	10.4	4500	10.4	4200	10.4	7610	10.4
Cadmium	4	2.9 U	2.9	3.7	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt		2.6	2.3	12.5	3.0	5.2	3.0	10.7	3.0	8.7	3.0	30.6	3.0
Chromium	100	4.7 U	4.7	49.6	2.9	2.9 U	2.9	48.3	2.9	2.9 U	2.9	9.7	2.9
Copper	1000	4.0 U	4.0	6.8	1.9	1.9 U	1.9	9.8	1.9	4.0	1.9	1.9 U	1.9
íron	300	29.3	2.5	15600	6.4	1800	6.4	19600	6.4	1010	6.4	2150	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		3600	67.9	4030	685	2450	685	4630	685	2060	685	2140	685
Magnesium		7080	34.3	4770	18.3	2940	18.3	4430	18.3	2540	18.3	6670	18.3
Manganese	50	186	0.90	59.2	1.8	36.3	1.8	51.5	1.8	27.3	1.8	232	1.8
Sodium	50000	5640	19.1	16600	30.5	16600	30.5	17000	30.5	16900	30.5	36400	30.5
Nickel	, 100	5.0	4.2	48.3	10.8	23.3	10.8	35.7	10.8	22.8	10.8	12.5 -	10.8
Lead	10	1.1 U	1.1	2.8	1.6	4.1	1.6	3.9	1.0	1.0 U	1.0	3,3	1.6
Antimony	20	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	3.8	1.5	1.5 U	1.5	3.7	1.8	1.8 U	1.8	1.5 U	1.5
Thallium	10	0.70 U	0.70	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70
Vanadium		2.1 U	2.1	27.0	2.3	2.3 U	2.3	28.9	2.3	2.3 U	2.3	∕ 9.1	2.3
Zinc	5000	25.4	1.9	133	3.8	70.0	3.8	126	3.8	66.3	3.8	23.5	3.8
Cyanide	200			10 U	10		-	10 U	10			10 U	10
Method:TAL Metals, Cyan	ide								-	 			

Geographical Location		В		В	7	' В	7	В	8	. B	3 [В	8
Sample		B7-MW07E	3-A01 SOL	B7-MW	07B-A02	B7-MW078	3-A02 SOL	B8-MW	08B-A01	B8-MW08B	-A01 SOL	B8-MW0	08B-A02
Sample Type		Solu	ıble ·	To	otal	Solu	ible	To	tal	Solu		То	
Batch#		95020	G198	9503	G617	9503	G617	9502	G198	95020	3198	9503	
Prep#		95G	427	95G	1475	-95G	1475	95G	1427	95GI	427	`95G	1479
RFW#	1	00	16	00	03	00)4	Ö)7	00	8	00	
Dilution Factor		1.0	00	1.0	00	1.0	00 .	r1.	00	1.0	00	1.0	
Matrix		wa	ter	wa	ter	wa	ter	wa	ter	wat	ter	· wa	ter
Units	ug/l	ug	1/1	uç	g/l	ug	j/l	ug	g/l `	ug	i/i	ug	1/1
Sampling Date		2/15	/95	3/7	/95	3/7		2/15		2/15		3/8	
Analysis Date		2/28	/95	3/13	3/95	3/13	3/95	2/23		2/28		3/14	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result		Result		Result		Result	
					`				-				· · ·
Silver	20	3.0 U	.3.0	2.5 U	2.5	2.5 U	2.5	3.0 U ′	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	327	24.0	993	16.8	289	16.8	340	24.0	27.9	24.0	627	24.0
Arsenic	8	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9	1.6 U	1.6
Barium	2000	67.0	1.7	64.9	0.80	62.5	0.80	45.3	1.7	45.3	1.7	45.7	1.7
Beryllium	20	0.90 U	0.90	0.45	0.30	0.57	0.30	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Calcium		7420	10.4	7420	8.4	7460	8.4	1890	10.4	1960	10.4	1870	10.4
Cadmium	4	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt		30.6	3.0	29.3	2.3	29.7	2.3	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Chromium	100	2.9 U	2.9	5.7	4.7	4.7 U	4.7	2.9 U	2.9	2.9 U	2.9	5.7	2.9
Copper	1000	1.9 U	1.9	4.0 U	4.0	4.0 U	4.0	2.9	1.9	3.8	1.9	1.9 U	1.9
Iron	300	6.4 U	6.4	1430	2.5	10.9	2.5	702	6.4	6.4 U	6.4	1240	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0,20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		1280	685	1400	67.9	1130	67.9	1740	685	2230	685	2120	685
Magnesium		6260	18.3	6160	34.3	6080	34.3	3260	18.3	3310	18.3	3330	18.3
Manganese	50	223	1.8	205	0.90	203	0.90	. 16.6	1.8	16.6	1.8	15.8	1.8
Sodium	50000	35500	30.5	34100	19.1	34100	19.1	12000	30.5	12300	30.5	12100	30.5
Nickel	100	10.8 U	10.8	4.2 U	4.2	6.5	4.2	10.8 U	10.8	14.2	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	1.0 U	1.0	、1.0 U	1.0	1.6 U	1.6	1.6 Ų	1.6	1.0 U	1.0
Antimony	20	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9	20.7 U	20.7	20.7 U	20.7	20.7 Ú	20.7
Selenium	50	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.8 U	1.8
Thallium	10 /	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1
Vanadium		2.3 U	2.3	4.3	2.1	2.1 U	2.1	2.3 U	2.3	2.4	2.3	4.4	2.3
Zinc	5000	24.7	3.8	22.3	1.9	22.0	1.9	14.7	3.8	14.7	3.8	16.0	3.8
Cyanide	200			10 U	10			10 U	10			10 U	10
Method:TAL Metals, Cyan	ide						•			1			

Geographical Location		. В	18	E	38	В	9	В	9	В	9	В	9
Sample		B8-MW08	B-A02 SOL	B8-MW10	B-A02 SOL	B9-MW0	9B-A01	B9-MW09	3-A01 SOL	B9-MW0		B9-MW098	
Sample Type		Soli	uble	Sol	uble	To	tal	Solu	uble	То		Solu	
Batch#		9503	G641	9503	G641	9502	G198	9502	G198	95030		9503	
Prep#		95G	1479	95G	1479	95GC	N040	95G		95G		95G	
RFW#		00	04	0	06	00	01	00	02	00			02
Dilution Factor		1.0	00	1.	00	1.0	00	1.0	00	1.0		1.0	
Matrix		wa	ter	Wa	iter	wa	ter	wa	ter	wa	ter		ter .
Units	ug/l	uç	g/l	u	g/i	ug	<u> </u> /	ug	g/l	ug		uç	2/1
Sampling Date	·	3/8	/95	3/8	/95	2/15		2/15		3/7/		3/7	
Analysis Date		3/10	0/95	· 3/10	0/95	2/23	/95	2/28	3/95	3/13	/95	3/13	
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL
	. ,	Result		Result		Result		Result		Result		Result	
i .							_						
Silver	20	3.0 U	3.0	3,0 U	3.0	3.0 U	3.0	3.0 U	3.0	2.5 U	2.5	2.5 U	2.5
Aluminum	200	29.1	24.0	50.5	24.0	1290	24.0	400	24.0	3880	16.8	399	16.8
Arsenic	8	1.6 U	1.6	2.3	1.6	2.3	1.9	1.9 U	1.9	13.2	1.9	1.9 U	1.9
Barium	2000	35.7	1.7	14.9	1.7	82.8	1.7	71.2	1.7	92.3	0.80	50.0	0.80
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90	0.56	0.30	0.45	0.30
Calcium		2010	10.4	3490	10.4	8600	10.4	8700	10.4	7810	8.4	8030	8.4
Cadmium	4	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.8 U	2.8	2.9 U	2.9	2.9 U	2.9
Cobalt		3.0 U	3.0	3.0 U	、 3.0	4.8	3.0	5.1	3.0	6.3	2.3	4.8	2.3
Chromium	100	2.9 U	2.9	2.9 U	2.9	8.1	2.9	2.9 U	2.9	,31.8	4.7	4.7 U	4.7
Copper	1000	1.9 U	1.9	4.8	1.9	1.9	1.9	3.0	1.9	4.0 U	4.0	4.0 U	4.0
Iron	300	25.5	6.4	28.2	6.4	2650	6.4	13.6	6.4	12800	2.5	33.3	2.5
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		1300	685	1520	685	2400	685	1890	685	2940	67.9	1620	67.9
Magnesium		3120	18.3	2090	18.3	6460	18.3	6160	`.18.3	7160	34.3	/ 6380	34.3
Manganese	50	15.3	1.8	23.3	1.8	58.2	1.8	54.1	1.8	62.2	0.90	47.4	0.90
Sodium	50000	12000	30.5	14900	30.5	3330	30.5	3440	30.5	3390	19.1	3530	19.1
Nickel	100	10.8 U	10.8	10.8 U	10.8	23.8	10.8	22.3	10.8	18.4	4.2	15.0	4.2
Lead	10	1.0 U	1.0	1.0 U	1.0	2.0	1.6	1.6 U	1.6	3.6	1.2	1.0 U	1.0
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7	10.9 U	10.9	10.9 U	10.9
Selenium	50	1.8 U	1.8	1.8 U	1.8	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5	1.5 U	1.5
Thallium	10	1.1 U	1.1	1.1·U	1.1	0.70 U	0.70	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1
Vanadium		2.3 U	2.3	2.3 U	2.3	4.4	2.3	2.3 U	2.3	13.2	2.1	· 2.1 U	2.1
Zinc	5000	18.6	3.8	24.1	3.8	54.8	3.8	53.1	3.8	75.8	1.9	61.3	1.9
Cyanide	200					10 U	10			10 U	10		
Method:TAL Metals, Cyani	de												

CHARLES WOOD GROUNDWATER INORGANICS

,					,	ı			T-	
				<u> </u>				·		
									B10-MW1	0B-E01
							Soli	uble	Field Rinsa	ite - Total
							9503	G641	95020	198
							95G	I479 ¬	95GI	427
					00	05	00	06	01:	2
			1.	00	1.0	00	1.5	00	1.0	0
			Wa	iter	wa	ter	, wa	ter	wat	er
ug/l_					ug	g/l	uį	g/l	ug	/1
			2/1	5/95	. 3/8	/95	3/8	/95		
	2/23		2/28	3/95	3/14	1/95	3/14	4/95	2/23	/95
Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytical	MDL	Analytica!	MDL
	Result		Result		Result		Result		Result	
20	3011	3.0	3011	3.0	3011	3.0	3011	3.0	2011	3,0
										24.0
							1			1.9 1.7
										0.90
							1			10.4
4										2.8
<u> </u>										3.0
100			 							2,9
1000										1.9
300									.1	6.4
2										0.20
										685
										18.3
50										1.8
50000									1	30.5
100									.1	10.8
10										1.6
										20.7
50										1.5
10	0.70 U			_						0.70
t										2.3
5000										3.8
200			<u></u>						3.00	3.0
							100	10	 	
• • • • • • • • • • • • • • • • • • • •	20 200 8 2000 20 4 100 1000 300 2 50 50 100 10 20 50 10	B10-MW T0 9502 950 950 00 1.1. wa ug/I. ug 2/15 2/23 Standard Analytical Result 20 3.0 U 200 1690 8 3.5 2000 77.5 20 0.90 U 3980 4 2.8 U 3.5 100 12.1 1000 1.9 U 300 3070 2 0.20 U 2060 2790 50 34.8 50000 16400 100 20.4 10 2.2 20 20.7 U 50 1.5 U 10 0.70 U 8.5 5000 35.9	2/15/95 2/15/95 Standard Analytical MDL Result 20 3.0 U 3.0 200 1690 24.0 8 3.5 1.9 2000 77.5 1.7 20 0.90 U 0.90 3980 10.4 4 2.8 U 2.8 3.5 3.0 100 12.1 2.9 1000 1.9 U 1.9 300 3070 6.4 2 0.20 U 0.20 2060 685 2790 18.3 50 34.8 1.8 50000 16400 30.5 100 20.4 10.8 10 2.2 1.6 20 20.7 U 20.7 50 1.5 U 1.5 10 0.70 U 0.70 8.5 2.3	B10-MW10B-A01	B10-MW10B-A01 B10-MW10B-A01 SOL	B10-MW10B-A01	B10	B10	B10	B10

CHAIR S WOOD GROUNDWATER INORGANICS

Geographical Location	<u> </u>	B1	-	В	10	B1	0
Sample		B10-MW10			/10B-E02	B10-MW10	B-E02 SOL
Sample Type		Field Rinsat		Field Rins	sate - Total	Field Rinsat	e - Soluble
Batch#		95020	3198	9503	G641	95030	3641
Prep#		95GI	427	95G	1479	95GI	479
RFW#		01	3	0	08	00	9
Dilution Factor		1.0	10	1.	00	1.0	00
Matrix		wat	er	Wa	ater	wat	er
Units	ug/l	ug	/I	u	g/l	ug	/l
Sampling Date		2/15	/95	3/8	3/95	3/8/	
Analysis Date		2/28	/95	3/1	4/95	3/10	/95
Analysis	Standard	Analytical	MDL	Analytical	MDL	Analytical	MDL
		Result		Result		Result	
Silver	20	3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Aluminum	200	24.0 U	24.0	24.0 U	24.0	24.0 U	24.0
Arsenic	8	1.9 U	1.9	1.6 U	1.6	1.6 U	1.6
Barium	2000	1.7 U	1.7	1.7 U	1.7	1.7 U	1.7
Beryllium	20	0.90 U	0.90	0.90 U	0.90	0.90 U	0.90
Calcium		111	10.4	141	10.4	130	10.4
Cadmium	4	2,8 U	2.8	2.8 U	2.8	2.8 U	2.8
Cobalt		3.0 U	3.0	3.0 U	3.0	3.0 U	3.0
Chromium	100	2.9 U	2.9	2,9 U	2.9	2.9 U	2.9
Copper	1000	1.9 U	1.9	1.9 U	1.9	1.9 U	1.9
Iron	300	6.4 U	6.4	9.3	6.4	9.8	6.4
Mercury	2	0.20 U	0.20	0.20 U	0.20	0.20 U	0.20
Potassium		685 U	685	685 U	685	685 U	685
Magnesium		18.3 U	18.3	24.0	18.3	18.3 U	18.3
Manganese	50	1.8 U	1.8	1.8 U	1.8	1.8 U	1.8
Sodium	50000	70,4	30.5	170	30.5	231	30.5
Nickel	100	10.8 U	10.8	10.8 U	10.8	10.8 U	10.8
Lead	10	1.6 U	1.6	1.0 U	1.0	1.0 U	1.0
Antimony	20	20.7 U	20.7	20.7 U	20.7	20.7 U	20.7
Selenium	50	1.5 U	1.5	1.8 U	1.8	1.8 U	1.8
Thallium	10	0.70 U	0.70	1.1 U	1.1	1.1 U	1.1
Vanadium	· · · · ·	2.3 U	2.3	2.3 U	2.3	2.3 U	2.3
Zinc	5000	3.8 U	3.8	6.5	3.8	6.4	3.8
Cyanide	200			10 U	10	l	

Geographical Location		CV	V1	CV	V1	CV	V1	CV	V1	CV	V1	CV	V1 7
Sample	· ·	CW01-M	W26-A01	CW01-M	W26-A02	CW01-M	N26-E02	CW01-M		CW01-M		CW01-M	N28-A01
Sample Type		,			· · ·	Field Rins						5515,	
Batch#		95030	G358	9503	G739	95030		9503	G358	95030	G739	95030	3358
Prep#		95GP	0154	. 95GP		95GP		95GP		95GP		95GP	
RFW#	<u> </u>	OC)1	00		00	16	00		00		00	
Sample Depth						I						Ī	
Dilution Factor		1.0	00	1.0	00	1.0	00	1.0	00	1.0	00	1.0	00
Matrix		wa	ter	wa	ter	wa	ter	wa	ter	wa	ter	Wa	
Units	ug/l	ug	<u></u>	ug	y/l	ug		ug	1/1	ug	1/1	ug	
Sampling Date		2/21	1/95	3/14		3/14		2/21		3/14		2/21	
Analysis Date		3/15	5/95	3/12	2/95	3/12	/95	3/15	5/95	3/12	2/95	3/15	/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	
alpha-BHC	0.02	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
beta-BHC	0.2	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
delta-BHC		0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
gamma-BHC (Lindane)	0.2	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
Heptachlor	0.4	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
Aldrin	0.04	0.048 U	0.048	0.052 ⊍	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
Heptachlor epoxide	0.2	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
Endosulfan I	0.4	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
Dieldrin	0.03	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
4,4'-DDE	0.1	0.097 U	0.097	0.10 U	0.10	0.10 U	_0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
Endrin	2	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
Endosulfan II	0.4	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
4,4'-DDD	0.1	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
Endosulfan sulfate	0.4	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
4,4'-DDT	0.1	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
Methoxychlor	40	0.48 U	0.48	0.52 U	0.52	0.52 U	0.52	0.52 U	0.52	0.56 U	0.56	0.47 U	0.47
Endrin ketone		0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
Endrin aldehyde	^	0.097 U	0.097	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10	0.11 U	0.11	0.094 U	0.094
alpha-Chlordane		0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
gamma-Chlordane	0.5	0.048 U	0.048	0.052 U	0.052	0.052 U	0.052	0.052 U	0.052	0.056 U	0.056	0.047 U	0.047
Toxaphene	3	4.8 U	4.8	5.2 U	5.2	5.2 U	5.2	5.2 U	5.2	5.6 U	5.6	4.7 U	4.7
Aroclor-1016	2	0.97 U	0.97	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.1 U	1.1	0.94 U	0.94
Aroclor-1221	2	1.9 U	1.9	2.1·U	2.1	2.1 U	2.1	2.1 U	2.1	2.2 U	2.2	1.9 U	1.9
Aroclor-1232	2	0.97 U	0.97	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.1 U	1.1	0.94 U	0.94
Aroclor-1242	2	0.97 U	0.97	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.1 U	1.1	0.94 U	0.94
Aroclor-1248	2	0.97 U	0.97	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.1 U	1.1	0.94 U	0.94
Aroclor-1254	2	0.97 U	0.97	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.1 U	1.1	0.94 U	0.94
Aroclor-1260	2	0.97 U	0.97	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0	1.1 U,	1.1	0.94 U	0.94
Method:TCL Pesticides/PCBs	3												

Geographical Location		CV	V1	CV	V1	CV	V1	CV	V1	CV	V2	CV	V2
Sample		CW01-M	W28A02	CW01-M	W29-A01	CW01-M	W29-E01	CW01-M	W29A02	CW02-M	W30-A01	CW02-M	W30-A02
Sample Type						Field Rins	ate Blank						
Batch#	`	9503	G739	9503	G358	9503	G358	9503	G739	95030	G358	9503	G739
Prep#		95GF	0251	95GF	0154	95GP	0154	95GF	0251	95GP	0154	95GF	
RFW#		00)8	00)7	. 01	10	 	10	01		0	12
Sample Depth											<u> </u>	-	-
Dilution Factor		1.0	00	1.	00	1.0	00	1.	00	1.0	00	1.0	00
Matrix		wa	ter	wa	ter	wa	ter	wa	ter	wa	ter	<u> </u>	ter
Units	ug/l	ug	1/1	u	2/1	ug	3/ l	, u	g/l	ug	1/1		g/l
Sampling Date		3/14		2/2		2/21		3/14		2/21		3/14	
Analysis Date		3/12		3/16		3/16		3/12		3/16		3/12	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	
								.,					
alpha-BHC	0.02	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
beta-BHC	0.2	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
delta-BHC		0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
gamma-BHC (Lindane)	0.2	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Heptachlor	0.4	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Aldrin	0.04	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Heptachlor epoxide	0.2	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Endosulfan i	0.4	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Dieldrin	0.03	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDE	0.1	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endrin	2	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endosulfan II	0.4	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDD	0.1	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endosulfan sulfate	0.4	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
4,4'-DDT	0.1	0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Methoxychlor	40	0.52 U	0.52	0.47 U	0.47	0.53 U	0.53	0.51 U	0.51	0.52 U	0.52	0.52 U	0.52
Endrin ketone		0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0.10	0.10 U	0.10
Endrin aldehyde		0.10 U	0.10	0.094 U	0.094	0.11 U	0.11	0.10 U	0.10	0.10 U	0,10	0.10 U	0.10
alpha-Chlordane		0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
gamma-Chlordane	0.5	0.052 U	0.052	0.047 U	0.047	0.053 U	0.053	0.051 U	0.051	0.052 U	0.052	0.052 U	0.052
Toxaphene	3	5.2 U	5.2	4.7 U	4.7	5.3 U	5.3	5.1 U	5.1	5.2 U	5.2	5.2 U	5.2
Aroclor-1016	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1221		2.1 U	2.1	1.9 U	1.9	2.1 U	2.1	2.0 U	2.0	2.1 U	2.1	,2.1 U	2.1
Aroclor-1232	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1242	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1248	2 .	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1254	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Aroclor-1260	2	1.0 U	1.0	0.94 U	0.94	1.1 U	1.1	1.0 U	1.0	1.0 U	1.0	1.0 U	1.0
Method:TCL Pesticides/PCBs	-												

Geographical Location		CV	V2	CV	V2	CV	V2	CV	V2	CV	V2	CV	V2
Sample	†	CW02-M	W31-A01	CW02-M	W31-A02	CW02-M	N32-A01	CW02-M		CW02-M		CW02-M	
Sample Type							1			07702 111	1100 / 10 1	51102111	7700 7102
Batch#		9503	G358	9503	G739	95030	3358	95030	G739	95030	G358	9503	3739
Prep#	<u> </u>	95GF	0154	95GP	0251	95GP		95GP		95GP		95GP	
RFW#		0		. 01		01		01		01		01	
Sample Depth	<u> </u>				··	· 1				-		———	_
Dilution Factor		` 1.0	00	1.0	00	1.0	מכ	1.0	00	1.0	าก	1.0	
Matrix	ļ	wa		wa		wa		wa		wa		wa	
Units	ug/l	ug		ug		ug		ug		ug		ug	
Sampling Date		2/2		3/14		2/21		3/14		2/21		3/14	
Analysis Date		3/16		3/12		3/16		3/12		3/16		3/12	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result	OINDL	Result	ONDE
	-	71000		11000.		ROOGR		NOGUL		INCOUNT		Nesult	
alpha-BHC	0.02	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
beta-BHC	0.2	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0:053
delta-BHC		0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
gamma-BHC (Lindane)	0.2	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
Heptachlor	0.4	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
Aldrin	0.04	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
Heptachlor epoxide	0.2	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
Endosulfan I	0.4	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
Dieldrin	0.03	0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
4,4'-DDE	0.1	0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
Endrin	2	0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
Endosulfan II	0.4	0.14 U	0.14	0.10 U	0.10	0.11 Ü	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
4,4'-DDD	0.1	0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
Endosulfan sulfate	0.4	0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
4,4'-DDT	0.1	0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
Methoxychior	40	0.70 U	0.70	0.52 U	0.52	0.54 U	0.54	0.52 U	0.52	0.62 U	0.62	0.053 U	0.053
Endrin ketone		0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
Endrin aldehyde		0.14 U	0.14	0.10 U	0.10	0.11 U	0.11	0.10 U	0.10	0.12 U	0.12	0.11 U	0.11
alpha-Chlordane		0.070 U	0.070	0.052 U	0,052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
gamma-Chlordane	. 0.5	0.070 U	0.070	0.052 U	0.052	0.054 U	0.054	0.052 U	0.052	0.062 U	0.062	0.053 U	0.053
Toxaphene	3	7.0 U	7.0	5.2 U	5.2	5.4 U	5.4	5.2 U	5.2	6.2 U	6.2	5.3 U	5.3
Aroclor-1016	2	1.4 U	1.4	1.0 U	1.0	1.1 U	1,1	1.0 U	1.0	1.2 U	1.2	1.1 U	1.1
Aroclor-1221	2	2.8 U	2.8	2.1 U	2.1	2.2 U	2.2	2.1 U	2.1	2.5 U	2.5	2.1 U	2.1
Aroclor-1232	2	1.4 U	1.4	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	1.2 U	1.2	1.1 U	1.1
Aroclor-1242	2	1.4 U	1.4	1.0 U	1.0	1.1 U	1,1	1.0 U	1.0	1.2 U	1.2	1.1 U	1.1
Aroclor-1248	2	1.4 U	1.4	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	1.2 U	1.2	1.1 U	1.1
Aroclor-1254	2	1.4 U	1.4	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	1.2 U	1.2	1.1 U	1.1
Aroclor-1260	2	1.4 U	1.4	1.0 U	1.0	1.1 U	1.1	1.0 U	1.0	1.2 U	1.2	1.1 U	1.1
Method:TCL Pesticides/PCBs	;												

Sample			V6	,	V6	0	V6	CV	¥O	CV	Vb	ı CV	V6 .
		CW06-M	W01-A01	CW06-M	W01-A02	CW06-M	W01-E02	CW06-M	N34-A01	CW06-MV	N34-A02	CW06-M	W35-A01
Sample Type			_			Field Rins	ate Blank						
Batch#		95050	G840 -	9505	G138	9505	G138	95020	3300	95030	3723	95026	G300
Prep#		95GP	0510	95GF	0580	95GF	0580	95GP	0154	95GP	0247	95GP	0154
RFW#		00)2	00)2 ′	00)3	OC	1	00		00	
Sample Depth													
Dilution Factor		1.0	00	1.0	00	1.0	00	1.0	00	1.0	00	1.0	00
Matrix		wa	ter	wa	ter	wa	ter	wa	ter	war	ter	wa	ter
Units	ug/l	ug	<u>y/l</u>	ug	g/l	· ug	3/ l	ug	 /	. ug	ı/l	uç	₃ /l
Sampling Date		5/10)/95	5/10)/95	5/25	5/95	2/20	/95	3/13		2/20	
Analysis Date		5/19)/95	6/1	/95	6/1	/95	3/15	/95	3/29	/95	3/12	2/95
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result	-	Result		Result	
alpha-BHC	0.02	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
beta-BHC	0.2	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
delta-BHC		0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
gamma-BHC (Lindane)	0.2	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
Heptachlor	0.4	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
Aldrin	0.04	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
Heptachlor epoxide	0.2	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
Endosulfan i	0.4	0.054 U	0.054	0.046 U	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
Dieldrin	0.03	0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
4,4'-DDE	0.1	0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11 ·	0.097 U	0.097
Endrin	2	0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
Endosulfan II	0.4	0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
4,4'-DDD	0.1	0.098 J	0.11	0.074 J	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
Endosulfan sulfate	0.4	0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
4,4'-DDT	0.1	0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
Methoxychlor	40	0.54 U	0.54	0.46 U	0.46	0.53 U	0.53	0.47 U	0.47	0.53 U	0.53	0.48 U	0.48
Endrin ketone		0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	.0.094	0.11 U	0.11	0.097 U	0.097
Endrin aldehyde		0.11 U	0.11	0.092 U	0.092	0.11 U	0.11	0.094 U	0.094	0.11 U	0.11	0.097 U	0.097
alpha-Chlordane		0.054	0.054	0.055	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
gamma-Chlordane	0.5	0.033 JP	0.054	0.037 J	0.046	0.053 U	0.053	0.047 U	0.047	0.053 U	0.053	0.048 U	0.048
Toxaphene	3	5.4 U	4.7	4.6 U	4.6	5.3 U	5.3	4.7 U	4.7	5.3 U	5.3	4.8 U	4.8
Aroclor-1016	2 ′	1.1 U	1.1	0.92 U	0.92	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	0.97 U	0.97
Aroclor-1221	2	2.2 U	2.2	1.8 U	1.8	2.1 U	2.1	1.9 U	1.9	2.1 U	2.1	1.9 U	1.9
Aroclor-1232	2	1.1 U	1.1	0.092 U	0.092	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	0.97 U	0.97
Aroclor-1242	2	1.1 U	1.1	0.092 U	0.092	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	0.97 U	0.97
Aroclor-1248	2	- 1.1 U	1.1	0.092 U	0.092	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	0.97 U	0.97
Aroclor-1254	2	1.1 U	1.1	0.092 U	0.092	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	0.97 U	0.97
Aroclor-1260	2	1.1 U	1.1	0.092 U	0.092	1.1 U	1.1	0.94 U	0.94	1.1 U	1.1	0.97 U	0.97
Method:TCL Pesticides/PCBs		İ	-										

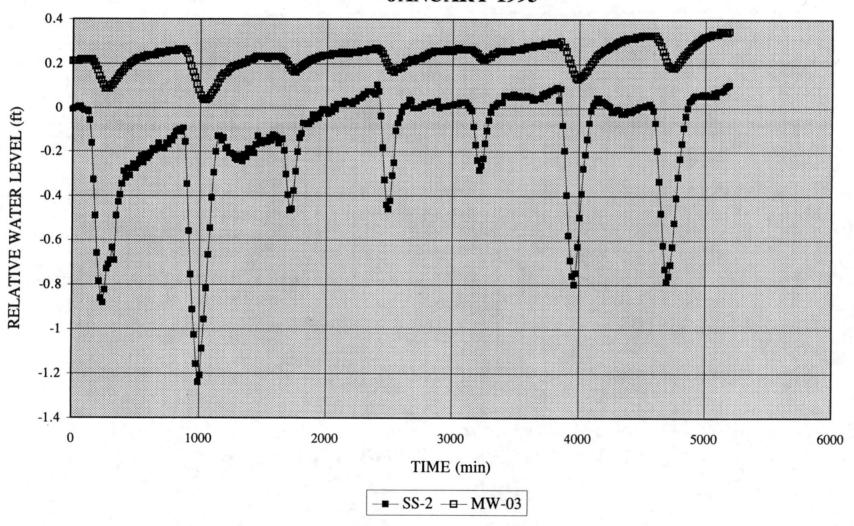
Geographical Location		CV	V9	CV	V9	CV	V6	CV	V9	В	6	B	6
Sample	1 .	CW09-M	V35-A02	CW09-M	W35-E01	CW06-M		CW09-M1		B6-MW0		B6-MW0	
Sample Type				Field Rins		,						1	7057,02
Batch#		9503	G723	9502		9502	G300	95030	3723	95020	3198	9503	G641
Prep#	/	95GP	0247	95GP		95GP	0154	95GP		95GP		- 95GF	
RFW#		00)2	00	7	00		00		00		00	
Sample Depth									<u> </u>				<u>-</u>
Dilution Factor		1.0	00	1.0	00	1.0	00	1.0	20	1.0	00	1.0	20
Matrix	,	wa	ter	wa	ter	wa	ter	wa		wa		wa	
Units	ug/l	ug	1/ 1	ug	1/1	ug	1/1	ug		ug		ug	
Sampling Date	 	3/13		-2/20		2/20		3/13		2/15		3/8	
Analysis Date		3/29	/95	3/15	5/95	3/15	5/95	3/29		3/4/		3/19	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	
		·						·				1	
alpha-BHC	0.02	0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
beta-BHC	0.2	0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
delta-BHC		0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
gamma-BHC (Lindane)	0.2	0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
Heptachlor	0.4	0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
Aldrin	0.04	0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
Heptachlor epoxide	0.2	0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
Endosulfan I	0.4	0.055 U	0.055-	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
Dieldrin	0.03	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
4,4'-DDE	0.1	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 Ú	0.11	0.096 U	0.096	0.10 U	0.10
Endrin	2	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
Endosulfan II	0.4	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
4,4'-DDD	0.1	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
Endosulfan sulfate	0.4	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
4,4'-DDT	0.1	0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11 ·	0.096 U	0.096	0.10 U	0.10
Methoxychlor	40	0.55 U	0.55	0.50 U	_ 0.50	0.48 U	0.48	0.53 U	0.53	0.48 U	0.48	0.50 U	0.50
Endrin ketone		0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
Endrin aldehyde		0.11 U	0.11	0.10 U	0.10	0.096 U	0.096	0.11 U	0.11	0.096 U	0.096	0.10 U	0.10
alpha-Chlordane		0.055 U	0.055	0.050 U	0.050	0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
gamma-Chlordane	0.5	0.055 U	0.055	0.050 U	0.050	∙0.048 U	0.048	0.053 U	0.053	0.048 U	0.048	0.050 U	0.050
Toxaphene	3	5.5 U	5.5	5.0 U	5.0	4.8 U	4.8	5.3 U	5.3	, 4.8 U	4.8	5.0 U	5.0
Aroclor-1016	2	1.1 U	1.1	1.0 U	1.0	0.96 U	0.96	1.1 U	1.1	0.96 U	0.96	1.0 U	1.0
Aroclor-1221	2	2.2 U	2.2	2.0 U	2.0	1.9 U	1.9	2.1 U	2.1	1.9 U	1.9	2.0 U	2.0
Aroclor-1232	2	1.1 U	1.1	1.0 U	1.0	0.96 U	0.96	1.1 U	1.1	0.96 U	0.96	1.0 U	1.0
Aroclor-1242	2	1.1 U	1.1	1.0 U	1.0	0.96 U	0.96	1.1 U	1.1	0.96 U	0.96	1.0 U	1.0
Aroclor-1248	2	1.1 U	1.1	1.0 U	1.0	0.96 U	0.96	1.1 U	1.1	0.96 U	0.96	1.0 U	1.0
Aroclor-1254	2	1.1 U	1.1	1.0 U	1.0 ູ	0.96 U	0.96	1.1 U	1.1	0.96 U	0.96	1:0 U	1.0
Aroclor-1260	2	1.1 U	1.1	1.0 U	1.0	0.96 U	0.96	1.1 U	1.1	0.96 U	0.96	1.0 U	1.0
Method:TCL Pesticides/PCB	s												

1/27/95

Sample Sample Type					7		8		8	В	9	. в	9
Sample Type		B7-MW0	7B-A01	B7-MW0	07B-A02	B8-MW0	08B-A01	B8-MW0	08B-A02	B9-MWC	_	B9-MW0	
loambie rybe												20 11111	,,,,,,,
Batch#		9502	G198	9503	G617	95020	G198	9503	 G641	95020	G198	95030	G617
Prep#		95GP	0119	95GP		95GP		95GP		95GP		95GP	
RFW#		00)5	00		00		00		00		00	
Sample Depth									<u>-</u>	<u> </u>		1	-
Dilution Factor	-	1.0	00	1.0	00	1.0	00	1.0	00	1.0	20	11	00
Matrix		wa	ter	wa		wa		wa		wa		wa	
Units	ug/l	ug	<u>1/l</u>	ug	2/1	ug		ug		ug		ug	
Sampling Date		2/15		3/7		2/15		3/8		2/15		3/7	
Analysis Date		3/4	/95	3/17		3/7		3/19		3/4/		3/17	
Analysis	Standard	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result		Result		Result		Result	0.,52
					- -							- 11554111	
alpha-BHC	0.02	0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
beta-BHC	0.2	0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
delta-BHC		0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
gamma-BHC (Lindane)	0.2	0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
Heptachlor	0.4	0,060 U	0.060	0.051 U	0.051	0.060 U	0,060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
Aldrin	0.04	0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
Heptachlor epoxide	0.2	0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
Endosulfan I	0.4	0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
Dieldrin	0.03	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
4,4'-DDE	0.1	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
Endrin	2	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
Endosulfan II	0.4	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
4,4'-DDD	0.1	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
Endosulfan sulfate	0.4	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
4,4'-DDT	0.1	0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
Methoxychlor	40	0.60 U	0.60	0.51 U	0.51	0.60 U	0.60	0.52 U	0.52	0.47 U	0.47	0.48 U	0.48
Endrin ketone		0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U ²	0.10	0.094 U	0.094	0.095 U	0.095
Endrin aldehyde		0.12 U	0.12	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.094 U	0.094	0.095 U	0.095
alpha-Chlordane		0.060 U	0.060	0.051 U	0.051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
gamma-Chlordane	0.5	0.060 U	0.060	0.051 U	0,051	0.060 U	0.060	0.052 U	0.052	0.047 U	0.047	0.048 U	0.048
Toxaphene	3	6.0 U	6.0	5.1 U	5.1	6.0 U	6.0	5.2 U	5.2	4.7 U	4.7	4.8 U	4.8
Aroclor-1016	2	1.2 U	1.2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	0.94 U	0.94	0.95 U	0.95
Aroclor-1221	2	2.4 U	2.4	2.0 U	2.0	2.4 U	2.4	2.1 U	2.1	1.9 U	1.9	1.9 U	1.9
Aroclor-1232	2	1.2 U	1.2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	0.94 U	0.94	0.95 U	0.95
Aroclor-1242	2	1.2 U	1.2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	0.94 U	0.94	0.95 U	0.95
Aroclor-1248	2	1.2 U	1.2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	0.94 U	0.94	0.95 U	0.95
Aroclor-1254	2	1.2 U	1.2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	0.94 U	0.94	0.95 U	0.95
Aroclor-1260	2	1.2 U	1.2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	0.94 U	0.94	0.95 U	0.95
Method:TCL Pesticides/PCBs									-77-				

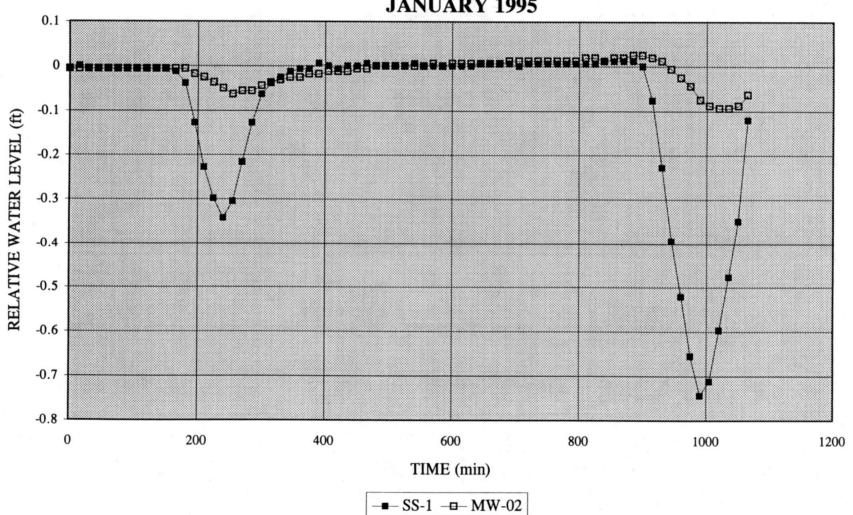
Geographical Location		В	10	. `B	10	В	10	B1	0
Sample		B10-MW	10B-A01	B10-MW	10B-A02	B10-MW	10B-E01	B10-MW	10B-E02
Sample Type						Field Rins	ate Blank	Field Rins	ate Blank
Batch#		9502	G198	9503	G641	9502	G198	95030	
Prep# /		95GF	20119	95GF	0229	95GF	20119	95GP	
RFW#		00	09	Of	05		12	00	
Sample Depth									
Dilution Factor	T	1.0	00	1.	00	1.0	00	1.0	00
Matrix	<u> </u>	wa	ter	wa	iter .	wa	ter	wat	
Units	ug/i	`u _i	g/l	u	g/l		g/l	ug	
Sampling Date			5/95		/95	2/13		3/8/	
Analysis Date	,		/95		9/95		/95	3/19	
Analysis	Standard	Analytical	CRDL.	Analytical	CRDL	Analytical	CRDL	Analytical	CRDL
		Result		Result		Result	1	Result	
	-13						,	7,000	
alpha-BHC	0.02	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
beta-BHC	0.2	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
delta-BHC		0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
gamma-BHC (Lindane)	0.2	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
Heptachlor	0.4	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
Aldrin	0.04	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
Heptachlor epoxide	0.2	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
Endosulfan I	0.4	0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
Dieldrin	0.03	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
4,4'-DDE	0.1	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
Endrin	2	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
Endosulfan II	0.4	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
4,4'-DDD	0.1	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
Endosulfan sulfate	0.4	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
4,4'-DDT	0.1	0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
Methoxychlor	40	0.51 U	0.51	0.61 U	0.61	0.52 U	0.52	0.55 U	0.55
Endrin ketone		0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
Endrin aldehyde		0.10 U	0.10	0.12 U	0.12	0.10 U	0.10	0.11 U	0.11
alpha-Chlordane		0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
gamma-Chlordane	0.5	~0.051 U	0.051	0.061 U	0.061	0.052 U	0.052	0.055 U	0.055
Toxaphene	3	5.1 U	5.1	6.1 U	6.1	5.2 U	5.2	5.5 U	5.5
Aroclor-1016	2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	1.1 U	1.1
Aroclor-1221	2	2.0 U	2.0	2.4 U	2.4	2.1 U	2.1	2.2 U	2.2
Aroclor-1232	2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	1.1 U	1.1
Aroclor-1242	2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	1.1 U	1.1
Aroclor-1248	2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	1.1 U	1.1
Aroclor-1254	2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	1.1 U	1.1
Aroclor-1260	2	1.0 U	1.0	1.2 U	1.2	1.0 U	1.0	1.1 U	1.1
Method:TCL Pesticides/PCB	s								

TRANSFORMERS - PCBs

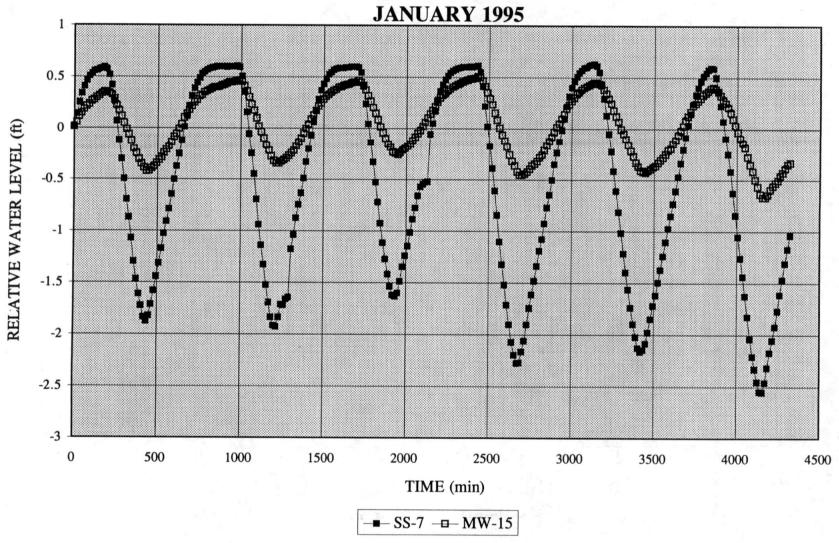

Geographical Location		Buildin	g 2000	Buildin	g 2000	Buildin	g 2000	Buildin	g 2000	Buildin	g 2018	Buildin	g 2018
Sample		-CW07-T	R01-A01	CW07-T	R02-A01	CW07-T	R03-A01	CW07-T	R04-A01	CW07-T	R05-A01	CW07-T	·
Sample Type		Trans	former	Trans	former	Trans	former	Trans	former	Trans	former	Trans	former
Batch#		9411	G831	9411	G831	9411	G831	9411	G831	9412	G854	9412	G854
Prep#		94GF	1024	94GF	21024	94GF	21024	94GF	1024	94GF	21024	94GF	1024
RFW#		0	01	0	02	00	03	00	04	0	17	01	18
Sample Depth					T					,			
Dilution Factor		2	50	50	0.0	50	0.0	.10	0.0	50	0.0	5	.0
Matrix		s	oil	s	oil	S	oil	S	oil	s	oil	S	oil
Units	mg/kg	mg	/kg	mg	ı/kg	mg	ı/kg	mg	/kg	mg/kg		mg	/kg
Sampling Date		11/2	9/94	11/2	9/94	11/2	9/94	11/2	9/94	11/30/91		11/3	
Analysis Date		12/2	1/94	12/2	0/94	12/2	0/94	12/2	1/94	12/2	2/94	12/2	1/94
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting	Analytical	Reporting
		Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit	Result	Limit
% Solids		85.8	0.10	89.0	0.10	90.3	0.10	85,7	0,10	86.4	0.10	92.5	0.10
Aroclor-1016	0.055	23 U	23	4.4 U	4.4	4.4 U	4.4	0.91 U	0.91	4.50	4.5	0.42 U	0.42
Aroclor-1221	0.055	23 U	23	4.4 U	4.4	4.4 U	4.4	0.91 U	0.91	4.50	4.5	0.42 U	0,42
Aroclor-1232	0.055	23 U	23	4.4 U	4.4	4.4 U	4.4	ט 91 ט	0.91	4.50	4.5	0.42 U	0.42
Aroclor-1242	0.055	23 U	23	4.4 U	4.4	4.4 U	4.4	0.91 U	0.91	4.50	4.5	0.42 U	0.42
Aroclor-1248	0.055	23 U	23	4.4 U	4.4 ,	4.4 U	4.4	0.91 U	0.91	4.50	4.5	0.42 U	0.42
Aroclor-1254	0.055	46 U	46	8.8 U	8.8	8.7 U	8.8	1.8 U	1.8	9 U	9	0.84 U	0.84
Aroclor-1260	0.055	100		27		26		6.4	•	9 U	9	0.84 U	0.84
Method:TCL PCBs									``				

CHARLES WOOD TRANSFORMERS - PCBs

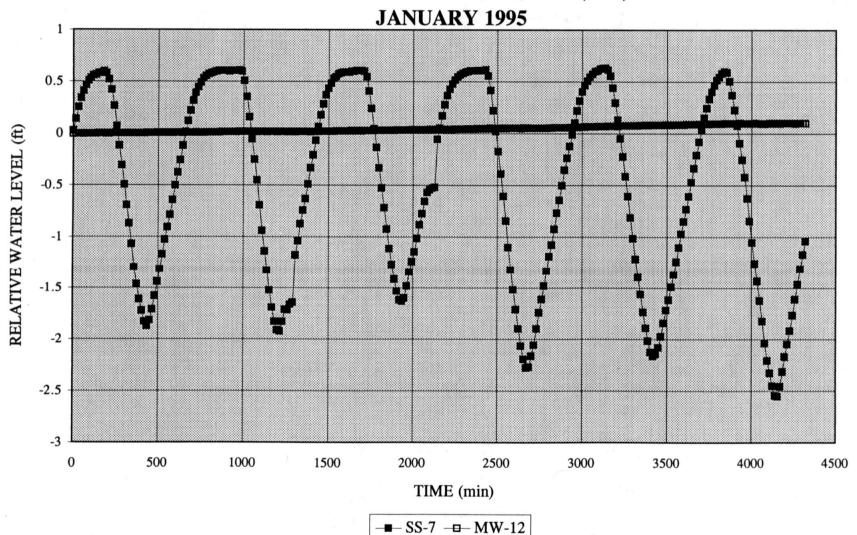
Geographical Location	1	Buildin	g 2276	Buildin	g 2276	
Sample			R01-A01		R01-C01	
Sample Type			former		icate	
Batch#			G854	<u> </u>	G854	
Prep#			21024	- 94GT		
RFW#		0	15		16	
Sample Depth					<u> </u>	
Dilution Factor		2	.5	0.5		
Matrix		S	oil	soil		
Units .	mg/kg	mg	/kg	mg/kg		
Sampling Date			0/94	11/30/94		
Analysis Date		12/2	2/94	12/2	1/94	
Analysis	Standard	Analytical	Reporting	Analytical	Reporting	
		Result	Limit	Result	Limit	
% Solids		92.0	1.0	90.7	1.0	
Aroclor-1016	0.055	0.21 U	0.21	0.044 U	0.044	
Aroclor-1221	0.055	0.21 U	0.21	0.044 U	0.044	
Aroclor-1232	0.055	0.21 U	0.21	0.044 U	0.044	
Aroclor-1242	0.055	0.21 U	0.21	0.044 U	0.044	
Aroclor-1248	0.055	0.21 U	0.21	0.044 U	0.044	
Aroclor-1254	0.055	0.43 U	0.43	0.088 U	0.088	
Aroclor-1260	0.055	0.43 U	0.43	0.088 U	0.088	
Method:TCL PCBs			-			



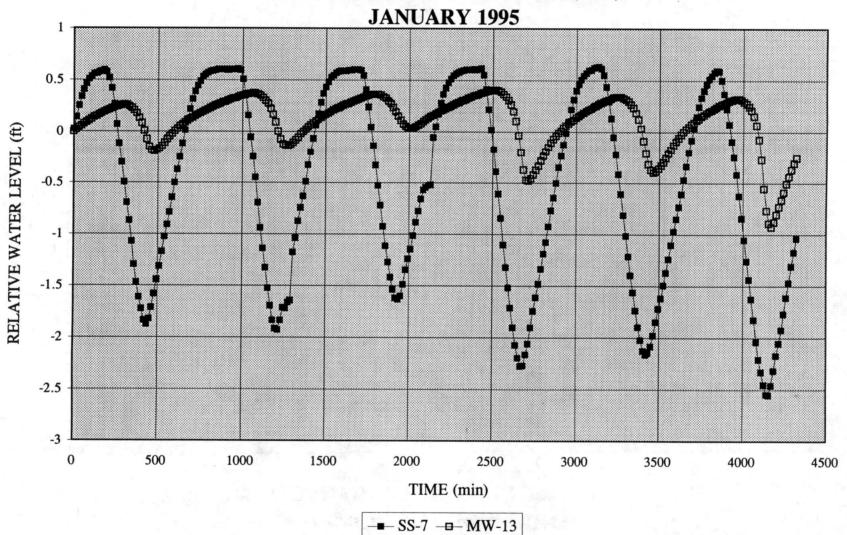
APPENDIX E TIDAL MONITORING GRAPHS


⁽⁻⁾ negative value shows rise in water level

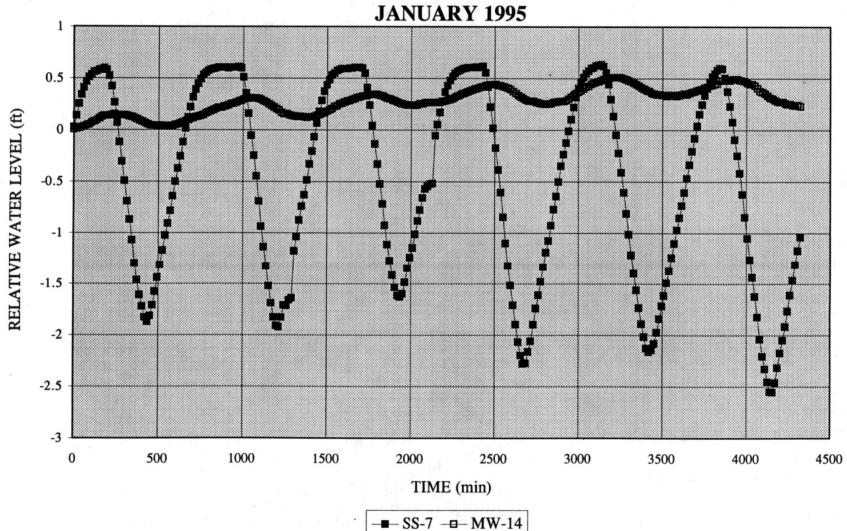
⁽⁺⁾ positive value shows fall in water level


(-) negative value shows rise in water level

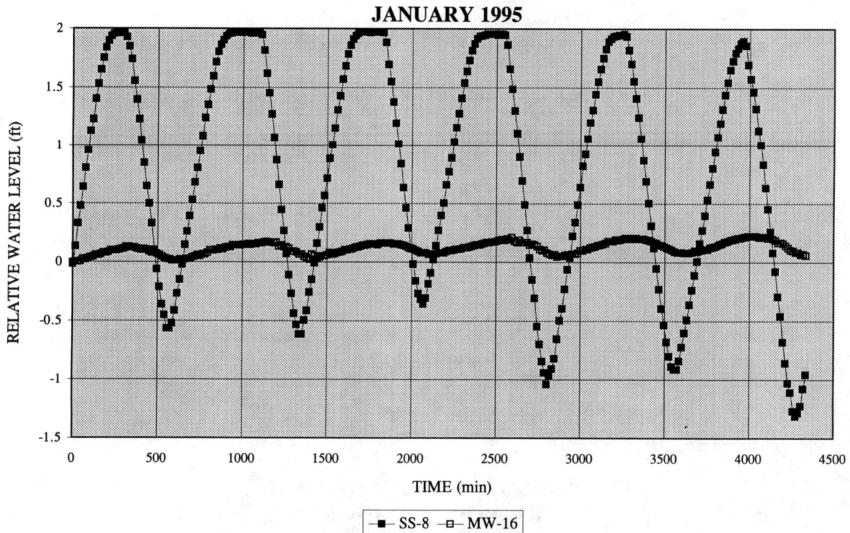
(+) positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

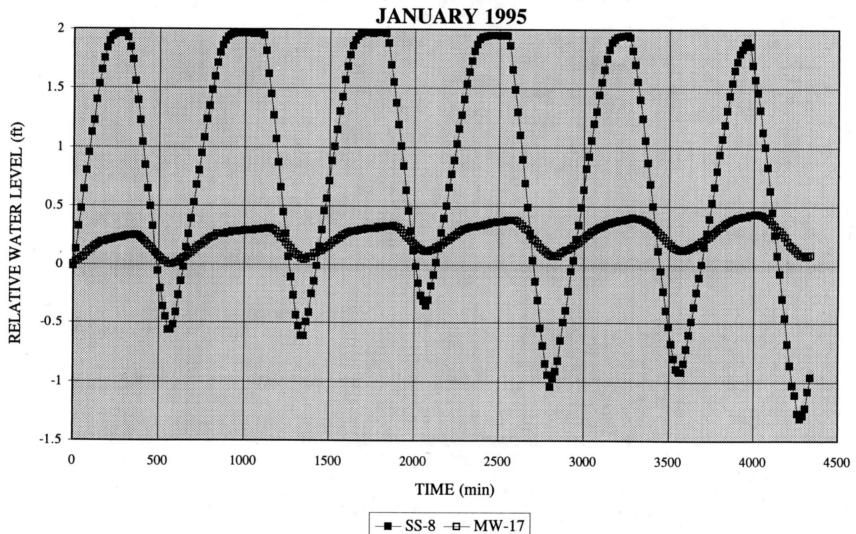
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

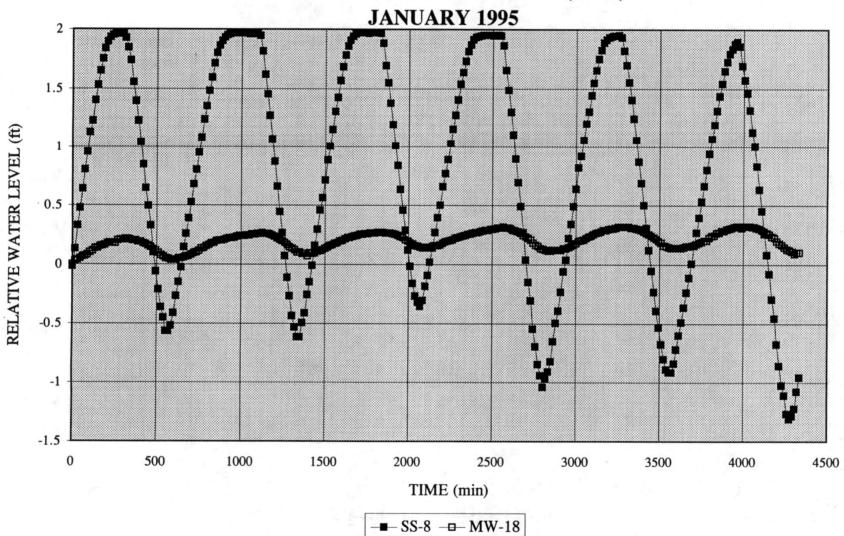
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

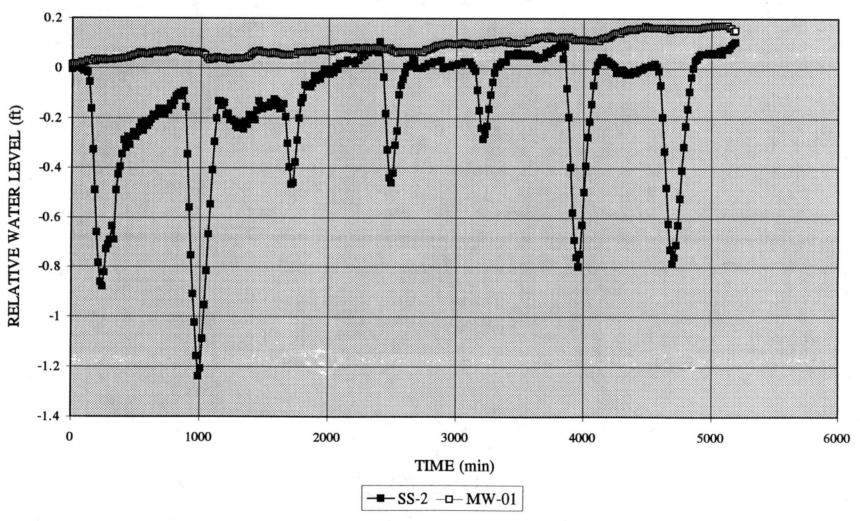
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

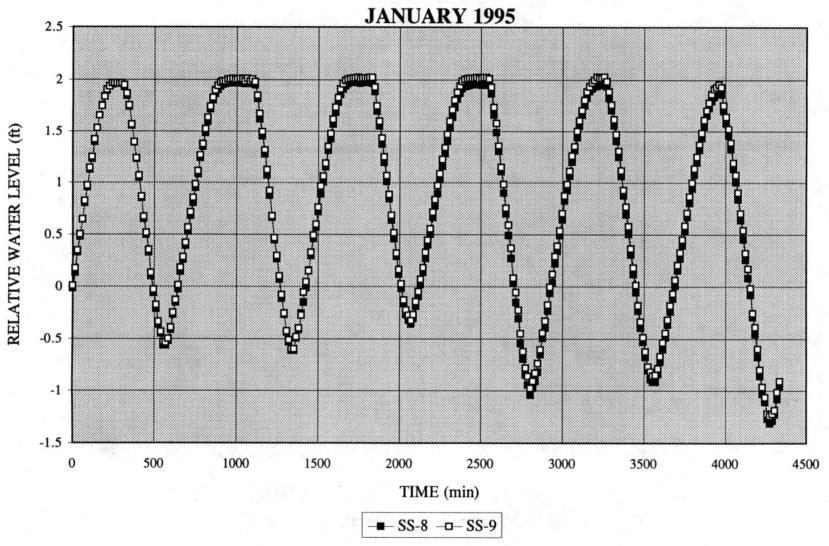
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

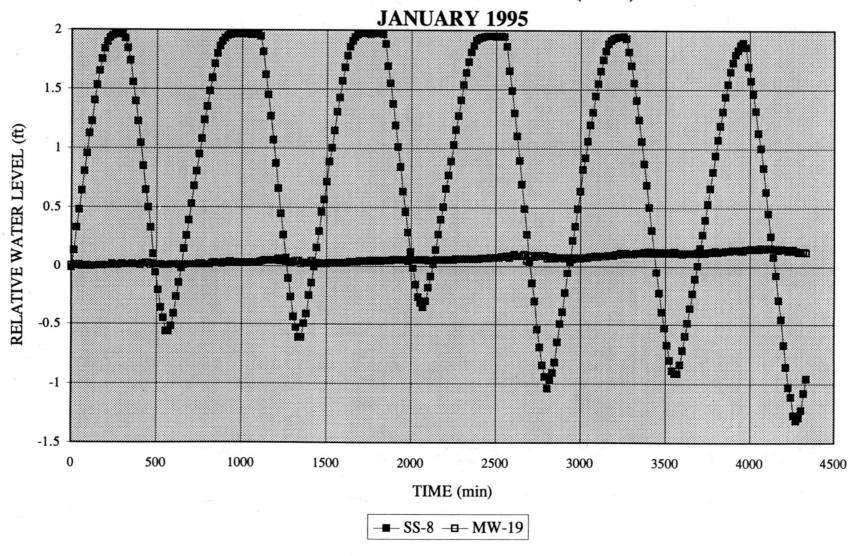
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

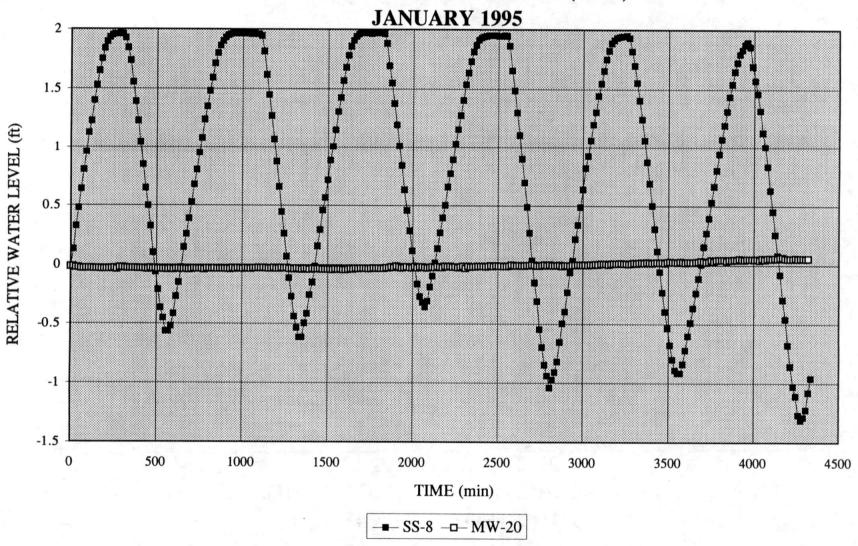
⁽⁺⁾ positve value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

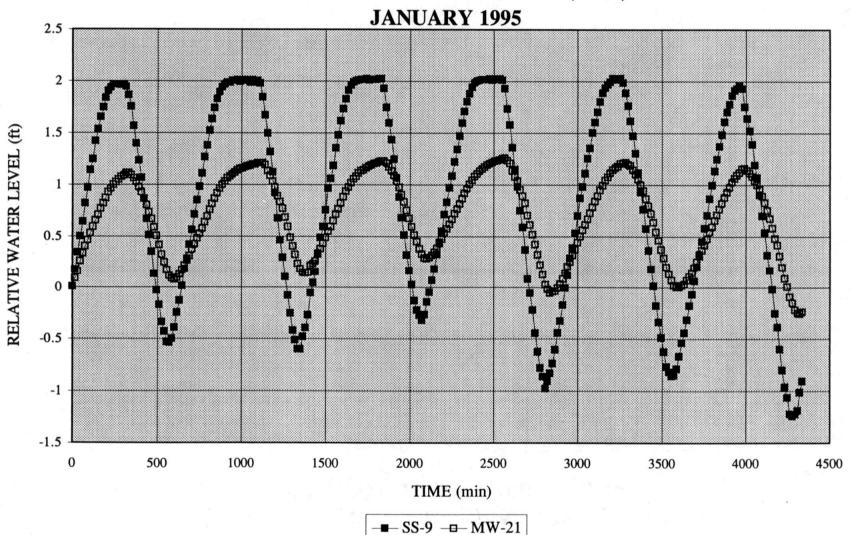
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

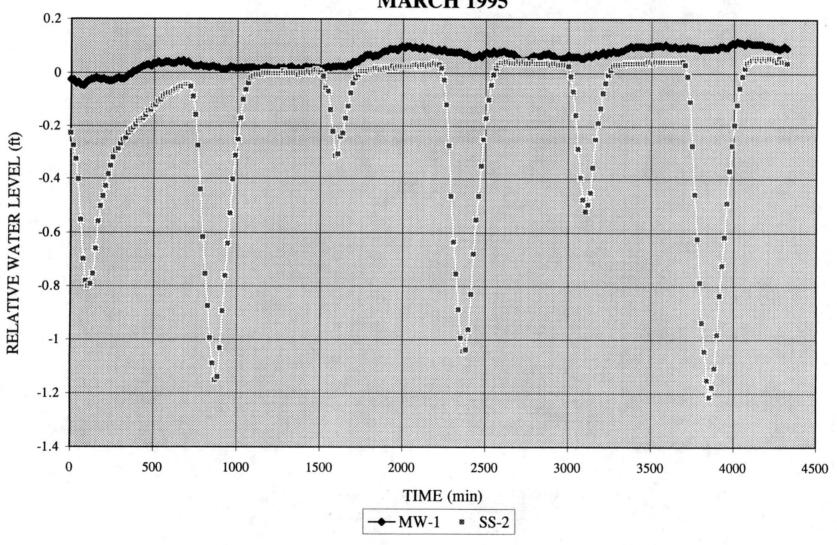
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

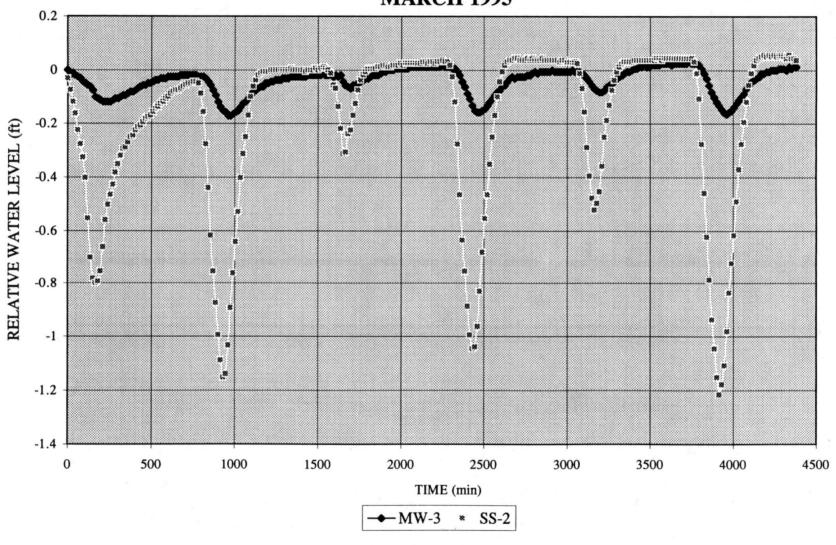
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

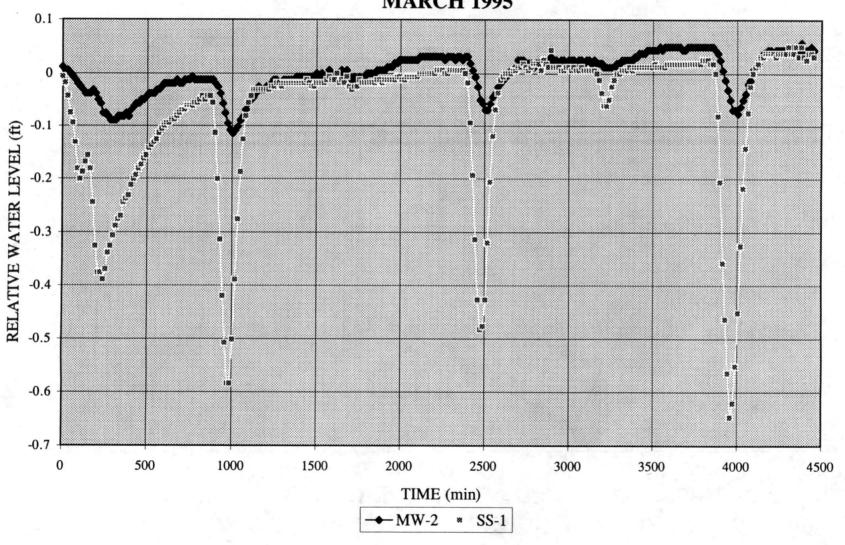
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

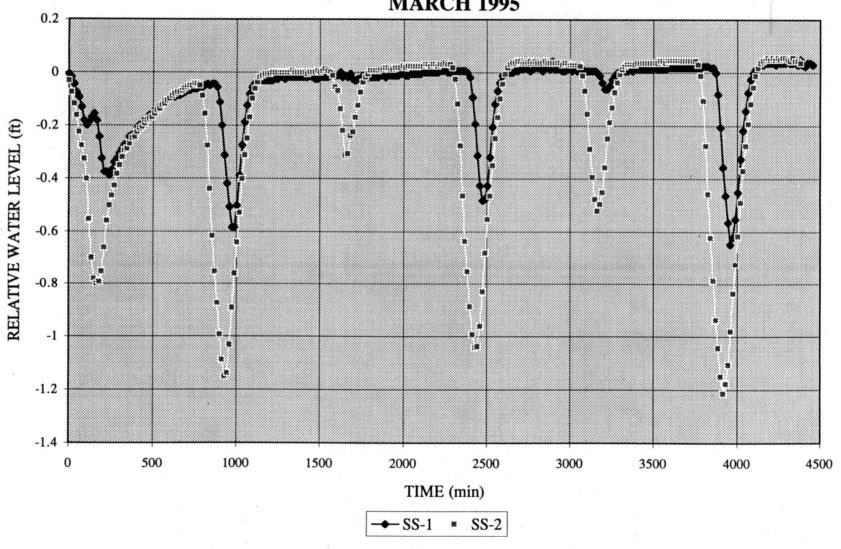
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

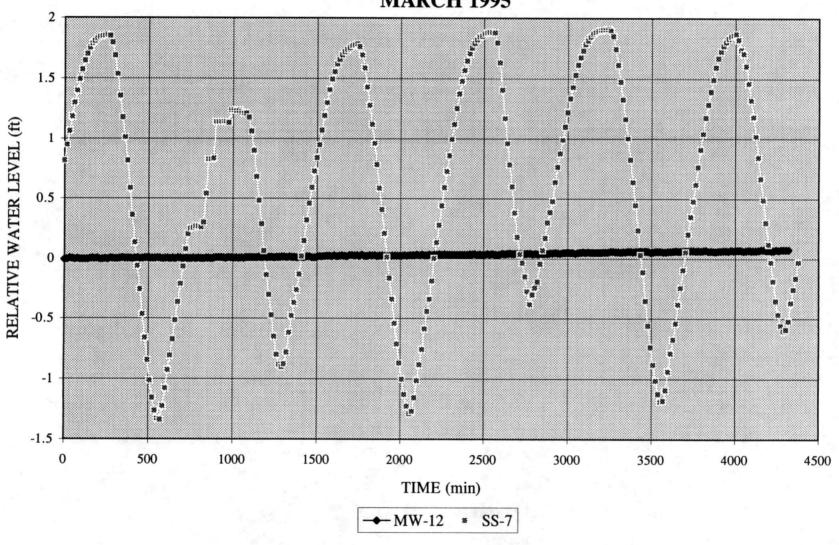
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows a rise in water level

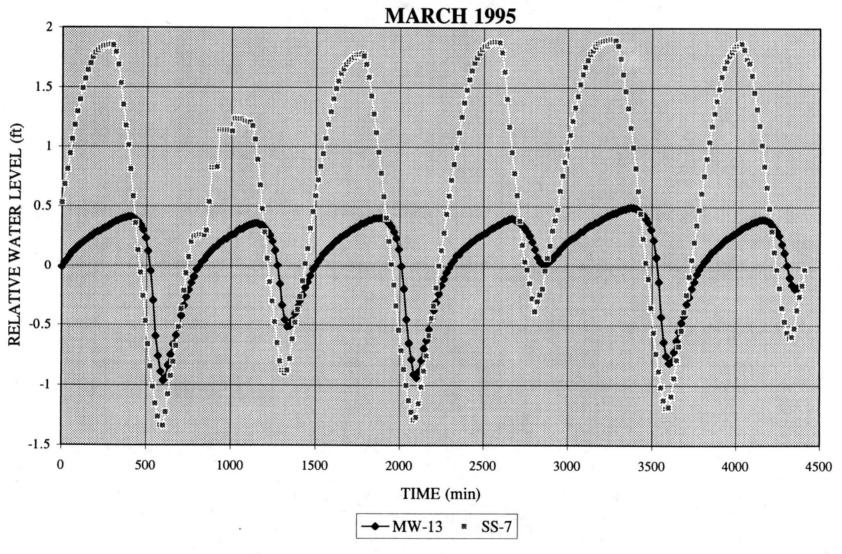
⁽⁺⁾ positive value shows fall in water level


(-) negative value shows rise in water level

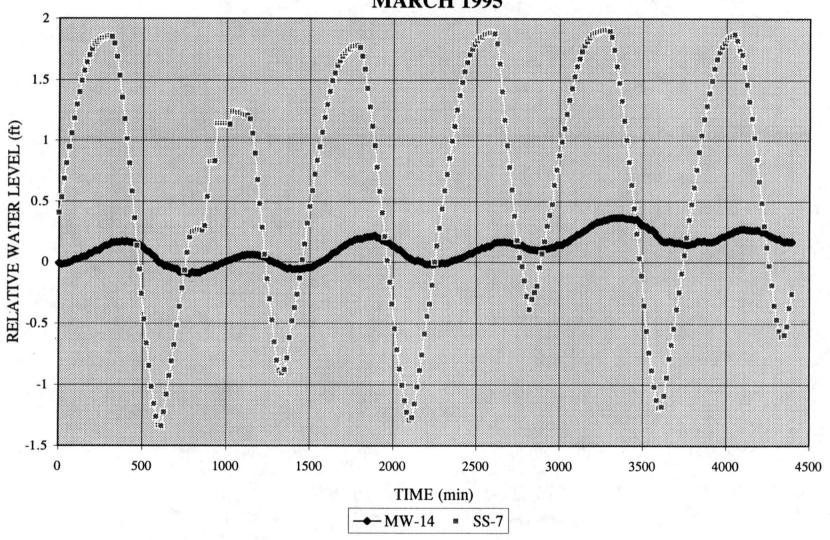
(+) positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

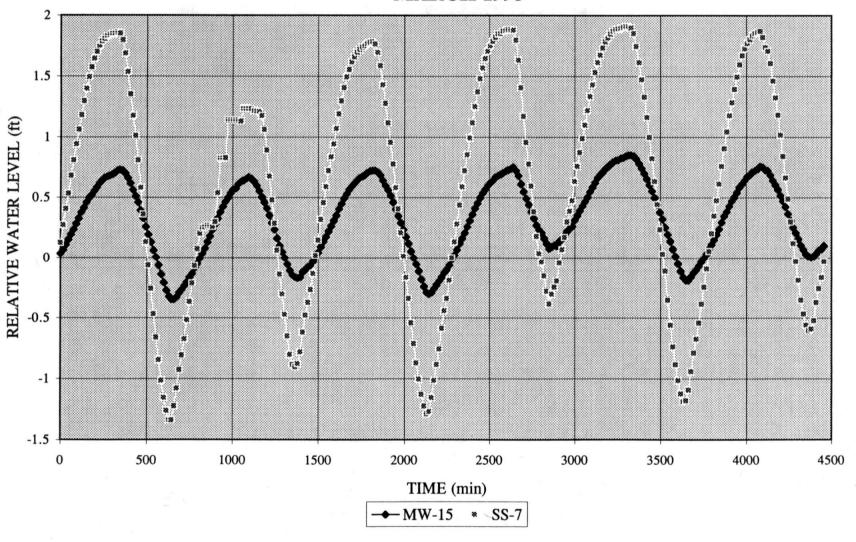
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

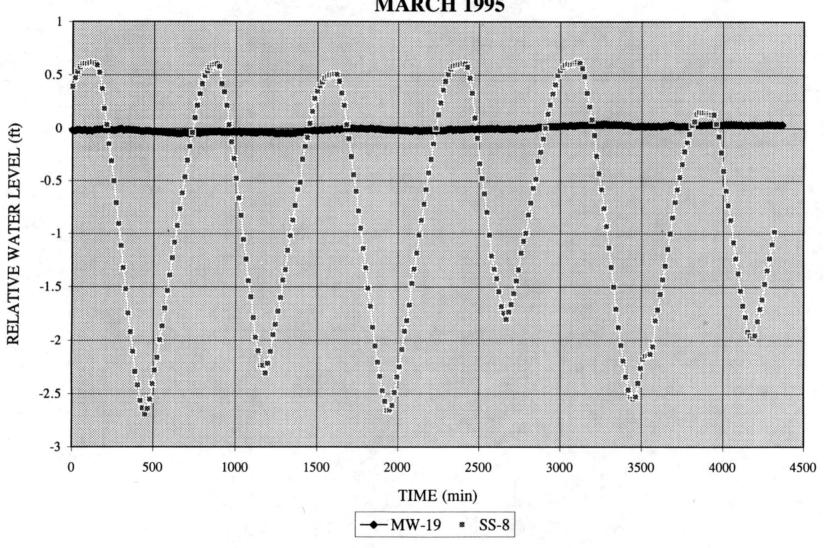
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

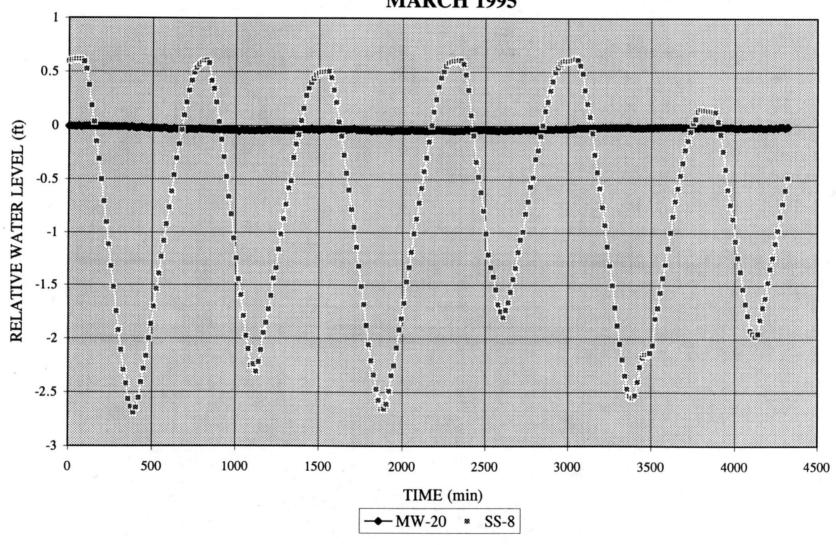
⁽⁺⁾ positive value shows fall in water level


(-)negative value shows rise in water level

(+) positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water table

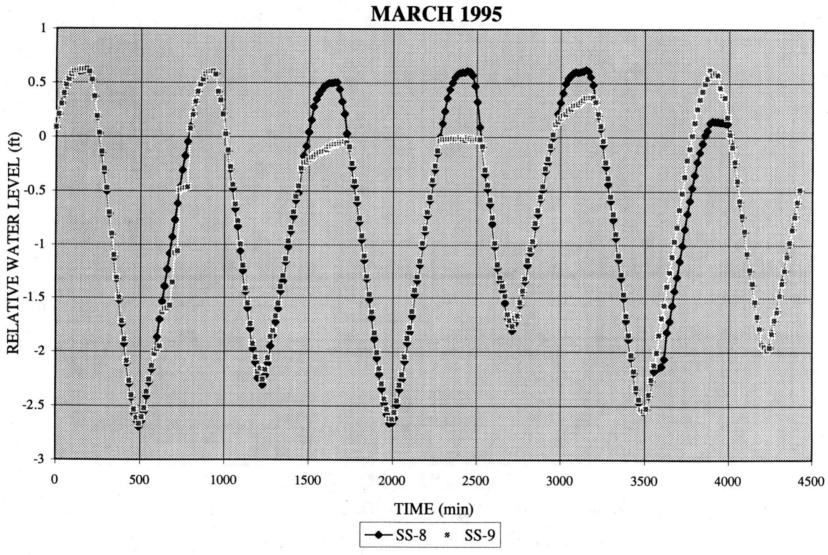
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

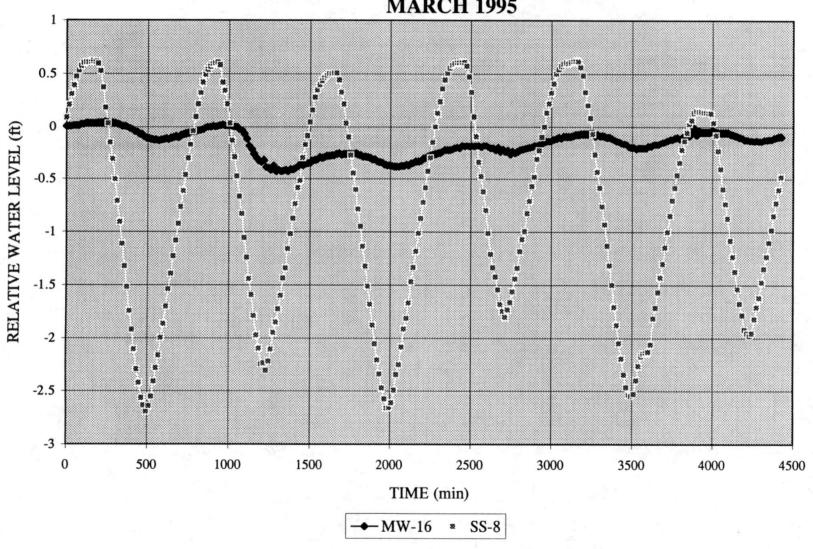
⁽⁺⁾ positive value shows fall in water level

⁽⁻⁾ negative value shows rise in water level

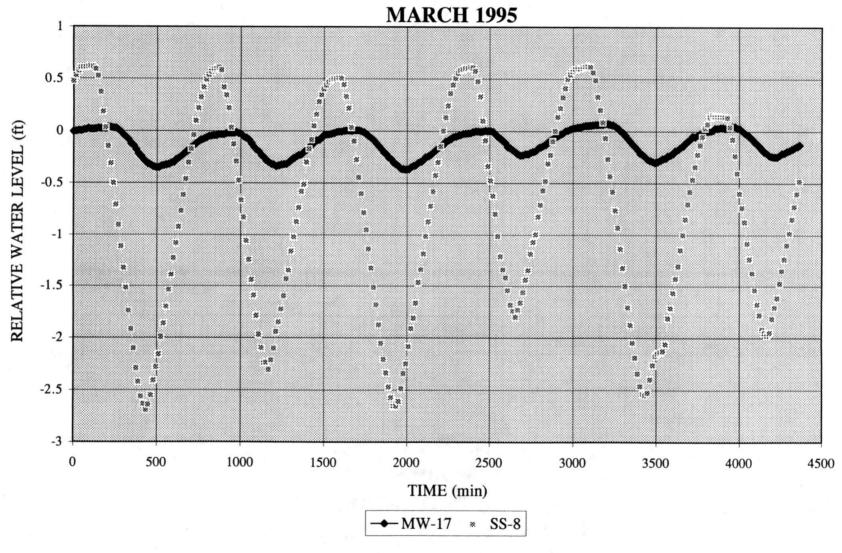
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

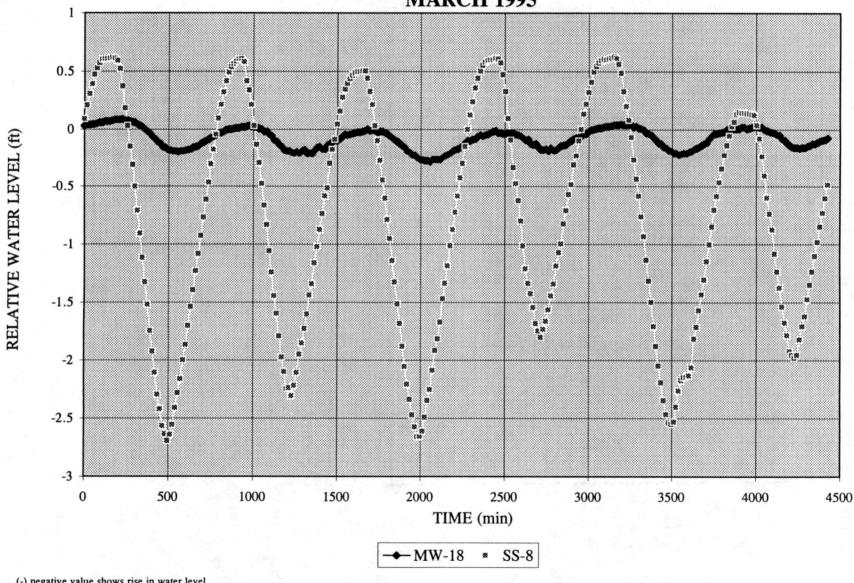
⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

⁽⁺⁾ positive value shows fall in water level


⁽⁻⁾ negative value shows rise in water level

⁽⁺⁾ positive value shows fall in water level

⁽⁻⁾ negative value shows rise in water level

⁽⁺⁾ positive value shows fall in water level

⁽⁻⁾ negative value shows rise in water level

⁽⁺⁾ positive value shows fall in water level

Table E-1
Conductivity and Salinity Summary
Tidal Monitoring Study
January 1995
Tide Out

Well Tide SPCD Salinity					
潘女、50.045 00 (450、1911年) 191、191、191、191、191、191、191、191、191、191	IMPONENT SAMANO HOLLONGO POR SAMANO LO LOS	Salinity			
(in/Out)	(umnos)	(umhos)			
		•			
Out	ND	ND			
Out	· ND	ND ´			
` Out	350	` 0.3			
Out	198	0.2			
Out	200	0.2			
		ų.			
COut	ND	ND			
Out	2300	1.5			
Out	2300	2.0			
Out	2250	2.0			
Out	4200	6.5			
		_			
Out	ND	ND			
Out	ND	ND			
′ Out	ND ,	ND			
Out .	3	0.0			
Out		ND			
Out		: ND			
,		2			
	`	4.2			
	Out Out Out Out Out Out Out Out Out Out	Out ND Out ND Out 350 Out 198 Out 200 Out ND Out 2300 Out 2250 Out 4200 Out ND Out ND Out ND Out ND Out ND Out ND Out ND Out ND Out ND Out ND Out ND Out 2200			

Note: SPCD - specific conductance. ppth - parts per thousand. ND - No data.

Table E-2 Conductivity and Salinity Summary Tidal Monitoring Study March 1995 Tide In

Well	Tide	SPCD	Salinity
No.	(In/Out)	(umhos)	(umhos)
	In	210	0.0
MW-2	In	850	0.0
MW-3	In	355	0.0
Stilling Well-1 (SS-1)	In	225	0.0
Stilling Well-2 (SS-2)	- In	235	0.0
MW-12	In	160	0.0
MW-13	In	170	1.5
MW-14	In	270	2.0
MW-15	In	2000	2.0
Stilling Well-7 (SS-7)	In	3600	1.5
MW-16	In	140	0.0
MW-17	In	200	0.0
MW-18	In	165	0.0
MW-19	In	128	0.0
MW-20	In	195	0.0
MW-21	In	180	0.0
Stilling Well-8 (SS-8)	In	11000	9.5
Stilling Well-9 (SS-9)	In	11000	9.5

Note: SPCD - specific conductance. ppth - parts per thousand.

Table E-3 Conductivity and Salinity Summary Tidal Monitoring Study March 1995 Tide Out

Well No.	Tide (In/Out)	SPCD (umhos)	Salinity (umhos)
MW-1	Out	190	0.0
MW-2	Out	880	0.0
MW-3	Out	320	0.0
Stilling Well-1 (SS-1)	Out \	235	0.0
Stilling Well-2 (SS-2)	-Out	240	0.0
MW-12	Out	150	1.0
MW-13	Out	1600	1.0 1.0
MW-14	Out	2600	2.0
MW-15	Out ·	210	2.0
Stilling Well-7 (SS-7)	Out	4000	4.5
MW-16	Out	130	0.0
MW-17	Out	198	0.0
MW-18	Out	150	0.0
MW-19	Out	120	0.0
MW-20	Out	140	0.0
MW-21	Out	170	0.0
Stilling Well-8 (SS-8)	Out	3600	3.0
Stilling Well-9 (SS-9)	Out	3000	2.0

Note: SPCD - specific conductance. ppth - parts per thousand.

APPENDIX F GPR PROFILES