DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

13 December 2019

Mr. Ashish Joshi
New Jersey Department of Environmental Protection
Division of Remediation Management & Response
Northern Bureau of Field Operations
7 Ridgedale Avenue (2nd Floor)
Cedar Knolls, NJ 07927-1112

SUBJECT: UST 211 Site Investigation Report

Request for Unrestricted Use, No Further Action Approval Fort Monmouth, Monmouth County, Oceanport, New Jersey

PI G000000032

Dear Mr. Joshi:

The U.S. Army Fort Monmouth (FTMM) Team has prepared this Site Investigation (SI) Report to summarize previous investigations and present the results of additional field sampling at the former Underground Storage Tank (UST) 211.

1.0 OBJECTIVES

Field screening borings, monitoring well installation, and groundwater sampling activities were conducted from 2017 to 2019 to address New Jersey Department of Environmental Protection (NJDEP) comments on UST 211 (Attachment A, Correspondences 1 and 3). Proposed field investigation activities were documented in the Unregulated Heating Oil Tank (UHOT) Work Plan (WP) (August 2017) which was approved in October 2017 by NJDEP (Attachment A, Correspondences 2 and 1).

2.0 SITE DESCRIPTION

Building 211 is one of the former Officer Housing residential buildings located along Russel Avenue at the former Main Post (MP) of FTMM. Former UST 211 was located at the southeast corner of Building 211 and was a fiberglass 2,000-gallon No. 2 fuel oil UST (Registration ID 81533-9) that was removed in November 2001. The former location of UST 211 is shown on **Figure 1** and site features are shown in **Figure 2**.

2.1 Site Land Use

Future land use for the UST 211 area as described in the Fort Monmouth Reuse and Redevelopment Plan (EDAW, 2008) is residential, and the former Officer Housing buildings along Russel Avenue are currently used for residential housing.

2.2 Site Geology and Hydrogeology

The Hornerstown Formation underlies much of the MP including the UST 211 area and is approximately 25 to 30 feet thick based on other MP soil borings. This formation is distinguished by

Ashish Joshi, NJDEP UST 211 Site Investigation Report 13 December 2019 Page 2 of 5

varying proportions of glauconitic clay, silty clay, and minor sand. The Tinton Formation underlies the Hornerstown Formation and consists of dense fine sand and trace silt, glauconite, and clay.

During the November 2017 field investigation at UST 211, soil borings encountered primarily brown, some green or black, fine to coarse sand with some clay, silt, and gravel. Indications of fill such as coal, concrete and brick were observed in borings south and west of the former UST 211 location (PAR-72-211-SCREEN01 and PAR-72-211-SCREEN02) at depths up to 8 feet below ground surface (ft bgs). Soil borings logs are provided in **Attachment B**. The depth to groundwater at UST 211 ranged from approximately 5 to 12.5 ft bgs in the soil borings, and 2.95 to 10.3 ft bgs in monitoring wells (**Table 1**). Ground surface topography varies from approximately 12 to 19 ft above mean sea level.

3.0 PREVIOUS INVESTIGATIONS

As previously reported (Attachment A, Correspondence 4), UST 211 was removed in November 2001, and six soil samples were collected along the sidewalls and bottom of the excavation and analyzed by the FTMM laboratory for Total Petroleum Hydrocarbons (TPH), which were not detected (ND) in five of six soil samples. One sample (211B-Center) contained 3,968 mg/Kg of TPH; this sample was also analyzed for volatile organic compounds (VOCs). The VOC results were ND for all compounds except acetone, which is a common laboratory contaminant. The maximum TPH results is less than the NJDEP (2019) residential soil remediation criteria of 5,100 mg/kg for Category 1 (No. 2 heating oil or diesel fuel).

To assess the groundwater quality, a temporary well (PAR-72-211-TMW01) was installed and sampled in August 2016. Multiple analytes were detected in groundwater at concentrations greater than the respective Ground Water Quality Criteria (GWQC) including two VOCs (1,2,4-trimethylbenzene and benzene), five semi-volatile organic compounds (SVOCs) (2-methylnaphthalene, dibenzofuran, fluorene, naphthalene, and phenanthrene), total VOC Tentatively Identified Compounds (TICs) and total SVOC TICs (Attachment A, Correspondence 4),

Based on the August 2016 results, NJDEP (Attachment A, Correspondence 3) indicated that additional remedial efforts were required. The Army conducted additional groundwater investigations in 2017, 2018, and 2019 to monitor groundwater contamination over time.

4.0 2017, 2018 AND 2019 SITE INVESTIGATION RESULTS

In November 2017, seven field screening Geoprobe borings (PAR-72-211-SCREEN01 through - SCREEN05, -SCREEN08, and -SCREEN09; see **Figure 2**) were logged visually and with a photoionization detector (PID). Visual indications of contamination and elevated PID readings (up to 152 parts per million [ppm]) were observed in PAR-72-211-SCREEN1 through -SCREEN3 located (respectively) to the west, south and east of former UST 211 (**Attachment B**). These field indications of contamination were located near the water table. No field evidence of contamination was identified in any other screening borings located to the north of UST 211 (PAR-72-211-SCREEN4 or PAR-72-211-SCREEN9).

Also, in November 2017, five temporary monitor wells (PAR-72-211-TMW-02 through -04, -06 through -08) were installed, sampled for VOCs and SVOCs in accordance with the NJDEP requirements for No. 2 fuel oil, and subsequently abandoned (**Figure 2**). As with the field screening borings, temporary well borings were logged visually and with a PID field evidence of contamination was not encountered during the temporary monitor well installations (**Attachment B**).

Ashish Joshi, NJDEP UST 211 Site Investigation Report 13 December 2019 Page 3 of 5

Four permanent monitoring wells (PAR-72-211-MW-01 through -04) were installed in December 2017 to evaluate local groundwater flow direction and quality (Figure 2 and Table 1). Well PAR-72-211-MW-01 was installed at the former UST 211 tank location. Field evidence of contamination was not observed during the installation of the three permanent monitoring wells surrounding PAR-72-211-MW-01, or the fifth permanent well (PAR-72-211-MW-05) installed in May 2018 (Attachment B). Field notes are provided in Attachment C.

The first four permanent wells were sampled in January and August 2018, and well PAR-72-211-MW-05 was sampled in August 2018. Groundwater samples were analyzed for VOCs and SVOCs in accordance with the NJDEP requirements for No. 2 fuel oil. Consistent with NJDEP well profiling requirements, two wells with ten feet or more of saturated screen were sampled at two different depths (PAR-72-211-MW-01 and PAR-72-211-MW-03). Due to continued NJDEP GWQC exceedances in one permanent well, additional sampling was conducted at PAR-72-211-MW-01 in March, June, and November 2019 to evaluate benzene and 2-methylnaphthalene concentrations over time.

4.1 Groundwater Results

Analytical results for the temporary and permanent well samples are presented in **Table 2 and 3**. Groundwater elevation contours for 30 July 2018 are presented on **Figure 3**; the local groundwater flow direction was towards the southwest.

4.1.1 Exceedances of NJDEP Comparison Criteria

Exceedances of the GWQC are presented in Figure 4 for temporary wells and Figure 5 for permanent wells. The results from only two temporary wells sampled in 2017 exceeded the GWQC (see Table 2). Benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene in PAR-72-211-TMW-03 were found slightly above their respective GWQC; however, these compounds are not indicative of a fuel oil release. Bis(2-ethylhexyl)phthalate in PAR-72-211-TMW-06 exceeded the GWQC; however, this compound is known to be a common laboratory contaminant.

Benzene and 2-methylnaphthalene concentrations exceeded GWQC in the samples from permanent well PAR-72-211-MW-01, which was installed in the immediate vicinity of former UST 211. As shown in **Table 2 and 3** and **Figure 4 and 5**, the concentration of these analytes was lower in the 2018 and 2019 permanent well samples, and there were fewer exceedances, than in the 2016 temporary well grab sample from the same location (PAR-72-211-TMW-01). In comparison to temporary well results, the results from the permanent wells are much more representative of groundwater conditions because the permanent well was properly developed and purged prior to low flow groundwater sampling.

Of the samples collected in 2019 at PAR-72-211-MW-01, the primary samples collected in June and November were below the NJDEP GWQS for 2-methylnaphthalene. The June 2019 concentration (30.1 µg/L) in the field duplicate was just slightly above the NJDEP GWQS (30 µg/L). Benzene did not exceed the NJDEP GWQC in any of the samples collected in 2019. Therefore, concentrations of 2-methylnaphthalene and benzene at central well PAR-72-211-MW-01 have attenuated over time and are now below the GWQS.

5.0 SUMMARY AND RECOMMENDATIONS

Benzene and 2-methylnaphthalene in permanent monitoring well PAR-72-211-MW-01 exceeded the NJDEP GWQS in 2017 and 2018. There were no exceedances of the NJDEP GWQS in November

Ashish Joshi, NJDEP UST 211 Site Investigation Report 13 December 2019 Page 4 of 5

2019. Over time, the contaminant concentrations have naturally attenuated in permanent well PAR-72-211-MW-01 and are no longer an issue. Based on the results of this investigation, the Army requests NJDEP's concurrence that no further action is needed and that an Unrestricted Use, NFA determination be issued for UST 211.

Thank you for reviewing this request; we look forward to your approval and/or comments. Our technical Point of Contact is Kent Friesen at (512) 719-6877; kent.friesen@parsons.com. I can be reached at (732) 383-5104; william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin

Fort Monmouth BRAC Environmental Coordinator

Elesmi R Colin

cc: Ashish Joshi (e-mail and 2 hard copies)

William Colvin, BEC (e-mail and 1 hard copy)

Joseph Pearson, Calibre (e-mail)

James Moore, USACE (e-mail)

Jim Kelly, USACE (e-mail)

Joseph Fallon, FMERA (e-mail)

Cris Grill, Parsons (e-mail

Attachments:

Figure 1 - UST 211 Site Location

Figure 2 – UST 211 Site Layout

Figure 3 - UST 211 Groundwater Contours - July 30, 2018

Figure 4 - UST 211 Temporary Groundwater Well Sampling Locations and Results

Figure 5 - UST 211 Permanent Groundwater Well Sampling Locations and Results

Table 1 – Groundwater Gauging Data and Elevations (July 30, 2018)

Table 2 – Ground Water Sampling Results from Temporary Monitoring Well – Comparison to NJDEP Ground Water Quality Criteria

Table 3 – Ground Water Sampling Results from Permanent Monitoring Well – Comparison to NJDEP Ground Water Quality Criteria

Attachment A - Regulatory Correspondence

Attachment B - Soil Boring Logs and Well Construction Details

Attachment C - Field Notes

Ashish Joshi, NJDEP UST 211 Site Investigation Report 13 December 2019 Page 5 of 5

REFERENCES CITED:

EDAW, Inc., 2008. Fort Monmouth Reuse and Redevelopment Plan, Final Plan. Prepared for Fort Monmouth Economic Revitalization Planning Authority. 22 August.

NJDEP. 2019. Evaluation of Extractable Petroleum Hydrocarbons in Soil Technical Guidance. Site Remediation and Waste Management Program. Version 1.0. June.

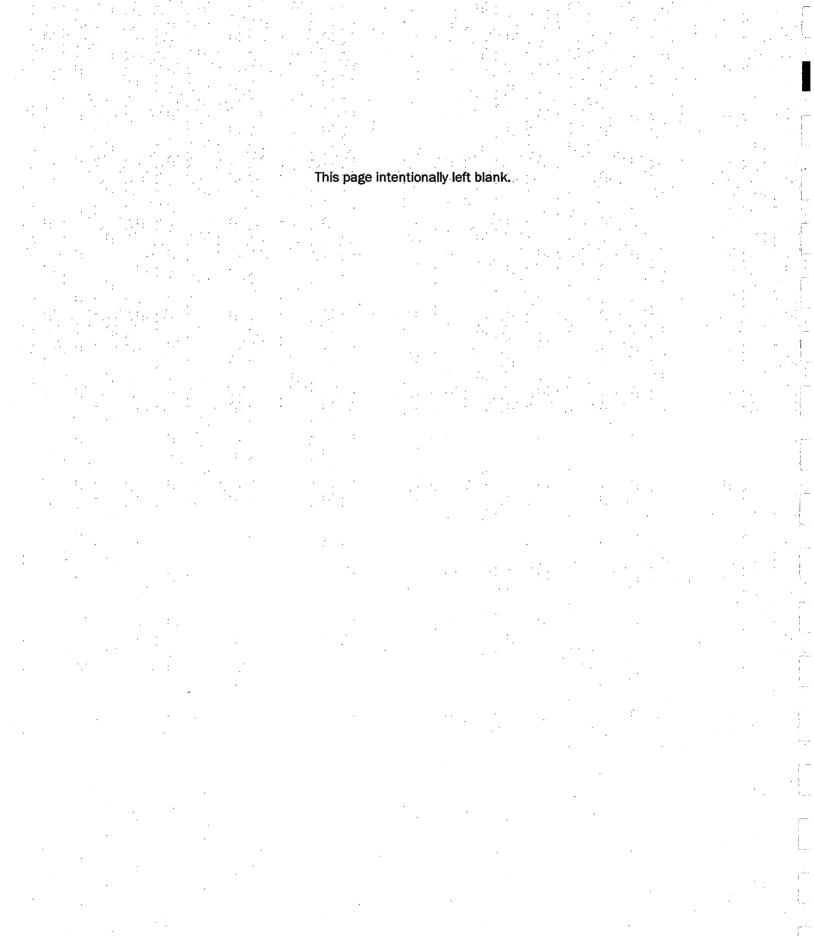
New Jersey Department of Environmental Protection Site Remediation Program

Report Certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites

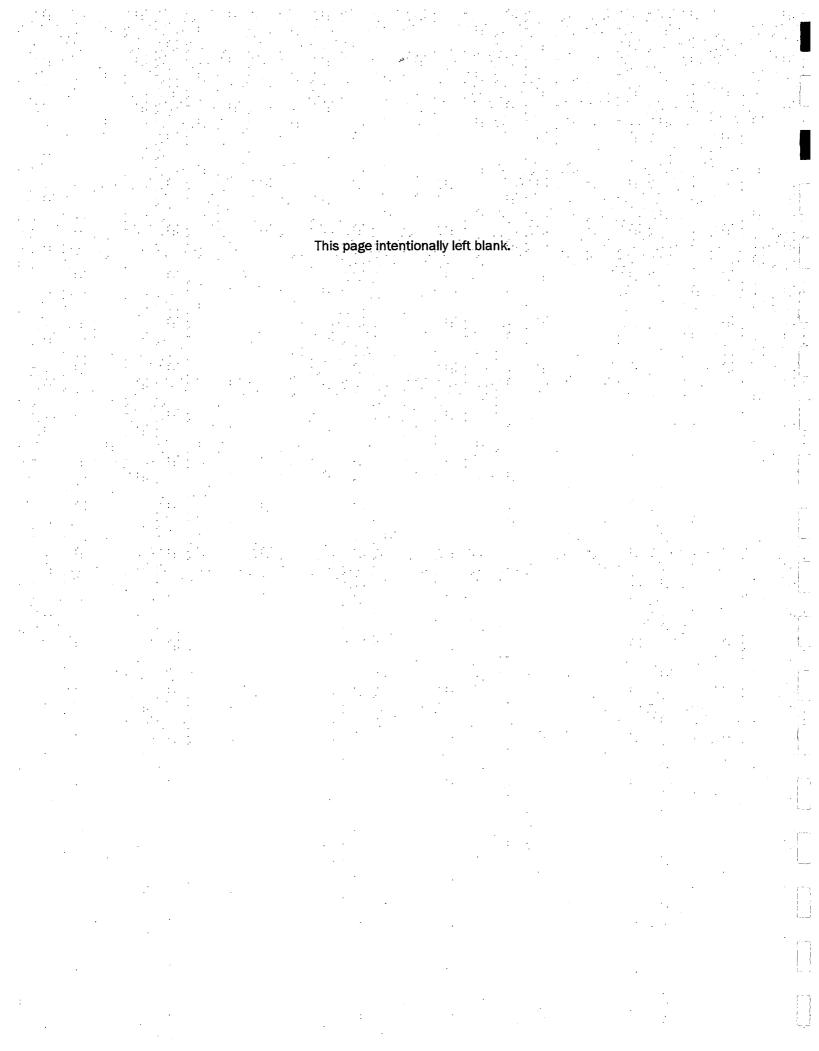
These certifications are to be used for reports submitted for RCRA GPRA 2020, CERCLA, and Federal Facility Sites. The Department has developed guidance for report certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites under traditional oversight. The "Person Responsible for Conducting the Remediation Information and Certification" is required to be submitted with each report. For those sites that are required or opt to use a Licensed Site Remediation Professional (LSRP) the report must also be certified by the LSRP using the "Licensed Site Remediation Professional Information and Statement". For additional guidance regarding the requirement for LSRPs at RCRA GPRA 2020, CERCLA and Federal Facility Sites see http://www.nj.gov/dep/srp/srra/training/matrix/quick_ref/rcra_cercla_fed_facility_sites.pdf.

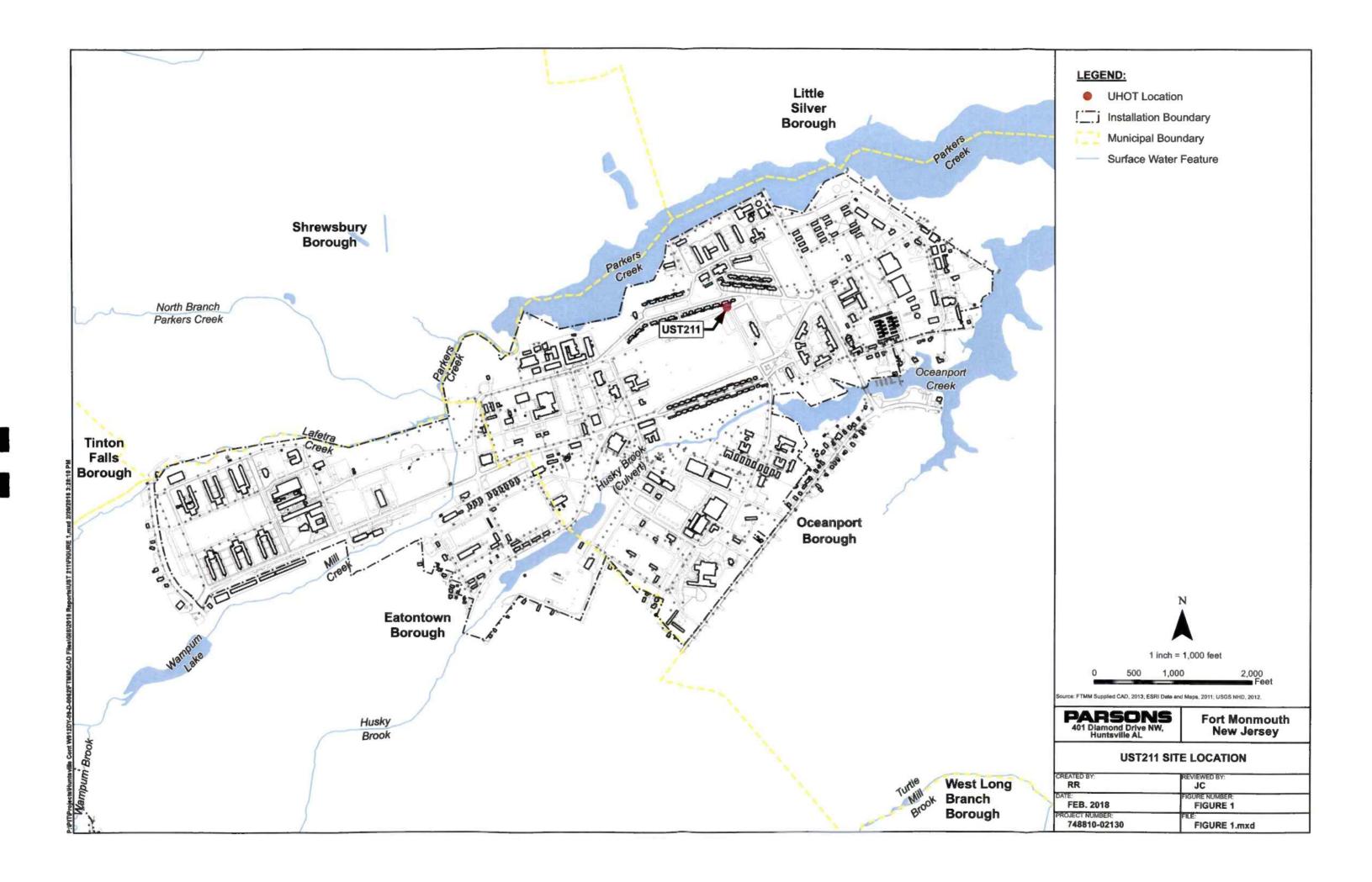
Document:

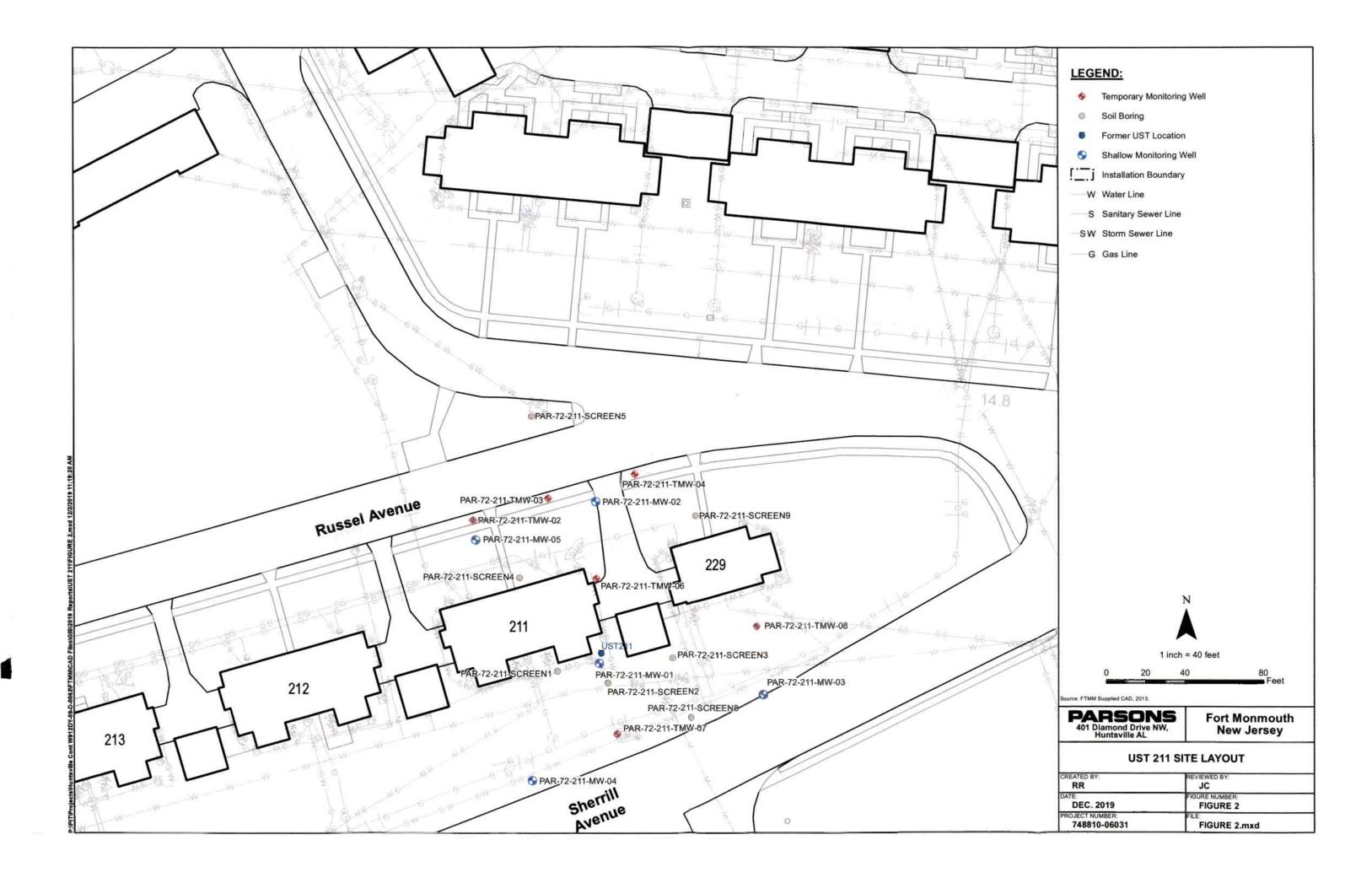
 "UST 211 Site Investigation Report, Request for Unrestricted Use, No Further Action Approval, Fort Monmouth, Monmouth County, Oceanport, New Jersey" (13 December 2019)

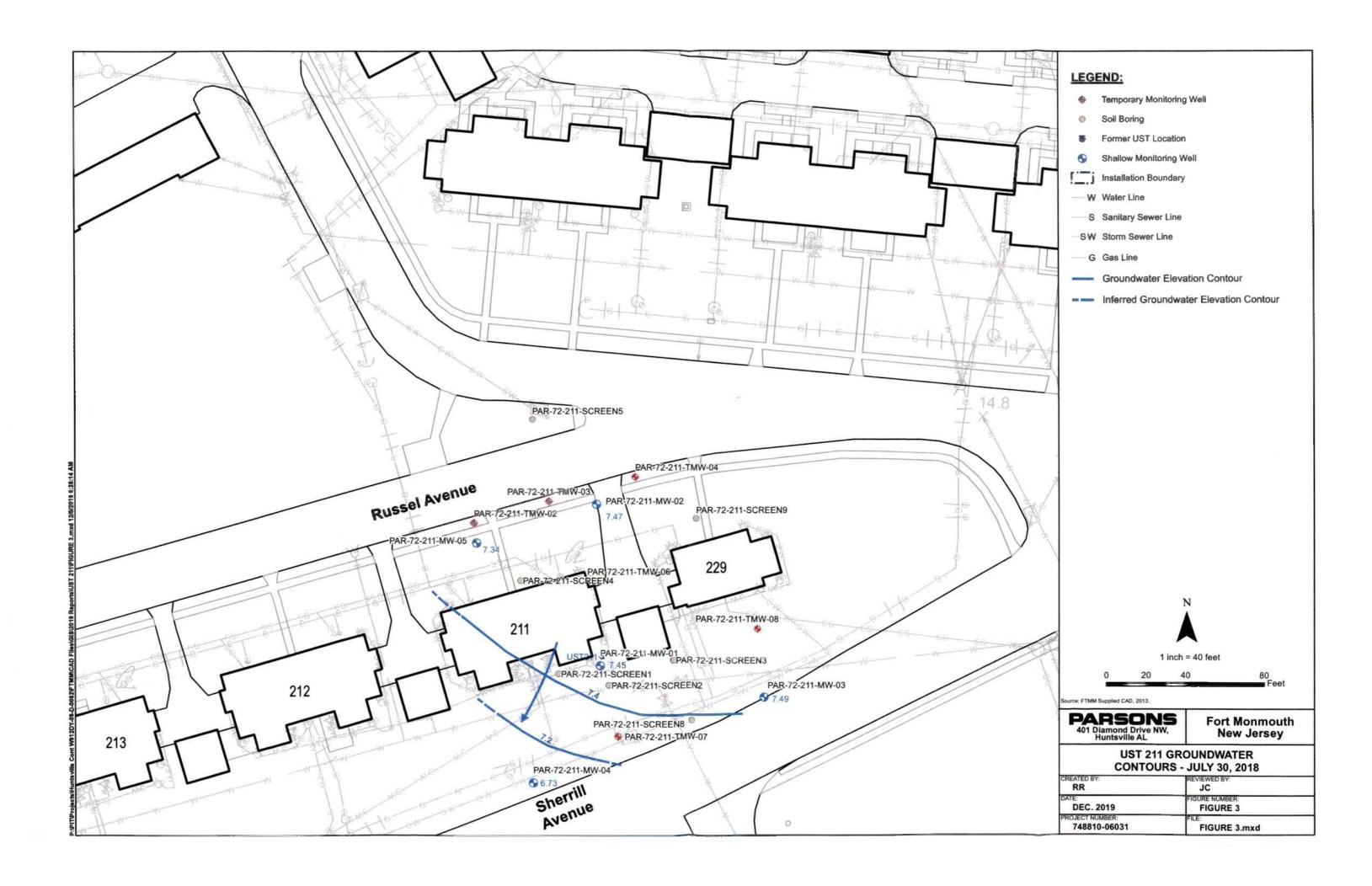

PERSON RESPONSIBLE FOR CONDUCTING THE REMI	EDIAT	ION INFOR	MATION AND CERTI	FICATION
Full Legal Name of the Person Responsible for Conducting	the Re	emediation:	William R. Colvin	
Representative First Name: William		presentative	Last Name: Colvin	
Title: Fort Monmouth BRAC Environmental Coordinator	(BEC)			
Phone Number: (732) 383-5104	Ext:		Fax:	
Mailing Address: P.O. Box 148				
	State:	NJ	Zip Code:	07757
Email Address: william.r.colvin18.civ@mail.mil				
This certification shall be signed by the person responsible	for cor	nducting the	remediation who is su	bmitting this notification
in accordance with Administrative Requirements for the Rei	mediat	ion of Conta	minated Sites rule at	N.J.A.C. 7:26C-1.5(a).
I certify under penalty of law that I have personally examine including all attached documents, and that based on my inquite information, to the best of my knowledge, I believe that aware that there are significant civil penalties for knowingly am committing a crime of the fourth degree if I make a writt aware that if I knowingly direct or authorize the violation of a	uiry of the sui submi en fals	those indivi bmitted infoi iting false, i se statement atute, I am p	iduals immediately res mation is true, accura naccurate or incomple which I do not believe ersonally liable for the	sponsible for obtaining te and complete. I am te information and that I to be true. I am also
Signature: William & Colvin		Date:	13 December 2019	
Name/Title: William R. Colvin				
Fort Monmouth BRAC Environmental Coordin	nator			

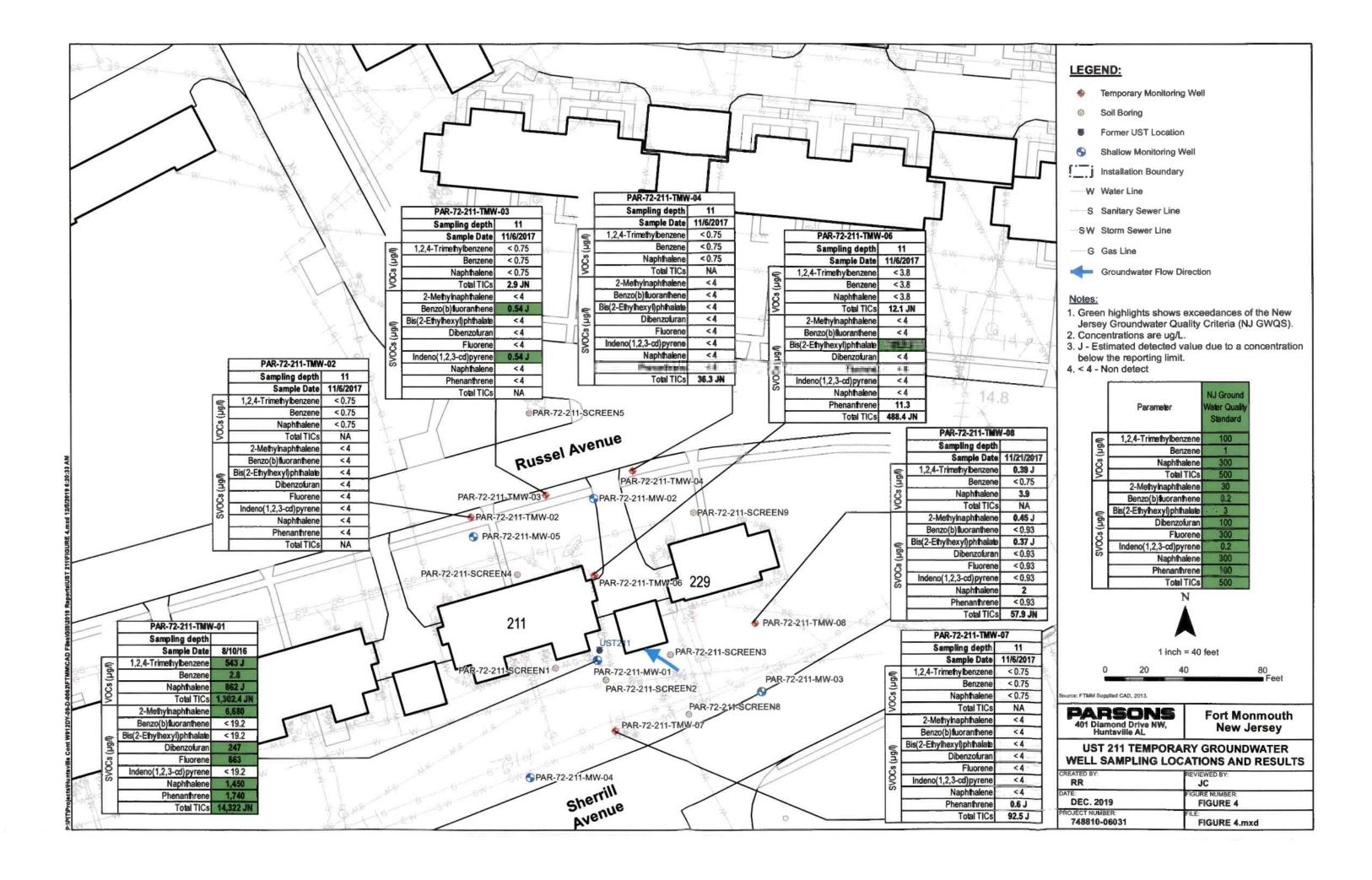
Completed form should be sent to:

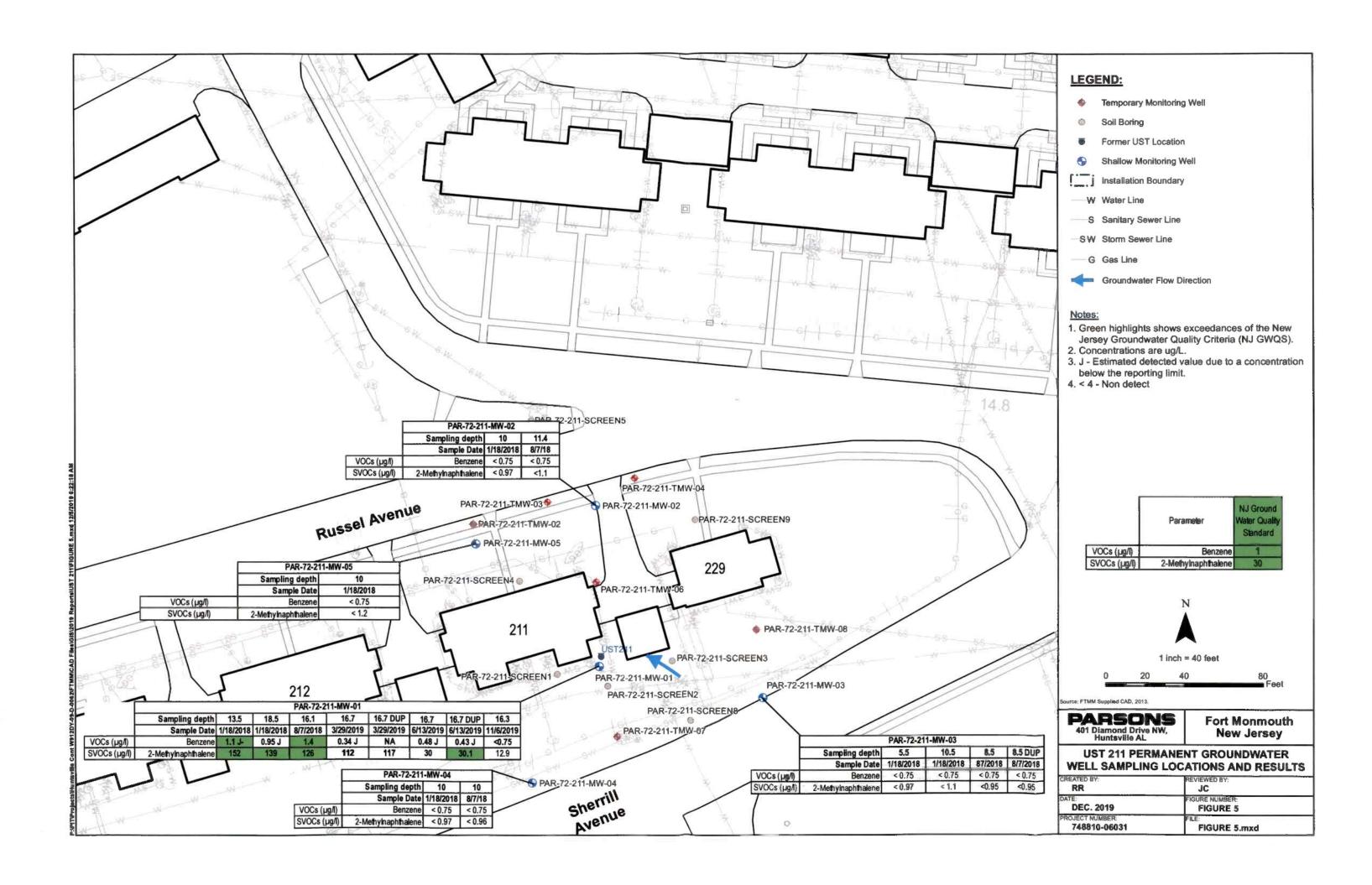

Mr. Ashish Joshi


New Jersey Department of Environmental Protection Division of Remediation Management & Response


Bureau of Northern Field Operations 7 Ridgedale Avenue (2nd Floor) Cedar Knolls, New Jersey 07927-1112




FIGURES Figure 1 –UST 211 Site Location Figure 2 –UST 211 Site Layout Figure 3 – UST 211 Groundwater Contours – July 30, 2018 Figure 4 – UST 211 Groundwater Analytical Results from Temporary Monitoring Well Locations Figure 5 – UST 211 Groundwater Analytical Results from Permanent Monitoring Well Locations



TABLES

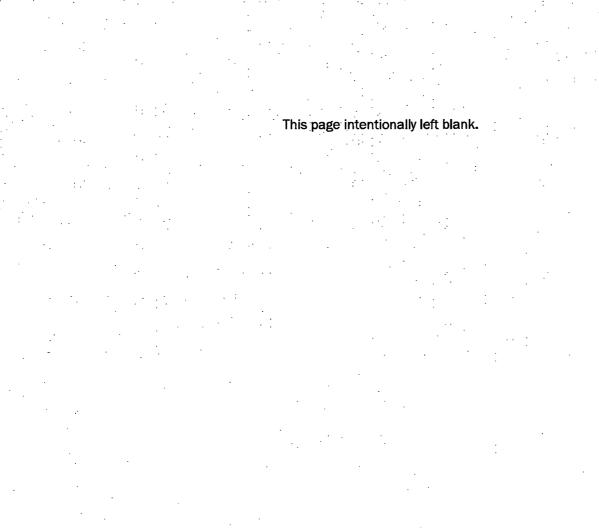

Table 1 - Groundwater Gauging Data and Elevations (July 30, 2018)

Table 2 – Ground Water Sampling Results from Temporary Monitoring Wells –

Comparison to NJDEP Ground Water Quality Criteria

Table 3 - Ground Water Sampling Results from Permanent Monitoring Wells —

Comparison to NJDEP Ground Water Quality Criteria

Table 1 Groundwater Gauging Data and Elevations (30 July 2018) Parcel 72 UST 211 Fort Monmouth, New Jersey

Site	Well Permit #	Y Coord. (North)	X Coord. (East)	Installation Date	Depth	Well Riser Pipe Casing Length	Well Screen Length	Top of PVC Well Casing (elevation)	Size	Flush Mount or Stick Up Protective Casing	Protective Casing Elevation	Ground Surface Elevation	Gauged Depth to Water	Calculated Groundwater Elevation
							(ft.)		inches	(FM or SU)			(ft. TOC)	(ft.)
PAR-72-211-MW-01	E201713122	540978.9	620941.6	11/21/2017	21	11	10	18.33	0.01	FM	18.72	18.63	10.88	7.45
PAR-72-211-MW-02	E201714057	541061.1	620939.8	12/19/2017	15	5	10	15.13	0.01	FM	15.56	15.85	7.66	7.47
PAR-72-211-MW-03	E201714058	540962.9	621024.9	12/19/2017	13	3	10	11.42	0.01	FM	11.90	12.17	3.93	7.49
PAR-72-211-MW-04	E201714059	540919.4	620907.4	12/19/2017	12	2	10	13.52	0.01	FM	13.90	11.81	6.79	6.73
PAR-72-211-MW-05	E201804506	541045	620854	5/17/2018	15	5	10	16.02	0.01	FM	16.43	16.39	8.68	7.34

Notes:

- The synoptic round of water levels in the wells was collected on 30 July 2018.
- ft = feet
- TOC = Top of Casing
- Elevation = feet above mean sea level

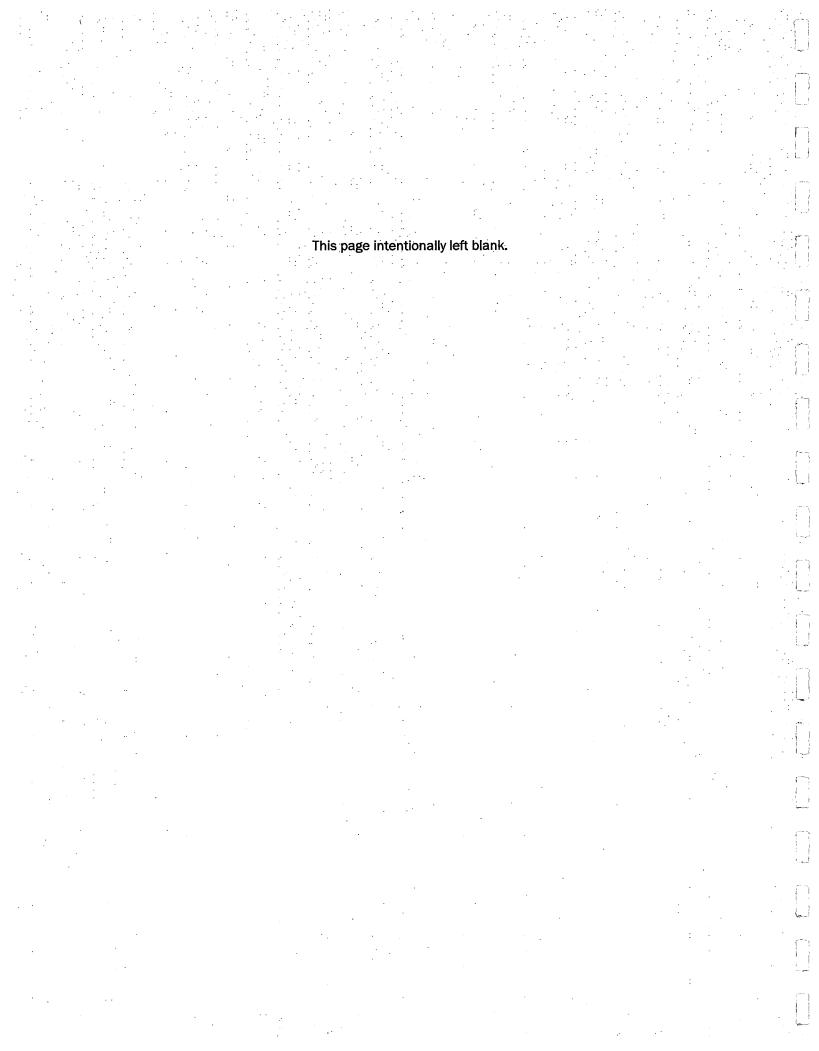


TABLE 2
GROUND WATER SAMPLING RESULTS FROM TEMPORARY WELLS- COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

	NII Cround	PAR-72-211-TMW-01	PAR-72-211-TMW-02	PAR-72-211-TMW-03	PAR-72-211-TMW-04	PAR-72-211-TMW-06	PAR-72-211-TMW-07	PAR-72-211-TMW-08
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-TMW-01	PAR-72-211-TMW-02-11	PAR-72-211-TMW-03-11	PAR-72-211-TMW-04-11	PAR-72-211-TMW-06-11	PAR-72-211-TMW-07-11	PAR-72-211-TMW-08
Sample Date	1 1	8/10/2016	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/21/2017
Filtered	1 1	Total	Total	Total	Total	Total	Total	Total
Volatile Organic Compounds (µg/l)					Total		Total	Total
1,1,1,2-Tetrachloroethane	1 1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,1,1-Trichloroethane	30	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,1,2,2-Tetrachloroethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,1,2-Trichloroethane	3	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,1-Dichloroethane	50	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,1-Dichloroethene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,1-Dichloropropene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,2,3-Trichlorobenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,2,3-Trichloropropane	0.03	< 2.5	< 2.5	< 2.5	< 2.5	< 12.5	< 2.5	< 2.5
1,2,4-Trichlorobenzene	9	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,2,4-Trimethylbenzene	100	543 J	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	0.39 J
1,2-Dibromo-3-chloropropane	0.02	< 2.5	< 2.5	< 2.5	< 2.5	< 12.5	< 2.5	< 2.5
1,2-Dibromoethane	0.03	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,2-Dichlorobenzene	600	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,2-Dichloroethane	2	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,2-Dichloropropane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,3,5-Trimethylbenzene	100	81.4	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,3-Dichlorobenzene	600	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,3-Dichloropropane	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
1,4-Dichlorobenzene	75	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
2,2-Dichloropropane	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
2-Chlorotoluene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Acetone	6,000	< 3.8	< 3.8	4 J	5.5	< 18.8	4.3 J	3.6 J
Benzene	1	2.8	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Bromobenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Bromochloromethane	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Bromodichloromethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Bromoform	4	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Carbon tetrachloride	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Chlorobenzene	50	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Chlorodibromomethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Chloroethane	5	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75 UJ
Chloroform	70	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Cis-1,2-Dichloroethene	70	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Cis-1,3-Dichloropropene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Cymene	100	16.9	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Dichlorodifluoromethane	1,000	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Ethyl benzene Hexachlorobutadiene	700	92.4 < 0.75	< 0.75 < 0.75	< 0.75 < 0.75	< 0.75 < 0.75	< 3.8 < 3.8	< 0.75 < 0.75	< 0.75 < 3.8

TABLE 2
GROUND WATER SAMPLING RESULTS FROM TEMPORARY WELLS- COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID	NI G	PAR-72-211-TMW-01	PAR-72-211-TMW-02	PAR-72-211-TMW-03	PAR-72-211-TMW-04	PAR-72-211-TMW-06	PAR-72-211-TMW-07	PAR-72-211-TMW-08
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-TMW-01	PAR-72-211-TMW-02-11	PAR-72-211-TMW-03-11	PAR-72-211-TMW-04-11	PAR-72-211-TMW-06-11	PAR-72-211-TMW-07-11	PAR-72-211-TMW-08
Sample Date		8/10/2016	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/21/2017
Filtered	_	Total	Total	Total	Total	Total	Total	Total
Isopropylbenzene	700	29.3	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Meta/Para Xylene	1,000	118	< 1.5	< 1.5	< 1.5	< 7.5	< 1.5	< 1.5
Methyl bromide	10	< 0.75	0.41 JB	< 0.75	0.4 JB	< 3.8	0.55 J	< 0.75
Methyl butyl ketone	300	< 3.8	< 3.8	< 3.8	< 3.8	< 18.8	< 3.8	< 3.8
Methyl chloride	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Methyl ethyl ketone	300	2.9 J	< 3.8	< 3.8	< 3.8	< 18.8	< 3.8	< 3.8
Methyl isobutyl ketone	100	< 3.8	< 3.8	< 3.8	< 3.8	< 18.8	< 3.8	< 3.8
Methyl Tertbutyl Ether	70	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Methylene chloride	3	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Naphthalene	300	862 J	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	3.9
n-Butylbenzene	100	26.1	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Ortho Xylene	1,000	39.1	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
p-Chlorotoluene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Propylbenzene	100	48.4	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
sec-Butylbenzene	100	25	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	0.36 J
Styrene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Tert Butyl Alcohol	100	< 12.5	< 12.5	< 12.5	< 12.5	< 62.5	< 12.5	< 12.5
tert-Butylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Tetrachloroethene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Toluene	600	2.1	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Total Xylenes	1,000	NA	< 2.3	< 2.3	< 2.3	< 11.3	< 2.3	< 2.3
Trans-1,2-Dichloroethene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Trans-1,3-Dichloropropene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Trichloroethene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Trichlorofluoromethane	2,000	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
Vinyl chloride	1	< 0.75	< 0.75	< 0.75	< 0.75	< 3.8	< 0.75	< 0.75
TIC VOCs (µg/l)	THE REAL PROPERTY.							
Total TIC, VOCs	500	1302.4 JN	NA	2.9 JN	NA	12.1 JN	NA	NA
Semivolatile Organic Compour	nds (µg/l)	MANAGE THE STATE OF						
1,2,4-Trichlorobenzene	9	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
1,2-Dichlorobenzene	600	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
1,2-Diphenylhydrazine	20	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
1,3-Dichlorobenzene	600	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
1,4-Dichlorobenzene	75	< 19.2	< 4	<4	< 4	< 4	< 4	< 0.93
2,4,5-Trichlorophenol	700	< 57.7	< 12	< 12	< 12	< 12	< 12	< 2.8
2,4,6-Trichlorophenol	20	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
2,4-Dichlorophenol	20	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
2,4-Dimethylphenol	100	< 96.2	< 20	< 20	< 20	< 20	< 20	< 4.6
2,4-Dinitrophenol	40	< 154	< 32	< 32	< 32	< 32	< 32	< 7.4
2,4-Dinitrotoluene	10	< 19.2	< 4	<4	< 4	< 4	< 4	< 0.93

TABLE 2
GROUND WATER SAMPLING RESULTS FROM TEMPORARY WELLS- COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID	N.I. Cround	PAR-72-211-TMW-01	PAR-72-211-TMW-02	PAR-72-211-TMW-03	PAR-72-211-TMW-04	PAR-72-211-TMW-06	PAR-72-211-TMW-07	PAR-72-211-TMW-08
Sample ID	Mater Quality Criteria	PAR-72-211-TMW-01	PAR-72-211-TMW-02-11	PAR-72-211-TMW-03-11	PAR-72-211-TMW-04-11	PAR-72-211-TMW-06-11	PAR-72-211-TMW-07-11	PAR-72-211-TMW-08
Sample Date		8/10/2016	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/21/2017
Filtered		Total	Total	Total	Total	Total	Total	Total
2,6-Dinitrotoluene	10	< 19.2	< 4	< 4	<4	<4	< 4	< 0.93
2-Chloronaphthalene	600	< 19.2	<4	<4	< 4	<4	<4	< 0.93
2-Chlorophenol	40	< 38.5	<8	<8	<8	< 8	<8	< 1.9
2-Methylnaphthalene	30	6,680	< 4	<4	< 4	<4	<4	0.45 J
2-Methylphenol	100	< 19.2	< 4	<4	<4	<4	<4	< 0.93
2-Nitroaniline	100	< 19.2	< 4	< 4	< 4	<4	<4	< 0.93
2-Nitrophenol	100	< 38.5	< 8	< 8	< 8	<8	< 8	< 1.9
3,3'-Dichlorobenzidine	30	< 57.7	< 12 UJ	< 2.8				
3-Nitroaniline	100	< 38.5	< 8	< 8	< 8	< 8	<8	< 1.9
4,6-Dinitro-2-methylphenol	1	< 96.2	< 20	< 20	< 20	< 20	< 20	< 4.6
4-Bromophenyl phenyl ether	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
4-Chloro-3-methylphenol	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
4-Chloroaniline	30	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
4-Chlorophenyl phenyl ether	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
4-Nitroaniline	5	< 19.2	< 4	< 4	< 4	<4	< 4	< 0.93
4-Nitrophenol	100	< 96.2	< 20	< 20	< 20	< 20	< 20	< 4.6
Acenaphthene	400	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Acenaphthylene	100	< 19.2	< 4	< 4	< 4	<4	< 4	< 0.93
Anthracene	2,000	195	< 4	< 4	< 4	< 4	< 4	< 0.93
Benzidine	20	< 577	< 120 UJ	< 27.8				
Benzo(a)anthracene	0.1	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Benzo(a)pyrene	0.1	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Benzo(b)fluoranthene	0.2	< 19.2	< 4	0.54 J	< 4	< 4	< 4	< 0.93
Benzo(ghi)perylene	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Benzo(k)fluoranthene	0.5	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Benzyl alcohol	2,000	< 38.5	< 8	< 8	< 8	< 8	< 8	< 1.9
Bis(2-Chloroethoxy)methane	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Bis(2-Chloroethyl)ether	7	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Bis(2-Chloroisopropyl)ether	300	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Bis(2-Ethylhexyl)phthalate	3	< 19.2	< 4	< 4	< 4	25.2 J	< 4	0.37 J
Butyl benzyl phthalate	100	< 19.2	< 4	< 4	< 4	0.54 J	< 4	< 0.93
Carbazole	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Chrysene	5	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Cresol	NLE	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Dibenz(a,h)anthracene	0.3	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Dibenzofuran	100	247	< 4	< 4	< 4	< 4	< 4	< 0.93
Diethyl phthalate	6,000	< 19.2	< 4	< 4	< 4	0.73 J	< 4	0.23 J
Dimethyl phthalate	100_	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Di-n-butylphthalate	700	< 19.2	0.94 J	0.72 J	0.96 J	1.3 J	1 J	0.16 J
Di-n-octylphthalate	100	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93

TABLE 2
GROUND WATER SAMPLING RESULTS FROM TEMPORARY WELLS- COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID		PAR-72-211-TMW-01	PAR-72-211-TMW-02	PAR-72-211-TMW-03	PAR-72-211-TMW-04	PAR-72-211-TMW-06	PAR-72-211-TMW-07	PAR-72-211-TMW-08
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-TMW-01	PAR-72-211-TMW-02-11	PAR-72-211-TMW-03-11	PAR-72-211-TMW-04-11	PAR-72-211-TMW-06-11	PAR-72-211-TMW-07-11	PAR-72-211-TMW-08
Sample Date		8/10/2016	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/6/2017	11/21/2017
Filtered		Total	Total	Total	Total	Total	Total	Total
Fluoranthene	300	< 19.2	< 4	1.2 J	< 4	< 4	< 4	< 0.93
Fluorene	300	663	< 4	< 4	< 4	< 4	< 4	< 0.93
Hexachlorobenzene	0.02	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Hexachlorobutadiene	1	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Hexachlorocyclopentadiene	40	< 38.5	< 8	< 8	< 8	< 8	< 8	< 1.9
Hexachloroethane	7	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Indeno(1,2,3-cd)pyrene	0.2	< 19.2	< 4	0.54 J	< 4	< 4	< 4	< 0.93
Isophorone	40	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Naphthalene	300	1,450	< 4	< 4	< 4	< 4	< 4	2
Nitrobenzene	6	< 38.5	< 8	< 8	< 8	< 8	< 8	< 1.9
N-Nitrosodimethylamine	0.8	< 38.5	< 8	< 8	< 8	< 8	< 8	< 1.9
N-Nitroso-di-n-propylamine	10	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
N-Nitrosodiphenylamine	10	< 38.5	< 8	< 8	< 8	< 8	< 8	< 1.9
Pentachlorophenol	0.3	< 154	< 32	< 32	< 32	< 32	< 32	< 7.4
Phenanthrene	100	1,740	< 4	< 4	< 4	11.3	0.6 J	< 0.93
Phenol	2,000	< 19.2	< 4	< 4	< 4	< 4	< 4	< 0.93
Pyrene	200	185	< 4	1.2 J	< 4	< 4	0.9 J	< 0.93
TIC SVOCs (µg/ī)								
Total TICs, SVOCs	500	14322 JN	NA	NA	36.3 JN	488.4 J	92.5 JN	57.9 JN

Footnote:

- 1) All historical data collected prior to 2013 are reported as provided by others.
- 2) Number of Analyses is the number of detected and non-detected results excluding rejected results. Sample duplicate pairs have not been averaged.
- 3) NLE = no limit established
- 4) ND = not detected in any background sample, no background concentration available.
- 5) Bold chemical dectection
- 6) SS = Site Specific action level, see "Specific Chemical Class (or Parameter)" footnote for details.
- 7) Chemical result qualifiers are assigned by the laboratory and are evaluated and modified (if necessary) during the data validation.

[blank] = detect, i.e. detected chemical result value.

E (or ER) = Estimated result.

B =Compound detected in the sample at a concentration less than or equal to 5 times (10 times for common lab D = Results from dilution of sample. contaminants) the blank concentration.

R = Rejected, data validation rejected the results.

J-DL = Elevated sample detection limit due to difficult sample matrix.

U = non-detect, i.e. not detected at or above this value.

JN = Tentatively identified compound, estimated concentration.

U-DL = Elevated sample detection limit due to difficult sample matrix.

UJ=The compound was not detected; however, the results is estimated because of discrepancies in

meeting certain analyte-specific QC criteria.

U-ND = Analyte not detected in sample, but no detection or reporting limit provided.

J+ = The result is an estimated quantity, but the result may be biased high.

J = estimated detected value due to a concetration below the reporting limit or due to discrepancies in meeting certain analyte-specific quality control.

J- = The result is an estimated quantity, but the result may be biased low.

- 8) Specific Chemical Classes (or Parameters) comments or notes regarding how data is displayed, compared to Action Levels, or represented in this table.
- 9) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.
- Cell Shade values represent a result that is above the NJ Ground Water Quality Criteria

####

NJDEP Interim Specific GWQC values are presented for the NJ GWQS where there is not a Specific Ground Water Quality Criteria. A full list of compounds is available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

NJDEP Interim Generic GWQC values are presented for the NJ GWQS where there is not a XXXXX or a NJDEP Interim Specific GWQC. Available at (http://www.nj.gov/dep/wms/bwgsa/gwgs_interim_criteria_table.htm).

- 10) Criteria action level source document and web address.
- The NJ Ground Water Quality Criteria refers to the NJDEP Groundwater Quality Standards Adopted July 22, 2010 http://www.state.nj.us/dep/wms/bwgsa/docs/njac79C.pdf

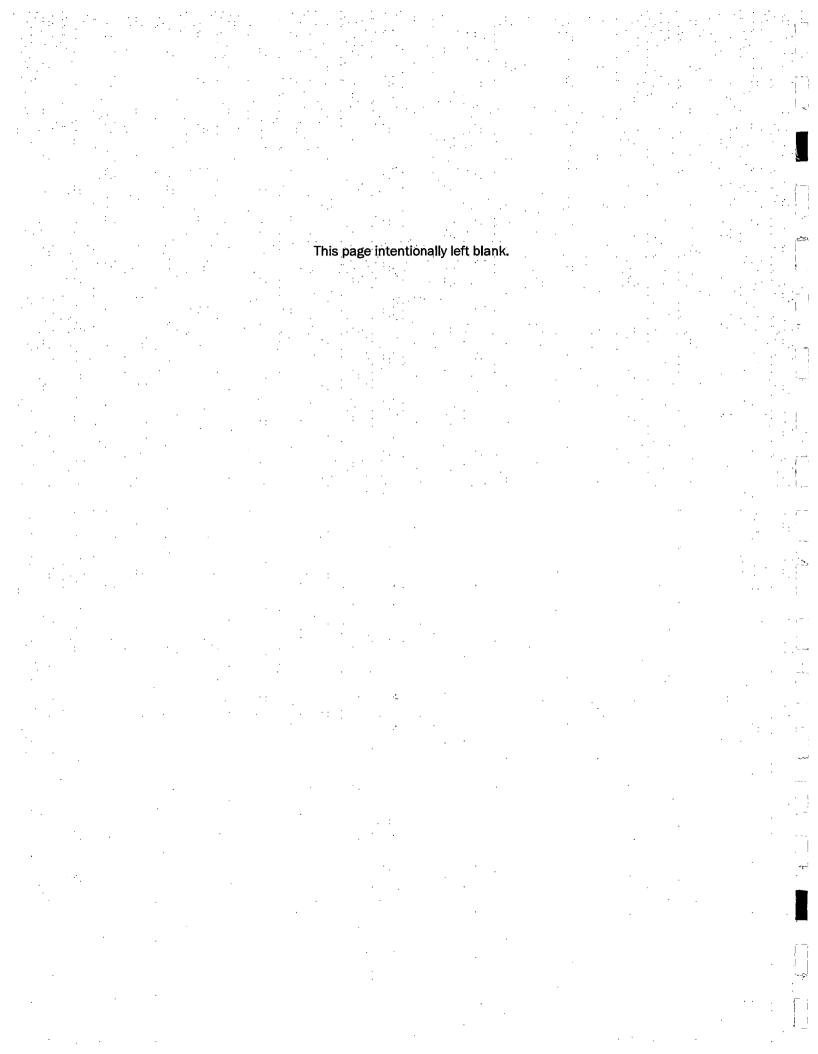


TABLE 3
PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID	NIConstant	PAR-72-2	211-MW02		PAR-72-2	211-MW03		PAR-72-2	211-MW04	PAR-72-211-MW05
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-GW- MW-02-10	PAR-72-211-GW- MW-02-11.4	PAR-72-211-GW- MW-03-5.5	PAR-72-211-GW- MW-03-10.5	PAR-72-211-GW- MW-03-8.5	PAR-72-211-GW- MW-103-8.5	PAR-72-211-GW- MW-04-10	PAR-72-211-GW- MW-04-10.0	PAR-72-211-GW-MW- 05-12.0
Sample Date		1/18/2018	8/7/2018	1/18/2018	1/18/2018	8/7/2018	8/7/2018	1/18/2018	8/7/2018	8/7/2018
Filtered		Total	Total	Total	Total	Total	Total	Total	Total	Total
Meta/Para Xylene	1,000	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Methyl bromide	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Methyl butyl ketone	300	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8
Methyl chloride	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Methyl ethyl ketone	300	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8
Methyl isobutyl ketone	100	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8
Methyl Tertbutyl Ether	70	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Methylene chloride	3	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Naphthalene	300	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	1.8	< 0.75	< 0.75
n-Butylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Ortho Xylene	1,000	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
p-Chlorotoluene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Propylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
sec-Butylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Styrene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Tert Butyl Alcohol	100	< 12.5	< 12.5	< 12.5	< 12.5	< 12.5	< 12.5	< 12.5	< 12.5	< 12.5
tert-Butylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Tetrachloroethene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Toluene	600	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Total Xylenes	1,000	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3
Trans-1,2-Dichloroethene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Trans-1,3-Dichloropropene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Trichloroethene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Trichlorofluoromethane	2,000	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Vinyl chloride	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
TIC VOCs (µg/l)										
Total TIC, VOCs	500	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA
Semivolatile Organic Compou						T	T	1007	1.000	140
1,2,4-Trichlorobenzene	9	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
1,2-Dichlorobenzene	600	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
1,2-Diphenylhydrazine	20	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
1,3-Dichlorobenzene	600	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
1,4-Dichlorobenzene	75	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96 < 2.9	< 1.2 < 3.5
2,4,5-Trichlorophenol	700	< 2.9	< 3.2	< 2.9	< 3.2	< 2.8	< 2.8 < 0.95	< 2.9 < 0.97	< 0.96	< 1.2
2,4,6-Trichlorophenol	20	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2,4-Dichlorophenol	20	< 0.97	< 1.1	< 0.97	< 1.1 < 5.3	< 0.95 < 4.7	< 4.7	< 4.9	< 4.8	< 5.8
2,4-Dimethylphenol	100	< 4.9	< 5.4	< 4.9	< 8.4	< 7.6	< 7.6	< 7.8	< 7.7	< 9.3
2,4-Dinitrophenol	40	< 7.8	< 8.6	< 7.8 < 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2,4-Dinitrotoluene	10	< 0.97	< 1.1		< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2,6-Dinitrotoluene	10	< 0.97	< 1.1	< 0.97 < 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2-Chloronaphthalene	600	< 0.97	< 1.1			< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
2-Chlorophenol	40	< 1.9	< 2.2	< 1.9	< 2.1	~ 1.9	₹ 1.9	1.9	1.5	` 2.3

TABLE 3
PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID	NI Crown	PAR-72-2	211-MW02		PAR-72-2	211-MW03		PAR-72-2	211-MW04	PAR-72-211-MW05
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-GW- MW-02-10	PAR-72-211-GW- MW-02-11.4	PAR-72-211-GW- MW-03-5.5	PAR-72-211-GW- MW-03-10.5	PAR-72-211-GW- MW-03-8.5	PAR-72-211-GW- MW-103-8.5	PAR-72-211-GW- MW-04-10	PAR-72-211-GW- MW-04-10.0	PAR-72-211-GW-MW- 05-12.0
Sample Date	1	1/18/2018	8/7/2018	1/18/2018	1/18/2018	8/7/2018	8/7/2018	1/18/2018	8/7/2018	8/7/2018
Filtered	1	Total	Total	Total	Total	Total	Total	Total	Total	Total
Volatile Organic Compounds (µg	/()				Total	Total	Total	Total	Total	Total
1,1,1,2-Tetrachloroethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,1,1-Trichloroethane	30	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,1,2,2-Tetrachloroethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,1,2-Trichloroethane	3	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,1-Dichloroethane	50	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,1-Dichloroethene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,1-Dichloropropene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2,3-Trichlorobenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2,3-Trichloropropane	0.03	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
1,2,4-Trichlorobenzene	9	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2,4-Trimethylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2-Dibromo-3-chloropropane	0.02	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
1,2-Dibromoethane	0.03	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2-Dichlorobenzene	600	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2-Dichloroethane	2	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2-Dichloropropane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,3,5-Trimethylbenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,3-Dichlorobenzene	600	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,3-Dichloropropane	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,4-Dichlorobenzene	75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
2,2-Dichloropropane	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
2-Chlorotoluene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Acetone	6,000	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8
Benzene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Bromobenzene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Bromochloromethane	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Bromodichloromethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Bromoform	4	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Carbon tetrachloride	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chlorobenzene	50	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chlorodibromomethane	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	5	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroform	70	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Cis-1,2-Dichloroethene	70	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Cis-1,3-Dichloropropene	1	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Cymene	100	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Dichlorodifluoromethane	1,000	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Ethyl benzene	700	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Hexachlorobutadiene	1	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8	< 3.8
Isopropylbenzene	700	< 0.75	< 0.75	< 0.75		< 0.75	< 0.75		< 0.75	
100propylborizorio	, 00	V 0.75	V 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75

TABLE 3

PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC

UST 211

FORT MONMOUTH, NEW JERSEY

Loc ID	NJ Ground				PAR-72-2	:11-MW01			
Sample ID	Water Quality Criteria	PAR-72-211-GW- MW-01-13.5	PAR-72-211-GW- MW-01-18.5	PAR-72-211-GW- MW-01-16.1	PAR-72-211-GW- MW-01 16.7	PAR-72-211-GW- MW-101 16.7	PAR-72-211-GW- MW-01	PAR-72-211-GW- MW-101	PAR-72-211-GW MW-01
Sample Date	7	1/18/2018	1/18/2018	8/7/2018	3/29/2019	3/29/2019	6/13/2019	6/13/2019	11/6/2019
Filtered	7	Total	Total	Total	Total	Total	Total	Total	Total
Volatile Organic Compounds (µ	a/l)	Total	Total	Total	Total	Total	Total	Total	
1,1,1,2-Tetrachloroethane	1	< 0.75 UJ	< 0.75	< 0.75	I NA	A I A	I NA	NA NA	I NA
1,1,1-Trichloroethane	30	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2,2-Tetrachloroethane	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2-Trichloroethane	3	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane	50	< 0.75 UJ	< 0.75	< 0.75		NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethene	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA.
1,1-Dichloropropene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-Trichlorobenzene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,3-Trichloropropane	0.03	< 2.5 UJ	< 2.5	< 2.5	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-Trichlorobenzene	9	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-Trimethylbenzene	100	40.5 J-	34.3	6.9	NA NA	NA NA	NA NA	NA NA	NA
1,2-Dibromo-3-chloropropane	0.02	< 2.5 UJ	< 2.5	< 2.5	NA NA	NA NA	NA NA	NA NA	NA NA
,2-Dibromoethane	0.03	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA.
,2-Dichlorobenzene	600	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA.
,2-Dichloroethane	2	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA.
,2-Dichloropropane	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA
1,3,5-Trimethylbenzene	100	11.8 J-	10	0.83 J	NA NA	NA NA	NA NA	NA	NA.
,3-Dichlorobenzene	600	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA	NA
,3-Dichloropropane	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA NA	NA
,4-Dichlorobenzene	75	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
2,2-Dichloropropane	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
2-Chlorotoluene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
Acetone	6,000	< 3.8 UJ	< 3.8	< 3.8	NA NA	NA NA	NA NA	NA	NA
Benzene	1	1.1 J-	0.95 J	1.4	0.34 J	NA NA	0.48 J	0.43 J	< 0.75
Bromobenzene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA
Bromochloromethane	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
romodichloromethane	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA
Bromoform	4	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA	NA
arbon tetrachloride	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
Chlorobenzene	50	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA	NA
hlorodibromomethane	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA	NA
hloroethane	5	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA	NA	NA	NA
hloroform	70	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
is-1,2-Dichloroethene	70	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
is-1,3-Dichloropropene	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
ymene	100	1.7 J-	1.6	< 0.75	NA NA	NA NA	NA NA	NA	NA
ichlorodifluoromethane	1,000	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
thyl benzene	700	8.1 J-	6.8	3.9	NA NA	NA NA	NA	NA	NA
exachlorobutadiene	1	< 3.8 UJ	< 3.8	< 3.8	NA NA	NA NA	NA	NA	NA
opropylbenzene	700	5.8 J-	4.9	4	NA NA	NA NA	NA	NA	NA

TABLE 3
PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

	_			FORT MONIMOOTH,	NEW JERGE				
Loc ID	1.4				PAR-72-2	211-MW01			
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-GW- MW-01-13.5	PAR-72-211-GW- MW-01-18.5	PAR-72-211-GW- MW-01-16.1	PAR-72-211-GW- MW-01 16.7	PAR-72-211-GW- MW-101 16.7	PAR-72-211-GW- MW-01	PAR-72-211-GW- MW-101	PAR-72-211-GW- MW-01
Sample Date		1/18/2018	1/18/2018	8/7/2018	3/29/2019	3/29/2019	6/13/2019	6/13/2019	11/6/2019
Filtered		Total	Total	Total	Total	Total	Total	Total	Total
Meta/Para Xylene	1,000	10.7 J-				NA NA	NA NA	NA	NA
Methyl bromide	10	< 0.75 UJ	8.6 < 0.75	2.4 < 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl butyl ketone	300	< 3.8 UJ	< 3.8	< 3.8	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl chloride	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl ethyl ketone	300	< 3.8 UJ	< 3.8	< 3.8	NA NA	NA NA	NA NA	NA NA	NA NA
Methyl isobutyl ketone	100	< 3.8 UJ	< 3.8	< 3.8	NA NA	NA NA	NA NA	NA NA	NA
Methyl Tertbutyl Ether	70	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA
Methylene chloride	3	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA NA	NA
Naphthalene	300	111 J-	123	86.1	NA NA	NA NA	NA NA	NA NA	NA
n-Butylbenzene	100	5.1 J-	5.3	< 0.75	NA NA	NA NA	NA NA	NA	NA
Ortho Xylene	1,000	4.2 J-	3.4	< 0.75	NA NA	NA NA	NA NA	NA	NA
p-Chlorotoluene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA NA	NA	NA
Propylbenzene	100	6.8 J-	6	3.1	NA NA	NA NA	NA NA	NA	NA
sec-Butylbenzene	100	10.6 J-	10.1	10.2	NA NA	NA NA	NA	NA	NA
Styrene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA	NA
Tert Butyl Alcohol	100	< 12.5 UJ	< 12.5	< 12.5	NA NA	NA	NA	NA	NA
tert-Butylbenzene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA NA	NA	NA	NA
Tetrachloroethene	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA	NA	NA	NA
Toluene	600	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA	NA	NA	NA
Total Xylenes	1,000	14.8 J-	12	2.4 J	NA NA	NA	NA	NA	NA
Trans-1,2-Dichloroethene	100	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA	NA	NA	NA
Trans-1,3-Dichloropropene	1	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA	NA	NA	NA
Trichloroethene	1	< 0.75 UJ	< 0.75	< 0.75	NA	NA	NA	NA	NA
Trichlorofluoromethane	2,000	< 0.75 UJ	< 0.75	< 0.75	NA NA	NA	NA	NA	NA
/inyl chloride	1	< 0.75 UJ	< 0.75	< 0.75	NA	NA	NA	NA	NA
ΓIC VOCs (μg/I)									
Total TIC, VOCs	500	222.5 JN	286.8 JN	183.5 JN	NA	NA	NA	NA	NA
Semivolatile Organic Compoun									
,2,4-Trichlorobenzene	9	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
,2-Dichlorobenzene	600	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
,2-Diphenylhydrazine	20	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
,3-Dichlorobenzene	600	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
,4-Dichlorobenzene	75	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
,4,5-Trichlorophenol	700	< 3.2	< 3	< 3.4	NA	NA	NA	NA	NA
,4,6-Trichlorophenol	20	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
,4-Dichlorophenol	20	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
4-Dimethylphenol	100	< 5.3	< 5	< 5.7	NA	NA	NA	NA	NA
,4-Dinitrophenol	40	< 8.4	< 8	< 9.2	NA	NA	NA	NA	NA
4-Dinitrotoluene	10	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
6-Dinitrotoluene	10	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
Chloronaphthalene	600	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA
-Chlorophenol	40	< 2.1	< 2	< 2.3	NA	NA	NA	NA	NA

TABLE 3

PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC

UST 211

FORT MONMOUTH, NEW JERSEY

Loc ID	T I	-			PAR-72-2	211-MW01			
Loc ID					FAR-12-2	11-1414401			
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-GW- MW-01-13.5	PAR-72-211-GW- MW-01-18.5	PAR-72-211-GW- MW-01-16.1	PAR-72-211-GW- MW-01 16.7	PAR-72-211-GW- MW-101 16.7	PAR-72-211-GW- MW-01	PAR-72-211-GW- MW-101	PAR-72-211-GW- MW-01
Sample Date	1	1/18/2018	1/18/2018	8/7/2018	3/29/2019	3/29/2019	6/13/2019	6/13/2019	11/6/2019
Filtered	1 1	Total	Total	Total	Total	Total	Total	Total	Total
2-Methylnaphthalene	30	152	139	126	112	117	30	30.1	12.9
2-Methylphenol	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
2-Nitroaniline	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA NA
2-Nitrophenol	100	< 2.1	<2	< 2.3	NA	NA.	NA	NA	NA
3,3'-Dichlorobenzidine	30	< 3.2	< 3	< 3.4	NA	NA	NA	NA	NA
3-Nitroaniline	100	< 2.1	<2	< 2.3	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	1	< 5.3	< 5	< 5.7	NA	NA	NA	NA	NA
4-Bromophenyl phenyl ether	100	< 1.1	<1	< 1.1	NA	NA .	NA	NA	NA
4-Chloro-3-methylphenol	100	< 1.1	<1	< 1.1	NA	NA NA	NA NA	NA NA	NA
4-Chloroaniline	30	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
4-Chlorophenyl phenyl ether	100	< 1.1	<1	< 1.1	NA	NA NA	NA	NA	NA
4-Nitroaniline	5	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
4-Nitrophenol	100	< 5.3	< 5	< 5.7	NA	NA NA	NA	NA	NA
Acenaphthene	400	4.2	3.7	2.3	NA	NA	NA	NA	NA NA
Acenaphthylene	100	< 1.1	<1	0.68 J	NA	NA	NA	NA.	NA
Anthracene	2,000	< 1.1	0.42 J	0.18 J	NA	NA	NA	NA	NA NA
Benzidine	20	< 31.6	< 30	< 34.5	NA	NA	NA	NA	NA
Benzo(a)anthracene	0.1	< 1.1	<1	< 1.1	NA	NA	NA	NA NA	NA
Benzo(a)pyrene	0.1	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA NA
Benzo(b)fluoranthene	0.2	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Benzo(ghi)perylene	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	0.5	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Benzyl alcohol	2,000	< 2.1	<2	< 2.3	NA	NA	NA	NA	NA NA
Bis(2-Chloroethoxy)methane	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Bis(2-Chloroethyl)ether	7	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Bis(2-Chloroisopropyl)ether	300	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Bis(2-Ethylhexyl)phthalate	3	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Butyl benzyl phthalate	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Carbazole	100	14.7	13.4	4.4 J	NA	NA	NA	NA	NA
Chrysene	5	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Cresol	NLE	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA NA
Dibenz(a,h)anthracene	0.3	< 1.1	<1	< 1.1	NA	NA	NA	NA.	NA
Dibenzofuran	100	< 1.1	5 J	4.6 J	NA	NA	NA	NA	NA.
Diethyl phthalate	6,000	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Dimethyl phthalate	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Di-n-butylphthalate	700	< 1.1	<1	0.52 J	NA	NA	NA	NA	NA
Di-n-octylphthalate	100	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Fluoranthene	300	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Fluorene	300	6.8	6.2	5.9	NA	NA NA	NA	NA	NA
Hexachlorobenzene	0.02	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Hexachlorobutadiene	1	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	40	< 2.1	< 2	< 2.3	NA	NA	NA	NA	NA

TABLE 3
PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID	NIC		PAR-72-211-MW01										
Sample ID	NJ Ground Water Quality Criteria	PAR-72-211-GW- MW-01-13.5	PAR-72-211-GW- MW-01-18.5	PAR-72-211-GW- MW-01-16.1	PAR-72-211-GW- MW-01 16.7	PAR-72-211-GW- MW-101 16.7	PAR-72-211-GW- MW-01	PAR-72-211-GW- MW-101	PAR-72-211-GW- MW-01				
Sample Date		1/18/2018	1/18/2018	8/7/2018	3/29/2019	3/29/2019	6/13/2019	6/13/2019	11/6/2019				
Filtered	ŧ.	Total	Total	Total	Total	Total	Total	Total	Total				
Hexachloroethane	7	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA				
Indeno(1,2,3-cd)pyrene	0.2	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA				
Isophorone	40	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA				
Naphthalene	300	77	70.7	50.1	NA	NA	NA	NA	NA				
Nitrobenzene	6	< 2.1	< 2	< 2.3	NA	NA	NA	NA	NA				
N-Nitrosodimethylamine	0.8	< 2.1	< 2	< 2.3	NA	NA	NA	NA	NA				
N-Nitroso-di-n-propylamine	10	< 1.1	< 1	< 1.1	NA	NA	NA	NA	NA				
N-Nitrosodiphenylamine	10	< 2.1	< 2	< 2.3	NA	NA	NA	NA	NA				
Pentachlorophenol	0.3	< 8.4	< 8	< 9.2	NA	NA	NA	NA	NA				
Phenanthrene	100	10.5	10	9.4	NA	NA	NA	NA	NA				
Phenol	2,000	< 1.1	<1	< 1.1	NA	NA	NA	NA	NA				
Pyrene	200	0.26 J	0.17 J	< 1.1	NA	NA	NA	NA	NA				
TIC SVOCs (µg/I)								The state of the s					
Total TICs, SVOCs	500	199.8 JN	223.5 JN	320.8 JN	NA	NA	NA	NA	NA				

TABLE 3
PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC
UST 211
FORT MONMOUTH, NEW JERSEY

Loc ID	NJ Ground	PAR-72-211-MW02			PAR-72-2	11-MW03	PAR-72-211-MW04		PAR-72-211-MW05	
Sample ID	Water Quality Criteria	PAR-72-211-GW- MW-02-10	PAR-72-211-GW- MW-02-11.4	PAR-72-211-GW- MW-03-5.5	PAR-72-211-GW- MW-03-10.5	PAR-72-211-GW- MW-03-8.5	PAR-72-211-GW- MW-103-8.5	PAR-72-211-GW- MW-04-10	PAR-72-211-GW- MW-04-10.0	PAR-72-211-GW-MW- 05-12.0
Sample Date	1	1/18/2018	8/7/2018	1/18/2018	1/18/2018	8/7/2018	8/7/2018	· 1/18/2018	8/7/2018	8/7/2018
Filtered	1	Total	Total	Total	Total	Total	Total	Total	Total	Total
2-Methylnaphthalene	30	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2-Methylphenol	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2-Nitroaniline	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
2-Nitrophenol	100	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
3,3'-Dichlorobenzidine	30	< 2.9	< 3.2	< 2.9	< 3.2	< 2.8	< 2.8	< 2.9	< 2.9	< 3.5
3-Nitroaniline	100	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
4,6-Dinitro-2-methylphenol	1	< 4.9	< 5.4	< 4.9	< 5.3	< 4.7	< 4.7	< 4.9	< 4.8	< 5.8
4-Bromophenyl phenyl ether	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
4-Chloro-3-methylphenol	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
4-Chloroaniline	30	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
4-Chlorophenyl phenyl ether	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
4-Nitroaniline	5	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
4-Nitrophenol	100	< 4.9	< 5.4	< 4.9	< 5.3	< 4.7	< 4.7	< 4.9	< 4.8	< 5.8
Acenaphthene	400	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Acenaphthylene	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Anthracene	2,000	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Benzidine	20	< 29.1	< 32.3	< 29.1	< 31.6	< 28.4	< 28.4	< 29.1	< 28.7	< 34.9
Benzo(a)anthracene	0.1	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Benzo(a)pyrene	0.1	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Benzo(b)fluoranthene	0.2	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Benzo(ghi)perylene	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Benzo(k)fluoranthene	0.5	< 0.97	< 1.1	< 0.97	<u><</u> 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Benzyl alcohol	2,000	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
Bis(2-Chloroethoxy)methane	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Bis(2-Chloroethyl)ether	7	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Bis(2-Chloroisopropyl)ether	300	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Bis(2-Ethylhexyl)phthalate	3	< 0.97	< 1.1	0.31 J	0.33 J	< 0.95	< 0.95	0.41 J	< 0.96	< 1.2
Butyl benzyl phthalate	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	0.12 J	< 1.2
Carbazole	100	< 0.97	< 1.1	< 0.97	<u> </u>	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Chrysene	_ 5	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Cresol	NLE	< 0.97	< 1.1	< 0.97	<u>< 1.1</u>	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Dibenz(a,h)anthracene	0.3	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Dibenzofuran	100	< 0.97	< 1.1	< 0.97	<-1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Diethyl phthalate	6,000	< 0.97	< 1.1	1.1 J	2.8 J	< 0.95	0.17 J	< 0.97	< 0.96	< 1.2
Dimethyl phthalate	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Di-n-butylphthalate	700	< 0.97	0.17 J	0.56 J	0.45 J	0.28 J	0.23 J	0.55 J	0.33 J	0.22 J
Di-n-octylphthalate	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Fluoranthene	300	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Fluorene	300	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Hexachlorobenzene	0.02	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Hexachlorobutadiene	1	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Hexachlorocyclopentadiene	40	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3

TABLE 3

PERMANENT GROUND WATER SAMPLING LOCATIONS AND RESULTS - COMPARISON TO NJDEP GWQC

UST 211

FORT MONMOUTH, NEW JERSEY

Loc ID		PAR-72-211-MW02		PAR-72-211-MW03				PAR-72-211-MW04		PAR-72-211-MW05
Sample ID	NJ Ground Water Quality Criteria	uality PAR-72-211-GW-	PAR-72-211-GW- MW-02-11.4	PAR-72-211-GW- MW-03-5.5	PAR-72-211-GW- MW-03-10.5	PAR-72-211-GW- MW-03-8.5	PAR-72-211-GW- MW-103-8.5	PAR-72-211-GW- MW-04-10	PAR-72-211-GW- MW-04-10.0	PAR-72-211-GW-MW- 05-12.0
Sample Date		1/18/2018	8/7/2018	1/18/2018	1/18/2018	8/7/2018	8/7/2018	1/18/2018	8/7/2018	8/7/2018
Filtered		Total	Total	Total	Total	Total	Total	Total	Total	Total
Hexachloroethane	7	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Indeno(1,2,3-cd)pyrene	0.2	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Isophorone	40	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Naphthalene	300	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Nitrobenzene	6	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
N-Nitrosodimethylamine	0.8	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
N-Nitroso-di-n-propylamine	10	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
N-Nitrosodiphenylamine	10	< 1.9	< 2.2	< 1.9	< 2.1	< 1.9	< 1.9	< 1.9	< 1.9	< 2.3
Pentachlorophenol	0.3	< 7.8	< 8.6	< 7.8	< 8.4	< 7.6	< 7.6	< 7.8	< 7.7	< 9.3
Phenanthrene	100	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Phenol	2,000	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
Pyrene	200	< 0.97	< 1.1	< 0.97	< 1.1	< 0.95	< 0.95	< 0.97	< 0.96	< 1.2
TIC SVOCs (µg/I)										
Total TICs, SVOCs	500	NA	NA	NA	NA	NA	NA	NA	NA	NA

Footnote:

- 1) All historical data collected prior to 2013 are reported as provided by others.
- 2) Number of Analyses is the number of detected and non-detected results excluding rejected results. Sample duplicate pairs have not been averaged.
- 3) NLE = no limit established.
- 4) ND = not detected in any background sample, no background concentration available.
- 5) Bold chemical dectection
- 6) SS = Site Specific action level, see "Specific Chemical Class (or Parameter)" footnote for details.
- Chemical result qualifiers are assigned by the laboratory and are evaluated and modified (if necessary) during the data validation.

[blank] = detect, i.e. detected chemical result value.

E (or ER) = Estimated result.

B =Compound detected in the sample at a concentration less than or equal to 5 times (10 times for common lab D = Results from dilution of sample. contaminants) the blank concentration.

R = Rejected, data validation rejected the results.

J-DL = Elevated sample detection limit due to difficult sample matrix.

U = non-detect, i.e. not detected at or above this value.

JN = Tentatively identified compound, estimated concentration.

U-DL = Elevated sample detection limit due to difficult sample matrix.

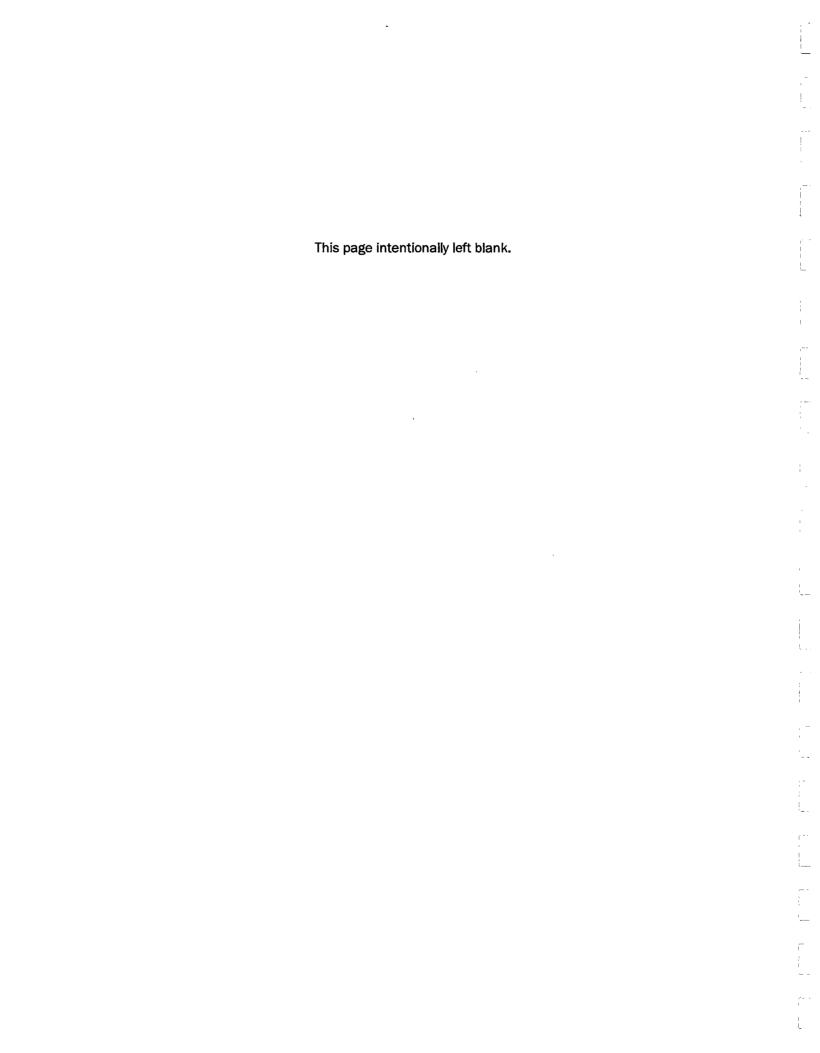
UJ=The compound was not detected: however, the results is estimated because of discrepancies in

meeting certain analyte-specific QC criteria.

U-ND = Analyte not detected in sample, but no detection or reporting limit provided.

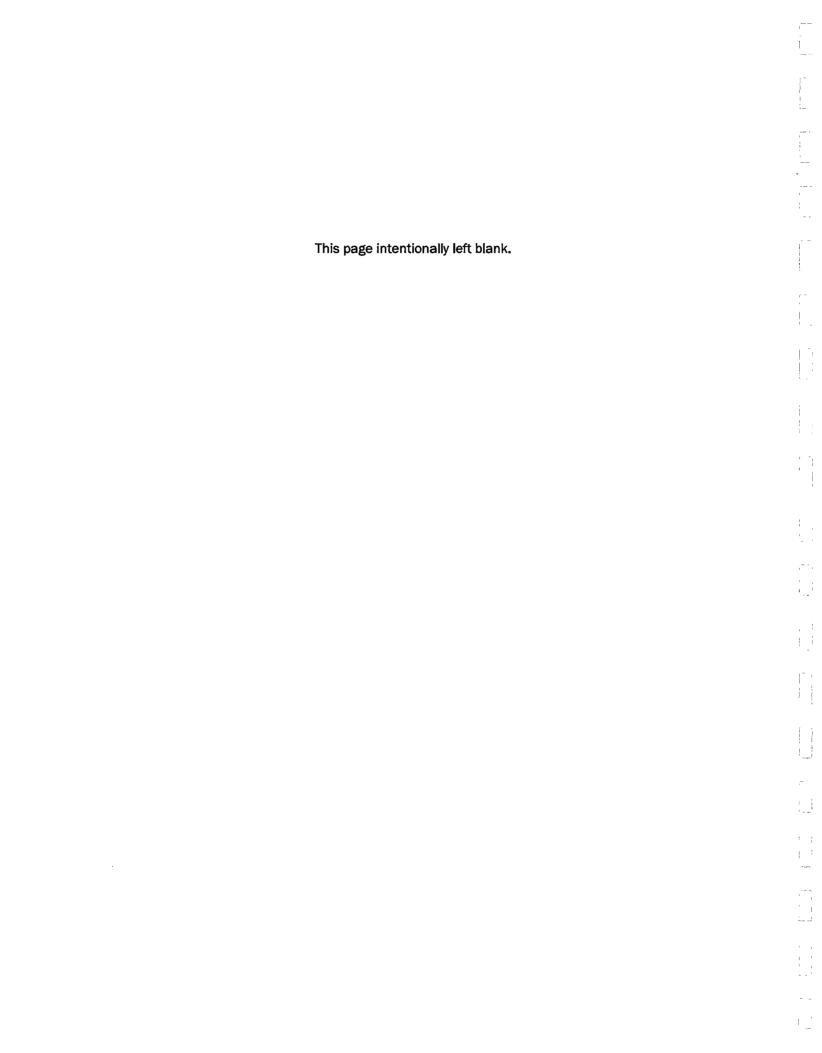
J+ = The result is an estimated quantity, but the result may be biased high.

J = estimated detected value due to a concetration below the reporting limit or due to discrepancies in meeting certain analyte-specific quality control.


J- = The result is an estimated quantity, but the result may be biased low.

- 8) Specific Chemical Classes (or Parameters) comments or notes regarding how data is displayed, compared to Action Levels, or represented in this table.
- 9) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.
- Cell Shade values represent a result that is above the NJ Ground Water Quality Criteria

NJDEP Interim Specific GWQC values are presented for the NJ GWQS where there is not a Specific Ground Water Quality Criteria. A full list of compounds is available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).


NJDEP Interim Generic GWQC values are presented for the NJ GWQS where there is not a XXXXX or a NJDEP Interim Specific GWQC. Available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

- 10) Criteria action level source document and web address.
- The NJ Ground Water Quality Criteria refers to the NJDEP Groundwater Quality Standards Adopted July 22, 2010 http://www.state.nj.us/dep/wms/bwqsa/docs/njac79C.pdf

Attachment A Correspondence:

- 1. New Jersey Department of Environmental Protection (NJDEP). 2017. Supplemental Unregulated Heating Oil Tank (UHOT) Work Plan, Fort Monmouth, Oceanport, Monmouth County. 13 October.
- 2. Department of the Army. 2017. Supplemental Unregulated Heating Oil Tank (UHOT) Work Plan, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. 15 August.
- 3. NJDEP. 2017. No Further Action Request Site Investigation Report Addendum ECP Parcel 72 Underground Storage Tanks dated December 13, 2016, Fort Monmouth, Oceanport, Monmouth County. 7 February.
- 4. Department of the Army. 2016. No Further Action Request, Site Investigation Report Addendum, ECP Parcel 72 Underground Storage Tanks, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. 13 December.
- 5. NJDEP. 2016. Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum, Fort Monmouth, Oceanport, Monmouth County. 12 July.
- 6. Department of the Army. 2016. Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. 1 July.

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor

DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Northern Field Operations 7 Ridgedale Avenue Cedar Knolls, NJ 07927

Phone #: 973-631-6401 Fax #: 973-656-4440 **BOB MARTIN** Commissioner

October 13, 2017

Mr. William Colvin **BRAC Environmental Coordinator** OACSIM - U.S. Army Fort Monmouth P. O. Box 148 Oceanport, NJ 07757

Supplemental Unregulated Heating Oil Tank Work Plan Re:

> Fort Monmouth Oceanport, Monmouth County PI G000000032

Dear Mr. Colvin,

The New Jersey Department of Environmental Protection (Department) has completed review of the Supplemental Unregulated Heating Oil Tank Work Plan (UST Workplan). The UST Workplan included proposal for further investigation(s) at various Underground Storage Tank (UST) locations. The Department offers the following comments:

- UST 142B, UST 202A, UST 202D The proposal to install monitor wells (MWs) is approved. Please ensure that all approved sampling methodologies are utilized. Please also document field observations, including the presence of free product and/or sheen in any of the MWs. Please note that the proposal to install additional MW, as needed, is also approved as this may assist in further delineating the extent of ground water contamination.
- UST 211 Further investigation is approved as proposed. However, the Department recommends installing one temporary well south of boring locations SCREEN 5 and SCREEN 6.
- UST 228B Further investigation is approved as proposed. Based on the findings from previous investigation(s) and subsequent sampling results (soils and ground water), the Department may recommend removing the UST.
- UST 444 The installation of borings (6), temporary wells (3) and permanent monitor wells (3) is approved. However, as other USTs were present in the area, please ensure that results from UST 444 and other USTs' results are not co-mingled.
- UST 490 Further investigation is approved as proposed. However, please indicate if any previous soil remediation in the form of soil removal was performed when this UST was removed in 1990 or thereafter.
- UST 750J, UST 800-12, UST 800-20, UST 884, UST 906A and UST 3035 Further investigations are approved as proposed at these locations.

Please submit all results of the findings to my attention for review. If possible, please have each UST findings, tables, figures and maps individually prepared. Thank you and please feel free to contact me if you have any questions.

Sincerely,

A.J. Joshi

C: James Moore, USACE Rich Harrison, FMERA Joe Fallon, FMERA Joe Pearson, Calibre File

DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

15 August 2017

Mr. Ashish Joshi New Jersey Department of Environmental Protection Northern Bureau of Field Operations 7 Ridgedale Avenue Cedar Knolls, NJ 07927

SUBJECT: Supplemental Unregulated Heating Oil Tank (UHOT) Work Plan

Fort Monmouth, New Jersey

PI G00000032

Figures:

Figure 1 – UHOT Locations

Figure 2 - UST 142B Sample Location

Figure 3 – UST 202A and UST 202D Sample Locations

Figure 4 – UST 211 Sample Locations

Figure 5 – UST 228B Sample Location

Figure 6 – UST 444 Sample Locations

Figure 7 – UST 490 Sample Locations

Figure 8 – UST 750J Sample Location

Figure 9 – UST 800-12 Sample Locations

Figure 10 – UST 800-20 Sample Locations

Figure 11 – UST 884 Sample Locations

Figure 12 – UST 906A Soil Sample Locations

Figure 13 – UST 906A Groundwater Sample Locations

Figure 14 – UST 3035 Sample Locations

Tables:

Table 1 – Sampling Summary

Table 2 – UST 906A Soil Sample Results

Table 3 – UST 906A Groundwater Sample Results

Attachments:

A. Groundwater Flow Direction Maps

Dear Mr. Joshi:

The U.S. Army Fort Monmouth (FTMM) Team has prepared this Work Plan to describe the proposed sampling and analyses activities to support environmental investigations at select unregulated heating oil tanks (UHOTs; also referred to as underground storage tanks [USTs] in this submittal) at FTMM (Figure 1).

Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 2 of 17

The UHOTs described in this Work Plan are being evaluated in accordance with the New Jersey Administrative Code (NJAC) 7:26E *Technical Requirements for Site Remediation*. Most of these UHOTs require a remedial investigation (RI) in accordance with NJAC 7:26E-4.3 for delineation of an identified release of fuel oil constituents in groundwater. However, additional USTs have been included in this Work Plan that only require site investigation (SI) soil or groundwater sampling (NJAC 7:26E-3.4 or -3.5) to determine if a release has occurred, as designated below:

- UST 142B (SI)
- UST 202A (SI)
- UST 202D (RI)
- UST 211 (RI)
- UST 228B (SI)
- UST 444 (RI)
- UST 490 (RI)
- UST 750J (SI)
- UST 800-12 (RI)
- UST 800-20 (RI)
- UST 884 (RI)
- UST 906A (RI)
- UST 3035 (SI)

Specific data needs and proposed sampling at each UHOT site are described in the subsections below. Groundwater flow directions in the area where delineation in groundwater is required are generally not well established due to the distances to other nearby monitor wells. Therefore, regional groundwater flow directions from previous documents (Attachment A) were used as a basis for initial planning of groundwater sampling at each site.

The proposed groundwater assessment strategy includes a combination of field screening and groundwater sampling and analysis to delineate the groundwater plume. For a typical UHOT site without any previous plume assessment, Geoprobe soil borings will be placed in a ring around the former tank site, and each boring will be advanced to a depth below the shallow groundwater. Field screening using a photoionization detector (PID) and visual observation of the Geoprobe soil cores will be used to identify and assess areas impacted by fuel oil downgradient of the source area. Previous Geoprobe assessments at FTMM have successfully identified fuel oil contamination in areas downgradient of former UHOTs using these field screening techniques. The field screening results will be used to verify the contaminant migration direction (and by implication, the groundwater flow direction) for each UHOT site. Temporary groundwater monitoring wells will then be placed within and outside of the plume at each tank site using a Geoprobe, and the groundwater will be sampled to verify the nature and extent of groundwater contamination. Following receipt of analytical data from the temporary wells, permanent monitoring wells will be installed to establish a monitoring network with a minimum of three wells at each site: a source area well near the former tank site, a well downgradient of the source but within the plume, and a downgradient sentry well beyond the plume. Select existing monitoring wells will also be used for water level measurements to complement the monitoring network. All new permanent monitoring wells and the existing monitoring wells to be used for water level measurements will be surveyed by a New Jersey-licensed surveyor in accordance with the Sampling and Analysis Plan (SAP; Reference 23).

Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 3 of 17

Sampling and analytical procedures will follow the protocols established for previous FTMM Work Plan submittals (Reference 24). All Site personnel will be required to read, understand, and comply with the safety guidelines in the Accident Prevention Plan (APP) including the Site Health and Safety Plan (SHASP), which is included as Appendix A of the APP (Reference 25). The detailed field procedures to be used for the activities described in this sampling plan are described in the SAP (Reference 23). Please let me know if you need these or any other documents referred to in this Work Plan to be sent to you.

Specific sampling and analytical requirements are summarized in Table 1, and are described for each UHOT in the subsections below.

1. UST 142B

UST 142B was a steel 550-gallon No. 2 fuel oil UST that was removed in July 1994, along with approximately 30 cubic yards of contaminated soil, as presented in Attachment H of USTs Within ECP Parcel 79 (Reference 2). Subsequently, NJDEP required a groundwater investigation to be performed (Reference 13); a temporary well was installed, sampled and abandoned in August 2016. Multiple polynuclear aromatic hydrocarbons (PAHs) were detected in the groundwater sample, which was attributed to sample turbidity rather than a release of fuel oil to groundwater (as reported in Reference 10). NJDEP (Reference 22) then recommended resampling using a method to reduce turbidity due to the high concentrations for PAHs detected.

To address this data need, a 2-inch diameter permanent monitoring well will be installed at the former UST 142B tank location, as shown on Figure 2. This approach is expected to result in a low-turbidity groundwater sample without PAH exceedances. The well will be installed within a Geoprobe boring and will be completed with a 10-foot well screen to approximately 7 feet (ft) below the water table (estimated at approximately 4 ft below ground surface [bgs]). The well will be developed to meet the criteria specified in NJDEP's most recent *Field Sampling Procedures Manual*. Low-flow sampling methods will be used to sample this well and the sample will be analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in accordance with the requirements for No. 2 fuel oil in Table 2-1 of the NJAC 7:26E *Technical Requirements for Site Remediation*. The Field Geologist will note any indications of fill within the soil column such as cinders, coal, or other debris. A letter report will be prepared for UST 142B that either requests a No Further Action (NFA) determination or recommends additional investigation or action, as warranted from the analytical data.

2. UST 202A

UST 202A was a fiberglass 1,000-gallon heating oil UST that was removed in October 2001, along with an unspecified quantity of contaminated soil, as presented in Attachment J of USTs Within ECP Parcel 79 (Reference 2). NJDEP (Reference 13) subsequently required a groundwater investigation for the UST 202A and UST 202D area. One temporary well and two existing permanent wells were sampled in May and August 2016 (Reference 10). NJDEP then recommended installation of a permanent well nearby to assess UST 202D (Reference 22); at the same time, NFA was not approved for UST 202A. Additional data are needed to delineate groundwater contamination associated with UST 202A and to delineate groundwater contamination at nearby UST 202D (described in Section 3 below).

Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 4 of 17

To address the UST 202A data need, one temporary monitoring well will be installed at the former UST 202A tank location, as shown on Figure 3. The well will be installed within a Geoprobe boring and will be completed with a 5-foot well screen to approximately 4 ft below the water table (estimated at approximately 2 ft bgs). This well will be sampled and the sample will be analyzed for VOCs and SVOCs in accordance with the requirements for No. 2 fuel oil in Table 2-1 of NJAC 7:26E. The Army may also install and sample additional permanent wells based on the temporary well results. A letter report will be prepared for UST 202A that either requests a No Further Action (NFA) determination or recommends additional investigation or action.

3. UST 202D

UST 202D was a steel 500-gallon heating oil UST that was removed in May 2005 along with approximately 20 cubic yards of contaminated soil (Attachment L of Reference 2). A temporary well was sampled at the former UST 202D location in June 2011; benzene (1.61 µg/L) and 2-methylnaphthalene (109 to 233 µg/L) were detected at concentrations greater than NJDEP Ground Water Quality Criteria (GWQC). NJDEP subsequently required a groundwater investigation for UST 202D (Reference 13). One temporary well and two existing permanent wells were sampled in May and August 2016 (Reference 10). NJDEP then recommended installation of a permanent well to assess UST 202D with low-flow sampling and analysis for VOCs and SVOCs (Reference 22).

To address this data need, one permanent monitoring well and at least three temporary wells will be installed at the former UST 202D tank location, as shown on Figure 3. Recent temporary well results (Reference 10) suggest that fuel oil constituents have not migrated more than approximately 50 ft downgradient of the former tank location (Figure 3). Therefore, two additional downgradient temporary wells and one field screening boring will be installed for verification at offset locations approximately 50 feet downgradient of the former tank location to verify that the plume was not missed. A third temporary well will be installed at the former UST 202A location as described in Section 2.0 above. These temporary wells will be installed within a Geoprobe boring and will typically be completed with a 5-foot well screen to approximately 4 ft below the water table (estimated to be 2 ft bgs). Samples will be collected from the temporary wells for VOCs and SVOCs analyses, in accordance with the requirements for No. 2 fuel oil in Table 2-1 of NJAC 7:26E. Additional temporary wells may be installed as needed based on the groundwater sampling described above.

It is anticipated that existing well M16MW02 will be utilized as a downgradient sentry monitor well for the UST 202D site. New well 202MW02 will be developed. Both new well 202MW02 and existing well M16MW02 will be sampled using low-flow methods; the samples will be analyzed for VOCs and SVOCs in accordance with the requirements for No. 2 fuel oil in Table 2-1 of NJAC 7:26E.

Water level measurements will be collected from monitoring wells 202MW01, 202MW02, M16MW01, and M16MW02 (Figure 3) to determine the local groundwater flow direction. It is anticipated that a remedial investigation report will be prepared for UST 202D.

Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 5 of 17

4. UST 211

UST 211 was a fiberglass 2000-gallon No. 2 fuel oil UST that was removed in November 2001. As presented in Attachment F.1 of Reference 8, one closure soil sample contained 3,968 mg/kg Total Petroleum Hydrocarbons (TPH). A temporary well was sampled at the former UST 211 location in August 2016; multiple analytes were detected at concentrations greater than the GWQCs including 1,2,4-trimethylbenzene (543 J μ g/L), benzene (2.8 μ g/L), naphthalene (1,450 μ g/L), 2-methylnaphthalene (6,680 μ g/L), total VOC Tentatively Identified Compounds (TICs; 1,302 μ g/L) and total SVOC TICs (14,322 μ g/L) (Attachment D of Reference 8). NJDEP stated that additional remedial efforts were required for this site (Reference 19). Additional data are needed to delineate groundwater contamination at UST 211.

To address this data need, multiple field screening borings, temporary monitoring wells and permanent monitoring wells will be installed near the former UST 211 tank location, as shown on Figure 4. Field screening Geoprobe borings SCREEN1 through SCREEN6 (Figure 4) will be advanced at locations around the former UST 211 location to provide field verification of the groundwater flow direction, which is assumed to be towards the north-northwest based on regional groundwater maps (Attachment A). These borings will be advanced past the water table, which is assumed to be approximately 12 ft bgs based on previous drilling at PAR-72-211-TMW-01. The field screening borings will be logged visually and with a PID, which has proven useful for identifying fuel oil contamination at FTMM. The field results will be used to validate the locations for subsequent temporary wells to assist with delineating the groundwater plume.

A total of four additional temporary monitor wells are proposed at UST 211. A line of three temporary monitor wells (TMW-02 through TMW-04) will be installed along Russel Avenue (approximately 60 ft downgradient of the tank) to verify the direction and lateral boundaries of the plume. A fourth temporary monitor well (TMW-05) will be installed further downgradient to establish the downgradient extent of the plume prior to installing a downgradient permanent sentry well. As with the field screening borings, the borings for temporary wells will be logged visually and with a PID to estimate the extent of the plume in the field. Additional field screening borings (like SCREEN7 on Figure 4) may be used to determine the downgradient extent of the plume. The temporary wells will be installed within Geoprobe borings and will typically be completed with a 5-foot well screen to approximately 4 ft below the water table (estimated at approximately 12 ft bgs). Samples will be collected from each temporary well and analyzed for VOCs and SVOCs in accordance with the requirements for No. 2 fuel oil in Table 2-1 of NJAC 7:26E.

Based on the analytical results of the temporary well samples, three permanent monitoring wells will be installed for groundwater monitoring: one at the source area (MW-01); one within the plume (MW-02); and one downgradient sentry location (MW-03). The new wells will be developed and sampled using low-flow methods, and the groundwater samples will be analyzed for VOCs and SVOCs, in accordance with the requirements for No. 2 fuel oil in Table 2-1 of NJAC 7:26E.

Water level measurements will be collected from the three new monitoring wells, and from nearby wells 200MW01 (located south of Building 216; see Attachment A), 200MW06 (located north of Building 228; Figure 5), and B5MW05B (located southeast of Building 261), to determine the local groundwater flow direction. It is anticipated that a remedial investigation report will be prepared for UST 211.

Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 14 of 17

14. SUMMARY

We look forward to your review of this Work Plan and approval or comments. The technical Point of Contact (POC) for this matter is Kent Friesen at (732) 383-7201 or by email at kent.friesen@parsons.com. Should you have any questions or require additional information, please contact me by phone at (732) 380-7064 or by email at william.r.colvin18.civ@mail.mil.

Sincerely,

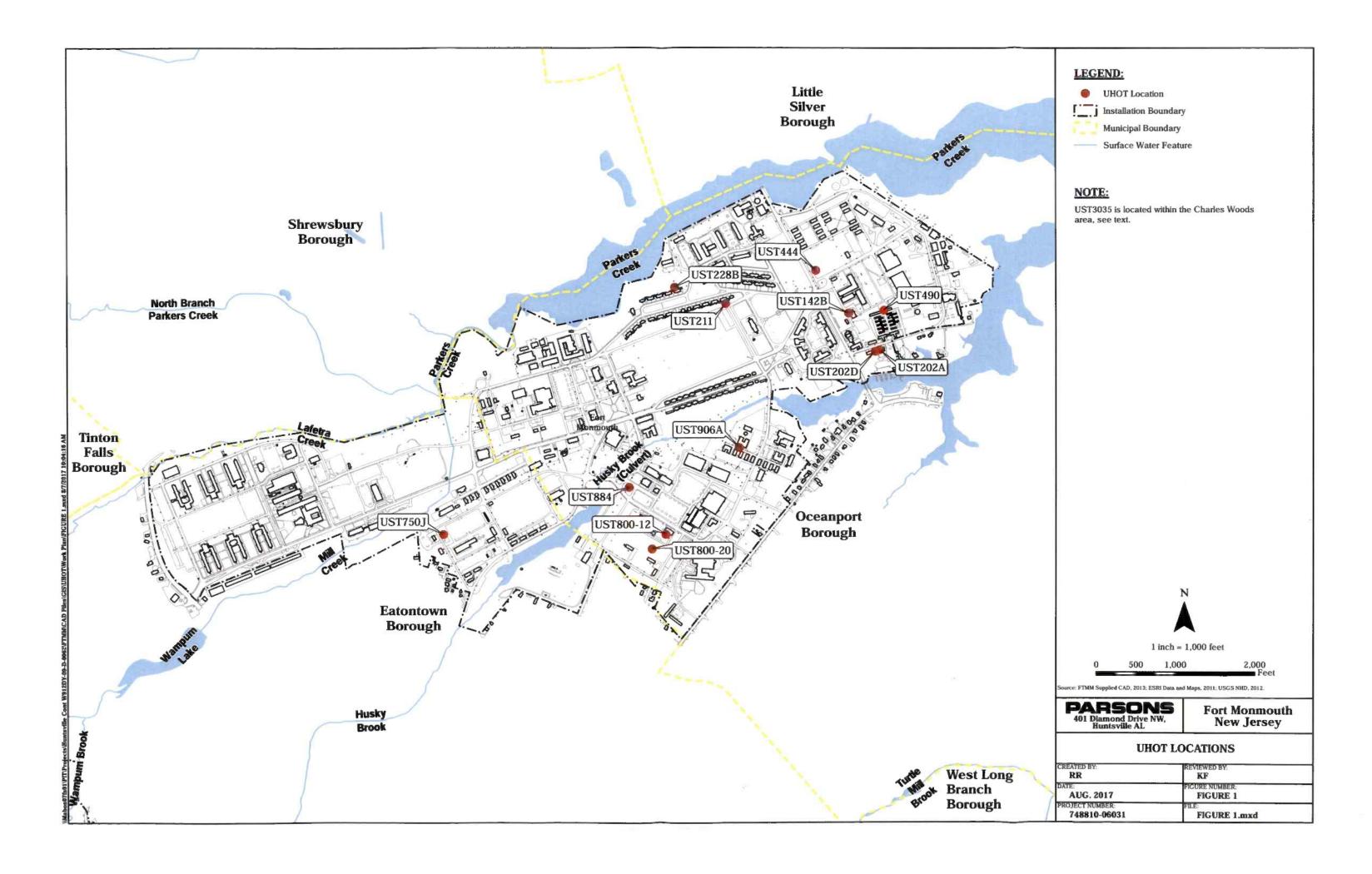
William R. Colvin, PMP, PG, CHMM BRAC Environmental Coordinator

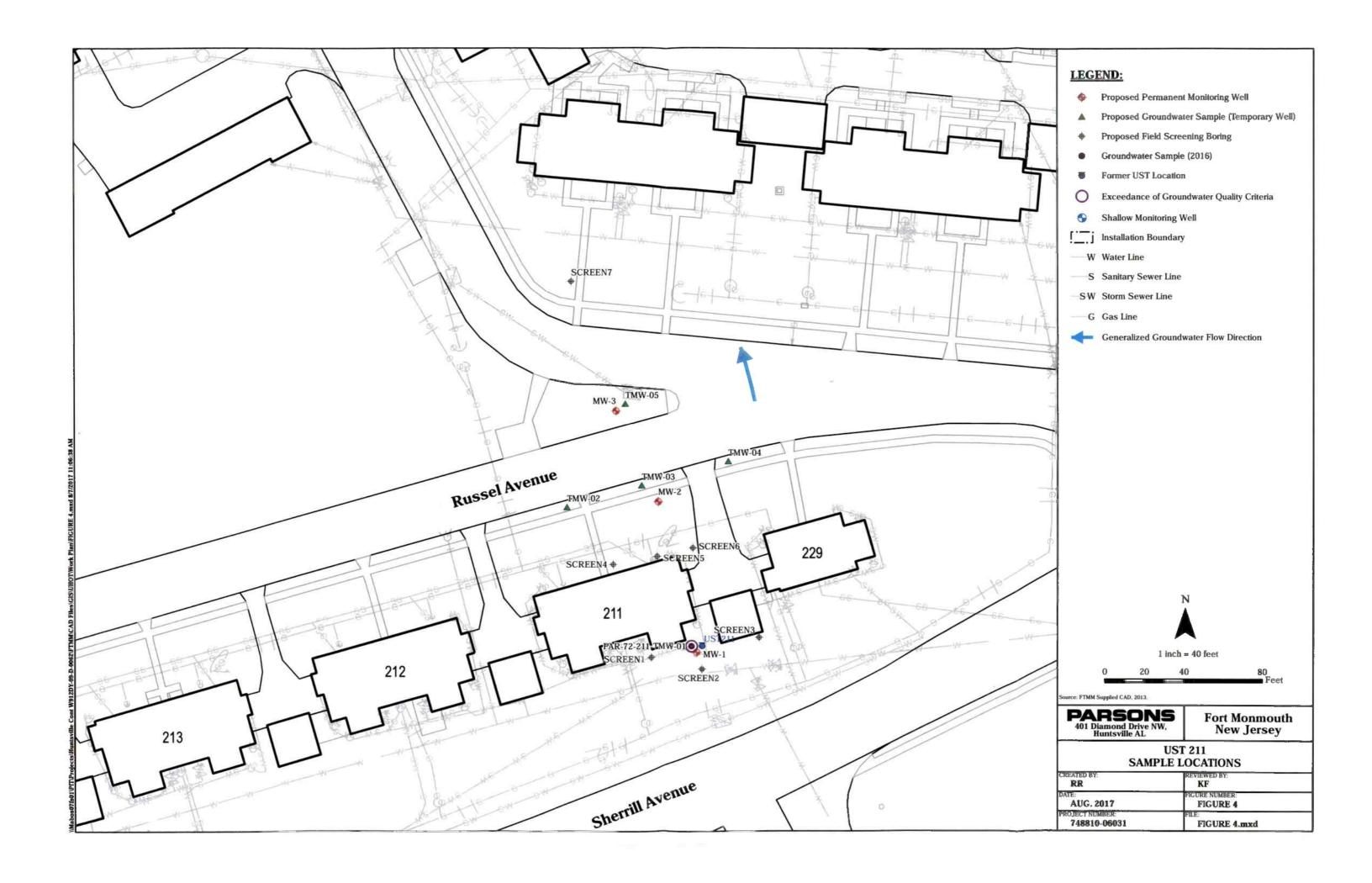
cc: Ashish Joshi, NJDEP (e-mail and 2 hard copies)
William Colvin, BEC (e-mail and 1 hard copy)
Joseph Pearson, Calibre (e-mail)
James Moore, USACE (e-mail)

Jim Kelly, USACE (e-mail) Cris Grill, Parsons (e-mail) Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 15 of 17

REFERENCES CITED:


- 1. Department of the Army. 2015. *Underground Storage Tanks Within Parcel 68, Fort Monmouth, New Jersey*. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. April 14.
- 2. Department of the Army. 2015. *Underground Storage Tanks Within ECP Parcel 79, Fort Monmouth, New Jersey*. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. April 22.
- 3. Department of the Army. 2015. No Further Action Request, Site Investigation Report Addendum for the 800 Area Including, ECP Parcels 55 and 56, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. June 12.
- 4. Department of the Army. 2016. Parcel 68 Work Plan Addendum for a Former UST Site, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. March 2.
- 5. Department of the Army. 2016. No Further Action Request, Site Investigation Report Addendum for the Howard Commons Underground Storage Tanks, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. April 26.
- 6. Department of the Army. 2016. No Further Action Request, Site Investigation Report Addendum for the Building 750 Motor Pool Area Including Underground Storage Tanks, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. October 28.
- 7. Department of the Army. 2016. Clarification of Underground Storage Tanks at Howard Commons, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. December 6.
- 8. Department of the Army. 2016. No Further Action Request, Site Investigation Report Addendum, ECP Parcel 72 Underground Storage Tanks, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. December 13.
- 9. Department of the Army. 2017. Request for No Further Action at Multiple 800 Area Underground Storage Tanks, Site Investigation Report Addendum, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. January 23.
- 10. Department of the Army. 2017. Request for No Further Action at Multiple Parcel 79 Storage Tank Site Investigation Report Addendum, Fort Monmouth, Oceanport, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. February 8.


Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 16 of 17


- 11. New Jersey Department of Environmental Protection (NJDEP). 2007. Letter to the Army, RE: Underground Storage Tank Closure & Remedial Investigation Reports, 800 Area UST No. 9, 800 Area UST No. 12, Fort Monmouth, NJ. December 31.
- 12. New Jersey Department of Environmental Protection (NJDEP). 2010. *Protocol for Addressing Extractable Petroleum Hydrocarbons*. Site Remediation Program. Version 5.0. August 9.
- 13. New Jersey Department of Environmental Protection (NJDEP). 2015. Letter to the Army, RE: Underground Storage Tanks Within ECP Parcel 79 dated April 2015, Fort Monmouth, Oceanport, Monmouth County. August 25.
- 14. New Jersey Department of Environmental Protection (NJDEP). 2015. Letter to the Army, RE: Underground Storage Tanks Within ECP Parcel 68, 74, and 77 dated April 2015, Fort Monmouth, Oceanport, Monmouth County. September 24.
- 15. New Jersey Department of Environmental Protection (NJDEP). 2015. Letter to the Army, RE: Site Investigation Report Addendum for the 800 Area Including ECP Parcels 55 & 56, Fort Monmouth, Oceanport, Monmouth County. November 10.
- 16. New Jersey Department of Environmental Protection (NJDEP). 2016. Letter to the Army, RE: Parcel 68 Work Plan Addendum and Response to NJDEP's September 24, 2015 Comments on the April 2015 Underground Storage Tanks Within ECP Parcels 68, 74 and 77, Fort Monmouth, New Jersey & Parcel 68 Work Plan Addendum for a Former UST Site (March 2016). March 29.
- 17. New Jersey Department of Environmental Protection (NJDEP). 2016. Letter to the Army, RE: No Further Action Request Site Investigation Report Addendum for the Howard Commons Underground Storage Tanks dated April 2016, Fort Monmouth, Oceanport, Monmouth County. November 28.
- 18. New Jersey Department of Environmental Protection (NJDEP). 2016. Letter to the Army, RE: Clarification of Underground Storage Tanks at Howard Commons dated December 6, 2016, Fort Monmouth, Oceanport, Monmouth County. December 20.
- 19. New Jersey Department of Environmental Protection (NJDEP). 2017. Letter to the Army, RE: No Further Action Request Site Investigation Report Addendum ECP Parcel 72 Underground Storage Tanks dated December 13, 2016, Fort Monmouth, Oceanport, Monmouth County. February 7.
- 20. New Jersey Department of Environmental Protection (NJDEP). 2017. Letter to the Army, RE: Request for No Further Action at Multiple 800 Area Underground Storage Tanks, Site Investigation Report Addendum, Fort Monmouth, Oceanport, Monmouth County. March 16.
- 21. New Jersey Department of Environmental Protection (NJDEP). 2017. Letter to the Army, RE: No Further Action Request Site Investigation Report Addendum for the Building 750 Motor Pool Area Including Underground Storage Tanks, Fort Monmouth, Oceanport, Monmouth County. April 4.

Ashish Joshi, NJDEP Supplemental UHOT Work Plan 15 August 2017 Page 17 of 17

- 22. New Jersey Department of Environmental Protection (NJDEP). 2017. Letter to the Army, RE: Request for No Further Action at Multiple Parcel 79 Storage Tanks Site Investigation Report Addendum, Fort Monmouth, Oceanport, Monmouth County. May 8.
- 23. Parsons. 2013. Final Sampling and Analysis Plan, Remedial Investigation/Feasibility Study/Decision Documents, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Huntsville, AL. Revision 0. March.
- 24. Parsons. 2015. Final Environmental Condition of Property Supplemental Phase II Site Investigation Work Plan for Parcels 28, 38, 39, 49, 57, 61 and 69. Prepared for the U.S. Army Engineering and Support Center, Huntsville, AL. Revision 1. August.
- 25. Parsons. 2016. Final Accident Prevention Plan, Remedial Investigation/Feasibility Study/Decision Documents, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Huntsville, AL. Revision 1. November.

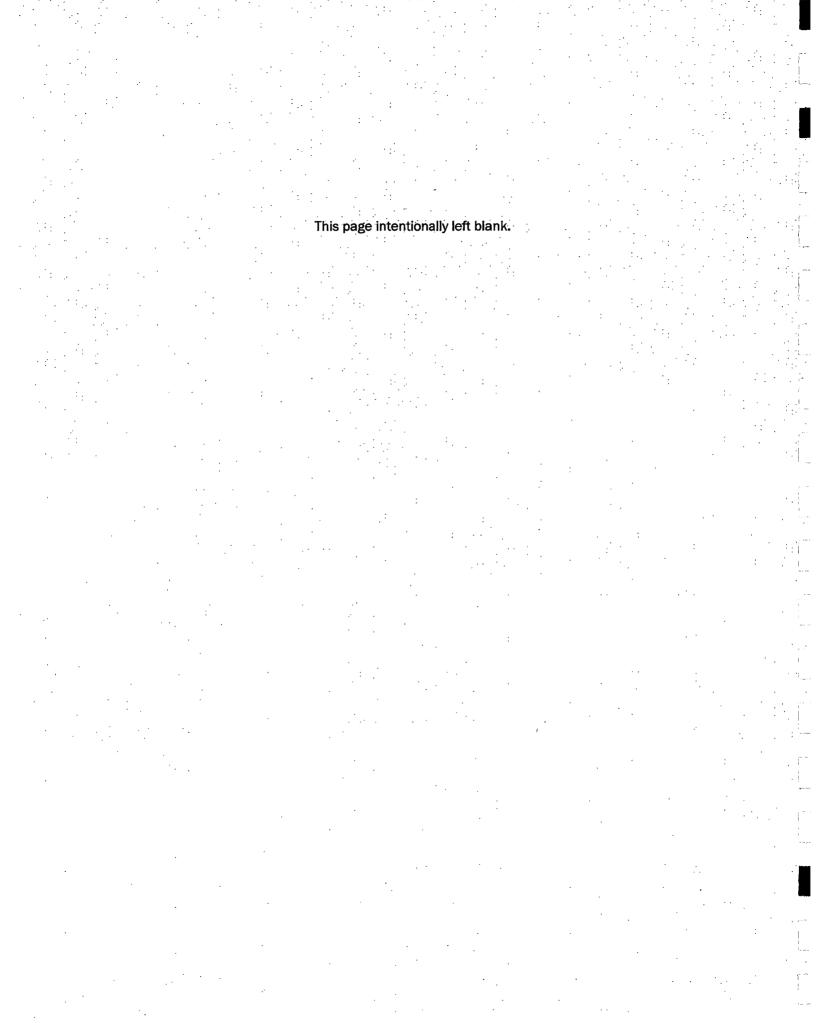
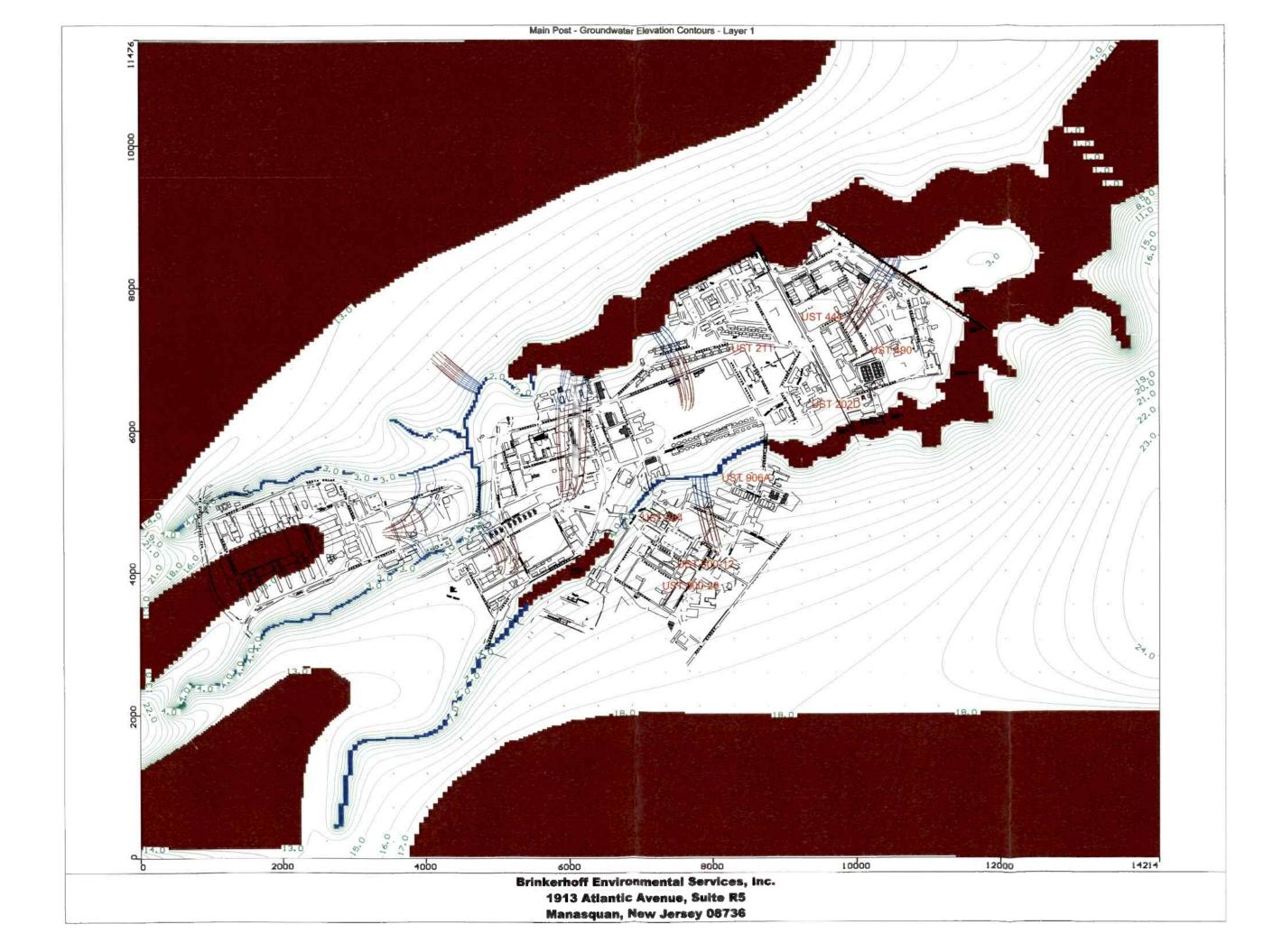


TABLE 1 SAMPLING SUMMARY FOR SUPPLEMENTAL UHOT WORK PLAN FORT MONMOUTH, NEW JERSEY

		Field Installation				Field Meter	VOCs + TICs by Method	SVOCs + TICs by Method	Non- Fractionate
Parcel	Location and General Rationale (see text)	SCRN	TMW	MW	SB	Readings a/	8260C b/	8270D e/	d EPH d/e/
Ground	vater								
7	UST 142B (Figure 2) - 1 permanent well for low turbidity groundwater sample for release								
79	detection			1		1	1	1	0
81	USTs 202A and 202D (Figure 3) - Multiple groundwater samples for release detection (UST 202A) and delineation (UST 202D)	1	3	1	_	5	5	5	0
72	UST 211 (Figure 4) - multiple field screening borings and groundwater samples for delineation	7	4	3	_	14	7	7	0
79	UST 444 (Figure 6) - multiple field screening borings and groundwater samples for delineation	6	3	3		12	6	6	0
79	UST 490 (Figure 7) - multiple field screening borings and groundwater samples for delineation	2	4	2	_	7	7	7	0
51	UST 750J (Figure 8) - One groundwater sample for release detection		1	-	_	1	1	1	0
55	UST 800-12 (Figure 9) - multiple field screening borings and groundwater samples for delineation	6	4	3		13	7	7	0
56	UST 800-20 (Figure 10) - multiple field screening borings and groundwater samples for delineation	6	4	3		13	7	7	0
54	UST 884 (Figure 11) - multiple field screening borings and groundwater samples for delineation	6	4	3	_	13	7	7	0
68	UST 906A (Figure 13) - multiple groundwater samples for delineation	0	3	3	_	6	6	6	0
Soil	为对于1000年的								
72	UST 228B (Figure 5) - 1 soil sample for 2- methylnaphthalene analysis by SPLP ⁹	_		-	1	1	0	1 (SPLP)	0
68	UST 906A (Figure 12) - 1 additional soil boring for delineation	_	_	_	1	1	0	1	3
1	UST 3035 (Figure 14) - 3 soil borings for release detection	-	_	_	3	3	0	2	6
QA/QC s	samples (see SAP for additional details) 8/		S. F. Land		Desily.				
Field Duplicates (5% Sampling Frequency per media)		NA h	NA	NA	NA	NA	3	4	1
Matrix Spike (5% Sampling Frequency per media)		NA	NA	NA	NA	NA	3	4	1
Matrix Spike Duplicate (5% Sampling Frequency per m		NA	NA	NA	NA	NA	3	4	1
Trip Blank (1 per cooler of VOCs per media)		NA	NA	NA	NA	NA	3	0	0
QA Split (5% per media) Equipment Blank (5% Sampling Frequency per media)		NA	NA	NA	NA	NA	3	4	1
		NA 24	NA 20	NA	NA 10	NA NA	3	4	1
	TOTAL	34	30	22	10	NA	72	77	14


Notes:

- ai SCRN = Geoprobe boring for field screening; TMW = temporary monitor well; MW = Permanent monitor well; SB = soil boring for soil analyses
- a' Field meter readings include, in soil samples: photoionization detector (PID) readings along entire soil column; and in groundwater: PID headspace pH, temperature, electrical conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity. $^{b'}$ VOCs = volatile organic compounds; TICs = tentatively identified compounds.
- $^{\circ}$ SVOCs = semivolatile organic compounds; TICs = tentatively identified compounds.
- d/ EPH = extractable petroleum hydrocarbons.
- $^{o'}$ If any EPH concentrations in soil exceed 1000 mg/kg in any of the site samples, then minimum 25% of the samples where EPH exceeds 1000 mg/kg.
- g SPLP = Synthetic Precipitation Leachate Procedure method SW1312
- $^{g/}$ QA/QC = quality assurance/quality control; SAP = Sampling and Analysis Plan.
- h/ NA = not applicable.

ATTACHMENT A Groundwater Flow Direction Maps

This page intentionally left blank.

State of New Jersey

CHRIS CHRISTIE

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION
Bureau of Case Management

40) East State Street P.O. Box 420/Mail Code 401-05F Trenton, NJ 08625-0028 Phone #: 609-633-1455 Fax #: 609-633-1439 BOB MARTIN

February 7, 2017

William Colvin
BRAC Environmental Coordinator
OACSIM—U.S. Army Fort Monmouth
PO Box 148
Oceanport, NJ 07757

Re: No Further Action Request Site Investigation Report Addendum ECP Parcel 72
Underground Storage Tanks dated December 13, 2016
Fort Monmouth
Oceanport, Monmouth County
PI G000000032

Dear Mr. Colvin,

The New Jersey Department of Environmental Protection (Department) has completed review of the referenced report, received December 15, 2016, prepared by the Department of the Army's Office of Assistant Chief of Staff for Installation Management to provide information sufficient to request No Further Action (NFA) determination for all USTs identified as formerly located within Parcel 72. As indicated in the submittal, two USTs require additional efforts to attain NFA. This office agrees with the proposed designation of each UST; comments are as follows:

USTs Requiring No Additional Action

Following review of the referenced information, it is agreed no further action is necessary for the following former fiberglass (unless otherwise stated) USTs removed from within Parcel 72, as referenced in the above submittal:

USTs along Russel Avenue

- UST 212 aka 212-10 Registration #81533-10 removed March 29, 2001
- UST 213 aka 213-11 = Registration #81533-11 = removed April 30, 2001
- UST 214 aka 214-12 Registration #81533-12 removed June 13, 2001
- UST 219 aka 219-13 Registration #81533-13 removed June 19, 2001
- UST 220B aka 220-14 Registration #81533-14 removed June 21, 2001
- UST 222 aka 222-15 Registration #81533-15 removed June 25, 2001

• UST 223 aka 223-16 - Registration #81533-16'- removed June 29, 2001.

USTs along Allen Avenue

- UST 225 aka 225-17 Registration #81533-17 removed February 14, 2001
- UST 226 aka 226-18 Registration #81533-18 removed April 28, 2000
- UST 227 aka 227-19 Registration #81533-19 removed November 7, 2000
- UST 228 aka 228-20 Registration # 81533-20 τemoved November 1, 2000

USTs along Gosselin

- UST 234 aka 234-22 Registration #81533-22 removed February 5, 1999
- UST 235 aka 235-23 Registration #81533-23 removed January 6, 1999
- UST 236 aka 236-24 Registration #81533-24 removed February 5, 1999
- UST 238 aka 238-26 Registration #81533-26 removed January 22, 1999
- UST 239 aka 239-27 Registration #81533-27 removed January 4, 1999.
- UST 240 aka 240-28 Registration #81533-28 removed January 22, 1999
- UST 241 aka 241-29 Registration #85133-29 removed September 23, 1998
- UST 242 aka 242-30 Registration #81533-30 removed October 26, 1998
- UST 243 aka 243-31 Registration #81533-31 removed September 28, 1998
- UST 244 aka 244-32 Registration #81533-32 removed October 20, 1998 steel
- UST 245 aka 245-33 Registration #81533-33 removed October 6, 1998
- UST 247 aka 247-34 Registration #81533-34 removed October 7, 1998
- UST 248 aka 248-35 Registration #81533-35 removed October 15, 1998
- UST 249 aka 249-36 Registration #81533-36 removed November 12, 1998
- UST 250 aka 250-37 Registration #81533-37 removed November 16, 1998
- UST 251 aka 251-38 Registration #81533-38 removed November 2, 1998
- UST 252 aka 252-39 Registration #81533-39 removed December 9, 1998
- UST 253 aka 253-40 = Registration #81533-40 removed November 2, 1998
- UST 254 aka 254-41 Registration #81533-41 removed November 20, 1998
- UST 255 aka 255-42 Registration #81533-42 removed October 28 1998
- UST 256 aka 256-43 Registration #81533-43 removed November 20, 1998
- UST 258 aka 258-44 Registration #81533-44 removed December 8, 1998

USTs Previously Granted NFA

- UST 233 aka 233-21 Registration #81533-21 NFA January 10, 2003
- UST 237 aka 237-25 Registration #81533-25 NFA January 10, 2003
- UST 246 steel Incident #98-10-20-1459-24 NFA January 10, 2003

USTs Requiring Additional Remedial Efforts (as indicated on page D-4)

• UST 211 aka 211-9 - ground water contains elevated levels of VOs and SVOCs,

UST 228B – the unused 1000 gallon steel tank remains in place; soil sampling near the
UST noted the presence of 2-methylnaphthalene above the DIGWSSL. Sampling was
not performed through the bottom of the UST, therefore, it is possible higher levels may
be present directly beneath the UST. It is agreed additional efforts are required.

Please contact this office if you have any questions.

Sincerely,

Linda S. Range

C: James Moore, USACE Rich Harrison, FMERA Joe Fallon, FMERA Joe Pearson, Calibre

DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

13 December 2016

Ms. Linda Range
New Jersey Department of Environmental Protection
Bureau of Case Management
401 East State Street
PO Box 420/Mail Code 401-05F
Trenton, NJ 08625-0028

SUBJECT: No Further Action Request

Site Investigation Report Addendum

ECP Parcel 72 Underground Storage Tanks

Fort Monmouth, New Jersey

Attachments:

- A. Correspondence
- B. Site Layout Drawings of Parcel 72 (Recent and Historical)
- C. Summary Table of Parcel 72 Underground Storage Tanks
- D. Summary Narrative for Parcel 72 Select Unregulated Heating Oil Tanks (UHOTS) Investigation Results, Fort Monmouth, NJ
 - D.1 Tables: Soil and Groundwater Results
 - D.2 Figures: Sample Locations and Exceedances
 - D.3 Field Notes
 - D.4 Boring Logs
 - D.5 Analytical Data
- E. Cross Reference of Residential Building Numbers with Street Addresses
- F. Unregulated Heating Oil Tanks Along Russel Avenue
 - F.1 UST 211 File Review and Analyses
 - F.2 UST 212 File Review
 - F.3 UST 213 File Review and Analyses
 - F.4 UST 214 File Review and Analyses
 - F.5 UST 219 File Review and Analyses
 - F.6 UST 220B File Review and Analyses
 - F.7 UST 222 File Review and Analyses
 - F.8 UST 223 File Review and Analyses
- G. Unregulated Heating Oil Tanks Along Allen Avenue
 - G.1 UST 225 File Review and Analyses
 - G.2 UST 226 File Review and Analyses
 - G.3 UST 227 File Review and Analyses
 - G.4 UST 228 and File Review and Analyses (includes UST 228B)

- H. Unregulated Heating Oil Tanks Along Gosselin Avenue
 - H.1 UST 233 File Review and NFA Letter
 - H.2 UST 234 File Review and Analyses
 - H.3 UST 235 File Review and Analyses
 - H.4 UST 236 File Review and Analyses
 - H.5 UST 237 File Review and NFA Letter
 - H.6 UST 238 File Review and Analyses
 - H.7 UST 239 File Review and Analyses
 - H.8 UST 240 File Review and Analyses
 - H.9 UST 241 File Review and Analyses
 - H.10 UST 242 File Review and Analyses
 - H.11 UST 243 File Review and Analyses
 - H.12 UST 244 File Review and Sketch Map
 - H.13 UST 245 File Review and Analyses
 - H.14 UST 246 File Review and NFA Letter
 - H.15 UST 247 File Review and Analyses
 - H.16 UST 248 File Review and Analyses
 - H.17 UST 249 File Review and Analyses
 - H.18 UST 250 File Review and Analyses
 - H.19 UST 251 File Review and Analyses
 - H.20 UST 252 File Review and Analyses
 - H.21 UST 253 File Review and Analyses
 - H.22 UST 254 File Review and Analyses
 - H.23 UST 255 File Review and Analyses
 - H.24 UST 256 File Review and Analyses
 - H.25 UST 258 File Review and Analyses

Previous Correspondence (provided in Attachment A):

- 1. Army letter to NJDEP dated July 1, 2016, re: Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum, Fort Monmouth, New Jersey.
- 2. NJDEP letter to the Army dated July 12, 2016, re: Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum.

Dear Ms. Range:

The U.S. Army Fort Monmouth (FTMM) team has reviewed existing file information for underground storage tank (UST) sites associated with existing Officer Housing residential buildings located along Russel Avenue, Allen Avenue, and Gosselin Avenue at Fort Monmouth in New Jersey. These residential buildings are located within Environmental Condition of Property (ECP) Parcel 72. Each of these UST sites were located at residences that formerly stored No. 2 fuel oil for heating in a UST; therefore, they are considered as unregulated heating oil tanks (UHOTs) in accordance with N.J.A.C. 7:14B-1.4(b). The purpose of this submittal is to provide comprehensive documentation of the closure status of all UHOTs identified within this parcel, and to request a No Further Action (NFA) determination for qualifying UHOTs. Previous correspondence regarding select Parcel 72 Officer Housing UHOTs is provided in **Attachment A**.

Parcel 72 is located within the central portion of the Main Post. The Officer Housing area described in this submittal is generally bounded by Parcel 76 to the north and east, Parcel 51 to the west, Parcel

71 (the FTMM-12 and FTMM-14 landfills) to the south, and Parcel 74 to the east. The locations of the UHOTs within the Officer Housing area of Parcel 72 are presented in **Attachment B**, and a summary table of the UHOTs is provided in **Attachment C**. All of the UHOTs identified within Parcel 72 have been removed, except UST 228B which is empty and remains in place.

Five former UHOTs (USTs 211, 212, 220B, 226, and 228B) were previously identified as requiring additional field sampling to satisfy data needs, as described in Correspondence 1 (Attachment A). The results of these additional investigations are presented in Attachment D, which support an NFA determination for USTs 212, 220B, and 226. These results also indicate additional work would be needed for NFA determinations to be made for UST 211 and UST 228B.

Not all of the Officer Housing buildings along Russel Avenue, Allen Avenue and Gosselin Avenue had an associated fuel oil UST. Specifically, no UHOTs have been found at Buildings 215, 216, 218, 221 or 229 on Russel Avenue, or Building 224 on Allen Avenue, or the Building 230 Generals Quarters. In some cases, two UHOTs that serviced adjoining buildings were removed from the same excavation, and one set of closure soil samples were collected to represent both tanks (for example, UST 237 and UST 239). In general, these UHOTs were removed from 1990 to 2001 as the residential heating systems were converted to natural gas. Typically, the Army's records reflect removal of fiberglass tanks, which may be second generation tanks that replaced earlier steel USTs used for fuel oil storage. At Building 228, both a fiberglass UST (UST 228 which was removed) and a steel UST (UST 228B which remains in place) were documented to be present.

In some cases, UST closure documentation such as field notes and analytical reports may reference the street address of the residence, rather than the building number. Therefore, a table summarizing the building numbers and corresponding street addresses for the Officer Housing area is provided in Attachment E, for cross reference.

We are submitting the following documentation for the multiple UHOTs that were previously removed from the Parcel 72 Officer Housing area, and we request a No Further Action determination for each site unless otherwise explained further below (sites that have been previously approved for NFA by NJDEP are highlighted in green).

Along Russel Avenue (Attachment F):

- UST 211 file review summary and earlier (pre-2016) soil analyses are presented in Attachment F.1, and recent groundwater analyses are presented in Attachment D, which indicates an impact to groundwater by fuel oil.
- UST 212 file review summary is presented in Attachment F.2, and recent soil and groundwater analyses are presented in Attachment D.
- UST 213 file review summary and analyses are presented in Attachment F.3.
- UST 214 file review summary and analyses are presented in Attachment F.4.
- UST 219 file review summary and analyses are presented in Attachment F.5.
- UST 220B file review summary and analyses are presented in Attachment F.6, and recent groundwater analyses are presented in Attachment D.
- UST 222 file review summary and analyses are presented in Attachment F.7.
- UST 223 file review summary and analyses are presented in Attachment F.8.

Along Allen Avenue (Attachment G):

• UST 225 file review summary and analyses are presented in Attachment G.1.

- UST 226 file review summary and analyses are presented in Attachment G.2, and recent groundwater analyses are presented in Attachment D.
- UST 227 file review summary and analyses are presented in Attachment G.3.
- UST 228 file review summary and analyses are presented in Attachment G.4.
- Recent soil and groundwater analyses for the existing UST 228B steel tank are presented in Attachment D; additional work would be needed for a NFA determination to be made for UST 228B. NJDEP has previously indicated (Correspondence 1 of Attachment A) that this tank requires closure in accordance with applicable regulations.

Along Gosselin Avenue (Attachment H):

- UST 233 file review summary and analyses are presented in Attachment H.1; NFA was approved by NJDEP on 1/10/2003.
- UST 234 file review summary and analyses are presented in Attachment H.2.
- UST 235 file review summary and analyses are presented in Attachment H.3.
- UST 236 file review summary and analyses are presented in Attachment H.4.
- UST 237 file review summary is presented in Attachment H.5; NFA was approved by NJDEP on 1/10/2003.
- UST 238 file review summary and analyses are presented in Attachment H.6.
- UST 239 file review summary and analyses are presented in Attachment H.7; this tank was removed and sampled from the same excavation as UST 237, which was approved for NFA by NJDEP on 1/10/2003.
- UST 240 file review summary and analyses are presented in Attachment H.8.
- UST 241 file review summary and analyses are presented in Attachment H.9.
- UST 242 file review summary and analyses are presented in Attachment H.10.
- UST 243 file review summary and analyses are presented in Attachment H.11.
- UST 244 file review summary and analyses are presented in Attachment H.12; Building 244
 was serviced by the same tank as Building 246, and UST 246 was approved for NFA by
 NJDEP on 1/10/2003.
- UST 245 file review summary and analyses are presented in Attachment H.13.
- UST 246 file review summary and analyses are presented in Attachment H.14; NFA was approved by NJDEP on 1/10/2003.
- UST 247 file review summary and analyses are presented in Attachment H.15.
- UST 248 file review summary and analyses are presented in Attachment H.16.
- UST 249 file review summary and analyses are presented in Attachment H.17.
- UST 250 file review summary and analyses are presented in Attachment H.18.
- UST 251 file review summary and analyses are presented in Attachment H.19.
- UST 252 file review summary and analyses are presented in Attachment H.20.
- UST 253 file review summary and analyses are presented in Attachment H.21.
- UST 254 file review summary and analyses are presented in Attachment H.22.
- UST 255 file review summary and analyses are presented in Attachment H.23.
- UST 256 file review summary and analyses are presented in Attachment H.24.
- UST 258 file review summary and analyses are presented in Attachment H.25.

This information supports the conclusion that multiple UHOTs identified within Parcel 72 have been adequately addressed by previous environmental activities under the FTMM tank removal and assessment program. In summary, we submit that the Army has provided adequate due diligence with regards to the environmental condition of UHOTS within the Parcel 72 Officer Housing Area, and we request that NJDEP approve No Further Action for Parcel 72 UHOTs with the exception of UST 211 and UST 228B.

The technical Point of Contact (POC) for this matter is Kent Friesen at (732) 383-7201 or by email at kent.friesen@parsons.com. Should you have any questions or require additional information, please contact me by phone at (732) 380-7064 or by email at william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator

cc: Linda Range, NJDEP (3 hard copies)
Delight Balducci, HQDA ACSIM (CD)
Joseph Pearson, Calibre (CD)
James Moore, USACE (CD)
Jim Kelly, USACE (CD)
Cris Grill, Parsons (CD)

ATTACHMENT D

Parcel 72 Select UHOTs Investigation Results

Contents:

- Summary Narrative
- Enclosure 1 Figures: Sample Locations and Exceedances
- Enclosure 2 Tables: Soil and Groundwater Analytical Results
- Enclosure 3 Field Notes
- Enclosure 4 Boring Logs
- Enclosure 5 Analytical Data

Summary Narrative for Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Investigation Results, Fort Monmouth, NJ

Enclosures:

- D.1 Figure: Sample Locations and Exceedances for Parcel 72
- D.2 Tables: Soil and Groundwater Analytical Results
- D.3 Field Notes
- D.4 Boring Logs
- D.5 Analytical Data

Previous Correspondence (provided in Attachment A):

- 1. Army letter to NJDEP dated 1 July 2016, re: Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum, Fort Monmouth, New Jersey.
- 2. NJDEP letter to the Army dated 12 July 2016, re: Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum.

The U.S. Army Fort Monmouth (FTMM) has prepared this report to present the results of additional field sampling and analyses of soil and groundwater performed at five former Underground Storage Tanks (USTs) within Environmental Condition of Property (ECP) Parcel 72: UST 211, UST 212, UST 220B, UST 226, and UST 228B. These USTs were identified as requiring additional data, as described in the Work Plan Addendum (Correspondence 1) which was approved by the New Jersey Department of Environmental Protection (Correspondence 2).

One temporary groundwater monitoring well was installed with a Geoprobe rig within 10 feet of each of the former USTs. A groundwater sample was collected from each well to determine if a fuel oil release had impacted groundwater. The groundwater samples were analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) plus tentatively identified compounds (TICs), in accordance with the analytical requirements for a petroleum storage area containing No. 2 fuel oil (Table 2-1 of the New Jersey Administrative Code (NJAC) 7:26E Technical Requirements for Site Remediation). Soil samples were also collected from borings advanced with a Geoprobe rig at former USTs 212 and 228B to assess concentrations and vertical extent of extractable petroleum hydrocarbons (EPH) in soil. Select soil samples were also analyzed for two SVOCs (naphthalene and 2-methylnaphthalene).

The locations of the field samples are presented in **Enclosure D.1** and a summary of the analytical results and exceedances of applicable NJDEP criteria is provided in **Enclosure D.2**. Field sampling was completed on 9 and 10 August 2016; field notes are provided in **Enclosure D.3** and boring logs are provided in **Enclosure D.4**. The field crew observed that the groundwater level was routinely difficult to determine by observation during drilling at Parcel 72, due to tight soils and potential perched water layers. Therefore groundwater levels were measured within the temporary wells with a water level probe after installation. The samples were analyzed by ALS Environmental; analytical data packages are provided in **Enclosure D.5**.

The results of the sampling and analyses are provided below for each of the five UST sites. The UST numbers correspond to the building numbers shown on Figure 1 (Enclosure D.1).

UST 211 at Building 211, 4 and 6 Russel Avenue

UST 211 was a residential fuel oil tank that was removed in 2001 as described in Attachment F.1. A single temporary well PAR-72-211-TMW-01 was installed, sampled, and subsequently abandoned at the former location of UST 211 (Enclosure D.1). Groundwater was encountered at approximately 11 feet below ground surface (bgs) (see Enclosure D.3) and petroleum odor and elevated photoionization detector (PID) readings were encountered at approximately 7 to 13 feet bgs (Enclosure D.4). As shown on Table 2 of Enclosure D.2, the following VOC and SVOC analytes in groundwater exceeded the NJDEP Ground Water Quality Criteria (GWQC): 1,2,4-trimethylbenzene, benzene, naphthalene, 2-methylnaphthalene, dibenzofuran, fluorene, phenanthrene, and TICs. The results of the groundwater analyses at former UST 211 are consistent with a fuel oil release to groundwater.

UST 212 at Building 212, 8 and 10 Russel Avenue

UST 212 was a residential fuel oil tank that was removed in 2001 as described in Attachment F.2. Closure soil samples were also collected and analyzed in 2001, but the analytical data package was missing; therefore, two soil borings were sampled in accordance with New Jersey Department of Environmental Protection (NJDEP) comments on the Work Plan Addendum (Correspondence 2). Soil samples from borings PAR-72-212-SB-01 and PAR-72-212-SB-02 were collected from 5.0 to 5.5 feet bgs and from 11.5 to 12 feet bgs and analyzed for EPH. The maximum detected EPH in these soil samples (see Table 1 of Enclosure D.2) was 8.3 J ("J" signifies an estimated detected value) milligrams per kilogram (mg/kg), which is well below the 5,100 mg/kg remediation criterion for No. 2 fuel oil in soil. SVOCs were also analyzed in these soil samples, and all detected analytes (see Table 1 of Enclosure D.2) were below the respective Residential Direct Contact Soil Remediation Standard (RDCSRS) and the Impact to Ground Water (IGW) Screening Levels.

A single temporary well PAR-72-212-TMW-01 was installed, sampled, and subsequently abandoned at the former location of UST 212 (Enclosure D.1). Groundwater was encountered at approximately 12 feet bgs (Enclosure D.3) and there were no unusual odors or elevated PID readings encountered in the boring (Enclosure D.4). As shown on Table 2 of Enclosure D.2, the three groundwater SVOC analytes benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene slightly exceeded the GWQC. However, these detections were estimated ("J" flagged) due to the low concentrations encountered and therefore were considered de minimis detections that were too minor to merit additional investigation. These analytes are polycyclic aromatic hydrocarbons (PAHs) that have been encountered at other FTMM locations within surficial soils and fill. groundwater exceedances may have resulted from entrainment of soil from other anthropogenic, non-UST related sources (such as surficial soils or fill) resulting from sample turbidity, which is common with temporary well groundwater samples. In addition, there were no detections of naphthalene or 2-methylnaphthalene in this groundwater sample, which would be more indicative of a fuel oil release. Finally, the soil sample results for UST 212 did not exceed IGW Screening Levels, which indicates that the soils do not present a significant potential for groundwater contamination. In summary, the results of the investigation at former UST 212 indicate there has not been a release of fuel oil to soil or groundwater.

UST 220B at Building 220, 32 and 34 Russel Avenue

UST 220B was a residential fuel oil tank that was removed in 2001 as described in Attachment F.6. In response to NJDEP's question in Correspondence 2, this tank is the same as UST-220-14 as referenced in the 2007 ECP Report (U.S. Army, 2007). A single temporary well PAR-72-220-TMW-01 was installed, sampled, and subsequently abandoned at the former location of UST 220B (Enclosure D.1). Groundwater was encountered at approximately 13.5 feet bgs (see Enclosure D.3), and there were no unusual odors or elevated PID readings encountered in the boring (Enclosure D.4). As shown on Table 2 of Enclosure D.2, the SVOC benzo(a)anthracene slightly exceeded the GWQC. However, this detection was estimated ("J" flagged) due to the low concentrations encountered, and therefore were considered a de minimis detection that was too minor to merit additional investigation. This analyte is a PAH that has been encountered at other FTMM locations within surficial soils and fill. Therefore this groundwater exceedance may have resulted from entrainment of soil from other anthropogenic, non-UST related sources (such as surficial soils or fill) resulting from sample turbidity, which is common with temporary well groundwater samples. In addition, naphthalene was not detected and only a very low concentration of 2-methylnaphthalene was detected in this groundwater sample; higher concentrations of these analytes would be expected if a fuel oil release had occurred. In summary, the results of the investigation at former UST 220B indicate there has not been a release of fuel oil to groundwater.

UST 226 at Building 226, 9 and 11 Allen Avenue

UST 226 was a residential fuel oil tank that was removed in 2001 as described in Attachment G.2. A single temporary well PAR-72-226-TMW-01 was installed, sampled, and subsequently abandoned at the former location of UST 226 (Enclosure D.1). Groundwater was encountered at approximately 13 feet bgs (Enclosure D.3), and there were no unusual odors or elevated PID readings encountered in the boring (Enclosure D.4). As shown on Table 2 of Enclosure D.2, there were no exceedances of the GWQC in this groundwater sample. Therefore the results of the investigation at former UST 220B indicate there has not been a release of fuel oil to groundwater.

UST 228B at Building 228, 1 and 3 Allen Avenue

UST 228B is a steel residential fuel oil tank that was discovered in 2010 but remains in place. In response to NJDEP's question in Correspondence 2, this tank is not the same as UST-228-20 as referenced in the 2007 ECP Report (U.S. Army, 2007). UST 228-20 (registration ID 81533-20) was a fiberglass fuel oil tank removed from the Building 228 area in 2000, as described in **Attachment G.4**. There is no registration ID for the existing steel tank that has been designated as UST 228B. UST 228B is empty based on the 2010 observations. Additional sampling was conducted in August 2016 to determine if a release had occurred from UST 228B.

Three soil borings were sampled in response to NJDEP comments on the Work Plan Addendum (Correspondence 2). Due to safety and logistical concerns, the borings were not advanced through the bottom of the tank, but rather were placed as close to the tank as reasonably possible (approximately 24 inches from the tank). Soil samples were collected from the following borings and sample intervals, and analyzed for EPH:

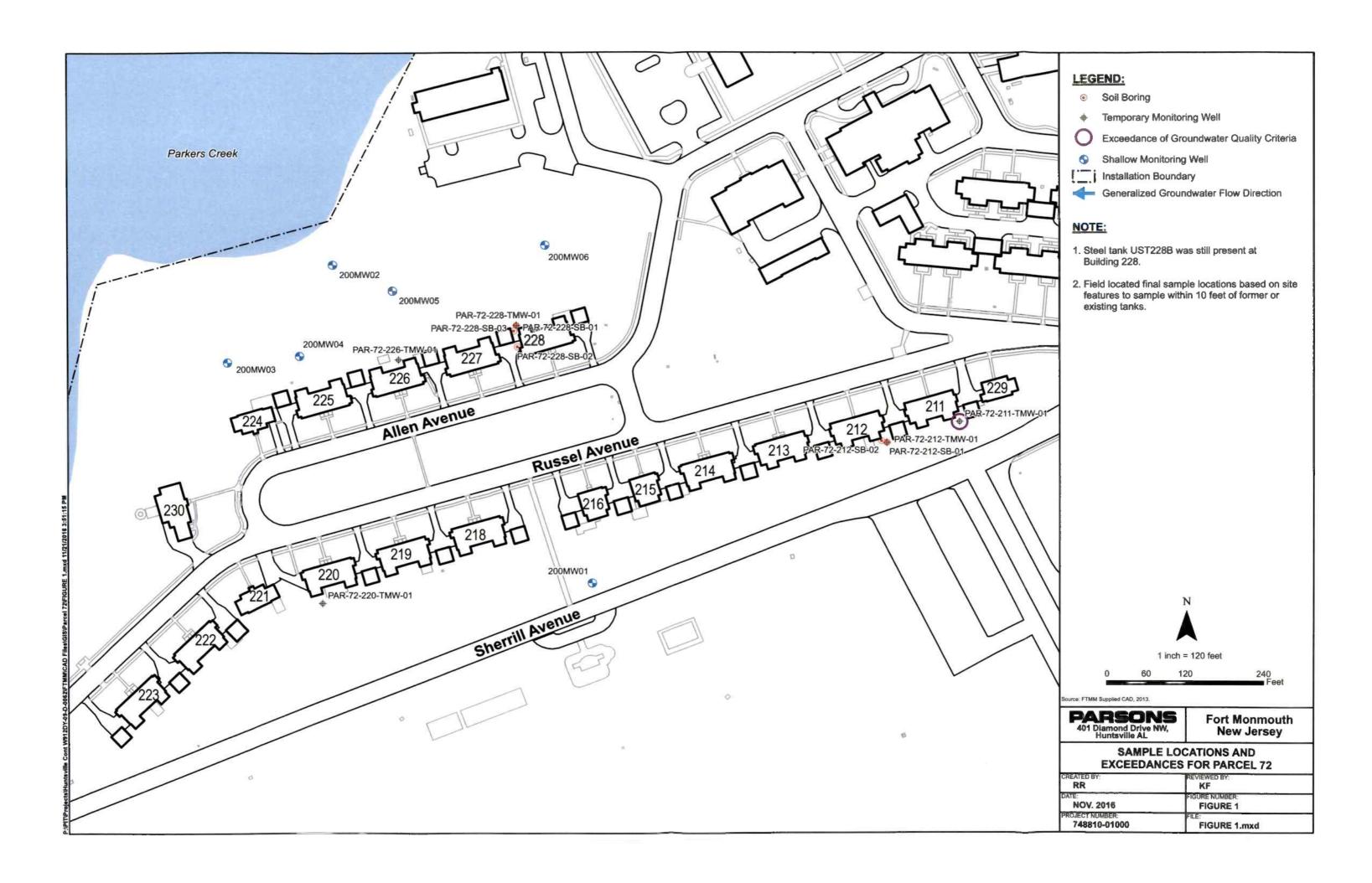
- Boring PAR-72-228-SB-01 was sampled from 5.0 to 5.5 feet bgs and 8.5 to 9.0 feet bgs;
- Boring PAR-72-228-SB-02 was sampled from 10.5 to 11.0 feet bgs and 12.0 to 12.5 feet bgs; and
- Boring PAR-72-228-SB-03 was sampled from 6.5 to 7.0 feet bgs and 7.0 to 7.5 feet bgs.

Groundwater was encountered at approximately 12 feet bgs (Enclosure D.3), and there were elevated PID readings encountered in two of the three borings (Enclosure D.4). As shown on Table 1 of Enclosure D.2, a Total EPH concentration of 3,100 mg/kg was reported in one soil sample (from the 7 to 7.5 ft bgs interval of boring PAR-72-228-SB-03). As the result of exceeding the contingency analysis threshold of 1,000 mg/kg (NJDEP, 2010), this sample was also analyzed for naphthalene and 2-methylnaphthalene. The 2-methylnaphthalene concentration of 23.9 mg/kg in this sample exceeded the NJDEP IGW screening level, but did not exceed the RDCSRS. Synthetic Precipitation Leachate Procedure (SPLP) analysis of this soil sample was not performed.

A single temporary well (PAR-72-228-TMW-01) was installed in boring PAR-72-228-SB-01, sampled, and subsequently abandoned at the location of UST 228B (Enclosure D.1). As shown on Table 2 of Enclosure D.2, there were no exceedances of the GWQC in this groundwater sample. Although 2-methylnaphthalene in soil exceeded the IGW Screening Level, 2-methylnaphthalene was notably absent in the temporary well groundwater sample.

The results of the investigation at former UST 228B indicate a release of fuel oil to soil that has not impacted groundwater. To address the 2-methylnaphthalene exceedance of the IGW Screening Level in soil, additional work would be needed which could include removal of the tank to address administrative closure, excavation of contaminated soil, or the performance of SPLP analyses.

In summary, this information supports a No Further Action (NFA) determination for UST 212, UST 220B, and UST 226. Additional work would be needed for NFA determinations to be made for UST 211 and UST 228B.


REFERENCES CITED

NJDEP. 2010. Protocol for Addressing Extractable Petroleum Hydrocarbons. Site Remediation Program. Version 5.0. August 9.

U.S. Army. 2007. U.S. Army BRAC 2005 Environmental Condition of Property Report, Fort Monmouth, Monmouth County, New Jersey. Final. January 29.

ENCLOSURE 1 of Attachment D

Figures: Sample Locations and Exceedances

ENCLOSURE 2 of Attachment D

Tables: Soil and Groundwater Analytical Results

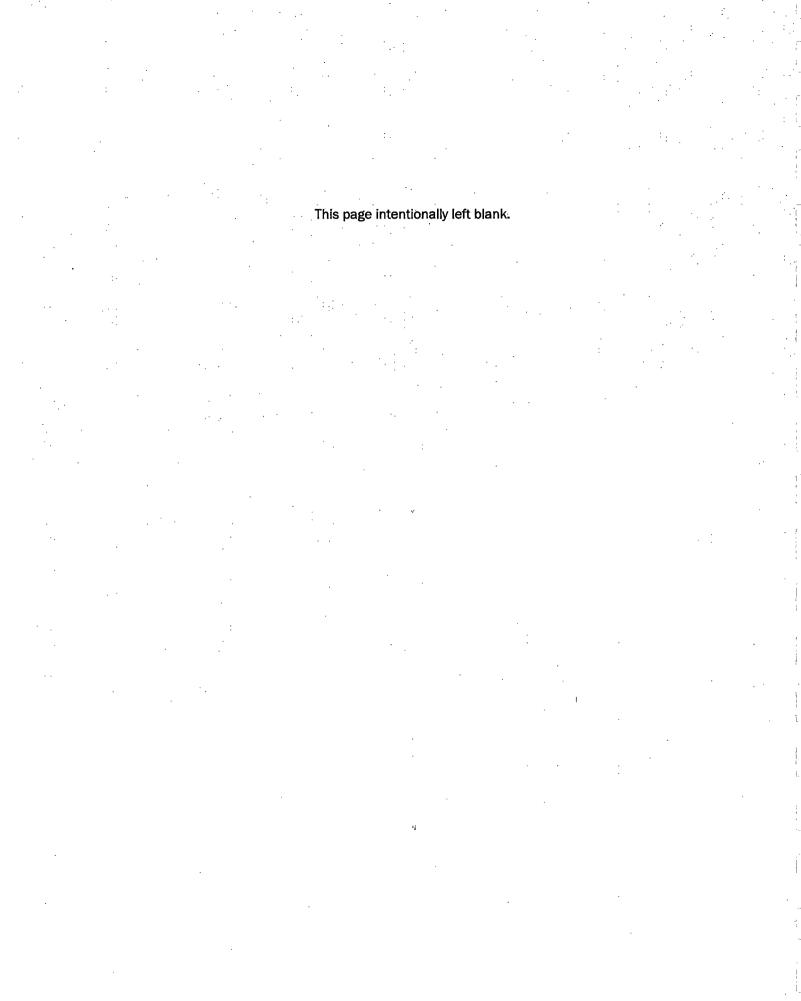


TABLE 2
DETECTED GROUNDWATER RESULTS AND COMPARISON TO NJ CRITERIA
SELECT PARCEL 72 UHOTS
FORT MONMOUTH, NEW JERSEY

Loc ID	NJ Ground	P72-BLD-211-TMW-01	P72-BLD-212-TMW-01	P72-BLD-220-TMW-01	P72-BLD-226-TMW-01	P72-BLD-228-TMW-01
Sample ID	Water Quality	PAR-72-211-TMW-01	PAR-72-212-TMW-01	PAR-72-220-TMW-01	PAR-72-226-TMW-01	PAR-72-228-TMW-01
Sample Date	Criteria	8/10/2016	8/10/2016	8/10/2016	8/10/2016	8/10/2016
Sample Round						
Filtered		Total	Total	Total	Total	Total
Volatile Organic Compounds (µg/l)			1000	Total	Total	Total
1,2,4-Trimethylbenzene	100	543 J	< 0.75	< 0.75	< 0.75	< 0.75
1,3,5-Trimethylbenzene	100	81.4	< 0.75	< 0.75	< 0.75	< 0.75
Acetone	6,000	< 3.8	< 3.8	7.6 B	5.1 B	8 B
Benzene	1	2.8	< 0.75	< 0.75	< 0.75	< 0.75
Cymene	100	16.9	< 0.75	< 0.75	< 0.75	< 0.75
Ethyl benzene	700	92.4	< 0.75	< 0.75	< 0.75	< 0.75
isopropylbenzene	700	29.3	< 0.75	< 0.75	< 0.75	< 0.75
Meta/Para Xylene	1,000	118	< 1.5	< 1.5	< 1.5	< 1.5
Methyl ethyl ketone	300	2.9 J	< 3.8	< 3.8	< 3.8	< 3.8
Naphthalene	300	862 J	< 0.75	< 0.75	0.44 J	< 0.75
n-Butylbenzene	100	26.1	< 0.75	< 0.75	< 0.75	< 0.75
Ortho Xylene	1,000	39.1	< 0.75	< 0.75	< 0.75	< 0.75
Propylbenzene	100	48.4	< 0.75	< 0.75	< 0.75	< 0.75
sec-Butylbenzene	100	25	< 0.75	< 0.75	< 0.75	< 0.75
Toluene	600	2.1	< 0.75	< 0.75	< 0.75	< 0.75
TIC VOCs (µg/l)						MI BORD OF THE REAL PROPERTY.
Total TICs, Volatile	500	1302.4 JN	0	0	0	0
Semivolatile Organic Compounds	(µg/l)		THE RESERVE OF THE PARTY OF THE			
2-Methylnaphthalene	30	6,680	< 0.93	0.16 J	< 1.1	<1
Acenaphthylene	100	< 19.2	< 0.93	0.3 J	< 1.1	<1
Anthracene	2,000	195	0.15 J	< 0.93	< 1.1	0.22 J
Benzo(a)anthracene	0.1	< 19.2	0.41 J	0.29 J	< 1.1	< 1
Benzo(a)pyrene	0.1	< 19.2	0.26 J	< 0.93	< 1.1	<1
Benzo(b)fluoranthene	0.2	< 19.2	0.33 J	0.17 J	< 1.1	< 1
Benzyl alcohol	2,000	< 38.5	< 1.9	0.22 J	< 2.1	< 2
Bis(2-Ethylhexyl)phthalate	3	< 19.2	< 0.93	0.73 J	< 1.1	<1
Chrysene	5	< 19.2	0.33 J	0.19 J	< 1.1	<1
Dibenzofuran	100	247	< 0.93	< 0.93	< 1.1	0.16 J
Diethyl phthalate	6,000	< 19.2	< 0.93	< 0.93	1.5 J	0.22 J
Di-n-butylphthalate	700	< 19.2	0.21 J	0.35 J	< 1.1	<1
Fluoranthene	300	< 19.2	0.73 J	0.26 J	< 1.1	<1
Fluorene	300	663	< 0.93	0.19 J	< 1.1	0.21 J
Indeno(1,2,3-cd)pyrene	0.2	< 19.2	< 0.93	0.093 J	< 1.1	<1
Naphthalene	300	1,450	< 0.93	< 0.93	< 1.1	< 1
Phenanthrene	100	1,740	0.45 J	0.46 J	< 1.1	0.29 J
Pyrene	200	185	0.65 J	0.39 J	< 1.1	0.17 J
TIC SVOCs (µg/l)					court in an income and the	
Total TICs, Semi-Volatile	500	14322 JN	98.9 JN	187.7 JN	25.2 JN	50.1 JN

Groundwater results Footnotes:	
1) ug/l = micrograms per liter.	
2) TICs - tentatively identified compounds.	
3) NLE = no limit established.	
4) Not used.	
5) Bold = chemical detection	
6) SS = Site Specific action level, see "Specific Chemical Class (or Parameter)" footnote for details.	
 Chemical result qualifiers are assigned by the laboratory and are evaluated and modified (if necessary) during to 	he data validation.
[blank] = detect, i.e. detected chemical result value.	J = estimated detected value due to a concentration below the reporting limit or due to discrepancies meeting certain analyte-specific quality control.
B =Compound detected in the sample at a concentration less than or equal to 5 times (10 times for common lab contaminants) the blank concentration.	E (or ER) = Estimated result.
R = Rejected, data validation rejected the results.	D = Results from dilution of sample.
U = non-detect, i.e. not detected at or above this value.	J-DL = Estimated detected value due to difficult sample matrix.
U-DL = Elevated sample detection limit due to difficult sample matrix.	JN = Tentatively identified compound, estimated concentration.
U-ND = Analyte not detected in sample, but no detection or reporting limit provided.	
8) Not used.	

- 9) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.
- Cell Shade values represent a result that is above the NJ Ground Water Quality Criteria

####

NJDEP Interim Specific GWQC values are presented for the NJ GWQS where there is not a Specific Ground Water Quality Criteria. A full list of compounds is available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

NJDEP Interim Generic GWQC values are presented for the NJ GWQS where there is not a GWQC or a NJDEP Interim Specific GWQC. Available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

- 10) Criteria action level source document and web address.
- The NJ Ground Water Quality Criteria refers to the NJDEP Groundwater Quality Standards Adopted July 22, 2010 http://www.state.nj.us/dep/wms/bwqsa/docs/njac79C.pdf

ENCLOSURE 3 of Attachment D

Field Notes

Tech: C. WATSON, S. Pevalker, FCDI(2), F. Accessi TASK: SB3 + Touris 1430: Sample +0.5-11.0 PAR-72-228-SB-02-10.5-1 TASK: SB> + TMW'S 2 92 1440: Sample PAR-72-028-SB-02-12-12.5 Deather 7801 Clear 1446: Begin prilling 2 220-TMWOI 1525: 1/25+4/1 200 7mwo1 0720: on-site 0725: Begin Coc's 1530: Sampera to office to begin COC'S 0746: H+6 tailgate 1545: C. water + ECOI clem up + Deno's 0800: Begin simple plep as/ac
0840: Mob to 72 (GCOI): watson) 1600: CW Back tooffice - want to make note that water level was portially 0915: Mob to 228 AREA pifficult to Determine in parcel 72 -6926: FRANK confirms must out locations Soil also very fight with layers of 0530: Bagin Drilling 228-58-63 perded water will gauge All wells in 1030: Sungle 228-58-03-6.5-7 1605: Place coc's 4 ocar on FRANKS Desk 1040: Sample 228-18-03-7-7-5 1045: Begin Prilling 2 228-58-01 to be searned, Plug in P. I.D. Cool samples 1100: hot suple 228-58-01-5:0-5-5 1625: off-site 1115: Sample 228-58-01-8.5-9 1130: 1954-11 TMW-01 2 228-58-01 1140: ATTEMPT 228-58-02 and Hit refusal, lig news to be noted to opposite side at feace cromo willing - will extempt after TMUSI a sac is put is 1200: Orilliz 2 226-TMW-01 1235: install 226-7mwo1 1250: Line H 13d6: Mob Rig crown buildrys to NEW 228-5B-02 location 1345- Begin Prilling 228-58-02

Tooth: C. Watson, S. Pralter,	ecostal A	the W DOL				
TASK: P70 Soil & water	Sadi	3 10 2016		TIME	Anysis	
- Worther: 82°f O.C - Storms	SAMPLE IP PAR-49-58-17-0.5-1		PA++	. 5		
10725: on-site	2.5-3		- With			
0735: H+5 tailgate	45-5					
2800: Mob to 72 AREA			PAR-49-5B-15-0.5-1		<u> </u>	
sample Temp wells	> feat	~	15-3		} +	(b) -
SAMPLE ID Time	DTW	Analysis	4.5-5	· · · · · · · · · · · · · · · · · · ·		nSD)
Par-72-228-Timu-01 0835	12.46		PAF-494B-13-0.5-1		nifmso	(+11q2
PAR-72-226-7MW-01 0900	13.15	Vagora	2.5-3		Dup	
PAC-72-220-TMW-011 0955	13.47		4.5-5	1500	ac	
0925: Sample PAR-72-212-	SB-01-5	-5 5 EPH	1500 mak to offer	-	i ou	
0120- 50m/ (AK-12-)1)-	56-01-11-1	1 = 604	1500 001100	Culton CD		
1000- Smple 1AK-12-212-50	-02 -5-0	5.5 i	1545 complete cocc	Drap	Draw Complet	· · · · · · · · · · · · · · · · · · ·
1010 Sepola PAF-12-212-5B	-02-115-	-12	1620 : Office 10	- VC.4-L-	bich sampas	
1075 - 12 TAN PAR-12.	211 - taulo 1		20 0122106			
TAK 212-TMWOL installed 2 0950						
1165: Simple PAR-72-)12-TAM-01 OTIM: 12.00						
1200- Jample 146-12-211-1MW-01 DTW: 11.25						
100 May 10 pural 49						
Dag: Lunc H						
1245: Begin Ocilling				L		
SAMPLE ID Time	Ans	lysis			4	
PAR-49-5B-16-0.5-1 1310	PAH					
2.5-3 1320						
4.5-5 1325			*	n ann i ainmeil an agus ann agus i sigh tuga tuga tuga tuga dha dha dhilinn an ann ann		
PAR-49-58-14-05-1 1330			,	The same and the s		
2.5-3 1335		-				
4.5-5 1340				to de	P. Miles C. P. Ant C. P. Miles of Management and Association of Contract of Co	-
	Control of the Control of the Control	THE RESERVE OF THE PROPERTY OF		A STATE OF THE STA		. \

.

ENCLOSURE 4 of Attachment D

Boring Logs

Consistency vs. Blowcount / Foot

Soft: 2-4

M. SEFF. 4-8

Granuler (Sand & Gravel)
V. Loose: 0-4 Dense:
Loose: 4-10 V. De

V. Dense: >50

Fine Grained (Sit & Clay).

V. Stiff: 15-30

Hard: > 30

*. •!

and - 35-50%

Etto - 10-20%

trace - <10%

Sample Types

- Rock Core

- Spit-Spoon - Undisturbed Tube

- Auger Cuttings

ATTACHMENT F Unregulated Heating Oil Tanks Along Russel Avenue

Note: red font indicates a December 2016 update to the earlier 2014 file review

UNDERGROUND STORAGE TANK FILE REVIEW FORT MONMOUTH BRAC 05 FACILITY OCEANPORT, NEW JERSEY

Date: December 10, 2014 Review Per	formed By: Kent Friesen, Parsons
Site ID: Bidg. 211 Registration	ID: 81533-9
Recommended Status of Site: Case Closed (no chan	ge)
UST Probability (from May 2014 "Addendum 1 ECP UHC	OT Report"): High
Based on the file review, were there indications of a co	ntaminant release? [] Yes [X] No
NJDEP Release No. or DICAR (If applicable):Not App	
Did NJDEP approve No Further Action (NFA) for this site	? [] Yes [] No [X] Not Applicable
Tank Description: [] Steel [X] Fiberglass Size: 20	00 gals. Contents: No. 2 Fuel Oil
[X] Residential [] Commercial/Industrial	
Tank Removed? [X] Yes [] No If "yes," removal of	ate:11/27/2001
Were closure soil samples taken? [X]Yes [] No	Analyses: TPH; VOCs in 1 sample
Comparison criteria: 5,100 mg/kg TPH	
Were closure soil sample results less than comparison	criteria? ? [X] Yes [] No
Brief Narrativ	re
Soil samples were collected from the tank excavat Monmouth Environmental Laboratory for total petrol sample results were non-detected (ND) for TPH in 5 or Center) contained 3968 mg/kg TPH; this sample to compounds (VOCs). The TPH results were less the remediation criterion. The VOC results were ND for a common laboratory contaminant. Therefore, no add warranted.	eum hydrocarbons (TPH). Building 211 f the 6 soil samples. One sample (211B- was also analyzed for volatile organic an 5,100 mg/kg, which is the current ll compounds except acetone, which is a
In conclusion, the analytical results support the UST Coalthough certain supporting documentation (such as a etc.) may not be available. Although the fiberglass could still be present.	map with sample locations, field notes,
Recommendations (if any): Note Address groundw	ater
Signed: 2ml U. Friesen Barrans	See also Attachment D for recent (2016) analytical results; additional activities to address groundwater are warranted.

Kent A. Friesen, Parsons

FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461, NYSDOH #11699

ANALYTICAL DATA REPORT
Fort Monmouth Environmental Laboratory
ENVIRONMENTAL DIVISION
Fort Monmouth, New Jersey
PROJECT: UST Program

Bldg. 211

Field Sample Location	Laboratory Sample ID#	Matrix	Date and Time Of Collection	Date Received
211A-North End/8.5-9'	1660501	Soil	27-Nov-01 09:00	11/27/01
211B-Center/9-9.5'	1660502	Soil	27-Nov-01 09:55	11/27/01
211C-South End/9-9.5'	1660503	Soil	27-Nov-01 09:20	11/27/01
211D-Piping/1-1.5'	1660504	Soil	27-Nov-01 10:30	11/27/01
211E-Piping/1-1.5'	1660505	Soil	27-Nov-01 11:00	11/27/01
211F-Duplicate/8.5-9'	1660506	Soil	27-Nov-01 09:00	11/27/01
Trip Blank	1660507	Methanol	27-Nov-01	11/27/01

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB VOA+15, TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

12-6-01

Table of Contents

Section	Pages
Chain of Custody	1-3
Method Summary	4-5
Conformance/Non-Conformance Summary	6-9
Laboratory Chronicles	10-11
Volatile Organics Results Summary Tuning Results Summary Method Blank Summary Surrogate Results Summary MS/MSD Results Summary Internal Standard Summary Chromatograms	12-13 14-22 23-28 29 30 31 32 33-38
Total Petroleum Hydrocarbons Results Summary Method Blank Summary Standards Summary Surrogate Results Summary MS/MSD Results Summary Chromatograms	39 40 40 41-43 44 45-46 47-60
Laboratory Deliverable Checklist	61
Laboratory Authentication Statement	62

CHAIN OF CUSTODY

Commence of the Commence of th

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

Chain of Custody Record

NJDEP Certification #13461 / NYDOH Certification #11699 Project No: 01-0001 02- 15362 Customer: Dinker Desai **Analysis Parameters** = Samples Kept <4°C Location: BLDG. 211 4+6 RV5567 Phone #: X21475 SOLIDS Reading UST# 81533-9 IDERA (X)OMA UST Assessment Samplers Name / Company: Frank Accorsi/TVS Sample Remarks / Preservation PID Method VOA ID# Lab Sample I.D. Date Bottles Depth Time Type Sample Location 11 d x05 OI 211 A- NORTH END 8.5-9 0900 0 11-27-01 SOIL ICK 0955 211B-CENTER 9-9.5 29 49 6,0 03, 211C-500THEND 9-9,5 0910 2950 0 030 04 211D - PAPING 1-15 29 51 0 1-1,5 QS 211E - PIPING 2952 100 06 211 F - DUPLICATE 0900 2953 0 OFITRIP BLANK AQ. 2954 090 OVM sn#580U-64455.343 was calibrated with zero air & w/245 ppm Isobutylene read 245 ppm. 11-27-01 DETO FIH(time/date & initial) Comments: * VO +10 ON 25% > 1,000 PPM TPH, ON HIGHEST, MIN. ONE Received by (signature): Relinquished by (signature): Date/Time: 11-27-01 Date/Time: Relinquished by (signature): Received by (signature): Dedicated Sampling Tools Used Report Type: ()Full, (x)Reduced, ()Standard, ()Screen / non-certified, ()EDD Remarks: Turnaround time: ()Standard 2 wks, ()Rush Z Days, ()ASAP Verbal Hrs. All sample points have been GPS? XYES () NO () NA

20002

Change of Chain of Custody Site/Project Name: State Lab Project ID#: 16605 Date of Change: 11/2 Date Received: Sign: Requested by: print Turnaround Time: 1. Were the correct containers and/or preservatives used for the tests indicated? Yes 2. Was a sufficient amount of sample sent for the tests indicated? Yes Νo Yes No 3. Are samples Within Holding time for new analysis? Yes No 4. Was the change documented in the sample receipt log book? Sign: Received by: print New Sample New Sample **Analysis** ID# **Analysis** ID# 9.87 1660502 Comments:

09/14/98

METHOD SUMMARY

Method Summary

NJDEP Method 8260 Gas Chromatographic Determination of Volatiles in Soil

A 10-gram volume of soil is combined with 25-ml of Methanol and surrogates in the field. Internal standards are added and the sample is placed on a purge and trap concentrator. The sample is purged and desorbed into a GC/MS system. Volatiles are identified and quantitated. The final concentration is calculated using soil weight, percent moisture, methanol volume and concentration.

NJDEP Method OQA-QAM-025-10/97 Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty-five milliliters (25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL-autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including Pristane and Phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

CONFORMANCE-NON-CONFORMANCE

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

•			Indicate Yes, No, N/A
1.	Chromatograms la	beled/Compounds identified	
		and method blanks)	Yes
2.	Retention times for	chromatograms provided	yes
3.	GC/MS Tune Spec	ifications	•
	a.	BFB Meet Criteria	405
	b .	DFTPP Meet Criteria	WA
4.		equency - Performed every 24 hours for 600	
	series and 12 hours	s for 8000 series	yes_
5 .	GC/MS Calibration	n – Initial Calibration performed before sample	
	analysis and contin	uing calibration performed within 24 hours of	
	sample analysis for	600 series and 12 hours for 8000 series	409
б.	GC/MS Calibration	requirements	
	a.	Calibration Check Compounds Meet Criteria	Spes
	b .	System Performance Check Compounds Meet Criteria	705
7.	Blank Contaminati	on - If yes, List compounds and concentrations in each blank:	<u>_ NO</u>
	. a.	VOA Fraction	
	b.	B/N Fraction NA	
	C.	Acid FractionUA	
8.	Surrogate Recoveri	es Meet Criteria	402
	If not met, list outside the acc	those compounds and their recoveries, which fall eptable range:	•
	a.	VOA Fraction	
	b .	B/N Fraction \rightarrow A	
	C.	Acid Fraction_NA	
	If not met, wer as "estimated"	re the calculations checked and the results qualified?	·
9.	Matrix Spike/Matri	x Spike Duplicate Recoveries Meet Criteria	Ves
	(If not met, list those outside the acceptal	se compounds and their recoveries, which fall	,
	outside the accepta	ore range)	
	a.	VOA Fraction	
	b .	B/N Fraction NA	
	C.	Acid Fraction NA	

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT (cont.)

			Indicate Yes, No, N/A
10.	Internal Standard (If not met, list th	Area/Retention Time Shift Meet Criteria ose compounds, which fall outside the acceptable range)	405
	a.	VOA Fraction	•
	b.	B/N Fraction NA	
	C.	Acid Fraction	
11.	Extraction Holding	g Time Met	WA
	If not met, list the	number of days exceeded for each sample:	
12.	Analysis Holding	Time Met	yes
	If not met, list the	number of days exceeded for each sample:	C
Add	itional Comments:		·
b. B/N Fraction NA			

TPHC Conformance/Non-conformance Summary Report

		Indicate
1.	Method Detection Limits provided.	Yes, No, N/A
2.	Method Blank Contamination — If yes, list the sample and the Corresponding concentrations in each blank.	<u> </u>
3.	Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).	- 1
. 4. .	Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).	- 48
5.	IR Spectra submitted for standards, blanks and samples.	NA
6.	Chromatograms submitted for standards, blanks and sample if GC fingerprinting was conducted.	s <u>Yes</u>
7.	Analysis holding time met. (If not met, list number of days exceeded for each sample).	yes
Addi	itional comments:	-
	12-6-01	
Labo	oratory Manager Date	

LABORATORY CHRONICLE

Laboratory Chronicle

Lab ID: 16605

Site: Bldg. 211

Date Hold Time

Date Sampled 11/27/01 NA

Receipt/Refrigeration 11/27/01 NA

Extractions

1. TPHC 11/27/01 14 days

Analyses

1. VOA 11/30/01 14 days 2. TPHC 11/28/01 40 days

VOLATILE ORGANICS

US ARMY FT. MONMOUTH ENVIRONMENTAL LABORATORY NJDEP CERTIFICATION # 13461

Definition of Qualifiers

MDL: Method Detection Limit

J : Compound identified below detection limit

B : Compound found in blank

D : Results are from a dilution of the sample
 U : Compound searched for but not detected
 E : Compound exceeds calibration limit

PQL: Practical Quantitation Limit

NLE: No limit established RT: Retention time

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	FMETL			NJDEP # 13461	MB 30Nov01
Project:	021536	2	Case No.: 16605	Location: 211 S	DG No.:
Matrix: (soil/	water)	SOIL		Lab Sample ID:	MB
Sample wt/v	ol:	10.0	(g/ml) <u>G</u>	Lab File ID:	VC007512.D
Level: (low/	med)	MED		Date Received:	11/27/01
% Moisture:	not dec.	0		Date Analyzed:	11/30/01
GC Column:	Rtx50	2.2 ID:	<u>0.25</u> (mm)	Dilution Factor:	1.0
Soil Extract	Volume	25000	/ul \	Soil Aliquet Volu	ıma: 125 (u

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
107028	Acrolein	700	U
107131	Acrylonitrile	700	U
75650	tert-Butyl alcohol	1300	U
1634044	Methyl-tert-Butyl ether	300	U
108203	Di-isopropyl ether	200	U
75718	Dichlorodifluoromethane	400	U
74-87-3	Chloromethane	100	U
75-01-4	Vinyl Chloride	300	U
74-83-9	Bromomethane	200	U
75-00-3	Chloroethane	300	ט
75-69-4	Trichlorofluoromethane	200	٦
75-35-4	1,1-Dichloroethene	100	U
67-64-1	Acetone	200	U
75-15-0	Carbon Disulfide	100	Ü
75-09-2		200	U
156-60-5	trans-1,2-Dichloroethene	200	U
75-35-3	1,1-Dichloroethane	100	Ü
108-05-4	Vinyl Acetate	300	Ū
78-93-3	2-Butanone	300	U
	cis-1,2-Dichloroethene	100	Ü
67-66-3	Chloroform	100	U
75-55-6	1,1,1-Trichloroethane	100	J
56-23-5	Carbon Tetrachloride	200	U
71-43-2	Benzene	100	J
107-06-2	1,2-Dichloroethane	200	دا
79-01-6	Trichloroethene	100	U
78-87-5	1,2-Dichloropropane	100	U
75-27-4	Bromodichloromethane	100	Ü
110-75-8	2-Chloroethyl vinyl ether	200	כ
10061-01-5	cis-1,3-Dichloropropene	100	כ
108-10-1	4-Methyl-2-Pentanone	200	U
108-88-3	Toluene	100	J
10061-02-6	trans-1,3-Dichloropropene	200	כ
79-00-5	1,1,2-Trichloroethane	200	Ü
127-18-4	Tetrachloroethene	100	ט
591-78-6	2-Hexanone	200	U
126-48-1	Dibromochloromethane	200	U
108-90-7	Chlorobenzene	100	U
100-41-4	Ethylbenzene	200	J

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID.

MB 30Nov01 Lab Name: FMETL NJDEP # 13461 Project: 0215362 Case No.: 16605 Location: 211 SDG No.: Matrix: (soil/water) SOIL Lab Sample ID: MB Sample wt/vol: 10.0 (g/ml) G Lab File ID: VC007512.D Level: (low/med) MED Date Received: 11/27/01 % Moisture: not dec. 0 Date Analyzed: 11/30/01 GC Column: Rtx502.2 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: 25000 (uL) Soil Aliquot Volume: 125 (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
1330-20-7	m+p-Xylenes	300	U
1330-20-7	o-Xylene	200	U
100-42-5	Styrene	200	U
75-25-2	Bromoform	200	U
79-34-5	1,1,2,2-Tetrachloroethane	200	U
541-73-1	1,3-Dichlorobenzene	300	U
106-46-7	1,4-Dichlorobenzene	300	Ū
95-50-1	1,2-Dichlorobenzene	300	Ü

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD ID.

EST. CONC.

900

RT

30.85

Lab Name:	FMETL			NJDEF	> #	13461		MB 30Nov	01
Project:	0215362		Case No.: 1660	5 · Loca	atio	n: <u>211</u>	SI	DG No.:	
Matrix: (soil/	water)	SOIL			La	b Sample	ID:	MB	
Sample wt/v	ol:	10.0	(g/ml) <u>G</u>		La	b File ID:		VC007512.D	_
Level: (low/i	med)	MED			Da	ıte Receiv	/ed:	11/27/01	_
% Moisture:	not dec.	0			Da	ite Analyz	ed:	11/30/01	-
GC Column:	Rtx502	.2 ID: <u>(</u>	0.25 (mm)		Dil	ution Fac	tor:	1.0	_
Soil Extract	Volume: 2	25000	(uL)		So	il Aliquot	Volu	me: <u>125</u>	_ (uL
				CONCENTI (ug/L or ug/					
Number TIC	s found:	1		(ug/L or ug/	rvy)	, <u>UG</u> /	n.G		
					7				

COMPOUND NAME

unknown

CAS NO.

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID.

Lab Name:	FMETL	_		NJDEP # 13461	211B-Center
Project:	021536	2	Case No.: 16605	Location: 211 SD	G No.:
Matrix: (soil/	water)	SOIL		Lab Sample ID:	1660502
Sample wt/v	ol:	9.9	(g/ml) <u>G</u>	_ Lab File ID:	VC007513.D
Level: (low/r	ned)	MED		Date Received:	11/27/01
% Moisture:	not dec.	19.79		Date Analyzed:	11/30/01
GC Column:	Rtx50	2.2 ID:	<u>0.25</u> (mm)	Dilution Factor:	1.0
Soil Extract V	Volume:	25000	(ul.)	Soil Aliquot Volun	ne: 125 (ul

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
107028	Acrolein	890	U
107131	Acrylonitrile	890	U
75650	tert-Butyl alcohol	1600	U
1634044	Methyl-tert-Butyl ether	380	U
108203	Di-isopropyl ether	250	U
75718	Dichlorodifluoromethane	510	Ū
74-87-3	Chloromethane	130	U
75-01-4	Vinyl Chloride	380	U
74-83-9	Bromomethane	250	Ū
75-00-3	Chloroethane	380	U
75-69-4	Trichlorofluoromethane	250	U
75-35-4	1,1-Dichloroethene	130	U
67-64-1	Acetone	1300	
75-15-0	Carbon Disulfide	130	U
75-09-2	Methylene Chloride	250	U
156-60-5	trans-1,2-Dichloroethene	250	U
75-35-3	1,1-Dichloroethane	130	U
108-05-4	Vinyl Acetate	380	Ū
78-93-3	2-Butanone	380	Ü
	cis-1,2-Dichloroethene	130	U
67-66-3	Chloroform	130	U
75-55-6	1,1,1-Trichloroethane	130	Ú
56-23-5	Carbon Tetrachloride	250	U
71-43-2	Benzene	130	U
107-06-2	1,2-Dichloroethane	250	·U
79-01-6	Trichloroethene	130	U
78-87-5	1,2-Dichloropropane	130	U
75-27-4	Bromodichloromethane	130	U
110-75-8	2-Chloroethyl vinyl ether	250	U
10061-01-5	cis-1,3-Dichloropropene	130	U
108-10-1	4-Methyl-2-Pentanone	250	U
108-88-3	Toluene	130	Ü
10061-02-6	trans-1,3-Dichloropropene	250	U
79-00-5	1,1,2-Trichloroethane	250	U
127-18-4	Tetrachloroethene	130	. U
591-78-6	2-Hexanone	250	U
126-48-1	Dibromochloromethane	250	Ü
108-90-7	Chlorobenzene	130	Ū
100-41-4	Ethylbenzene	250	Ü

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID.

Lab Name:	FMETL		_		NJDEP # 13461		211B-Cente	r
Project:	0215362	2(Case No.:	16605	Location: 211	SDG	3 No.:	
Matrix: (soil/v	vater)	SOIL			Lab Sample II	D: <u>10</u>	660502	
Sample wt/vo	ol:	9.9	(g/ml)	G	_ Lab File ID:	<u>V</u>	C007513.D	
Level: (low/n	ned)	MED			Date Received	d: <u>1</u>	1/27/01	
% Moisture: r	not dec.	19.79			Date Analyzed	d: <u>1</u>	1/30/01	
GC Column:	Rtx502	2.2 ID:	0.25 (m	nm)	Dilution Factor	r: <u>1.</u>	.0	
Soil Extract V	/olume:	25000	(uL)		Soil Aliquot Vo	olume	e: <u>125</u>	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/kg)	UG/KG	Q
1330-20-7	m+p-Xylenes		380) U
1330-20-7	o-Xylene		250) U
100-42-5	Styrene		250) U
75-25-2	Bromoform		250	O U
79-34-5	1,1,2,2-Tetrachlor	oethane	250) U
541-73-1	1,3-Dichlorobenze	ene	380) U
106-46-7	1,4-Dichlorobenze	ene	380	D U
95-50-1	1,2-Dichlorobenze	ene	380	ט ס

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD	ID.
--------------	-----

Lab Name:	FMETL			NJDEI	9 #	13461	211B-Cent	er
Project:	021536	2	Case No.: 16	605 Loc	atio	n: <u>211</u> S	DG No.:	
Matrix: (soil/	water)	SOIL			La	b Sample ID:	1660502	
Sample wt/ve	ol:	9.9	(g/ml) <u>G</u>	<u> </u>	La	b File ID:	VC007513.D	
Level: (low/r	ned)	MED			Da	ate Received:	11/27/01	
% Moisture:	not dec.	19.79	······································		Da	ate Analyzed:	11/30/01	
GC Column:	Rtx50	2.2 ID:	<u>0.25</u> (mm))	Dii	lution Factor:	1.0	
Soil Extract \	/olume:	25000	(uL)		So	il Aliquot Volu	ıme: 125	(uL

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Number TICs found: 15

	<u> </u>	·		Γ .
CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 002051-30-1	Octane, 2,6-dimethyl-	28.10	2800	JN
2.	unknown	29.00	4200	J
3. 005911-04-6	Nonane, 3-methyl-	29.40	2300	JN
4.	unknown	30.05	2700	J
5.	unknown	30.64	2300	J
6. 002847-72-5	Decane, 4-methyl-	30.89	3600	JN
7.	unknown	31.93	3200	J
8.	unknown	32.03	2200	J
9.	unknown	32.10	2700	J
10,	unknown	32.34	3000	J
11. 001120-21-4	Undecane	33.10	12000	JN
12.	unknown	34.44	2800	J
13.	unknown	34.77	2000	J
14. 004292-92-6	Cyclohexane, pentyl-	34.85	4700	JN
15.	unknown .	34.95	3400	J

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIEL	D ID
------	------

l ab Namai	EMETI				N IDED #	10464		Trip Blank	
Lab Name:	FMETL				NJDEP#	13461			
Project:	0215362	2	Case No.:	16605	Location	n: <u>211</u>	SD	G No.:	
Matrix: (soil/v	water)	SOIL			Lat	Sample II	D: <u>'</u>	1660507	
Sample wt/vo	ol:	10.0	(g/ml)	<u>G</u>	_ Lat	File ID:		/C007514.D	
Level: (low/r	med)	MED			Da	te Receive	d: _	1/27/01	
% Moisture:	not dec.	0	 -		Da	te Analyze	d: _	11/30/01	
GC Column:	Rtx502	2.2 ID:	<u>0.25</u> (n	nm)	Dilı	ution Facto	r: <u> </u>	1.0	
Soil Extract \	/olume:	25000	(uL)		Soi	l Aliquot V	olun	ne: 125	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
107028	Acrolein	700	U
107131	Acrylonitrile	700	Ü
75650	tert-Butyl alcohol	1300	Ü
1634044	Methyl-tert-Butyl ether	300	J
108203	Di-isopropyl ether	200	U
75718	Dichlorodifluoromethane	400	υ
74-87-3	Chloromethane	100	υ
75-01-4	Vinyl Chloride	300	U
74-83-9	Bromomethane	200	Ü
75-00-3	Chloroethane	300	U
75-69-4	Trichlorofluoromethane	200	Ü
75-35-4	1,1-Dichloroethene	100	U
67-64-1	Acetone	1000	
75-15-0	Carbon Disulfide	100	U
75-09-2	Methylene Chloride	200	U
156-60-5	trans-1,2-Dichloroethene	200	U
75-35-3	1,1-Dichloroethane	· 100	U
108-05-4	Vinyl Acetate	300	U
78-93-3	2-Butanone	300	U
	cis-1,2-Dichloroethene	100	υ
67-66-3	Chloroform	100	U
75-55-6	1,1,1-Trichloroethane	100	U
56-23-5	Carbon Tetrachloride	200	U
71-43-2	Benzene	100	U
107-06-2	1,2-Dichloroethane	200	U
79-01-6	Trichloroethene	100	U
78-87-5	1,2-Dichloropropane	100	U
75-27-4	Bromodichloromethane	100	J
110-75-8	2-Chloroethyl vinyl ether	200	U
10061-01-5	cis-1,3-Dichloropropene	100	U
108-10-1	4-Methyl-2-Pentanone	200	U
108-88-3	Toluene	100	Ü
10061-02-6	trans-1,3-Dichloropropene	200	U
79-00-5	1,1,2-Trichloroethane	200	U
127-18-4	Tetrachloroethene	100	U
591-78-6	2-Hexanone	200	U
126-48-1	Dibromochloromethane	200	U
108-90-7	Chlorobenzene	100	U
100-41-4	Ethylbenzene	200	U

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID.

Lab Name:	FMETL		1	IJDEP # 13461	L	i rip Blank	
Project:	0215362	Case No.: 1	6605	Location: 211	SDG	No.:	
Matrix: (soil/v	vater) <u>SO</u>	IL		Lab Sample I	D: 166	60507	
Sample wt/vo	ol: <u>10</u> .	0 (g/ml) (<u>G</u>	Lab File ID:	<u>vc</u>	007514.D	
Level: (low/n	ned) <u>M</u> E	D		Date Receive	d: <u>11/</u>	/27/01	
% Moisture: r	not dec. 0	···		Date Analyze	d: <u>11/</u>	/30/01	
GC Column:	Rtx502.2	ID: <u>0.25</u> (mm	n)	Dilution Facto	or: <u>1.0</u>)	
Soil Extract V	/olume: <u>250</u>	00 (uL)		Soil Aliquot V	'olume:	125	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND · (ug/L or ug/Kg)	UG/KG	Q
1330-20-7	m+p-Xylenes	300	U
1330-20-7	o-Xylene	200	U
100-42-5	Styrene	200	U
75-25-2	Bromoform	200	U
79-34-5	1,1,2,2-Tetrachloroethane	200	U
541-73-1	1,3-Dichlorobenzene	300	U
106-46-7	1,4-Dichlorobenzene	300	U
95-50-1	1,2-Dichlorobenzene	300	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD ID.	
-----------	--

Lab Name:	FMETL			NJDEP# 13461	Trip Blank	.
Project:	0215362	2 Case No.	: 16605	Location: 211 S	DG No.:	
Matrix: (soil/v	vater)	SOIL		Lab Sample ID:	1660507	
Sample wt/vo	ol:	10.0 (g/m) <u>G</u>	Lab File ID:	VC007514.D	
Level: (low/n	ned)	MED		Date Received:	11/27/01	
% Moisture: r	not dec.	0		Date Analyzed:	11/30/01	
GC Column:	Rtx502	2.2 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume: ½	25000 (uL)		Soil Aliquot Volu	me: <u>125</u>	(uL

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Number TICs found: 7

CAS NO.	COMPOUND NAME	рт	FOT COMO	
CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1.	unknown	27.44	2000	J
2.	unknown	28.02	1500	J
3.	unknown	28.44	1500	J
4. 000629-50-5	Tridecane	30.76	4300	JN
5.	unknown	31.37	2000	J
6.	unknown	32.18	1800	J
7.	unknown	34.29	2400	J

TPHC

Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

16605

DPW. SELFM-PW-EV

Location:

Bldg. 211

Bldg. 173

UST Reg. #:

81533-9

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

27-Nov-01

Matrix:

Soil

Date Extracted:

27-Nov-01

Inst. ID.:

GC TPHC INST. #1

Extraction Method:

Shake

RTX-5, 0.32mm ID, 30M

Analysis Complete:

28-Nov-01

Column Type :

Analyst:

B.Patel

Injection Volume:

1uL

Sample	Field ID	Dilution Factor	Weight (g)	% Solid	MDL (mg/kg)	TPHC Result (mg/kg)
1660501	211A	1.00	15.66	82.61	175	ND
1660502	211B	1.00	15.57	80.21	181	3968.46
1660503	211C	1.00	15.49	82.49	177	ND
1660504	211D	1.00	15.16	86.75	172	ND
1660505	211E	1.00	15.22	91.65	162	ND
1660506	211F	1.00	15.30	82.31	180	ND
METHOD BLANK	MB-2671	1.00	15.00	100.00	151	ND

ND = Not Detected

MDL = Method Detection Limit

LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarzed in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

1.	and address, & date of report submitted	
2.	Table of Contents submitted	
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted	
4.	Document paginated and legible	
5 .	Chain of Custody submitted	
6.	Samples submitted to lab within 48 hours of sample collection	<u> </u>
7.	Methodology Summary submitted	
8.	Laboratory Chronicle and Holding Time Check submitted	
9.	Results submitted on a dry weight basis	<u> </u>
	Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP	
Date	Laboratory Manager or Environmental Consultant's Signature	

*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

Laboratory Authentication Statement

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager

State of New Jersey

CHRIS CHRISTIE

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION
Bureau of Case Management
401 East State Street
P.O. Box 420 Mail Code 401-05F
Trenton, NJ: 08625-0028
Phone #: 609-633-1455
Fax #: 609-633-1439

BOB MARTIN Commissioner

July 12, 2016

William Colvin
BRAC Environmental Coordinator
OACSIM—U.S. Army Fort Monmouth
PO Box 148
Oceanport, NJ: 07757

Re:

Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum Fort Monmouth Oceanport, Monmouth County PI G00000032

Dear Mr. Colvin:

The New Jersey Department of Environmental Protection (Department) has completed review of the referenced submittal received on July 7, 2016, prepared by the Department of the Army, to propose soil and/or ground water sampling at four former #2 fuel underground storage tank (UST) areas and one at which the #2 fuel UST remains. Comments are as follows.

UST 211

The collection of a ground water sample as proposed is acceptable.

UST 212

Although sampling was apparently performed when the reported 2000 gallon UST was removed in 2001, the analytical data was reported as unable to be located. A single soil boring is proposed, with a sample to be collected from approximately 5-5.5' below grade (as the base of a 2000 gallon tank would often lie below that depth, perhaps a foot or so deeper should be considered), and a second interval sampled from 0-6" above the water table (which is appropriate). Based upon the former tank size, however, a minimum of two soil boring locations is necessary.

Although the UST is reported as unregulated, and therefore exempt from N.J.A.C. 7:14B, as per Section 3 Applicability, of the July 31, 2012 Technical Guidance for Investigation of Underground Storage Tank Systems, the exempted USTs must still comply with certain other Department regulations (ARRCs, Tech Rules), and use of the guidance document is appropriate. Section 5.2.1.1 of this guidance document indicates one location for each 5% of tank length is to be collected.

The collection of a ground water sample as proposed is acceptable.

UST 220B

The collection of a ground water sample as proposed is acceptable.

Is UST 220B considered the same tank as that referenced in Appendix G and Figure 15 of the '07 ECP as UST-220-14?

UST 226

The collection of a ground water sample as proposed is acceptable.

UST 228B

UST 228B (is this also known as UST 228-20 in Appendix G & Figure 15?) remains in place, however, appears to be out-of-service. Have the contents been removed? If the tank remains in service, four samples are required (Section 5.1.2 of the above referenced guidance document). If it is out of service, the tank should be closed in accordance with any applicable regulations.

USTs may only be abandoned in place if there is no contamination detected above remediation standards, or when there is evidence of a discharge but removal is not feasible (Section 5.2.2 of the guidance document). Sampling must be performed *through* the bottom of the tank to ensure no contamination is present beneath the UST, at 5' intervals along the center line. As this is a 1000 gallon UST, at least two sample locations through the bottom would be necessary.

Finally, the above comments address only those five USTs included in the work plan, rather than all USTs having been noted (including those of "high potential") within the parcel. This office looks forward to receipt of the request for NFA determination for the former USTs within the parcel as referenced in the submittal.

Please contact this office with any questions.

Sincerely,

Linda S. Range

C: Joe Pearson, Calibre James Moore, USACE Rick Harrison, FMERA Joe Fallon, FMERA

DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

July 1, 2016

Ms. Linda Range
New Jersey Department of Environmental Protection
Bureau of Case Management
401 East State Street
PO Box 420/Mail Code 401-05F
Trenton, NJ 08625-0028

SUBJECT: Parcel 72 Select Unregulated Heating Oil Tanks (UHOTs) Work Plan Addendum

Fort Monmouth, New Jersey

Attachments:

Table 1 Summary of Select Parcel 72 UHOTs

- UST Removal Reference Map (Grid C2)
- Table 2 Summary of Proposed Sampling for Parcel 72
- Figure 1 Proposed Sampling for Parcel 72

Dear Ms. Range:

The U.S. Army Fort Monmouth (FTMM) has reviewed existing file information for underground storage tank (UST) sites at Fort Monmouth within Environmental Condition of Property (ECP) Parcel 72. The purpose of this review was to ensure that potential environmental issues associated with former UST sites within Parcel 72 have been adequately addressed to facilitate Phase II property transfer.

All of the Parcel 72 USTs are residential unregulated heating oil tanks (UHOTs), such as single family homes, apartments or barracks. Residential UHOTs are exempt from UST regulations (New Jersey Administrative Code [NJAC] 7:14B-1.4 [b][3]). However, the Army anticipates requesting a No Further Action (NFA) determination from the New Jersey Department of Environmental Protection (NJDEP) for Parcel 72 residential UHOTs within a future submittal to facilitate property transfer.

Upon review of Parcel 72 closure sample analytical data, five former UHOTs (USTs 211, 212, 220B, 226, and 228B) were identified with data needs that required additional field sampling, as summarized below. This Work Plan Addendum describes the proposed field sampling for these five Parcel 72 UHOT sites. Detailed field procedures are described in the approved March 2013 *Final Sampling and Analysis Plan* (SAP).

Attached Table 1 describes the tank characteristics for each of these five UHOT sites. The Army's recorded locations of these UHOTs are shown in the attached UST Removal Reference Map. All of these UHOTs except UST 228B were previously removed. Following is a summary of these UHOTs and the associated data needs:

Linda S. Range, NJDEP Parcel 72 Select UHOTs Work Plan Addendum July 1, 2016 Page 2 of 3

- UST 211 was located at 4 Russel Avenue on the east side of Building 211. This tank was removed in 2001, and TPH concentrations up to 3,968 milligrams per kilogram (mg/kg) were reported in closure soil samples, which may indicate a release but is less than the 5,100 mg/kg human health based remedial goal for Extractible Petroleum Hydrocarbons (EPH). Analyses for volatile organic compounds (VOCs) were also performed on the sample with the highest TPH concentrations, in accordance with then-current protocol; the only VOC detected was acetone, which is a common laboratory-derived contaminant. Proposed field sampling will include collection of a groundwater sample from a temporary well installed at the former location of the tank to determine if a fuel oil release has impacted groundwater.
- UST 212 was located at 8 Russel Avenue on the east side of Building 212. This tank was removed in 2001; closure soil samples were collected and analyzed. However, the associated analytical data have not been found, and therefore soil samples will be collected from one boring using a Geoprobe to determine if a release has occurred. Also, a groundwater sample from a temporary well will be collected from the same boring to determine if there has been an impact to groundwater.
- UST 220B was located at 34 Russel Avenue on the west side of Building 220. This tank was removed in 2001. Initial soil TPH concentrations were up to 3,224 mg/kg. After removal of the contaminated soil, TPH was not detected. Analyses for VOCs were also performed on the sample with the highest TPH, in accordance with then-current protocol; no VOCs were detected. Proposed field sampling will include collection of a groundwater sample from a temporary well installed at the former location of the tank to determine if a fuel oil release has impacted groundwater.
- UST 226 was located at 9 and 10 Allen Avenue near Building 226. This tank was removed in 2000 and TPH concentrations up to 3,915 mg/kg were encountered in closure soil samples. Analyses for VOCs were also performed on the sample with the highest TPH, in accordance with then-current protocol; the VOCs ethylbenzene and xylenes were detected, but concentrations were below the NJDEP Residential Direct Contact Soil Remediation Standards (RDCSRS). Proposed field sampling will include collection of a groundwater sample from a temporary well installed at the former location of the tank to determine if a fuel oil release has impacted groundwater.
- UST 228B (a steel UST) is located at 3 Allen Avenue near Building 228. This tank was located and uncovered in 2010, and then (due primarily to resource constraints) was covered with soil and left in place. Soil samples were collected along the service piping but not from the tank vicinity. Therefore, soil samples will be collected using a Geoprobe to determine if a release has occurred. Two soil borings will be placed near the tank (within 3 feet), with adequate spacing away from the tank to ensure that the integrity of the tank is not compromised. Also, a groundwater sample from a downgradient temporary well will be collected from the northern boring location (PAR-72-228-SB-01) to determine if there has been an impact to groundwater.

Proposed soil borings and temporary wells will be sampled and analyzed as summarized in Table 2 and Figure 1. Final sample locations may be adjusted in the field based on site conditions and site-specific understanding of the former locations of the UHOTs, with the intent of placing the boring within the former UST excavation (or within 10 feet downgradient). At each sample location, a Geoprobe® boring will be completed to approximately 4 feet below the water table (groundwater is

Linda S. Range, NJDEP Parcel 72 Select UHOTs Work Plan Addendum July 1, 2016 Page 3 of 3

estimated at approximately 10 feet below ground surface). Soil and groundwater samples will be collected from the Geoprobe boring as indicated in Table 2 for each UST site.

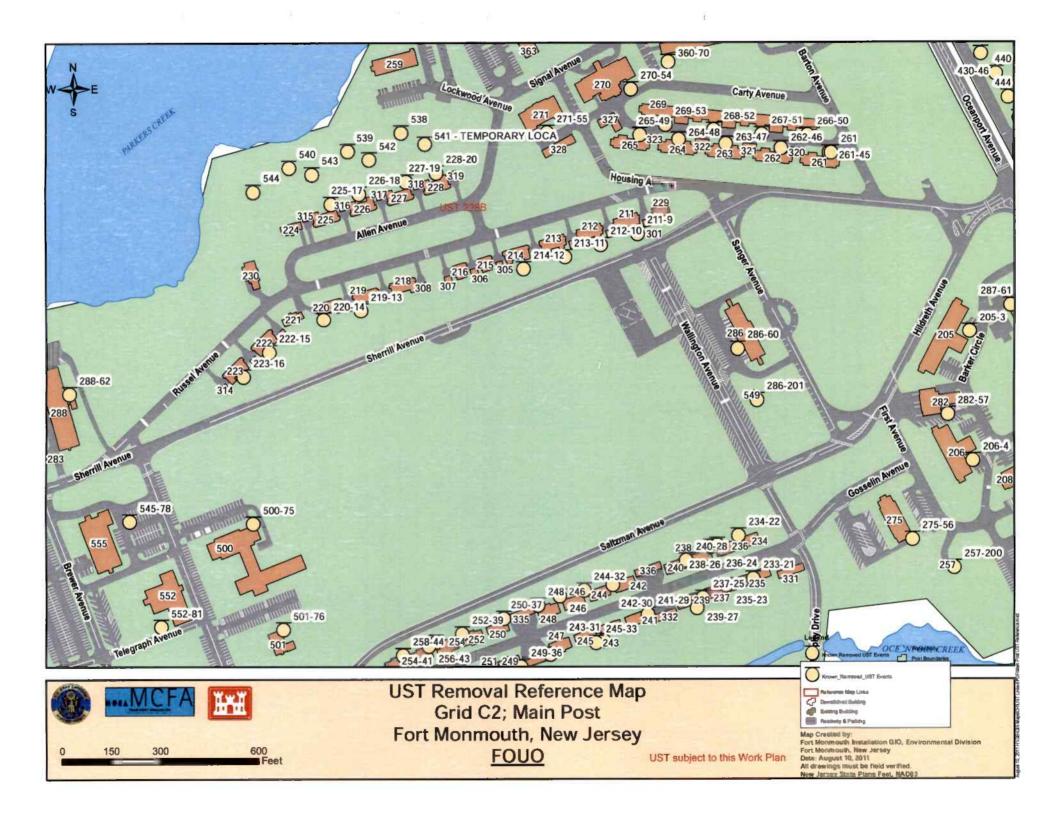
Soil samples from the UST 212 and UST 228 soil borings will be collected to assess current concentrations and vertical extent of EPH. Two soil samples will be collected from each boring. At each boring, a sample will be collected from approximately 5.0-5.5 feet below ground surface (ft bgs; or another interval representative of the vadose zone below the removed tank), and from a deeper 6-inch interval just above the water table. One of these two soil samples will be collected from the most contaminated interval encountered based on field evidence (visual, olfactory, or photoionization detector [PID] screening). If there is no field evidence of petroleum contamination, then the two soil samples will be collected from 5.0-5.5 ft bgs and from just above the water table (estimated at 10.0-10.5 ft bgs). Each soil sample will be analyzed for total EPH, with additional contingency semivolatile organic compounds (SVOCs) analysis (25 percent) for naphthalene and 2-methylnaphthalene in the event that EPH concentrations exceed 1,000 mg/kg. These soil analyses are consistent with the requirements for No. 2 fuel oil in Table 2-1 of the NJAC 7:26E Technical Requirements for Site Remediation.

Groundwater will be sampled using temporary wells within the Geoprobe borings, and then the borings will be abandoned. Each groundwater sample will be analyzed for VOCs and SVOCs plus tentatively identified compounds (TICs), which is consistent with the requirements for No. 2 fuel oil in Table 2-1 of the NJAC 7:26E Technical Requirements for Site Remediation.

We look forward to your review and approval of or comments on this submittal. The technical Point of Contact (POC) is Kent Friesen at (732) 383-7201 or by email at kent.friesen@parsons.com. Should you have any questions or require additional information, please contact me by phone at (732) 380-7064 or by email at william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin, PMP, PG, CHMM


BRAC Environmental Coordinator

cc: Linda Range, NJDEP (e-mail and 3 hard copies)
Delight Balducci, HQDA ACSIM (e-mail)

Joseph Pearson, Calibre (e-mail) James Moore, USACE (e-mail) Jim Kelly, USACE (e-mail) Cris Grill, Parsons (e-mail)

Table 1 Summary of Select Parcel 72 UHOTs

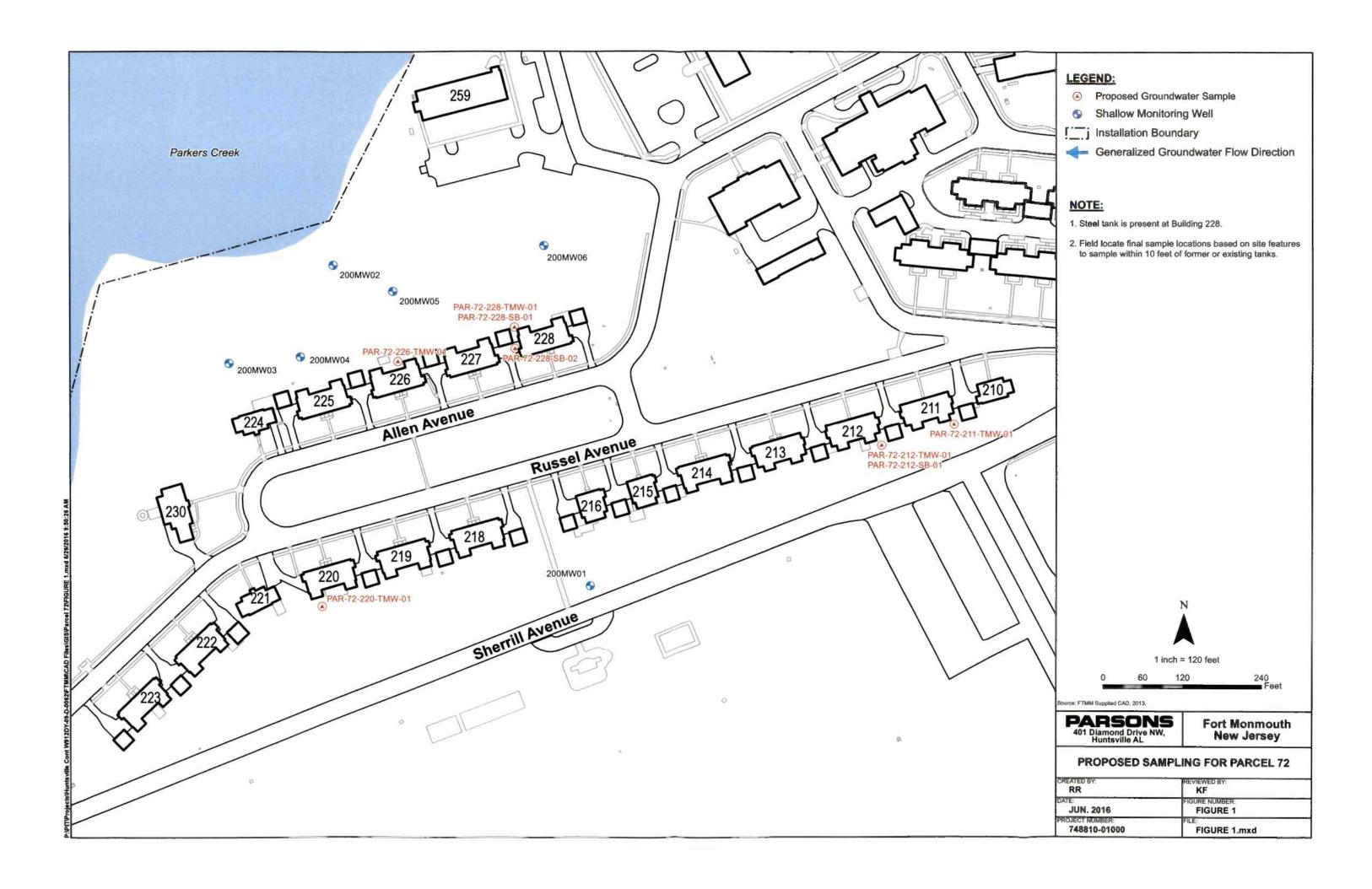
Site Name	Residential?	Registration ID	DICAR	Tank Size and Type	Product	Comments on Current or Requested NJDEP Status
211	YES	81533-9	None	2,000 gallon fiberglass	#2 FUEL OIL	Collect groundwater sample due to TPH>1000 mg/kg
212	YES	81533-10	None	2,000 gallon fiberglass	#2 FUEL OIL	Sample soils and groundwater to determine if release has occurred
220B	YES	81533-14	None	2,000 gallon; fiberglass?	#2 FUEL OIL	Collect groundwater sample due to TPH>1000 mg/kg
226	YES	81533-18	None	2,000 gallon fiberglass	#2 FUEL OIL	Collect groundwater sample due to TPH>1000 mg/kg
228B	YES	None	None	1,000 gallon steel	#2 FUEL OIL	Steel tank confirmed present

TABLE 2 SUMMARY OF PROPOSED SAMPLING FOR PARCEL 72 FORT MONMOUTH, NEW JERSEY

Location ID	Location	Field Meter Readings ^{a/}	Unfractionated EPH ^{b/}	VOCs + TICs by Method 8260C c/	SVOCs + TICs by Method 8270C d/
Soil		第四条数据数据			
PAR-72-212-SB-01	Building 212 (Figure 1): 1 soil boring, 2 samples.	1 boring	2	0	0
PAR-72-228-SB-01	Building 228 (Figure 1): 1 soil boring, 2 samples.	1 boring	2	0	0
PAR-72-228-SB-02	Building 228 (Figure 1): 1 soil boring, 2 samples.	1 boring	2	0	0
Groundwater					
PAR-72-211-TMW-01	Building 211 (Figure 1): 1 temporary well, 1 sample.	1 well	0	1	1
PAR-72-212-TMW-01	Building 212 (Figure 1): 1 temporary well, 1 sample.	1 well	0	1	Ī
PAR-72-220-TMW-01	Building 220/UST 220B (Figure 1): 1 temporary well, 1 sample.	1 well	0	1	1
PAR-72-226-TMW-01	Building 226 (Figure 1): 1 temporary well, 1 sample.	1 well	0	1	1
PAR-72-228-TMW-01	Building 228 (Figure 1): 1 temporary well, 1 sample.	1 well	0	1	1
QA/QC samples (see SAP fe	or additional details) e'				
Field Duplicates (5% Sampl	ing Frequency per media)	NA	1	1	1
Matrix Spike (5% Sampling	Frequency per media)	NA	1	1	1
Matrix Spike Duplicate (5%	Sampling Frequency per media)	NA	1	1	1
Trip Blank (1 per cooler of	VOCs per media)	NA	0	1	0
QA Split (5% per media)		NA	1	1	1
Equipment Blank (5% Samp		NA	1	1	1
	TOTAL	NA	11	11	10

Notes:

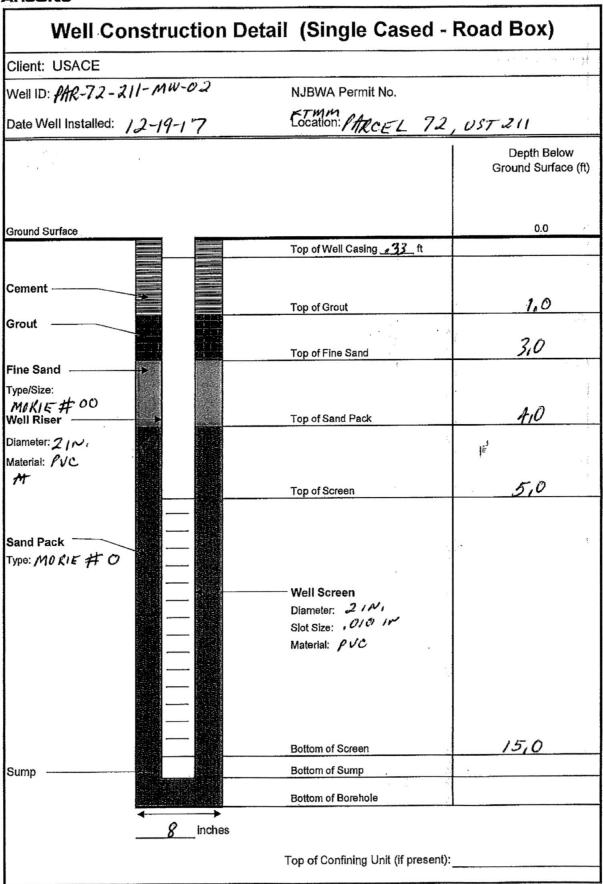
NA = not applicable.


^{a/} Field meter readings include, in soil samples: photoionization detector (PID) readings along entire soil column; and in groundwater: PID headspace, pH, temperature, electrical conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity.

EPH = extractable petroleum hydrocarbons. If any EPH concentrations in soil exceed 1000 mg/kg in any of the site samples, then minimum 25% of the samples where EPH exceeds 1000 mg/kg will also be analyzed for 2-methylnaphthalene and naphthalene.

^{c/} VOCs = volatile organic compounds; TICs = tentatively identified compounds.

d SVOCs = semivolatile organic compounds; TICs = tentatively identified compounds.


e' QA/QC = quality assurance/quality control; SAP = Sampling and Analysis Plan. The requirement for QA/QC samples may be fulfilled with samples from other parcels.

Attachment B
Soil Boring Logs and Well Construction Details

Well Construction Detail (Single Cased - Road Box)							
Client: USACE							
Well ID: 211-mw-1	NJBWA Permit No.						
Date Well Installed:	Location: PAR -72-2//	-mw-1					
		Depth Below Ground Surface (ft)					
Ground Surface		0.0					
50 Maria	Top of Well Casing 0.25 ft						
Cement							
Grout	Top of Grout	1,0					
	Top of Fine Sand	10.0					
Fine Sand —		7					
Type/Size:							
Well Riser	Top of Sand Pack	11.0					
Diameter:							
Material:							
	Top of Screen	11.0					
Sand Pack							
Type:	Well Screen						
	Diameter: 2						
	Siot Size: 10 -5 COT	1)					
	Material: ρν c						
	Bottom of Screen	21.0					
Sump —	Bottom of Sump	21.25					
医	Bottom of Borehole	22.0					
	68						
	Top of Confining Unit (if present):						

Sample Types	Consiste	ncy vs. Blowcount / Foot	
S — Sp&t-Spoon	Granular (Sand & Gravel)	Fine Grained (SRt & Clay)	end - 35-50%
U Undistribed Tube	V. Loosa: 0-4 Densa: 30-	50 V. Soft: <2 Stiff: 6-15	some - 20-35%
C Rock Core	Loose: 4-10 V. Dense: >60	Soft: 2-4 V. Stiff: 15-30	Ettle - 10-20%
A Auger Cuttings	M. Dense: 10-30	M. SEIF: 4-8 Hard: > 30	trace - <10%
			moisture, density, color, gradation

Well Construction D	Detail (Single Cased -	Road Box)
Client: USACE		in myt
Well ID: PAR-72-211-MN-03	NJBWA Permit No.	,
Date Well Installed: /2-19-17	Location: FIMM-PAR	EL 72-UST 211
		Depth Below Ground Surface (ft)
Ground Surface		0.0
	Top of Well Casing 0.3 ft	
Cement	Top of Grout	1,0
Grout	Top of Fine Sand	1,5
Fine Sand ――――――――――――――――――――――――――――――――――――	Top of Sand Pack	2,0
PVC	Top of Screen	3,0
Sand Pack Type: MORIT #0	Well Screen Diameter: 2 1 2. Slot Size: , 01010 Material: PVC	
	Bottom of Screen	13.0
Sump ————————————————————————————————————	Bottom of Sump .	13,5
	Bottom of Borehole	13.0 13.5 14.0
g Inches	Top of Confining Unit (If present):	

10

Well Construction	on Detail (Single Cased -	Stickup)
Client: USACE		1/18
Well ID: PAR-72-211-MW-04	NJBWA Permit No.	
Date Well Installed:	Location: PARCEZ 72 -	UST 211
	Top of Well Casing: +_3,0 ft	Depth Below Ground Surface (ft)
Ground Surface		0.0
Cement	Top of Grout	1,0
Grout	Top of Fine Sand	1,5
Fine Sand ————————————————————————————————————		
MOCIE# 00 Well Riser	Top of Sand Pack	2.0
Diameter: 2 IN Material: PVC	1	j).
	Top of Screen	3.0
Sand Pack Type: MoRIE # O	Well Screen Diameter: 2 IVI Slot Size: 000 IVI Material: PVC Bottom of Screen Bottom of Sump	13,0 13,5 14.0
	Bottom of Borehole	14.0
% inche	s Top of Confining Unit (if present):	

PARSON	<u> </u>					Page1	of
					Soil Boring Log		[
	CLIENT: USA	CE	-			BORINGWE	11 -MV-5
	T NAME: FTM				DRILLER: Spe		ESCRIPTION
PROJECT LO	-				WEATHER: LOW 604 / Rain	,	Surbar
	 UMBER: 7488				CONTRACTOR: East Coast Drilling, Inc. (ECDI)	bras	s survai
G	ROUNDWATE	R OBSERV	ATIONS		RIG TYPE: Geoprobe(R) 7822DT /45A	LOCATION P	LAN
					DATE/TIME START: 05-1778 / 13115	Oceanport, N	ew Jersey
WATER LEVEL	.:	_			DATE/TIME FINISH: 05777-8 /13 145-		
DATE:	********	_			WEIGHT OF HAMMER: NA	4	
TIME:					DROP OF HAMMER: N/A	4	ŀ
MEAS. FROM:		FOL			TYPE OF HAMMER: N/A	ļ ,	
DEPTH (feet)	Sample I.D.	per 6"	ADV/ REC.	(ppm)	FIELO IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
0				0	0-8"- Moist, A. dense, Brn - Drk Brn,		
				0	F-M, Siley SAND		
1				0	1		
				0	4-60 - Morst, Midenses light Bon		
2				0	4-60 - Morst, Midense, light Brn R-M, Silly SAND, Trace Glaucons		
				0			
3				Ŏ			
		1		0			
4				0			İ
			,	0			
5			60/60	0	BO-40"-5AA		
				ത		,	
6				()	10-24 Wet, Midense, Brn with Green	26	
				0	10"-2" Wet, M. donse, Brn with Green Hues, F-M, Clayer SAND, little Silt,		
7				0	Istale Glauconiti		
				0	24"-60" - Vet, M. dense, light Bon, F-M		
8				0	Silty SAND, Trace Clay		
				0			
9				0			
				0			
10			60/60	LO^{-}			
Remarks: Sei	Cutting	S Contai	per Pter	Ims	5 gallon Oram.		
Soil Scra	uned v	ith P	10	_	Consistency vs. Blowcount / Foot		
S — Split-Spoon U Undisturbed Tu			•		Grenular (Sand & Grayel) Fine Greined (Sit & Clay) V. Loose: 0-4 Dense: 30-50 V. Soft: <2 Stiff: 8-15		nd - 35-50% ne - 20-35%
D Chaistinged To C Rock Core A Auger Cuttings					N. Dense: 4-10 V. Dense: >50 Soft 2-4 V. Stiff: 15-30 M. Dense: 10-30 M. Stiff: 4-8 Hard: > 30	In tre	tie - 10-20% ce - <10%

Well Construc	tion Detail (Single Case	d - Road Box)
Client: USACE		
Well ID: PAR-72-211-M	W-05 NJBWA Permit No.	1
Date Well Installed: 5-/2-	Location: PARCEL	72-UST 211
		Depth Below Ground Surface (ft)
Ground Surface		0.0
	Top of Well Casing <u>0,33</u> ft	
Cement —		
Grout	Top of Grout	/,0
Fine Sand	Top of Fine Sand	3.0
Type/Size: Mt LIE# 0		
Well Riser	Top of Sand Pack	40
Diameter: 2 IV	Top of dand Pack	
Material: PVC		Ja³
	Top of Screen	5,0
Sand Pack Type: MORIE #0	Well Screen Diameter: Slot Size: Material:	
	Bottom of Screen	15,0
Sump —	Bottom of Sump .	15.0 15.5 16.0
	Bottom of Borehole	16,0
8	inches	
	Top of Confining Unit (If pres	ent):

 Sample Types
 Consistency vs. Blowcount / Foot

 S - Split-Spoon
 Granular (Sand & Gravel)
 Fige Grained (Sin & Clav)

 U - Undisturbed Tube
 V. Losse: 0-4
 Dense: 30-50
 V. Soft: <2</td>
 Stiff: 8-15

 C - Rock Core
 Loose: 4-10
 V. Uense: >50
 Soft: 2-4
 V. Stiff: 15-30

 A - Auger Cuttings
 M. Dense: 10-30
 M. Stiff: 4-8
 Hard: >30

some - 20-35% little - 10-20% little - 410% moisture, density, color, gradation

and - 35-50%

M. Dense: 10-30

M. Stift. 4-8

trace - <10% moisture, density, color, gradation

moisture, density, color, gradation

PARSONS

 $\langle \cdot \rangle$

Consistency vs. Blowcount / Foot

Fine Greined (Sitt & Clay)

V. Soft <2

Son: 2-4

M. SEFF: 4-B

S67: 8-15

V. Stiff: 15-30

Hard: > 30

and - 35-50% some - 20-35%

little - 10-20%

trace - <10% moleture, dansity, color, gredation

Granular (Sand & Gravel).
V. Loose: 0-4 Dense: 30-5
Loose: 4-10 V. Dense: >50

M. Dense: 10-30

Sample Types

S - SpEt-Spoon
U - Undisturbed Tube

C → Rock Core A → Auger Cuttings

moisture, density, color, gradatio

4					Soil Boring Log			
	OUTUY LIBA				INSPECTOR: F, ACCORSI	BORING/WE	ELL ID: PAR-72	
PRO IEC	CLIENT: <u>USA(</u> T NAME: <u>FTM</u>		77-0	711	DRILLER:	LOCATION DESCRIPTION		
PROJECT LO		TITIS	J J 107		WEATHER:	LOUATION	DEGUNIF HOM	
4	ication: Iumber: 7488	40.			CONTRACTOR: GOLDEN & CD	1		
	GROUNDWATE		PHOITA		RIG TYPE: Geoprobe(R) 7822DT	LOCATION	DI AN	
•	3ROUNDHA: L	K ÓBSEM	AHUNG		DATE/TIME START: 1/-6'-1'7	Oceanport, N		
WATER EVE	• •				DATE/TIME START: 11-6-17	Coosings.	16ti Jacoy	
WATER LEVE	L:				WEIGHT OF HAMMER: NA	1		
TIME:				, -	DROP OF HAMMER: N/A	†		
MEAS. FROM					TYPE OF HAMMER: N/A	1		
DEPTH	SAMPLE I.D.	BLOWS per 6"	ADV/ REC.	PID (nnm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS	
(feet)	1.0.	pero	60/1	(ppm)	0"-18" same	 		
		<u> </u>	157	./				
1				2.8	18" . wet blk -or bon & SMA		weto	
				X10	18" wet, blk-orbon, f. SAM, some Silt	,	welto 12/=1.	
				0	1		1,2,1,	
ļ 				0	-			
3	,			0	-			
				()				
1 4				0				
				U				
<u> </u>								
5	`				END OF BORING @) 15 FT.			
		ļ						
				-				
	-					.]		
	-		:					
			_					
9								
0								
Remarks:								
Sample Types					Consistency vs. Blowcount / Foot			
3 - Split-Spoon U - Undisturbed T	ha				Granular (Sand & Grever) Fine Grained (Sh & Clay)		nd - 35-50% me- 20-35%	
C Rock Core					Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stift: 15-30	6	itte - 10-20%	
A - Auger Cutting	•				M. Dense: 10-30 M. Stiff: 4-8 Hard: > 30		aca - <10% lensity, color, gradation	

Soft 2-4

M. Stiff: 4-8

V. Stiff: 15-30

Ettie - 10-20%

trace - <10%

PARSONS

C -- Rock Core

- Auger Cuttings

PARSONS

Page 8 of 16

moisture, density, color, gradation

PAHSUR	12					Page	<u>1of</u>
					Soil Boring Log		-
PROJECT LO	CLIENT: <u>USA</u> IT NAME: <u>FTM</u> ICATION: <u>FTM</u> IUMBER: 7488	M - ECP	72-2	11	INSPECTOR: F. ACCORS DRILLER: S', FOSTER WEATHER: CLOY: 50'S CONTRACTOR: East Coast Drifting, Inc. (ECDI)		ELL ID: PAR-72- 3 CREEN +08 DESCRIPTION
	GROUNDWATE		/ATIONS		RIG TYPE: Geoprobe(R) 7822DT	LOCATION	PI AN
WATER LEVE DATE; TIME;	L: <u></u>	5PT.	-		DATE/TIME START: //* 7-/7 //30 DATE/TIME FINISH: // - /7 // // // // // // // // // // // //		
MEAS, FROM: DEPTH	SAMPLE	BLOWS	ADV/	PID	TYPE OF HAMMER: WA	<u> </u>	
(feet)	I.D.	per 8"	DEC	/·	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
. 0			60/40	0	6-3" TOPSO N. 3"-5" ASPUMAT 5"-40 Moist bry cm f SAND Some Mf Gravel, L. clayeysil		
1				0	some mt Grave L. Clayersih	}	
				0	, , , , , , , , , , , , , , , , , , , ,		
2				ð	·		
				0			
3				Ø			
4							
5			60/50	0	0.50 wet bra-gra-blk, mf SAND, Li ziltycky		WETOS'
6				0	SAND, Li Bilty Clay		
				0			
7				0			
				0			
8				0			
				0			
9				0			
10			-		END DE ROALLE SO IN IN		
Remarks:				_	END OF BORING @ 10 PT		
Romale Trans							
Sample Types S Split-Speen U Undishirbed Ti	<u> </u>				Consistency vs. Blowcount / Foot Granular (Sand & Gravet) Fine Granular (Sift & Clay)		nd - 35-50%
U Undisturbed 11 C Rock Core A Auger Cuttings					V. Loose: 0-4 Dense: 30-50 V. Soft: <2 Stiff: 6-15 Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 16-30 M. Dense: 10-30 M. Stiff: 4-8 Hard; > 30	Er Dre	ms - 20-35% 1tfe - 10-20% ace - <10% lensity, color, gredation

					Soil Boring Log		
***						BORINGAVE	
	CLIENT: USA	DE			INSPECTOR: TOM HORD	PAR-72-211-SCREEN 09	
PROJECT NAME: FTMM - ECP					DRILLER: E(D) WIUS REWE	LOCATION	DESCRIPTION
	OCATION: <u>FTM</u>				WEATHER: CIRAR, SSOF	GRAS	SY ALEA
PROJECT	NUMBER: 7488	10-			CONTRACTOR: Eest Coast Drilling, Inc. (ECDI)	<u> </u>	·
	GROUNDWATE	R OBSERV	RNOITA		RIG TYPE: Geoprobe(R) 7822DT	LOCATION	PLAN
					DATE/TIME START: 11-21-17 / 1175	Oceanport, N	lew Jersey
WATER LEV	EL:				DATE/TIME FINISH:	l	
DATE:			,		WEIGHT OF HAMMER: NA	1	
TIME:					DROP OF HAMMER: N/A	1	
MEAS. FROM	SAMPLE	BLOWS	ADV/	PID	TYPE OF HAMMER: N/A		
(feet)	I.D.	per 6*	REC.	(ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
0	6000000	2 P	36/60	0.0	SILT, TE GRASS / ROOTS		
			, , ,	0.0	MOIST DENSE DRANGE TAN SILTY SAND		
1				0.0	1		
				0.0	samoy sict, re asm.		
2				0.0			
		_		0,0			
3							
	 				NO PECONERY		
4					1		
5			48/66	0,0	MOIST MOD STIFF GRAY-OLIVE		•
			765	0.0	SANDY SILT		,
6				0.0			
				0,0			
7		<u> </u>		0,0	MOIST V. DENSE REDDISH - BROWN SILTY SAND		
				0,0			
8				0.0	MOIST DAWSE GRAYBROWN-ONLY SILTY SAMS, LITTLE UF GRAVEL		
				0,0			
9	<u> </u>				14.0		
			_		NO RECOVERY		
10							
Remarks:	-			-		·	
Sample Types					Consistency vs. Blowcount / Foot		
8 Splt-Spoon U Undisturbed C Rock Core A Auger Cutting	Tube		***		Ginnuter (Send & Grave) Fine Gratinod (Sitt & Clay).	to be	nd - 35-50% me - 20-35% tile - 10-20% see - <10%

	_				Soil Boring Log		
CLIENT: USACE					INSPECTOR:	BORINGWELLID: 以上一子Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-Z-	
PROJEC	T NAME: FTM				DRILLER:	LOCATION DESCRIPTION	
PROJECT LOCATION:					WEATHER:	GRASSY ARRA	
PROJECT NUMBER: 748810-					CONTRACTOR: Cascade		
GROUNDWATER OBSERVATIONS					RIG TYPE: Geoprobe(R) 7822DT		
					DATE/TIME START:	Oceanport, New Jersey	
WATER LEVEL:					DATE/TIME FINISH:		
DATE:					WEIGHT OF HAMMER: N/A	7	
TIME:					DROP OF HAMMER: N/A	7	
MEAS. FROM:					TYPE OF HAMMER: N/A	7	
DEPTH (feet)	SAMPLE I.D.	BLOWS per 6"	ADV/ REC.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
10			48/60	0.0	WET U. COOSE UT. URANGE-		
			,	0.0	GRAY TON SILTY SOMO, LITTLE		
1			0.0	F-M ROWNORD GRAVER		•	
				0,0			
_2				0.0			
				0,0			
3				0.0	WET OK GAM STIPF CLAMEN		
				0.0	7,01		
4					INO RECOVERY		
				· .	end of boring	1	
						1	
в							
7							•
8	<u> </u>			i ·			
9							
°							
Remarks:							
Sample Types					Consistency vs. Blawcount / Foot		
S Split-Spoon U Undisturbed T	ube				Granutar (Sand & Gravel) Fine Grained (Sitt & Clay) V. Loose: 0-4 Dense: 30-50 V. Soft: <2 Stift: 8-15	and - 35-50% some - 20-35%	
					Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30 M. Dense: 10-30 M. Stiff: 4-8 Hard: > 30		o-10-20% o-<10% (

30.50

ML S6ff: 4-8

V. Dense: >50

M. Dense: 10-30

C - Rock Core A - Auger Cuttings

SHE ALIS

V. Stiff: 15-30

some - 20-35% Elife - 10-20%

moisture, density, color, gradation

ī. •**.**

moisture, density, color, gradation

moisture, density, color, gradation

moisture, density, color, gradation

Page 12 of 16

moisture, density, color, gredation

PARSONS

Soil Boring Log							
CLIENT: USACE					BORINGAWELL ID: PART		LID: PAR-71
PROJECT NAME: FTMM - ECP					INSPECTOR: FCACCORSI DRILLER: 5, FOSTER	LOCATION D	
PROJECT LOCATION: FTMM Parcel 7.2-211			7.2-2	<u> </u>	WEATHER: CLDY 60'S	1	
PROJECT NUMBER: 748810-					CONTRACTOR: East Coast Drilling, Inc. (ECDI)	1	
	GROUNDWATE	R OBSERV	ENOITA		RIG TYPE: Geoprobe(R) 7822DT	LOCATION P	LAN
					DATE/TIME START: 11-6-17 130 0	Oceanport, Ne	
WATER LEVE	il; 🛠	7,5 8	7		DATE/TIME FINISH: 1/-6-17 1410	1	
DATE:					WEIGHT OF HAMMER: N/A	1 .	
TIME:					DROP OF HAMMER: N/A	1	
MEAS. FROM	:				TYPE OF HAMMER: N/A	1	
DEPTH (feet)	SAMPLE I.D.	BLOWS per 6"	ADV/ REC.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
0			60/30	0	0-5" 4005011 EU 20" (MA) ST 1 A CAUD 1" HA.		
				0	f. Gravel, L. silty Clay		
1			ļ }	0	+, bravel, c. silly Clay		
			-	O	Í	1	
2		ļ		O	- a salv Acam		
	ļ			0	30-50 Misst, but M+QMNU, some		
3		ļ		0	30"-50" mist, brn m-f &AND, some silty Clay		
<u> </u>				O	_ '	[
4				~			
			60/0			 	
5	<u> </u>		10	0	0-60" SAME		
				9			
6				-	·		
7				9	·		
*				ð	WET AT 8 PT		
8				0	WE ! A! 8		;
				0			
8				0			
				ď	·		
10	-						
Remarks:		· .				<u> </u>	
Sample Types					Consistency vs. Blowcount / Foot		
S Spit-Spoon U Undisturbed Yube C Rock Core					Granutar (Sand & Gravel) Fine Gratinod (SiR & Clay)	eome Little trace	- 35-50% 3- 20-35% 3- 10-20% 3- <10% 15%, color, gradation

PARSONS

PARSONS

moisture, density, color, gradation

()

bace - <10% moisture, density, color, gradation

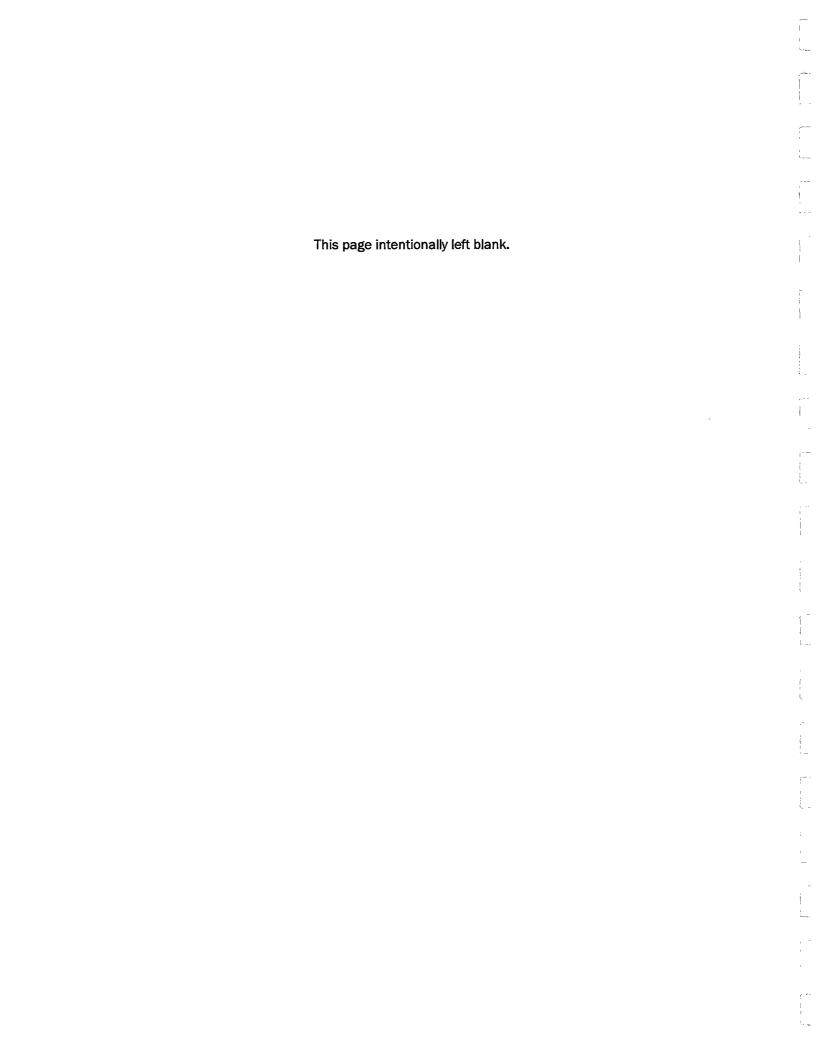
Soil Boring Log							
						BORINGWE	
CLIENT: USACE					· — — — — — — — — — — — — — — — — — — —	PAR-77	-211-Tmw-08
PROJECT NAME: FTMM - ECP						LOCATION D	ESCRIPTION
PROJECT LO	CATION: <u>FTMI</u>	M Parcel			WEATHER: CLAR, 55°F	CONC	4 ARCA
PROJECT N	IUMBER: 7488	10-			CONTRACTOR: East Coast Drilling, Inc. (ECDI)	وديمون	7 10-02
•	GROUNDWATE	R OBSERV	ATIONS		RIG TYPE: Geoprobe(R) 7822DT	LOCATION F	LAN
					DATE/TIME START: 11-21-17 (050	Oceanport, N	ew Jersey
WATER LEVE	L:		•		DATE/TIME FINISH: 11-21-12/1120		
DATE:					WEIGHT OF HAMMER: N/A	1	
TIME:					DROP OF HAMMER: N/A	}	
MEAS, FROM:					TYPE OF HAMMER: N/A		
DEPTH (feet)	8AMPLE I.D.	BLOWS per 6"	ADV/ REC.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
0		P	1.1		DRY DK BROWN MOD DENSE		
-			160	0.0	SILTY SAMO TR GRASS/ROUTS		
				0,0			
1				0,0	DRY LT. ORNW-GRY BROWN		
				0,0	STIFF SOWOUS SILT		
		 	 	0,0			
2	****			0.0			
				0,0	_		
3				0.0		 	
				0,0	moist back-ourse-com-		
			·		BERUN STIFF SAVOY SILT,	1	
4				0.0	TRMIRORIDES GRAPEL		
				0.0			
6			60/	0 -	MOKE U GTIFF OLIVE-GRAY-		
			60/60	סימ	action sonoy silve to F Romans		
				0.0	MOIST U.STIFF ONLY -GRAY- GREEN SONDY SILT, TR FRANCES GRAVEL		
6				0.0	·		
				0.0			
7				0,0			
				٥٠٥	MOIST VETTER OLIVE GRAY:		
8				0,0	GREEN SIUT LITTLE CLAY, TRESOND		
	_			0,0			
8				0,0	WET DUR-GEAT-GLEKN V DENGE		
				0.0	SICTY SOND, TR IN GRAVEL		
10				· , -	·	-	
Remarks:							
Sample Types	·				Consistency vs. Blowcount / Foot		
U Undisturbed Tube V. Loc					Granufar (Sand & Gravel) Fine Grained (Silt & Clay)	500	rd - 35-50% no- 20-35%
					Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30 M. Dense: 10-30 M. Stiff: 4-8 Hard: > 30		ne - 10-20% ce - <10%
							ensity, color, gradation

0,0 end of boring Remarks; Sample Types Consistency vs. Blowcount / Foot Granular (Sand & Gravel)
V. Loose: 0-4 Dense: 30-50
Loose: 4-10 V. Denso: >50 3 - Spit-Spoon U - Undisturbed Tube Fine Greined (Sin & Clay)
V. Soft <2 Si Stff: 8-15 some - 20-35% - Rock Core V. Stift 16-30 iide- 10-20% M. Stift: 4-8 - Avger Cuttinos AL Dense: 10-30 Hard: > 30 moisture, density, color, gredation

WET DK GRAY Blow BLACK

STIFF CLOURY SILT, DE UFFORM

0.0


0 10

00

0.0

____8

1 9

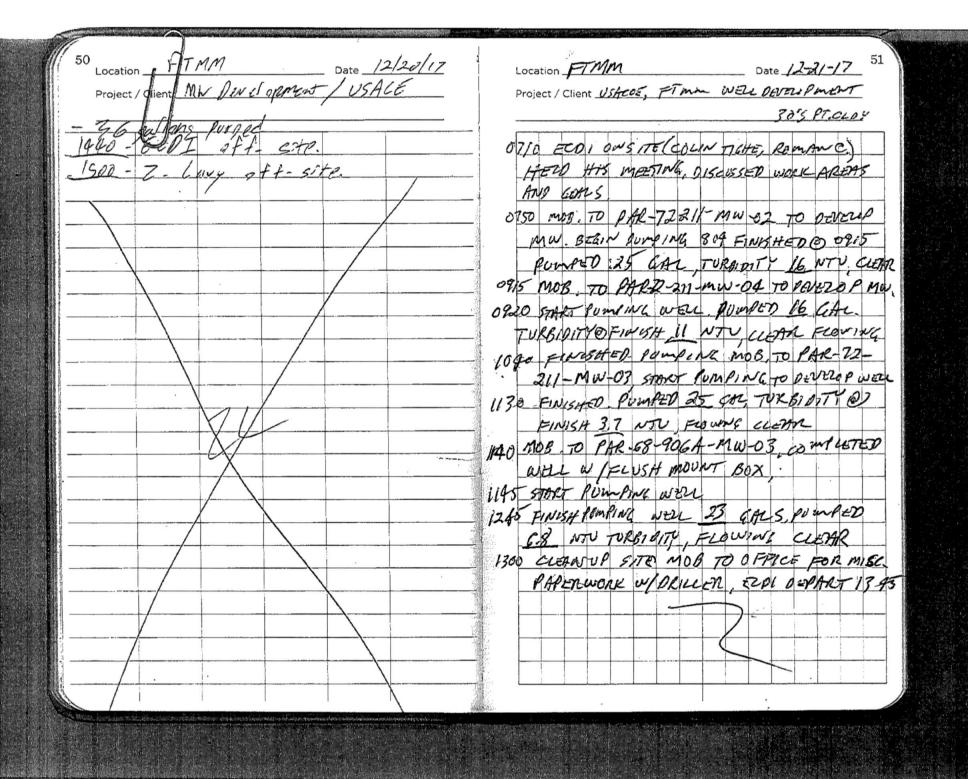
Attachment C Field Notes

Nov. 3 2017 (cont.)	Nov 6 2017
1501: Begin PID screening PAR-79-490-SCREENZ 1505: 4.3 ppm at 50.544 13.6 at 7 ft	personnel: F. Accorsi, B. Dietert, ECDT, C. Grill
1505 : 4.3 ppm at 0.504 13.6 at 7 ft	Task: Gw Sampling & Soil Sampling, PID Screening
170 ppm at 15 ft, 302 at 2ft, 57 at 25ft.	at UHOT, Parcel of IRP Sites.
505 ppm at 3ft, usz ppm at 3,5 ft	Weather: (05-75°, partly cloudy, showers
T. 32 ppm at 4 ft, 302 ppm at 5 ft.	passing in affection
144 ppm at 5.5 ft, 5 ppm 6 ft, 5 ppm 6.54.	0740: ECOT on-site
2 ppm 7.8t, 2 ppm 7.58t, 0.7 ppm 88t,	0800: Hrs meeting
Oppm 8.5-10 ft	0830: Load Equipt + supplies, Calibrate PTO
1530: Left hole open for possible GW	(Geopode-ECDI, Teflon bailers, Mini-Rae
Sampling later	3000 PID)
1535 : Back to office.	0845: Mob to Par-72-211+228B
1550: Unload cooler, COCs, Quality	0900: Begin drilling PAR-72-228-58-04
Control Report, Clean-up	0915: Start PID screening PAR-72-228 228B
	0921. No PID recordings 70.0 ppm ~ 0-10ft
	0927: Collect sample, PAR-72-228-6B-04-
	7.5'-8.0', SPLP 2-methy!
#	0935' PAR-72-228-SB-OY decommisioned,
	backfilled with soil cuttings.
11/3/17	0940: mob to PAR-72-211
BD	0945: Start drilling PAR-72-211-SCREENI
	(no sample)
	0953: Begin PID screening SCREAN
	1010: 11.5'=3.6ppm, 12-12.5'=17ppm, 0.0ppm
	all other intervals to 15ft.
	1020: Decommisioned SCREEN I backfilled
	W/soil cuttings. 1027: Start drilling PAR-72-211-SCREEN2 (no sample)
1	1027: Start drilling PAR-72-211-SCREEN2 (no sample)

Militaria in the

AND DESCRIPTION OF THE PERSON
· ·	
(cont.) Nov. 6 2017	
10021 Degla PID screening PAR-77-211-Schoe, 10	1325: D. (cont.) Nov. 6 2017
1038 - 11-11.5 = 9(0 DDM 1 11.5 -D 0 = 152 and	1325. Decommisioned PAR-72-211-SCREEN4
12-12.5=96 ppm, 125-13.0=7 ppm,	backfilled with soil cuttings.
13'= 90 ppm 13.5'= 4.5 ppm 13.5-15C+ 0	1330: Lunch
13=90 ppm, 13.5=4.5 ppm, 13.5-15ct=0ppm, 0-11ft=0ppm.	13-13. Start arilling PAR-72-211-TMW-04
1100: Decommisioned SCREEN 2, backfilled	1356 Begin PID readings Tmw-04
w/soil cuttings.	1410: No PID recordings 20.0 ppm ~0-15ft.
1105: Start drilling PAR-72-211-SCREEN3	1920 · Collect Sample, PAR-72-211-Tmw-071-11',
1123 : Begin PID screening SCREENS	VOCS+ TICS & SVOC +TICS (high turbidity sitt)
8.5'=14ppm, 9'=108ppm, 10'=4ppm	1422: Start drilling PAR-72-211-TMW-03.
10.5 = 2.5 ppm, 11.0 = 2.8 ppm,	1436: Begin PID readings Tmw-03
Oppm_11.5'-15'	1443: No PID recordings > 0 ppm ~ 0-15ft.
1156: Start drilling PAR-72-211-Trow-ole	1445 : Start drilling PAR-72-211-TMW-0402
1200: Decompisioned PAR-72-211-SCRRENZ.	1458: Begin PID readings TMW-29 30 WL=8"
backfilled w/soil cuttings	1500 : Decommisioned TMW-014, backfilled
1202 : Begin PID Screening PAR-72-211-TMW-06	with soil cuttings. 1515 : No PID recordings > 0 ppm ~ 0-15ft.
1224: No PID recordings >0.0 ppm ~0-15ft.	1515 NO PID recordings > 0 ppm ~ 0-15ft.
1230: Collect samples, PAR-72-211-Tmw-06-12,	1320 . Cotteet Samples, PAK-72-211-TMU1-24-11
VOC +TICS +SVOC +TICS WL=10.3',	VOCS+TICS & SVOC +TICS (High NTU: silt)
high turbidity (silt)	1550 : Collect samples, PAR-72-211-TMW-27-11
1236: Start drilling PAR-72-211-SCREENY	VOCS + TVCS & SVOC + TICS WL= 8.2
1255 : Begin PLD screening SCREENY	1620: Mob back to office cocs,
1300: 10-15 sleeve jammed retrieved most	Unpack Coolers, Quality Control Report,
of sleeve with rod.	Clean-up. ECDI departs
1305, No PID recording - 00-	1630: TMW-02 + TMW-04 Brited painted
1305: No PID recording > 0.0 ppm ~0-15Pt	incorrectly on ground. Referred back to
1312; Slow recharge on TMW-O(s resiting to collect 11 SVOC sample.	drawings to confirm. Corrected logbook
sou sample.	and sample labels.

	~
Nov. 7 2017	Nov 7 2013 (2011)
personnel: F. Accorsi, B. Dietert, ECDI (Sean, Roman)	high PID readings 80 Nov. 7 2017 (cont.)
Joseph Supplier PID expenses	-Justification For eliminating Tmw-05,
MT UHOL, Paccel of TRD Sites -/	Julian no PID hits on Tow-02, 03, 4 04.
FIU screening at Parcel 77 + Gill Sangeline	Eliminate SCREEN 5. 6, and 7,
The INDETO-LACCE (AX INST 901.)	Move SCREEN 7 & SCREEN 5 South
Weather: 45-55°, partly cloudy, aftermon rain	of Bldg. 211 near Sherrill Avert rename.
	· Justification - Delineate south of
0755: H&S Meeting, Discuss Agenda	bldg. 211 since SCREEN 1,2,3 indicated
0825: Load Equipt, prep bottles y coolers	high PID readings, Label well
Calibrate PID (mini-Roe), Geoprobe (ECNI)	high PID readings. Label well South of SCREENZ Thw-07, do PID
Disposable Teflon Bailers. All GW	- Screening & collect GW samples (voc. svoc)
0825: ECDI to Lowe's For supplies.	Label well approx. 30' South of Superila
0845: Mob to PAR-72-211	SCREEN 8-coilect PID reading but no
- pickup decon supplies (bogs, down)	GW Somples.
0850: FCDI back at FTmm. Warm-up Geoprate.	0940: Contacted Utiliquest for dig-safe
10900: Begin drilling PAR-72-211-Tmw-05	mack out . Earl from offsite
0915 : Start PLD screening TMW-05 WE=75'	0945; No PID readings > Oppin ~O-10Ft
0916: 211-Tmw-02,03, and ob	\sim 0 1 \sim 0 0 \sim 0 0 \sim 0
decommisioned, backfilled with	0950 : SCREEN3 GPS location marked
soil cuttings.	incorrectly on map Actual screening
. 0920: Spoke with Julian about Charge	location is approx. 10' south of garage
of agenda at PAR-72-211	bldg directly adjacent to concrete pad.
Sullian Of agenda at PAR-72-211 - No samples at TMW-05, andy PID	1000. Decompaisioned TMW-05, hackfilled
Screening MO-10ft Kalacata	hale with soil cuttings, decon Geoprate
SCREELS + South of screen 2	1040: Utiliquest on-site, marked utilities
since screen 1,2, and 3 indicated	1100: Start drilling PAR-72-211-TMW-07
	1107: Begin PID screening TMW-07


Nov 7 2017 (cont.)	
1115: No PID > 0 ppn ~ 0-10 ft. WL=5.05'	Nov 7 2017 (cont)
HE HO DEOPLOSE NOOD OFF TOULD OF DECOM	1335: Collect soil sample, PAR-72-90, A-5807-5.5-6.0',
1125 · Collect samples PAR-72-211 =TMIJ-07-10	Unfrac EPH or Naph, 2-Methyl (Extract of How)
VULLTICS + SYOC +TICS (High ATTI-SILL)	1340: Decon Equipt & Geopratice. 1342: Decommision SB-07, backfilled with
Chocalate Milk	Soil cuttings.
1135; Begin drilling PAR-72-211-SCREENS	1345: Start drilling PAR-68-906A-TMW-03
1130 : NO PID > O DOM ~ O-10 Pt 1:11 = 5 0'	1350: Begin PID screening WL=7.4'(Tow-03)
to the decon process and to hash	1353; Decon Geoprobe
is to office to don off	1357; Begin drilling PAR-68-906A-TMW-0480
samples for lab courier.	1403: No PID > Oppm ~0-15ft Tmw-03
1230; ECDT back on-site	1405: Coilect Sample, PAR-18-9010A-TMW-03-11
1235: Mob to Par-LAB-906A	VOC+TICS & SVOC+TICS (Turbid-light brown)
1237: PAR-72-211: TMW-07 & SCREENS	amber colored.
decommoisioned, backfilled with soil cottings.	1415: Begin PID screening TMW-2450, Decon Geoprobe
1255: Start drilling PAR-68-906A-SB-07	1920. Start drilling Traw-250 hole drilled
1300 Begin PID SB-07 (partial recovery)	approx. 3 ft SE of mapped location
3=81 ppm, 3.5=45ppm, 0-3=0ppm	due to concrete ramp.
3 00 ppm, 5.5 = 174. (=175	1440: No PID bits 70 ppm TmW-05 ~0-15ft.
Tppm, 7=46ppm, 75=24ppm	1448: Callect 5
Dom II- Oxxxx	1448: Collect sample, PAR-68-906A-TMW-05-10, VOCS+TICS & SVOC + TICS CHIGH NTU:
11.3 =13 =() Dt W	da "Chocolote" color
1325. Collect soil sample, PAR-68-946A-58-02-	1505: Begin PID Screening TMW-04 W1=5.5'
1.3-2.0, Untrac. EPH & Naph, 2-methyl	1511: No PID hits > 0 ppm ~ 0-15 Ft
(Stroct 9 Hold)	1520", Collect Samples, PAR-68-906A-TMWOH-10"
1328: Collect soil Sample Pac-18-906A-58-07-115-12.0	VOCS+TICS & SVOC+TICS (Tubid-light
Unfrac EPH & North, 2-Methyl (Extract + Hold)	brown-ambor color)

Location FTmm _ Date 11-21-17-Project / Client _____ V Sact PAR-79-490 BORING/Thme. WELL INSTOLL 0730 mer FB AND NL ONS. 244, Dem reau occames 0915 crew org 182 H +5 KICKORY WELOW 0340 Claw TAKES on usace Top onsones TONK CANBEROK PID, NI TO PENEROP WELLS 0900 FA (45)5 (PEN TO PSE-79-490-THW-08 prologio warner. 0930 BLOW DUST-MIND COL SOM BOLING GAMES pero ofenesery were instantion of Thu 08 westron 09 45 cean justons tend, were 1" puc scennes from 0-12', massiet a 45 oru 868 1000 PRIOCEST TO PAR 74-490-SCREEN -03 WEATTON 1015 celow was RIG FO REGUENZ 10th covice on somece Real This 08 :030 CEW COADS EQUIPMENT, F.A. LEADS US TO RAR-721-211 - Toma - 08 LOCASTON 1050 BEGIN PUBLICA TO 70'. 1105 CREW DIRECTED TO INSTORE THE TEMP. where mw-08 with the screen erom 8-18 665 BASSA YEN RUNGIN DE DAT BORNES. 1175 Jean RELOCATES TO PARTY 2-211 Secting M3 HANG ROR SCREEN LOG.

Location	Date 10-21-17_
Project / Client USA	ca TI
PAR 72-211 BORM	5/ Theme / MW INSTANS
1145 Denues REGS	e toe wan
2155 courses on	SAMPLE RPOM PAR
72-711- Tone	28
1210 PROVIDE NI W	1774 114 1540 64
1230 CRW RETVENT	lar ws Tou A Trom of
man Tar well Par-	773
1245 BEOIN BYGEEN	76-211-mu-1
CUMMER THAT EMERI	CO TO
APPEARED MOSS	
THOSE COMOIST DE BEO	WW Saray SICO
5 70 W	ocer onve-crean-appro
SILT, Some sono, 86	POLEUM-LIKE GOOR
PIO RESPONSE OF	17 8 ppm, TO 65.0 ppm
1330 AT 15', CUTTING	18 assesses as office
GREEN-GRAY SILTY	mo PESED ODDAND
PID PESSINGS RANGING	ekon 750-3620 pom
1345 AT x17' worke	EMERGED, CUTTINGS WEEK
WET, OTHER BEAR REQU	misur am primare
PANCED Prom 95,0-126	2
1355 A5 22' CREWY	PISSES THE COLUMN
INSTONS 10" OF 7"	5000
PULING AVOGES, 80	15 SLOS SCHOOL STATE
11-71'-262 0,50	Canal Street
11-21'-BGB, RISER YO	ocarre sono russa -
MOUNT BOX CONTIN	2 A D Jack It mores
SAND From DZ BLS	
William .	In war

Location Date 11-11-17 Project / Client US ACA Project / Client _____ par-72-211 1410 ADD 4th BSG OF HT MORE WARLE print 3rd praca prious. 1925 ADD 7th gat From Boto #0 macre 1440 ADD BENTONITE 3/8" HOWEWO CHIPS # (more kon sow to 11' (TOPORCEEN) # 0 moese to 10. BG BENTOWIR TO 1'BO. 1500 QUEST MOUNT BOX - PROOFER INE CASING INSTALLE WITH CONCERN COLLER. TWO DRIMS OF CUTTINES 1515 Oku caros Egurameno upaso BACK TO STAGN & SELS 1530 complete RAPERWORK INCUOING CHANG OF CUETODY FORMS FOR ANAUTICAL SAMPLES COLLEGED TODAY AND DAILY REPORTING 1600 DERSOT THE SUE

	8
12-20-17 MW ABANDOW MENT/COMPLETION/DEVELOPME	
= 0703 ECOI ARRIVED (K. ATWOOD, T. MENAUY, C. TIGHE,	
- ROMAN C.). HELD H+3 MEETING, OBENSSED DAYS	
ACTIVITIES AND GOARS, CREW I W/FA TO DO WELL	10130000
ABAMBONMENT, WELL COMPLETION OPER-72-211	a substitute
PORCLEW 2 (ZOHAR, COLIN, ROMAN) MOB. TOPAR-79-490-	- danied
MW-03,02 TO DEVELOP/COMPLETE MUS CREWI MOB	-
TO M5 MW18 TO ABANDON WELL, REMOVED 21 FT	Common
OF 4 IT. PUL SCREEN + CASING, 18 FT. DERP. GROUT	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
MIDIURE: 35 6. H20 W/4 BAGS (94 16) PORTEMP	
TYPE II, 8:1 RATIO. GRAVITY TREME GROUTED HOLE	A COLUMN TO A COLU
(FUNNEL+PIPE) FROM BOTTOM UP.	F.
0900 MOB TO M5MW19- (SAME AS MW18). WILL LET	0.20
SETTLE OUT AND CHECK AND TOP OFF, IF NEC. 2 HRS	
1010 CLEAN UP STEES, MOB TO PAR-72-211-MW-02 90	1
COMPLETED WELL W/FLUSH MOUNT BOX, NOT	
DEVELOPED (CREW 2 WILL DO 12-21)	
1100 MOB TO PAR-72-211-MW-04 (SAME AS MW-03) CON-	
PLETED, NOT DEVENOPED.	
1150 CLEANUP SITE LUNCH BROKER	
1230 MOB TO PAR-72-211-MW-03 COMPLETE WELL	
W/STEEL STICKENP RISER, concret PAD, DEVELOPED	Assessed .
PANO WELL FINISHED, CLEANED UP 3 TE BOB TO	
B. 699, CLEAN UP SITE, LOAD MATERIAL,	
WET PARSONNE WORKLER IN ORDER	<i>y</i>
(PERMITH'S, ETC.) CHEOK SETTING OF ABOND.	
WELS-OK	259
1700 EZDI DEPANT	
	P.

Date 8-7-18 93

8800 OWSITH, WASTER, CHESE, 90°F; show o MEST FA + A-FM GWS/TE. 0830 Has KICKON MERTING TOSICS. TODAY private HAST STEERS, Commight corner, DRIVING SAFERY BYD MICKS 0845 CAMBOSSE Exp ponens Rose USC WITH LOW KNOW CAMPINE PROVED FOR TODAY. 6930 HEAD TO PAR 72, 11 15 COURS PAR 72-211-6W-MW-05-120 1151 ONEET RAR-72-1211- Gw-ma-04-10.0 1300 concer RAR- 72 -211-60- MW -02-11.4 1436 wills PAR 72-211-6w - mw -03-8,5 1436 couler PAR 72-211-6w-MW-103-8,5 process of ese-72-211-6m - am - 03-85) (DOD, MARLY WILLOWS IN S/ MSO vorines HERE). THE EQUIPMENT BLOWE WAS COLLECTED AT 1350 1530 of how the law owner for payren AND WHER SAMPLES AGAST THE COL. 1600 UAS COUPTER NOT ON SITE. CAN ofe PINE Equipment. Presse Reports pur prows Gero what SULLONGE FOR JOHN REDA 1200 aceses store

3-28-19 from m locesuport 318 M comm locurpoes Grains unage sousism -low from condon Glarouparce gampino 0700 TH, AN, FA pour Kine of RARGORS, WER AND 1010 Kerrey to site. MILL Ream CASCAGE ONT LOTE, WENDYER: 33 0 F 1015 BEEN PUBLIAT por mw-281R FOR 385' GRAS - 50054 WIND O-5 mets, cusse, Ofen Revers Them obstersonors to the low-from 5785 ASS KACKESH WELLOWE FORKS INCHAR STUBB PROTECTION, HOSPIAN ROUTE AND Clamerical some wor paper succes. 1035 FA COURD TO DONSE THAT ACOE REQUESTED 5) TVATIONAL AWARENESS A "VERY-LONG PURCE" AT THE TWO LOCKTIONS IS. 0730 TH /AV CAYBEARE 4575 The GAS-SORDING AND THE MOSE HOME ARESS" TO OTYS THE PA CAREK BOMPIE BOTTLES ENSULE THAT COW - AS POSSIBLE NESIOTY READINGS From Blandwoode-Somprive compresses ARE ACHIEVED FOR THISE YESTERDAY AGATNST TOC ENAMES. 1126 AV cougers somere Flow mw-41-385 U BOD CONTINUE YSI CALBRATION, 1145 THOULES SAMPLE REAN MWZELE-385. 0810 PROMOR FA 2 TRIP-BLANK SENT 1205 pv 840,003 PURGING AT MW-41-14.4 FOR INCLUSION TO THE GAMPLE WOOLE 1230 TH BEGINS PURGING AT MW-40-40 for THE ALS COVERED PRESUP SCHOOLS 1251 A V coulus somere some -41-149 POR THIS MARINE, 1370 TH COULIS SOMEL BUT MIN -40-40 OBJE CAN IC TO DISCUSS REFERENS 1330 CPW CHANGS -UN WOLK JONE AND CENEDUK. Coulcos 0400AS-TO -BOTTOM OF THE WELLS 0830 comprese 451 AC, Plan Two IN THE DERA. Brader fumps us up yesteday 1350 DE PART TO THE GARAGE TO DECON & RIMPS 0850 COULET FIELD BLANKS FOR VOISTING SETS AMO PERRORM PH CHECKS ON YSI MIT. (8260C pro BOTI) AND TWO 1-LITER AMBER 1400 OLGON Z PUMPS BOTHER FOR 82700 57 m 1405 PHELORIM PH CARERS ON YS, INSPERIMENTS 0 900 INSTAU NEW BRODGES TO THE FIMES 1430 H /AV HAD TO PACKE 34. 0730 ARMER AT DIES IN SEE UP PUREINT SYSTEMS 1950 TH /AU SET UP POR PURCING AT PAPER 0955 AV SEEMS PURING DO MWY, PROTECUES 34 FOR MW-OIR Samp MAG these DERD ON THE pump contract boxen/compression 1505 TH HELDSTO PARCELL JR AS AN BEOMS TRESTOR FOR PERGUMENT BOOTERNES PURBE AT PARCE 34 -8 lw 3-28-49 3-28-19

FTmm /oczannos Form Journages 3.29 18 cow from Grandware Somerma SOTE PILE SAMPLING 1530 TH SETS UP AT PARCEL IT FOR 0700 TA FAK Me pino CASCAGE CREWS 3 Bosen of mwoi ENT, HE WESTHAR ONELESST YOUT 1540 MBEGINS PURCE AT MW-01. 1076 HAS KICKOH TOPICS INCUDE -1645 AN COLLECTS SAMPLE AT PARELLEY UNION WALKING SURFACES, HEAVY LIPOTATE PAR-34-ON-2567 MWOIR-7.6 AS CASCADE WILL BE DEMOBING TO ANOTHER 1700 TH COLLEGE SAMPLE AT MWO1: CONTRON, FA AND TH. TO COURES COMPOSINE PAR-77-211-10-01-16.7 MENE -CHIERCEL 7 Some somples 1730 TH AN PLACE SAMPLES IN REFERENCEATER stom NOV-AAZ AND HAZ 5076 STOCKPILES IN BROG 563. From PIMM-02 1745 CHAN AND ORGANIZE EQUI PHENE 0730 FA /TA HEAD TO BLOG 563 FOR GW AND CHELL RAPERWOLK INTHE SOLFTON Samore mont General. GARAGE 0830 Delow WASTE PILE GAMPLING Equipment 1800 OFFSTAL FOR THE DAY 0900 SEND SCANS OF PARENOCK TO JC. 0930 AT ALLA 7 0935 courses wowhere sample TO 3 B-02 THES AND ONE YOUM C VIAL WITH METHAND PERSONNE, THIS HOLDS THE 5 m/ of sore. 1600 HAT PICE SAMPLE COLLECTED 1930 COMPLETE CHOSE OF CUSTORY 1050 CALL OFF PINT ROUPING REMORE 100 TOM HOLN OHSIOC, SHE SHEATH TWO PAGES ASES OF THIS PAGE FOR to carrow justs of WASTE CHARLERIBATION 5 Ang US COLLECTER GOSTY. 1-23-69 lu 3-79-18

Frmm 22/PAR 72 Date 6/13/19 123 Location FTMM-22 ____ Date _ C/12/19 Project / Client _ Project / Client _ 0700 con-inte, 4-5 failbute 1440: UN collect Equipment Blank 0785: OAL Equipment, botheran 1345: COMMW281R BEBIN LIF PULGING RISER 3.5" ANDED TO PUMP INTHE OF 33.5 0500: FA. mob to F+mm-22 TO GET 37' BEZOW TOC, TOM DEPTH 45.65 1120: 5AMPLE PAR-72-211-MW-01 (2mpmge) Tubing 1330 SAMPLE COULDW 281R-37, W/MS, MSD, Stible arouns 140. confin up/ 50 1550 DUPLICATE (CW/MW128/12-37) 1730 no 8, TO MAIN POST, PAPER WERK, SAMPLES 1/30: SAMPLE Fram-ZZ-CWINW22R 1220: Mab to garage 1300: Collect ED. ROD OFFSITE 1336. Pack up pix Equipment, Housekeping 1430: Off-0170 (cw)

-00	
Che	Cour
HAZWASTE JEANSPEE 51-5-19	GW SAMPUNG 11-6-19
JOM HORN-PARSONI	Tom HORN-PARSONS
GOOD ONS/ OF WEATHER 470 OVEREABY FROM NEO.	0730 MELT F.A. ONSITE. WESTER 50°FCUSE.
- WIN FA AND ANT CREW FROM YESDEROSY, TWO	640 As KICKOFF MESTING
Dervies - TEVERS #435 AND #427 TEVERS	0750 The Pheroems ever cherestown wo dot
- austre	LOUSBURY DOCUMENT ATION AND PIO CALBOARINE
: 0670 Has Kreroff metant up by PA	FORTH PRESSES BOTTHER OND CONGEST
	SYMPET CONTRE UNILS,
0630 CREW PURS BACK TARP VSIND SCISSOR-UFF	0900 AREN ST PSECU 72-211.
FOR TOUR \$435 UC # DA AF-95848	Recoes mesamenes / 0884 entrons To
CARRO 80% # 1480 48459.	THE LOW HOW CLOWND WHOLE STUDIONE
-0645 ANT WADS HU35 VIA ENCAVASTOR	DATA SULGE
0705 \$ 435 offs172, H 427 TEXE- LICH	1135 Porrower + Cousies 400 TWE OF
PA AG-74086 CSECO BOX MTVU \$3457	THE BLASSE PINES AND MICROPRESE
PELLOPLO FOR LOADING	(A)
10715 put 2000 # 42A	Constoure to seron ever then,
0740 #42A offs,04.	BY GOV CONGROUND OF PIEND RARDINGOUR
0935 ANT DOVISES TART TRUCK # 485	040/4
HAS PETVENTO FOR A SECOND LOAD (HE 49547	1250 cource gamere PAR-72-311-6w-
10/5 4435 COADED, # 4.27 ONS THE	mw -01-16,3 ROR BANZENE SWO
Tal schows was (Her 49542)	7 mereye NACHTHALENE.
	1315 PERFORM PH 7,00 BUPFER WELK
1040 KAZ PICK 13 TRANSFERPED COM WASHES	1 1330 SET. UP AT F+mm-59-mw-01
Svenet into the composite with fever yes	1345 BEGON RURGE AT FIME ST MUN 01
1045 perce # 435 ets Ax	RELIGED MESENER IN LATS AND DERKENATURES
- 1105 TRUCK # 427 OFFERE CORN CIRANS UP	TO THE COWPION ON SOMOTHE DOTA SHEET.
the pulse,	1577 6
1490 PINE EQUIP, ORDER HARINED. RUN CAUBRATION	
CHECK ON 751 6820	FOR BENTEME.
<u> </u>	1530 PLEAGER SAMPLE MAN BUE WENT.
1	8u 11-6-19
1.	

GN SAMPINE TI HORN 11-6-19 AND REPUBLICATE TARM.

15 40 CONSTRUT 2nd 7.00 Bratel CHEEK.

1695 TH OFFSITE. FA TO OFFICE TO

SCON / SEND DAILY PERDENS FOLLOWER

TREEGEN WEEKEL WITH J. C.