DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

April 14, 2015

Ms. Linda Range New Jersey Department of Environmental Protection Case Manager Bureau of Southern Field Operations 401 East State Street, 5th Floor PO Box 407 Trenton, NJ 08625

Re: Underground Storage Tank within Parcel 77

Fort Monmouth, NJ

Attachments:

A. Site Layout Drawing of Parcel 77

B. UST 210 Report

Dear Ms. Range:

The U.S. Army Fort Monmouth (FTMM) has reviewed existing file information for the underground storage tank (UST) site at Fort Monmouth within Environmental Condition of Property (ECP) Parcel 77. The purpose of this submittal is to provide comprehensive documentation of the location and closure status of the UST identified within this parcel, which we believe will be useful for the future Phase II property transfer.

Parcel 77 includes the former fuel oil UST associated with the Building 210 Internal Test Facility building. The location of the UST is presented in Attachment A. The single UST identified within Parcel 77 has been removed; following is a summary of information regarding this UST:

Site Name	Registration ID	DICAR	Tank Size and Type	Product	Case Status
210	81533-8	94-1-25-0913-00	550 gal. steel	#2 FUEL OIL	Case Closed

In the above table, the term "Case Closed" has been used (consistent with previous FTMM procedures) to indicate the Army determined that no further sampling or remedial actions were warranted for this UST site. "Case Open" would indicate that the Army determined that ongoing monitoring, reporting or possibly even remedial action was warranted. In contrast, "No Further Action" has been reserved for NJDEP approval that no further sampling or remedial actions are warranted.

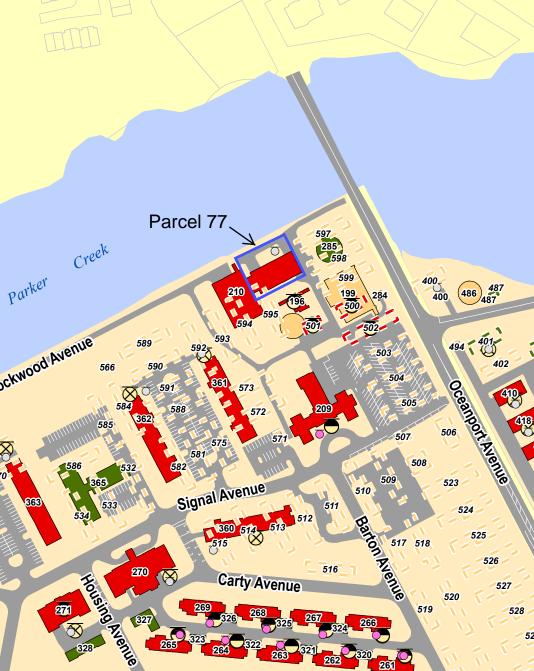
An investigation report was previously submitted to the NJDEP in 1996 that requested No Further Action for this site, but we have no record of an NJDEP response. Therefore, we are submitting the documentation for this UST as Attachment B, and we request a No Further Action

determination for this site. The information in Attachment B supports the conclusion that all UST contamination issues identified within Parcel 77 have been adequately addressed by previous environmental activities.

In summary, we request that NJDEP approve No Further Action for Parcel 77. Should you have any questions or require additional information, please contact me at (732) 380-7064 or by email at wanda.s.green2.civ@mail.mil.

Sincerely,

Wanda Green


BRAC Environmental Coordinator

cc: Delight Balducci, HQDA ACSIM

Joseph Pearson, Calibre James Moore, USACE Cris Grill, Parsons

ATTACHMENT A

Site Layout Drawing of Parcel 77

ATTACHMENT B

UST 210 Report

United States Army

Fort Monmouth, New Jersey

Underground Storage Tank Closure and Site Investigation Report

Building 210
Main Post Area

NJDEP UST Registration No. 081533-8 NJDEP Closure Approval No. C-93-2610

Volume 1 of 2
Text, Tables, Figures, and Appendices A through F

February 1996

UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

BUILDING 210

MAIN POST AREA
NJDEP UST REGISTRATION NO. 081533-8
CLOSURE APPROVAL NO. C-93-2610

FEBRUARY 1996

PROJECT NO.: 09-5004-01 CONTRACT NO.: DACA51-94-D-0014

PREPARED FOR:

UNITED STATES ARMY, FORT MONMOUTH, NEW JERSEY
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

SMITH ENVIRONMENTAL TECHNOLOGIES CORPORATION
BROMLEY CORPORATE CENTER
THREE TERRI LANE
BURLINGTON, NEW JERSEY 08016

210.DOC

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iv
1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES	1
1.1 OVERVIEW 1.2 SITE DESCRIPTION	1 2
1.2.1 Geological/Hydrogeological Setting	2
1.3 HEALTH AND SAFETY 1.4 REMOVAL OF UNDERGROUND STORAGE TANK	4
1.4.1 General Procedures 1.4.2 Underground Storage Tank Excavation and Cleaning	4
1.5 UNDERGROUND STORAGE TANK TRANSPORTATION AND DISPOSAL	5
1.6 MANAGEMENT OF EXCAVATED SOILS	5
2.0 SITE INVESTIGATION ACTIVITIES	6
2.1 OVERVIEW 2.2 FIELD SCREENING/MONITORING 2.3 SOIL SAMPLING 2.4 GROUNDWATER SAMPLING	6 7 7 7
2.4.1 Monitoring Well Installation 2.4.2 Monitoring Well Sampling	7
3.0 CONCLUSIONS AND RECOMMENDATIONS	9
3.1 SOIL SAMPLING RESULTS 3.2 GROUNDWATER SAMPLING RESULTS 3.3 CONCLUSIONS AND RECOMMENDATIONS	9 9 10

TABLE OF CONTENTS (CONTINUED)

		Following Page No.
TABLES		
Table 2 Pos	nmary of Sampling Activities t-Excavation Soil Sampling Results undwater Sampling Results	7 9 10
FIGURES		
Figure 2 Si	te Location Map te Map oil Sampling Results oundwater Sampling Results	1 2 7 7
APPENDICES	3	
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G	NJDEP-BUST Closure Approval Certifications Waste Manifest UST Disposal Certificate NJDEP Well Permit and Well Construction Lo Soil Analytical Data Package Groundwater Analytical Data Package	g

EXECUTIVE SUMMARY

UST Closure

On January 14, 1994, a steel underground storage tank (UST) was closed by removal in accordance with Closure Approval No. 081533-8 at U.S. Army Fort Monmouth, Fort Monmouth, New Jersey. The UST, New Jersey Department of Environmental Protection (NJDEP) Registration No. 081533-8, was located immediately adjacent to Building 210 in the Main Post area of U.S. Army, Fort Monmouth. UST No. 081533-8 was a 550-gallon No. 2 fuel oil UST. The UST fill port was located directly above the tank. The tank closure was performed by Cleaning Up The Environment Inc. (CUTE).

Site Assessment - Soil

The site assessment was performed by U.S. Army personnel in accordance with the NJDEP Technical Requirements for Site Remediation (N.J.A.C. 7:26E) and the NJDEP Field Sampling Procedures Manual. Due to precipitation and temperatures below freezing, only visual soil screening could be performed. Following removal, the UST was inspected for corrosion holes. Although no corrosion holes were noted in the UST, potentially contaminated soils were observed along the south wall of the excavation.

On January 14, 1994, following removal of the UST, post-excavation soil samples A, B, C, D, and E were collected from a total of four (4) locations along the sidewalls of the UST excavation immediately above groundwater. Sample A was collected along the southern wall of the excavation, immediately below the former piping associated with the UST, which was approximately 10 feet. Groundwater was present at approximately 4.5 feet below ground surface (BGS). All samples were analyzed for total petroleum hydrocarbons (TPHC).

On January 19, 1994, approximately 10 cubic yards of potentially contaminated soils were removed from the southern portion of the excavation in the vicinity of sample A. A post-excavation soil sample designated as B0189 was then collected from the expanded portion of the excavation and was analyzed for volatile organic compounds with a forward library search for 15 tentatively identified compounds (VO+15).

Findings - Soil

All samples collected from the UST excavation and from below piping associated with the UST contained concentrations of contaminants below the corresponding NJDEP residential direct contact and impact to groundwater soil cleanup criteria (N.J.A.C. 7:26D and revisions dated February 3, 1994). Samples B, C, and D contained TPHC concentrations ranging from 15.9 mg/kg to 21.6 mg/kg. Sample A contained an elevated TPHC concentration of

3,440.0 mg/kg. Sample E was the duplicate of sample A but was not sampled properly. For this reason sample E and its results are not listed in any of the tables or figures.

Post-excavation soil sample B0189, collected on January 19, 1994, contained acetone at 0.62 mg/kg, methylene chloride at 0.22 mg/kg, total xylenes at 0.42 mg/kg, and 1,1,1-trichloroethane at 2.5 mg/kg. All of the detected VOCs were below the most stringent NJDEP soil cleanup criteria.

Based on the elevated TPHC concentration of 3,440.0 detected in sample A, a discharge was reported to the NJDEP by the DPW on January 25, 1994. Spill Case No. 94-1-25-0913-00 was assigned.

Site Restoration

Following removal of all potentially contaminated soils, and following receipt of all post-excavation soil sampling results, the excavation was backfilled to grade with a combination of uncontaminated excavated soil and certified clean fill. The excavation site was then restored to its original condition.

Site Assessment - Groundwater

In response to the observation of potentially contaminated soil near the shallow water table, one shallow overburden monitoring well (MW-1) was installed at the Building 210 area on September 22, 1994. It was installed approximately 24 feet north of the UST excavation in the assumed downgradient direction. It was screened in the 2- to 12- foot depth interval, across the water table, which is approximately 6 feet below grade surface.

On May 19, 1995 and June 13, 1995, MW-1 was sampled for volatile organic compounds (with xylene) plus 10 tentatively identified compounds, and semivolatile organic compounds plus 15 tentatively identified compounds. Sampling and analysis were performed in accordance with the NJDEP Field Sampling Procedures Manual and the Technical Requirement.

Findings - Groundwater

The sample collected on May 19, 1995, contained a methylene chloride concentration of 2.2 micrograms per liter (ug/l). This result exceeded the Ground Water Quality Criteria (GWQC) for methylene chloride of 2.0 ug/l. All other groundwater analytical results from MW-1 contained non-detectable concentrations of contaminants. The trip blank and field blank collected for MW-1 on May 19, 1995 contained methylene chloride concentrations of 6.4 ug/l and 6.3 ug/l, respectively. The trip blank also contained a toluene concentration of 0.80 ug/l, and a 2-Chlorotoluene concentration of 0.60 ug/l. No other compounds were detected in the trip and field blanks.

The sample collected on June 13, 1995, contained a methylene chloride concentration of 1.3 ug/l. All other groundwater analytical results from MW-1 contained non-detectable concentrations of contaminants. The trip blank and field blank collected for MW-1 on June 13, 1995 contained methylene chloride concentrations of 2.3 ug/l and 2.1 ug/l, respectively. No other compounds were detected in the trip and field blanks.

The depth to the water table was 6.52 feet below grade on May 19, 1995, and 7.01 feet below grade on June 13, 1995. No product or sheen was observed in MW-1 on either of the sampling dates.

Site Assessment Quality Assurance

The sampling and laboratory analyses conducted during the site assessments were performed in accordance with Section 7:26E-2.1 of the *Technical Requirements*.

Conclusions and Recommendations

Based on the post-excavation soil sampling results, soils with concentrations of TPHC or volatile organic compounds exceeding the NJDEP soil cleanup criteria do not remain in the former location of the UST or associated piping.

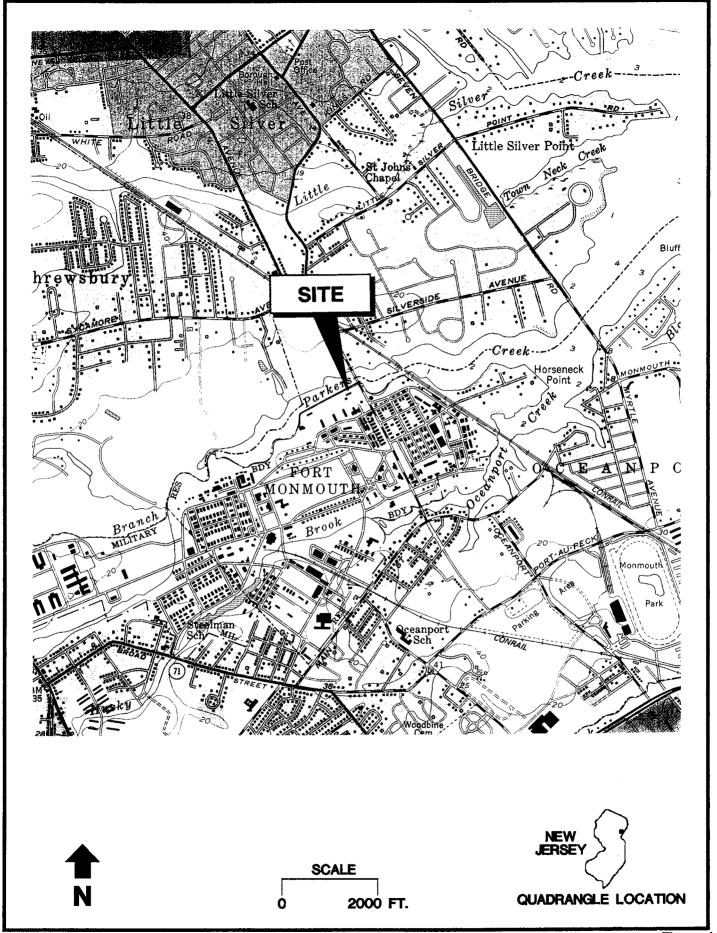
Based on the analytical results of the groundwater samples collected on May 19, 1995, and on June 13, 1995, groundwater quality at the Building 206 UST closure site complies with the New Jersey Quality Criteria for volatile organic compounds and semivolatile organic compounds. The trace concentrations of methylene chloride detected during both sampling rounds is attributed to sampling and/or analytical interference, based on the detection of methylene chloride, a common source of laboratory interference, in the sampling blanks.

No further action is proposed in regard to the closure and site assessment of UST No. 081533-8 at Building 210.

1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No. 081533-8, was closed at Building 210 at U.S. Army Fort Monmouth, Fort Monmouth, New Jersey on January 14, 1994. Refer to site location map on Figure 1. This report presents the results of the DPW's implementation of the UST Decommissioning/Closure Plan submitted to the NJDEP on June 6, 1993. The plan was approved on July 12, 1993 and assigned TMS No. C-93-2610. The UST was a steel, 550-gallon tank containing No. 2 fuel oil.


Decommissioning activities for UST No. 081533-8 complied with all applicable Federal, State and Local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: N.J.A.C. 7:14B-1 et seq., N.J.A.C. 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. All permits including but not limited to the NJDEP-approved Decommissioning/Closure Plan were posted onsite for inspection. CUTE Inc., the contractor that conducted the decommissioning activities, is registered and certified by the NJDEP for performing UST closure activities. Closure of UST No. 081533-8 proceeded under the approval of the NJDEP Bureau of Underground Storage Tanks (NJDEP-BUST). The NJDEP-BUST closure approval and the signed certifications for UST No. 081533-8 are included in Appendices A and B, respectively.

Based on an inspection of the UST, field screening of subsurface soils and analytical results of collected soil samples, the DPW has concluded that an historical discharge was associated with the UST. On January 25, 1994, a spill was reported to the NJDEP "Hotline" for UST No. 081533-8 and was assigned Spill Case No. 94-1-25-0913-00.

This UST Closure and Site Investigation Report has been prepared by Smith Environmental Technologies Corporation to assist the United States Army Directorate of Public Works (DPW) in complying with the NJDEP Bureau of Underground Storage Tanks (NJDEP-BUST) regulations. The applicable NJDEP-BUST regulations at the date of closure were the *Interim Closure Requirements for Underground Storage Tank Systems* (N.J.A.C. 7:14B-1 et seq. September 1990 and revisions dated November 1, 1991).

This report was prepared using information required at the time of closure. Section 1 of this UST Closure and Site Investigation Report provides a summary of the UST decommissioning activities. Section 2 of this report describes the site investigation activities. Conclusions and recommendations, including the results of the soil sampling investigation, are presented in the final section of this report.

U.S. Army Department of Public Works Fort Monmouth, New Jersey

Project No. 00-5004-01

U.S.G.S.

Source:

Figure 1
Site Location Map

1.2 SITE DESCRIPTION

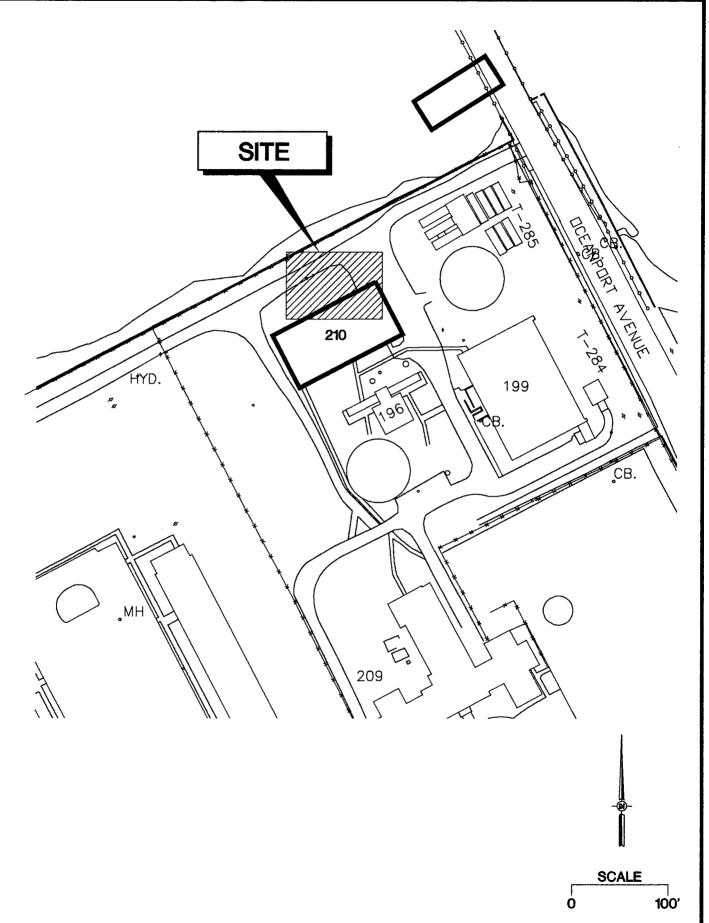
Building 210 is located in the northern portion of the Main Post area of Fort Monmouth as shown on Figure 1. UST No. 081533-8 was located north of Building 210. The USTs appurtenant piping ran approximately 10 feet south to the fill port area. The fill port area was located directly above the tank. A site map is provided on Figure 2.

1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of the area surrounding Building 210. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Main Post area.

Regional Geology

Monmouth County lies within the New Jersey Section of the Atlantic Coastal Plain physiographic province. The Main Post, Charles Wood, and Evans areas are located in what may be referred to as the Outer Coastal Plain subprovince, or the Outer Lowlands.


In general, New Jersey Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, and gravel. These formations typically strike northeast-southwest with a dip ranging from 10 to 60 feet per mile and were deposited on Precambrian and lower Paleozoic rocks (Zapecza, 1989). These sediments, predominantly derived from deltaic, shallow marine, and continental shelf environments, date from Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units which are generally thicker to the southeast and reflect a deeper water environment. Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations). The individual thicknesses for these units vary greatly (i.e., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from the Fall Line to greater than 6,500 feet in Cape May County (Brown and Zapecza, 1990).

Local Geology

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile. The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite

U.S. Army
Department of Public Works
Fort Monmouth, New Jersey

Project No. 09-5004-01

BCM/Smith Environmental Technologies Corporation (002)

Source:

Figure 2
Building 210
Site Map

(Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and ironoxide encrusted (Minard).

Hydrogeology

The water table aquifer at the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation.

Based on records of wells drilled at the Main Post area, water is typically encountered at depths of 2 to 9 feet below ground surface (bgs). The depth to the water table measured on September 22, 1994 in the Building 210 monitoring well MW-1, was approximately 6 feet below grade. According to Jablonski, wells drilled in the Red Bank and Tinton Sands may produce 2 to 25 gallons per minute (gpm). Some well owners have reported acidic water that requires treatment to remove iron.

Due to the proximity of the Atlantic Ocean to Fort Monmouth, shallow groundwater may be tidally influenced and may flow toward creeks and brooks as the tide goes out, and away from creeks and brooks as the tide comes in. However, an abundance of clay lenses and sand deposits were noted in borings installed throughout Fort Monmouth. Therefore the direction of shallow groundwater should be determined on a case by case basis.

Shallow groundwater is locally influenced within the Main Post area by the following factors:

- tidal influence (based on proximity to the Atlantic Ocean, rivers and tributaries)
- topography
- nature of the fill material within the Main Post area
- presence of clay and silt lenses in the natural overburden deposits
- local groundwater recharge areas (i.e., streams, lakes)

Due to the fluvial nature of the overburden deposits (i.e., sand and clay lenses), shallow groundwater flow direction is best determined on a case-by-case basis. This is consistent with lithologies observed in borings installed within the Main Post area, which primarily consisted of fine-to-medium grained sands, with occasional lenses or laminations of gravel silt and/or clay.

Building 081533-8 is located approximately 500 feet miles Southeast of Parkers Creek, the nearest water body. The groundwater flow in the area of Building 081533-8 has been determined to be the west.

1.3 HEALTH AND SAFETY

Before, during, and after all decommissioning activities, hazards at the work site which may have posed a threat to the Health and Safety of all personnel who were involve with, or were affected by, the decommissioning of the UST system were minimized. All areas which posed, or may have been suspected to pose a vapor hazard were monitored (weather permitting) by a qualified individual utilizing an organic vapor analyzer (OVA). The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA.

1.4 REMOVAL OF UNDERGROUND STORAGE TANK

1.4.1 General Procedures

- All underground obstructions (utilities, etc.) were marked out by the contractor performing the closure prior to excavation activities.
- All activities were carried out with the greatest regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined for evidence of contamination.
 Potentially contaminated soils were identified and logged during closure activities.
- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- A Sub-Surface Evaluator from the DPW was present during all closure activities.

1.4.2 Underground Storage Tank Excavation and Cleaning

Prior to UST decommissioning activities, surficial soil was excavated to expose the UST and associated piping. All free product present in the piping was drained into the UST, and the UST was purged to remove vapors prior to cutting and removal of the piping. After removal of the associated piping, a manway was made in the UST to allow for proper cleaning. The UST was completely emptied of all liquids prior to removal from the ground. Approximately 30 gallons of liquid were transported by Freehold Cartage Inc., to Lionetti Oil Recovery Co. Inc., a NJDEP-

approved petroleum recycling and disposal facility located in Old Bridge, New Jersey. Refer to Appendix C for waste manifest (manifest No. NJA-1603206).

The UST was cleaned prior to removal from the excavation in accordance with NJDEP-BUST regulations. After the UST was removed from the excavation, it was staged on polyethylene sheeting and examined for corrosion holes. No punctures or corrosion holes were observed during the inspection by the Sub-Surface Evaluator. Weather conditions permitted only visual soil screening. Apparent soil contamination was seen at the south end of the excavation, at the point nearest to Building 210.

Slight contamination was also noted in some of the standing water at the bottom of the excavation. Potentially contaminated soils were excavated and stockpiled.

1.5 UNDERGROUND STORAGE TANK TRANSPORTATION AND DISPOSAL

The tank was transported by CUTE Inc., to Mazza and Sons Inc., for recycling in compliance with all applicable regulations and laws. Refer to Appendix D for UST disposal certificate.

The Subsurface Evaluator labeled the UST prior to transport with the following information:

- site of origin
- contact person
- NJDEP UST Facility ID number
- name of transporter/contact person
- destination site/contact person

1.6 MANAGEMENT OF EXCAVATED SOILS

Based on visual observations, approximately 10 cubic yards of potentially contaminated soils were excavated from the south end and bottom of the excavation. Potentially contaminated soils were stockpiled separately from other excavated material and were placed on and covered with polyethylene sheets. Potentially contaminated soils were transported to T-80 on Main Post for storage prior to ultimate disposal at Soil Remediation of Philadelphia. Soils that did not exhibit signs of contamination were used as backfill following removal of the UST.

2.0 SITE INVESTIGATION ACTIVITIES

2.1 OVERVIEW

The Site Investigation was managed and carried out by U.S. Army DPW personnel. All TPHC analyses were performed and reported by U.S. Army Fort Monmouth Environmental Laboratory. All VO+10 analyses were performed and reported by Twenty First Century Environmental Laboratory. Both laboratories are NJDEP-certified testing laboratories. All sampling was performed under the direct supervision of a NJDEP Certified Sub-Surface Evaluator according to the methods described in the NJDEP Field Sampling Procedures Manual (1992). Sampling frequency and parameters analyzed complied with the NJDEP-BUST document "Interim Closure Requirements for Underground Storage Tank Systems" (September 1990 and revisions dated November 1, 1991) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Closure Contractor: Cleaning Up The Environment Inc. (CUTE)

Contact Person: Nancy Williams Phone Number: (201)427-2881

NJDEP Company Certification No.: 0200128

Subsurface Evaluator: Dinkerrai M. Desai
 Fort Manmouth

Employer: U.S. Army, Fort Monmouth Phone Number: (908)532-1475

NJDEP Certification No.: E 0002266

Analytical Laboratory: U.S. Army Fort Monmouth Environmental Laboratory

Contact Person: Brian K. McKee Phone Number: (908)532-4359

NJDEP Company Certification No.: 13461

Analytical Laboratory: Twenty First Century Environmental

Contact Person: Richard W. Lynch Phone Number: (609)467-9521

NJDEP Company Certification No.: 08031

Hazardous Waste Hauler: Freehold Cartage, Inc.

Contact Person: Barry Olsen Phone Number: (908) 462-1001

NJDEP Hazardous Waste Hauler No.: 2265

TABLE 1

SUMMARY OF SAMPLING ACTIVITIES BUILDING 210, MAIN POST FORT MONMOUTH, NEW JERSEY

Sample ID	Date of Collection	of Collection Matrix San		Analytical Parameters (and USEPA Methods) *	Sampling Method
A	1/14/94	Soil	Post-Excavation	ТРНС	Polystyrene Scoop
В	1/14/94	Soil	Post-Excavation	TPHC	Polystyrene Scoop
Ċ	1/14/94	Soil	Post-Excavation	TPHC	Polystyrene Scoop
D	1/14/94	Soil	Post-Excavation	TPHC	Polystyrene Scoop
B0189	1/19/94	Soil	Post-Excavation	VOCs	Polystyrene Scoop
MW-1	5/19/95	Aqueous	Groundwater	VOCs, BNCs	Teflon Bottom Bailer
MW-1	6/13/95	Aqueous	Groundwater	VOCs, BNCs	Teflon Bottom Bailer

*Note:

TPHC

VOCs

Total Petroleum Hydrocarbons (Method 418.1 / soil and aqueous)
Volatile Organic Compounds plus 15 tentatively identified compounds (Method 8240:soil)
Volatile Organic Compounds plus 10 tentatively identified compounds (Method 524.2:aqueous)
Semivolatile Organic Compounds plus 15 tentatively identified compounds (Method 625:aqueous) **BNCs**

2.2 FIELD SCREENING/MONITORING

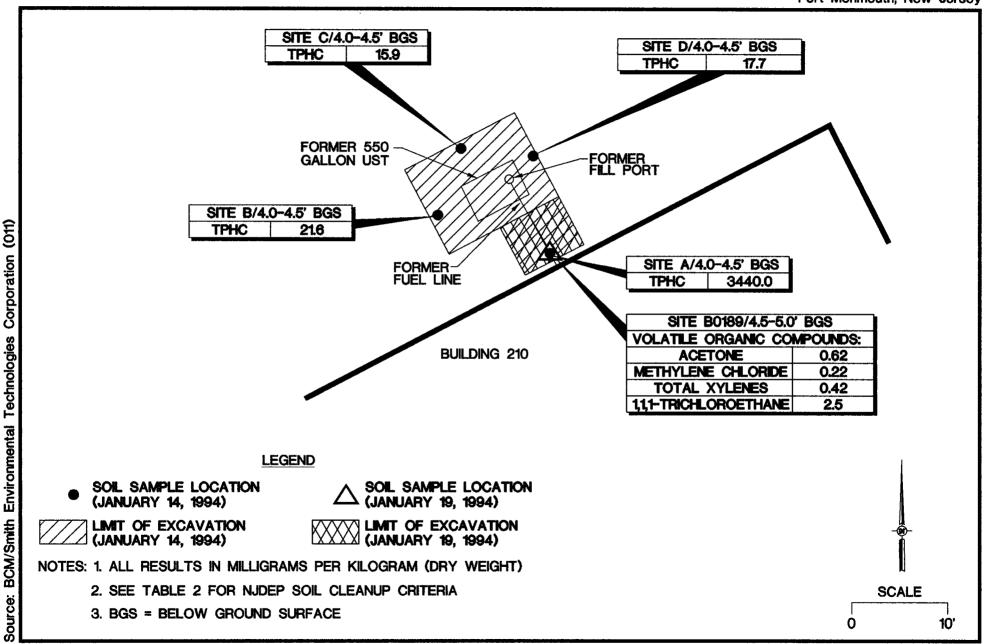
Due to precipitation and temperatures below freezing, soil screening was not performed. However, contamination was noted at the south end of the excavation and also in some of the standing water at the bottom of the excavation.

On January 16, 1994, approximately 10 cubic yards of potentially contaminated soils were excavated from the south end and bottom of the excavation and were stockpiled for disposal.

2.3 SOIL SAMPLING

On January 14, 1994, post-excavation soil samples A, B, C, D, and E were collected from a total of four (4) locations along the sidewalls of the UST excavation immediately above groundwater. Sample A was collected immediately below the former piping associated with the UST. Groundwater was present at approximately 4.5 feet below ground surface. Refer to soil sampling location map on Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPHC).

The site assessment was performed by U.S. Army personnel in accordance with the NJDEP *Technical Requirements* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The samples were collected using decontaminated stainless steel scoops. Following soil sampling activities, samples being analyzed for TPHC were chilled and delivered to U.S. Army Fort Monmouth Environmental Laboratory, located in Fort Monmouth, New Jersey. The sample being analyzed for VO+15 was chilled and delivered to Twenty First Century Environmental, located in Bridgeport, New Jersey.


2.4 GROUNDWATER SAMPLING

2.4.1 Monitoring Well Installation

In response to the observation of potentially contaminated soil near the shallow water table, one shallow overburden monitoring (MW-1) was installed at the Building 210 area on September 22, 1994. It was installed approximately 24 feet north of the UST excavation in the assumed downgradient direction. A monitoring well location map is provided on Figure 4. It was screened in the 2- to 12- foot depth interval, across the water table, which is approximately 6 feet below grade surface.

The well was constructed in accordance with the NJDEP's well construction protocols outlined in its May 1992 *Field Sampling Procedures Manual*. The NJDEP well drilling permit and a well construction log is presented in Appendix E.

U.S. Army Department of Public Works Fort Monmouth, New Jersey

Project No. 09-5004-01

Figure 3 **Building 210 Soil Sampling Results**

The well was constructed with 4-inch (ID) PVC riser and 0.020 slotted PVC well screen. A silica sand pack was installed in the annulus between the borehole wall and the screen. The sand pack was extended approximately 2 feet above the top of the screen. The sand pack above the well screen was graded down to a fine sand to minimize grout intrusion.

The borehole was tremie-grouted with bentonite-cement grout from the top of the sand pack to 6 inches bgs. The well was secured with a steel protective casing with a stickup that is approximately 3 feet above ground surface. The steel protective casing was set in place with concrete, which was placed in the remaining open borehole. The elevation of the well riser was surveyed to the nearest 0.01 feet by a New Jersey-licensed surveyor. The well permit number was marked on the well casing as required.

The monitoring well was developed using a submersible pump. The well was pumped for 1 hour or until silt free. All residual soils and liquids generated during monitoring well installation and development program were collected in New Jersey Department of Transportation-approved 55-gallon drums. The drums were placed in a designated secure location for waste characterization and offsite disposal.

2.4.2 Monitoring Well Sampling

On May 19, 1995 and on June 13, 1995, MW-1 was sampled for volatile organic compounds (with xylenes) plus 10 tentatively identified compounds and semivolatile organic compounds plus 15 tentatively identified compounds. Sampling and analysis were completed in accordance with the NJDEP Field Sampling Procedures Manual and the Technical Requirements.

Prior to sampling, the water level was measured to the nearest 0.01 feet, and the distance to the bottom of the well was be measured to the nearest 0.1 feet. The well was checked for floating product (light non-aqueous phase liquids). The well was then purged of three to five well volumes of standing water. Sample volume was then collected using a dedicated decontaminated Teflon bottom-fill bailer attached to PTFE (Teflon)-coated stainless steel.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 SOIL SAMPLING RESULTS

To evaluate soil conditions following removal of the UST and associated piping, post-excavation soil samples A, B, C, and D were collected from a total of four (4) locations on January 14, 1994 and analyzed for TPHC. (Sample E was the duplicate of sample A but was not sampled properly. For this reason sample E and its results are not listed in any of the tables or figures.). The post-excavation soil sample results were compared to the NJDEP residential direct contact and impact to groundwater soil cleanup criteria (N.J.A.C. 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2, and the soil sampling results are shown on Figure 3. The soil analytical data package is provided in Appendix F. The full data package, including associated quality control data, is on file at the U.S. Army Fort Monmouth, DPW.

All post-excavation soil samples collected on January 14, 1994 from the UST from below piping associated with the UST contained concentrations of contaminants below the NJDEP soil cleanup criteria of 10,000 mg/kg for total organic contaminants. The TPHC concentrations for samples B, C, and D ranged from 15.9 mg/kg to 21.6 mg/kg. Sample A contained an elevated TPHC concentration of 3,400 mg/kg. Based on the elevated TPHC concentrations detected in sample A, a discharge was reported to the NJDEP by the DPW on January 25, 1994 and was assigned Spill Case No. 94-1-25-0913-00.

On January 19, 1994, soil sample B0189 was collected from the location of sample A and analyzed for volatile organic compounds plus 15 tentatively identified compounds. Sample B0189 contained acetone at 0.62 mg/kg, methylene chloride at 0.22 mg/kg, total xylenes at 0.42 mg/kg, and 1,1,1-trichloroethane at 2.5 mg/kg. All of the detected VOCs were below the most stringent NJDEP residential direct contact or impact to groundwater soil cleanup criteria, which are listed in Table 2.

3.2 GROUNDWATER SAMPLING RESULTS

The sample collected on May 19, 1995, contained a methylene chloride concentration of 2.2 micrograms per liter (ug/l). This result exceeded the Ground Water Quality Criteria (GWQC) for methylene chloride of 2.0 ug/l. All other groundwater analytical results from MW-1 contained non-detectable concentrations of contaminants. The trip blank and field blank collected for MW-1 on May 19, 1995 contained methylene chloride concentrations of 6.4 ug/l and 6.3 ug/l, respectively. The trip blank also contained a toluene concentration of 0.80 ug/l, and a 2-Chlorotoluene concentration of 0.60 ug/l. No other compounds were detected in the trip and field blanks.

2.2 FIELD SCREENING/MONITORING

Due to precipitation and temperatures below freezing, soil screening was not performed. However, contamination was noted at the south end of the excavation and also in some of the standing water at the bottom of the excavation.

On January 16, 1994, approximately 10 cubic yards of potentially contaminated soils were excavated from the south end and bottom of the excavation and were stockpiled for disposal.

2.3 SOIL SAMPLING

On January 14, 1994, post-excavation soil samples A, B, C, D, and E were collected from a total of four (4) locations along the sidewalls of the UST excavation immediately above groundwater. Sample A was collected immediately below the former piping associated with the UST. Groundwater was present at approximately 4.5 feet below ground surface. Refer to soil sampling location map on Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPHC).

The site assessment was performed by U.S. Army personnel in accordance with the NJDEP *Technical Requirements* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The samples were collected using polystyrene scoops. Actual soil TPHC values may be higher than reported, due to sample utensil absorbency. If absorbency resulted in reducing the actual soil TPHC concentration by 50 %, the highest soil contaminant would have been 43.2 mg/kg, still below the applicable NJDEP soil cleanup standard for total organic contaminants of 10,000 mg/kg. Following soil sampling activities, samples being analyzed for TPHC were chilled and delivered to U.S. Army Fort Monmouth Environmental Laboratory, located in Fort Monmouth, New Jersey. The sample being analyzed for VO+15 was chilled and delivered to Twenty First Century Environmental, located in Bridgeport, New Jersey.

2.4 GROUNDWATER SAMPLING

2.4.1 Monitoring Well Installation

In response to the observation of potentially contaminated soil near the shallow water table, one shallow overburden monitoring (MW-1) was installed at the Building 210 area on September 22, 1994. It was installed approximately 24 feet north of the UST excavation in the assumed downgradient direction. A monitoring well location map is provided on Figure 4. It was screened in the 2- to 12- foot depth interval, across the water table, which is approximately 6 feet below grade surface.

The well was constructed in accordance with the NJDEP's well construction protocols outlined in its May 1992 *Field Sampling Procedures Manual*. The NJDEP well drilling permit and a well construction log is presented in Appendix E.

The well was constructed with 4-inch (ID) PVC riser and 0.020 slotted PVC well screen. A silica sand pack was installed in the annulus between the borehole wall and the screen. The sand pack was extended approximately 2 feet above the top of the screen. The sand pack above the well screen was graded down to a fine sand to minimize grout intrusion.

The borehole was tremie-grouted with bentonite-cement grout from the top of the sand pack to 6 inches bgs. The well was secured with a steel protective casing with a stickup that is approximately 3 feet above ground surface. The steel protective casing was set in place with concrete, which was placed in the remaining open borehole. The elevation of the well riser was surveyed to the nearest 0.01 feet by a New Jersey-licensed surveyor. The well permit number was marked on the well casing as required.

The monitoring well was developed using a submersible pump. The well was pumped for 1 hour or until silt free. All residual soils and liquids generated during monitoring well installation and development program were collected in New Jersey Department of Transportation-approved 55-gallon drums. The drums were placed in a designated secure location for waste characterization and offsite disposal.

2.4.2 Monitoring Well Sampling

On May 19, 1995 and on June 13, 1995, MW-1 was sampled for volatile organic compounds (with xylenes) plus 10 tentatively identified compounds and semivolatile organic compounds plus 15 tentatively identified compounds. Sampling and analysis were completed in accordance with the NJDEP *Field Sampling Procedures Manual* and the *Technical Requirements*.

Prior to sampling, the water level was measured to the nearest 0.01 feet, and the distance to the bottom of the well was be measured to the nearest 0.1 feet. The well was checked for floating product (light non-aqueous phase liquids). The well was then purged of three to five well volumes of standing water. Sample volume was then collected using a dedicated decontaminated Teflon bottom-fill bailer attached to PTFE (Teflon)-coated stainless steel.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 SOIL SAMPLING RESULTS

To evaluate soil conditions following removal of the UST and associated piping, post-excavation soil samples A, B, C, and D were collected from a total of four (4) locations on January 14, 1994 and analyzed for TPHC. (Sample E was the duplicate of sample A but was not sampled properly. For this reason sample E and its results are not listed in any of the tables or figures.). The post-excavation soil sample results were compared to the NJDEP residential direct contact and impact to groundwater soil cleanup criteria (N.J.A.C. 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2, and the soil sampling results are shown on Figure 3. The soil analytical data package is provided in Appendix F. The full data package, including associated quality control data, is on file at the U.S. Army Fort Monmouth, DPW.

All post-excavation soil samples collected on January 14, 1994 from the UST from below piping associated with the UST contained concentrations of contaminants below the NJDEP soil cleanup criteria of 10,000 mg/kg for total organic contaminants. The TPHC concentrations for samples B, C, and D ranged from 15.9 mg/kg to 21.6 mg/kg. Sample A contained an elevated TPHC concentration of 3,400 mg/kg. Based on the elevated TPHC concentrations detected in sample A, a discharge was reported to the NJDEP by the DPW on January 25, 1994 and was assigned Spill Case No. 94-1-25-0913-00.

On January 19, 1994, soil sample B0189 was collected from the location of sample A and analyzed for volatile organic compounds plus 15 tentatively identified compounds. Sample B0189 contained acetone at 0.62 mg/kg, methylene chloride at 0.22 mg/kg, total xylenes at 0.42 mg/kg, and 1,1,1-trichloroethane at 2.5 mg/kg. All of the detected VOCs were below the most stringent NJDEP residential direct contact or impact to groundwater soil cleanup criteria, which are listed in Table 2.

3.2 GROUNDWATER SAMPLING RESULTS

The sample collected on May 19, 1995, contained a methylene chloride concentration of 2.2 micrograms per liter (ug/l). This result exceeded the Ground Water Quality Criteria (GWQC) for methylene chloride of 2.0 ug/l. All other groundwater analytical results from MW-1 contained non-detectable concentrations of contaminants. The trip blank and field blank collected for MW-1 on May 19, 1995 contained methylene chloride concentrations of 6.4 ug/l and 6.3 ug/l, respectively. The trip blank also contained a toluene concentration of 0.80 ug/l, and a 2-Chlorotoluene concentration of 0.60 ug/l. No other compounds were detected in the trip and field blanks.

TABLE 2

POST-EXCAVATION SOIL SAMPLING RESULTS **BUILDING 210** FT. MONMOUTH, NEW JERSEY

PAGE 1 OF 5

Sample ID/Depth	Sample Laboratory ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (mg/kg)	Compound of Concern	Result (mg/kg)	NJDEP Soil Cleanup Criteria * (mg/kg)	Exceeds Cleanup Criteria
A/4.0-4.5'	1370.1	1-14-94	1-18-94	Total Solid	· 		84%		
				TPHC	20.0	yes	3,440.0	10,000	
B/4.0-4.5'	1370.2	1-14-94	1-18-94	Total Solid			89%		
				TPHC	3.3	yes	21.6	10,000	
C/4.0-4.5'	1370.3	1-14-94	1-18-94	Total Solid			86%		
				TPHC	3.3	yes	15.9	10,000	
D/4,0-4.5'	1370.4	1-14-94	1-18-94	Total Solid			85%		·
2				TPHC	3.3	yes	17.7	10,000	

Note:

* Cleanup criteria for total organics
 Not applicable / does not exceed criteria
 TPHC Total Petroleum Hydrocarbons

Smith Environmental Technologies Corporation(Project No. 09-5004-01)

soil210.doc

TABLE 2

POST-EXCAVATION SOIL SAMPLING RESULTS BUILDING 210, MAIN POST, SITE A FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 2 OF 5

Sample ID/Depth	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (mg/kg)	Compound of Concern	Result (mg/kg)	NJDEP Soil Cleanup Criteria * (mg/kg)	Exceed Cleanuj Criteria
B0189/	01-19-94	01-24-94	Acrolein	7.4		ND		
4.5 - 5.0'	01-17-74	01-24-74	Acrylonitrile	7.4		ND	1/1	
4.5-5.0			Chloromethane	1.5		ND	520/10	
			Bromomethane	1.5		ND	79/1	
			Vinyl Chloride	1.5		ND	2/10	
			Chloroethane	1.5		ND		
			Acetone	1.5		0.62 J	1,000/100	
			1,1-Dichloroethene	0.74		ND	8/10	
			Carbon Disulfide	1.5	**	ND		
			Methylene Chloride	0.74		0.22 JB	49/1	
			1,2-Dichloroethene (trans)	0.74		ND	1,000/50	
			1,1-Dichloroethane	0.74		ND	570/10	
			Vinyl Acetate	0.74		ND		
			2-Butanone	1.5		ND	1,000/50	
			Chloroform	0.74		ND	19/1	
			1,1,1-Trichloroethane	0.74		2.5	210/50	
			Carbon Tetrachloride	0.74		ND	2/1	
			1,2-Dichloroethane	0.74		ND	6/1	
			Benzene	0.74		ND	3/1	
			Trichloroethene	0.74	••	ND	23/1	
			1,2-Dichloropropane	0.74		ND	10	
			Bromodichloromethane	0.74		ND	11/1	
			2-Chloroethylvinylether	1.5		ND		
			2-Hexanone	1.5		ND		
			trans-1,3-Dichloropropene	0.74		ND	4/1	
			Toluene	0.74		ND	1,000/500	

TABLE 2

POST-EXCAVATION SOIL SAMPLING RESULTS BUILDING 210, MAIN POST, SITE A FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 3 OF 5

Sample ID/Depth	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (mg/kg)	Compound of Concern	Result (mg/kg)	NJDEP Soil Cleanup Criteria * (mg/kg)	Exceeds Cleanup Criteria
B0189/	01-19-94	01-24-94	cis-1,3-Dichloropropene	0.74		ND	4/1	
4.5-5.0'			1,1,2,2-Tetrachloroethane	0.74		ND	34/1	
			1,1,2-Trichloroethane	0.74		ND	22/1	
			4-Methyl-2-pentanone	1.5		ND	1,000/100	
			Tetrachloroethene	0.74		ND	4/1 **	
			Dibromochloromethane	0.74		ND	110/1	
			Chlorobenzene	0.74		ND	37/1	
			Ethylbenzene	0.74		ND	1,000/100	
			Xylenes (Total)	0.74		0.42 J	410/10	
			Styrene	0.74		ND		
			Bromoform	0.74		ND	86/1	
			m-Dichlorobenzene	0.74		ND		
			p-Dichlorobenzene	0.74	 .	ND		
			o-Dichlorobenzene	0.74		ND	••	
			Methyl Tertiary Butyl Ether	1.5		ND		
			Tertiary Butyl Alcohol	7.4		ND		

Note:

- * Residential Direct Contact / Impact to Groundwater
- ** The tetrachloroethene results were compared to the soil cleanup criteria for tetrachloroethylene; tetrachloroethene is a synonym for tetrachloroethylene
- -- Not applicable / does not exceed criteria
- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

Smith Environmental Technologies Corporation(Project No. 09-5004-01)

TABLE 2

POST-EXCAVATION SOIL SAMPLING RESULTS BUILDING 210, MAIN POST, SITE A FORT MONMOUTH, NEW JERSEY VOLATILE TICS

PAGE 4 OF 5

Sample ID/Depth	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (mg/kg)	Compound of Concern	Result (mg/kg)	NJDEP Soil Cleanup Criteria * (mg/kg)	Exceeds Cleanup Criteria
B0189/	01-19-94	01-24-94	Cyclohexane,1,1,3-trimethyl-			3.6		
4.5-5.0'	4.5-5.0	Cyclohexane, 1, 2, 4-trimethyl-			3.8			
			Octane,3-methyl-			2.3		
			Cyclohexane, 1-ethyl-4-methyl-cis			2.6		
			2-Hexene,3,4,4-trimethyl-	***		6.2		
			Cyclohexane, propyl			7.5		
			Cyclohexane, 1-methyl-3-propyl-			3.6		
			Benzene, 1-methyl-4-propyl-			5.1		
		·	Cyclohexane,(2-methylpropyl)			8.0		
			Benzene, 1, 3-diethyl-			6.8		
			Naphthalene,decahydro-			14.0		
			Cyclopentane,2-isopropyl-1,3-dimethyl-			2.6		

TABLE 2

POST-EXCAVATION SOIL SAMPLING RESULTS BUILDING 210, MAIN POST, SITE A FORT MONMOUTH, NEW JERSEY VOLATILE TICS (Continued)

PAGE 5 OF 5

Sample ID/Depth	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (mg/kg)	Compound of Concern	Result (mg/kg)	NJDEP Soil Cleanup Criteria * (mg/kg)	Exceeds Cleanup Criteria
B0189/ 4.5-5.0'	01-19-94	01-24-94	Benzene,2-ethyl-1,3-dimethyl-		u.	12.0		
110 0.0			1H-Indene,2,3-dihydro-1-methyl		·	11.0		on no
			Benzamide,2-methyl-		_ 	9.9		
			Benzene,1,2,3,5-tetramethyl-			6.5		
			Benzene,(1-ethylpropyl)-	u-m		12.0		
			Benzene,(1,1-dimethyl-2-propenyl)-			3.7	••	
			Benzene,(1-methyl-1-propenyl)-	***		5.8		
			Total TICS	·		127.0	10,000	

Note:

Cleanup criteria for total organic compounds Not applicable / does not exceed criteria

Smith Environmental Technologies Corporation(Project No. 09-5004-01)

soil210.doc

SMTH

The sample collected on June 13, 1995, contained a methylene chloride concentration of 1.3 ug/l. All other groundwater analytical results from MW-1 contained non-detectable concentrations of contaminants. The trip blank and field blank collected for MW-1 on June 13, 1995 contained methylene chloride concentrations of 2.3 ug/l and 2.1 ug/l, respectively. No other compounds were detected in the trip and field blanks.

The depth to the water table was 6.52 feet below grade on May 19, 1995, and 7.01 feet below grade on June 13, 1995. No product or sheen was observed in MW-1 on either of the sampling dates. The groundwater sampling results are listed in Table 3 and shown on Figure 4. The laboratory documentation is in Appendix G.

3.3 CONCLUSIONS AND RECOMMENDATIONS

The analytical results for all post-excavation soil samples collected from the UST closure excavation at Building 210 were below the proposed NJDEP soil cleanup criteria for total organic contaminants (Samples A, B, C, D, and E).

Based on the post-excavation soil sampling results, soils with concentrations of contaminants exceeding the NJDEP soil cleanup criteria do not remain in the former location of the UST or associated piping.

Based on the analytical results of the groundwater samples collected on May 19, 1995, and on June 13, 1995, groundwater quality at the Building 210 UST site complies with the New Jersey Groundwater Quality Criteria for VOCs and BNCs. The trace concentrations of methylene chloride detected during both sampling rounds is attributed to sampling and/or analytical interference, based on the detection of methylene chloride, a common source of laboratory interference, in the sampling blanks.

No further action is proposed in regard to the closure and site assessment of UST No. 081533-8 at Building 210.

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FT. MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 1 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceed Criteria
			<u></u>					
MW-1	5/19/95	6/02/95	Dichlorodifluoromethane	0.50		ND		
141 44 -1	3/13/33	0,02,75	Chloromethane	0.50		ND		
			Bromomethane	0.50		ND		
			Vinyl Chloride	0.50		ND	5	
			Chloroethane	0.50		ND		**
			Trichlorofluoromethane	0.50		ND		
			Methylene Chloride	0.50		2.2 B	2	yes
			1,2-Dichloroethene (trans)	0.50		ND	100*	
			1,1-Dichloroethene	0.50		ND	2*	
			1,1 Dichloroethane	0.50		ND	70	
			2,2-Dichloropropane	0.50		ND		
			Bromochloromethane	0.50		ND	***	
			cis-1,2-Dichloroethene	0.50		ND	10*	
			Chloroform	0.50		ND	6	
			1,1-Dichloropropene	0.50		ND		
			1,2-Dichloroethane	0.50		ND	2	
			1,1,1-Trichloroethane	0.50		ND	30	**
		•	Dibromomethane	0.50		ND		
			Carbon Tetrachloride	0.50		ND	2	
			Bromodichloromethane	0.50		ND	1	
			1,2-Dichloropropane	0.50		ND	1	
			cis-1,3-Dichloropropene	0.50		ND	NA	
			1,3-Dichloropropane	0.50	₩=	ND	***	
			Trichloroethene	0.50		ND	1	
			Dibromochloromethane	0.50		ND	10	

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 2 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	5/19/95	6/02/95	1,1,2-Trichloroethane	0.50		ND	3	
141 44 -1	3/17/73	0/02/75	Benzene	0.50		ND	1	
			trans-1,3-Dichloropropene	0.50		ND	NA	
			Bromoform	0.50		ND	4	
			1,1,2,2-Tetrachloroethane	0.50		ND	10	
			Tetrachloroethene	0.50		ND	1*	
			1,1,2,2-Tetrachloroethane	0.50		ND	2	
			Toluene	0.50		ND	1,000	
			1,2-Dibromoethane	9.50		ND		
			Chlorobenzene	0.50		ND	4	
			Ethylbenzene	0.50		ND	700	
			Xylenes (Total)	0.50		ND	40	
			Styrene	0.50		ND	100	
			Isopropylbenzene	0.50		ND		
			Bromobenzene	0.50		ND		
			1,2,3-Trichloropropane	0.50		ND		
			n-Propylbenzene	0.50		ND		
		9.	2-Chlorotoluene	0.50		ND		
			4-Chlorotoluene	0.50		ND	~~	
			1,3,5-Trimethylbenzene	0.50		ND		
			tert-Butylbenzene	0.50		ND		
			1,2,4-Trimethylbenzene	0.50		ND		
			sec-Butylbenzene	0.50		ND		
•			1,3-Dichlorobenzene	0.50		ND	600	
			1,4-Dichlorobenzene	0.50		ND	75	

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN FOST, MW-1 FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 3 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	5/19/95	6/03/95	4-Isopropyltoluene	0.50		ND		
14144 1	3/13//3	0/03/75	1,2-Dichlorobenzene	0.50		ND	600	
			n-Butylbenzene	0.50		ND		
			1,2-Dibromo-3-chloropropane	0.50		ND	NA	
			1,2,4-Trichlorobenzene	0.50		ND	9	
•			Hexachlorobutadiene	0.50		ND	1	
			Naphthalene	0.50		ND		
			1,2,3-Trichlorobenzene	0.50		ND		

Notes:

- * The tetrachloroethene, 1,2-Dichloroethene(trans), 1,1-Dichloroethene, and cis-1,2-Dichloroethene results were compared to the GWQC for their respective synonym (tetrachlororethylene, 1,2-Dichloroethylene(trans), 1,1-Dichloroethylene, and cis-1,2-Dichloroethylene).
- -- Not applicable / does not exceed criteria
- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected
- (NA) Not available for this constituent
- GWQC Ground Water Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY **VOLATILE TICS**

PAGE 4 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
	5/19/95	6/03/95	NO TICS FOUND			80 M		

Note:

Not applicable / does not exceed criteria
 (J) Indicates detected below sample quantitation limit
 (B) Indicates also present in blank
 (ND) Indicates compound not detected
 GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY SEMIVOLATILES

PAGE 5 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	5/19/95	6/03/95	N-Nitrosodiethylamine	2		ND	20	
141.44 - 7	5/17/75	0/03/75	bis(2 chloroethyl)Ether	1		ND	10	
			1,3-Dichlorobenzene	2		ND	600	
			1,4-Dichlorobenzene	1		ND	75	
			1,2-Dichlorobenzene	2		ND	600	
			bis(2-chloroisopropyl)Ether	5		ND	300	
			N-Nitroso-Di-n-propylamine	2		ND	20	
			Hexachloroethane	1		ND	10	
			Nitrobenzene	2		ND	10	
			Isophorone	1		ND	100	
			bis(2-Chloroethoxy)Methane	3		ND		
			1,2,4-Trichlorobenzene	2		ND	9	
			Naphthalene	2		ND		
			Hexachlorobutadiene	2		ND	1	
•			Hexachlorocyclopentadiene	12		ND	50	
		•	2-Chloronaphthalene	1		ND		
			Dimethyl Phthalate	1	·	ND		
			Acenaphthylene	5		ND	NA	
			2,6-Dinitrotoluene	2		ND	NA	
			Acenaphthene	3		ND	400	
			2,4-Dinitrotoluene	3		ND	10	
			Diethylphthalate	1		ND	5,000	
			Fluorene	3		ND	300	
			4-Chlorophenyl-phenlyether	3		ND	500	
			N-Nitrosodiphenylamine	6	***	ND	20	
			1,2-Diphenylhydrazine	6		ND	0.04	
			4-Bromophenyl-phenylether	2		ND		
			Hexachlorobenzene	2		ND	10	
			Phenanthrene	2		ND	NA	

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY SEMIVOLATILES (Continued)

PAGE 6 OF 36

Sample ID			Compound Nane	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	5/19/95	6/03/95	Anthracene	2		ND	2,000	·
141 44 -1	3/13/33	0/03/93	Di-n-butylphthalate	5		ND	900	
			Fluoranthene	1		ND	300	
			Benzidine	1		ND	50	
			Pyrene	2		ND	200	
			Butylbenzylphthalate	0		ND	100	
			Benzo(a) Anthracene	2		ND	NA	
			3,3-Dichlorobenzidine	15		ND	60	
			Chrysene	2		ND	NA	
			bis(2-Ethylhexyl)Phthalate	4		ND	30	
			Di-n-Octyl Phthalate	2		ND	100	
			Benzo(b)Fluoranthene	1		ND	NA	
			Benzo(k)Fluoranthene	2		ND	NA	
			Benzo(a)Pyrene	2		ND	NA	
		•	Indeno(1,2,3-cd)pyrene	2		ND	NA	
			Dibenzo(a,h)anthracene	3		ND	NA	
			Benzo(g,h,i)perylene	2		ND	NA NA	
Matan			Donzo(B, 11,1)poryrone	2			1111	

Notes:

-- Not applicable / does not exceed criteria

- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected
- (NA) Not available for this constituent

GWQC Ground Water Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY SEMIVOLATILE TICS

PAGE 7 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	5/19/95	6/03/95	Unknown			4.0 J		

Note:

Not applicable / does not exceed criteria

Indicates detected below sample quantitation limit **(**J)

Indicates also present in blank (B)

(ND) Indicates compound not detected GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST TRIP BLANK FT. MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 8 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trip Blank	5/19/95	6/02/95	Dichlorodifluoromethane	0,50		ND
Tip Diank	3/17/73	0/02/75	Chloromethane	0.50		ND
			Bromomethane	0.50		ND
			Vinyl Chloride	0.50	· 	ND
			Chloroethane	0.50		ND
			Trichlorofluoromethane	0.50		ND
			Methylene Chloride	0.50		6.4 B
			1,2-Dichloroethene (trans)	0.50		ND
			1,1-Dichloroethene	0.50		ND
			1,1 Dichloroethane	0.50		ND
			2,2-Dichloropropane	0.50		ND
			Bromochloromethane	0.50		ND
			cis-1,2-Dichloroethene	9.50		ND
			Chloroform	0.50	**	ND
			1,1-Dichloropropene	0.50		ND
			1,2-Dichloroethane	0.50		ND
			1,1,1-Trichloroethane	0.50		ND
	*,		Dibromomethane	0.50		ND
			Carbon Tetrachloride	0.50		ND
			Bromodichloromethane	0.50		ND
			1,2-Dichloropropane	0.50		ND
			cis-1,3-Dichloropropene	0.50		ND
			1,3-Dichloropropane	0.50		ND
			Trichloroethene	0.50		ND
			Dibromochloromethane	0.50		ND

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 9 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trin Dlank	5/19/95	6/02/95	1,1,2-Trichloroethane	0.50		ND
Trip Blank	3/13/33	0/02/33	Benzene	0.50		ND
			trans-1,3-Dichloropropene	0.50		ND
			Bromoform	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Tetrachloroethene	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Toluene	0.50		0.80
			1,2-Dibromoethane	0.50		ND
			Chlorobenzene	0.50		ND
			Ethylbenzene	0.50		ND
			Xylenes (Total)	0.50		ND
			Styrene	0.50	·	ND
			Isopropylbenzene	0,50		ND
		*	Bromobenzene	0.50		ND
			1,2,3-Trichloropropane	0.50		ND
			n-Propylbenzene	0.50		ND
			2-Chlorotoluene	0.50		0.60
			4-Chlorotoluene	0.50		ND
			1,3,5-Trimethylbenzene	0.50		ND
			tert-Butylbenzene	0.50		ND
			1,2,4-Trimethylbenzene	0.50	es es	ND
			sec-Butylbenzene	0.50		ND
			1,3-Dichlorobenzene	0.50		ND
			1,4-Dichlorobenzene	0.50		ND

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 10 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trip Blank	5/19/95	6/02/95	4-Isopropyltoluene	0.50		ND
Trip blank	3/19/93	0/02/93	1,2-Dichlorobenzene	0.50		ND
			,			
			n-Butylbenzene	0.50		ND
			1,2-Dibromo-3-chloropropane	0.50	<u></u>	ND
			1,2,4-Trichlorobenzene	0.50		ND
			Hexachlorobutadiene	0.50		ND
			Naphthalene	0.50		ND
			1,2,3-Trichlorobenzene	0.50		ND
Notes:						

-- Not applicable / does not exceed criteria

(J) Indicates detected below sample quantitation limit

(B) Indicates also present in blank

(ND) Indicates compound not detected

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FORT MONMOUTH, NEW JERSEY VOLATILE TICS

PAGE 11 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trip Blank	5/19/95	6/02/95	NO TICS FOUND			

Note:

-- Not applicable / does not exceed criteria

(J) Indicates detected below sample quantitation limit

(B) Indicates also present in blank

(ND) Indicates compound not detected

GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FT. MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 12 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	5/19/95	6/02/95	Dichlorodifluoromethane	0.50		ND
			Chloromethane	0.50		ND
			Bromomethane	0.50		ND
		•	Vinyl Chloride	0.50		ND
			Chloroethane	0.50		ND
			Trichlorofluoromethane	0.50		ND
			Methylene Chloride	0.50		6.3 B
			1,2-Dichloroethene (trans)	0.50		ND
			1,1-Dichloroethene	0.50		ND
			1,1 Dichloroethane	0.50		ND
			2,2-Dichloropropane	0.50		ND
			Bromochloromethane	0.50		ND
			cis-1,2-Dichloroethene	0.50		ND
			Chloroform	0.50		ND
			1,1-Dichloropropene	0.50		ND
			1,2-Dichloroethane	0.50		ND
			1,1,1-Trichloroethane	0.50		ND
	•		Dibromomethane	0.50		ND
			Carbon Tetrachloride	0.50		ND
			Bromodichloromethane	0.50		ND
			1,2-Dichloropropane	0.50		ND
			cis-1,3-Dichloropropene	0.50		ND
			1,3-Dichloropropane	0.50		ND
			Trichloroethene	0.50		ND
		:	Dibromochloromethane	0.50		ND

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 13 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	5/19/95	6/02/95	1,1,2-Trichloroethane	0.50		ND
			Benzene	0.50		ND
	•	• .	trans-1,3-Dichloropropene	0.50		ND
			Bromoform	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Tetrachloroethene	0.50		ND
		•	1,1,2,2-Tetrachloroethane	0.50		ND
			Toluene	0.50		ND
			1,2-Dibromoethane	0.50		ND
			Chlorobenzene	0.50		ND
			Ethylbenzene	. 0.50		ND
			Xylenes (Total)	0.50		ND
•			Styrene	0.50		ND
			Isopropylbenzene	0.50		ND
			Bromobenzene	0.50		ND
			1,2,3-Trichloropropane	0.50		ND
			n-Propylbenzene	0.50		ND
	•		2-Chlorotoluene	0.50		ND
			4-Chlorotoluene	0.50		ND
			1,3,5-Trimethylbenzene	0.50		ND
			tert-Butylbenzene	0.50		ND
			1,2,4-Trimethylbenzene	0.50		ND
			sec-Butylbenzene	0.50		ND
			1,3-Dichlorobenzene	0,50		ND
			1,4-Dichlorobenzene	0.50		ND

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 14 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	5/19/95	6/02/95	4-Isopropyltoluene	0.50		ND
I ICIU DIAIR	3/17/73	0102175	1,2-Dichlorobenzene	0.50		ND
			n-Butylbenzene	0.50		ND
			1,2-Dibromo-3-chloropropane	0.50		ND
			1,2,4-Trichlorobenzene	0.50		ND
		•	Hexachlorobutadiene	0.50		ND
			Naphthalene	0.50		ND
			1,2,3-Trichlorobenzene	0.50		ND

Notes:

-- Not applicable / does not exceed criteria

(J) Indicates detected below sample quantitation limit

(B) Indicates also present in blank

(ND) Indicates compound not detected

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY VOLATILE TICS

PAGE 15 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	5/19/95	6/02/95	NO TICS FOUND			

Note:

- -- Not applicable / does not exceed criteria
- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY SEMIVOLATILES

PAGE 16 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	
Field Blank	5/19/95	6/03/95	N-Nitrosodiethylamine	2		ND	
1 Ioiu Biumi	0,17,70		bis(2 chloroethyl)Ether	1		ND	
			1,3-Dichlorobenzene	2		ND	
			1,4-Dichlorobenzene	1		ND	
			1,2-Dichlorobenzene	2		ND	
		•	bis(2-chloroisopropyl)Ether	5		ND	
	•		N-Nitroso-Di-n-propylamine	2		ND	
			Hexachloroethane	1		ND	
			Nitrobenzene	2		ND	
			Isophorone	1		ND	
			bis(2-Chloroethoxy)Methane	3		ND	
			1,2,4-Trichlorobenzene	2		ND	
			Naphthalene	2		ND	
•		* .	Hexachlorobutadiene	2	 .	ND	
			Hexachlorocyclopentadiene	12		ND	
			2-Chloronaphthalene	1		ND	
			Dimethyl Phthalate	1		ND	
	•		Acenaphthylene	5		ND	
			2,6-Dinitrotoluene	2		ND	
			Acenaphthene	. 3		ND	
			2,4-Dinitrotoluene	3		ND	
_			Diethylphthalate	1		ND	
			Fluorene	3		ND	
			4-Chlorophenyl-phenlyether	3		ND	
	•		N-Nitrosodiphenylamine	6		ND	
		•	1,2-Diphenylhydrazine	6		ND	
			4-Bromophenyl-phenylether	2		ND	
			Hexachlorobenzene	2		ND	
			Phenanthrene	2	 .	ND	

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY SEMIVOLATILES (Continued)

PAGE 17 OF 36

Sample ID	Sample Date	Analysis Date	Compound Nane	Sample Quantitation Limit (ug/I)	Compound of Concern	Result (ug/l)
Field Blank	5/19/95	6/03/95	Anthracene Di-n-butylphthalate Fluoranthene Benzidine Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3-Dichlorobenzidine Chrysene bis(2-Ethylhexyl)Phthalate Di-n-Octyl Phthalate	2 5 1 1 2 9 2 15 2 4 2	 	XD XD XD XD XD XD XD XD XD XD XD XD XD
.			Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	1 2 2 2 2 3 2	 	ND ND ND ND ND ND

Notes:

- Not applicable / does not exceed criteria Indicates detected below sample quantitation limit **(**J)
- (B) Indicates also present in blank
- Indicates compound not detected (ND)

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY SEMIVOLATILE TICS

PAGE 18 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	5/19/95	6/02/95	Unknown	·		7.0 J

Note:

Not applicable / does not exceed criteria

Indicates detected below sample quantitation limit **(**J)

Indicates also present in blank (B)

(ND) Indicates compound not detected GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FT. MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 19 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	6/13/95	6/22/95	Dichlorodifluoromethane	0.50		ND		
	0, 20, 70		Chloromethane	0.50		ND		
			Bromomethane	0.50		ND		
			Vinyl Chloride	0.50		ND	5	
			Chloroethane	0.50		ND		
			Trichlorofluoromethane	0.50		ND		
			Methylene Chloride	0.50		1.3 B	2	
			1,2-Dichloroethene (trans)	0.50		ND	100*	
			1,1-Dichloroethene	0.50		ND	2*	
			1,1 Dichloroethane	0.50		ND	70	
			2,2-Dichloropropane	0.50	·	ND		
			Bromochloromethane	0.50		ND		
			cis-1,2-Dichloroethene	0.50		ND	10*	
			Chloroform	0.50		ND	6	
			1,1-Dichloropropene	0.50		ND		
			1,2-Dichloroethane	0.50		ND	2	
			1,1,1-Trichloroethane	0.50	**	ND	30	
			Dibromomethane	0.50		ND		
			Carbon Tetrachloride	0.50		ND	2	
			Bromodichloromethane	0.50		ND	1	
			1,2-Dichloropropane	0.50		ND	1	
			cis-1,3-Dichloropropene	0.50		ND	NA	
			1,3-Dichloropropane	0.50		ND		
			Trichloroethene	0.50		ND	1	
			Dibromochloromethane	0.50		ND	10	

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 20 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceed: Criteria
MW-1	6/13/95	6/22/95	1,1,2-Trichloroethane	0,50	Date:	ND	3	
141 11 1	0/15/75	0,22,70	Benzene	0.50		ND	1	
	•		trans-1,3-Dichloropropene	0.50		ND	NA	
			Bromoform	0.50		ND	4	
			1,1,2,2-Tetrachloroethane	0.50		ND	10	
			Tetrachloroethene	0.50		ND	1*	
			1,1,2,2-Tetrachloroethane	0.50		ND	2	
			Toluene	0.50		ND	1,000	
			1,2-Dibromoethane	0.50		ND		
			Chlorobenzene	0.50		ND	4	
			Ethylbenzene	0.50		ND	700	
			Xylenes (Total)	0.50		ND	40	
			Styrene	0.50		ND	100	
			Isopropylbenzene	0.50		ND		
			Bromobenzene	0.50		ND		
			1,2,3-Trichloropropane	0.50		ND		
	•		n-Propylbenzene	0.50		ND		
		ŕ	2-Chlorotoluene	0.50		ND		
			4-Chlorotoluene	0.50		ND		
			1,3,5-Trimethylbenzene	0.50		ND		
			tert-Butylbenzene	0.50		ND		
			1,2,4-Trimethylbenzene	0.50		ND		
			sec-Butylbenzene	0.50		ND		
			1,3-Dichlorobenzene	0.50		ND	600	
			1,4-Dichlorobenzene	0.50		ND	75	

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 21 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	6/13/95	6/22/95	4-Isopropyltoluene	0,50		ND	-	
14144 1	0/15/75	0/22/75	1,2-Dichlorobenzene	0.50		ND	600	
			n-Butylbenzene	0,50		ND		
			1,2-Dibromo-3-chloropropane	0.50		ND	NA	
			1,2,4-Trichlorobenzene	0.50		ND	9	
			Hexachlorobutadiene	0.50		ND	1	
			Naphthalene	0.50		ND		
			1,2,3-Trichlorobenzene	0.50		ND		

Notes:

- * The tetrachloroethene, 1,2-Dichloroethene(trans), 1,1-Dichloroethene, and cis-1,2-Dichloroethene results were compared to the GWQC for their respective synonym (tetrachlororethylene, 1,2-Dichloroethylene(trans), 1,1-Dichloroethylene, and cis-1,2-Dichloroethylene).
- -- Not applicable / does not exceed criteria
- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected
- (NA) Not available for this constituent
- GWQC Ground Water Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY **VOLATILE TICS**

PAGE 22 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	6/13/95	6/22/95	Unknown	==		1.0 J		

Note:

Not applicable / does not exceed criteria Indicates detected below sample quantitation limit (J)

Indicates also present in blank (B)

(ND) Indicates compound not detected GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY SEMIVOLATILES

PAGE 23 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceed: Criteria
MW-1	6/13/95	6/26/95	N-Nitrosodiethylamine	2		ND	20	
	. 0/15//5	0,20,72	bis(2 chloroethyl)Ether	1		ND	10	
			1,3-Dichlorobenzene	2		ND	600	
			1,4-Dichlorobenzene	1		ND	75	
			1,2-Dichlorobenzene	2		ND	600	
			bis(2-chloroisopropyl)Ether	5		ND	300	
			N-Nitroso-Di-n-propylamine	2		ND	20	
•			Hexachloroethane	1		ND	10	
			Nitrobenzene	2		ND	10	
			Isophorone	1		ND	100	
			bis(2-Chloroethoxy)Methane	3		ND		
			1,2,4-Trichlorobenzene	2		ND	9	
		*	Naphthalene	2		ND		
			Hexachlorobutadiene	2		ND	1	
			Hexachlorocyclopentadiene	12		ND	50	
			2-Chloronaphthalene	1		ND		
	•		Dimethyl Phthalate	1		ND	·	
		×	Acenaphthylene	5		ND	NA	
			2,6-Dinitrotoluene	2		ND	NA	•
			Acenaphthene	3	***	ND	400	
			2,4-Dinitrotoluene	3		ND	10	
			Diethylphthalate	1		ND	5,000	
			Fluorene	3		ND	300	
			4-Chlorophenyl-phenlyether	3		ND		
			N-Nitrosodiphenylamine	6		ND	20	
			1,2-Diphenylhydrazine	6		ND	0.04	
			4-Bromophenyl-phenylether	2		ND		
			Hexachlorobenzene	2		ND	10	
			Phenanthrene	2		ND	NA	

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY SEMIVOLATILES (Continued)

PAGE 24 OF 36

Sample ID	Sample Date	Analysis Date	Compound Nane	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	6/13/95	6/26/95	Anthracene	2		ND	2,000	
			Di-n-butylphthalate	5		ND	900	
			Fluoranthene	1		ND	300	
			Benzidine	1		ND	50	
			Pyrene	2		ND	200	
			Butylbenzylphthalate	9		ND	100	
			Benzo(a)Anthracene	2		ND	NA	
			3,3-Dichlorobenzidine	15		ND	60	
			Chrysene	2		ND	NA .	
			bis(2-Ethylhexyl)Phthalate	4		ND	30	
			Di-n-Octyl Phthalate	2		ND	100	
			Benzo(b)Fluoranthene	. 1		ND	NA	
		4	Benzo(k)Fluoranthene	2		ND	NA	
			Benzo(a)Pyrene	2		ND	NA	
			Indeno(1,2,3-cd)pyrene	2		ND	NA	
			Dibenzo(a,h)anthracene	3		ND	NA	
			Benzo(g,h,i)perylene	2		ND	NA	

Notes:

-- Not applicable / does not exceed criteria

(J) Indicates detected below sample quantitation limit

(B) Indicates also present in blank

(ND) Indicates compound not detected

(NA) Not available for this constituent

GWQC Ground Water Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, MW-1 FORT MONMOUTH, NEW JERSEY SEMIVOLATILE TICS

PAGE 25 OF 36

Sample ID	Sample Date	Analysis Compound Name Date		Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)	GWQC (ug/l)	Exceeds Criteria
MW-1	6/13/95	6/26/95	NO TICS FOUND			20 PM	<u></u>	

Note:

Not applicable / does not exceed criteria Indicates detected below sample quantitation limit Indicates also present in blank **(**J)

(B)

(ND) Indicates compound not detected GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FT. MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 26 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trin Dlank	6/13/95	6/21/95	Dichlorodifluoromethane	0.50		ND
Γrip Blank	0/13/93	0/21/75	Chloromethane	0.50	. 	ND
			Bromomethane	0.50		ND
	·		Vinyl Chloride	0.50		ND
			Chloroethane	0.50		ND
			Trichlorofluoromethane	0.50		ND
			Methylene Chloride	0.50		2.3 B
			1,2-Dichloroethene (trans)	0.50		ND
			1,1-Dichloroethene	0.50		ND
			1,1 Dichloroethane	0.50		ND
			2,2-Dichloropropane	0.50		ND
			Bromochloromethane	0.50		ND
			cis-1,2-Dichloroethene	0.50		ND
			Chloroform	0.50		ND
			1,1-Dichloropropene	0.50		ND
			1,2-Dichloroethane	0.50		ND
			1,1,1-Trichloroethane	0.50		ND
			Dibromomethane	0.50		ND
			Carbon Tetrachloride	0.50		ND
		9	Bromodichloromethane	0.50		ND
			1,2-Dichloropropane	0.50		ND
			cis-1,3-Dichloropropene	0.50		ND
		_	1,3-Dichloropropane	0.50		ND
			Trichloroethene	0.50		ND
			Dibromochloromethane	0.50		ND

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 27 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trip Blank	6/13/95	6/21/95	1,1,2-Trichloroethane	0,50		ND
TTIP DIAIK	0/13/73	0/21/75	Benzene	0.50		ND
			trans-1,3-Dichloropropene	0.50		ND
			Bromoform	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Tetrachloroethene	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Toluene	0.80		ND
			1,2-Dibromoethane	0.50		ND
			Chlorobenzene	0.50		ND
			Ethylbenzene	0.50		ND
			Xylenes (Total)	0.50		ND
			Styrene	0.50		ND
			Isopropylbenzene	0.50		ND
			Bromobenzene	0.50	. 	ND
			1,2,3-Trichloropropane	0.50		ND
			n-Propylbenzene	0.50		ND
	•		2-Chlorotoluene	0.60	***	ND
			4-Chlorotoluene	0.50		ND
			1,3,5-Trimethylbenzene	0.50		ND
			tert-Butylbenzene	0.50	un va	ND
			1,2,4-Trimethylbenzene	0.50		ND
			sec-Butylbenzene	0.50		ND
			1,3-Dichlorobenzene	0.50		ND
•			1,4-Dichlorobenzene	0.50		ND

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 28 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
m.t. ptt	(/12/05	(101.105	4 I	0.50	-	ND
Trip Blank	6/13/95	6/21/95	4-Isopropyltoluene	0.50		
			1,2-Dichlorobenzene	0.50		ND
			n-Butylbenzene	0,50		ND
			1,2-Dibromo-3-chloropropane	0.56		ND
			1,2,4-Trichlorobenzene	0.50	· <u></u>	ND
			Hexachlorobutadiene	0.50		ND
		•	Naphthalene	0.50		ND
			1,2,3-Trichlorobenzene	0.50		ND

Notes:

Not applicable / does not exceed criteria

Indicates detected below sample quantitation limit **(**J)

(B)

Indicates also present in blank
Indicates compound not detected (ND)

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, TRIP BLANK FORT MONMOUTH, NEW JERSEY VOLATILE TICS

PAGE 29 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Trip Blank	6/13/95	6/21/95	NO TICS FOUND			

Note:

Not applicable / does not exceed criteria

Indicates detected below sample quantitation limit **(**J)

(B) Indicates also present in blank
(ND) Indicates compound not detected
GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FT. MONMOUTH, NEW JERSEY VOLATILE ORGANICS

PAGE 30 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	6/13/95	6/21/95	Dichlorodifluoromethane	0.50		ND
	0,20,70	0.22,50	Chloromethane	0.50		ND
			Bromomethane	0.50		ND
			Vinyl Chloride	0,50		ND
	•		Chloroethane	0,50		ND
			Trichlorofluoromethane	0,50		ND
			Methylene Chloride	0.50		2.1 B
			1,2-Dichloroethene (trans)	0.50		· ND
			1,1-Dichloroethene	0.50		ND
			1,1 Dichloroethane	0.50		ND
			2,2-Dichloropropane	0.50		ND
			Bromochloromethane	0.50		ND
			cis-1,2-Dichloroethene	0.50		ND
			Chloroform	0.50		ND
			1,1-Dichloropropene	0.50		ND
			1,2-Dichloroethane	0.50		ND
			1,1,1-Trichloroethane	0.50		ND
			Dibromomethane	0.50		ND
			Carbon Tetrachloride	0.50		ND
			Bromodichloromethane	0.50		ND
			1,2-Dichloropropane	0.50		ND
			cis-1,3-Dichloropropene	0.50		ND
			1,3-Dichloropropane	0.50		ND
			Trichloroethene	0.50		ND
			Dibromochloromethane	0.50		ND

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 31 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Resuli (ug/l)
Field Blank	6/13/95	6/21/95	1,1,2-Trichloroethane	0,50		ND
			Benzene	0.50		ND
			trans-1,3-Dichloropropene	0.50		ND
			Bromoform	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Tetrachloroethene	0.50		ND
			1,1,2,2-Tetrachloroethane	0.50		ND
			Toluene	0.50		ND
			1,2-Dibromoethane	0.50		ND
			Chlorobenzene	0.50		ND
			Ethylbenzene	0.50	**	ND
			Xylenes (Total)	0.50		ND
			Styrene	0.50		ND
			Isopropylbenzene	0.50		ND
			Bromobenzene	0.50		ND
			1,2,3-Trichloropropane	0.50		ND
			n-Propylbenzene	0.50		ND
	•		2-Chlorotoluene	0.50		ND
			4-Chlorotoluene	0.50		ND
			1,3,5-Trimethylbenzene	0.50		ND
			tert-Butylbenzene	0.50		ND
			1,2,4-Trimethylbenzene	0.50		ND
			sec-Butylbenzene	0.50		ND
		÷ * * * * * * * * * * * * * * * * * * *	1,3-Dichlorobenzene	0.50		ND
		. *	1,4-Dichlorobenzene	0.50		ND

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY VOLATILE ORGANICS (Continued)

PAGE 32 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Ti-14 Di1	C/12/05	6/01/05	4 Igamenviltaliyana	0.50		ND
Field Blank	6/13/95	6/21/95	4-Isopropyltoluene			
			1,2-Dichlorobenzene	0.50		ND
			n-Butylbenzene	0.50		ND
			1,2-Dibromo-3-chloropropane	0.50	·	ND
			1,2,4-Trichlorobenzene	0.50		ND
		:	Hexachlorobutadiene	0.50		ND
			Naphthalene	0.50		ND
			1,2,3-Trichlorobenzene	0.50		ND

Notes:

-- Not applicable / does not exceed criteria

(J) Indicates detected below sample quantitation limit

(B) Indicates also present in blank

(ND) Indicates compound not detected

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY VOLATILE TICS

PAGE 33 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	6/13/95	6/21/95	NO TICS FOUND			

Note:

NT. 4 12 1.1 . /	44		
 Not applicable /	does not	exceed	criteria

- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY SEMIVOLATILES

PAGE 34 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	6/13/95	6/26/95	N-Nitrosodiethylamine	2		ND
Ticiu Dialik	0/13/73	0/20/75	bis(2 chloroethyl)Ether	1		ND
			1,3-Dichlorobenzene	2		ND
			1,4-Dichlorobenzene	1		ND
•			1,2-Dichlorobenzene	2		ND
			bis(2-chloroisopropyl)Ether	5		ND
			N-Nitroso-Di-n-propylamine	2		ND
			Hexachloroethane	1		ND
			Nitrobenzene	2		ND
			Isophorone	1		ND
			bis(2-Chloroethoxy)Methane	3		ND
			1,2,4-Trichlorobenzene	2		ND
			Naphthalene	2		ND
			Hexachlorobutadiene	2		ND
			Hexachlorocyclopentadiene	12		ND
•	•		2-Chloronaphthalene	1		ND
			Dimethyl Phthalate	1		ND
	*		Acenaphthylene	5		ND
			2,6-Dinitrotoluene	2		ND
			Acenaphthene	3		ND
			2,4-Dinitrotoluene	3		ND
			Diethylphthalate	1		ND
			Fluorene	3		ND
			4-Chlorophenyl-phenlyether	3		ND
			N-Nitrosodiphenylamine	6		ND
			1,2-Diphenylhydrazine	6		ND
			4-Bromophenyl-phenylether	2		ND
			Hexachlorobenzene	2		ND
			Phenanthrene	2		ND

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY SEMIVOLATILES (Continued)

PAGE 35 OF 36

Sample ID	Sample Date	Analysis Date	Compound Nane	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	6/13/95	6/26/95	Anthracene	2	±8	ND
			Di-n-butylphthalate	5		ND
			Fluoranthene	1		ND
			Benzidine	1		ND
			Pyrene	2		NĎ
			Butylbenzylphthalate	9		ND
			Benzo(a)Anthracene	2		ND
			3,3-Dichlorobenzidine	15		ND
•			Chrysene	2		ND
			bis(2-Ethylhexyl)Phthaiate	4		ND
			Di-n-Octyl Phthalate	2		ND
			Benzo(b)Fluoranthene	1		ND
			Benzo(k)Fluoranthene	2		ND
			Benzo(a)Pyrene	2		ND
			Indeno(1,2,3-cd)pyrene	2		ND
			Dibenzo(a,h)anthracene	3		ND
			Benzo(g,h,i)perylene	2		ND

Notes:

- -- Not applicable / does not exceed criteria
- (J) Indicates detected below sample quantitation limit
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

TABLE 3

GROUNDWATER SAMPLING RESULTS BUILDING 210, MAIN POST, FIELD BLANK FORT MONMOUTH, NEW JERSEY SEMIVOLATILE TICS

PAGE 36 OF 36

Sample ID	Sample Date	Analysis Date	Compound Name	Sample Quantitation Limit (ug/l)	Compound of Concern	Result (ug/l)
Field Blank	6/13/95	6/21/95	NO TICS FOUND			

Note:

Not applicable / does not exceed criteria

- Indicates detected below sample quantitation limit **(J)**
- Indicates also present in blank **(B)**
- (ND) Indicates compound not detected GWQC Groundwater Quality Criteria

Smith Environmental Technologies Corporation (Project No. 09-5004-01)

gw210.doc

APPENDIX A NJDEP BUST CLOSURE APPROVAL

UNDERGROUND STORAGE TANK SYSTEM CLOSURE APPROVAL

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION AND ENERGY

DIVISION OF RESPONSIBLE PARTY SITE REMEDIATION BUREAU OF UNDERGROUND STORAGE TANKS CN-029, TRENTON, NJ 08625-0029

TMS#

UST#

C-93-2610

0081515

0081533 CA

US Army Fort Monmouth DEH Bldg. 167 Ft. Monmouth, NJ

Monmouth

THE ABOVE LISTED FACILITY IS HEREBY GRANTED APPROVAL TO PERFORM THE FOLLOWING ACTIVITY IN ACCORDANCE WITH N.J.A.C. 7:14B-1 et. seq.:

Removal of: one 550 gallon #2 diesel UST(s) and appurtenant piping.
SITE ASSESSMENT: Soil samples will be taken every five (5) feet along the center line of each tank and one (1) soil sample for every 15 feet along all associated piping. Two (2) additional samples will be taken from around the tank and biased to the areas of highest field screened readings. Samples will be analyzed for TPHC. If sample results are greater than 1,000ppm than samples will be analyzed for VO+10.

ON-SITE MANAGER:

C. Appleby

TELEPHONE 8-532-1475

OWNER:

TELEPHONE:

EFFECTIVE DATE: JUL 121993

THIS FORM MUST BE DISPLAYED AT THE SITE DURING THE APPROVED ACTIVITY AND MUST BE MADE AVAILABLE FOR INSPECTION AT ALL TIMES.

KEVIN F. KRATINA, BUREAU CHIEF BUREAU OF UNDERGROUND STORAGE TANKS

CODY ADDITIONAL

CODY. I CO

COPY-TMS CO

CODY. DRD

APPENDIX B
CERTIFICATIONS

UNDERGROUND STORAGE TANK (UST) CLOSURE CERTIFICATION

BUILDING NO. 210
NIDEP UST REGISTRATION NO. 81533-8
DATE TANK REMOVED Jan. 14, 1994
IJO / CONTRACT NUMBER 93-1017
I CERTIFY UNDER PENALTY OF LAW THAT TANK DECOMMISSIONING ACTIVITIES WERE PERFORMED IN COMPLIANCE WITH NJAC 7:148-9-2(b)3. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES FOR SUBMITTING FALSE, INACCURATE, OR INCOMPLETE INFORMATION, INCLUDING FINES AND/OR IMPRISONMENT.
NAME (Print or Type) John Lonergan
SIGNATURE
NUDEP UST CLOSURE CERTIFICATE NO. 0003248
COMPANY PERFORMING TANK DECOMMISSIONING CUTE Inc.
NJDEP UST CLOSURE CORPORATE CERTIFICATE NO. 0200128
DATE OF SUBMITTAL 2/20/95

COLE INC.

01/01 11

UST-014 2/91

1003	THIE USE ONLY
UST#	
Date Recid	
TMS #	
Staff	

State of New Jersey Department of Environmental Protection and Energy

Division of Responsible Party Site Remediation CN 029 Trenton, NJ 08625-0029 Tel. # 609-984-3156 Fax. # 609-292-5604

Scott A. Weiner - Commissioner

Karl J. Delaney Director

UNDERGROUND STORAGE TANK SITE ASSESSMENT SUMMARY

Under the provisions of the Underground Storage of Hazardous Substances Act in accordance with N.J.A.C. 7:14B

This Summary form shall be used by all owners and operators of Underground Storage Tank Systems (USTS) who have either reported a release and are subject to the site assessment requirements of N.J.A.C. 7:14B-8.2 or who have closed USTS pursuant to N.J.A.C. 7:14B-9.1 et seq. and are subject to the site assessment requirements of N.J.A.C. 7:14B-9.2 and 9.3.

INSTRUCTIONS:

- · Plesse print legibly or type.
- Fill in all applicable blanks. This form will require various attachments in order to complete the Summary. The technical guidance document, Interim Closure Requirements for UST's, explains the regulatory (and technical) requirements for closure and the Scope of Work, Investigation and Corrective Action Requirements for Discharges from Uncerground Storage Tanks and Piping Systems explains the regulatory (and technical) requirements for corrective action.
- Return one original of the form and all required attachments to the above address.
- Attach a scaled site diagram of the subject facility which shows the information specified in Item IV B of this form.
- Explain any "No" or "N/A" response on a separate sheet.

•	Dat 	e of Submission
	B-ldg. 210	081533-8 FACILITY REGISTRATION #
FACILITY NAME	AND ADDRESS	
Directorate Fort Monmou	Fort Monmouth, New Jersey of Engineering and Housing, B th, New Jersey (908) 532-1475	uilding 167 unty <u>Monmouth</u>
	AND ADDRESS, if different from above	•

11.	DISC	CHARGE REPORTING REQUIREMENTS
	A.	Was contamination found? X Yes No. If Yes, Case No. 94-1-25-0913-00 (Note: All discharges must be reported to the Environmental Action Hotline (609) 292-7172)
	В.	The substance(s) discharged was(were) No. 2 fuel oil
	·c.	Have any vapor hazards been mitigated?YesNoX N/A
111.	DE	COMMISSIONING OF TANK SYSTEMS Closure Approval No. C-93-2610
	dod ded loca to ded sar	e site assessment requirements associated with <u>tank decommissioning</u> are explained in the Technical idance Document, interim Closure Requirements for UST's, Section V. A-D. <u>Attach</u> complete idance Document, interim Closure Requirements for UST's, Section V. A-D. <u>Attach</u> complete cumentation of the methods used and the results obtained for each of the steps of <u>tank</u> commissioning used. Please include a <u>site</u> map which shows the locations of all samples and borings, the commissioning used. Please include a <u>site</u> map which shows the locations of all samples and borings, the commissioning used. Please include a <u>site</u> map which shows the locations of all samples and annotated ation of all tanks and piping (e.g., removed, abandoned, temporarily closed, etc.). The differentiate the status of all tanks and <u>piping</u> (e.g., removed, abandoned, temporarily closed, etc.). The me site map can be used to document other parts of the site assessment requirements, if it is properly and the site map can be used to document other parts of the site assessment requirements, if it is properly and the parts of the site assessment requirements.
IV.	sı	TE ASSESSMENT REQUIREMENTS
	A.	Excavated Soil
		Any evidence of contamination in excavated soil will require that the soil be classified as either Hazardous Waste or Non-Hazardous Waste. Please include all required documentation of compliance with the requirements for handling contaminated excavated soil (if any was present) as explained in the technical guidance documents for closure and corrective action. Describe amount of soil removed, its classification, and disposal location.
	В	. Scaled Site Diagrams
		1. Scaled site diagrams must be attached which include the following information:
		 a. North arrow and scale b. The locations of the ground water monitoring wells c. Location and depth of each soil sample and boring d. All major surface and sub-surface structures and utilities e. Approximate property boundaries f. All existing or closed underground storage tank systems, including appurtenant piping g. A cross-sectional view indicating depth of tank, stratigraphy and location of water table h. Locations of surface water bodies
	(C. Soil samples and borings (check appropriate answer)
		1. Were soil samples taken from the excavation as prescribed? X Yes No N/A
		2. Were soil borings taken at the tank system closure site as prescribed?YesNo X_N A
		 3. Attach the analytical results in tabular form and include the following information about each sample: a. Customer sample number (keyed to the site map) b. The depth of the soil sample c. Soil boring logs d. Method detection limit of the method used e. QA/QC Information as required

D.	-	Ground Water Monitoring	
	1.	1. Number of ground water monitoring wells installed 1	to the dealers of the delibersion
	2.	Attach the analytical results of the ground water samples in information for each sample from each well:	tabular form. Include the following
		a. Site diagram number for each well installed	
		h Death of ground water surface	
•		- Dooth of screened interval	
		d. Method detection limit of the method used	•
. ,		e. Well iogs	
		f. Well permit numbers	
		g. QA/QC Information as required	
		DIL CONTAMINATION	
e.	\A/	Was soil contamination found? X Yes No	
^	. W	If "Yes", please answer Question B-E	
	H	If "No", please answer Question B	
		the around her hoof	determined to be:
. 8	. T	The highest soil contamination still remaining in the ground has been	al non-targeted VOC
	1.	The highest soil contamination still remaining in the ground has seen 1. 0.42 ppb total BTEX. 14.0 ppb total BNN N/A ppb	al non-targeted B/N
	2	2 N/A DDD 10181 51111	
		4 N/A ppb	(for non-petroleum substance)
		(See Table 2 for other parameters) Remediation of free product contaminated soils	
	D. 1	All free product contaminated soll of the product contaminated soll of the product contaminated soils are suspected to exist below the soll of the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist below the soils are suspected to exist off the product contaminated soils are suspected to exist below the soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist off the product contaminated soils are suspected to exist of the product contaminated soils are suspected to exist of the product contaminated soils are suspected to exist of the product contaminated soils are suspected to exist of the product contaminated s	YesNo _X_N/A
	E.	E. Does soil contamination intersect ground water?Yes X_h	ioN/A
VI.		GROUND WATER CONTAMINATION	
	Α.	A. Was ground water contamination found? Yes X No	
	A. .	H APC. DISSE SUZMEL CORPUSIONS D.C.	
		K "No", please answer only Question b.	
•	В.	B. The highest ground water contamination at any 1 sampling location	on and at any 1 sampling event to date has
		been determined to be: (See Table 3 for other parameters) ND	
		1 NDppb total BTEX,ND	ppb total non-targeted VOC
		and total B/N. NU	ppb total non-targeted B/N
		3. N/A ppb total MTBE, N/A	ppb total TBA (for non-petroleum substance)
		50D	(for non-petrolectin societies)
		5. greatest thickness of separate phase product found N/A	No. Y N/A
		greatest thickness of separate phase product foundYes separate phase product has been delineatedYes	10 1/ <u>1</u>
	С	C. Result(s) of well search	a la commercia
		A well search (including a review of manual well records) including a review of manual well records) including a review of manual well records) including a review of manual well records).	orkYesNo _X_N/A
		2. The number of these wells identified is N/A	

1.1.1

	D. Proximity of wells and contaminant plume
	1. The shallowest depth of any well noted in the well search which may be in the horizontal or vertical potential path(s) of the contaminant plume(s) is N/A feet below grade (consideration has been given for the effects of pumping, subsurface structures, etc. on the direction(s) of contaminant migration). This well is N/A feet from the source and its screening begins at a depth of N/A feet.
	 The shallowest depth to the top of the well screen for any well in the potential path of the plume(s) (as described in D1 above) is N/A feet below grade. This well is located N/A feet from the source.
	3. The closest horizontal distance of a private, commercial or municipal well in the potential path of the plume (as determined in D1) is N/A feet from the source. This well is N/A feet deep and screening begins at a depth of N/A feet.
	E. A plan for separate phase product recovery has been included. Yes No X N/A
	F. A ground water contour map has been submitted which includes the ground water elevations for each well. Yes No _X_N/A
	G. Delineation of contamination
	1. The ground water contaminants have been delineated to MCLs or lower values at the property boundaries. Yes No X N/A
	2. The plume is suspected to continue off the property at concentrations greater than MCLs. YesNo _X _ N/A
	3. Off property access (circle one): is being sought—that been approved—that been denied N/A
VII.	SITE ASSESSMENT CERTIFICATION [preparer of site assessment plan - N.J.A.C. 7:14B-8.3(b) &9.5(a)3]
	The person signing this certification as the "Qualified Ground Water Consultant" (as defined in N.J.A.C.7:14B-1.6) responsible for the design and implementation of the site assessment plan as specified in N.J.A.C. 7:14B-8.3(a) & 9.2(b)2, must supply the name of the certifying organization and certification number.
	"I certify under penalty of law that the information provided in this document is true, accurate, and complete and was obtained by procedures in compliance with N.J.A.C. 7:14B-8 and 9. I am aware that there are significant penalties for submitting false, inaccurate, or incomplete information, including fines and/or imprisonment."
-	fle a C
٠	NAME (Print or Type) Dinkerrai M. Desai SIGNATURE 4
	COMPANY NAME U.S. Army, Fort Monmouth DATE ////95 (Preparer of Site Assessment Plan)
	CERTIFYING CERTIFICATION ORGANIZATION NJDEP NUMBER E0002266

UST-014 2/91 VIII. TANK DECOMMISSIONING CERTIFICATION [person performing tank decommissioning portion of closure plan - N.J.A.C. 7:14B-9.5(a)4) "I certify under penalty of law that tank decommissioning activities were performed in compliance with NJA.C. 7:14B-92(b)3. I am aware that there are significant penalties for submitting false, inaccurate, or incomplete information, including fines and/or imprisonment. NAME (Print or Type) COMPANY NAME_ (Performer of Tank Decommissioning) IX. CERTIFICATIONS BY THE RESPONSIBLE PARTY(IES) OF THE FACILITY A. The following certification shall be signed by the highest ranking individual with overall responsibility for that facility [N.J.A.C. 7:14B-2.3(c)1]. "I certify under penalty of law that the information provided in this document is true. accurate, and complete. I am aware that there are significant penalties for submitting false, inaccurate, or incomplete information, including fines and/or imprisonment." SIGNATURE AMELO NAME (Print or Type) James Ott COMPANY NAME U.S. Army, Fort Monmouth B. The following certification shall be signed as follows [according to the requirements of N.J.A.C. 7:14B-2.3(C)2[]: 1. For a corporation, by a principal executive officer of at least the level of vice president, 2. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or 3. For a municipality, State, Federal or other public agency by either the principal executive officer or ranking elected official. 4. In cases where the highest ranking corporate partnership, governmental officer or official at the facility as required in A above is the same person as the official required to certify in B, only the certification in A need to be made. In all other cases, the certifications of A and B shall be made. "I certify under penalty of law that I have personally examined and am familiar with the information submitted in this application and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false, inaccurating false, inaccurating

DATE _____.

fines and/or imprisonment."

NAME (Print or Type)

COMPANY NAME

APPENDIX C
WASTE MANIFEST

In cell in mention of the second of the seco

State of New Jersey Department of Environmental Protection and Environmental Protection and Environmental Protection and Environmental Protection Manifest Section Manifest Section N.J. 18625-0028

Bldg, 210 lld. File Copy

~	CN	028, Trenton, NJ 08625-002	28	F 4	OMB No.	. 2050-0039. Expire	s 9.30.a.
ease tvp	or print in block letters. (Form designed for use on el	ite (12-pitch) typewriter.)	andos.				
	UNIFORM HAZARDOUS WASTE MANIFEST	or's US EPA ID No. M. Docu.	anifest ument No	2. Page 1	Information is not req	n in the shaded ar uired by Federal	reas law.
<u></u>	enerator's Name and Mailing Address US Army Co			A. State Mar	nifest Docume	nt Number	
] 3. G	enerator's Name and Maining Address U.S. ATMY U.S.	DEOL ATTN SELEM-DI-	EM-MS	N.	ΙΔ 1	<u>603206</u>	;
Com	nand, c/o James Shirghio, Bldg 2	2504, ATIN. SELFH DE		R Sate Ger			
For	rt Monmouth, N.J. 07703	- Main PAST		Tica	nerator's ID	-210	
4. G	enerator's Phone (908) 532-6223				i		*
5. T	ransporter 1 Company Name	6. US EPA ID Number		Mein	165+		 -
1	Freehold Cartage Inc.	N J D 0 5 4 1 2 6	11614	C. S/50		2265	
7. T	ransporter 2 Company Name	 US EPA ID Number 		D. Transport	ter's Phone (908 462-10	01
			1 1	E. State Tra	ns. ID		
9. D	esignated Facility Name and Site Address	. 10. US EPA ID Number		1			•
] 3. 5	Lionetti Oil Recovery Co., Inc	•		F. Transpor	ter's Phone ()	
.	Runyon & Cheesequake Rds.			G. State Fac	cility's ID		
	Old Bridge, NJ 08857	N J D 0 8 4 0 4 4	10 16 14			2 721-0900	
L	Old Dilago, No occo.	N 13 D 10 8 14 10 14 14	1 12. Conta		13.	14 .	
	IS DOT Description (Including Proper Shipping Name, Haz	zard Class, and ID Number)		. '	Total	Unit Waste	No.
11. 0	;-iλ/l		110.	Type (Quantity (V	WWVoll Waste	
a. i	X: Petroleum Oil NOS Class 3 (Petroleum Oil)				į	
	Combustible Liquid UN 1270 PG	III	:	: :	أرما	/ X 7	2 2
Η,	COMPANCIBLE DIAGRAM	4	0:0:1	TTX	684	6	
3 b.	Combustible Liquid UN 1270 PG Retrodeum C.I NOS Class Combust ble Liquid Combust ble Liquid	314 todaken CI		y		· ·	
■ 5.	Petroleum Oil 100- Class						
4	\mathbf{X}	LUI DID PLIEL	1001	TTY	(X30)	6- X/	とと
	1 Compaspore LIGHT	ON 1010 1045	0011	- / / / /	7.00		
C.							
[1				ı
	·		_	1-1-1-			
d.			[1	.		
			İ				
			1 _		1.1.1.1		· ·]
	Additional Descriptions for Materials Listed Above			K. Handiin	g Codes for W	astes Listed Above	∋ • • • • • • • • • • • • • • • • • • •
•.	T.L Petroleum Oil 80%				÷		
	Water 2. %			a.		c. 13	
a.	A			1	<u></u>		<u> </u>
	Til Klarken O.1 80%		to select the				
b.	Water 20% d.			! b	1 .	UST BEIS	733-5
15.	Special Handling Instructions and Additional Information	os homordone waste in	N.T	Han B	12, 200	1 C-93-	3611
	Not EPA regulated, regulated	as nazardous waste in	_		4	. UST# 41	533-
11	24 hour Emergency Response #		- i	16 1	311921		
11	NJ Decal#		, ,				1610
16.	GENERATOR'S CERTIFICATION: I hereby declare that the	e contents of this consignment are full	y and accura	ately described	d above by pro	per shipping name international and	and are national
11 ·	classified, packed, marked, and labeled, and are in all r	espects in proper condition for transp	ort by night	way according	to applicable	, intomational are	
11	government regulations. If I am a large quantity generator, I certify that I have a pro	ocram in place to reduce the volume ar	nd toxicity of	waste genera	ted to the deg	ree I have determin	ned to be
11	If I am a large quantity generator, I certify that I have a pro- economically practicable and that I have selected the pract	ticable method of treatment, storage, or	r disposal cu	rrently availab	le to me which	n minimizes the pre	sent and
1 1	future threat to human health and the environment: UH. II I	am a small quantity generator, i have	made a good	a faith eildrí io	minimize my	Maste generation a	,,,,
	the best waste management method that is available to m	Signature 2			-00	Month Da	y Year
	Printed/Typed Name	n Dra	nh G	\sim \sim	トッハハと	とう とうりん	799
	105aph 111. 1910	11	<u> </u>		10m	<u>ر با تا /u>	4-17
Ţ 17.	Transporter 1 Acknowledgement of Receipt of Materials		<u> </u>	- 01	7	Month Da	y Year
R A N	Printed/Typed Name	Signature		$\bigcup_{i \in X} X_i$	1-10	000	7.0.L
SI	David S. Smith	1	Jan		MUXIC	<u> </u>	
0 18.	Transporter 2 Acknowledgement of Receipt of Materials						
P	Printed/Typed Name	Signature				Month Da	ay Year
R T E R							
	Discrepancy Indication Space						_
1	Discrepancy indication opaco						
F A		•					
A C							
. 1				- roted in its	m 10		
1 20.	Facility Owner or Operator: Certification of receipt of haza	ardous materials covered by this manif	est except a	is noted in Iter	H 13.	Month Da	av Yea
T	Printed/Typed Name	Signature				MOHILI DE	., 10a

APPENDIX D

UST DISPOSAL CERTIFICATE

APPENDIX E

NJDEP WELL PERMITS AND WELL CONSTRUCTION LOGS

MONITORING MED CERTIFICATION-FORM B-LOCAT CERTIFICATION Name of Pormittee: U.S. ARMY Name of Pacility: FORT MON MOUTH LOCATION: MONMOUTH COUNTY, NJ -NJPDES HUMBER: 94-1-25-0913-00 LAND SURVEYOR'S CERTIFICATION 29-31793-Wall Permit Number: This number must be permanently affixed to the well casing. West 74°02'15.02" Longitude (to nearest second): Morth 40° 19'16.02" Latitude (to mearest second): Elevation of Top of Inner Casing (cap off) 10.82 (one-hundredth of a foot): Elevation of ground level (1/100th ft) Bource of elevation datum (benchmark, nail, etc.) and year. (If an alternate datum has Bourco: Mol. FM-5 been approved by the Department, identify TY 1927 TT 1983 here, assume datus of 100', and give approximated actual elavation.) Owners Well Number (As shown on BLDG 210 MW-1 application or plans): Elevations are to be determined by double run, three wire leveling methods using balanced sights, commencing from a well marked and described point. This beginning point shall either be derived from

Federal or State benchmarks if not more than 1000 foot from the site or from an alternate datum approved by the Department. Tolerances should meet third order standards, which are 0.05 ft x (mile) 1/2. For sections less than 0.1 mile, let miles = 0.1.

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND BURVEYOR'S GIGNATURE

WAYNE W BURGETT PROFESSIONAL LAND SURVEYOR'S HAME (Please print or type)

SEAL

31654 FROFESSIONAL LAND BURVEYOR'S LICENSE DWR-138 N

Hew Jersey Department of Environmental Protection and Energy Bureau of Water Allocation

MONITORING WELL RECORD

4		· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 	29	31792	
		Well l	Permit No Sheet Coordi	 inates	51792 25; 13;	634
	and a substant contribution of	,	011881 00010		··	
OWNER IDENTIFICATION - Owner	TRA YMA SU	S. SES.AUDI				
Address	HILLENAY DEN			11,3	<u> </u>	
City			State		Zip Code	
WELL LOCATION , If not the same as	owner please give addre	ss Own	er's Well No.	Bldg 2	O Mui-1	
8				-		.• 1.
Address	_ · · · · · · · · · · · · · · · · · · ·					
Address					9 22 9	14
TYPE OF WELL (as per Well Permit Co	ategories) <u>MWITTWI</u>	143	Date W	eli combiete	0 <u>' / / / / / / / / / / / / / / / / / / </u>	<u>· </u>
Trogulatory Freguent Frequency						
CONSULTING FIRM/FIELD SUPERVI	SOR (if applicable)			,	Tele. #	
WELL CONSTRUCTION		Depth to	Depth to	Diameter		
Total depth drilled ft.	•		Bottom (ft.)		Type and M	aterial
Well finished to 12 ft.		[From lan	d surface]			
	Inner Casing	0	a'	4	PVC	
Borehole diameter: Topin.	Outer Casing	·				
Bottom 8 in.	(Not Protective Casing) Screen	1	100	11		210
	(Note slot size)	3'	181	7	20 slot	MC
Well was finished: above grade	Tail Piece					•
flush mounted	Gravel Pack		121		#2 Maric	5,00
If finished above grade, casing	Graver Fack	7 1	123			- elec - 1
height (stick up) above land surfaceft.	Annular Seal/Grout	ني)	,		Bentonite	Portland
Was steel protective casing installed?	Method of Grouting		C friend S		: ide:	
Yes No	·	1		(0:-		
Static water level after drilling	· ft.	GEO	DLOGIC LOC	geophy	s of other geologic l /sical logs should b	e attached.)
Water level was measured using	Tape	6	-6" (Fr	4354 4	year top so	1
1 1	urs at gpm			THE Y	rown, Fine	5-1-1-
Method of development	P	6"	-2	ym b	Abrill Tire	,,,,,
Was permanent pumping equipment in	nstalled? Yes N	o .	Sil	Ť		
Pump capacitygpm	-	,	-1:	111	المرابع النعيب	und Sombo
Pump type:		3.	-3 L	The B	iowil, in di	
Drilling Method	<u> </u>	i	7/ 1		run, med.	Sand
	e of Rig D 30	🌣	$=I_{1}$	- 115		
Name of Driller	F. 1300K		MI	34 ! J	w C	
, iounit, unite outroly . Iuni outrinipas .	Yes No		ind i	1 1 1	rown, sil	اسارو کا ا
Level of Protection used on site (circle	one) (None) D C B A	= 17	-100	14 d !	Henry Dill	1.
N.J. License No.						
Name of Drilling Company	TAREST TARE LEVEL			i,		
I certify that I have drilled the above	e-referenced well in acc	cordance wit	h all well per	mit require	ments and all app	licable
াState rules and regulations.	. 9	3 A 31	. /			1
Dalla de Olaz-	arma Maria	1/15/1	1	Г	ate <u> </u>	751
Driller's Sign	idiule <u> </u>	See manual of the	No. of the second			

COPIES: White & Green - DEPE Canary - Driller Pink - Owner Goldenrod - Health Dept.

SERIAL # 41171	
DWR-133M (10/93) STATE OF NE	EW JERSEY
DEPARTMENT OF ENVIRONMENT	AL PROTECTION AND ENERGY
Mail to TRENTO	/ Permit No. 29 31 M 2
Bureau Water Allocation MONITORING V	VELL PERMIT
CN426 VALID ONLY AFTER APPL	
enton, NJ 08625	COORD #:
pwner US Army Fort Monnoth	Driller Lyree Organization Ltd.
Address SELFM PW-EV	Address 1350 US Huy 130
Fort Monmorth, NJ 07703	Parlington NJ 08016
lame of Facility Building 210	Diameter Proposed
	of Well(s) Inches Depth of Well(s) Feet
Address MAIN Post	# of Wells Applied for (max. 10) Will pumping equipment be installed? YES NOT
Fort Monmoth NJ	Type of Well
LOCATION O	(see reverse) Manifolds (sapacity NA GPM
t# Block# Municipality County	
Fort Mamonth Mannorth	Draw sketch of well(s) nearest roads, buildings, etc. with marked distances in feet. Each well MUST be labeled
	with a name and/or number on the sketch.
State Atlas Map No. 29 UCLarport	ting a service of the
<u>₹</u> / 40°20'	
	and the state of t
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	Salar Anna Anna Barrer Argentin Carlotte Commence
	en de entre la compaña de manda de la compaña de la co
-11-51te 12 1 1 1 1 1 1 1 1	
0 11	
	2
10 00	\ r _a
BIO BIO	
	The state of the s
1 40°18'	Note that the state of the stat
FOR MONITORING, WELLS, BECOVERY WELLS, DR.P. IEZOMETERS, THE FOLLOWING THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED:	MUST BE COMPLETED BY
Spill Site	his Space for Approval Stamp
ISRA Site	
☐ CERCLA (Superfund) Site	
RCRA Site CA Underground Storage Tank Site	SEI.D. Number WELL PERMIT APPROVED N J D E.P.
Operational Ground Water Permit Site	15-1913-20
C Protocotocout and Paris I also	21/2 2/2
Water and hazardous waste Enforcement Case	AUG 3 534
Water Supply Aquifer Test Observation Well	
Other (explain)	BUREAU OF WATER ALLOCATION
FOR Issuance of this permit is subject to the conditions attached. (see next page D.E.P.E. For monitoring purposes only	The well(s) may not be completed with more than 25 feet of total screen or uncased borehole.
USE D	of directed botarole.
E REVERSE SIDE FOR IMPORTANT PROVISIONS AND REGULATIONS PERTAINING TO THIS PERM	
In compliance with N.J.S.A. 58:4A-14, application is made for a permi	t to drill a well as described above.
Signature of Driller	License # 1401
Signature of Owner	La Clase SELFM- FW-EV
· ·	

<u>}</u>		•)		FI	ELC) L	og c	OF BORING SHEET \int_{0}^{∞} of $\frac{3}{3}$
1	LOC	CATIO	N OF	BOR!	NG:								1,	PROJECT: US Army BORING NO: VII-
į		<u></u>			3Ľ –	. Þ								FA. Manmarth TOTAL DEPTH: 121-
7						(JOB NO: LOGGED BY: E, Tile
der Erreit	`	24,	- (1)	MM	[-	l							Ų	PROJ. MGR.: Capritti EDITED BY:
_		ا گڏ.				1							Arc.	DRILLING CONTRACTOR: YEL
distriction of the last	~~	_\$_											4	DRILL RIG TYPE: 380
j													1 }	DRILLERS NAME: M. Beck
NAME OF STREET		B	Ida	21	0								3	SAMPLING METHODS: 55
j		10	ر"										000	HAMMER WT.: 20 65, DROP:
7														STARTED, TIME: DATE:
Marca de confl							1							COMPLETED, TIME: 2:00 DATE:
_			· · · · ·	,		,		•	-,				<u> </u>	BORING DEPTH (ft):
and the same							3			1				CASING DEPTH (ft):
				1	문	NO NO	nln./	Ē		SNO				WATER DEPTH (ft): 6 2"
	Ŧ	PE		ËN	OVE	TiQ	TE (g.		1		H	/5	TIME:
	DEP	₩ }	N 9	J. S.	RECOVERED	g	P.A	NS SNS	N/	WE		FEE	ğ	DATE: 0/3/94
7	PLE	PLE	NS/	ES (ES I	PLE	LING	EAC	と	울		Ξ	일	BACKFILLED, TIME: 12.05 PMPATE: 9/28/97 BY: Tyree
ST.	SAMPLE DEPTH	SAMPLER TYPE	BLOWS / 6 IN.	NCHES DRIVEN	NCHES I	SAMPLE CONDITION	ORILLING RATE (min./ft.)	PID READING (ppm)	ODOR (Y / N ?)	GRAPHIC WELL CONST.		DEPTH IN FEET	GRAPHIC LOG	SURFACE ELEV: DATUM:
		- -	-	_	 -	0,		-			ادر		10	CONDITIONS:
1	~			-	ļ			-		133	4.4	-	 	(5rassy area, top soi)
الد				-				ļ		15	19	1	-1.4	Light I brown, fire sand + silts
1				<u> </u>	}	ļ 	}	ļ	ļ	30 CT 20 FE		-	SM	
	<u>-41</u>	5 5	3	6	२०			2	N	-		2	-	
,		•	ă	6	00				N			-	SP	Light brown, medium sand.
•			3	6							$\ \cdot \ $	3	 	Maline Vana de la contraction
_			à	6				<	M			}	-	Medium brown, medium sand with silts; but at approx, 41
-			-1	4					14			4	}	silts; wet at approx. 41
*										1		-		
1								<u> </u>				5	SM	
										-	10			
									\vdash	Sereen	24.70	6	1	
11				•						35,		-		
		•	······				***********				المرازد	7		Medium brown, silty sonds
William Care											Σ	-		1 1 1 3 1 1
֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓												8		
												F	514	
												9		
, [**********		•••••					-		+ No samples were colected.
											1	10 -		To samples were collected.

2							•).	-1 -5 (. ~		2(0)
_ 1	F	T	γ			 	1	1-15	=LD 1	1	1			G (CONTINUED) SHEET 7 OF 7 PROJECT: NO: BORING NO: YW-
<u></u>	/ ∄.	,,	S.	EN.	<u> </u>		里		- l .cc -	GR.WELL	<u> </u>	c	GRAPHIC LOG	PROJECT: NO: BORING NO: YW-
7	DEPTH	TYPE	BLOWS	DRIVEN	REC'V'D	COND.	D. RATE	PID	ODOR	3R.W	107	ב	SHAF C	
		<u> </u>	 - -	 -	┼ <u></u>		-	-	-	1		Ī		
القا			†	·	1				·	Screen	11	Н	SM	
					•					125	1.	П		
									4.00,000,000		12			
. ,					-						3	Ц		No Samples to Ken
: :		<u> </u>		ļ	-			ļ		-	ľ	Н		
«]	-		-	-		ļ			-		4	Н		
	-	-	-	-	-	 			-	-		Н		
					·	ļ		}	ļ		5	Н		
E .		***************************************									_	П		
]	6			
	ļ	ļ	ļ	ļ		ļ			ļ		7	Ц		
Łj				ļ		<u> </u>						Н		
	-	 -		-							8	Н		
أسا		<u></u>										Н		
6.1									ļ		9	Н		
أسا		***********	**********							{	o	Н		
7						,					J			
أسا				ļ				•••••			1			
				ļ 	ļ							Ц		
											2	Н		
. 🖪					- 19 m							H		
		•••••			<u> </u>	*					3	H		
_1		********	**********		•••••							Н		
			*********	******							4			
ر ۲	ļ										5			
- <u>i</u>											٦			
				-							6	4		
												\downarrow		
	 			•••••							7	+	ł	
E 4											}	\dashv	}	
فسنا											8	\dashv	ŀ	
												1		

APPENDIX F SOIL ANALYTICAL DATA PACKAGE

(QC and raw data not included for brevity)

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory

NJDEPE Certification # 13461

Client: U.S. Army

DEH, SELFM-EH-EV

Bldg. 167

Ft. Monmouth, NJ 07703

Lab. ID #: 1370.1-.5

Sample Rec'd: 01/14/94

Analysis Start: 01/18/94

Analysis Comp: 01/18/94

Analysis: 418.1 (TPH)

Soil Matrix:

S. Hubbard Analyst:

Ext. Meth: Sonc.

NJDEPE UST Reg.#: 81533-08

TMS #:

NJDEPE Case #:

Location #: 210

Lab ID.	Description	%Solid	Result (mg/	MDL Kg)
1370.1	Near Foundation (hNu=NA +	84	3440.	20.
1370.2	Center West Wall n hNu=NA +	89	21.6	3.3
1370.3	Center North Wall @ hNu=NA +	86	15.9	3.3
1370.4	Under Piping E.Wall hNu=NA +	85	17.7	3.3
1370.5 🛪	Dupe. of A / E hNu=NA +	. 88	90.4	3.3
-				ļ
M. Bl.	Method Blank	100	ND	3.3

Notes: ND = Not Detected, MDL = Method Detection Limit

* = Silica Gel Added, NA = Not Applicable

+ = Temp. and Weather Conditions prohibited hNu use.

1370.2 Dup. = 93% 1370.2 Spike=120%, 1370.2 Spike Dup.=123%, RPD=19%

Brian K. McKee

Laboratory Director

E IS the Duplicate of A

IGNOR E (13221)

THE correct (Lab 10 172001

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory NJDEPE Certification # 13461

Client: U.S. Army

DEH, SELFM-EH-EV

Bldg. 167

Ft. Monmouth, NJ 07703

Lab. ID #: 1370.1-.5

Sample Rec'd: 01/14/94

Analysis Start: 01/18/94

Analysis Comp: 01/18/94

Analysis: Munsel

Lab ID#	Soil Color
	.:
1370.1	2.5Y 4/3 Olive Brown
1370.2	2.5Y 5/6 Light Olive Brown
1370.3	2.5Y 5/6 Light Olive Brown
1370.4	2.5Y 5/6 Light Olive Brown
1370.5	2.5Y 4/4 Olive Brown

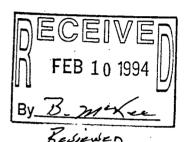
Brian K. McKee Laboratory Director

1/18/94 3:52 PM

		ompany	F'.	0. #:											Chain	of Cus	stody	·
·			[5-wp]er	•			Date /	Tin	ue	F	Inalı	js i			·.		5tart	•
roject #:			- T	ochkovsky	•					Pa	ramo	ete	rs /	, ,	.,,_,			
ustomer:		•	Site Na	echkovily ame: 9 5504						T			'/				finis	n:
			620	9 5504	2/L 		,		14	$P = \frac{P}{I}$					/ /	ם	rese!	vation
hone:			UST	# 00815	33.D	,		7			1: 1	/		/ /	/ /			Method
ab Sample D Number	Date	Time	Custo Locatio	omer Sample on/ID Numbe	r Mai	mple crix	# of Bottles	/		_/	_/	. / {-	_/			Rema		
1370.1	1/14	1400	A Mear	fundation	S	>,1	i		X		··				- h	SJ_=_	U.A	·
1370.2	1	1410		west wall			1.		×		-				_			
1370.3		1413	C Cent	North Wall	,				X			_	_					
1370.4		1415	1	Piping Ewie					×					-				
1370.5		1418		o of A					×									
								-			-	-			_			
				· · · · · · · · · · · · · · · · · · ·											_			
								_	_									
												-				<u></u>		
V 1								_										
			<u> </u>				<u></u>		<u> </u>		hip		Bu	l_ -				
Relinquished	By	(signat	ure) [late / Time	Recei	ved (3y (sigr	nacur	-e)			Jeņ						
Relinquished	Bu	(signat	ure) [ate / Time	Recei	ved	for Lab	by '	(sig	gnat	cure) :		Da	ate / Ti	ine .		
	1 .	1		-14-74 150C			,	:	381									
Note: A draw	ing	depireti	ing samp)	e location	should	be .	attached	or or	dra	awn	Off	the	, re	yer;	e side	of th	15 C	ain
of cus				Page			f2_								Date: 0			

....

PHC Conformance/Non-conformance Summary Report	<u>No</u>	<u>Yes</u>
1. Blank Contamination - If yes, list the sample and the corresponding concentrations in each blank	<u></u>	<u></u>
2. Matrix Spike/Matrix Sp Dup. Recoveries Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range)		
3. IR Spectra submitted for standards, blanks, & samples		
4. Chromatograms submitted for standards, blanks, and samples if GC fingerprinting was conducted.	_	43
5. Extraction holding time met. (If not met, list number of days exceeded for each sample	<u>.</u>) —	
6. Analysis holding time met. (If not met, list number of days exceeded for each sample)		
Comments:		
		-


Laboratory Authentication Statement

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW 846 for Solid Waste Analysis. I have personally examined the information contained in this report, and to the best of my knowledge, I believe that the submitted information is true, accurate, complete, and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Brian K. McKee Laboratory Manager Jan. 18,1992 1152 2012 20 Sarah Blank OMV 20.75 95 AV 81.5 193 MV 163 396 MV 1370.1 348 1370.2 1370. Z Dup 104V 1370.2 Spc 108 1370, 200p SX 11/ MV 1370.3 1370.4 8hV

618 HERON DRIVE, P.O. BOX 489 • BRIDGEPORT, NJ 08014-0489 • 609-467-9521

E-SYSTEMS, INC./SERV-AIR

PROJECT: U.S. ARMY-FORT MONMOUTH BLDG 210

ANALYSIS NO:

CLIENT ID:

B 0189

1370.1

DATE RECEIVED: JANUARY 20, 1994

TWENTY FIRST CENTURY ENVIRONMENTAL, INC.

RICHARD W. LYNCH LABORATORY MANAGÉR

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

		No	Xea /-
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)		
. 2.	GC/MS Tune Specifications a. BFB Meet Criteria b. DFTPP Meet Criteria		NA
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 series.		
4.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of sample analysis for 600 series and 12 hours for 8000 series		<u></u>
្ភ5 •	GC/MS Calibration Requirements a. Calibration Check Compounds b. System Performance Check Compounds		
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:		•
	8. VOA Fraction D. B/N Fraction C. Acid Fraction	Melly	Below MD
7.	Surrogate Recoveries Meet Criteria If not met, list those compounds and their recoveries which fall outside the acceptable range:		
	a. VOA Fraction b. B/N Fraction c. Acid Fraction		
	If not met, were the calculations checked and the results qualified as "estimated"?		MA
8.	Matrix Spike/ Matrix Spike Duplicate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		
	a. VOA Praction b. B/N Praction c. Acid Fraction		
. a .	Internal Standard Area/Retention Time Shift Meet Criteria		

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT (CONTINUED)

		No	169.
10.	Extraction Holding Time Het.		
	If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Het		<u> </u>
	If not met, list number of days exceeded for each sample:		
Add ——	itional Comments: No T.B. or F.B. SSBMiTTED	FO	
	oratory Manager: B. M. Land Date: 2/10		

.

111 (121 191

de tile de sa

TABLE OF CONTENTS

Narrative	00001
Chain of Custody Forms	00002
Methodology	00003
Laboratory Chronicle	00004
Result Summary	00005
Data Package	00008
Ouality Control Data	00013

NARRATIVE

There were no problems encountered during the analysis of this sample (B0189). All analysis were completed within proper hold times.

BO189

FT. MONMOUTH OFFICE

P.O. #: U.S.T. TANK Removal

0.0 C Chain of Custody O

Project #:			L Sampl	er: _				Date /	· T			Ana 'ara	lys	is ers				, -	Star	
Customer: Serv-Air,	Inc	1_	Site	Mame: 6. Arn H Mon				Uate /	13		/	7/	/	//		/.			Fini	
Phone: (40%) 53	a-4359		Cus	tomer S	ample		Sample	# of]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10/							 Re	marks	Meth]
10 Number	Date/Tin		Locat	ion/10 r Fourda	Humber		Jail	Bottles		<u>人</u>		_			/		To co	ld	For	bN.
10 10 81	7171111			0081533						-										-
												:								
										-						-			<u></u>	-
					· · · · · · · · · · · · · · · · · · ·															
					· ·					-										
Relinquished	l By (sign	natur	e)	Date /	Time	Re	ceived	By (sign	atu	re)	9	Ship	pped	d Ву	j:					
Relinquished	. \)	احلما	ممار	12	= 0 - > 0	for Lab								V 19	.= / Tim	D		
Note: A draw of cus	Ting depi	oting	j saini	<u> </u>	ation	shc	ould be	attached	or	dr.		011			•∧6	rse	side o	f t		nain
SAI-ENV COC	form Ol				Page			f		Pag	es		R	ev.	A	Оa	te: 02	Hþr	7.3	

Purgeables

U.S.E.P.A. Method 624 - This is a purge and trap Gas Chromatograph/Mass Spectrometer (GC/MS) method applicable to the determination of the compounds listed in the U.S.E.P.A. Manual entitled "Test Procedures for the Analysis of Organic Pollutants".

An HP5996 GC/MS was used with a capillary column.

Method detection limits are as stated.

Soil samples are prepared for analysis as prescribed in Method 8240/8260 from SW-846.

LABORATORY CHRONICLE

RECEIPT/REFRIGERATION	1/20/94
ORGANICS EXTRACTION	
1. Acids	NA
2. Base/Neutrals	NA
3. Pesticides/PCB's/Herbicides	NA
4. Petroleum Hydrocarbons/Oil & Grease	NA
ANALYSIS	
1. Volatiles	1/24/94
2. Acids	NA
3. Base/Neutrals	NA .
4. Pesticides/PCB's/Herbicides	NA
5. Petroleum Hydrocarbons/Oil & Grease	NA
6. Total Organic Carbon	NA
Section Supervisor Review & Approval	martin
INORGANICS	
1. Metals	NA
2. Cyanides	NA
3. Phenols	NA
OTHER ANALYTES	
	-
Section Supervisor Review & Approval	NA.
Quality Control Supervisor Review & Approval	gh Gul
Laboratory Director Review & Approval	s Ryms
If fractions are re—extracted and re—analyzed be	ecause initial endeavors did not m

RESULT SUMMARY

21st Century Environmental Inc. VOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER SAMPLE NUMBER CLIENT ID DATA FILE

US ARMY FT, MONMOUTH NJ
80189
A-NEAR FOUNDATION BLDG 210
>A4850

MATRIX	Soil	
DILUTION FACTOR	125.00	
COMMENTS	HNU NA	
DATE ANALYZED	01/24/94	

COMPOUND	ug/Kg	MDL	COMPOUND	UG/KG	MDL
######################################	*************	****		***********	*****
Acrolein	ND	7400	2-Chloroethylvinylether	ND	1500
Acrylonitrile	ND	7400	2-Hexanone	ND	1500
Chloromethane	ИD	1500	trans-1,3-Dichloropropene	ND	740
Bromomethane	ND	1500	To luene	ND	<i>7</i> 40
Vinyl Chloride	ND	1500	cis-1,3-Dichloropropene	ND	740
Chloroethane	ND	1500	1,1,2,2-Tetrachloroethane	ND	740
Acetone	620 J	1500	1,1,2-Trichloroethane	ND	740
1,1-Dichloroethene	МD	<i>7</i> 40	4-Methyl-2-pentanone	ND	1500
Carbon Disulfide	ND	1500	Tetrachloroethene	ND	740
Methylene Chloride	220 JB	740	Dibromochloromethane	ND	740
1,2-Dichloroethene(trans)	ND	740	Chlorobenzene	ND	740
1,1-Dichloroethane	ND	740	Ethylbenzene	ND	740
Vinyl Acetate	ND	740	ตรีp-Xylenes	420 J	740
2-Butanone	ND	1500	o-Xylene	ND	740
Chloroform	ND	740	Styrene	МD	740
1,1,1-Trichloroethane	2500	740	Bromoform	ND	740
Carbon Tetrachloride	ND	740	m-Dichlorobenzene	ND	740
1,2-Dichloroethane	· ND	740	p-Dichlorobenz ene	ND	740
Benzene	ND	748	o-Dichlorobenzene	ND	740
Trichloroethene	ND	740	Methyl Tertiary Butyl Ether	ND	1500
1,2-Dichloropropane	ND	740	Tertiary Butyl Alcohol	ND	7400
-Bromodichloromethane	ND	740			

SURROGATE COMPOUNDS	* RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	106	70 - 121	OK
Toluene-d8	105	81 - 117	OK
Bromofluorobenzene	101	74 - 121	OK

Percent Solid of 84.0 is used for all Target compounds.

- (J) Indicates detected below MDL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

E1

VOLATILE ORGANICS ANALYSIS DATA SHEET

A NEAR FOUND.

EPA SAMPLE NUMBER

Filient Name: US ARMY FT. MONMOUTH, NJ Client ID: BLDG 210

Matrix: (soil/water) SOIL Lab Sample ID: B0189

TENTATIVELY IDENTIFIED COMPOUNDS

ample wt/vol: .04 (g/mL) g Lab File ID: >A4850

Level: MED Date Received: 01/20/94

Moisture: 16 Date Analyzed 01/24/94

Column: CAP Dilution Factor: 125

CONCENTRATION UNITS

Number TICs Found 19 (ug/L or ug/Kg)/ug/Kg

I AS	NUMBER	I COMPOUND NAME	RT	' IEST CONC	1.
\			' ======	; ====================================	
1	.======		†	E .	i
1 1	3073663	Cyclohexane, 1,1,3-trimethyl- (8CI9CI)	16.08	I 3600	i
1 12		Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.b			i
1 3	7667609		116.66	•	i
1 3	2216333	Octane, 3-methyl- (8CI9CI) Cyclohexane, 1-ethyl-4-methyl-, cis- (8CI9CI			i
. ===	4926787		117.97		i
15	53941198	, 2 (10,0),0, 3, 1, 1 (1,1110-11)	118.51	-	
1 6	1678928	, cyclonoxuno, propyr (ocivor)			ŀ
477	4291809	, eyerement, i memy propy	119.76		
I 18	1074551	1 denzene, z metnyż i propyz i czy	120.81		1
1_8	16 <i>7</i> 8984	, cyclonexame, is methy propyer	120.95		-
1, 40	141935	, 20,,20,,00	121.63		1
1 1	91178	r Haphtenaione, accompany to the contract	121.89		I
1-12	3228185 9	1 0y010p011tan0, = 144p14py =	122.40		١
113	2870044	r benzency z ochyr zys armothyr trarr	122.52		l
[]4	767588	1H-Indene, 2,3-dihydro-1-methyl- (9CI)	122.77		ı
l _a 15	527855		123.10	1 9900	i
116	52 <i>7</i> 537	Benzene, 1,2,3,5-tetramethyl- (8CI9CI)	123.27	1 6500	. 1
ピュフ	1196583	Benzene, (1-ethylpropyl)- (8CI9CI)	123.50	12000	l
1 8	18321363	Benzene, (1,1-dimethyl-2-propenyl)- (9CI)	123.81	3700	1
179	767997	Benzene, (1-methyl-1-propenyl)-, (Z)- (9CI)	123.90	1 5800	1
<u> </u>		1	1	l	_ !
====					

تفضه بمرابع المجالعي المجالعي والماران

1

DATA PACKAGE

21st Century Environmental Inc. VOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER	US ARMY FT. MONMOUTH NJ	MATRIX	Soil	
Sample Number	80189	DILUTION FACTOR	125.00	
CLIENT ID	A-NEAR FOUNDATION BLDG 210	COMMENTS	HNU NA	
DATA FILE	>A4850	date analyzed	01/24/94	

COMPOUND	UG/KG	MOL	COMPOUND	ug/kg	MDL
######################################	*************	7/00	######################################	*********	222222
Acrolein	ИD	7400	2-Chloroethylvinylether	ND	1500
Acrylonitrile	ND	7400	2-Hexanone	ND	1500
Chloromethane	ND	1500	trans-1,3-Dichloropropene	ND	740
Bromomethane	מא	1500	Toluene	ND	740
Vinyl Chloride	ND	1500	cis-1,3-Dichloropropene	NED	. 740
Chloroethane	CM	1500	1,1,2,2-Tetrachloroethane	ND	740
Acetone	620 J	1500	1,1,2-Trichloroethane	ND	740
1,1-Dichlorsethene	ND	740	4-Methyl-2-pentanone	ND	1500
Carbon Disulfide	ND	1500	Tetrachloroethene	ND	740
Methylene Chloride	220 JB	740	Dibromochloromethane	ND ··	740
1,2-Dichloroethene(trams)	NO	<i>7</i> 40	Chlorobenzene	ND	740
1,1-Dichloroethane	ND	740	Ethylbenzene	ND	740
Vinyl Acetate	ND	740	m&p-Xylenes	420 J	740
2-Butanone	ND	1500	o-Xylene	Ю	749
Chloroform	מא	740	Styrene	ND	740
1,1,1-Trichloroethane	2500	740	Bromoform	ND	740
Carbon Tetrachloride	ND	740	m-Dichlorobenzene	ND	740
1,2-Dichloroethane	ND .	740	p-Dichlorobenzene	ND	740
Benzene	ND	740	o-Dichlorobenzene	ND	740
Trichloroethene	ND	740	Methyl Tertiary Butyl Ether	ND	1500
1,2-Dichloropropane	ИD	740	Tertiary Butyl Alcohol	. ND	7480
Bromodichloromethane	ND	740	,, -		. 400

SURROGATE COMPOUNDS	* RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	106	78 - 121	OK
Toluene-d8	105	81 - 117	OK
Bromofluorobenzene	101	<i>74</i> - 121	OK

Percent Solid of 84.0 is used for all Target compounds.

- (J) Indicates detected below MDL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

E1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NUMBER

A NEAR FOUND.

Client Name: US ARMY FT. MONMOUTH, NJ Client ID: BLDG 210

[atrix: (soil/water) SOIL Lab Sample ID: B0189

Fample wt/vol: .04 (g/mL) g Lab File ID: >A4850

Level: MED Date Received: 01/20/94

Moisture: 16 Date Analyzed 01/24/94

Column: CAP Dilution Factor: 125

CONCENTRATION UNITS
Number TICs Found 19 (ug/L or ug/Kg)/ug/Kg

CAS NUMBER COMPOUND NAME IEST CONCI 3073663 | Cyclohexane, 1,1,3-trimethyl- (8CI9CI) 116.081 3600 7667609 | Cyclohexane, 1,2,4-trimethyl-, (1.alpha.,2.bl16.45| 3800 2216333 | Octane, 3-methyl- (8CI9CI) 116.661 2300 4926787 | Cyclohexane, 1-ethyl-4-methyl-, cis- (8CI9CI!17.40) 2600 53941198 | 2-Hexene, 3,4,4-trimethyl- (9CI) 117.971 6200 1678928 | Cyclohexane, propyl- (8CI9CI) 118.511 7500 4291809 | Cyclohexane, 1-methyl-3-propyl- (8CI9CI) 119.761 3600 1074551 | Benzene, 1-methyl-4-propyl- (9CI) 120.811 12.19 1678984 | Cyclohexane, (2-methylpropyl)- (9CI) 120.951 8000 110 141935 | Benzene, 1,3-diethyl- (9CI) 121.631 6800 1_1 91178 | Naphthalene, decahydro- (8CI9CI) 121.891 14000 32281859 I Cyclopentane, 2-isopropyl-1,3-dimethyl- (8CI122.401 2600 2870044 | Benzene, 2-ethyl-1,3-dimethyl- (9CI) 113 122.521 12000 1,1,4 767588 | 1H-Indene, 2,3-dihydro-1-methyl- (9CI) 122.771 11000 1 5 527855 | Benzamide, 2-methyl- (9CI) 123.101 9900 l اقتان 527537 | Benzene, 1,2,3,5-tetramethyl- (8CI9CI) 123.271 6500 I 117 1196583 | Benzene, (1-ethylpropyl)- (8CI9CI) 123.501 12000 15 18321363 | Benzene, (1,1-dimethyl-2-propenyl)- (9CI) 123.811 3700 767997 | Benzene, (1-methyl-1-propenyl)-, (Z)- (9CI) 123.901 5800

United States Army

Fort Monmouth, New Jersey

Underground Storage Tank Closure and Site Investigation Report

Building 210
Main Post Area

NJDEP UST Registration No. 081533-8 NJDEP Closure Approval No. C-93-2610

> Volume 2 of 2 Appendix G

February 1996

APPENDIX G GROUNDWATER ANALYTICAL DATA PACKAGE

(QC and raw data not included for brevity)

onmental

naterials

air aboratory

8 vidon Avenue ∍stmont, NJ 08108 09) 858-4800

Cr. er Street es Jont, NJ 08108 09) 858-9573

35 Stelton Road sc sway, NJ 08854 05, 981-0550

ev ork 08 Stonehenge Lane arte Place, NY 11514

516\997-7251

ečr**š**ia

67 Roswell Street, SE Su One Sm na, GA 30080 404) 333-6066

1878 Adams Avenue Melbourne, FL 32935

Michigan

2. S. Wagner Road Ar Arbor, MI 48103 (313) 668-6810

Laboratory Name

Field Sample No.

1835.1 Bldg. 210, MW1-2931792

& Location

Trip Blank

Field Blank

Certification No.

1720 S. Amphlett Boulevard

Suite 130 S Mateo, CA 94402 (5) 570-5401

Supervisor/Manager Signature

Printed Name

Date

ANALYTICAL DATA REPORT **FOR**

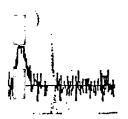
U.S. ARMY, FORT MONMOUTH SELFM-PW-EV

Building 173

Fort Monmouth, NJ 07703

PROJECT: 94125091300

EMSL Project: #9508318


	Laboratory		Date & Time	Date
	Sample ID	Matrix	of Collection	Received
_			5/19/95 @ 1042	5/22/95
	95-23342	Aqueous	5/19/95 @ 1042	
•	95-23340	Aqueous	5/19/95 @ 0615	5/22/95
			-5/19/95 @ 1533	5/22/95
	95-23341	Adneons	3, 17, 75 (6) 1000	

EMSL ANALYTICAL, INC.

NJDEP No. 04653 PADER No. 68-367 NY-ELAP No. 10896

Paul V. Laraia

06-27-95

TABLE OF CONTENTS

<u> </u>	Page .
Sample Data Summary Package	3-19
Laboratory Deliverables	20
OA/QC Checklist	21
QA/QC ChecklistChain of Custody Documentation	22-27
	28-29
Methodology Summary Laboratory Chronicle	30
Analysis Conformance/Non-Conformance Summary Format	31-32
	33-104
GC/MS Volatile Organic Data Package	
Initial Calibration Data	
Continuing Calibration BFB Tune	
Continuing Calibration Data Internal Standards Area Summary	
Sample Results	
Surrogate Recovery Form	
Method Blank Data	
. Matrix Spike/Matrix Spike Duplicate Data	105-189
GC/MS Semivolatile Organic Data Package	
. Initial Calibration DFTPP Tune	
. Initial Calibration Data	
. Continuing Calibration DFTPP Tune	
. Continuing Calibration Data	
. Internal Standards Area Summary	
. Sample Results	
Surrogate Recovery Form	
Method Blank Data	
. Matrix Spike/Matrix Spike Duplicate Data	190
Statement of Authentication	170

SAMPLE DATA SUMMARY PACKAGE

ttention: Charles Appleby

1 . 1

U.S. Army - Fort Monmouth

SELFM-PW-EV Building 173

Fort Monmouth NJ 07703

Client Project: 94125091300

Client Designation: Bldg.210 MW1-2931792

Date of Report:

Project Number: Lab ID:

Date Collected: Collected By:

Date Received:

Unit

Conc.

06/26/95 09508318

95-0023342 05/19/95 10:42

Client

05/22/95 07:00

RGANIC Semi-Volatiles see attached ug/l BN by 625 with Library Search Volatiles see attached ug/l Volatiles by 524.2 w/ Library Search

REMIVOLATILE O	RGANICS	ANALYSIS	DATA	SHEET

9523342B
 Bldg 210 MIL 1-2931782

SAMPLE NO.

Lab Name: EMSL AN	IALYTICAL	Contract.	
Project No.:	Site:	Location:	Group:
Matrix: (soil/water)	WATER		Lab Sample ID: 9523342B
Sample wt/vol:	1000.0 (g/mL ML	-	Lab File ID: B7813.D
Level: (low/med)			Date Received: 5/22/95

Date Extracted: 5/26/95 decanted: (Y/N): N % Moisture: Date Analyzed: 6/3/95 1000 (uL)

Concentrated Extract Volume: Dilution Factor: 1.0 (uL) Injection Volume: 1.0

N pH: GPC Cleanup: (Y/N)

Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg)	ug/L	Q
62-75-9	N-nitrosodimethylamine		2	U
111-44-4	bis(2-Chloroethyl)ether		1	U
541-73-1	1,3-Dichlorobenzene		2	Ū
	1,4-Dichlorobenzene		1	U
106-46-7	1,2-Dichlorobenzene		2	U
95-50-1	bis(2-chloroisopropyl)ether		5	U
108-60-1	N-Nitroso-Di-n-propylamine		2	Ū
621-64-7	Hexachloroethane		1	Ŭ
67-72-1			2	U
98-95-3	Nitrobenzene		<u>-</u> 1	U
78-59-1	Isophorone		3	U
111-91-1	bis(2-Chloroethoxy)methane		2	U
120-82-1	1,2,4-Trichlorobenzene		2	U
91-20-3	Naphthalene		2	Ū
87-68-3	Hexachlorobutadiene		12	U
77-47-4	Hexachlorocyclopentadiene			U
91-58-7	2-Chloronaphthalene		1	U
131-11-3	Dimethylphthalate		1	U
208-96-8	Acenaphthylene		5	U
606-20-2	2,6-Dinitrotoluene		2	U
83-32-9	Acenaphthene		3	U
121-14-2	2,4-Dinitrotoluene		3	U
84-66-2	Diethylphthalate		1	
86-73-7	Fluorene		3	U
7005-72-3	4-Chlorophenyl-phenylether		3	U
86-30-6	n-Nitrosodiphenylamine		6	
122-66-7	1,2-Diphenylhydrazine(as azo)		6	U
101-55-3	4-Bromophenyl-phenylether		2	U
118-74-1	Hexachlorobenzene		2	U
85-01-08	Phenanthrene		2	U
120-12-7	Anthracene		2	U
84-74-2	Di-n-butylphthalate		5	U
206-44-0	Fluoranthene		1	U
92-87-5	Benzidine		1	U

	1B
--	----

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

_			
1	1	•	1
•	,	,	٠.

Lab Nam	e: EMSL AN	ALYTICAL	Contract:		9523342B Lide 210 MW1-29
Project N	lo.:	Site:	Location:		Group:
_	(soil/water)	WATER		Lab Sample ID:	9523342B
Sample v		1000.0 (g/mL ML		Lab File ID:	B7813.D
Level:	(low/med)			Date Received:	5/22/95
% Moist	ure:	decanted: (Y/N)	: <u>N</u>	Date Extracted:	5/26/95
Concentr	ated Extract Vo	lume: 1000 (uL)		Date Analyzed:	6/3/95
Injection	Volume:	1.0 (uL)		Dilution Factor:	1.0
GPC Cle	anup: (Y/N)		H:		
			Concentration		_
	CAS No.	Compound	(ug/L or ug/K		Q
	129-00-0	Pyrene		2	U
ř	85-68-7	Butylbenzylphthalate		9	U
	56-55-3	Benzo[a]anthracene		2	, U
	91-94-1	3,3'-Dichlorobenzidine		15	U
	218-01-9	Chrysene		2	U
	117-81-7	bis(2-Ethylhexyl)phthalate		4	U
-	117-84-0	Di-n-octylphthalate		2	U
-	205-99-2	Benzo[b]fluoranthene		1	U
	207-08-9	Benzo[k]fluoranthene		2	U
	50-32-8	Benzo[a]pyrene		2	U
	193-39-5	Indeno[1,2,3-cd]pyrene		2	U
	53-70-3	Dibenz[a,h]anthracene		3	Ŭ ,
	191-24-2	Benzo[g,h,i]perylene		2	U
		<u> </u>			
				,	
					1
			-		
					

עט חושיוו וון איינאד

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	l
9523342B	
Bldg 210 MW1-29317)	之
	•

SAMPLE NO.

Lab Name: EMSL ANA	LYTICAL		Contract:		V
Project No.:		Site:	Location:		Group:
Matrix: (soil/water)	WATER	_		Lab Sample ID:	9523342B
Sample wt/vol:	1000.0	_(g/mL) ML		Lab File ID:	B7813.D
Level: (low/med)		_	•	Date Received:	5/22/95
% Moisture: 0		decanted: (Y/N)	N	Date Extracted:	5/26/95
Concentrated Extract Volume	ume:	(uL)		Date Analyzed:	6/3/95
Injection Volume:	1.0	_(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	pH	:		
Number TICs found:	1		Concentration (ug/L or ug		

CAS Number	Compound Name		Est. Conc	Q
1.	Unknown	29.86	4	J
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.		<u> </u>		
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.			<u> </u>	<u></u>
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				<u> </u>

U

U

U

_.50

__.50

_.50

.50

FMETL # 1835,1 1A VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2 Bldg 210 MWI-2951792 Lab Sample ID: 9523342 Lab Name: EMSL ANALYTICAL Lab File ID: C8333.D Matrix (soil/water): _WATER Date Received: 05/22/95 25 mL Sample wt/vol: Date Analyzed: 06/02/95 LOW Level (low/med): % Moisture: not dec.: NA GC Column: DB-624 x 75m ID: 0.53mm Dilution Factor: 1 Soil Aliquot Volume: __ Soil Extract Volume: NA CONCENTRATION UNITS: COMMENT (ug/L or ug/Kg) _ug/L__ COMPOUND "ICAS NO. .50 75-71-8-----Dichlorodifluoromethane _.50 บั 74-87-3-----Chloromethane_ U 74-83-9----Bromomethane .50 75-01-4-----Vinyl Chloride___ _.50 U 75-00-3-----Chloroethane .50 H 75-69-4-----Trichlorofluoromethane $\frac{1}{2}.2$ В 75-09-2----Methylene Chloride_ _ .50 IJ 156-60-65----trans-1,2-Dichloroethene_ __.50 75-35-4----1,1-Dichloroethene_ TT 75-34-3-----1,1-Dichloroethane_ .. 50 594-20-7----2,2-Dichloropropane _.50 IJ 74-97-1----Bromochloromethane .50 IJ 156-59-2---- cis-1,2-Dichloroethene_ U .50 67-66-3-----Chloroform IJ .50 563-58-6----1,1-Dichloropropene U .50 107-06-2----1, 2-Dichloroethane_ U .50 71-55-6----1,1,1-Trichloroethane U .50 74-95-3-----Dibromomethane .50 56-23-1-----Carbon Tetrachloride .50 U 75-27-4-----Bromodichloromethane U 78-87-1----1, 2-Dichloropropane_ U .50 10061-01-1---cis-1,3-Dichloropropene_ .50 142-28-9----1,3-Dichloropropane___ ับ __.50 79-01-6----Trichloroethene .50 U 124-48-1----Dibromochloromethane U .50 79-00-1----1,1,2-Trichloroethane _.50 U 71-43-2----Benzene U _ .50 10061-02-6---trans-1,3-Dichloropropene U .50 75-25-2----Bromoform U .50 630-20-6----1,1,1,2-Tetrachloroethane _.50 127-18-4----Tetrachloroethene_ U _.50 79-34-1----1,1,2,2-Tetrachloroethane_ U _.50

U= Not Detected

108-88-3----Toluene

106-93-4----1,2-Dibromoethane_

108-90-7-----Chlorobenzene___

100-41-4----Ethylbenzene

1330-29-7----Xylene(total)

US ARMY Ft. Monmowth N.J.

VOLATILE ORGANIC ANALYSIS DATA SHEET FAETL # 1835, EPA 524.2

EPA 5	524.2	
	Bldg 210 MM Lab Sample ID: 9523342	11-2931792
Lab Name: EMSL ANALYTICAL	Lab Sample ID: 9523342	
Matrix (soil/water): _WATER	Lab File ID: C8333.D	
Sample wt/vol:	Date Received: 05/22/95_	
	Date Analyzed: 06/02/95_	
Level (low/med): LOW	Dilution Factor: 1	
% Moisture: not dec.: NA		NA
GC Column: _DB-624 x 75m _ID:_0.53mm_	BOIL HIIQUOC VOILIMO	
Soil Extract Volume:NA	ONCENTRATION UNITS:	
a .		COMMENT
CAS NO. COMPOUND	(ug/L or ug/Kg) _ug/L	COMMIDITA
	.50	U
100-42-1Styrene		—— <u>ü</u> ———
98-82-8Isopropylbenzene		<u></u>
108-86-1Bromobenzene		—— <u>ii</u> ———
96-18-41,2,3-Trichloropropane		
103-65-1n-Propylbenzene	1 .50	t u
95-49-82-Chlorotoluene	.50	u
106-43-44-Chlorotoluene	.50	U
108-67-81,3,5-Trimethylbenzene	.50	u
98-06-6tert-Butylbenzene		—— u ——
95-63-61,2,4-Trimethylbenzene	.50	
135-98-8sec-Butylbenzene		
541-73-11.3-Dichlorobenzene	.50	<u>u</u>
106-46-71,4-Dichlorobenzene		U
99-87-64-Isopropyltoluene	.50	<u>U</u>
95-50-11,2-Dichlorobenzene	.50	U
104-51-8n-Butylbenzene	.50	U
96-12-81,2-Dibromo-3-chloropro	opane .50	U
120-82-11,2,4-Trichlorobenzene	.50	U
87-68-3Hexachlorobutadiene	.50	U
Nonhthalene	.50	U
91-20-3Naphthalene		U
87-61-61,2,3-Trichlorobenzene		

COMMENT

U= Not Detected

church 12 st

tention: Charles Appleby

U.S. Army - Fort Monmouth

SELFM-PW-EV Building 173

Fort Monmouth NJ 07703

Client Project: 94518093636

Glient Designation: Trip Blank

Date of Report: Project Number:

Lab ID:

Date Collected:

Collected By:

Date Received:

06/26/95 09508317

95-0023340 05/19/95 16:31

Client

05/22/95 07:00

Unit Conc.

Volatiles by 524.2 w/ Library Search see attached ug/l

RGANIC

Volatiles

ii. iii.	1A		4
	VOLATILE ORGANIC ANAI	LYSIS DATA SHEET Fmi	TL#1835,2
	EPA 524	2 2 1 2 1	21/2
ية غ		TRIP 61. Lab Sample ID: 9523340 Lab File ID: C8331.I	an K
_Lab Name: EMSL AM	JAT.VTTCAT.	Lab Sample ID: 9523340)
Matrix (soil/water	c) · WATER	Lab File ID:C8331.I)
Sample wt/vol:	25 mL	Date Received: 05/22/9	5
Level (low/med):		Date Analyzed: 06/02/9	95
		Dilution Factor: 1_	
% Moisture: not de	4 x 75m ID:_0.53mm_	Soil Aliquot Volume:	NA
GC Column: DB-624	* X /5m_ ID:_0.55mm_		
Soil Extract Volum	ne:NACONC	ENTRATION UNITS:	
		ug/L or ug/Kg) _ug/L	COMMENT
CAS NO. CO	ONDOGMC	19/11 01 49/119/49/12	
	: -hldifluoromethane	.50	U
75-71-8D	ichlorodifluoromethane_	.50	- U
74-87-3Cl	nioromethane	50	- <u>u</u>
	romometnane		- <u>u</u>
75-01-4V	inyl Chloride	50	- _Ü
75-00-3Cl 75-69-4T:	nloroethane	.50	- <u>u</u>
∐ 75-69-4T :	richlorofluoromethane	6.4	- B
75-09-2Me	ethylene Chloride		- -
156-60-65t	rans-1,2-Dichloroethene	.50	- <u>u</u>
	,1-Dichloroethene	.50	- ₀
75-34-31	,1-Dichloroethane	.50	-
594-20-72	,2-Dichloropropane	.50	
74-97-1B	romochloromethane	.50	U
156-59-2 C	is 1,2-Dichloroethene	.50	<u> </u>
67-66-3C	hloroform	.50	U
	,1-Dichloropropene	.50	
563-58-61	,2-Dichloroethane	.50	U
71-55-61	,1,1-Trichloroethane	.50	U
1		.50	U
	arbon Tetrachloride	.50	U
75-27-4B	romodichloromethane	.50	U
78-87-11	,2-Dichloropropane	.50	U
10061-01-1	is-1,3-Dichloropropene_	.50	UU
	,3-Dichloropropane	.50	_ U
79-01-6T		.50	U
	ibromochloromethane	.50	U
-	,1,2-Trichloroethane	.50	UU
79-00-11 71-43-2B		.50	U
1 2 2 2 2 2 2 2	rans-1,3-Dichloropropen	e .50	บ
75-25-2B	ramafarm	.50	U
630-20-61	,1,1,2-Tetrachloroethan		U
127 10 4	etrachloroethene	.50	U
12/-18-41	erraciiroroernene		U
	,1,2,2-Tetrachloroethan	.80	
108-88-3T		.50	U
_	,2-Dibromoethane	.50	_
108-90-7C		.50	
" TOO=4T-4 D		.50	_
1330-29-7X	yrene(totar)		-

J= Not Detected

VOLATILE ORGANIC ANALYSIS EPA 524.2	DATA SHEET FME BLdg. TRIP BLA	
Lab Name: _EMSL ANALYTICAL Lab Matrix (soil/water): WATER Lab	Sample ID: 9523340 File ID: C8331.D	
Date	Received:_05/22/95	5
Level (low/med): LOW Date	Analyzed: 06/02/95	5
% Moisture: not dec.: NA Diid	tion Factor:1	
	Aliquot Volume:	NA
Soil Extract Volume:NA	m	
·	TION UNITS:	COMENT
CAS NO. COMPOUND (ug/L	or ug/Kg) _ug/L	COMMENT
100 40 1 Styrrong	.50	U
100-42-1Styrene 98-82-8Isopropylbenzene	.50	U
	.50	<u>"</u>
108-86-1Bromobenzene 96-18-41,2,3-Trichloropropane	.50	<u>ט</u>
103-65-1n-Propylbenzene	.50	<u>"</u>
95-49-82-Chlorotoluene	.60	
95-49-82-Chlorotoluene 106-43-44-Chlorotoluene	.50	U
108-67-81,3,5-Trimethylbenzene	.50	
98-06-6tert-Butylbenzene	.50	
95_63_61 2 4_Trimethylbenzene	. 50	
135-98-8sec-Butylbenzene	.50	
541 72 3 1 2 Dightorphongene	.50	ט
, <u> </u>	.50	U
106-46-71,4-Dichlorobenzene 99-87-64-Isopropyltoluene	.50	
95-50-11,2-Dichlorobenzene	.50	U
104-51-8n-Butylbenzene	.50	U
96-12-81,2-Dibromo-3-chloropropane	.50	U
120-82-11,2,4-Trichlorobenzene	.50	
	.50	<u>"</u> "
87-68-3Hexachlorobutadiene 91-20-3Naphthalene	.50	U
		TT

COMMENT
U= Not Detected

Bldg. 210	15
9523341B	40

Lab Name	e: EMSL ANA	LYTICAL		Contract:		Field Blank	<u> </u>
Project N	o.:		Site:	Location:		Group:	
	(soil/water)	WATER	<u></u>		Lab Sample ID:	9523341B	
Sample w	rt/vol:	1000.0	(g/mL ML		Lab File ID:	B7812.D	
Level:	(low/med)		-		Date Received:	5/22/95	
% Moisn	ıre:	_	decanted: (Y/N):	<u>N</u>	Date Extracted:	5/26/95	
Concentra	ated Extract Vol	ume:	1000 (uL)		Date Analyzed:	6/3/95	•
Injection	Volume:	1.0	_(uL)		Dilution Factor:	1.0	
GPC Cle	anup: (Y/N)	N	pH	•			
		•		Concentration U		0	
	CAS No.	Compound		(ug/L or ug/Kg)		Q	
	62-75-9	N-nitrosod	imethylamine		2	U	
	111-44-4		roethyl)ether		1	U	
	541-73-1	1,3-Dichlo			2	U	
	106-46-7	1,4-Dichlo			1	U	
	95-50-1	1,2-Dichlo			2 .	U	
	108-60-1		oisopropyl)ether		5	Ŭ	
			Di-n-propylamine		2	U	
•	621-64-7	Hexachlor			1	U	
	67-72-1				2	U	
	98-95-3	Nitrobenze		 	ī	U	
	78-59-1	Isophorone		+	3	U	
	111-91-1		roethoxy)methane		2	U	
	120-82-1		hlorobenzene		2	Ü	
	91-20-3	Naphthale			2	U	
	87-68-3	Hexachlor			12	U	
	77-47-4		ocyclopentadiene		1	U	
	91-58-7	2-Chloron			1	Ū	
	131-11-3	Dimethylp			5	U	
	208-96-8	Acenaphth	<u> </u>		2	U	
	606-20-2	2,6-Dinitr			3	U	
	83-32-9	Acenaphth			3	U	
	121-14-2	2,4-Dinitr			1	U	
	84-66-2	Diethylph	thalate		3	 	
	86-73-7	Fluorene			3	U	
	7005-72-3		henyl-phenylether			U	
	86-30-6		liphenylamine		6	U	
	122-66-7		nylhydrazine(as azo)		6	 	
	101-55-3		henyl-phenylether		2	U	
	118-74-1	Hexachlor	obenzene		2	U	
	85-01-08	Phenanthr	ene		2	U	
	120-12-7	Anthracer	ie		2	U	
	84-74-2	Di-n-buty	lphthalate		5	U	
	206-44-0	Fluoranth	ene .		1	U	
	92-87-5	Benzidine			1		

•	_
	יו
	7

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	SAMPLE NO.
T	BLdg 210
-	9523341B
	- 11 11-14

I ah Name	: EMSL ANA	LYTICAL		Contract:		952334 Field Bl	
Project No			Site:	Location:		Group:	
	soil/water)	WATER			Lab Sample ID:	9523341B	
	•		(g/mL ML		Lab File ID:	B7812.D	
Sample w		1000.0	(g/mb ivid		Date Received:	5/22/95	
Level:	(low/med)		· · · · · · · · · · · · · · · · · · ·	N	Date Extracted:		
% Moistu		•	decanted: (Y/N):		Date Analyzed:		
Concentra	ated Extract Vol	ume:	1000 (uL)		-		
Injection	Volume:	1.0	(uL)		Dilution Factor:	1.0	
GPC Clea	anup: (Y/N)	N	pH -				
				Concentration L		Q	
	CAS No.	Compound		(ug/L or ug/Kg		T Ū	
	129-00-0	Pyrene			2	U	
	85-68-7	Butylbenzy			9	U	
	56-55-3	Benzo[a]an			2	U	
	91-94-1	3,3'-Dichle	probenzidine		15	U	
	218-01-9	Chrysene				U	
	117-81-7	bis(2-Ethyl	hexyl)phthalate		4,		
. -	117-84-0	Di-n-octyl	ohthalate		2	U	
	205-99-2	Benzo[b]flu	uoranthene		1	U	
	207-08-9	Benzo[k]fl	uoranthene		22	U	
	50-32-8	Benzo[a]py			2	U	
	193-39-5		,3-cd]pyrene		2	U	
	53-70-3		anthracene		3	U	
	191-24-2	Benzo[g,h,	i]perylene		2	U	•
						 	
							,
							.,
: "							
		 -					ł
							ł
							ĺ
						<u> </u>	1
	-						1
							1
							1
							1
]

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO	•
Blds 210	
9523341B	
FIELD BLANK	<u>_</u>

Lab Name: EMSL ANALYTICAL		Contract:
Project No.:	Site:	Location: Group:
Matrix: (soil/water) WATER		Lab Sample ID: 9523341B
Sample wt/vol: 1000.0	(g/mL) ML	Lab File ID: B7812.D
		Date Received: 5/22/95
Level: (low/med)	decanted: (Y/N)	N Date Extracted: 5/26/95
% Moisture: 0		Date Analyzed: 6/3/95
Concentrated Extract Volume:	(uL)	
Injection Volume: 1.0	_(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N	pH:	·
	(Concentration Units:

Number TICs found:	1	(ug/	/L or ug/Kg)	ug/L	
7	CAS Number	Compound Nam	e RT	Est. Conc	. Q
F	1.	Unknown	29.8	8 7	J
}	2.	Chance			
-	3. 4.				
ļ	5.				
1	6.				
-	7.				
	8.				
	9.				
į	10.				
	11.				
·	12.				1
	13.				
	14.				
	15.				
İ	.16.				
	17.				
	18.				
	19.				
	20.				
	21.				
•	22.				
	23.				1
	24.				
	25.				
	26.	+			
					
	27.				
	28.				
	29.				
	30.				

FMETZ #1835,3 VOLATILE ORGANIC ANALYSIS DATA SHEET Bldg 210 EPA 524.2 Field Blank Lab Sample ID: 9523341 Lab Name: EMSL ANALYTICAL Lab File ID: ___C8332.D Matrix (soil/water): _WATER_ Date Received: 05/22/95 25 mL Sample wt/vol: Date Analyzed: 06/02/95 LOW Level (low/med): Dilution Factor: 1 % Moisture: not dec.: NA GC Column: _DB-624 x 75m ID:_0.53mm_ Soil Aliquot Volume: Soil Extract Volume: NA CONCENTRATION UNITS: COMMENT (ug/L or ug/Kg) ug/L COMPOUND TCAS NO. .50 U 75-71-8-----Dichlorodifluoromethane .50 74-87-3-----Chloromethane _.50 74-83-9-----Bromomethane_ _.50 U 75-01-4-----Vinyl Chloride _.50 75-00-3-----Chloroethane .50 IJ 75-69-4-----Trichlorofluoromethane B 6.3 75-09-2-----Methylene Chloride_ . 50 U 156-60-65----trans-1,2-Dichloroethene .50 וז 75-35-4----1,1-Dichloroethene_ .50 75-34-3-----1,1-Dichloroethane_ .50 TT 594-20-7----2,2-Dichloropropane _ ، 50 74-97-1----Bromochloromethane .50 U 156-59-2---- cis-1,2-Dichloroethene_ _.50 67-66-3-----Chloroform U .50 563-58-6----1,1-Dichloropropene .50 107-06-2----1, 2-Dichloroethane_ .50 U 71-55-6----1,1,1-Trichloroethane_ _.50 U 74-95-3-----Dibromomethane _.50 U 56-23-1-----Carbon Tetrachloride __.50 75-27-4----Bromodichloromethane_ __.50 U 78-87-1----1, 2-Dichloropropane_ .50 U 10061-01-1---cis-1,3-Dichloropropene_ _.50 142-28-9----1,3-Dichloropropane ับ __.50 79-01-6-----Trichloroethene_ __.50 U 124-48-1----Dibromochloromethane __.50 U 79-00-1----1,1,2-Trichloroethane _.50 71-43-2----Benzene ___.50 U 10061-02-6----trans-1,3-Dichloropropene IJ .50 75-25-2----Bromoform IJ .50 630-20-6----1,1,1,2-Tetrachloroethane_ U __.50 127-18-4----Tetrachloroethene_ U __.50 79-34-1----1,1,2,2-Tetrachloroethane_ U .50 108-88-3----Toluene U _.50 106-93-4----1,2-Dibromoethane _.50 108-90-7----Chlorobenzene U __.50 100-41-4----Ethylbenzene_ .50 1330-29-7----Xylene(total)

U= Not Detected

ับ

_ = = = = = = = = = = = = = = = = = = =	_	11
1A VOLATILE ORGANIC ANALYSIS	DATA SHEET FAETL	#1835.2
EPA 524.2	Bldg 2	10
	Field Bla	iK
	Sample ID:_9523341_	
Matrix (coil/water). WATER LaD F	File ID:C8332.D_	
Elemple wt/vol. 25 mL	Received: 05/22/95	
Low Date	Analyzed: _06/02/95	·
	ion Factor:1	
% Moisture: not dec.: NA Diluction of the Bridge Soil	Aliquot Volume:	NA
Soil Extract Volume: NA		
CONCENTRAT	TION UNITS:	
CAS NO. COMPOUND (ug/L o	or ug/Kg) _ug/L	COMMENT
CAS NO.	r	
100-42-1Styrene	50	U
oo eaga Tsopropylbenzene	50	U
l see es a Desemberación	.50	U
108-86-1Bromobenzene 96-18-41,2,3-Trichloropropane	.50	U
103-65-1n-Propylbenzene	.50	U
95-49-82-Chlorotoluene	.50	U
95-49-82-Chlorotoluene 106-43-44-Chlorotoluene	.50	U
108-67-81,3,5-Trimethylbenzene	.50	U
98-06-6tert-Butylbenzene	.50	U
95-63-61,2,4-Trimethylbenzene	.50	U
135-98-8sec-Butylbenzene	. 50	U
E41 72 11 3-Dichlorobenzene	.50	U
106-46-71,4-Dichlorobenzene	.50	U
99-87-64-Isopropyltoluene	.50	U
95-50-11,2-Dichlorobenzene	.50	U
104-51-8n-Butylbenzene	.50	บ
96-12-81,2-Dibromo-3-chloropropane	.50	<u> </u>
120-82-11,2-Dibromo-3-chioropropana	.50	บ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.50	U
87-68-3Hexachlorobutadiene	50	υ <u> </u>

.50

COMMENT

U= Not Detected

91-20-3----Naphthalene 87-61-6----1,2,3-Trichlorobenzene

LABORATORY DELIVERABLES

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following laboratory deliverables shall be included in the data submission. All deviations from the accepted methodology and procedures, or performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The proposed "Technical Requirements for Site Remediation" rules, which appeared in the May 4, 1992 New Jersey Register, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits be included in one section of the data package and in the main body of the report.

		Check If
		Complete
.1.	Cover Page, Title Page listing Lab Certification #, facility name, address & date of report.	<u>X</u>
2.	Table of Contents	X
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	<u>X</u>
4.	Summary Table cross-referencing field ID #'s vs. Lab ID #'s.	<u>X</u>
5.	Document bound, paginated and legible.	<u>X</u>
6.	Chain of Custody	X
7.	Methodology Summary	<u>X</u>
8.	Laboratory Chronicle and Holding Time Check.	<u>X</u>
9.	Results submitted on a dry weight basis (if applicable).	<u>X</u>
10	Method Detection Limits.	<u>X</u>
11	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEP CLP.	X
12	Non-Conformance Summary	X
	Saul Paraig Doratory Manager or Environmental	77-95 Date
Lac	MINISTER OF BUTTOMINATION	

Consultant's Signature

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Checklist which must be attached to the Summary A.

> The following information must be reported in the Closure Plan Implementation Summary for all laboratory analyses performed in the compliance with the site assessment requirements:

Page #	1	
1	1.	Name and address of the facility.
1	2.	Name of the laboratory performing the sample analysis.
1	3.	NJDEP certification number assigned to the laboratory pursuant to N.J.A.C. 7:18.
1	4.	Laboratory sample identification number.
1	5.	Customer sample identification number corresponding to the laboratory sample identification.
1	6.	Sample Location (also on the site diagram).
1	_ 7.	Matrix of the sample analyzed (i.e., water or sediments; including soil, sediment, and sludges). All sediment results must be reported on a dry weight basis.
28-29	8.	The reference for the method used (e.g., EPA Method 625, 40 CFR Part 136).
1	9.	The signature of the person completing the report form.
1	10.	The dates the laboratory report form was prepared, as well as the dates the sample were collected, submitted and analyzed.
30	11.	A list of all parameters (constituents and conditions) for which the analyses were performed.
3-19	12.	Sample results and corresponding units for each parameter.

CHAIN OF CUSTODY AND PRESERVATION CHECKLIST

U.S. ARMY FORT MONMOUTH

C1508.318

	• • •		_ P	.0. 11: 2	To #	95-009	1 /500									Chain	of Cus	stody	
oject #:94	125091	دن ور	Sample	r: EMSL	(Ba	xter)	Date				Ana]:	itart	:
stomer: Japles Apple 5845m-f			Site N	ame: Bldy	210)	3/19/95	1/0	10	ارد	AL STATE	34	/		/			inis	h: ' '
one:	1. C. E. E.	6224	mio	Sumplin					ر ر	3/	Y. Y.	/.	/			//	, Pi	reser	vation Method
b"Sample Number	Date/	Time	Cust	omer Samp on/ID Num	le	Sample Matrix	.# of Dottles			~ }						/	Rema	rks	
1835.1	5/19/90	-1047	Bldg 21	ال- رساء و	931792	ug.	5	X	<u></u>		2	33	48			Samp	brs King	1 4	4ºC.
835.2	5/19/85	615 am	TRIP	Blank		ag.	3	X			2	331	0				•		•
835 : 3	5/9/95	19 33	Field	Blank	.	ag	5	X	上		9	<u>33</u> ;	11						
•				·····	·			_						<u>.</u>					
					•	ļ		_									,		
	ļ							_	-							 			
	<u> </u>					-			- 							<u> </u>			
	-					-	·	- -	-	<u> </u>			<u> </u>	-		<u> </u>			
·	-	-				-	- 	-	-		-		ļ					1 1	-4
																ļ 			
elipqui shed	ا لالا	signati	ure) [Date / Ti	me Re	ceived	Dy (sig	-L- natu	re)	-	5h i p	ppeo	J B	۱۰ با	ا		•	• • • • • • • • • • • • • • • • • • • •	
()		_	5,	119/95 170	05-6	Mis	al)			1					רינאים.	5 (_			
elinquished	By (signati	ure) (Date / Ti	me Re	A			(siç	jna	ture	: (:			Date	e / Ti	n e		
lage	10			5-1991+19:		<u> </u>	12an		0							2/07			
ote: A draw of cus	ing d tody.		on samp		on sho	uld be	altache	d or	dra	อพท	on	the	e r	evel	rse	side .	of thi	s cha	ein
																	_		

of ___/_ Pages

Enviornmental Laboratory

AI-ENV COC form OI

Date: 02 Apr 93

Rev. A

MW1-2931792 B1dy 210

R.I. R. I. III

XX XXX XXX XXX XXX XXX XX XX XX XX XX

water

				<i>:</i>	•	.·· •=					ţ.				•	•
					•		1					65	≥12	dec	SAMPLES	
1 1/12	1KN	1050x	₩Q.	PHENOL	TOC FIESON	HZSOX HZSOX	PSSCH	METALS HNO3	HARD HRO3	HUSOM	HO243	NeOH	TCN NeOH	TEMP	EMSL #	REMANKS
4.	∤-											ZNAC	- 1			
-			R											7	7.33:()-	
					٠											
	-															•
-	-															
-	-															
_																
-	_				1	·										
-	_															
-	-				•											
-			-			-										
	-															
							·									
										1		1		1		2
										-					-	5

A Company of the Research of t

) (

Marin IIII

- 11 - 11 J

Pillibi II III

EMSL ANALYTICAL, INC.

INTERNAL CHAIN OF CUSTODY

		I.VI ERIVAL CI	ian or costob i	
EMSL LA	B ID NO.	95-23340 to 95-23340	PROJECT NO	9508318
SAMPLE	CONTAIN	VERS	PARAMETERS	
	<u>.</u>		·····	
DATE	TIME	ANALYSIS	NAME (PRINT)	SIGNATURE
5/26/95		BN Extraction Prep	Charles Bartoloxe	Charles Bartolone
-/24/13	 			
				
•				
			·	
-				•
	,	·		
				<u> </u>
		·		
			, , , , , , , , , , , , , , , , , , ,	
<u> </u>				
	···		•	

Project #:	9508318
------------	---------

Lab ID #'s: 95-23340 to 95-2334

Analyst

2. Acids 3. Pesticides 4. Herbicides 5. PCB's 6. Metals: Flame Furnace ICP 7. Volatiles: GC GCMS Scott Kessler S. Kesse S. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	The state of the s	Name (please print)	Signature	Date
3. Pesticides 4. Herbicides 5. PCB's 6. Metals: Flame Furnace ICP 7. Volatiles: GiC GCMS Sort+ Kessler 8. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	1. Base/Neutrals	Scott VAN Etten	- 8h	6/3/95
4. Herbicides	1 2. Acids			
5. PCB's 6. Metals: Flame	3. Pesticides			···
6. Metals: Flame Furnace ICP 7. Volatiles: GiC GC/MS Scott Kessler S Kcott 6/2/9 8. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	4. Herbicides			
Flame Furnace	5. PCB's			
ICP	*			
7. Volatiles: GC GC/MS Scott Kessler S. Kessle 6/2/9 8. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	Furnace			
GC/MS Scott Kessler S. Kessler 6/2/9. 8. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	ICP			
8. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	7. Volatiles:			
8. TOC 9. TOX 10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	GC/MS	Scott Kessler	S. Kesser	6/2/95
10. Phenols (Total) 11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other	8. TOC			·
11. Cyanide (Total) 12. TPH -IR 13. Mercury 14. Other 15. Other	9. TOX			
12. TPH -IR 13. Mercury 14. Other 15. Other	10. Phenols (Total)			
12. TPH -IR 13. Mercury 14. Other 15. Other	11. Cyanide (Total)			
13. Mercury 14. Other 15. Other	12. TPH -IR		·	
15. Other				
	14. Other			
	15. Other			
16. Other	16. Other			

METHODOLOGY SUMMARY

METHODOLOGY SUMMARY

EPA Method 524.2 - Aqueous

This is a purge and trap gas chromatograph/mass spectrometer (GC/MS) method. The organic compounds are separated by the gas chromatograph and detected using the mass spectrometer.

An HP5890/5970 GC/MS was used with a capiullary column (DB-624 0.53 mn ID).

Method detection limits are as stated.

Semivolatiles by GC/MS - Aqueous

EPA Method 625 - This is a gas chromatograph/mass spectrometer (GC/MS) method applicable to the determination of a number of organic compounds that are partitioned in an organic solvent and amenable to gas chromatography. Reference is Federal Register, Vol. 40, No. 136, July, 1988.

An HP5890/5970B GC/MS is used with a DB-5 fused silica capillary column.

If tentatively identified compounds are requested, a computer program analyzes the non-priority pollutant/HSL/TCL compounds with standard mass spectra found in the latest version of the NIH/NBS/EPA mass spectral library.

Method detection limits are as stated.

LABORATORY CHRONICLE

Lab ID: 95-23340 to 95-23342				Cli	ient: U.S. Army, Fort Monmouth
		I	DATE	II	Hold Time
Date Sampled	5/19/95				
Receipt/Refrigeration	5/22/95				
Extractions					. '
1. Semivolatile Organics	5/26/95				7 days
Analyses				•	
1. Volatile Organics 2. Semivolatile Organics	6/2/95 6/3/95				14 days 40 days
QC Supervisor Review & Approval				(Signature (Printed N	lame) Peter B. Panton
				(Date)	06-27-95

NOTE: If fractions are re-extracted and re-analyzed because the initial endeavors failed to meet the required Quality Control Criteria, the dates of re-extraction and/or re-analysis will be entered in Column II Additionally.

EMSL

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

(C.1118)

		No	Yes
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)		<u> </u>
2.	GC/MS Tune Specifications a. BFB Meet Criteria b. DFTPP Meet Criteria		X
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 series.		X
4,	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of. sample analysis for 600 series and 12 hours for 8000 series.		X
5.	GC/MS Calibration - Initial Requirements a. Calibration Check Compounds b. System Performance Check Compounds	·	<u> </u>
6.	Blank Contamination - If yes, list compounds and concentrations in each blank: a. VOA Fraction b. B/N Fraction c. Acid Fraction	 - -	<u> </u>
7.	Surrogate Recoveries Meet Criteria		<u> </u>
	If not met, list those compounds and their recoveries which fall outside the acceptable range: a. VOA Fraction b. B/N Fraction c. Acid Fraction If not met, were the calculations checked and the results qualified as "action to do not be considered as "action	- -	
8.	"estimated"? Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range) a. VOA Fraction Methylene Chloride MS/MSD 69%/70%; Xylene (para meta) MS 65% RPD 32; Xylene (ortho) MS 70% RPD 30; Styrene MS/MSD 21%/39% RPD 62; 1,1,2,2-Tetrachloroethane MS/MSD 122%/124%. b. B/N Fraction c. Acid Fraction	X	
9.	Internal Standard Area/Retention Time Shift Meet Criteria		<u>X</u>

EMSL

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT, cont.

		No	Yes
10.	Extraction Holding Time Met	· · · · · · · · · · · · · · · · · · ·	X
	If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Met		X
	If not met, list number of days exceeded for each sample:		
12.	Definitions: U=Not Detected. J=Detected, but below report detection limit. B=Compound found in blank. E=Estimated concentration. NA=Not Applicable		
Addition	al Comments:		
	ory Manager Paul Jonoug Date: 06-27-9	5	
Laborato	ory Manager		

1A VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2

Lab Name: EMSL ANALYTICAL	Lab Sample ID: 952334271101-243. Lab File ID: C8333.D	<u> 37·</u> 79
Matrix (soil/water): _WATER	Date Received: 05/22/95	_
Sample Wt/Vol:25_mb_		
Tenet (Tom/wed): _Tom	Dilution Factor: 1	
% Moisture: not dec.: NANA	Dilution Factor: 1 NA NA	_
GC Column: _DB-624 x 75m ID:_0.53mm	NNTIQUOC VOIUME:NA	
Soil Extract Volume:NA	CONCENED A STON INTEG.	
	CONCENTRATION UNITS:	יייזאי
CAS NO. COMPOUND	(ug/L or ug/Kg) _ug/L COMME	214 T
75-71-8Dichlorodifluoromet	nane50	
74-87-3Chloromethane	.50	
74-83-9Bromomethane	.50	
	.50	
75-01-4Vinyl Chloride 75-00-3Chloroethane	.50U_	
75-69-4Trichlorofluorometh	ane .50 U	
ar as a Mathelana Chlorida	ane50U	
1 156-60-65trans-1,2-Dichloroe	thene .50 U	
156-60-65trans-1,2-Dichloroethene_	.50U	
75-34-31,1-Dichloroethane_	.50 U	
594-20-72,2-Dichloropropane	.50	
	.50 U	
74-97-1Bromochloromethane	-ne -50 U	
156-59-2 cis-1,2-Dichloroeth		
67-66-3Chloroform	1	
563-58-61,1-Dichloropropene	, .50	
10/-06-21, 2-Dichiolocchane_		
71-55-61,1,1-Trichloroetha	ne i so i so	
74-95-3Dibromomethane 56-23-1Carbon Tetrachlorid	.50	
56-23-1Carbon Tetrachlorid	e .30	
75-27-4Bromodichloromethan	e 1 .50 1 0	
78-87-11,2-Dichloropropane	1 .50	
10061-01-1cis-1,3-Dichloropro	pene i .50 i .0	
142-28-91,3-Dichloropropane	1 .50 .1 . 0	
79-01-6Trichloroethene	1 .50 1 0	
124_49_1Dibromochloromethan	e .50	
79-00-11,1,2-Trichloroetha	ne _ 50	
71-43-2Benzene	.50	
10061-02-6trans-1,3-Dichlorop	ropene .50U	
75-25-2Bromoform	50	
630-20-61,1,1,2-Tetrachloro	ethane50U	
127-18-4Tetrachloroethene	.50	
79-34-11,1,2,2-Tetrachloro	ethane .50U	
108-88-3Toluene	.50	
106 92 4 1 2-Dibromoethane	.50U	
108-90-7Chlorobenzene	.50U	
100-41-4Ethylbenzene	.50 U	
1330-29-7Xylene(total)	.50	
1 1220-72-1WATEHE (FOCUT)		

U= Not Detected

1A VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2

Lab Name: _EMSL ANALYTICAL	Lab Sample ID: _9523342 MW/3/3/7/2 Lab File ID: _ C8333.D Date Received: _05/22/95 Date Analyzed: _06/02/95 Dilution Factor: _1 Soil Aliquot Volume:NA
GC Column: DB-624 x 75m ID: 0.53mm	Soil Aliquot volume:NA
Soil Extract Volume: NACON	CENTRATION UNITS:
CAS NO. COMPOUND	(ug/L or ug/Kg) _ug/L COMMENT
100-42-1Styrene 98-82-8Isopropylbenzene 108-86-1Bromobenzene 96-18-41,2,3-Trichloropropane	50
103-65-1n-Propylbenzene 95-49-82-Chlorotoluene 106-43-44-Chlorotoluene	
108-67-81,3,5-Trimethylbenzene 98-06-6tert-Butylbenzene 95-63-61,2,4-Trimethylbenzene	.50 U U .50 .50 U .50 U .50 U .50 U .50 U .50 U .50 U .50 U
135-98-8sec-Butylbenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene	.50U
99-87-64-Isopropyltoluene 95-50-11,2-Dichlorobenzene 104-51-8n-Butylbenzene	.50 U U U
96-12-81,2-Dibromo-3-chloroprop 120-82-11,2,4-Trichlorobenzene_ 87-68-3Hexachlorobutadiene_	.50
91-20-3Naphthalene 87-61-61,2,3-Trichlorobenzene	.50

COMMENT

U= Not Detected

86

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Ì
9523342V
1111-2931792
11101 0131 1 I

SAMPLE NO.

Lab Name: EMSL ANA	ALYTICAL		- Contract.			
Project No.		Site:	_ Location:		Group:	
Matrix: (soil/water)	WATER	_		Lab Sample ID:	9523342V	
Sample wt/vol:	25.0	(g/mL) ML	-	Lab File ID	: C8333.D	
Level: (low/med)	LOW	<u> </u>		Date Received:	5/22/95	
% Moisture: not dec.	NA			Date Analyzed:	6/2/95	
GC Column: DB-0	624 X 75M	ID: 0.53	_(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		_(uL)	5	Soil Aliquot Volume:	:	(uL)
Number TICs found:	0		Concentration (ug/L or u			
Transpor Trop rouner		Composi	nd Name	RT Est Conc.	Το	Ì

CAS Number	Compound Name	RT	Est. Conc.	Q
1.	NONE FOUND			
2.		<u> </u>	<u> </u>	
3.		<u> </u>	1	
4.				
5.		<u> </u>		
6.				
7.		<u> </u>	<u> </u>	ļ
8.		<u> </u>		<u></u>
9.		<u> </u>		ļ
10.		<u> </u>		
11.				ļ
12.	·			
13.				<u> </u>
14.				
15.				
16.				
17.				<u> </u>
18.				
19.	•	_ 		
20.				
21.				ļ
22.				ļ
23.				
24.				
25.				
26.				
27.			_	
28.				
29.				
30.				

New Jersey Department of Environmental Protection Division of Water Resources Bureau of Underground Storage Tanks CN-029, Trenton, New Jersey 08625

LABORATORY AUTHENTICATION STATEMENT

I certify under penalty of law, where applicable, this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18, 40 CFR Part 136 for Water and Wastewater Analyses and SW 846 for Solid Waste Analyses. I have personally examined and am familiar with the information contained in this report, and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, complete, and meets the standards specified in N.J.A.C. 7:18, 40 CFR Part 136, and/or SW 846. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment.

Caul Jaraua

Laboratory Manager (as defined in N.J.A.C. 7:18)

EMSL ANALYTICAL, INC.

Asbestos - Lead - Environmental - Materials

Jersev

Corporate Office & Mi² Laboratory 108 addon Avenue Westmont, NJ 08108 (609) 858-4800

3 (per Street W jnont, NJ 08108 (609) 858-4800

10^s Stelton Road Pi- taway, NJ 08854 (9a. 981-0550

New York

3 Fifth Avenue Empire State Bldg. Suite 1524

York, NY 10118 (2) 290-0051 208 Stonehenge Lane Carle Place, NY 11514 (** §) 997-7251

1720 S. Amphlett Blvd.

Lilifornia

The 130 Mateo, CA 94402 (415) 570-5401

orida

78 Adams Avenue Melbourne, FL 32935 (407) 253-4224 eorgia

1600 Rosewell Street, SE Suite One nyrna, GA 30080

Michigan

04) 333-6066

2 S. Wagner Road Inn Arbor, MI 48103 (313) 668-6810

Laboratory Name

Bldg. #210

North Carolina

Certification No.

620-G Guilford College Rd. Greensboro, NC 27409 1910) 297-1487

Texas

Supervisor/Manager Signature Printed Name

2501 Central Parkway Suite C-13

Houston, TX 77092

Date

ANALYTICAL DATA REPORT FOR

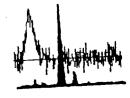
U.S. ARMY, FORT MONMOUTH

SELFM-PW-EV Building 173

Fort Monmouth, NJ 07703

PROJECT: #94125091300

EMSL Project: #95063936


Field Sample No.	Laboratory	Madeine	Date & Time of Collection	Date Received
& Location 1861.1, Trip Blank 1861.2, Field Blank 1864.1, MW1-2931792,	95-26426 95-26427 95-26433	Matrix Aqueous Aqueous Aqueous	6/13/95 @ 0605 6/13/95 @ 1535 6/13/95 @ 1315	6/13/95 6/13/95 6/13/95

EMSL ANALYTICAL, INC.

NJDEP No. 04653 PADER No. 68-367 NY-ELAP No. 19896

Paul V. Laraia

07-17-95

REPORT NARRATIVE

All initial runs for the Ft. Monmouth P.O. #IJO #95-0091/SAI were analyzed within hold. The samples were taken by EMSL between the dates of 5/18/95 thru 5/25/95.

There was a problem with the water used for the field and trip blanks. On certain days the field crew used DI water from the incorrect system resulting in low level contamination of Toluene, 2-Chlorotoluene and sometimes Chlorobenzene. However the resultant concentrations of these compounds were very low and the samples accompanying these field and trip blanks did not show these compounds to be present.

W. Ludende

TABLE OF CONTENTS

	Page
G. J. D. (Communication Paralleless	3-21
Sample Data Summary Package	
Laboratory Deliverables	23
QA/QC Checklist	24-28
Chain of Custody Documentation	29-30
Methodology Summary	
Laboratory Chronicle	
Analysis Conformance/Non-Conformance Summary Format	24.135
GC/MS Volatile Organic Data Package	
. Initial Calibration BFB Tune	•
. Initial Calibration Data	
. Continuing Calibration BFB Tune	
. Continuing Calibration Data	
. Internal Standards Area Summary	
. Sample Results	
. Surrogate Recovery Form	
. Method Blank Data	•
. Matrix Spike/Matrix Spike Duplicate Data	136-233
GC/MS Semivolatile Organic Data Package	
. Initial Calibration DFTPP Tune	
. Initial Calibration Data	
. Continuing Calibration DFTPP Tune	
. Continuing Calibration Data	
. Internal Standards Area Summary	
. Sample Results	•
. Surrogate Recovery Form	
. Method Blank Data	
. Matrix Spike/Matrix Spike Duplicate Data	234
Statement of Authentication	

EMSL

SAMPLE DATA SUMMARY PACKAGE

- Whitehalt

Amention: Charles Appleby

GANIC ■Volatiles

U.S. Army - Fort Monmouth

SELFM-PW-EV Building 173

Fort Monmouth NJ 07703

Client Project: 931021191016

Client Designation: Bldg #206, Trip Blank

Volatiles by 524.2 w/ Library Search

Date of Report: Project Number:

Lab ID:

Date Collected: Collected By:

95-0026426 06/13/95 06:05

07/17/95

95063933

Client

06/13/95 18:50

Unit Conc.

see attached ug/l

Date Received:

1A VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2

	- • • • ·	
ab Name: _EMSL ANALYTICAL	Lab Sample ID: 9526426	
Matrix (soil/water): _WATER	Lab File ID:C8623.D	
Tample wt/vol: _25_mL	Date Received: 06/13/9	
evel (low/med): LOW	Date Analyzed: 06/21/9	5
% Moisture: not dec.: NA	Dilution Factor: 1	
GC Column: DB-624 x 75m ID: 0.53mm	Soil Aliquot Volume:	NA
oil Extract Volume:NA	-	
CON	CENTRATION UNITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg) _ug/L	COMMENT
75-71-8Dichlorodifluoromethane	.50	U
74-87-3Chloromethane	.50	U
74-83-9Bromomethane	.50	U
75-01-4Vinyl Chloride	.50	U
75-00-3Chloroethane	.50	Ŭ
75-69-4Trichlorofluoromethane	.50	Ū
75-09-2Methylene Chloride	2.3	$ \mathcal{B} $
早 156-60-65trans-1,2-Dichloroether	ne .50	Ū
75-35-41,1-Dichloroethene	.50	ט
75-34-31,1-Dichloroethane	.50	ש
594-20-72,2-Dichloropropane	.50	U
74-97-1Bromochloromethane	.50	U U
156-59-2 cis-1,2-Dichloroethene		U
67-66-3Chloroform	.50	U
563-58-61,1-Dichloropropene		- u
1 107-06-21,2-Dichloroethane	.50	- u
71-55-61,1,1-Trichloroethane	.50	- U
74-95-3Dibromomethane	.50	- U
56-23-1Carbon Tetrachloride	.50	-
75-27-4Bromodichloromethane	.50	- U
75-27-4BIOMODICHIOTOMECHANE	.50	- - -
78-87-11,2-Dichloropropane		-
1 3 Dishlerence and	.50	-
142-28-91,3-Dichloropropane 79-01-6Trichloroethene	.50	- <u>ŭ</u>
79-01-6Trichtoroethene	.50	- - <u>u</u>
124-48-1Dibromochloromethane	.50	- -
79-00-11,1,2-Trichloroethane_		- <u>u</u>
71-43-2Benzene	.50	- u
10061-02-6trans-1,3-Dichloroprope	ene50	- u
75-25-2Bromoform	.50	-
630-20-61,1,1,2-Tetrachloroetha	ne50	-1
127-18-4Tetrachloroethene	.50	- U
79-34-11,1,2,2-Tetrachloroetha	ne50	_ U
[] 108-88-3Toluene	.50	U
108-88-3Toluene 106-93-41,2-Dibromoethane	.50	_
108-90-7Chlorobenzene	.50	U
100-41-4Ethylbenzene	.50	_
1330-29-7Xylene(total)	.50	_
E #		

Not Detected

S. Army FIP BLANK

1A VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2

hab Name: EMSL ANALYTICAL	Lab Sample ID: 9526426	
Matrix (soil/water): _WATER	Lab File ID: C8623.D	
S mple wt/vol: _25_mL	Date Received: 06/13/95	
Livel (low/med): _LOW	Date Analyzed: 06/21/95	
% Moisture: not dec.: NA	Dilution Factor:1	
© Column: DB-624 x 75m ID: 0.53mm		NA.
S il Extract Volume:NA	•	
CO.	NCENTRATION UNITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg) _ug/L (COMMENT
100-42-1Styrene	. 50	U
98-82-8Isopropylbenzene	50	U
108-86-1Bromobenzene	.50	U
96-18-41,2,3-Trichloropropane_	.50	U
103-65-1n-Propylbenzene	.50	U
95-49-82-Chlorotoluene	.50	U
106-43-44-Chlorotoluene	.50	U
108-67-81,3,5-Trimethylbenzene	.50	U
198-06-6tert-Butylbenzene	.50	Ü
95-63-61,2,4-Trimethylbenzene_	.50	ซ
135-98-8sec-Butylbenzene	.50	U
541-73-11,3-Dichlorobenzene	.50	บ
106-46-71,4-Dichlorobenzene	50	<u>U</u> _
99-87-64-Isopropyltoluene	.50	U
95-50-11,2-Dichlorobenzene	.50	U
104-51-8n-Butylbenzene	.50	ŭ
96-12-81,2-Dibromo-3-chloropro	pane	<u>u</u> _
120-82-11,2,4-Trichlorobenzene_	.50	U
87-68-3Hexachlorobutadiene	.50	U
91-20-3Naphthalene	.50	Ŭ
87-61-61,2,3-Trichlorobenzene_	.50	u

* MMENT
Not Detected

. MenMouth NJ

TINEILH / 101.1

VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

9526426V

HRBLANK

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: EMSL ANA	LYTICAL		Contract:	
Project No.		Site:	Location:	Group:
Matrix: (soil/water)	WATER	_		Lab Sample ID: 9526426V
Sample wt/vol:	25.0	_(g/mL) ML		Lab File ID: C8623.D
Level: (low/med)	LOW	_		Date Received: 6/13/95
% Moisture: not dec.	NA	_		Date Analyzed: 6/21/95
GC Column: DB-6	24 X 75M	ID: 0.	.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:		_(uL)		Soil Aliquot Volume: (uL)

Concentration Units:

Number TICs found:

(ug/L or ug/Kg)

ug/L

CAS Number	Compound Name	RT	Est. Conc.	Q
1.	NONE FOUND			
2.				
3.				
4.			ļ	
5.			<u> </u>	
6.				
7.			ļ	
8.				
9.				
10.		<u> </u>		
11.		<u> </u>		
12.		<u> </u>	<u> </u>	
13			<u> </u>	
14.			<u> </u>	
15.				
16.			·	
17.				<u> </u>
18.			ļ	ļ
19.				
20.		<u> </u>		<u> </u>
21.				
22.			 	
23.				
24.				
25.			 	
26.				
27.				
28.				
29.			 	ļ
30.				<u> </u>

At ention: Charles Appleby

U.S. Army - Fort Monmouth

SELFM-PW-EV Building 173

Fort Monmouth NJ 07703

Client Project: 931021191016

Client Designation: Bldg #206, Field Blank

Date of Report: Project Number:

Lab ID:

Date Collected:

Collected By:

Date Received:

07/17/95 95063933

95-0026427 06/13/95 15:35

Client

06/13/95 18:50

<u>-</u> ,	Conc.	Unit
OL-ANIC		

Semi-Volatiles BN by 625 with Library Search olatiles Volatiles by 524.2 w/ Library Search

see attached ug/l

see attached ug/l

VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2

ab Name: EMSL ANALYT	ICAL	Lab Sample ID: 9526427
Matrix (soil/water):	WATER	Lab File ID: C8624.D
	25 mL	Date Received: 06/13/95
<pre>hmple wt/vol: evel (low/med):</pre>	LOW	Date Analyzed: 06/21/95
& Moisture: not dec.:		Dilution Factor: 1
\mathbb{C} Column: DB-624 \times 7	5m ID: 0.53mm	Soil Aliquot Volume: NA
Column of Volume	<u></u>	-

AS NO.		TRATION UNITS: /L or ug/Kg) _ug/L	COMMENT
	-1.12 .: 63	.50	U
	Dichlorodifluoromethane	.50	- - -
74-87-3	Chloromethane	.50	- - -
74-83-9	Bromomethane		-\ -
75-01-4	Vinyl Chloride	.50	- - -
	Chloroethane	.50	
75-69-4	Trichlorofluoromethane		-
75-09-2	Methylene Chloride		- D
156-60-65	trans-1,2-Dichloroethene_	.50	_
	1,1-Dichloroethene	.50	_ <u>u</u>
	1,1-Dichloroethane	1 .50	_
594-20-7	2,2-Dichloropropane	1 .50	_
74-97-1	Bromochloromethane	.50	_
156-59-2	cis-1,2-Dichloroethene	.50	_
67-66-3	Chloroform	.50	
563-58-6	1,1-Dichloropropene	.50	U
	1,2-Dichloroethane	.50	_\
71-55-6	1,1,1-Trichloroethane	.50	_
74-95-3	Dibromomethane	.50	
56-23-1	Carbon Tetrachloride	.50	U
75-27-4	Bromodichloromethane	.50	Ū
78-87-1	1,2-Dichloropropane	.50	
10061-01-1	cis-1,3-Dichloropropene	.50	
10001-01-1	1,3-Dichloropropane	.50	
	Trichloroethene	.50	_
	Dibromochloromethane	.50	
	1,1,2-Trichloroethane	.50	
	Benzene	.50	_
/1-43-2	Benzene	.50	_
10061-02-6	trans-1,3-Dichloropropene_	.50	
75-25-2	Bromoform		_
630-20-6	1,1,1,2-Tetrachloroethane_	.50	_
127-18-4	Tetrachloroethene		- u
79-34-1	1,1,2,2-Tetrachloroethane_	.50	_ -
108-88-3	Toluene		_ _ʊ
106-93-4	1,2-Dibromoethane	.50	- - -
	Chlorobenzene	.50	_ <u>u</u>
	Ethylbenzene	1 .50	
1330-29-7-	Xylene(total)	.50	

Not Detected

S. Army IED BLANK

1A VOLATILE ORGANIC ANALYSIS DATA SHEET EPA 524.2

EPA 52	1.2	
Lab Name: EMSL ANALYTICAL Matrix (soil/water): WATER	Lab Sample ID: 9526427 Lab File ID:C8624.D	
Matrix (SOII/Water):WATER	Date Received: 06/13/95_	
	Date Analyzed: 06/21/95_	
Level (low/med): _LOW	Dilution Factor: 1	
% Moisture: not dec.: NA	Soil Aliquot Volume:	NA
G Column: _DB-624 x 75m _ ID:_0.53mm_	Doil Hildage to a series	
S il Extract Volume:NA	CENTRATION UNITS:	
CON	(ug/L or ug/Kg) _ug/L	COMMENT
COMPOUND	(ug/L or ug/kg/ _ug/L	
	.50	τ
100-42-1Styrene		t
98-82-8Isopropylbenzene		
108-86-1Bromobenzene		
96-18-41,2,3-Trichloropropane	.50	<u>L</u>
103-65-1n-Propylbenzene	.50	
195-49-82-Chlorotoluene		
106-43-44-Chlorotoluene		<u></u>
108-67-81,3,5-Trimethylbenzene	.50	<u>_</u>
198-06-6tert-Butylbenzene		<u>u</u>
95-63-61,2,4-Trimethylbenzene		<u>u</u>
135-98-8sec-Butylbenzene		_T
541-73-11,3-Dichlorobenzene	.50	
106-46-71,4-Dichlorobenzene	.50	
99-87-64-Isopropyltoluene	.50	——- <u>-</u>
95-50-11,2-Dichlorobenzene	.50	_{f-}
1104-51-9n-Butvlbenzene	.50	<u>_</u>
96-12-81,2-Dibromo-3-chloroproproproproproproproproproproproprop	pane50	<u>_</u>
120-82-11,2,4-Trichlorobenzene_	.50	
87-68-3Hexachlorobutadiene		
1 91-20-3Naphthalene	.50	
87-61-61,2,3-Trichlorobenzene_	.50	

TREMMC

Not Detected

- A	math N5
· · /cr	month MS
ELD	BLANK

+ MEILT 1861.2 - 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NU.	-
9526427V	P11
95204274	i

Lab Name: EMSL ANA	LYTICAL	Cont	ract:
Project No.		Site: Loca	tion: Group:
Matrix: (soil/water)	WATER	_	Lab Sample ID: 9526427V
Sample wt/vol:	25.0	(g/mL) ML	Lab File ID: C8624.D
Level: (low/med)	LOW		Date Received: 6/13/95
% Moisture: not dec.	NA	_	Date Analyzed: 6/21/95
	624 X 75M	ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volume: (uL)
		Conce	entration Units:

(ug/L or ug/Kg) Number TICs found: Q Est. Conc. Compound Name CAS Number NONE FOUND 1. 2. 3. 4. 5. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.

ug/L

30.

I SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	SEM	IVOENTIBE ON	FORT MO	NMOUTH. NJ	9526427B
Lab Name: EMSL ANA	LYTICAL		_ US ARMY		L
FMETL#	-	Site:	BLDG#	216	NJDEP#
Matrix: (soil/water)	WATER	_		Lab Sample ID:	9526427B
Sample wt/vol:	1000.0	(g/mL ML		Lab File ID:	B8025.D
Level: (low/med)		_		Date Received:	6/13/95
% Moisture:	· · · · · · · · · · · · · · · · · · ·	decanted: (Y/I	N): N	Date Extracted:	6/19/95
Concentrated Extract Volu	ıme:	1000 (uL)		Date Analyzed:	6/26/95
Injection Volume:	1.0	_(uL)		Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	_	pH:		
			Concentratio	n Units:	

CAS No.	Compound	(ug L or ug/Kg) ug L	Q
62-75-9	N-nitrosodimethylamine	2	U
111-44-4	bis(2-Chloroethyl)ether	1	U
541-73-1	1.3-Dichlorobenzene	2	U
106-46-7	1.4-Dichlorobenzene	1	U
95-50-1	1,2-Dichlorobenzene	2	U
108-60-1	bis(2-chloroisopropyl)ether	5	U
621-64-7	N-Nitroso-Di-n-propylamine	2	U
67-72-1	Hexachloroethane	1	Ū
98-95-3	Nitrobenzene	2	U
78-59-1	Isophorone	1	U
111-91-1	bis(2-Chloroethoxy)methane	3	U
120-82-1	1,2,4-Trichlorobenzene	2	U
91-20-3	Naphthalene	2	U
87-68-3	Hexachlorobutadiene	2	U
77-47-4	Hexachlorocyclopentadiene	12	U
91-58-7	2-Chloronaphthalene	1	U
131-11-3	Dimethylphthalate	1	U
208-96-8	Acenaphthylene	5	U
606-20-2	2,6-Dinitrotoluene	. 2	Ŭ
83-32-9	Acenaphthene	3	U
121-14-2	2,4-Dinitrotoluene	3	U
84-66-2	Diethylphthalate	1	U
86-73-7	Fluorene	3	U
7005-72-3	4-Chlorophenyl-phenyle:her	3	U
	n-Nitrosodiphenylamine	6	U
86-30-6 122-66-7	1,2-Diphenylhydrazine(as azo	. 6	U
	4-Bromophenyl-phenylether	2	U
101-55-3	Hexachlorobenzene	2	Ü
118-74-1	Phenanthrene	2	U
85-01-08	Anthracene	2	U
120-12-7	Di-n-butylphthalate	5	Ŭ
84-74-2	Fluoranthene	1	U
206-44-0		1	Ü
92-87-5	Benzidine		

9526427B

EMIVOLATILE ORGA:	AIC2 YNYFIOID DYIN OUE
	FORT MONNO, THE NI

Lab Name:	EMSL ANA	LYTICAL		US ARMY		<u></u>	
FMETL#	1861.2		Site:	BLDG#	J:6	NJDEP#	
Matrix: (soi	l/water)	WATER	_		Lib Sample ID:	9526427B	
Sample wt/v	ol:	1000.0	_(g/mL ML		Lab File ID	: B8025.D	-
Level: (lo	w/med)		_		Dite Received:	6/13/95	-
% Moisture:	- :		decanted: (Y/N):	N	Due Extracted:	6/19/95	-
Concentrated	i Extract Volu	me:	1000 (uL)		Date Analyzed:	6/26/95	-
Injection Vo	lume:	1.0	(uL)		Dilution Factor:	1.0	-

		Concentration Units:	_
CAS No.	Compound	(ug L or ug.Kg) ug/L	Q
129-00-0	Pyrene	2	Ŭ
85-68-7	Butylbenzylphthalate	9	U
56-55-3	Benzo[a]anthracene	2	U
91-94-1	3,3'-Dichlorobenzidine	15	U
218-01-9	Chrysene	3	U
117-81-7	bis(2-Ethylhexyl)phthalate	4	U
117-84-0	Di-n-octylphthalate	2	U
205-99-2	Benzo[b]fluoranthene	1	Ŭ
207-08-9	Benzo[k]fluoranthene	2	U
50-32-8	Benzo[a]pyrene	2 2	U
193-39-5	Indeno[1,2,3-cd]pyrene		U
53-70-3	Dibenz[a,h]anthracene	3	U
191-24-2	Benzo[g,h,i]perylene	2	U
			.

GPC Cleanup: (Y/N)

CODT	MONMO	עדוור	NJ
EUKI	MONMU	JUIH	1/17

_ 1

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	0	1	4
------------	---	---	---

9526427B

Lab Name: EMSL ANA	LYTICAL			US ARMY		
FMETL# /86/. 2		Site:		BLDG#	206	NJDEP#
4	WATER				Lab Sample ID:	9526427B
Matrix: (soil/water)		– (g/mL)	ML		Lab File ID	: B8025.D
Sample wt/vol:	1000.0	_(g/mc)	MIL		Date Received:	6/13/95
Level: (low/med)		-		• •	_	
% Moisture:	•	decante	d: (Y/N)	N	Date Extracted:	6/19/95
Concentrated Extract Volume	ume:	1000	_(uL)		Date Analyzed:	6/26/95
Injection Volume:	1.0	_(uL)			Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N		pH:	<u> </u>		
Number TICs found:	0			Concentration (ug/L or ug		

CAS Number	Compound Name	RT	Est. Conc	Q
1.	NONE FOUND		<u> </u>	
2.				·
3.			<u> </u>	
4.			<u> </u>	
5.			ļ	
6.			<u> </u>	
7.			<u> </u>	
8.				
9.				
10.				
11.				
12.				
13.			_	
14.			_	
15.				
16.				
17.				
18.				
19.				
20.				
21.				ļ
22.				
23.				
24.				
25.				
26.				- -
27.				
28.				
29.				
30.				

Attention: Charles Appleby

U.S. Army - Fort Monmouth

SELFM-PW-EV Building 173

Fort Monmouth, NJ 07703

Project #: 95063936 Date Received: .06/13/95 18:50

The following results are for BN by 625 with Library Search

Conc.

Client Designation Unit

95 0026433 ;see attached ug/l

Bldg.210,MW1-2931792

The following results are for Volatiles by 524.2 w/ Library Search

Lab #

Conc.

Unit

Client Designation

95 0026433 ;see attached ug/l Bldg.210,MW1-2931792

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

18/4-1

416

FMETL#

Lab Name: EMSL ANALYTICAL Contract: U.S. ARMY

Project No.: FT. MONMOUTH NJ Bldg#: 210 NJDEP MW#: 1 - 293/792

Matrix: (soil/water) WATER Lab Sample ID: 9526433

Sample wt/vol: 25.0 (g/mL) ML Lab File ID: C8639.D

Level: (low/med) LOW Date Received: 6/13/95

% Moisture: not dec. NA Date Analyzed: 6/22/95

GC Column: DB-624 x 75m ID: 0.53 (mm) Dilution Factor: 1.0

Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg) ug/L	<u> </u>
75-71-8	Dichlorodifluoromethane	.50	U
74-87-3	Chloromethane	.50	U
75-01-4	Vinyl chloride	.50	U
74-83-9	Bromomethane	.50	U
75-00-3	Chloroethane	.50	U
75-69-4	Trichlorofluoromethane	.50	U
75-35-4	1,1-Dichloroethene	.50	U
75-09-2	Methylene chloride	1.3	B
156-60-65	trans-1,2-Dichloroethene	.50	U
75-34-3	1,1-Dichloroethane	.50	U
594-20-7	2,2-Dichloropropane	.50	U
156-59-2	cis-1,2-Dichloroethene	.50	U
74-97-1	Bromochloromethane	.50	U
67-66-3	Chloroform	.50	U
71-55-6	1,1,1-Trichloroethane	.50	U
56-23-1	Carbon tetrachloride	.50	U
563-58-6	1,1-Dichloropropene	.50	U
71-43-2	Benzene	.50	U
107-06-2	1,2-Dichloroethage	.50	U
79-01-6	Trichloroethene	.50	Ŭ
78-87-1	1,2-Dichloropropane	.50	U
74-95-3	Dibromomethane	.50	Ŭ
75-27-4	Bromodichloromethane	.50	Ŭ
10061-01-1	cis-1,3-Dichloropropene	.50	U
108-88-3	Toluene	.50	Ŭ
10061-02-6	trans-1,3-Dichloropropene	.50	U
79-00-1	1,1,2-Trichloroethane	.50	U
127-18-4	Tetrachloroethene	.50	U
142-28-9	1,3-Dichloropropane	.50	U
124-48-1	Dibromochloromethane	.50	Ŭ
106-93-4	1,2-Dibromomethane	.50	Ŭ
108-90-7	Chlorobenzene	.50	U
630-20-6	1,1,1,2-Tetrachloroethane	.50	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

FMETL#

017

Lab Name: EMSL ANALYTICAL

Contract: U.S. ARMY

Project No.: FT. MONMOUTH NJ Bldg#: 210

NJDEP MW#: 1 -293/792

Matrix: (soil/water)

Lab Sample ID: 9526433

Sample wt/vol:

25.0 (g/mL) ML Lab File ID: C8639.D

Level:

LOW (low/med)

Date Received: 6/13/95

WATER

% Moisture: not dec.

NA

Date Analyzed: 6/22/95

GC Column: DB-624 x 75m

ID: 0.53 (mm) Dilution Factor:

1.0

Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg)	ug/L Q
100-41-4	Ethylbenzene	.50	U
1330-29-7	Xylene (total)	.50	U
100-42-1	Styrene	.50	U
75-25-2	Bromoform	.50	U
98-82-8	Isopropylbenzene	.50	Ŭ
108-86-1	Bromobenzene	.50	U
79-34-1	1,1,2,2-Tetrachloroethane	.50	U
96-18-4	1,2,3-Trichloropropane	.50	U
103-65-1	n-Propylbenzene	.50	U
95-49-8	2-Chlorotoluene	.50	U
106-43-4	4-Chlorotoluene	.50	U
108-67-8	1,3,5-Trimethylbenzene	.50	Ŭ
98-06-6	tert-Butylbenzene	.50	Ŭ
95-63-6	1,2,4-Trimethylbenzene	.50	Ŭ
135-98-8	sec-Butylbenzene	.50	Ŭ
541-73-1	1,3-Dichlorobenzene	.50	U
99-87-6	4-Isopropyltoluene	.50	U
106-46-7	1,4-Dichlorobenzene	.50	U
95-50-1	1,2-Dichlorobenzene	.50	U
104-51-8	n-Butylbenzene	.50	U
96-12-8	1,2-Dibromo-3-chloropropane	.50	U
120-82-1	1,2,4-Trichlorobenzene	.50	Ŭ
87-68-3	Hexachlorobutadiene	.50	U
91-20-3	Naphthalene	.50	Ŭ
87-61-6	1,2,3-Trichlorobenzene	.50	บ

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1864.1	

013

FMETL#

Lab Name: EMSL ANA	LYTICAL		Contract:	U.S. ARMY	
Project No. FT. MONM	OUTH NJ	Bldg# 210	NJDE	P MW#:1	2931792
Matrix: (soil/water)	WATER			Lab Sample ID:	9526433V
Sample wt/vol:	25.0	(g/mL) ML		Lab File ID	: C8639.D
Level: (low/med)	LOW	_		Date Received:	6/13/95
% Moisture: not dec.	NA	_		Date Analyzed:	6/22/95
GC Column: DB-6	524 X 75M	ID: 0.53	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		_(uL)		Soil Aliquot Volume	: (uL)
			Concentration	on Units:	

Number TICs found	l: <u>1</u>	(ug/L or u		ug/L	
	CAS Number	Compound Name	RT	Est. Conc.	Q
	1.	Unknown	21.65	1	J
	2.				
	3.				
	4.				
•	5.				
	6.		<u> </u>	<u> </u>	
	7.				
	8.				
	9.			<u> </u>	
	10.				
	11.				
	12.		<u> </u>		
	13.		 -	 	
	14.		<u> </u>	-	
	15.		 	 	
	16.		<u> </u>	 	
	17.		 	-	
	18.		 -	ļ	-
	19.	<u> </u>	 		
	20.		 	 	
	21.		 	 	
	22.		 	-	
	23.			 	
	24.		 -	 	
	25.		 	 	<u> </u>
	26.		 		
	27.		 	+	
	28.		+		
	29.		+	 	
	30.				<u> </u>

1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

T MONMOUTH, NJ	9526
DMV	1

Lab Name: EMSL AN	IALYTICAL	US ARMY		,,,,	
FMETL# 1864.1	Site:	BLDG#	210	NJDEP#	MW-2931792 #210
Matrix: (soil/water)	WATER		Lab Sample ID:	9526433B	+210 -
Sample wt/vol:	1000.0 (g/mL ML		Lab File ID	: B8031.D	_
Level: (low/med)			Date Received:	6/13/95	-
% Moisture:	decanted: (Y/N)	: <u>N</u>	Date Extracted:	6/19/95	_
Concentrated Extract Vo	olume: 1000 (uL)		Date Analyzed:	6/26/95	·
Injection Volume:	1.0(uL)		Dilution Factor:	1.0_	-
GPC Cleanup: (Y/N)	Np	н:			

Concentration Units:

CAS No.	Compound	(ug/L or ug/Kg) ug/L	Q
52-75-9	N-nitrosodimethylamine	2	U
111-44-4	bis(2-Chloroethyl)ether	1	Ŭ
541-73-1	1,3-Dichlorobenzene	2	U
106-46-7	1,4-Dichlorobenzene	1	Ŭ
95-50-1	1,2-Dichlorobenzene	2	U
108-60-1	bis(2-chloroisopropyl)ether	5	U
621-64-7	N-Nitroso-Di-n-propylamine	2	U
67-72-1	Hexachloroethane	1	U
98-95-3	Nitrobenzene	2	U
78-59-1	Isophorone	1	U
111-91-1	bis(2-Chloroethoxy)methane	3	Ŭ
120-82-1	1,2,4-Trichlorobenzene	2	U
91-20-3	Naphthalene	2	Ŭ
87-68-3	Hexachlorobutadiene	2	U
77-47-4	Hexachlorocyclopentadiene	12	U
91-58-7	2-Chloronaphthalene	1	U
131-11-3	Dimethylphthalate	1	U
208-96-8	Acenaphthylene	5	U
606-20-2	2,6-Dinitrotoluene	2	Ü
83-32-9	Acenaphthene	3	U
121-14-2	2,4-Dinitrotoluene	3	U
84-66-2	Diethylphthalate	1	U
86-73-7	Fluorene	3	U
7005-72-3	4-Chlorophenyl-phenylether	3	U
86-30-6	n-Nitrosodiphenylamine	6	U
122-66-7	1,2-Diphenylhydrazine(as azo)	6	U
101-55-3	4-Bromophenyl-phenylether	2	U
118-74-1	Hexachlorobenzene	2	U
85-01-08	Phenanthrene	2	Ŭ
120-12-7	Anthracene	2	U.
84-74-2	Di-n-butylphthalate	5	U
206-44-0	Fluoranthene	1	U
92-87-5	Benzidine	1	U

n	9	•
U	<	1

	Lab Name:	EMSL ANA				MOUTH, NJ	95264	133B)
	FMETL#	1864.1		Site:	BLDG#	210	NJDEP#	10/-293/19	7
	Matrix: (se		WATER			Lab Sample ID:		#210	
	Sample wt/	•	1000.0 (g	/mL ML		Lab File ID:	B8031.D		
		low/med)				Date Received:	6/13/95		
	% Moistur	e:		decanted: (Y/N):	N	Date Extracted:	6/19/95		
	Concentrate	ed Extract Volu	ıme:	1000_(uL)		Date Analyzed:	6/26/95	•	
	Injection V	olume:	1.0(u	ıL)		Dilution Factor:	1.0		
	GPC Clean	nup: (Y/N)	N	pH:					
				(Concentration	Units:			
	C	CAS No.	Compound	((ug/L or ug/K	(g) ug/L	Q		
5	_	29-00-0	Pyrene			2	U		
	<u> </u>	5-68-7	Butylbenzylpl	nthalate	<u> </u>	9	U		
		6-55-3	Benzo[a]anthi		1	2	Ū		
	<u> </u>	1-94-1	3,3'-Dichloro			15	ប		
	L	18-01-9	Chrysene	- Community	-	2	U		
	<u></u>	17-81-7	bis(2-Ethylhe	ryl)phthalate		4	U		
	· L		Di-n-octylpht			2	Ū		
	· 1—	17-84-0	Benzo[b]fluor		 	1	Ü		
	<u> </u>	05-99-2			 	2	U	1	
	\ <u></u>	07-08-9	Benzo[k]fluor			2	U	Į	
	<u> </u>	0-32-8	Benzo[a]pyre		 	2	บ	İ	
	<u> </u>	93-39-5	Indeno[1,2,3			3	U		
	L	53-70-3	Dibenz[a,h]a		 	2	U		
		191-24-2	Benzo[g,h,i]	perylene					
	-		* 5.4	<u> </u>	 				
	þ-								
								4	
	Ī							<u> </u>	
	[1	
	ļ							_[
	ľ						<u> </u>	_	
	Ì	····································						<u> </u>	
	ł							Ï	
	ŀ]	
	<u></u>								
	ŀ								

FORT	MONMOUTH	

-NJ

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE	NO

AIVIPLE NO.	021
9526433B	V 1

Lab Name: EMSL ANA	LYTICAL		US ARMY		
FMETL# <u>/864.1</u>		Site:	BLDG#	210	NJDEP# <u>#/W/- 293/</u> 192 ## 2/0
Matrix: (soil/water)	WATER	-		Lab Sample ID:	
Sample wt/vol:	1000.0	(g/mL) ML		Lab File ID	: <u>B8031.D</u>
Level: (low/med)		_		Date Received:	6/13/95
% Moisture:		decanted: (Y/N)	N	Date Extracted:	6/19/95
Concentrated Extract Vol	ume:	1000(uL)		Date Analyzed:	6/26/95
Injection Volume:	1.0	_(uL)		Dilution Factor	:
GPC Cleanup: (Y/N)	N	pH:	:		
			Concentration (ug/L or ug		
Number TICs found:	0		(ug/L or ug	ug/L	

CAS Number	Compound Name	RT I	Est. Conc	Q
1.	NONE FOUND			
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.		_		
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.			·	
21.			<u> </u>	<u> </u>
22.				
23.			 	
24.				
25.			 	
26.			 	
27.			ļ	
28.			<u> </u>	
29.			ļ	
30.			<u> </u>	

```
BLDG.#: 210 MW#: / NJDEPE WELL ID # 293/792
                    U.S. ARMY FORT MONMOUTH
             MONITORING WELL SAMPLING DATASHEET
                           DATE: 6-13-95
     TJO#95-0091
    SAMPLING CONTRACTOR: EMSL Analytical Services Inc.
    LABORATORY: EMSL Analytical Services, NJDEP CERT #: 04653
    SAMPLERS NAMES: Susan Palilonis, Tom Baxter
    WEATHER CONDITIONS: Cool overcast
    ELEVATION OF CASING SURVEY MARK:
    TOTAL DEPTH OF WELL FROM TOP OF SURVEYORS MARK: 14.92 FT
    DEPTH FROM SURVEYORS MARK TO SCREEN: . FT
    LENGTH OF SCREENED SECTION: FT.
    DEPTH TO WATER PRIOR TO PURGING AND SAMPLING: 7.0/FT
    ELEVATION OF GW PRIOR TO PURGING: _____ FT 0.7 in Flum Scales
    THICKNESS OF LNAPL PRIOR TO PURGING : ___. & FT
    PID/Hnu READING IMMEDIATELY AFTER THE WELL CAP IS
        REMOVED: <u>L1</u> PPM 1201 none Detected D.O. <u>1.3</u> fpm
    ph: 6.08 TEMP: 10.5 °C, SPECIFIC CONDUCTIVITY: 401 uslcon
    DEPTH OF WELL:____FT
    HEIGHT OF WATER:____FT
    EVACUATED GAL. H20: 160 GAL (7.91 \times .65 \times 3) = 15.43457
    PURGING START TIME: 1200 END TIME: 1306
    PURGE METHOD: (FLOW RATE OF <0.5 GPM TO >5.0
    GPM) Pump
    PURGE RATE (<0.5 GPM): 2 GPM
    TOTAL VOLUME PURGED: /6 GAL.
    DEPTH TO WATER AFTER PURGING AND BEFORE
    sampling: 10 .64 ft
DISSOLVED OXYGEN: 20 pm ph: 6.09 TEMP: 16.9 °C
    SPECIFIC CONDUCTIVITY: 420 USKIN SAMPLING METHOD: DEDICATED, DECONTAMINATED (IAW NUDEP
       FSPM 1992) TEFLON® BAILER
START TIME OF SAMPLING: /3/O END TIME: /3/5

DISSOLVED OXYGEN: 2.1 DH: (0.06 TEMP: 16.6 °C
   SPECIFIC CONDUCTIVITY: 376
   Color none ODOR none
COMMENTS: on 51+6 1153 slow Rechange
```

LABORATORY DELIVERABLES

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following laboratory deliverables shall be included in the data submission. All deviations from the accepted methodology and procedures, or performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The proposed "Technical Requirements for Site Remediation" rules, which appeared in the May 4, 1992 New Jersey Register, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits be included in one section of the data package and in the main body of the report.

		Check If Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name, address & date of report.	X
2.	Table of Contents	X
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds.	X
4.	Summary Table cross-referencing field ID #'s vs. Lab ID #'s.	<u> </u>
5.	Document bound, paginated and legible.	X
6.	Chain of Custody	X
7.	Methodology Summary	X
8.	Laboratory Chronicle and Holding Time Check.	X
9.	Results submitted on a dry weight basis (if applicable).	X
10	Method Detection Limits.	X
11	Lab certified by NJDEP for parameters or appropriate category of parameters or a member of the USEP CLP.	X
12	Non-Conformance Summary	X
	Goul fanager of Environmental ultant's Signature	17-95 Date

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Checklist which must be attached to the Summary A.

Page #

The following information must be reported in the Closure Plan Implementation Summary for all laboratory analyses performed in the compliance with the site assessment requirements:

-	1	1.	Name and address of the facility.
_	1	2.	Name of the laboratory performing the sample analysis.
-	1	3.	NJDEP certification number assigned to the laboratory pursuant to N.J.A.C. 7:18.
_	1	4.	Laboratory sample identification number.
_	1	5.	Customer sample identification number corresponding to the laboratory sample identification.
_	1	6.	Sample Location (also on the site diagram).
-	1 -	7.	Matrix of the sample analyzed (i.e., water or sediments; including soil, sediment, and sludges). All sediment results must be reported on a dry weight basis.
	29-30	8.	The reference for the method used (e.g., EPA Method 625, 40 CFR Part 136).
	1	9.	The signature of the person completing the report form.
٠.	1	10.	The dates the laboratory report form was prepared, as well as the dates the sample were collected, submitted and analyzed.
	31	. 11.	A list of all parameters (constituents and conditions) for which the analyses were performed.
	3-21	12.	Sample results and corresponding units for each parameter.

CHAIN OF CUSTODY

EMSL ANALYTICAL, INC.

INTERNAL CHAIN OF CUSTODY

PROJECT NO. <u>95063936</u>

SAMPLE/CONTAINERS

PARAMETERS

			•	
DATE	TIME	BN Extraction freq.	NAME (PRINT)	SIGNATURE CV Gu CR
6/19/95	11111	Bal Extensition frep.	Charles GARTOLONE	Sylner
6/19/93		270		
			· ·	
E 1				
L- ,				
Thin the late				
i: the state of th				
				
	ļ			
<u> </u>				
			,	
<u> </u>	ļ			
=				
8				
				·
· ;				
	<u> </u>			

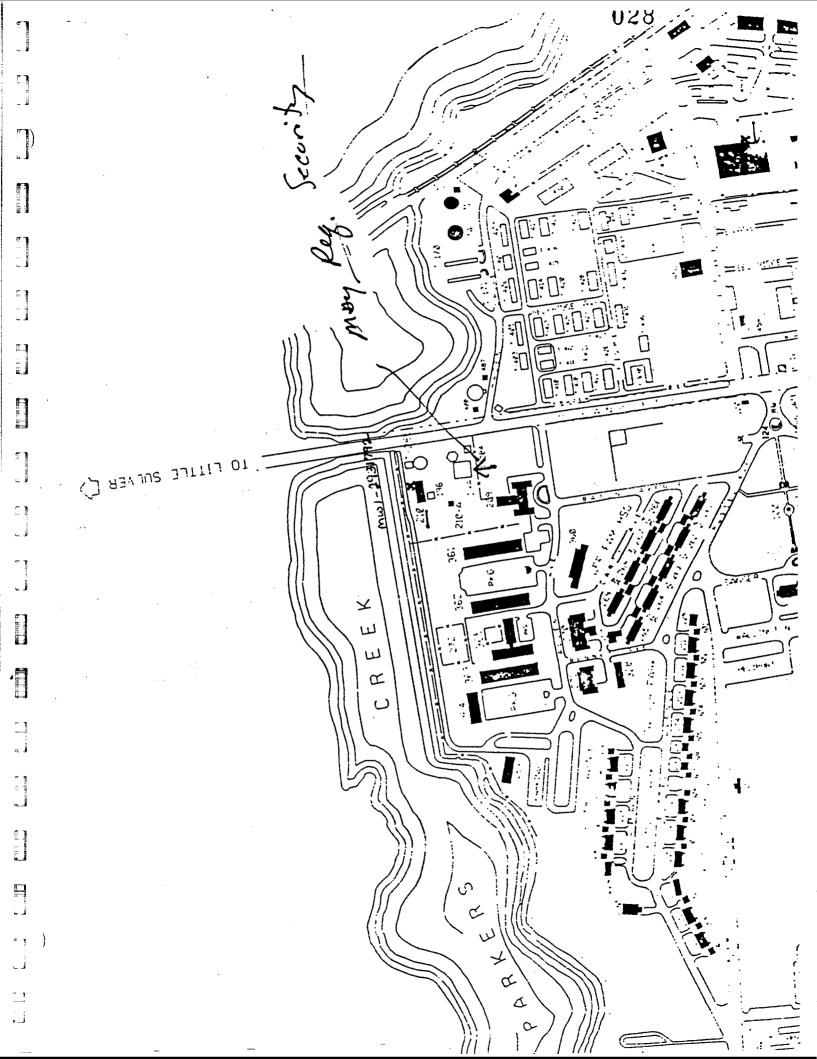
INTERNAL CUSTODY

EMSL

		•
Designet #	0561-0	- /
Project #:	9506393	<i>36</i>
-		

Lab ID #'s: <u>95-26433, 95-2642</u>6 95-26427

Analyst


A CONTRACTOR OF THE CONTRACTOR	Name (please print)	Signature	Date
1. Base/Neutrals	Sect Van Etter	- SV	6/26/95
Z. Acids			
Volatiles (GC)			
Volatiles (GC/MS)	Scott Kessler	SK	6/22/95
5. Base Neutrals/Acids			
Gasaline			

THE PROPERTY OF THE STURY OF THE STURY SE

P.U. H: 150# 95-0091 /SAI

Chain of Custody

Project 1. ()	4			<u> </u>				, , , , ,				j								ย
Project #: 9, Customer:			Sam	pler: Eme) L	(Bax	ter)	Date 6/13/95		ine	1	Ana Para	a l y:	5 i 5	 3	··· <u></u> .			Star	t:
Chiles Appl SELFM-	eby		Sit	e Name:	····			- 4/10/73						% _			-,,-			
584m-1	W-E	V		1 : 0	# 0						bank Juli	v jrk	1 /4/	y /	/ ,	/ /	///	/ /	Fini.	sh:
Phone : Out in the	الإرادار فسلتا		-	Bidg	1011	0					ple	Y/ (19							
Phone: 9081	53X	16224	W	W Sar	\ila	. α				V	JJ. 3	[]	, /	//	/	/ /	/ / . /		Proge	rvakion
Lab"Sample "" ID Number			[C	ustomer.	Samul		Sample	1 OF	1	V	VX	7		/			/ /.	٠	1 1 4: 254;	Me Lhod
	Date.	/Time	Loc	ation/10	Numb	er.		Bolle,	1.	10K/						//		 D		1
1861, 1	1./13	(2050	T0:	P Blac					- `	/	Y	<u> </u>	<i>[</i>	<i>{</i>	<u> </u>	<i>[,</i>	<i>[</i>			
1861,2	1112	15.15	TIKI	Y DIAC	IK		ag.	3	1	.			26	120	· 		Samo	sles '	Kep+	4
• • • • • • • • • • • • • • • • • • • •	 	1535	LIE	ld Bl	3nK) Olg	(g)	V	1 _x	1		21	43	7			40		
1864,1	1	1315	Bld	1) mwi	- 49 3	1.743	<u>08.</u>	6	- ' -	17	-									-
	1		#210		<u> </u>	1 1 1 0	1- 0.8.		-	 			37	<u>u.</u>	<u> </u>	·	ļ			-
			2/6	<i>i. J.</i>					.											
·····		·]									
								47 7-16 de-16 16 19:5 ho-ha-	. , 											
•									-								 			
				·														•		
								1												
				**					-						 -			•,	• • • • • • • • • • • • • • • • • • • •	·
				**************************************		• · · · • • • • • • • • • • • • • • • •			· · · · ·		.				ļ .					
		·						·	.										•	1
D = 1 1	1						}			}								· ·		
Relinquished	lly (signatu	ire)	Date /	Time	Rei	erved l	y (şiyn	al.u	ام		!! . 1 i z		IIII I Dy		اا مداک	l			l
X / 1/2 (d)	/ 7			6-13-95	1/3-	_ ,		out of			"		1		, •	ZY	7.5.L	·•		
Relinquished	11111	- i an a ba		3-73	1255										•					
Mind 6		- A Great		Date /		[seived f	or Lab	სიე ი	(siç	jna l	ure	·):		l	Jate	/ Tim	ne		
7!Bus	-6			6.13.95	185	. 7												ł		
Note: A draw	ing de	epictin	IO SAI	nule lee	ation	<u></u>	.1.1.1													
Note: A draw of cus	tody.	(04	ر در کارک	<u>ral</u>	0	R ~	uu be a	ctached	or \	dra	ıWn	on	the	re	Ver	~ s c	side c	of th	is ch	ain
SAI-ENV COC			119 11		\overline{n}	116	<u> </u>	SIDE	٠)											
arti (44					ı aye		<i>Le</i> 01	I	1	'aga	25		Re	٧.	11	Dat	e: 02	Apr	93	

METHODOLOGY SUMMARY

METHODOLOGY SUMMARY

EPA Method 524.2 - Aqueous

This is a purge and trap gas chromatograph/mass spectrometer (GC/MS) method. The organic compounds are separated by the gas chromatograph and detected using the mass spectrometer.

An HP5890/5970 GC/MS was used with a capiullary column (DB-624 0.53 mn ID).

Method detection limits are as stated.

Semivolatiles by GC/MS - Aqueous

EPA Method 625 - This is a gas chromatograph/mass spectrometer (GC/MS) method applicable to the determination of a number of organic compounds that are partitioned in an organic solvent and amenable to gas chromatography. Reference is Federal Register, Vol. 40, No. 136, July, 1988.

An HP5890/5970B GC/MS is used with a DB-5 fused silica capillary column.

If tentatively identified compounds are requested, a computer program analyzes the non-priority pollutant/HSL/TCL compounds with standard mass spectra found in the latest version of the NIH/NBS/EPA mass spectral library.

Method detection limits are as stated.

LABORATORY CHRONICLE

Lab ID: 95-26426, 95-26427, 95-26433			Clier	nt: U.S. Army, Fort Monmo
	I	DATE	; II	Hold Time
Date Sampled	6/13/95			
Receipt/Refrigeration	6/13/95			
Extractions				
1. Semivolatile Organics, aqueous	6/19/95			7 days
Analyses				
1. Volatile Organics, aqueous 2. Semivolatile Organics, ≥queous	6/21, 22/95 6/26/95			14 days 40 days
OC Supervisor			(Signature)	PH B Pata
QC Supervisor Review & Approval		·	(Printed Nar	ne) Peter B. Panton
			\/	

NOTE: If fractions are re-extracted and re-analyzed because the initial endeavors failed to meet the required Quality Control Criteria, the dates of re-extraction and/or re-analysis will be entered in Column II Additionally.

		<u>No</u>	<u>Ye</u>
l.	Chromatograms Labeled/Compounds Identified		X
	(Field Samples and Method Blanks)		
2.	GC/MS Tune Specifications		
	a. BFB Meet Criteria		X
	b. DFTPP Meet Criteria		
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12		₹:
	hours for 8000 series.		X
1,	GC/MS Calibration - Initial Calibration performed within 30 days before		
.,	sample analysis and continuing calibration performed within 24 hours of.	٠	
	sample analysis for 600 series and 12 hours for 8000 series.		X
5.	GC/MS Calibration - Initial Requirements		
٠.	a. Calibration Check Compounds		3
	b. System Performance Check Compounds		
			_
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:		
	a. VOA Fraction Methylene Chloride 1.5-2.0 ppb.	•	
	b. B/N Fraction	•	
	c. Acid Fraction	-	
7.	Surrogate Recoveries Meet Criteria		
	If not met, list those compounds and their recoveries which fall outside the		
	acceptable range:		
	a. VOA Fraction	-	
	b. B/N Fraction	_	
	c. Acid Fraction	-	
	If not met, were the calculations checked and the results qualified as		
	"estimated"?		
8.	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria (If not met, list		
٠.	those compounds and their recoveries which fall outside the acceptable range)	<u>X</u>	
	a. VOA Fraction Methylene Chloride 73% and 77%.		
	b. B/N Fraction	_	
	c. Acid Fraction		

		<u>No</u>	<u>Yes</u>
0.	Extraction Holding Time Met		X
	If not met, list number of days exceeded for each sample:	_	•
1.	Analysis Holding Time Met		X
	If not met, list number of days exceeded for each sample:	-	
	Definitions: U=Not Detected. J=Detected, but below report detection limit. B=Compound found in blank. E=Estimated concentration. NA=Not Applicable	-	
Addition	nal Comments:		

GC/MS VOLATILE ORGANIC DATA PACKAGE

- Haranda

All III

New Jersey Department of Environmental Protection Division of Water Resources Bureau of Underground Storage Tanks CN-029, Trenton, New Jersey 08625

LABORATORY AUTHENTICATION STATEMENT

I certify under penalty of law, where applicable, this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18, 40 CFR Part 136 for Water and Wastewater Analyses and SW 846 for Solid Waste Analyses. I have personally examined and am familiar with the information contained in this report, and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, complete, and meets the standards specified in N.J.A.C. 7:18, 40 CFR Part 136, and/or SW 846. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment.

Laboratory Manager (as defined in N.J.A.C. 7:18)