DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

6 April 2017

Ms. Linda Range New Jersey Department of Environmental Protection Case Manager Bureau of Southern Field Operations 401 East State Street, 5th Floor PO Box 407 Trenton, NJ 08625

Re: Summary Remedial Investigation Report and NFA Request for FTMM-66 Building 886 Former Aboveground Storage Tank Fort Monmouth, NJ PI G00000032

Attachments:

- A. Table 1: Summary of Compliance Averaging Results
- B. Previous FTMM-66 Correspondence (see list below)
- C. Figures
 - 1. Layout of FTMM-66 (Fuel Oil Tanks at Building 886)
 - 2. Extent of TPH > 5,100 mg/kg Remaining in Soil Following Phase 2 Excavation
- D. Soil Data Comparison to NJDEP Criteria
- E. Previous Reports (see list below)
- F. Compliance Averaging Methodology Applied at FTMM-66

Previous Correspondence (provided in Attachment B):

- 1. NJDEP letter to the Army dated August 27, 2010, re: *Remedial Action Report, Building* 886 Site Main Post, Fort Monmouth NJ
- 2. NJDEP letter to the Army dated March 18, 2011, re: 2010 Remedial Action Progress Reports, Fort Monmouth, NJ
- 3. Army letter to the NJDEP dated November 26, 2014, re: State of New Jersey Department of Environmental Protection Comments on the Final Baseline Groundwater Sampling Report (August 2013), Fort Monmouth, Oceanport, Monmouth County.
- 4. NJDEP letter to the Army dated February 5, 2015, re: *November 26, 2014 Response to Comments on the Final Baseline Ground Water Sampling Report (August 2013), Fort Monmouth, Monmouth County.*
- 5. NJDEP letter to the Army dated November 14, 2016, re: Annual (Fourth Quarter) 2015 Groundwater Sampling Report dated September 2016, Fort Monmouth, Oceanport, Monmouth County.

Linda S. Range, NJDEP Summary Remedial Investigation Addendum Report for FTMM-66, Building 886 6 April 2017 Page 2 of 5

Previous Reports (provided in Attachment E):

- 1. Remedial Action Report for Soil and Groundwater Contamination, Building 886, Versar, January 2006
- 2. Site 886 (FTMM-66) Remedial Action Progress Report (2nd Quarter 2003 through 4th Quarter 2008), VEETech, P.C. July 2010
- 3. Final Annual (Fourth Quarter) 2015 Groundwater Sampling Report, Fort Monmouth, Oceanport, Monmouth County, New Jersey, Parsons, September 2016 (Appendix K)

Dear Ms. Range:

The U.S. Army Fort Monmouth (FTMM) has prepared this Summary Remedial Investigation (RI) Report to present information concerning environmental investigations for the Installation Restoration Program (IRP) Site FTMM-66 Building 886 Former Aboveground Storage Tank. Soil contamination at this site was remediated in 2003 to the then-current Total Petroleum Hydrocarbons (TPH) cleanup criteria of 10,000 milligrams per kilogram (mg/kg). Correspondence 1 of Attachment B from the New Jersey Department of Environmental Protection (NJDEP) concerning the Remedial Action Report (RAR; Versar, 2006; see Report 1 of Attachment E) indicated in 2010 that soil contamination should address the updated residential health-based screening criteria of 5,100 mg/kg. Long-term groundwater monitoring at FTMM-66 was discontinued in 2016 based on the recommendations of the Annual (Fourth Quarter) 2015 Groundwater Sampling Report (Parsons, 2016; Report 3 of Attachment E), which was accepted by NJDEP (2016; Correspondence 5 of Attachment B). This Summary RI Report provides an overview of site information, and the results of compliance averaging used for comparing site soil concentrations with the current residential remedial goal for extractable petroleum hydrocarbons (EPH).

1.0 SITE DESCRIPTION

FTMM-66 was initially associated with Building 886 (**Figure 1** of **Attachment C**) which was previously used for equipment storage. There are currently no new development activities occurring at this site. Building 886 at FTMM-66 is surrounded primarily by grass-covered lawn areas with scattered trees. The ground surface topography is generally flat, with ground surface elevations ranging from approximately 13 to 15 feet above mean sea level. The former Commissary (Building 1007) is located just west of FTMM-66. The anticipated future land use at FTMM-66 is non-residential (i.e., commercial/industrial) (EDAW, Inc., 2008).

Contaminant sources at FTMM-66 included a former 250,000-gallon aboveground storage tank (AST) used for storing Number 2 (No. 2) fuel oil as well as a former 1,000-gallon No. 2 fuel oil underground storage tank (UST). These are Category 1 (i.e., No. 2 fuel oil and/or diesel fuel) discharges per NJDEP guidance (NJDEP, 2010a). Contamination was discovered during removal of the fuel oil UST in 1998; however, subsequent findings suggested that the AST (which was removed in the 1970's) was a contributing source of soil and groundwater contamination at FTMM-66.

In 2002 and 2003, multiple phases of Geoprobe[®] soil investigations (Phase I and Phase II remedial investigations), TPH-contaminated soil excavations, and post-excavation sampling occurred. Soil

Linda S. Range, NJDEP Summary Remedial Investigation Addendum Report for FTMM-66, Building 886 6 April 2017 Page 3 of 5

samples were analyzed for TPH and for volatile organic compounds (**Attachment D**). The remedial action objective for the 2003 soil excavation project was to remove soil with TPH concentrations exceeding 10,000 mg/kg, the NJDEP cleanup goal at that time. The excavations were advanced to depths of 7 to 13 feet below ground surface (bgs), and approximately 4,000 tons of petroleum-contaminated soil were removed. Soil TPH was typically encountered in the vicinity of the water table (6 to 11 feet bgs [Versar, 2006]), suggesting historical migration as a light non-aqueous phase liquid (LNAPL). The northwesterly extent of the excavation was limited by the presence of subsurface high-voltage electric lines northwest of Murphy Drive (see **Figure 1** of **Attachment C**); therefore, not all of the elevated TPH concentrations could be removed due to these subsurface obstructions. An LNAPL recovery system was installed in 2003 in the vicinity of these subsurface electric lines as discussed in Section 3.0 below.

Subsequent to the 2003 excavation activities, the NJDEP residential remedial goal for EPH of 5,100 mg/kg and the non-residential remedial goal of 54,000 mg/kg replaced the TPH standard of 10,000 mg/kg, following NJDEP's conclusion that EPH and TPH results were comparable at a ratio of 1:1 (NJDEP, 2010b). None of the remaining TPH concentrations exceed the current non-residential remedial goal of 54,000 mg/kg. However, the TPH concentrations exceed the current residential remedial goal of 5,100 mg/kg in the northwest section of the excavation, and about 30 to 75 ft north of the excavation (**Figure 2** of **Attachment C**). TPH remaining in place was delineated with soil analyses from both Geoprobe[®] soil borings and from post-excavation soil samples, as presented in **Attachment D**.

NJDEP (2010b) also determined that EPH/TPH concentrations should not exceed a residual or free product limit of 8,000 mg/kg. This concentration limit is based on the residual saturation of petroleum in soil (described in Appendix 2 of NJDEP, 2010b), with the premise that LNAPL in soils at this concentration may results in the accumulation of fuel oil on the water table. Several soil sample results exceeded this residual or free product limit of 8,000 mg/kg, and an LNAPL recovery system was installed as described in Section 3.0 below.

Additional information concerning the FTMM-66 background and environmental setting is provided in the various reports in **Attachment E**.

2.0 GEOLOGY AND HYDROGEOLOGY

Well construction logs for FTMM-66 presented in Appendix A of the *Remedial Action Report for Soil and Groundwater Contamination, Building 886* (Versar, 2006; see **Report 1** of **Attachment E**) indicate that soil to a depth of 17 feet bgs is comprised of brown, fine to coarse sand with a minor fraction of silt and trace clay. Depth to groundwater was about 6 ft bgs. The shallow groundwater flow direction was generally to the north-northwest (Parsons, 2016; see **Report 3** of **Attachment E**).

3.0 FREE PRODUCT RECOVERY

An LNAPL recovery system was installed in 2003 and operated through March 2004. As reported in the Remedial Action Progress Report for 2003 to 2008 (**Report 2** of **Attachment E**), LNAPL recovery was minimal (only about 2 pints) due to site conditions and the system was shut down in

Linda S. Range, NJDEP Summary Remedial Investigation Addendum Report for FTMM-66, Building 886 6 April 2017 Page 4 of 5

March 2004. LNAPL was consistently observed in only one recovery well (886RW04) and the last observation of LNAPL was 0.03 inch at 886RW04 in April 2005. Subsequent observations noted no LNAPL through August 2007. The 2003 to 2008 RAPR was approved by NJDEP in 2011 (see **Correspondence 2** of **Attachment B**).

4.0 GROUNDWATER QUALITY

FTMM-66 monitoring wells were sampled quarterly from February 2003 through April 2011 for multiple analytes including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), TPH, and metals. Groundwater sampling was resumed in August 2013 to re-establish baseline site groundwater conditions following temporary suspension of groundwater sampling in late 2011 associated with FTMM closure. Thirteen monitoring wells were sampled in 2013 and analyzed for VOCs, SVOCs and lead. Following the NJDEP agreement with the Army (Correspondences 3 and 4 of Attachment B) to reduce the analyses and number of wells sampled, three wells (886RW01, 886RW06 and 886RW08) were sampled for SVOCs during the 2014 and 2015 annual sampling events.

Historical exceedances of the NJDEP groundwater quality standards (GWQS) included benzene, bis(2-ethylhexyl)phthalate, total VOC and SVOC tentatively identified compounds (TICs), and multiple metals (see **Report 3** of **Attachment E**). Metals and bis(2-ethylhexyl)phthalate were not identified as potential contaminants of concern. Benzene, VOC TICs, and SVOC TICs concentrations in the historical (2011 and before) monitoring exceeded the GWQC in well 886RW01 only, and were last detected above the GWQC in 2009. SVOC TICs were detected at concentrations greater than the GWQS in two wells (886RW01 and 886RW08) in 2013, but during the 2014 and 2015 sampling events, were non-detect or below the NJDEP GWQS. Long-term groundwater monitoring was discontinued as recommended by the Army (Parsons, 2016; see **Report 3** of **Attachment E**) and accepted by NJDEP (2016; see **Correspondence 5** of **Attachment B**). An NFA determination is warranted for groundwater at FTMM-66.

5.0 COMPLIANCE AVERAGING FOR SOIL

The 95% upper confidence limit (UCL) method for compliance averaging was applied at FTMM-66 using an approach consistent with the attainment guidance (NJDEP, 2012) to determine whether the current residential remedial goal for EPH has been achieved. The previous TPH results were considered comparable to EPH results for decision making purposes based on NJDEP guidance (2010a and 2010b).

NJDEP requires EPH concentrations to be less than the 8,000 mg/kg residual or free product limit (Step 7 of NJDEP, 2010a). Soil TPH concentrations in 2003 were measured in excess of this criteria at multiple locations at FTMM-66; however, these sample data are over 14 years old. Because the source of contamination was removed by 2003 and is no longer contributing to the onsite release, it is likely that TPH concentrations have significantly decreased by natural degradation processes since the remediation occurred. Further, a free product removal system was installed at the site (see Section 3.0). Also, subsequent post-excavation groundwater monitoring has demonstrated the reduction of petroleum constituents in groundwater over time (see Section 4.0). Therefore, the site meets the intent of the NJDEP policy criteria for EPH, and compliance averaging was performed using historical (2003) soil sample results.

Linda S. Range, NJDEP Summary Remedial Investigation Addendum Report for FTMM-66, Building 886 6 April 2017 Page 5 of 5

The compliance averaging methodology and supporting documentation are provided in **Attachment F**. The results are summarized in **Table 1** in **Attachment B**. The average TPH concentration for each functional area met the RDCSRS of 5,100 mg/kg (**Table 1**). Therefore, the results of the compliance averaging indicate that soil at FTMM-66 meets the residential remedial goal for EPH. Based on this evaluation, a NFA determination is warranted for the FTMM-66 site soils.

6.0 SUMMARY

In summary, the Army requests a no further action determination for FTMM-66 because: 1) LNAPL recovery was completed; 2) groundwater monitoring was discontinued, as accepted by NJDEP; and 3) compliance averaging indicates that soil meets the residential remedial goal for EPH.

The technical Point of Contact for this matter is Kent Friesen; he can be reached at (732) 383-7201 or by email at kent.friesen@parsons.com. Should you have any questions or require additional information, please contact me by phone at (732) 380-7064 or by email at william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator

cc:

Linda Range (3 hard copies) Joseph Pearson, Calibre (CD) James Moore, USACE (CD) James Kelly, USACE (CD) Cris Grill, Parsons (CD)

REFERENCES CITED:

- EDAW, Inc. 2008. Fort Monmouth Reuse and Redevelopment Plan, Final Plan. Prepared for Fort Monmouth Economic Revitalization Planning Authority. August 22.
- NJDEP, 2010a. Protocol for Addressing Extractable Petroleum Hydrocarbons. Version 5.0, August 9.
- NJDEP, 2010b. Health Based and Ecological Screening Criteria for Petroleum Hydrocarbons, Frequently Asked Questions. Version 4.0, August 9.
- NJDEP, 2012. Technical Guidance for the Attainment of Remediation Standards and Site Specific Criteria. September 24.

New Jersey Department of Environmental Protection Site Remediation Program

Report Certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites

These certifications are to be used for reports submitted for RCRA GPRA 2020, CERCLA, and Federal Facility Sites. The Department has developed guidance for report certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites under traditional oversight. The "Person Responsible for Conducting the Remediation Information and Certification" is required to be submitted with each report. For those sites that are required or opt to use a Licensed Site Remediation Professional (LSRP) the report must also be certified by the LSRP using the "Licensed Site Remediation Professional Information and Statement". For additional guidance regarding the requirement for LSRPs at RCRA GPRA 2020, CERCLA and Federal Facility Sites see http://www.nj.gov/dep/srp/srra/training/matrix/quick_ref/rcra_cercla_fed_facility_sites.pdf.

Document: "Summary Remedial Investigation Report and NFA Request for FTMM-66 Building 886 Former Aboveground Storage Tank"

DEBOON DECRONOIDI E COD CONDUCTINO THE DE	MEDIAS	TON INCODMATION	AND CEDTI	FICATION
PERSON RESPONSIBLE FOR CONDUCTING THE RE	MEDIA	ION INFORMATION	AND CERTI	FICATION
Full Level Name of the Davison Desposible for Conductiv	ac tha D	amadiation, William	a D. Calvin	
Full Legal Name of the Person Responsible for Conducting			n R. Colvin	
Representative First Name: William	Re	oresentative Last Nan	ne: Colvin	
Title: BRAC Environmental Coordinator				
Phone Number: (732) 380-7064	Ext:		Fax:	
Mailing Address: P.O. Box 148				
City/Town: Oceanport	State:	NJ	Zip Code:	07757
Email Address: william.r.colvin18.civ@mail.mil				
This certification shall be signed by the person responsible	le for co	nducting the remediat	ion who is su	bmitting this notification
in accordance with Administrative Requirements for the F				
I certify under penalty of law that I have personally exami including all attached documents, and that based on my if the information, to the best of my knowledge, I believe the aware that there are significant civil penalties for knowing am committing a crime of the fourth degree if I make a wird aware that if I knowingly direct or authorize the violation of Signature:	nquiry of at the sully subm ritten fals	f those individuals imr bmitted information is itting false, inaccurate se statement which I c	nediately res true, accura or incomple lo not believe liable for the	ponsible for obtaining te and complete. I am te information and that I to be true. I am also
Name/Title: William R. Colvin / BRAC Environmental				
Coordinator				
				

Table 1 Summary of Compliance Averaging Results

Table 1. Summary of Compliance Averaging Results

Functional Area	Acreage EPH	Number of Samples ^A Remedial Sta	Functional Area Depth Interval (feet bgs) andard = 5,100 mg/kg	95% Upper Confidence Limit
1A	0.33	28	0 - 2	662
1B	0.33	110	>2	3,333
2A	0.31	8	0 - 2	714 ^B
2B	0.31	56	>2	5,033

Notes:

Value

UCL achieves compliance with remedial goal

Abbreviations:

bgs - below ground surface

A – Does not include field duplicates.
 B - Too few detections were available to calculate a UCL. Therefore, the arithmetic mean is presented.

ATTACHMENT B

Previous FTMM-66 Correspondence

- 1. NJDEP letter to the Army dated August 27, 2010, re: *Remedial Action Report, Building 886 Site Main Post, Fort Monmouth NJ*
- 2. NJDEP letter to the Army dated March 18, 2011, re: 2010 Remedial Action Progress Reports, Fort Monmouth, NJ
- 3. Army letter to the NJDEP dated November 26, 2014, re: State of New Jersey Department of Environmental Protection Comments on the Final Baseline Groundwater Sampling Report (August 2013), Fort Monmouth, Oceanport, Monmouth County, PIG000000032.
- 4. NJDEP letter to the Army dated February 5, 2015, re: November 26, 2014 Response to Comments on the Final Baseline Ground Water Sampling Report (August 2013), Fort Monmouth, Monmouth County, PI G000000032, Activity Number: RPC000001
- 5. NJDEP letter to the Army dated November 14, 2016, re: Annual (Fourth Quarter) 2015 Groundwater Sampling Report dated September 2016, Fort Monmouth, Oceanport, Monmouth County, PIG000000032

State of New Jersey

CHRIS CHRISTIE

Governor

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION SITE REMEDIATION, PUBLICLY FUNDED REMEDIATION ELEMENT P.O. Box 413 Trenton, New Jersey 08625-0413

BOB MARTIN Commissioner

August 27, 2010

Mr. Joseph Fallon, CHMM Directorate of Public Works ATTN: IMNE-MON-PWE 167 Riverside Ave. Fort Monmouth, NJ 07703

RE:

Remedial Action Report

Building 886 Site - Main Post, Fort Monmouth, NJ

Dear Mr. Fallon:

The NJDEP Site Remediation Program (SRP) has completed its review of the Remedial Action Report, dated January 13, 2006 for the Building 886 site. We have also reviewed Fort Monmouth's March 31, 2010 letter requesting a reduction in the quarterly ground water sampling being conducted at the Building 886 site. Our comments on the documents are attached.

You or your staff may contact me at 609-633-0766 with any questions on the enclosed comments, or any other site remediation matters at Fort Monmouth.

Sincerely,

Larry Quinn, P.E., Site Manager

Bureau of Investigation, Design and Construction

NJDEP COMMENTS on REMEDIAL ACTION REPORT for BUILDING 886 SITE FORT MONMOUTH, NJ

- 1. TPH Criteria. The RAR repeatedly refers to the former Total Petroleum Hydrocarbons (TPH) cleanup criteria of 10,000 ppm as the NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC) for TPH. For clarification purposes, the TPH soil cleanup criteria of 10,000 ppm wasn't developed as a health-based number and wasn't considered to be a residential direct contact number. However, a new residential health-based screening criteria of 5,100 ppm for TPH is now in effect. The new criteria will need to be used for any necessary delineation of remaining soil contamination at the Building 886 site.
- 2. TPH, page 4-2. The analytical data for sample 886-41 at 10 feet indicated TPH contamination in soil at a level of 14,258 ppm. The Report states that sample location 886-41 was resampled, that results reported a TPH concentration well below criteria, and that the first sample was in error. The Report does not explain why the original soil sample collected at 886-41 was in error. The data point for the original sample may not be dismissed without clear justification. Additional delineation and/or a deed notice may be necessary.
- 3. <u>TPH</u>, page 4-3. TPH contamination was detected at several depth intervals at boring 886-57. The Report states that the occurrence of high voltage utilities in the area prohibited further excavation. Additional delineation and/or a deed notice may be necessary.
- 4. Conclusions, page 5-1. The Report states that during the Phase 2 post-excavation sampling, TPH was detected in two soil samples at concentrations that exceeded the 10,000 ppm criteria. The contaminated soil remaining at sample point 886-PX19/WW7.5-8' is located on the north-west corner of the excavation wall. Additional excavation was not performed due to the occurrence of utility lines which run through the center of the island and parallel to the street. Additional delineation and/or a deed notice may be necessary.
- 5. Free Product. In Section 3.6, 3rd paragraph, the text states that the ground water treatment system has not been activated for regular use in free product recovery. However, it states that manual product gauging has been performed at recovery well 886RW04. The Department requests clarification regarding a) whether or not any other monitoring wells or recovery wells have ever contained product, b) whether product gauging was performed in well 886RW04 after 9/1/2005, and c) if so, what were the results?

NJDEP COMMENTS on REMEDIAL ACTION REPORT for BUILDING 886 SITE FORT MONMOUTH, NJ (cont.)

6. <u>Ground Water Remedy</u>. It is unclear from the report what remedial action has been implemented for **dissolved** ground water contamination, though it appears that natural remediation is the remedial action. In accordance with N.J.A.C. 7:26E-6.3(d)3, a natural remediation remedy cannot be approved if soil contamination remains above the applicable standards in the unsaturated zone. Also, it is unclear if product remains an issue at the site (See Comment # 5 above).

NJDEP Comments on March 31, 2010 Letter Requesting Ground Water Sampling Modification at Building 886 Site

- Based upon review of the January 13, 2006 RAR and the March 31, 2010 letter, the NJDEP approves the proposal to eliminate VOC and SVOC sampling for the following ground water monitoring wells: 886MW03, 886MW04, 886MW05, 886RW06, 886RW07, and 886RW08.
- 2. The following wells must continue to be sampled for VOCs and SVOCs because they are located hydraulically downgradient of areas where soils exceeding remediation standards remain: 886MW01, 886MW02, 886RW02, 886RW03, 886RW04, 886RW05. However, based on historic sampling results, annual sampling (once/year) would be sufficient for those wells.
- 3. NJDEP agrees that monitoring well 886RW01 should continue to be sampled quarterly for VOCs and SVOCs, and that all monitoring wells should continue to be gauged quarterly.
- 4. The proposal to install a monitoring well downgradient of 886RW01 to delineate the dissolved contamination found in well 886RW01 is acceptable.

CHRIS CHRISTIE

Governor

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION SITE REMEDIATION, PUBLICLY FUNDED REMEDIATION ELEMENT P.O. Box 413 Trenton, New Jersey 08625-0413

BOB MARTIN Commissioner

March 18, 2011

Mr. Joseph Fallon, CHMM Chief, Environmental Division Directorate of Public Works ATTN: IMNE-MON-PWE 167 Riverside Ave. Fort Monmouth, NJ 07703

RE:

2010 Remedial Action Progress Reports

Fort Monmouth, NJ

Dear Mr. Fallon:

The NJDEP Site Remediation Program (SRP) received Remedial Action Progress Reports (RAPRs) on ten (10) site remediation areas of concern (AOCs) from Fort Monmouth in June and October of 2010. SRP has reviewed the RAPRs. The following is the status of each RAPR:

- Site CW-1. NJDEP will perform a detailed review of the RAPR dated June 2010 by GES, Inc.
 and provide comments at a later date. In the meantime, a discharge-to-ground water
 permit-by-rule (DGW PBR) for ground water remedial injections was issued by NJDEP on
 November 19, 2010. The results of the remedial injections must be presented in future
 RAPRs.
- 2. <u>Building 2567</u>. The RAPR dated June 2010 by VeeTech, P.C. is hereby approved. A DGW PBR for ground water remedial injections was issued by NJDEP on October 28, 2010. The results of the remedial injections must be presented in future RAPRs.
- 3. <u>Building 699</u>. NJDEP reviewed the RAPR dated June 2010 by GES, Inc. We approved the RAPR and provided comments on a letter dated February 23, 2011.
- 4. <u>Site 1122</u>. The RAPR dated June 2010 by VEE Tech, P.C. is hereby approved, including Appendix C, Response to August 27, 2008 NJDEP Comments. The results of any additional investigation activities must be presented in future RAPRs.

- 5. <u>Site 886</u>. The RAPR dated July 2010 by VEE Tech, P.C. is hereby approved. After that RAPR was prepared, but before it was submitted to NJDEP (October 22, 2010), NJDEP issued a comment letter on Site 886, dated August 27, 2010. That comment letter addressed the January 13, 2006 Remedial Action Report (RAR) for Site 886, and the Army's March 31, 2010 request for reductions in quarterly ground water sampling. NJDEP's August 27, 2010 comments should be incorporated in future response actions and reports on Site 886.
- 6. <u>Site 812</u>. The RAPR dated July 2010 by VEE Tech, P.C. is hereby approved. A DGW PBR for additional ground water remedial injections was issued by NJDEP on November 10, 2010. The results of the remedial injections must be presented in future RAPRs.
- 7. Site 283. The RAPR dated July 2010 by VEE Tech, P.C. is hereby approved, including Appendix F, Response to October 24, 2007 NJDEP comments. A DGW PBR for additional ground water remedial injections was issued by NJDEP on October 28, 2010. The results of the remedial injections, as well as any additional investigation activities, must be presented in future RAPRs.
- 8. M-2 Landfill. The RAPR dated September 2010 by VEE Tech, P.C. is hereby approved. Section 6.3 of the RAPR references the June 26, 2009 NJDEP comment letter on previous reports on the M-2 Landfill. Those comments should be incorporated in future response activities at M-2. Also, a DGW PBR for additional ground water remedial injections was issued by NJDEP on October 28, 2010. The results of the remedial injections must be presented in future RAPRs.
- 9. M-5 Landfill. The RAPR dated September 2010 by VEE Tech, P.C. is hereby approved, including the recommendation to discontinue quarterly sampling of monitoring well M-5MW10. Section 6.3 of the RAPR references the December 16, 2009 NJDEP comment letter on previous reports on the M-5 Landfill. Those comments should be incorporated in future response activities at M-5. Also, a DGW PBR for additional ground water remedial injections was issued by NJDEP on November 10, 2010. The results of the remedial injections must be presented in future RAPRs.
- 10. <u>M-8 Landfill</u>. Two RAPRs dated September 2010 by VEE Tech, P.C. were received, covering the time periods 4th Quarter 2005 3rd Quarter 2006 and 4th Quarter 2006 4th Quarter 2008. NJDEP will perform a detailed review of those RAPRs and all previous M-8 Landfill reports and provide comments at a later date.

You or your staff may contact me at 609-633-0766 with any questions on the above, or any other site remediation matters at Fort Monmouth.

Sincerely,

Larry Quing, P.E., Site Manager Bureau of Investigation, Design and Construction

Michele Siekerka, Economic Growth & Green Energy, NJDEP Rick Harrison, FMERA

DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148
OCEANPORT, NEW JERSEY 07757

November 26, 2014

Linda S. Range State of New Jersey Department of Environmental Protection Bureau of Case Management 401 East Side Street PO Box 420/Mail Code 401-05F Trenton, NJ 08625-0028

Subject:

State of New Jersey Department of Environmental Protection Comments on the Final Baseline Groundwater Sampling Report (August 2013) Fort Monmouth, Oceanport, Monmouth County, PI G000000032

Attachments: A. 2009 Temporary Well Points and Analytical Data

B. Revised Table 7

Dear Ms. Range:

Fort Monmouth (FTMM) and Parsons have reviewed the New Jersey Department of Environmental Protection (NJDEP) comments on the Final Baseline Groundwater Sampling Report (August 2013) as documented in your letter dated July 3, 2014. Response to your comments are provided below in the order in which they were presented in the comment letter.

A. GENERAL COMMENT/STATEMENT:

The New-Jersey Department of Environmental Protection (Department) has completed review of the referenced report, dated March 2014, received on April 7, 2014. The report was prepared by Parsons Government Services Inc. (Parsons), in support of the Remedial Investigation (RI), Feasibility Study (FS), and Decision Documents project at Fort Monmouth.

A baseline ground water sampling event was conducted at 21 "sites" at the Fort Monmouth property in August 2013. The purpose of the sampling event was to re-establish baseline conditions following suspension of ground water sampling in late 2011, as well as to evaluate Fort Monmouth's long-term ground water sampling program, and the current analytical conditions of the ground water at each site. Sampling methodologies used included low-flow and passive diffusion bag samplers (PDBS). At four sites (FTMM-14, 18, 59, 68), only PDBS sampling was conducted. At three sites (FTMM-05, 22, 58) both low-flow and PDBS samples were obtained for comparison purposes. Fourteen (14) sites were only sampled using low-flow. The report states that PDBS concentrations were consistently biased somewhat low compared to the low-flow

concentrations. The report concludes, however, that the PDBS results were still similar to the low-flow results and are considered representative of ground water conditions at the sites. Based on this conclusion, the report states that for future ground water sampling, PDBS will be used for all sites where volatile organic compounds (VOCs) are the sole contaminants of concern. Comments are presented below.

Section 3.1; Table 6; Appendices & associated Tables - The "background concentrations" submitted in the 1995 Weston report were not accepted by the Department as representative of background conditions for Fort Monmouth. The study was not performed in accordance with Departmental protocol and is not a consideration in our evaluations/determinations. As indicated in Section 3.1, background concentrations are evaluated on a site by site basis.

A. RESPONSE: Acknowledged,

B. FTMM-02 Landfill

B. COMMENT: Historic sampling at this parcel indicated levels of VOCs above the Ground Water Quality Standard (GWQS); metals were previously determined to be reflective of naturally occurring conditions. The August 2013 sampling of wells using low-flow confirmed the continued exceedance of the GWQS for VOCs. The report recommends VOC sampling of wells M2MW03, M2MW11, M2MW21, M2MW22 and M2MW24 for two additional rounds using PDBS. Well M2MW10 will be monitored as a down gradient sentinel well. Although the proposal is acceptable, for wells in which the saturated screen length exceeds 10 feet, the deployment of multiple PDBS will be required. At any point where a decision is made to terminate ground water sampling at this site, confirmatory sampling using low-flow due to PDBS biasing low as compared to low-flow results at the Fort Monmouth site will be required.

B1. RESPONSE: Agreed.

C. FTMM-03 Landfill

- C. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of vinyl chloride and metals. The August 2013 sampling of wells using low-flow confirmed the continued exceedance of the GWQS for vinyl chloride in well 3MW07. Well 3MW02 was not sampled due to low water column and silty conditions; however, Table 4 of Appendix B recommends sampling of 3MW02 for VOCs and metals. The report attributes the presence of vinyl chloride to leaching of PVC piping from well 3MW07. A temporary well point investigation was conducted in 2009 to delineate—the—vinyl—chloride, the—results—were—non-detect,—and—abandonment—of—3MW07—is-recommended. The recommendations are acceptable. However, a figure presenting the locations and sampling results from the 2009 temporary well point investigation must be provided to the Department.
- C. RESPONSE: A figure showing the location of 2009 temporary well points and the associated groundwater analytical data are provided in **Attachment A**. Therefore, FTMM will abandon 3MW07 in accordance with NJDEP well abandonment procedures.

D. FTMM-04 Landfill

D. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of various metals. The August 2013 sampling of wells using low-flow confirmed the continued exceedance of the GWQS for metals. The metals are attributed to background conditions, and cessation of ground water sampling is recommended. The recommendation is acceptable. Monitoring wells at this

parcel shall be properly abandoned if they are no longer subject to sampling or gaging for water elevation data.

D. RESPONSE: Agreed.

E. FTMM-05 Landfill

- E. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of PCE, TCE and vinyl chloride, which the August 2013 sampling, using low-flow and PDBS, confirmed. The report recommends annual VOC sampling of wells M5MW11, M5MW16, M5MW20 and M5MW23 using PDBS. The Department finds the proposal to be acceptable. At any point where a decision is made to terminate ground water sampling at this parcel, the Department will require confirmatory sampling using low-flow due to PDBS results at this parcel biased low compared to the low-flow results.
- E. RESPONSE: Agreed.

F. FTMM-08 Landfill

- F. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of pesticides, benzene, PCE and lead. The August 2013 sampling of wells using low-flow confirmed the exceedance of the GWQS for PCE and lead. The well with historic pesticide exceedances (697MW01) could not be located and was not sampled. The report recommends annual ground water sampling of well M8MW11 for VOCs and lead, M8MW12, 15, 16 and 24 for VOCs and M8MW17 and 21 for lead only. Monitoring well 697MW01 will be located and sampled for pesticides, lead and VOCs. The recommendation is acceptable.
- F. RESPONSE: Agreed.

G. FTMM-12 Landfill

- G. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of various metals, including arsenic and lead. Historic exceedances of metals except for lead are attributed to background quality. The August 2013 sampling was conducted for lead analysis only. Lead was not detected. The report recommends discontinuing ground water sampling at this parcel. The Department finds the recommendation to be acceptable. Monitoring wells at this parcel shall be properly abandoned if they are no longer subject to sampling or gauging for water elevation data.
- G. RESPONSE: Agreed.

H. FTMM-14 Landfill

- H. COMMENT: Historic sampling at this parcel revealed no GWQS exceedances of VOCs. The August 2013 sampling of wells using PDBS confirmed that there was no exceedance of the GWQS. The report recommends discontinuing ground water sampling at this parcel. The Department finds the recommendation to be acceptable. Monitoring wells at this parcel shall be properly abandoned if they are no longer subject to sampling or gaging for water elevation data. The Department also notes that on Table 1, well M14MW19 is listed as having 10 feet of total screen length. However, the table also lists the saturated screen length as 13.35 feet. This discrepancy should be clarified.
- **H. RESPONSE:** Agreed. The saturated screen thickness for M14MW19 is 10 feet.

I. FTMM-18 Landfill

- I. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of benzene and l,2-DCA. The August 2013 sampling results of wells using PDBS showed the exceedance of the GWQS for 1,2-DCA in well M18MW22. Well M18MW23 could not be located and was not sampled. The report recommends annual ground water sampling using PDBS for M18MW22 and M18MW23 if it can be located. Every reasonable effort, such as reviewing the NJ State Plane Coordinates of the well, must be made to locate M18MW23. The use of M18MW22 as the sole monitoring well at this parcel will not be acceptable due to the vast difference in historical concentrations between M18MW22 and M18MW23. Historic 2011 benzene concentrations for M18MW23 were 775 ppb and 664 ppb while 2011 concentrations for M18MW22 were 1.81 ppb and 1.65 ppb. The Department cannot approve the use of PDBS sampling only for this parcel. Once M18MW23 is located, the Department can approve the use of both PDBS and low-flow sampling for comparison purposes.
- I. RESPONSE: M18MW23 has been located and will be sampled using PDB methodology during the 2014 annual sampling event, as the historical concentrations of benzene are appropriate for the use of PDBs. FTMM believes that there is enough low flow data (four sampling events over two years) to characterize the concentrations of the volatile constituents in M18MW23 and that a low-flow PDB comparison is not needed for this well. FTMM will vertically profile this well using PDBs should the saturated screen be greater than 10 feet. In addition to the sampling of M18MW23, M18MW22 will also be sampled using PDB methodology and analyzed for VOCs.

J. FTMM-22 Former Wastewater Treatment Lime Pit

- August 2013 sampling of wells using low-flow and PDBS confirmed the continued exceedance of the GWQS for TCE in ground water. The report recommends quarterly VOC sampling of wells CWIMW27, CWIMW29, CWIMW31 and CWIMW281 using PDBS. The Department finds the proposal to be acceptable. At any point where a decision is made to terminate ground water sampling at this parcel, the Department will require confirmatory sampling using low-flow due to PDBS results biasing low compared to low-flow results at the Fort Monmouth site.
- J. RESPONSE: Agreed.

K. FTMM-25 Landfill

- K. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of various metals. The August 2013 sampling of wells using low-flow confirmed the continued exceedance of the GWQS for metals. The metals are attributed to background conditions. The report recommends discontinuing ground water sampling at this parcel. The Department finds the recommendation to be acceptable. Monitoring wells at this parcel shall be properly abandoned if they are no longer subject to sampling or gauging for water elevation data.
- K. RESPONSE: Agreed.

L. FTMM-53 Building 699

L. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of benzene, PCE, TCE, TBA, VOC TICs and lead. The August 2013 sampling of wells using low-flow showed the exceedance of the GWQS for benzene, xylenes, PCE, 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene and VOC TICs. The report recommends quarterly VOC sampling of wells

699MW01, 699MW04, 699MW06, 699MW09, 699MW16, 699RW03, 699RW05 and 699RW11 using PDBS. The Department finds the proposal to be acceptable. For wells in which the saturated screen length exceeds 10 feet, the deployment of multiple PDBS will be required. At any point where a decision is made to terminate ground water sampling at this parcel, the Department will require confirmatory sampling using low-flow due to PDBS biasing low compared to low-flow at the Fort Monmouth site.

L. RESPONSE: Agreed.

M. FTMM-54 Building 296

M. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of benzene, lead and arsenic. The metals are attributed to background conditions. The August 2013 sampling of wells using low-flow showed an exceedance of the GWQS for benzene. The report recommends annual VOC sampling of wells 269MW04 and 296MW06 using PDBS. The Department finds the proposal to be acceptable. For wells in which the saturated screen length exceeds 10 feet, the deployment of multiple PDBS will be required. At any point where a decision is made to terminate ground water sampling at this parcel, the Department will require confirmatory sampling using low-flow due to PDBS biasing low compared to low-flow at the Fort Monmouth site.

M. RESPONSE: Agreed.

N. FTMM-55 Building 290

- N. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of arsenic and lead. The August 2013 sampling of wells using low-flow confirmed the continued exceedance of the GWQS for lead. The metals are attributed to background conditions. The report recommends discontinuing ground water sampling at this parcel. The Department finds the recommendation to be acceptable. Monitoring wells at this parcel shall be properly abandoned if they are no longer subject to sampling or gauging for water elevation data.
- N. RESPONSE: Agreed.

O. FTMM-56 Building 80

- O. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of chlordane, arsenic, lead and cadmium. The August 2013 sampling of wells was conducted for lead only using low-flow. There were no exceedances of lead. The report recommends one additional sampling round of well 80MW02 for chlordane and 80MW05 for lead. The Department finds the recommendation for well 80MW02 to be acceptable. The Department disagrees with the recommendation to sample well 80MW05 for lead only. The last low-flow sampling event in August 2011 had lead, arsenic and cadmium exceeding both the GWQS and background concentrations. Well 80MW05 shall be sampled during the next round for TAL metals.
- **O. RESPONSE:** Acknowledged. FTMM will modify the analysis method from lead only to lead, arsenic and cadmium at well 80MW05.

P. FTMM-57 Building 108

P. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of lead. In the August 2013 sampling event, there were no exceedances of lead in ground water. The report recommends two additional sampling rounds of well 108MW04 for lead. The Department finds the recommendation acceptable.

P. RESPONSE: Agreed.

Q. FTMM-58 Building 2567

- **Q. COMMENT:** Historic sampling at this parcel revealed GWQS exceedances of TBA in wells 2567MW01 and 2567MW03. The August 2013 sampling results using low-flow and PDBS were below the GWQS for TBA. The report recommends two annual sampling events for TBA analyses of wells 2567MW01 and 2567MW03 using low-flow. The Department finds the proposal to be acceptable.
- Q. RESPONSE: Agreed.

R. FTMM-59 Building 1122

- **R. COMMENT:** Historic sampling at this parcel revealed no GWQS exceedances for VOCs. The August 2013 sampling results of wells using PDBS showed no exceedance of VOCs. The text of the report recommends VOC sampling of well 1122MW07 for one additional sampling round to confirm the 2013 results because August 2013 was the first time this well was sampled. The Department finds the proposal to be acceptable. The Department also notes that there is a discrepancy between the recommendation in the text and the recommendation in Table 7. Table 7 recommends that sampling at this parcel be discontinued. Table 7 shall be amended to indicate well 1122MW07 will be sampled for VOCs using PDBS methodology.
- **R. RESPONSE:** Monitoring well 1122MW07 will be sampled for one additional round during the 2014 annual sampling event using PDB methods. The sample will be analyzed for VOCs. Table 7 has been amended and provided as **Attachment B**.

S. FTMM-61 Building 283

- S. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of metals, benzene and VOC TICs in 283MW02. The August 2013 sampling of wells using low-flow for VOCs and lead showed no exceedances. The report recommends VOC sampling of well 283MW02 for one additional sampling round using PDBS methodology to confirm the 2013 results. The Department finds the proposal to be conditionally acceptable. If the saturated screen length exceeds 10 feet, the deployment of multiple PDBS will be required. If a decision is made to terminate ground water sampling at this parcel based on PDBS results, the Department will require confirmatory sampling using low-flow due to PDBS biasing low compared to low-flow at the Fort Monmouth site.
- **S. RESPONSE:** Acknowledged. Because the next annual sampling round is intended to be the last round, FTMM will sample 283MW02 using LFPS method.

T. FTMM-64 Building 812

T. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of benzene, vinyl chloride and metals. The August 2013 sampling of wells using low-flow for VOCs and lead showed no exceedances. The report recommends VOC sampling of well 812MW04 for one additional sampling round using PDBS methodology to confirm the 2013 results (however Section 5.0 recommends sampling be continued on an annual basis). The Department finds the proposal to be conditionally acceptable. If the saturated screen length exceeds 10 feet, the deployment of multiple PDBS will be required. If a decision is made to terminate ground water sampling at this parcel based on PDBS results, the Department will require confirmatory sampling using low-flow due to PDBS biasing low compared to low-flow at the Fort Monmouth site.

T. RESPONSE: Acknowledged. Because the next annual sampling round is intended to be the last round, FTMM will sample 812MW04 using LFPS method.

U. FTMM-66 Building 886

- U. COMMENT: Historic sampling at this parcel revealed GWQS exceedances of benzene, VOC TICs, arsenic and lead. The August 2013 sampling results from wells using low-flow showed the exceedance of the GWQS for SVOC TICs. The report recommends that sampling at this parcel be discontinued. The Department finds the recommendation unacceptable. Total SVOC TICs exceeded the GWQS of 500 ppb in wells 886RW01 and 886RW06. Ground water monitoring of wells 886RW01, 886RW06 and 886RW08 shall continue for SVOC+TICs using low-flow methodology.
- **U. RESPONSE:** Agreed. FTMM will continue to monitor 886RW01, 886RW06 and 886RW08 at FTMM-66 for SVOC+TICs using the LFPS method for two additional annual rounds.

V. FTMM-68 Building 700

- V. COMMENT: There are no historic sampling results for this parcel. The August 2013 sampling results of wells using PDBS showed the exceedance of the GWQS for PCE, TCE, cis-l,2-DCE and vinyl chloride in wells 565MW01 and 565MW01D. The report recommends quarterly ground water sampling for VOC+TICs using PDBS for these 2 wells. The Department agrees with the recommendation of quarterly sampling, however, has concerns regarding the use of PDBS for long-term monitoring at this parcel. Unlike the other Fort Monmouth parcels, there are no historical ground water sampling data for comparison with the PDBS results. The DEP's Field Sampling Procedures Manual states that "the intended application of Passive Diffusion Bag Samplers (PDBS) is for long-term monitoring of volatile organic compounds (VOCs) in ground water at well-characterized sites." The Department would find long-term sampling of the wells using PDBS acceptable if low-flow sampling is conducted concurrently once or twice for comparison.
- V. RESPONSE: Fort Monmouth agrees that FTMM-68 has not been fully characterized, however a remedial investigation (RI) is proposed for this site in the near future and the sampling of existing and proposed wells using the LFPS method is proposed in the RI. In the meantime Fort Monmouth proposes to continue to use PDBs to characterize the concentrations. The two existing wells are located in the potential source area and the detected VOCs have a high enough concentration that PDBs, while they tend to bias low, can effectively capture the nature of the VOC concentrations. A work plan for the RI has been submitted to NJDEP and is awaiting approval. During the RI the two existing wells along with new wells will be sampled using LFPS methods and a PDB/LFPS comparison will be made at that time. Additionally, once the RI is complete, a revised long-term monitoring plan will be submitted.

W. GENERAL COMMENT/STATEMENT:

Finally, each of the above comments speak only to the ground water findings and recommendations included in the referenced submittal, rather than to the ground water at the entire site.

W. RESPONSE: Acknowledged.

Please contact me if you have any questions.

Sincerely,

Wanda Green

BRAC Environmental Coordinator OACSIM – U.S. Army Fort Monmouth

Cc: Parsons

USACE

Encl

State of New Jersey

CHRIS CHRISTIE

Governor

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION
Bureau of Case Management
Mail Code 401-05F
P.O. Box 420
Trenton, New Jersey 08625-0420
Telephone: 609-633-1455

BOB MARTIN

Commissioner

February 5, 2015

Wanda Green BRAC Environmental Coordinator OACSIM – U.S. Army Fort Monmouth PO Box 148 Oceanport, NJ 07757

Approval

Re:

November 26, 2014 Response to Comments -on the Final Baseline Ground Water

Sampling Report (August 2013)

Fort Monmouth Monmouth County PI # G000000032

Activity Number: RPC000001

Dear Ms. Green:

The New Jersey Department of Environmental Protection (Department) has completed a review of the referenced Response to Comments dated November 26, 2014, submitted in response to the Department's comment letter dated July 3, 2014 regarding the Final Baseline Ground Water Sampling Report.

The *Response to Comments* agrees with or acknowledges the Department's comments for areas FTMM-03, FTMM-04, FTMM-05, FTMM-08, FTMM-12, FTMM-14, FTMM-22, FTMM-25, FTMM-53, FTMM-54, FTMM-55, FTMM-56, FTMM-57, FTMM-58, FTMM-59, FTMM-61, FTMM-64, and FTMM-66.

FTMM-18

The Department had indicated low-flow sampling must also be performed if Passive Diffusion Bag Sampling (PDBS) is conducted, for comparison purposes. The *Response to Comments* submittal contends as low-flow sampling has been historically conducted at this area, PDBS sampling only is appropriate. Based upon this reasoning, the Department agrees the performance via PDBS only is acceptable for the ensuing round of ground water sampling. The PDBS results are to be compared to the previous low-flow sampling results and presented in the forthcoming sampling report.

FTMM-68

The Department had expressed concern regarding the use of PDBS for long-term monitoring. FTMM-68 has not been fully characterized, and the use of PDBS for longer term monitoring is acceptable only for well characterized sites, as per the DEP's Field Sampling Procedures

Manual. As per information provided in the Response to Comments submittal, a Remedial Investigation to fully characterize the area is to be conducted in the near future using low-flow sampling methodology, and request approval for the use of PDBS to characterize contaminant concentrations in the interim. This is acceptable based on the stipulation that a full remedial investigation is to be performed. The November '14 Response to Comments (Section V), however, indicated the Remedial Investigation Workplan for FTMM-68 was awaiting DEP approval. Although some clarification was requested, the proposed remedial activities, soil and ground water, were approved for the FTMM-68 area via letter dated January 8, 2014, which addressed the RI/FS Workplan for FTMM-22, FTMM-53, FTMM-59 & FTMM-68.

If you have any questions, please contact me at (609)984-6606, or via email at Linda.Range@dep.nj.gov.

Sincerely,

Linda Range

Bureau of Case Management

cc: Joe Pearson, Calibre
Rick Harrison, FMERA
Joe Fallon, FMERA

Frank Barricelli, RAB

State of New Jersey

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION
Bureau of Case Management
401 East State Street
P.O. Box 420/Mail Code 401-05F

Trenton, NJ 08625-0028 Phone #: 609-633-1455 Fax #: 609-633-1439 BOB MARTIN Commissioner

November 14, 2016

William R. Colvin BRAC Environmental Coordinator OACSIM – U.S. Army Fort Monmouth PO Box 148 Oceanport, NJ 07757

Re:

Annual (Fourth Quarter) 2015 Groundwater Sampling Report dated September 2016

Fort Monmouth

Oceanport, Monmouth County

PI G000000032

Dear Mr. Colvin:

The New Jersey Department of Environmental Protection (NJDEP) has completed review of the referenced report, received September 29, 2016, prepared by Parsons to support the Remedial Investigation (RI), Feasibility Study (FS), and Decision Documents project at Fort Monmouth. An annual ground water sampling event was conducted at twelve (12) FTMM sites between September 30, 2015 and December 15, 2015. Sampling methodologies used included low-flow purging and sampling (LFPS) and passive diffusion bag samplers (PDBS). Comments on each FTMM site are as follows:

FTMM-02 Landfill

Historic sampling results at FTMM-02 have exhibited exceedances of the Ground Water Quality Standard (GWQS) for VOCs. Results from the 2015 annual sampling event exceeded the GWQS for MTBE and TBA in M2MW22. The report recommends biennial sampling of M2MW03, M2MW10 and M2MW22 as part of the biennial sampling requirements for the existing CEA for this site. The exiting CEA will also be revised to include TBA and MTBE. The recommendation is acceptable. At any point where a decision is made to terminate ground water sampling at this parcel, confirmatory sampling using low-flow methodology is required.

FTMM-05 Landfill

Historic sampling results at FTMM-05 have exhibited exceedances of the GWQS for PCE, TCE and vinyl chloride. Results from the 2015 annual sampling event exceeded GWQS for PCE in wells M5MW11, M5MW16, M5MW20 and M5MW23. The report recommends the

establishment of a CEA, with biennial ground water sampling of wells M5MW11, M5MW16, M5MW20 and M5MW23 for VOCs as the "preferred remedy". Although an essential component of certain ground water remedies, a CEA is an institutional control rather than a remedy. A remedial action proposal, e.g. Monitored Natural Attenuation (MNA), in accordance with the applicable requirements of N.J.A.C. 7:26E-5.1, must be submitted to address the ground water contaminants. At such time as the formal proposal for a CEA is to be submitted, the proposal must be accompanied by a CEA/WRA Fact Sheet Form; the form and form instructions may be obtained from the Site Remediation website at www.nj.gov/dep/srp/srra/forms/. Submittal of a draft CEA/WRA Fact Sheet Form is recommended to allow for DEP confirmation of the CEA components and boundaries.

FTMM-08 Landfill

Historic sampling results at FTMM-08 exhibited exceedances of the GWQS for pesticides, benzene, PCE and lead. Results from the 2015 annual sampling event exceeded the GWQS for PCE, lead and pesticides. The 2016 RIR for FTMM-08, however, indicated manganese is also a contaminant of concern which requires monitoring. The submittal recommends the establishment of a CEA, with biennial ground water sampling for the contaminants of concern from selected wells. As above, although an essential component of certain ground water remedies, a CEA is an institutional control rather than a remedy. A remedial action proposal, e.g. Monitored Natural Attenuation (MNA), in accordance with the applicable requirements of N.J.A.C. 7:26E-5.1, must be submitted to address the ground water contaminants. At such time as the formal proposal for a CEA is to be submitted, the proposal must be accompanied by a CEA/WRA Fact Sheet Form; the form and form instructions may be obtained from the Site Remediation website at www.nj.gov/dep/srp/srra/forms/. Submittal of a draft CEA/WRA Fact Sheet Form is recommended to allow for DEP confirmation of the CEA components and boundaries.

FTMM-18 Landfill

Historic sampling results at FTMM-18 exhibited exceedances of the GWQS for benzene and 1.2-DCA. Results from the annual 2015 sampling event exceed the GWQS for benzene in well 296MW06. In the October 2015 RIR for FTMM-18, it was indicated that manganese is also a contaminant of concern, which requires monitoring. The report recommends the establishment of a CEA as the preferred remedy, with biennial ground water sampling for the contaminants of concern from selected wells. As above, although an essential component of certain ground water remedies, a CEA is an institutional control rather than a remedy. A remedial action proposal, e.g. Monitored Natural Attenuation (MNA), in accordance with the applicable requirements of N.J.A.C. 7:26E-5.1 and guidance documents, must be submitted to address the ground water contaminants. At such time as the formal proposal for a CEA is to be submitted, the proposal must be accompanied by a CEA/WRA Fact Sheet Form; the form and form instructions may be obtained from the Site Remediation website Submittal of a draft CEA/WRA Fact Sheet Form is www.nj.gov/dep/srp/srra/forms/. recommended to allow for DEP confirmation of the CEA components and boundaries.

FTMM-22 - Former Wastewater Treatment Lime Pit

Historic sampling results at FTMM-22 exhibited exceedances of the GWQS for TCE and vinyl chloride. Results from the annual 2015 sampling event also exceeded the GWQS for TCE and vinyl chloride. Long-term ground water monitoring has been suspended while the remedial investigation/feasibility study (RI/FS) is being conducted. Upon completion of the RI/FS, a revised monitoring program will be proposed. The recommendation is acceptable.

FTMM-53 - Former Gas Station at Building 699

Historic sampling results at FTMM-53 exhibited exceedances of the GWQS for benzene, PCE, TCE, TBA, VOC TICs and lead. Results from the 2015 annual sampling event exceeded the GWQS for benzene, PCE, 1,2,4-trimethylbenzene, and VOC TICs. Long-term ground water monitoring has been suspended while the RI/FS is being conducted. Upon completion of the RI/FS, a revised monitoring program will be proposed. The recommendation is acceptable.

FTMM-56 - Building 80 Petroleum Release

Historic sampling results at FTMM-56 exhibited exceedances of the GWQS for pesticides and metals. Recently, one additional round of sampling from two wells was required; results from the 2015 annual sampling event found a single exceedance of the GWQS, of arsenic, however, the arsenic concentration is determined to be representative of background conditions, and no further action for ground water is necessary.

FTMM-57 - Building 108 UST Gasoline Release

Historic sampling results at FTMM-57 exhibited an exceedance of the GWQS for lead. Results from the 2015 annual sampling event were below the GWQS for lead; no further action for ground water is acceptable.

FTMM-58 - Building 2567 UST Gasoline

Historic sampling results at FTMM-58 exhibited exceedances of the GWQS for TBA. Results from the 2015 annual sampling event continue to exceed the GWQS for TBA. The submittal recommends continued sampling of well 2567MW01 and the addition of downgradient well 2567MW05 for TBA. One additional round of sampling is recommended for monitoring of 2567MW03 for TBA to confirm compliance for same. The recommendations are acceptable.

Evaluations regarding potential benzene exceedances relative to FTMM-58 continue under separate investigative efforts.

FTMM-64 - Building 812 UST Gasoline

Historic sampling results at FTMM-64 exhibited exceedances of the GWQS for benzene, vinyl chloride and metals. Although results from the 2015 annual sampling event were below the GWQS for contaminants of concern, due to previous analytical results, the submittal recommends continued annual sampling of well 812MWS04 for VOCs. The recommendation is acceptable. If a decision is made to terminate ground water sampling at FTMM-64, confirmatory sampling using the low-flow methodology will be required.

FTMM-66 - Building 886 Former AST

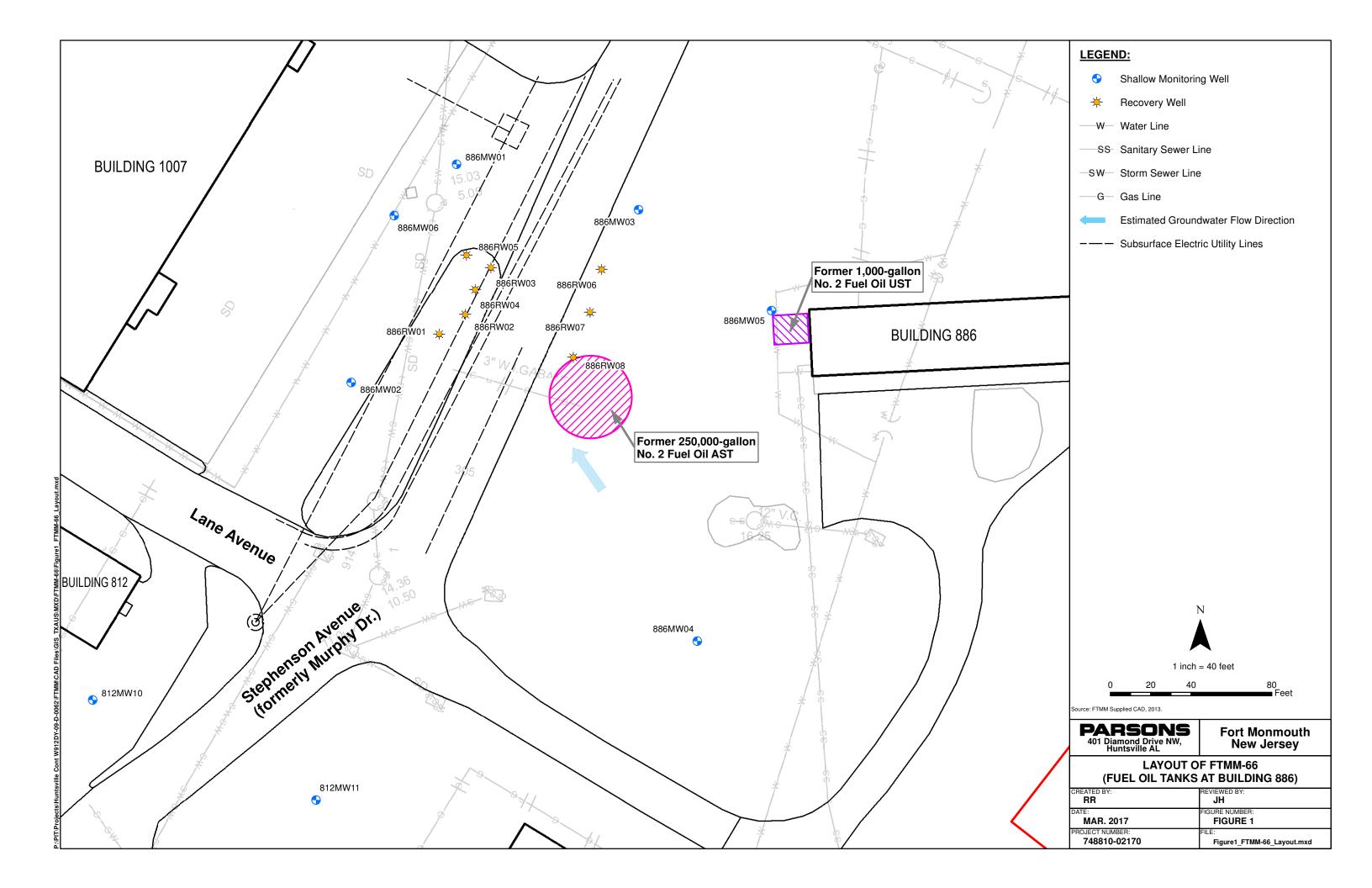
Historic sampling results from wells at FTMM-66 exhibited exceedances of the GWQS for SVOC TICs; results from the 2015 annual sampling event did not exceed the GWQS for SVOC TICs. The submittal recommends the ground water sampling at FTMM-66 be discontinued. The recommendation is acceptable; no further action for ground water is necessary.

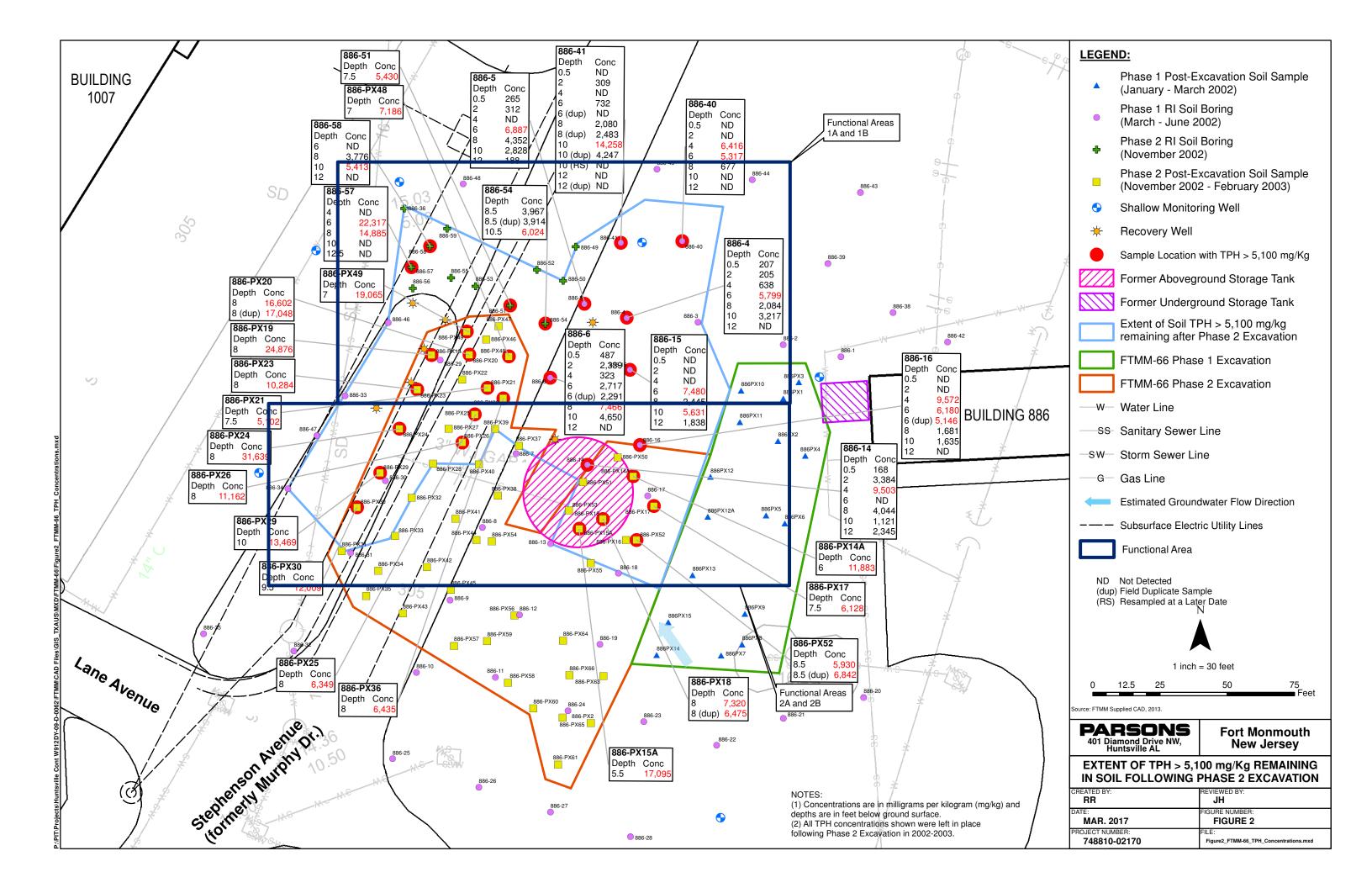
FTMM-68 - Building 700 Former Dry Cleaners

Historic sampling results have shown exceedances of the GWQS for PCE, TCE, cis-1,2-DCE and vinyl chloride in ground water. Results from the 2015 annual sampling event confirmed these chlorinated VOCs continue to exceed GSQS in ground water. Long-term ground water monitoring has been suspended until such time as the RI/FS is completed. Upon completion of the RI/FS, a revised monitoring program will be proposed. The recommendation is acceptable.

Please contact this office if you have any questions.

Sincerely,


Linda S. Range


C: James Moore, USACE Cris Grill, Parsons Joe Pearson, Calibre Rick Harrison, FMERA Joe Fallon, FMERA Daryl Clark, BGWPA

ATTACHMENT C

Figures

Figure 1: Layout of FTMM-66 (Fuel Oil Tanks at Building 886)
Figure 2: Extent of TPH > 5,100 mg/kg Remaining in Soil Following Phase 2 Excavation

ATTACHMENT D Soil Data - Comparison to NJDEP Criteria

ATTACHMENT D SOIL DATA - COMPARISON TO NJDEP CRITERIA SITE FTMM-66 FORT MONMOUTH, NEW JERSEY

				PHASE 1 POST-EXCAVATION SOIL DATA												
Boring ID / Sample				886-PX1	886-PX2	886-PX3		886-PX4	886-PX5 886-PX6			886-PX7	886-PX8	886-PX9		
Field Sample ID			NJDEP Impact	886-PX1	886-PX2	886-PX3	886-PX4	886-DUP -2003504	886-PX5	886-PX6	886-DUP -2004603	886-PX7/SW	886-PX8/EW	886-PX9/BOT	886-DUP -2006304	
Sample Date	NJDEP	NJDEP Non-	to Groundwater	1/16/2002 1/16/2002 1/16/2002		1/16/2002		1/25/2002	2 1/25/2002		1/30/2002	1/30/2002	1/3	30/2002		
Sample Depth (feet bgs)	Residential (1)	Residential (1)	(2)	12-12.5	12-12.5	9.5-10	10-10.5	10-10.5 (Duplicate)	12-12.5	11-11.5	11-11.5 (Duplicate)	11-11.5	10.5-11	11.5-12	11.5-12 (Duplicate)	
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	
Within Functional Area? (FA1/FA2/N)				FA1	FA2	N	N	N	FA2	FA2	FA2	N	N	N	N	
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	272.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007							-						
1,2-Dichlorobenzene	5300	59000	17													
1,3-Dichlorobenzene	5300	59000	19					-		-	-					
1,4-Dichlorobenzene	5	13	2					-	-	1	-				-	
Acetone	70000	NA	19							-					-	
Benzene	2	5	0.005													
Chloroform	0.6	2	0.4													
Dibromochloromethane	3	8	0.005													
Ethylbenzene	7800	110000	13													
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9							-		-				
Methyl tertiary butyl ether (MTBE)	110	320	0.2													
Styrene	90	260	3													
Tetrachloroethylene	2	5	0.005													
Toluene	6300	91000	7					-	-	-	-					
Xylenes (Total)	12000	170000	19													

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

Source: Versar, 2006.

ATTACHMENT D SOIL DATA - COMPARISON TO NJDEP CRITERIA SITE FTMM-66 FORT MONMOUTH, NEW JERSEY

				PHASE 1 POST-EXCAVATION SOIL DATA										
Boring ID / Sample				88	86-PX10	886-PX11	886	5-PX12	886-1	PX12A	886-PX13	88	6-PX14	
Field Sample ID			NJDEP Impact	886-PX10/NW	886-DUP -2007303	886-PX11/BOT	886-PX12/BOT	886-DUP -2008102	886-PX12A/BM	886-DUP -2011403	886-PX13/BM	886-PX14/SW	886-DUP -2013603	
Sample Date	NJDEP	NJDEP Non-	to Groundwater			2/4/2002	2/6/2002		2/26/2002		2/26/2002	3/6/2002		
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	10.5-11	10.5-11 (Duplicate)	12-12.5	11.5-12	11.5-12 (Duplicate)	12.5-13	12.5-13 (Duplicate)	12.5-13	10.5-11	10.5-11 (Duplicate)	
Excavated? (Y/N)) i	N	N	N	N	N	N	N	N	N	N	
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA2	FA2	FA2	FA2	FA2	FA2	N	N	
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	2,713.56	3,063.66	ND	ND	ND	216.97	ND	365.64	ND	
Detected Volatile Organic Compounds (V	OCs) (mg/kg)													
1,1,2,2-Tetrachloroethane	1	3	0.007				-	-	-	-				
1,2-Dichlorobenzene	5300	59000	17					-	-	-				
1,3-Dichlorobenzene	5300	59000	19											
1,4-Dichlorobenzene	5	13	2											
Acetone	70000	NA	19											
Benzene	2	5	0.005											
Chloroform	0.6	2	0.4											
Dibromochloromethane	3	8	0.005											
Ethylbenzene	7800	110000	13											
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9											
Methyl tertiary butyl ether (MTBE)	110	320	0.2											
Styrene	90	260	3				-	-	-	-				
Tetrachloroethylene	2	5	0.005											
Toluene	6300	91000	7					-	-	-				
Xylenes (Total)	12000	170000	19											

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

Source: Versar, 2006.

ATTACHMENT D SOIL DATA - COMPARISON TO NJDEP CRITERIA SITE FTMM-66 FORT MONMOUTH, NEW JERSEY

				PHASE 1	PHASE 1 REMEDIAL INVESTIGATION SOIL DATA												
Boring ID / Sample				886-PX15	886-1												
Field Sample ID			NJDEP Impact	886-PX15/BOT	886-1 0-6 "	886-1 24 "	886-1 48 "	886-1 52 "	1-48 "	886-1 48 "	886-1 72 "	886-1-120 "	886-1-144 "	886-2 0-6 "	886-2 24 "	886-2 48 "	886-2 48 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/6/2002	3/9/2002					4/5/2002	3/9/2002	3/14	1/2002		3/	9/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	12-12.5	0.5	2	4	4.3	4	4 (Duplicate)	6	10	12	0.5	2	4	4 (Duplicate)
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	173	182	2,341	ND			ND	251	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)								•		*	•					
1,1,2,2-Tetrachloroethane	1	3	0.007						ND	ND							
1,2-Dichlorobenzene	5300	59000	17						ND	ND							
1,3-Dichlorobenzene	5300	59000	19						ND	ND							
1,4-Dichlorobenzene	5	13	2						ND	ND							
Acetone	70000	NA	19						ND	ND							
Benzene	2	5	0.005						ND	ND							
Chloroform	0.6	2	0.4						ND	ND							
Dibromochloromethane	3	8	0.005						ND	ND							
Ethylbenzene	7800	110000	13		^{c/}				ND	ND							
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9						4.4	2.2							
Methyl tertiary butyl ether (MTBE)	110	320	0.2						ND	ND							
Styrene	90	260	3						ND	ND							
Tetrachloroethylene	2	5	0.005						ND	ND							
Toluene	6300	91000	7						ND	ND							
Xylenes (Total)	12000	170000	19						ND	ND							

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

Source: Versar, 2006.

									PHASE 1 I	REMEDIAL I	NVESTIGATI	ON SOIL DATA					
Boring ID / Sample					886-2					886-3	3				8	86-4	
Field Sample ID			NJDEP Impact	886-2 72 "	886-2-120 "	886-2-144 "	886-3 0-6 "	886-3 24 "	886-3 48 "	886-3 72 "	886-3-120 "	886-3-120 "	886-3-144 "	886-4 0-6 "	886-4 24 "	886-4 48 "	886-4 72 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/9/2002	3/	14/2002		3/9/	2002			3/14/2002			3/10	0/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	10	12	0.5	2	4	6	10	10 (Duplicate)	12	0.5	2	4	6
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	ND	ND	ND	ND	ND	730	652	ND	208	206	639	5,800
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007		-				-								
1,2-Dichlorobenzene	5300	59000	17														
1,3-Dichlorobenzene	5300	59000	19														
1,4-Dichlorobenzene	5	13	2														
Acetone	70000	NA	19		-												
Benzene	2	5	0.005														
Chloroform	0.6	2	0.4														
Dibromochloromethane	3	8	0.005														
Ethylbenzene	7800	110000	13														
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9			-			-								
Methyl tertiary butyl ether (MTBE)	110	320	0.2														
Styrene	90	260	3		1												
Tetrachloroethylene	2	5	0.005		1												
Toluene	6300	91000	7														
Xylenes (Total)	12000	170000	19														

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHAS	SE 1 REMEDI	AL INVESTI	GATION SO	IL DATA					
Boring ID / Sample						886-4				-		36-5					886-6	
Field Sample ID			NJDEP Impact	4-72"	886-4 96 "	886-4 120 "	886-4 144 "	886-5 0-6 "	886-5 24 "	886-5 48 "	886-5 72 "	5-72"	886-5 96 "	886-5 120 "	886-5 144 "	886-6 0-6 "	886-6 24 "	886-6 48 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	4/5/2002		3/10/2002			3/10)/2002	•	4/5/2002		3/10/2002			3/10/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	8	10	12	0.5	2	4	6	6	8	10	12	0.5	2	4
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE		2,085	3,218	ND	265	312	ND	6,888		4,352	2,829	188	487	2,340	324
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007	ND								ND						
1,2-Dichlorobenzene	5300	59000	17	ND								ND						
1,3-Dichlorobenzene	5300	59000	19	ND								ND						
1,4-Dichlorobenzene	5	13	2	ND								ND						
Acetone	70000	NA	19	ND								ND						
Benzene	2	5	0.005	ND								ND						
Chloroform	0.6	2	0.4	ND								ND						
Dibromochloromethane	3	8	0.005	ND								ND						
Ethylbenzene	7800	110000	13	ND								ND						
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	2.2				-				3.4						
Methyl tertiary butyl ether (MTBE)	110	320	0.2	ND								ND						
Styrene	90	260	3	ND								ND						
Tetrachloroethylene	2	5	0.005	ND								ND						
Toluene	6300	91000	7	ND								ND						
Xylenes (Total)	12000	170000	19	ND								ND						

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria
Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criter

mg/kg = milligrams per kilogram bgs = below ground surface.

bgs = below ground surface ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

				PHASE 1 REMEDIAL INVESTIGATION SOIL DATA														
Boring ID / Sample						886	5-6						8	86-7				886-8
Field Sample ID			NJDEP Impact	886-6 72 "	886-6 72 "	886-6 96 "	6-96"	886-6 120 "	886-6 144 "	886-7 0-6 "	886-7 24 "	886-7 48 "	886-7 72 "	7-72 "	886-7-96 "	886-7-120 "	886-7-144 "	886-8-0-6 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater		3/10/2002		4/5/2002	3/10	0/2002		3/11	/2002		4/5/2002		3/11/2002		3/11/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	6 (Duplicate)	8	8	10	12	0.5	2	4	6	6	8	10	12	0.5
Excavated? (Y/N)				N	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	2,718	2,292	7,466		4,651	ND	363	5,621	4,552	6,191		186	ND	ND	447
Detected Volatile Organic Compounds (V	OCs) (mg/kg)													•				
1,1,2,2-Tetrachloroethane	1	3	0.007				ND							ND				
1,2-Dichlorobenzene	5300	59000	17				ND							ND				
1,3-Dichlorobenzene	5300	59000	19				ND							ND				
1,4-Dichlorobenzene	5	13	2				ND							ND				
Acetone	70000	NA	19				ND							ND				
Benzene	2	5	0.005				ND							ND				
Chloroform	0.6	2	0.4				ND							ND				
Dibromochloromethane	3	8	0.005				ND							ND				
Ethylbenzene	7800	110000	13				ND							0.42				
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9				4.2							3.9				
Methyl tertiary butyl ether (MTBE)	110	320	0.2				ND							ND				
Styrene	90	260	3				ND							ND				
Tetrachloroethylene	2	5	0.005				ND							ND				
Toluene	6300	91000	7				ND							ND				
Xylenes (Total)	12000	170000	19				ND							0.71				

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

				PHASE 1 REMEDIAL INVESTIGATION SOIL DATA 886-8														
Boring ID / Sample							886-8							88	6-9			
Field Sample ID			NJDEP Impact	886-8-24 "	8-24 "	886-8-48 "	886-8-72 "	886-8-96 "	886-8-120 "	886-8-144 "	886-9-0-6 "	886-9-24 "	886-9-48 "	886-9-72 "	9-72 "	886-9-96 "	886-9-120 "	886-9-144 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/11/2002	4/8/2002			3/11/2002				3/11	/2002		4/8/2002		3/11/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	2	2	4	6	8	10	12	0.5	2	4	6	6	8	10	12
Excavated? (Y/N)				Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	FA2	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	7,226		5,739	13,409	12,441	12,819	ND	211	299	872	9,693		11,025	177	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)														•			
1,1,2,2-Tetrachloroethane	1	3	0.007		ND										ND			
1,2-Dichlorobenzene	5300	59000	17		ND										ND			
1,3-Dichlorobenzene	5300	59000	19		ND										ND			
1,4-Dichlorobenzene	5	13	2		ND										ND			
Acetone	70000	NA	19		ND										ND			
Benzene	2	5	0.005		ND										ND			
Chloroform	0.6	2	0.4		ND										ND			
Dibromochloromethane	3	8	0.005		ND										ND			
Ethylbenzene	7800	110000	13		ND										ND			
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9		4.2										3			-
Methyl tertiary butyl ether (MTBE)	110	320	0.2		ND										ND			
Styrene	90	260	3		ND										ND			
Tetrachloroethylene	2	5	0.005		ND										ND			
Toluene	6300	91000	7		ND										ND			
Xylenes (Total)	12000	170000	19		ND										ND			

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE 1 RE	MEDIAL INVES	TIGATION SC	IL DATA					
Boring ID / Sample							886-10							886-11			
Field Sample ID			NJDEP Impact	886-10-0-6 "	886-10-24 "	886-10-48 "	886-10-72 "	886-10-96 "	886-10-120 "	886-10-144 "	886-11-0-6 "	886-11-24 "	886-11-48 "	886-11-72 "	11-72 "	886-11-96 "	886-11-120 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater				3/11/2002	-				3/12/	/2002		4/8/2002	3/12	2/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	0.5	2	4	6	8	10	12	0.5	2	4	6	6	8	10
Excavated? (Y/N)				N	N	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	ND	ND	ND	ND	ND	168	ND	3,115	3,914		11,181	1,610
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007												ND		
1,2-Dichlorobenzene	5300	59000	17												ND		
1,3-Dichlorobenzene	5300	59000	19												ND		
1,4-Dichlorobenzene	5	13	2												ND		
Acetone	70000	NA	19												ND		
Benzene	2	5	0.005												ND		
Chloroform	0.6	2	0.4												ND		
Dibromochloromethane	3	8	0.005												ND		
Ethylbenzene	7800	110000	13												2.1		
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9												2.4		
Methyl tertiary butyl ether (MTBE)	110	320	0.2												ND		
Styrene	90	260	3												ND		
Tetrachloroethylene	2	5	0.005												ND		
Toluene	6300	91000	7												ND		
Xylenes (Total)	12000	170000	19												1.8		

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE 1	REMEDIAL I	NVESTIGATIO	N SOIL DATA					
Boring ID / Sample				886-11				886	-12						886-13		
Field Sample ID			NJDEP Impact	886-11-144 "	886-12-0-6 "	886-12-24 "	886-12-48 "	886-12-72 "	12-72 "	886-12-96 "	886-12-120 "	886-12-144 "	886-13-0-6 "	886-13-24 "	886-13-48 "	886-13-72 "	886-13-96 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/12/2002		3/12	2/2002		4/8/2002		3/12/2002				3/12/2002		
Sample Depth (feet bgs)	Residential (1)	Residential (1)	(2)	12	0.5	2	4	6	6	8	10	12	0.5	2	4	6	8
Excavated? (Y/N)				Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	FA2	FA2	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	985	240	5,662		2,252	534	ND	ND	7,869	7,831	7,694	8,958
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007		1				ND								
1,2-Dichlorobenzene	5300	59000	17						ND								
1,3-Dichlorobenzene	5300	59000	19		-				ND								
1,4-Dichlorobenzene	5	13	2						ND								
Acetone	70000	NA	19		-				ND								
Benzene	2	5	0.005		-				ND								
Chloroform	0.6	2	0.4		ŀ				ND								
Dibromochloromethane	3	8	0.005						ND								
Ethylbenzene	7800	110000	13						0.1								
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9						3.5								
Methyl tertiary butyl ether (MTBE)	110	320	0.2						ND								
Styrene	90	260	3						ND								
Tetrachloroethylene	2	5	0.005						ND								
Toluene	6300	91000	7						ND								
Xylenes (Total)	12000	170000	19		-				0.27								

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE 1 R	EMEDIAL	INVESTIGATI	ON SOIL DAT	A				
Boring ID / Sample					886-13						886-14					88	6-15
Field Sample ID			NJDEP Impact	13-96 "	886-13-120 "	886-13-144 "	886-14-0-6 "	886-14-24 "	886-14-48 "	14-48 "	14-48 "	886-14-72 "	886-14-96 "	886-14-120 "	886-14-144 "	886-15-0-6 "	886-15-24 "
Sample Date	NJDEP	TIJDET TION	to Groundwater	4/8/2002	3/12	/2002		3/12/2002		4	4/8/2002		3/12	2/2002		3/12	2/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	8	10	12	0.5	2	4	4	4 (Duplicate)	6	8	10	12	0.5	2
Excavated? (Y/N)				Y	Y	Y	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE		11,736	456	168	3,385	9,504			ND	4,045	1,122	2,345	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007	ND						ND	ND						
1,2-Dichlorobenzene	5300	59000	17	ND						ND	ND						
1,3-Dichlorobenzene	5300	59000	19	ND						ND	ND						
1,4-Dichlorobenzene	5	13	2	ND						ND	ND						
Acetone	70000	NA	19	ND						ND	ND						
Benzene	2	5	0.005	ND						ND	ND						
Chloroform	0.6	2	0.4	ND						ND	ND						
Dibromochloromethane	3	8	0.005	ND						ND	ND						
Ethylbenzene	7800	110000	13	3.6						1.7	2.8						
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	4						3.5	3.6						
Methyl tertiary butyl ether (MTBE)	110	320	0.2	ND						ND	ND						
Styrene	90	260	3	ND						ND	ND						
Tetrachloroethylene	2	5	0.005	ND						ND	ND						
Toluene	6300	91000	7	ND						ND	ND						
Xylenes (Total)	12000	170000	19	2.7						2.9	2.9						

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria
Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE 1 R	EMEDIAL IN	/ESTIGATION	SOIL DATA					
Boring ID / Sample							886-15							886-16			
Field Sample ID			NJDEP Impact	886-15-48 "	15-72 "	886-15-72 "	886-15-96 "	886-15-120 "	886-15-144 "	886-16-0-6 "	886-16-24 "	886-16-48 "	16-4'	16-4'	886-16-72 "	886-16-72 "	886-16-96 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/12/2002	4/5/2002		3/	12/2002			3/12/2002		9	9/17/2002		3/12/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	4	6	6	8	10	12	0.5	2	4	4	4 (Duplicate)	6	6 (Duplicate)	8
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND		7,480	2,445	5,632	1,838	ND	ND	9,573			6,180	5,146	1,682
Detected Volatile Organic Compounds (V	OCs) (mg/kg)				•												
1,1,2,2-Tetrachloroethane	1	3	0.007		ND								ND	ND		-	
1,2-Dichlorobenzene	5300	59000	17		ND								ND	ND			
1,3-Dichlorobenzene	5300	59000	19		ND								ND	ND			
1,4-Dichlorobenzene	5	13	2		ND								ND	ND			
Acetone	70000	NA	19		ND								ND	ND			
Benzene	2	5	0.005		ND								ND	ND			
Chloroform	0.6	2	0.4		ND								ND	ND			
Dibromochloromethane	3	8	0.005		ND								ND	ND			
Ethylbenzene	7800	110000	13		ND								0.82	ND			
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9		ND							-	ND	ND		-	
Methyl tertiary butyl ether (MTBE)	110	320	0.2		ND								ND	ND			
Styrene	90	260	3		ND								ND	ND			
Tetrachloroethylene	2	5	0.005		ND								ND	ND			
Toluene	6300	91000	7		ND								ND	ND			
Xylenes (Total)	12000	170000	19		ND								ND	ND		1	

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all crit mg/kg = milligrams per kilogram

bgs = below ground surface.

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHA	ASE 1 REMEDI	AL INVEST	IGATION SOI	L DATA				
Boring ID / Sample				880	6-16					886-17					88	36-18
Field Sample ID			NJDEP Impact	886-16-120 "	886-16-144 "	886-17-0-6 "	886-17-24 "	886-17-48 "	886-17-72 "	17-72 "	886-17-96 "	886-17-96 "	886-17-120 "	886-17-144 "	886-18-0-6 "	886-18-24 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/12	/2002		3/1:	2/2002	-	4/8/2002		3/12	2/2002		3/12	2/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	10	12	0.5	2	4	6	6	8	8 (Duplicate)	10	12	0.5	2
Excavated? (Y/N)				N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	1,635	ND	ND	ND	11,077	7,001		5,870	9,669	2,107	3,566	ND	222
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007							ND						
1,2-Dichlorobenzene	5300	59000	17							ND						
1,3-Dichlorobenzene	5300	59000	19							ND						
1,4-Dichlorobenzene	5	13	2							ND						
Acetone	70000	NA	19							ND						
Benzene	2	5	0.005							ND						
Chloroform	0.6	2	0.4							ND						
Dibromochloromethane	3	8	0.005							ND						
Ethylbenzene	7800	110000	13							ND						
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9							3.7		-				
Methyl tertiary butyl ether (MTBE)	110	320	0.2							ND						
Styrene	90	260	3							ND						
Tetrachloroethylene	2	5	0.005							ND						
Toluene	6300	91000	7							ND						
Xylenes (Total)	12000	170000	19							ND						

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE	E 1 REMEDIAL I	NVESTIGATIO	N SOIL DATA					
Boring ID / Sample								886-18						88	6-19		
Field Sample ID			NJDEP Impact	886-18-48 "	18-48 "	886-18-72 "	886-18-96 "	18-96 "	886-18-120 "	886-18-120 "	886-18-144 "	886-19-0-6 "	886-19-24 "	886-19-48 "	886-19-72 "	886-19-96 "	886-19-120 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/12/2002	4/8/2002	3/12	/2002	4/8/2002		3/12/2002	•			3/12	/2002		
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	4	4	6	8	8	10	10 (Duplicate)	12	0.5	2	4	6	8	10
Excavated? (Y/N)				Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	5,888		3,106	5,233		1,958	2,380	3,814	ND	ND	230	ND	ND	245
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007		ND			ND									
1,2-Dichlorobenzene	5300	59000	17		ND			ND									
1,3-Dichlorobenzene	5300	59000	19		ND			ND									
1,4-Dichlorobenzene	5	13	2		ND			ND									
Acetone	70000	NA	19		ND			ND									
Benzene	2	5	0.005		ND			ND									
Chloroform	0.6	2	0.4		ND			ND									
Dibromochloromethane	3	8	0.005		ND			ND			1						
Ethylbenzene	7800	110000	13		0.78			ND									
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9		3.5			3.5									
Methyl tertiary butyl ether (MTBE)	110	320	0.2		ND			ND									
Styrene	90	260	3		ND			ND									
Tetrachloroethylene	2	5	0.005		ND			ND									
Toluene	6300	91000	7		ND			ND									
Xylenes (Total)	12000	170000	19		0.78			ND			1						

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PF	IASE 1 REME	DIAL INVESTIG	GATION SOIL D	ATA				
Boring ID / Sample				886-19				8	86-20					88	6-21	
Field Sample ID			NJDEP Impact	886-19-144 "	886-20-0-6 "	886-20-24 "	886-20-48 "	886-20-72 "	886-20-96 "	886-20-120 "	886-20-144 "	886-20-144 "	886-21-0-6 "	886-21-24 "	886-21-48 "	886-21-72 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	3/12/2002				3/	14/2002					3/14	/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	12	0.5	2	4	6	8	10	12	12 (Duplicate)	0.5	2	4	6
Excavated? (Y/N)				Y	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	945	ND	ND	ND	ND	ND	ND	ND	ND	231	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007													
1,2-Dichlorobenzene	5300	59000	17													
1,3-Dichlorobenzene	5300	59000	19													
1,4-Dichlorobenzene	5	13	2													
Acetone	70000	NA	19													
Benzene	2	5	0.005													
Chloroform	0.6	2	0.4													
Dibromochloromethane	3	8	0.005													
Ethylbenzene	7800	110000	13													
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9													
Methyl tertiary butyl ether (MTBE)	110	320	0.2													
Styrene	90	260	3													
Tetrachloroethylene	2	5	0.005													
Toluene	6300	91000	7													
Xylenes (Total)	12000	170000	19													

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria
Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criter

mg/kg = milligrams per kilogram bgs = below ground surface.

bgs = below ground surface ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								P	HASE 1 REME	DIAL INVESTI	GATION SOIL	DATA				
Boring ID / Sample					886-21					886-22					886-23	
Field Sample ID			NJDEP Impact	886-21-96 "	886-21-120 "	886-21-144 "	886-22-0-6 "	886-22-24 "	886-22-48 "	886-22-72 "	886-22-96 "	886-22-120 "	886-22-144 "	886-23-0-6 "	886-23-24 "	886-23-48 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater		3/14/2002					3/14/2002					3/14/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	8	10	12	0.5	2	4	6	8	10	12	0.5	2	4
Excavated? (Y/N)			. ,	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	231	ND
Detected Volatile Organic Compounds (V	/OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007													
1,2-Dichlorobenzene	5300	59000	17													
1,3-Dichlorobenzene	5300	59000	19													
1,4-Dichlorobenzene	5	13	2													
Acetone	70000	NA	19													
Benzene	2	5	0.005													
Chloroform	0.6	2	0.4													
Dibromochloromethane	3	8	0.005													
Ethylbenzene	7800	110000	13													
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9													
Methyl tertiary butyl ether (MTBE)	110	320	0.2													
Styrene	90	260	3													
Tetrachloroethylene	2	5	0.005													
Toluene	6300	91000	7											-		
Xylenes (Total)	12000	170000	19													

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected. -- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								I	PHASE 1 REME	DIAL INVESTI	GATION SOIL	DATA				
Boring ID / Sample						886-	-23						886-24			
Field Sample ID			NJDEP Impact	886-23-72 "	886-23-72 "	886-23-96 "	23-96 "	886-23-120 "	886-23-144 "	886-24-0-6 "	886-24-24 "	886-24-48 "	886-24-72 "	886-24-96 "	886-24-120 "	886-24-144 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater		3/14/2002		4/8/2002	3/1-	4/2002				3/14/2002			
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	6 (Duplicate)	8	8	10	12	0.5	2	4	6	8	10	12
Excavated? (Y/N)				N	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	4,500		1,431	ND	ND	ND	387	15,152	488	ND	872
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007				ND									
1,2-Dichlorobenzene	5300	59000	17				ND									
1,3-Dichlorobenzene	5300	59000	19				ND									
1,4-Dichlorobenzene	5	13	2				ND									
Acetone	70000	NA	19				ND									
Benzene	2	5	0.005				ND									
Chloroform	0.6	2	0.4				ND									
Dibromochloromethane	3	8	0.005				ND									
Ethylbenzene	7800	110000	13				ND									
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9				3.3									
Methyl tertiary butyl ether (MTBE)	110	320	0.2				ND									
Styrene	90	260	3				ND									
Tetrachloroethylene	2	5	0.005				ND									
Toluene	6300	91000	7				ND									
Xylenes (Total)	12000	170000	19				ND									

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								F	PHASE 1 REME	DIAL INVESTI	GATION SOIL I	DATA				
Boring ID / Sample								886-25						886-26		
Field Sample ID			NJDEP Impact	886-25-0-6 "	886-25-24 "	25-2'	886-25-48 "	886-25-72 "	886-25-96 "	886-25-120 "	886-25-144 "	886-26-0-6 "	886-26-24 "	886-26-48 "	886-26-72 "	886-26-96 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	4/12/	/2002	9/17/2002			4/12/2002					4/12/2002		
Sample Depth (feet bgs)	Residential (1)	Residential (1)	(2)	0.5	2	2	4	6	8	10	12	0.5	2	4	6	8
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	284	1,109		308	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)					•	•									
1,1,2,2-Tetrachloroethane	1	3	0.007			ND										
1,2-Dichlorobenzene	5300	59000	17			ND										
1,3-Dichlorobenzene	5300	59000	19			ND										
1,4-Dichlorobenzene	5	13	2			ND										
Acetone	70000	NA	19			ND										
Benzene	2	5	0.005			ND										
Chloroform	0.6	2	0.4			ND										
Dibromochloromethane	3	8	0.005			ND										
Ethylbenzene	7800	110000	13			ND										
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9			ND										
Methyl tertiary butyl ether (MTBE)	110	320	0.2			ND										
Styrene	90	260	3			ND										
Tetrachloroethylene	2	5	0.005			ND										
Toluene	6300	91000	7			ND										
Xylenes (Total)	12000	170000	19			ND										

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PF	IASE 1 REMED	IAL INVESTIC	GATION SOIL D	ATA				
Boring ID / Sample				886	5-26				886-27					88	6-28	
Field Sample ID			NJDEP Impact	886-26-120 "	886-26-144 "	886-27-0-6 "	886-27-24 "	886-27-48 "	886-27-72 "	886-27-96 "	886-27-120 "	886-27-144 "	886-28-0-6 "	886-28-24 "	886-28-48 "	886-28-72 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	4/12	/2002				4/12/2002					4/12	2/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	10	12	0.5	2	4	6	8	10	12	0.5	2	4	6
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007													
1,2-Dichlorobenzene	5300	59000	17													
1,3-Dichlorobenzene	5300	59000	19													
1,4-Dichlorobenzene	5	13	2													
Acetone	70000	NA	19													
Benzene	2	5	0.005													
Chloroform	0.6	2	0.4													
Dibromochloromethane	3	8	0.005													
Ethylbenzene	7800	110000	13													
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9													
Methyl tertiary butyl ether (MTBE)	110	320	0.2													
Styrene	90	260	3													
Tetrachloroethylene	2	5	0.005													
Toluene	6300	91000	7													
Xylenes (Total)	12000	170000	19													

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected. -- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHA	SE 1 REMEDIA	L INVESTIGA	TION SOIL D	ATA				
Boring ID / Sample					8	86-28					8	86-29				886-30
Field Sample ID			NJDEP Impact	886-28-96 "	886-28-120 "	886-28-144 "	886-28-144 "	886-29-0-6 "	886-29-24 "	886-29-48 "	29-4'	886-29-72 "	886-29-96 "	886-29-120 "	886-29-144 "	886-30-0-6 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater		4/1	2/2002			4/18/2002		9/17/2002		4/1	8/2002		4/18/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	8	10	12	12 (Duplicate)	0.5	2	4	4	6	8	10	12	0.5
Excavated? (Y/N)				N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				N	N	N	N	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	ND	ND	206	201	9,426		4,970	11,105	467	ND	217
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007								ND					
1,2-Dichlorobenzene	5300	59000	17								ND					
1,3-Dichlorobenzene	5300	59000	19								ND					
1,4-Dichlorobenzene	5	13	2								ND					
Acetone	70000	NA	19								ND					
Benzene	2	5	0.005								ND					
Chloroform	0.6	2	0.4								ND					
Dibromochloromethane	3	8	0.005								ND					
Ethylbenzene	7800	110000	13								ND					
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9								ND					
Methyl tertiary butyl ether (MTBE)	110	320	0.2								ND					-
Styrene	90	260	3								ND					
Tetrachloroethylene	2	5	0.005								ND					
Toluene	6300	91000	7								ND					
Xylenes (Total)	12000	170000	19								ND					

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE 1 F	REMEDIAL INVI	ESTIGATION	SOIL DATA					
Boring ID / Sample							886-30							886-31			
Field Sample ID			NJDEP Impact	886-30-24 "	886-30-48 "	886-30-72 "	886-30-96 "	30-8'	886-30-120 "	886-30-144 "	886-31-0-6 "	886-31-24 "	886-31-48 "	886-31-72 "	31-6'	886-31-96 "	886-31-120 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater		4/	18/2002		9/17/2002	4/1	8/2002		4/18	/2002		9/17/2002	4/1	9/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	2	4	6	8	8	10	12	0.5	2	4	6	6	8	10
Excavated? (Y/N)				Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	4,575	8,897		433	ND	ND	ND	ND	4,364		11,365	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)														·		
1,1,2,2-Tetrachloroethane	1	3	0.007					ND							ND		
1,2-Dichlorobenzene	5300	59000	17					ND							ND		
1,3-Dichlorobenzene	5300	59000	19					ND							ND		
1,4-Dichlorobenzene	5	13	2					ND							ND		
Acetone	70000	NA	19					ND							ND		
Benzene	2	5	0.005					ND							ND		
Chloroform	0.6	2	0.4					ND							ND		
Dibromochloromethane	3	8	0.005					ND							ND		
Ethylbenzene	7800	110000	13					1.4							ND		
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9					ND							ND		
Methyl tertiary butyl ether (MTBE)	110	320	0.2					ND							ND		
Styrene	90	260	3					ND							ND		
Tetrachloroethylene	2	5	0.005					ND							ND		
Toluene	6300	91000	7					ND							ND		
Xylenes (Total)	12000	170000	19					ND							ND		

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PI	IASE 1 REMEI	DIAL INVESTIG	ATION SOIL DA	ATA				
Boring ID / Sample				886-31				886-32						886-33		
Field Sample ID			NJDEP Impact	886-31-144 "	886-32-0-6 "	886-32-24 "	886-32-48 "	886-32-72 "	886-32-96 "	886-32-120 "	886-32-144 "	886-33-0-6 "	886-33-24 "	886-33-48 "	886-33-72 "	886-33-96 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	4/10/2003	2			4/18/2002						4/19/2002		
Sample Depth (feet bgs)	Residential (1)	Residential (1)	(2)	12	0.5	2	4	6	8	10	12	0.5	2	4	6	8
Excavated? (Y/N)				Y	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA2	N	N	N	N	N	N	N	FA1	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	504	ND	ND	ND	306	ND	ND	ND	ND	ND	295	266
Detected Volatile Organic Compounds (V	OCs) (mg/kg)															
1,1,2,2-Tetrachloroethane	1	3	0.007													
1,2-Dichlorobenzene	5300	59000	17													
1,3-Dichlorobenzene	5300	59000	19													
1,4-Dichlorobenzene	5	13	2													
Acetone	70000	NA	19													
Benzene	2	5	0.005													
Chloroform	0.6	2	0.4													
Dibromochloromethane	3	8	0.005								1					
Ethylbenzene	7800	110000	13													
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9													
Methyl tertiary butyl ether (MTBE)	110	320	0.2													
Styrene	90	260	3													
Tetrachloroethylene	2	5	0.005													
Toluene	6300	91000	7													
Xylenes (Total)	12000	170000	19													

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PH	ASE 1 REME	EDIAL INVESTI	GATION SOIL	DATA				
Boring ID / Sample				880	5-33					886-34					886-35	
Field Sample ID			NJDEP Impact	886-33-120 "	886-33-144 "	886-34-0-6 "	886-34-24 "	34-2'	886-34-48 "	886-34-72 "	886-34-96 "	886-34-120 "	886-34-144 "	886-35-0-6 "	886-35-24 "	886-35-48 "
Sample Date	NJDEP	NJDEP Non-	to Groundwater	4/19	/2002	4/19	/2002	9/17/2002		•	4/19/2002	•			4/19/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	10	12	0.5	2	2	4	6	8	10	12	0.5	2	4
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	ND	2,155		ND	ND	ND	ND	ND	182	174	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)							•								
1,1,2,2-Tetrachloroethane	1	3	0.007					ND								
1,2-Dichlorobenzene	5300	59000	17					ND								
1,3-Dichlorobenzene	5300	59000	19					ND								
1,4-Dichlorobenzene	5	13	2					ND								
Acetone	70000	NA	19					ND								
Benzene	2	5	0.005					ND								
Chloroform	0.6	2	0.4					ND								
Dibromochloromethane	3	8	0.005					ND								
Ethylbenzene	7800	110000	13					ND								
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9					ND								
Methyl tertiary butyl ether (MTBE)	110	320	0.2					ND								
Styrene	90	260	3					ND								
Tetrachloroethylene	2	5	0.005					ND								
Toluene	6300	91000	7					ND								
Xylenes (Total)	12000	170000	19					ND								

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PH.	ASE 1 REMED	IAL INVESTI	GATION SO	L DATA					
Boring ID / Sample						886-35						886-36				886	5-37
Field Sample ID			NJDEP Impact	886-35-72 "	886-35-96 "	886-35-120 "	886-35-144 "	886-35-144 "	886-36-0-6 "	886-36-2'	886-36-4'	886-36-6'	886-36-8'	886-36-10'	886-36-12'	886-37 0-6 "	886-37 2'
Sample Date	NJDEP	NJDEP Non-	to Groundwater			4/19/2002						5/10/2002				6/10	/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	8	10	12	12 (Duplicate)	0.5	2	4	6	8	10	12	0.5	2
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	FA1	FA1	FA1	FA1	FA1	FA1	FA1	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	ND	250	213	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007														
1,2-Dichlorobenzene	5300	59000	17														
1,3-Dichlorobenzene	5300	59000	19														
1,4-Dichlorobenzene	5	13	2														
Acetone	70000	NA	19														
Benzene	2	5	0.005														
Chloroform	0.6	2	0.4														
Dibromochloromethane	3	8	0.005														
Ethylbenzene	7800	110000	13														
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9														
Methyl tertiary butyl ether (MTBE)	110	320	0.2														
Styrene	90	260	3														
Tetrachloroethylene	2	5	0.005														
Toluene	6300	91000	7														
Xylenes (Total)	12000	170000	19														

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHAS	E 1 REMED	IAL INVESTI	GATION SOI	L DATA					
Boring ID / Sample						886-37						886-38					886-39	
Field Sample ID			NJDEP Impact	886-37 4'	886-37 6'	886-37 8'	886-37 10'	886-37 12'	886-38 0-6 "	886-38 2'	886-38 4'	886-38 6'	886-38 8'	886-38 10'	886-38 12'	886-39 0-6 "	886-39 2'	886-39 4'
Sample Date	NJDEP	NJDEP Non-	to Groundwater			6/10/2002	2					6/10/2002					6/10/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	4	6	8	10	12	0.5	2	4	6	8	10	12	0.5	2	4
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007															
1,2-Dichlorobenzene	5300	59000	17															
1,3-Dichlorobenzene	5300	59000	19															
1,4-Dichlorobenzene	5	13	2															
Acetone	70000	NA	19															
Benzene	2	5	0.005															
Chloroform	0.6	2	0.4															
Dibromochloromethane	3	8	0.005															
Ethylbenzene	7800	110000	13															
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9															
Methyl tertiary butyl ether (MTBE)	110	320	0.2															
Styrene	90	260	3															
Tetrachloroethylene	2	5	0.005															
Toluene	6300	91000	7															
Xylenes (Total)	12000	170000	19															

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criter

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE	E 1 REMEDIA	L INVESTIG	ATION SOI	L DATA					
Boring ID / Sample					88	36-39					886	-40					886-41	
Field Sample ID			NJDEP Impact	886-39 6'	886-39 8'	886-39 10'	886-39 12'	886-40 0-6 "	886-40 2'	886-40 4'	40-4'	886-40 6'	886-40 8'	886-40 10'	886-40 12'	886-41 0-6 "	886-41 2'	886-41 4'
Sample Date	NJDEP	NJDEP Non-	to Groundwater		6/10	0/2002			6/10/2002		9/17/2002		6/1	0/2002			6/10/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	8	10	12	0.5	2	4	4	6	8	10	12	0.5	2	4
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	ND	ND	ND	ND	6,416		5,317	678	ND	ND	ND	310	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007								ND							
1,2-Dichlorobenzene	5300	59000	17								ND							
1,3-Dichlorobenzene	5300	59000	19								ND							
1,4-Dichlorobenzene	5	13	2								ND							
Acetone	70000	NA	19								ND							
Benzene	2	5	0.005								ND							
Chloroform	0.6	2	0.4								ND							
Dibromochloromethane	3	8	0.005								ND							
Ethylbenzene	7800	110000	13								ND							
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9								ND							
Methyl tertiary butyl ether (MTBE)	110	320	0.2								ND							
Styrene	90	260	3								ND							
Tetrachloroethylene	2	5	0.005								ND							
Toluene	6300	91000	7								ND							
Xylenes (Total)	12000	170000	19								ND							

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHA	SE 1 REMED	IAL INVEST	GATION SO	IL DATA					
Boring ID / Sample						886-41						886-42					886-43	
Field Sample ID			NJDEP Impact	886-41 6'	886-41 8'	41-8'	886-41 10'	886-41 12'	886-42 0-6 "	886-42 2'	886-42 4'	886-42 6'	886-42 8'	886-42 10'	886-42 12'	886-43 0-6 "	886-43 2'	886-43 4'
Sample Date	NJDEP	NJDEP Non-	to Groundwater	6/10/	2002	9/17/2002	6/10/	2002				6/18/2002			•		6/18/2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	8	8	10	12	0.5	2	4	6	8	10	12	0.5	2	4
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	732	2,081		14,258	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007		-	ND												
1,2-Dichlorobenzene	5300	59000	17			ND												
1,3-Dichlorobenzene	5300	59000	19		-	ND												
1,4-Dichlorobenzene	5	13	2			ND												
Acetone	70000	NA	19		ŀ	ND												
Benzene	2	5	0.005			ND												
Chloroform	0.6	2	0.4			ND												
Dibromochloromethane	3	8	0.005			ND												
Ethylbenzene	7800	110000	13			ND												
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9			ND									-			
Methyl tertiary butyl ether (MTBE)	110	320	0.2		-	ND												
Styrene	90	260	3			ND												
Tetrachloroethylene	2	5	0.005		1	ND												
Toluene	6300	91000	7		-	ND												
Xylenes (Total)	12000	170000	19		-	ND												

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criter

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASI	E 1 REMED	IAL INVESTI	GATION SO	IL DATA					
Boring ID / Sample					88	6-43					886-44					886	-45	
Field Sample ID			NJDEP Impact	886-43 6'	886-43 8'	886-43 10'	886-43 12'	886-44 0-6 "	886-44 2'	886-44 4'	886-44 6'	886-44 8'	886-44 10'	886-44 12'	886-45 0-6 "	886-45 2'	886-45 4'	886-45 6'
Sample Date	NJDEP	NJDEP Non-	to Groundwater		6/18	3/2002	•				6/18/2002	•		-		6/19/	2002	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6	8	10	12	0.5	2	4	6	8	10	12	0.5	2	4	6
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007															
1,2-Dichlorobenzene	5300	59000	17															
1,3-Dichlorobenzene	5300	59000	19															
1,4-Dichlorobenzene	5	13	2															
Acetone	70000	NA	19															
Benzene	2	5	0.005															
Chloroform	0.6	2	0.4															
Dibromochloromethane	3	8	0.005															
Ethylbenzene	7800	110000	13															
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9															
Methyl tertiary butyl ether (MTBE)	110	320	0.2															
Styrene	90	260	3															
Tetrachloroethylene	2	5	0.005															
Toluene	6300	91000	7															
Xylenes (Total)	12000	170000	19															

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHAS	E 1 REMEDI	AL INVESTI	GATION SOI	L DATA					
Boring ID / Sample					886-45					886-46						866-47		
Field Sample ID			NJDEP Impact	886-45 8'	886-45 10'	886-45 12'	886-46 0-6 "	886-46 2'	886-46 4'	886-46 6'	886-46 8'	886-46 10'	886-46 12'	866-47-0-6"	886-47 2'	886-47 4'	886-47 6'	886-47 8'
Sample Date	NJDEP	NJDEP Non-	to Groundwater		6/19/2002					6/18/2002						6/18/2002	•	
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	8	10	12	0.5	2	4	6	8	10	12	0.5	2	4	6	8
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA2	FA2	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007															
1,2-Dichlorobenzene	5300	59000	17															
1,3-Dichlorobenzene	5300	59000	19															
1,4-Dichlorobenzene	5	13	2															
Acetone	70000	NA	19															
Benzene	2	5	0.005															
Chloroform	0.6	2	0.4															
Dibromochloromethane	3	8	0.005															
Ethylbenzene	7800	110000	13															
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9															
Methyl tertiary butyl ether (MTBE)	110	320	0.2															
Styrene	90	260	3															
Tetrachloroethylene	2	5	0.005															
Toluene	6300	91000	7															
Xylenes (Total)	12000	170000	19															

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

				PHASE	1 REMEDIA	L INVESTIG	ATION SOIL	L DATA				PHASE 2 RE	MEDIAL IN	VESTIGATIO	N SOIL DAT	'A		
Boring ID / Sample				86	6-47				886-48			·			88	86-41		
Field Sample ID			NJDEP Impact	886-47 10'	886-47 12'	886-48 0-6 "	886-48 2'	886-48 4'	886-48 6'	886-48 8'	886-48 10'	886-48 12'	886-41-6	886-41-7.5	886-41-8'	886-41-10'	886-41-10	886-41-12
Sample Date	NJDEP	NJDEP Non-	to Groundwater	6/18	3/2002				6/26/2002				11/	/26/2002	11/1	14/2002	11/2	6/2002
Sample Depth (feet bgs)	Residential (1)	Residential (1)	(2)	10	12	0.5	2	4	6	8	10	12	6	7.5	8	10	10	12
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,172	2,484	4,248	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																	
1,1,2,2-Tetrachloroethane	1	3	0.007											ND		ND		
1,2-Dichlorobenzene	5300	59000	17											ND		ND		
1,3-Dichlorobenzene	5300	59000	19											ND		ND		
1,4-Dichlorobenzene	5	13	2											ND		ND		
Acetone	70000	NA	19											ND		ND		
Benzene	2	5	0.005											ND		ND		
Chloroform	0.6	2	0.4											1.8		2.1		
Dibromochloromethane	3	8	0.005											ND		ND		
Ethylbenzene	7800	110000	13											ND		0.32		
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9											ND		ND		
Methyl tertiary butyl ether (MTBE)	110	320	0.2											ND		ND		
Styrene	90	260	3											ND		ND		
Tetrachloroethylene	2	5	0.005											ND		ND		
Toluene	6300	91000	7											ND		ND		
Xylenes (Total)	12000	170000	19											ND		0.14		

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.
-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

									PHASE 2 RI	EMEDIAL INVEST	IGATION SOIL	DATA					
Boring ID / Sample				886-49	886-50	886-51	886-52	886-53		886-54		886-55		886-56		88	6-57
Field Sample ID			NJDEP Impact	886-49-7.5	886-50-7.5	886-51-7.5	886-52-7.5	886-53-7.5	886-54-8.5	886-54-8.5	886-54-10.5	886-55-8.5	886-56-6	886-56-8	886-56-12	886-57-4	886-57-6
Sample Date	NJDEP	NJDEP Non-	to Groundwater	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002		11/8/2002		11/8/2002		11/25/2002	2	11/25	5/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	7.5	7.5	7.5	7.5	7.5	8.5	8.5 (Duplicate)	10.5	8.5	6	8	12	4	6
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1						
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	ND	ND	5,431	ND	1,187	3,968	3,914	6,024	ND	ND	ND	ND	ND	22,317
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007			ND					ND						ND
1,2-Dichlorobenzene	5300	59000	17			ND					ND						ND
1,3-Dichlorobenzene	5300	59000	19			ND					ND						ND
1,4-Dichlorobenzene	5	13	2			ND					ND						ND
Acetone	70000	NA	19			ND					3.4						ND
Benzene	2	5	0.005			ND					ND						ND
Chloroform	0.6	2	0.4			3.4					ND						2.3
Dibromochloromethane	3	8	0.005			ND					ND						ND
Ethylbenzene	7800	110000	13			ND					ND						3.4
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9			ND					ND						ND
Methyl tertiary butyl ether (MTBE)	110	320	0.2			ND					ND						ND
Styrene	90	260	3			ND					ND						ND
Tetrachloroethylene	2	5	0.005			ND					ND						ND
Toluene	6300	91000	7			ND					ND						ND
Xylenes (Total)	12000	170000	19			ND					ND						3.6

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

							PHASE	2 REMEDIA	L INVESTIG	ATION SOIL	DATA				PHASE 2 PC	ST-EXCAVATION S	SOIL DATA
Boring ID / Sample					886-57			88	5-58			88	6-59		886-PX14A/NW	886-PX15A/WW	886-PX16/SW
Field Sample ID			NJDEP Impact	886-57-8	886-57-10	886-57-12.5	886-58-6	886-58-8	886-58-10	886-58-12	886-59-6	886-59-8	886-59-10	886-59-12	886-PX14A/NW	886-PX15A/WW	886-PX16/SW
Sample Date	NJDEP	NJDEP Non-	to Groundwater		11/25/200	2		11/20	5/2002			11/2	6/2002		11/1/2002	11/1/2002	11/1/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	8	10	12.5	6	8	10	12	6	8	10	12	5.5-6	5-5.5	7.5-8
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA1	FA2	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	14,885	ND	ND	ND	3,777	5,414	ND	ND	ND	ND	ND	11883.9	17095.89	4761.43
Detected Volatile Organic Compounds (V	OCs) (mg/kg)																
1,1,2,2-Tetrachloroethane	1	3	0.007	ND					ND						ND	ND	0.032
1,2-Dichlorobenzene	5300	59000	17	ND					ND						ND	ND	ND
1,3-Dichlorobenzene	5300	59000	19	ND					ND						ND	ND	0.017
1,4-Dichlorobenzene	5	13	2	ND					ND						ND	ND	ND
Acetone	70000	NA	19	ND					ND						0.92	0.94	0.81
Benzene	2	5	0.005	ND					ND						ND	ND	ND
Chloroform	0.6	2	0.4	1.9					2.1						ND	ND	ND
Dibromochloromethane	3	8	0.005	ND					ND						ND	0.072	ND
Ethylbenzene	7800	110000	13	3.1					ND						0.06	0.39	ND
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	ND					ND						ND	ND	ND
Methyl tertiary butyl ether (MTBE)	110	320	0.2	ND					ND						ND	ND	ND
Styrene	90	260	3	ND					ND						ND	ND	0.011
Tetrachloroethylene	2	5	0.005	ND					ND						ND	ND	ND
Toluene	6300	91000	7	ND					ND						ND	ND	ND
Xylenes (Total)	12000	170000	19	3.4					ND						0.257	0.57	ND

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

Shaded cells = concentration exceeds all criteri

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.
-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHASE 2 P	OST-EXCAVATION	SOIL DATA				
Boring ID / Sample				886-PX17/BOT	886	-PX18/BOT	886-PX19-WW	886	-PX20/NW	886-PX21/EW	886-PX22/BOT	886-PX23 W	886-PX24W	886-PX25 E
Field Sample ID			NJDEP Impact	886-PX17/BOT	886	-PX18/BOT	886-PX19-WW	886	-PX20/NW	886-PX21/EW	886-PX22/BOT	886-PX23 W	886-PX24W	886-PX25 E
Sample Date	NJDEP	NJDEP Non-	to Groundwater	11/1/2002	1	1/1/2002	11/6/2002	1	1/6/2002	11/6/2002	11/6/2002	11/7/2002	11/7/2002	11/7/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	7-7.5	7.5-8	7.5-8 (Duplicate)	7.5-8	7.5-8	7.5-8 (Duplicate)	7-7.5	9-9.5	7.5-8	7.5-8	7.5-8
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA1	FA1	FA1	FA1	FA1	FA1	FA2	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	6128.37	7320.07	6475.8	24876.54	16602.2	17048.12	5102.5	ND	10284.4	31639.09	6348.55
Detected Volatile Organic Compounds (V	OCs) (mg/kg)													
1,1,2,2-Tetrachloroethane	1	3	0.007	ND	0.035	0.027	ND	ND	0.44	ND	ND	ND	0.33	
1,2-Dichlorobenzene	5300	59000	17	ND	ND	ND	ND	ND	ND	0.41	ND	ND	0.31	
1,3-Dichlorobenzene	5300	59000	19	ND	0.033	ND	ND	ND	ND	0.33	ND	ND	ND	
1,4-Dichlorobenzene	5	13	2	ND	ND	ND	ND	ND	ND	0.33	ND	ND	ND	
Acetone	70000	NA	19	0.86	0.75	0.75	ND	ND	ND	ND	1.6	1.7	ND	
Benzene	2	5	0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloroform	0.6	2	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	3	8	0.005	ND	0.031	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene	7800	110000	13	0.024	0.056	0.051	ND	ND	ND	ND	ND	0.15	0.26	
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methyl tertiary butyl ether (MTBE)	110	320	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Styrene	90	260	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Tetrachloroethylene	2	5	0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Toluene	6300	91000	7	ND	0.016	ND	ND	ND	ND	ND	ND	ND	ND	
Xylenes (Total)	12000	170000	19	0.258	0.247	0.261	ND	ND	ND	ND	ND	ND	ND	

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected. -- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHA	ASE 2 POST-EXC	AVATION SOIL D	ATA				
Boring ID / Sample				886-PX26 E	886-PX27 B	886-PX28 B	886-PX29 W	886-PX30 W	886-PX31 W	886-PX32 B	886-PX33 B	886-PX34 B	886-PX35 S	886-PX36 N	886-PX37 E
Field Sample ID			NJDEP Impact	886-PX26 E	886-PX27 B	886-PX28 B	886-PX29 W	886-PX30 W	886-PX31 W	886-PX32 B	886-PX33 B	886-PX34 B	886-PX35 S	886-PX36 N	886-PX37 E
Sample Date	NJDEP	NJDEP Non-	to Groundwater	11/7/2002	11/7/2002	11/7/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002	11/11/2002	11/11/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	7.5-8	9-9.5	9-9.5	9.5-10	9-9.5	9-9.5	10-10.5	10-10.5	10-10.5	7.5-8	7.5-8	8.0-8.5
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	N	FA1	FA2
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	11162.05	ND	ND	13469.45	12009.29	ND	ND	ND	ND	ND	6435.11	814.68
Detected Volatile Organic Compounds (V	OCs) (mg/kg)														
1,1,2,2-Tetrachloroethane	1	3	0.007	ND			ND	ND						ND	
1,2-Dichlorobenzene	5300	59000	17	ND			ND	ND						ND	
1,3-Dichlorobenzene	5300	59000	19	ND			ND	ND						ND	
1,4-Dichlorobenzene	5	13	2	ND			ND	ND						ND	
Acetone	70000	NA	19	ND			ND	ND						ND	
Benzene	2	5	0.005	ND			ND	0.086						ND	
Chloroform	0.6	2	0.4	ND			1.7	1.5						1.6	
Dibromochloromethane	3	8	0.005	ND			ND	ND						ND	
Ethylbenzene	7800	110000	13	ND			ND	ND						0.32	
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	ND			ND	ND						ND	
Methyl tertiary butyl ether (MTBE)	110	320	0.2	ND			ND	ND						ND	
Styrene	90	260	3	ND			ND	ND						ND	
Tetrachloroethylene	2	5	0.005	ND			ND	ND						ND	
Toluene	6300	91000	7	ND			ND	ND						ND	
Xylenes (Total)	12000	170000	19	ND			ND	0.23						1	

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected. -- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHA	ASE 2 POST-EXC	AVATION SOIL D	DATA				
Boring ID / Sample				8	86-PX38 E	886-PX39 B	886-PX40 B	886-PX41 B	886-PX42 B	886-PX43 S	886-PX44 E	886-PX45 E	886-PX46 B	886-PX47 N	886-PX48 E
Field Sample ID			NJDEP Impact	8	86-PX38 E	886-PX39 B	886-PX40 B	886-PX41 B	886-PX42 B	886-PX43 S	886-PX44 E	886-PX45 E	886-PX46 B	886-PX47 N	886-PX48 E
Sample Date	NJDEP	NJDEP Non-	to Groundwater	1	1/11/2002	11/11/2002	11/13/2002	11/13/2002	11/13/2002	11/13/2002	11/13/2002	11/13/2002	11/21/2002	11/21/2002	11/21/2002
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	8-8.5	8-8.5 (Duplicate)	9.5-10	8.5-9	8.5-9	9-9.5	7.5-8	8-8.5	8-8.5	8.5-9	6.5-7	6.5-7
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA2	FA2	FA2	FA2	FA2	FA2	N	FA1	N	FA1	FA1	FA1
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	430.77	1446.5	ND	ND	ND	ND	ND	ND	ND	569.08	4227.31	7186.7
Detected Volatile Organic Compounds (V	OCs) (mg/kg)														
1,1,2,2-Tetrachloroethane	1	3	0.007											ND	
1,2-Dichlorobenzene	5300	59000	17											ND	
1,3-Dichlorobenzene	5300	59000	19											ND	
1,4-Dichlorobenzene	5	13	2											ND	
Acetone	70000	NA	19											0.35	
Benzene	2	5	0.005											ND	
Chloroform	0.6	2	0.4											1.4	
Dibromochloromethane	3	8	0.005											ND	
Ethylbenzene	7800	110000	13											ND	
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	-										ND	
Methyl tertiary butyl ether (MTBE)	110	320	0.2											ND	
Styrene	90	260	3											ND	
Tetrachloroethylene	2	5	0.005											ND	
Toluene	6300	91000	7											ND	
Xylenes (Total)	12000	170000	19											ND	

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria

Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface. ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHASE 2	POST-EXCAVATION	SOIL DATA				
Boring ID / Sample				886-PX49 W	88	86-PX50 N	886-PX51 N	880	6-PX52 N	886-PX53 N	886-PX54 W	886-PX55 B	886-PX56 N	886-PX57 W
Field Sample ID			NJDEP Impact	886-PX49 W	88	86-PX50 N	886-PX51 N	880	6-PX52 N	886-PX53 N	886-PX54 W	886-PX55 B	886-PX56 N	886-PX57 W
Sample Date	NJDEP	NJDEP Non-	to Groundwater	11/21/2002		12/3/2002	12/3/2002	1.	/15/2003	1/15/2003	1/15/2003	1/15/2003	2/3/2003	2/3/2003
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	6.5-7	8.5-9	8.5-9 (Duplicate)	8.5-9	8-8.5	8-8.5 (Duplicate)	8-8.5	7.5-8	9-9.5	9-9.5	9-9.5
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				FA1	FA2	FA2	FA2	FA2	FA2	FA2	FA2	FA2	N	N
Total Petroleum Hydrocarbons (mg/kg)		54,000	NLE	19065.98	2910.5	5482.31	2088.35	5930.63	6842.01	230.57	776.88	ND	ND	540.71
Detected Volatile Organic Compounds (V	OCs) (mg/kg)													
1,1,2,2-Tetrachloroethane	1	3	0.007	ND	ND	ND	ND							
1,2-Dichlorobenzene	5300	59000	17	ND	ND	ND	ND							
1,3-Dichlorobenzene	5300	59000	19	ND	ND	ND	ND							
1,4-Dichlorobenzene	5	13	2	ND	ND	ND	ND							
Acetone	70000	NA	19	ND	ND	ND	ND							
Benzene	2	5	0.005	ND	ND	ND	ND							
Chloroform	0.6	2	0.4	1.4	1.8	1.7	1.7							
Dibromochloromethane	3	8	0.005	ND	ND	ND	ND							
Ethylbenzene	7800	110000	13	0.16	ND	1.3	ND							
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	ND	ND	ND	ND							
Methyl tertiary butyl ether (MTBE)	110	320	0.2	ND	ND	ND	ND							
Styrene	90	260	3	ND	ND	ND	ND							
Tetrachloroethylene	2	5	0.005	ND	ND	ND	ND							
Toluene	6300	91000	7	ND	ND	ND	ND							
Xylenes (Total)	12000	170000	19	0.25	ND	1.4	ND							

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013) **Detections are bolded.**

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

								PHASE 2 POS	T-EXCAVATION SOI	L DATA				
Boring ID / Sample				88	86-PX58 S	886-PX59 B	886-PX60 W	88	6-PX61 S	886-PX62 E	886-PX63 E	886-PX64 N	886-PX65 B	886-PX66 B
Field Sample ID			NJDEP Impact	88	86-PX58 S	886-PX59 B	886-PX60 W	88	6-PX61 S	886-PX62 E	886-PX63 E	886-PX64 N	886-PX65 B	886-PX66 B
Sample Date	NJDEP	NJDEP Non-	to Groundwater		2/3/2003	2/3/2003	2/14/2003	2.	/14/2003	2/14/2003	2/14/2003	2/14/2003	2/14/2003	2/14/2003
Sample Depth (feet bgs)	Residential (1)	Residential ⁽¹⁾	(2)	9-9.5	9-9.5 (Duplicate)	9.5-10	9-9.5	9-9.5	9-9.5 (Duplicate)	9-9.5	9-9.5	8.5-9	10-10.5	10-10.5
Excavated? (Y/N)				N	N	N	N	N	N	N	N	N	N	N
Within Functional Area? (FA1/FA2/N)				N	N	N	N	N	N	N	N	N	N	N
Total Petroleum Hydrocarbons (mg/kg)	5,100	54,000	NLE	370.97	1108.84	ND	193.33	1770.76	1014.14	4927.25	ND	ND	ND	ND
Detected Volatile Organic Compounds (V	OCs) (mg/kg)													
1,1,2,2-Tetrachloroethane	1	3	0.007	I					-					
1,2-Dichlorobenzene	5300	59000	17	-					-					
1,3-Dichlorobenzene	5300	59000	19											
1,4-Dichlorobenzene	5	13	2											
Acetone	70000	NA	19											
Benzene	2	5	0.005											
Chloroform	0.6	2	0.4											
Dibromochloromethane	3	8	0.005						-					
Ethylbenzene	7800	110000	13											
Methyl ethyl ketone (2-Butanone)	3100	44000	0.9	-										
Methyl tertiary butyl ether (MTBE)	110	320	0.2											
Styrene	90	260	3											
Tetrachloroethylene	2	5	0.005											
Toluene	6300	91000	7											
Xylenes (Total)	12000	170000	19											

(1) New Jersey Department of Environmental Protection (NJDEP) Residential and Non-Residential Direct Contact Soil Remediation Standards (N.J.A.C 7:26D; amended May 7, 2012). Available at: http://www.state.nj.us/dep/srp/regs/rs/.

(2) NJDEP Impact to Groundwater Standard (NJDEP guidance document; Nov 2013)

Detections are bolded.

Shaded cells = concentration exceeds NJDEP Impact to Groundwater Criteria
Shaded cells = concentration exceeds one or both NJDEP Direct Contact Criteria

mg/kg = milligrams per kilogram

bgs = below ground surface.

ND = not detected.

-- = not analyzed.

NA = not applicable (criterion not available).

NLE = No limit established

NJDEP extractable petroleum hydrocarbons (EPH) soil remediation criteria for TPH

ATTACHMENT E

Previous Reports

- 1. Remedial Action Report for Soil and Groundwater Contamination, Building 886, Versar, January 2006
- 2. Site 886 (FTMM-66) Remedial Action Progress Report (2nd Quarter 2003 through 4th Quarter 2008), VEETech, P.C. July 2010
- 3. Final Annual (Fourth Quarter) 2015 Groundwater Sampling Report, Fort Monmouth, Oceanport, Monmouth County, New Jersey, Parsons, September 2016

FINAL

Remedial Action Report for Soil and Groundwater Contamination

Building 886

U. S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey

Directorate of Public Works

January 13, 2006

4700 South McClintock Drive, Suite 150 Tempe, Arizona 85282

Contract No. DACA 51-02-D-0007 Delivery Order No. 2V18

United States Army

Fort Monmouth, New Jersey

Remedial Action Report for Soil and Groundwater Contamination at Building 886

Fort Monmouth, New Jersey

PREPARED BY:

4700 SOUTH MCCLINTOCK DRIVE, SUITE 150 TEMPE, ARIZONA 85282

January 13, 2006

VERSAR PROJECT NO. 0571.418

TABLE OF CONTENTS

	E SUMMARY	
1.0.INTROI	OUCTION	. 1-1
1.1 O	bjectives	. 1-1
1.2 R	eport Organization	. 1-1
2.0.SITE DE	SCRIPTION AND BACKGROUND	. 2-1
2.1 Si	te Location and Description	. 2-1
2.2 C	urrent Conditions	. 2-1
2.3 E	nvironmental Setting	. 2-2
2.3.1	Regional and Local Geology	. 2-2
2.3.2	Hydrogeology	. 2-3
2.3.3	Soils	. 2-4
2.3.4	Topography and Surface Drainage	. 2-5
3.0.REMED	IAL INVESTIGATION AND REMEDIAL ACTION ACTIVITIES.	.3-1
3.1 P	nase 1 RA Soil Activities	. 3-1
3.2 P	nase 1 RI Soil Sampling	. 3-1
3.3 G	eoprobe RI Groundwater Sampling	.3-2
	nase 2 RI Soil Sampling	
3.5 P	nase 2 RA Post-Excavation Soil Activities	. 3-3
3.6 G	roundwater Treatment System	. 3-4
3.6.1	Groundwater Monitoring Well Sampling	. 3-4
3.6.2	Groundwater Depth Measurements	. 3-4
4.0.REMED	IAL ACTION RESULTS	. 4-1
4.1 Po	ost-Excavation RA Soil Sampling Results	. 4-1
4.1.1	TPH	. 4-1
4.1.2	VOCs	.4-1
4.2 P	nase 1 RI Soil Sampling Results	. 4-1
4.2.1	TPH	. 4-2
4.2.2	VOCs	.4-2
4.3 Pl	nase 2 RI Soil Sampling Results	.4-2
4.3.1	TPH	. 4-2
4.3.2	VOCs	.4-3
4.4 G	roundwater Monitoring Well Sampling Results	. 4-3
4.4.1	VOCs	.4-3
4.4.2	SVOCs	
4.4.3	Pesticides and PCBs	. 4-4
4.4.4	Metals	. 4-4
4.5 Q	uality Assurance/Quality Control (QA/QC)	. 4-4
	USIONS AND RECOMMENDATIONS	
6.0.REFERI	ENCES	.6-1

TABLES	
Table 3-1	Phase 1 RA Soil Sampling Summary
Table 3-2	Phase 1 RI Soil Sampling Summary
Table 3-3	Product Recovery Measurements
Table 3-4	RI Geoprobe Groundwater Sampling Summary
Table 3-5	RI Geoprobe Groundwater Sampling Results
Table 3-6	Phase 2 RI Soil Sampling Summary
Table 3-7	Phase 2 RA Post-Excavation Sampling Summary
Table 3-8	Groundwater Monitoring Well Sampling Summary
Table 3-9	Groundwater Elevation Summary
Table 4-1	Phase 1 RA Soil Sampling Results
Table 4-2	Phase 1 RI Soil Sampling Results
Table 4-3	Phase 1 RI Soil Sampling Exceedence Summary
Table 4-4	Phase 2 RI Soil Sampling Results
Table 4-5	Phase 2 RI Soil Sampling Exceedence Summary
Table 4-6	Phase 2 RA Post-Excavation Soil Sampling Results
Table 4-7	Phase 2 RA Post-Excavation Soil Sampling Exceedence Summary
Table 4-8	Groundwater Monitoring Well Sampling Results
Table 4-9	Groundwater Monitoring Well Exceedance Summary
FIGURES	
Figure 2-1	Site Location Map
Figure 2-2	Site Map
Figure 2-3	Geologic Map of New Jersey
Figure 2-4	Outcrop and Thickness of the Composite Confining Unit
Figure 2-5	Soil Map of Monmouth County, New Jersey
Figure 3-1	Phase 1 RA Soil Sample Location and Exceedence Map
Figure 3-2	Phase 1 RI Soil Sample Location and Exceedence Map
Figure 3-3	RI Geoprobe Groundwater Boring Location and Phase Measurement Map
Figure 3-4	Phase 2 RI Soil Sample Location and Exceedence Map
Figure 3-5	Phase 2 RA Post-Excavation Soil Sample Location and Exceedence Map
Figure 3-6	Groundwater Monitoring Well Location and Contour Map
Figure 4-1	Groundwater Monitoring Well COC Exceedence Map
APPENDICES	
Appendix A	Monitoring Well Construction Logs, Permits and Survey Records,
	Groundwater Treatment System O&M Manual and As-Built Site Plan
Appendix B	RI/RA Activities Photographic Log
Appendix C	Laboratory Data Sheets for RA Soil Sampling
Appendix D	Laboratory Data Sheets for RI Soil Sampling
Appendix E	Laboratory Data Sheets for Geoprobe Groundwater Sampling
Appendix F	Laboratory Data Sheets for Monitoring Well Groundwater Sampling

EXECUTIVE SUMMARY

VERSAR, Inc. (Versar) has been contracted by the United States (U.S.) Army Garrison, Fort Monmouth (Fort Monmouth), Directorate of Public Works (DPW), Fort Monmouth, New Jersey to prepare a Remedial Action Report (RAR) to document soil and groundwater conditions at Building 886 located in the Main Post Area of Fort Monmouth, New Jersey. This report addresses the remedial activities performed from January 2002 through February 2003.

Building 886 is located in the south part of the Main Post Area of Fort Monmouth, at the intersection of Murphy Road and Lane Avenue. Building 886 is located approximately 950 feet south of Husky Brook.

Building 886 was used by Fort Monmouth for equipment storage. A former above-ground storage tank (AST) was located adjacent to Building 886. The AST had a storage capacity of 250,000 gallons and stored #2 fuel oil. The AST has been identified on base maps dating back to 1956. Fort Monmouth had the AST removed during the 1970's.

A 1,000-gallon underground storage tank (UST) was also located adjacent to Building 886 and supplied #2 fuel oil for heating. The UST was removed in April 1998 by TECOM-Vinnell Services (TVS) during which time several holes were documented in the UST, a sheen was present on the groundwater within the excavation, and evidence of potentially contaminated soils was observed.

Extensive contamination was discovered during the removal of the Building 886 storage tanks, therefore requiring remedial investigation (RI) activities to better delineate the presence of soil and groundwater contamination. RI activities included soil and groundwater sampling. Remedial action (RA) activities included the excavation of contaminated soil, the collection of post-excavation samples and the installation of a groundwater treatment system.

The first phase of remedial activities that was conducted including soil sampling to determine if contamination remained. Phase 1 RA activities were conducted until soil and groundwater contamination were discovered. Following this discovery, RI soil sampling was conducted to determine the necessity of remedial action. RI soil sampling was conducted at 48 geoprobe soil boring locations of the removed tanks at Building 886. A total of 345 soil samples were collected at various depths and were analyzed for Total Petroleum Hydrocarbons (TPH), and an additional 27 soil samples were collected from boring locations containing soil exceeding 1,000 ppm TPH and were analyzed for Volatile Organic Compounds (VOCs). TPH was detected in 128 of the 345 soil samples at concentrations below the New Jersey Department of Environmental Protection (NJDEP) criteria. Eleven samples contained soils which exceeded the NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC) for TPH. No VOCs were detected in the soil samples above the RDCSCC.

Following the Phase 1 RI, 27 temporary piezometer points were installed at Building 886 for depth to water measurements. Freephase petroleum hydrocarbons (product) were observed which prompted the collection of two groundwater samples from two of the geoprobe soil boring locations. The soil samples were analyzed for VOCs and Semi-Volatile Organic Compounds (SVOCs). No VOCs or SVOCs were detected in site groundwater.

A second phase of RI sampling was conducted to further delineate soil contamination at Building 886. A total of 31 soil samples were collected at various depths from 12 different geoprobe locations. The soil samples were analyzed for TPH in all 31 samples, seven of which were also analyzed for VOCs based on TPH results exceeding 1,000 ppm. TPH was detected in 12 of the 31 soil samples at concentrations below the NJDEP RDCSCC. Two samples contained soils which exceeded the RDCSCC for TPH. No VOCs were detected in the soil samples at concentrations above the RDCSCC.

Based on the results of the Phase 1 and Phase 2 RI activities, a remedial design consisting of the excavation and removal of contaminated soil exceeding the RDCSCC for TPH was conducted. Approximately 4,000 tons of soil with contamination in excess of the NJDEP RDCSCC was excavated and removed from the site. Phase 2 post-excavation RA soil samples were collected to determine if contamination remained. A total of 60 post-excavation soil samples were collected from within the excavation areas at Building 886.

During the post-excavation RA soil sampling events (Phase 1 and Phase 2), a total of 83 soil samples were collected and analyzed for TPH. Out of the 43 soil samples where TPH was detected, four samples contained TPH concentrations exceeding the RDCSCC. Twenty-two soil samples which were collected from boring locations containing soil exceeding 1,000 ppm TPH were also analyzed for VOCs. No VOCs were detected in the soil samples at concentrations above the RDCSCC.

Based on the results of the geoprobe groundwater investigation, a groundwater treatment system for the recovery of free-phase petroleum hydrocarbons consisting of an automated product recovery system and 13 groundwater monitoring and recovery wells was installed. A total of 15 groundwater samples were collected from 13 monitoring wells to establish the areal extent of petroleum hydrocarbon impacts to groundwater. The groundwater samples were analyzed for TPH, VOCs, SVOCs, pesticides and polychlorinated biphenyls (PCBs) and Target Analyte List (TAL) metals. TPH was detected in 12 samples; however there is no NJDEP Ground Water Quality Criteria (GWQC) for TPH. A total of nine VOCs were detected in site groundwater, two of which were detected at concentrations that exceed their respective GWQC. A total of ten SVOCs were detected in site groundwater, one of which was detected at a concentration that exceeded its GWQC. Three pesticides were detected at concentrations below their respective GWQC. A total of 20 metals were detected in site groundwater. Five metals were detected at concentrations that exceed their respective GWQC, while the remaining 15 metals were detected below their respective GWQC.

Based on the magnitude of their exceedences, the frequency of their occurrences and their wide-ranging results, TPH in soil and benzene in groundwater are identified as contaminants of concern (COCs) at Building 886. Methyl ethyl ketone and N-Nitrosodiphenylamine will remain potential COCs at Building 886 until further sampling can better assess the occurrence of these contaminants at the site.

Continuation of the groundwater monitoring program, including quarterly groundwater well monitoring for VOCs and SVOCs is recommended at Building 886.

1.0 INTRODUCTION

Versar has been contracted by the U.S. Army Garrison, Fort Monmouth, DPW, Fort Monmouth, New Jersey, to prepare an RAR for contaminated soils and contaminated groundwater at Building 886 located in the Main Post Area of Fort Monmouth. This report addresses the remedial activities performed from January 2002 through February 2003.

1.1 Objectives

The objective of this RAR is to present the site remedial action process performed at the contaminated areas at Building 886, along with the results of the RA activities conducted at these sites. The purpose of the RA was to excavate and dispose of contaminated soils and remediate contaminated groundwater in these areas. The remedial actions were conducted in accordance with NJDEP *Technical Requirements for Site Remediation* (July 1999), NJAC 7:26E, et seq.

The remedial actions encompassed the following:

- Excavating contaminated soils in areas identified through RI sampling conducted between March 2002 and June 2002 and installing a groundwater treatment system (product recovery);
- Conducting post-excavation soil sampling to evaluate the effectiveness of the RA;
- Conducting groundwater sampling from surrounding wells to evaluate the areal extent of petroleum hydrocarbons;
- Comparing the results of the sampling with the NJDEP RDCSCC;
- Disposal of contaminated soil (conducted by Fort Monmouth); and
- Documentation of activities as required by the NJDEP *Technical Requirements* for Site Remediation (July 1999), NJAC 7:26E, et seq.

1.2 Report Organization

This report is organized to minimize repetition. **Section 2.0** provides background information and a general description of both Building 886 and the Main Post Area of Fort Monmouth. **Section 3.0** describes and summarizes the field activities conducted at Building 886, including RA soil sampling, RI soil sampling, geoprobe groundwater sampling, and groundwater sampling from monitoring wells. The results of the post-excavation RA soil sampling and the groundwater monitoring well sampling at Building 886 is presented in **Section 4.0**. **Section 5.0** discusses the quality control methodology used to verify the reliability of the analytical results. Conclusions and recommendations for Building 886 are presented in **Section 6.0**.

2.0 SITE DESCRIPTION AND BACKGROUND

The following sections describe Building 886 background and environmental setting of the area surrounding Fort Monmouth and Building 886. Included is a description of location, background, current conditions and environmental setting at Building 886.

2.1 Site Location and Description

Fort Monmouth is located in the central-eastern portion of New Jersey in Monmouth County, approximately 45 miles south of New York City and 70 miles northeast of Philadelphia (**Figure 2-1**). In addition to the Main Post, the installation includes two subposts, the Charles Wood Area and the Evans Area. The Main Post encompasses approximately 630 acres and is bounded by State Highway 35, Parkers Creek, Lafetra Brook, the New Jersey Transit Railroad and a residential area to the south. The post was established in 1918 during World War I (WWI) as an Army Signal Corps training center. The Main Post currently provides administrative, training, and housing support functions, as well as providing many of the community facilities for Fort Monmouth. The primary mission of Fort Monmouth is to provide command, administrative, and logistical support for Headquarters, U.S. Army Communications and Electronics Command (CECOM). CECOM is a major subordinate command of the U.S. Army Materiel Command (AMC) and is the host tenant at Fort Monmouth.

Building 886 is located in the south part of the Main Post area of Fort Monmouth, at the intersection of Murphy Road and Lane Avenue (**Figure 2-2**). Building 886 is located approximately 950 feet south of Husky Brook.

Building 886 was used by Fort Monmouth for equipment storage. A former above-ground storage tank (AST) was located adjacent to Building 886. The AST had a storage capacity of 250,000 gallons and stored #2 fuel oil. The AST has been identified on base maps dating back to 1956. Fort Monmouth had the AST removed during the 1970's. A 1,000-gallon underground storage tank (UST) was also located adjacent to Building 886 and supplied #2 fuel oil for heating. The UST was removed in April 1998 by TECOM-Vinnell Services (TVS), during which soil contamination was identified at the site. Subsequently, remedial actions began to excavate contaminated soils and RIs were initiated to determine the extent of environmental impacts in the area. The remedial actions and investigations are the subject of this report.

2.2 Current Conditions

The site currently consists of Building 886 and lawn area. Due to security reasons, site photographs were not taken during the Building 886 walk-through.

2.3 Environmental Setting

The following is a description of the geological/hydrogeological setting of the area surrounding Building 886. Included is a description of the regional geology of the area surrounding Fort Monmouth, as well as descriptions of the local geology and hydrogeology of the Main Post.

2.3.1 Regional and Local Geology

Monmouth County lies within the New Jersey Section of the Atlantic Coastal Plain physiographic province. Building 886 is located in what may be referred to as the Outer Coastal Plain subprovince, or the Outer Lowlands. The geologic map of New Jersey is provided as **Figure 2-3**.

In general, New Jersey Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, sand and gravel. These formations typically strike northeast-southwest with a dip ranging from 10-60 feet per mile and were deposited on Precambrian and lower Paleozoic rocks (Zapecza, 1989). These sediments, predominantly derived from deltaic, shallow marine and continental shelf environments, date from Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units, which are generally thicker to the southeast and reflect a deeper water environment. More than 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand), while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown and Navesink Formations). The individual thickness for these units varies greatly (e.g., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from the Fall Line (e.g., a boundary zone between older, resistant rocks and younger, softer plain sediments) to greater than 6,500 feet in Cape May County (Zapecza, 1989).

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank Sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile. The upper member (Shrewsbury) of the Red Bank Sand is a yellowish-gray to reddish brown clayey, medium-to-coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica and glauconite.

The Tinton Sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic-quartz and glauconite-sand to a glauconitic-coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60-80 percent of the sand fraction in the upper part of the unit. The upper part of the Tinton Sand is often highly oxidized and iron oxide encrusted (Minard, 1969). Groundwater occurs beneath the site at a depth of approximately 5-8 feet bgs.

The Kirkwood Formation (part of the Kirkwood-Cohansey system) crops out southeast of the Main Post and dips to the southeast at a slope of 20 feet per mile (Jablonski, 1968). The Kirkwood Formation consists of alternating layers of sand and clay. The upper unit is a light gray to yellowish-brown, fine-grained quartz sand with quartz nodules and small pebbles. The lower unit is a brown silt in Monmouth County (Jablonski, 1968).

2.3.2 Hydrogeology

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region (Meisler et al., 1988). This groundwater region is underlain by undeformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with low dissolved solids and high iron concentrations. The water chemistry in areas underlain by glauconitic sediments (such as Red Bank, Tinton and Hornerstown Sands) is dominated by calcium, magnesium, manganese, aluminum and iron. The sediments in the area of Fort Monmouth were deposited in fluvial-deltaic to near shore environments.

The water table aquifer in the Main Post Area is identified as part of the "Navesink-Hornerstown Confining Units," or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation and the basal clay of the Kirkwood Formation. These geologic formations comprise a "Composite Confining Bed" for the Wenonah Mount Laurel Aquifer (Zapecza, 1989).

Wells installed in the Red Bank and Tinton Sands produce 2-25 gallons per minute (gpm) (Jablonski, 1968). Groundwater is typically encountered at the Main Post and in the surrounding areas at shallow depths below ground surface (2-9 feet bgs). Water in the surficial aquifer generally flows east toward the Atlantic Ocean.

As presented in **Figure 2-4**, Fort Monmouth is located within the outcrop area of the "Navesink-Hornerstown Confining Unit" (Martin, 1998), which also includes the Red Bank Sand, Tinton Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation and the basal clay of the Kirkwood Formation. The Navesink-Hornerstown Confining Unit is approximately 125 feet thick at Building 886.

Based on a review of the NJDEP Ground Water Quality Standards (GWQS) (NJAC 7:9-6), January 7, 1993, Versar has determined that the site is underlain by a Class III-A aquifer. A formal presentation of this finding was made to the NJDEP on April 17, 2001. The primary designated use for Class III-A groundwater is the release or transmittal of groundwater to adjacent classification areas and surface water, as relevant. Secondary designated uses in Class III-A include any reasonable use.

Shallow groundwater may be locally influenced within the Main Post Area by the following factors:

- Tidal influence (based on proximity to the Atlantic Ocean, rivers and tributaries);
- Topography;
- Nature of the fill material within the Main Post Area;
- Presence of clay and silt lenses in the natural overburden deposits;
- Local groundwater recharge areas (e.g., streams, lakes); and
- Roadways, utility conduits and stormwater culverts.

Due to the fluvial nature of the overburden deposits (e.g., sand and clay lenses), shallow groundwater flow direction is best determined on a case-by-case basis.

2.3.3 Soils

UD

According to the U.S. Department of Agriculture (USDA), Soil Conservation Service, Monmouth County Soil Survey (April 1989), the majority of the Main Post is covered by urban land (**Figure 2-5**). The soil survey describes urban land as areas where concrete, asphalt, buildings, shopping centers, airports or other impervious surfaces cover 80 percent or more of the surface. In addition, the survey indicated that the natural subsurface soils have largely been replaced with artificial or foreign fill materials (developed land with disturbed soils).

The following soil series and classification units are mapped in the Main Post Area:

•	DoB	Downer sandy loam (with 2 to 5 percent slopes)
•	FrB	Freehold sandy loam (with 2 to 5 percent slopes)
•	FUB	Freehold sandy loam/urban land complex (with 0-10 percent slopes)
•	HV	Humaquepts, frequently flooded
•	KvA	Kresson loam (with 0-5 percent slopes)
•	UA	Udorthents, smoothed

Udorthents – urban land complex (with 0-3 percent slopes)

The Downer series soils are well-drained soils that are found on uplands and terraces. The soils are formed in acid, silty coastal plain sediments. The Freehold soils are also well drained and are formed in acid, loamy, coastal plain sediments that, by volume, are 1-10 percent glauconite and are found on uplands. The Humaquepts soils are somewhat poorly- to very poorly- drained soils that are formed in stratified, sandy, or loamy sediments of fluvial origins. The Humaquepts soils are located on the floodplain and are subject to flooding several times each year. The Kresson loam is a nearly level to gently sloping soil and is somewhat poorly drained. The soil is found on low divides and in depressions. The Udorthents soils have been altered by excavation or filling activities. In filled areas, these soils consist of loamy material that is more than 20 inches thick. The filled areas include floodplain, tidal marshes and areas with moderately, well drained to very poorly drained soils. Some Udorthent soils contain concrete, asphalt, metal and glass. Soils at Building 886 are classified as Udorthents – urban land complex (with 0-3 percent slopes) (**Figure 2.5**).

Monitoring well records (**Appendix A**) installed at Building 886 describe the soils to consist of natural soil consisting of brown fine to coarse sand with traces of silt and clay.

2.3.4 Topography and Surface Drainage

Over the last 80 years, the natural topography of Fort Monmouth has been altered by excavation and filling activities conducted by the military. The land surface at the Main Post is relatively flat and ranges in elevation from approximately 4 feet above mean sea level (amsl) in the east at Oceanport Creek to 32 feet amsl at the western end of the post, near Highway 35. The eastern half of the post is generally 10 feet above amsl in elevation.

Surface water runoff from the western part of the Main Post flows into the Lafetra Creek to the north or into the Mill Creek to the south. The USGS topographic map (**Figure 2-1**) shows the Lafetra Creek as Parkers Creek Branch and Mill Creek as Wampum. Both Mill Creek and Lafetra Creek originate off-post. Mill Creek is channelized and flows along the southern boundary of the Main Post, turning north just past the Auto Craft Shop. Lafetra Creek forms the northern boundary of the Main Post and joins Mill Creek to form Parkers Creek. Parkers Creek flows eastward along the northern boundary and joins Oceanport Creek east of the post. Most of Parkers Creek, Lafetra Creek and Mill Creek are tidally influenced.

The U.S. Fish and Wildlife Service (FWS) National Wetland Inventory Long Branch quadrangle maps indicate the presence of wetlands at the Main Post. Parkers Creek and Oceanport Creek are classified as estuarine intertidal aquatic beds. The area of Parkers Creek and the part of Oceanport Creek/Husky Brook are classified as estuarine intertidal emergent wetlands. Lafetra Creek and Mill Creek are classified as riverine lower perennial open water/unknown bottom.

Building 866 is located approximately 950 feet south of Husky Brook, which empties to the east into Oceanport Creek. The USGS topographic map (**Figure 2-1**) shows that the land surface of the site is relatively flat at an elevation of less than 20 feet amsl. Surface water runoff from Building 886 is likely northward into Husky Brook.

3.0 REMEDIAL INVESTIGATION AND REMEDIAL ACTION ACTIVITIES

Fort Monmouth DPW has conducted RI and RA activities in the vicinity of Building 886. Underground and above-ground storage tanks were once present at Building 886 and have since been removed from the area. Extensive contamination was discovered during the removal of the Building 886 storage tanks and associated contaminated soil, prompting more extensive excavation in an effort to find the outer edge of contamination. Once the excavation became too large, post-excavation samples were taken to confirm that this section was successfully remediated, and then the excavation was backfilled (Phase 1 RA). Subsequently, RI activities were initiated and performed to better delineate the presence of soil and groundwater contamination. RI activities included soil and groundwater sampling. Phase 2 RA activities included the excavation of contaminated soil at a location separate from the Phase 1 RA excavation, the collection of post-excavation samples and the installation of a groundwater treatment system. A photographic log is presented in **Appendix B**. These activities were managed by the Fort Monmouth DPW and performed by TVS and Handex. The details of RI and RA activities that occurred at Building 886 are described in the following sections.

3.1 Phase 1 RA Soil Activities

The first phase of RA activities was conducted from January 2002 to March 2002, which included excavation and disposal of contaminated soil in the area of the former Building 886 storage tanks. Following excavation activities, post-excavation samples were collected to determine if contamination remained. If contamination remained, then further excavation activities were conducted, followed by the collection of another round of post-excavation samples. A total of 23 post-excavation soil samples, including seven duplicate samples, were collected from within the excavation areas at Building 886. The locations of each Phase 1 soil sample are shown on **Figure 3-1**.

TVS personnel conducted the sampling using direct-push technology. All down-hole sampling equipment was decontaminated prior to use and between each boring. The samples were placed in laboratory-supplied bottles and placed on ice upon collection to ensure samples were kept below 4° C. The soil samples were analyzed by the Fort Monmouth Environmental Testing Laboratory (FMETL) for TPH in all 23 samples. A summary of the soil sampling activities, including rounds, well IDs, sample IDs, sample locations, collection/analysis date, analytical parameters and analysis method, is provided in **Table 3-1**. Copies of the soil sampling chain-of-custody forms and laboratory data sheets are presented in **Appendix C**. The results of the Phase 1 RA soil sampling are presented and discussed in **Section 4.1**.

Phase 1 RA activities were conducted until the excavation became too large and soil and groundwater contamination were discovered. Following this discovery, RI sampling was conducted on both the soil and the groundwater.

3.2 Phase 1 RI Soil Sampling

In order to determine the extent of environmental impacts in the area of Building 886, a site investigation was initiated in March 2002. RI soil sampling was conducted at each

boring to determine the necessity of remedial action. RI activities at Building 886 involved the collection of soil and groundwater samples.

From March 2002 through June 2002, a total of 345 soil samples, including 11 duplicate samples, were collected from the 48 geoprobe soil boring locations of the removed tanks at Building 886. Soil samples were collected at the following depth intervals: 0-6", 24", 48", 72", 96", 120" and 144" below ground surface (bgs). The locations of each Phase 1 soil boring are shown in **Figure 3-2**. An additional 27 soil samples (including three duplicates) were collected from boring locations containing soil exceeding 1,000 ppm TPH and were analyzed for VOCs.

TVS personnel conducted the sampling using direct-push technology. All down-hole sampling equipment was decontaminated prior to use and between each boring. The samples were placed in laboratory-supplied bottles and placed on ice upon collection to ensure samples were kept below 4° C. The soil samples were analyzed by the FMETL for TPH in all 345 samples and VOCs in the additional 18 samples. A summary of the soil sampling activities, including rounds, well IDs, sample IDs, sample locations, collection/analysis date, analytical parameters and analysis method, is provided in **Table 3-2**. Copies of the groundwater sampling chain-of-custody forms and laboratory data sheets are presented in **Appendix D**. The results of the Phase 1 RI soil sampling are presented and discussed in **Section 4.2**.

3.3 Geoprobe RI Groundwater Sampling

Following the Phase 1 RI, 27 temporary piezometer points were installed for depth to water measurements. Freephase petroleum hydrocarbons (product) were observed in 12 of the piezometers at a thickness ranging from 1/16 to 5-inches. On June 27, 2002, two groundwater samples were collected from two of the geoprobe soil boring locations at Building 886. Both samples were collected from a depth of 12-16 feet bgs. The 27 geoprobe boring locations and phase measurements are shown in **Figure 3-3.** Product recovery measurements are provided in **Table 3-3**.

TVS personnel conducted the sampling using direct-push technology. All down-hole sampling equipment was decontaminated prior to use and between each boring. The samples were placed in laboratory-supplied bottles and placed on ice upon collection to ensure samples were kept below 4° C. The soil samples were analyzed by the FMETL for VOCs and SVOCs in both samples. A summary of the groundwater geoprobe sampling activities, including rounds, well IDs, sample IDs, sample locations, collection/analysis date, analytical parameters and analysis method, is provided in **Table 3-4**. Copies of the groundwater sampling chain-of-custody forms and laboratory data sheets are presented in **Appendix E**.

During the geoprobe groundwater sampling, no VOCs or SVOCs were detected in site groundwater. The results of the analysis are presented in detail in **Table 3-5**.

Based on the results of the investigation, a remedial design consisting of the recovery of free-phase petroleum hydrocarbons was initiated. The implementation of a groundwater treatment system at Building 886 is discussed in **Section 3.6**.

3.4 Phase 2 RI Soil Sampling

A second phase of RI sampling was conducted to further delineate soil contamination at Building 886. Phase 2 soil RI sampling was conducted from November 7 through November 26, 2002. A total of 31 soil samples, including one duplicate sample, were collected from 12 different geoprobe locations throughout the area around Building 886. Soil samples were collected at various depth intervals ranging from 6-12 feet bgs. The locations of the Phase 2 soil borings are shown in **Figure 3-4**.

TVS personnel conducted the sampling using direct-push technology. All down-hole sampling equipment was decontaminated prior to use and between each boring. The samples were placed in laboratory-supplied bottles and placed on ice upon collection to ensure samples were kept below 4° C. The soil samples were analyzed by the FMETL for TPH in all 31 samples. Seven of the 31 soil samples which were collected from boring locations containing soil exceeding 1,000 ppm TPH were also analyzed for VOCs. A summary of the soil sampling activities, including rounds, well IDs, sample IDs, sample locations, collection/analysis date, analytical parameters and analysis method, is provided in **Table 3-6**. Copies of the groundwater sampling chain-of-custody forms and laboratory data sheets are presented in **Appendix D**. The results of the Phase 2 RI soil sampling are presented and discussed in **Section 4.3**.

3.5 Phase 2 RA Post-Excavation Soil Activities

Based on the results of the Phase 1 and Phase 2 RI activities, an RA consisting of the excavation and removal of contaminated soil (from an area different from the Phase 1 RA excavation area) exceeding the NJDEP RDCSCC for TPH was conducted from November 2002 through February 2003. A total of approximately 4,000 tons of soil with contamination in excess of the NJDEP RDCSCC was excavated and removed from the site. Following excavation activities, post-excavation samples were collected to determine if contamination remained. A total of 60 post-excavation soil samples, including seven duplicate samples, were collected from within the excavation areas at Building 886. The locations of each Phase 2 soil sample are shown in **Figure 3-5**.

The samples were placed in laboratory-supplied bottles and placed on ice upon collection to ensure samples were kept below 4° C. The sample analysis was performed by the FMETL for TPH in all 60 samples. Twenty-two out of the 60 soil samples which were collected from boring locations containing soil exceeding 1,000 ppm and/or exceeding 10,000 mg/kg were also analyzed for VOCs. A summary of the groundwater sampling activities, including rounds, well IDs, sample IDs, sample locations, collection/analysis date, analytical parameters and analysis method, is provided in **Table 3-7**. Copies of the soil sampling chain-of-custody forms and laboratory data sheets are presented in **Appendix** C. The results of the Phase 2 RA soil sampling are presented and discussed below in **Section 4.1**.

3.6 Groundwater Treatment System

Based on the results of the geoprobe groundwater investigation, a remedial design consisting of the recovery of free-phase petroleum hydrocarbons was initiated. In January 2003, Handex was contracted for the installation of a groundwater treatment system consisting of groundwater monitoring and recovery wells and air driven product recovery pumps. A total of 13 groundwater monitoring and recovery wells (886MW01, 886MW02, 886MW03, 886MW04, 886MW05, 886RW01, 886RW02, 886RW03, 886RW05, 886RW06, 886RW07 and 886RW08) were installed by at Building 886 to establish the areal extent of petroleum hydrocarbon impacts to groundwater and serve as sentinel wells. The locations of each groundwater monitoring well are shown in **Figure 3-6**. Monitoring well records and permits are provided in **Appendix A**.

The groundwater treatment system included an automated product recovery system (Clean Environmental Equipment, Model GNE/200/SOS) which would remove free-floating hydrocarbon down to a sheen (≤ 0.01 in.) from depths of 200 feet in monitoring wells. The pump would draw product from the skimmer and push it to the surface into a surface-mounted holding tank within a system shed, located on the west side of Building 866 as shown on the As-Built Site Plan included in **Appendix A**. The system specifications and the operations and maintenance manual are included in **Appendix A**.

Since installation, the groundwater treatment system has not been activated for regular use in the recovery of free-phase petroleum hydrocarbons; however, manual product gauging has been performed at 886RW04 (**Table 3-3**).

3.6.1 Groundwater Monitoring Well Sampling

On February 5 and February 12, 2003, 15 groundwater samples, including two duplicate samples, were collected from 13 monitoring well locations around Building 886. Sampling activities were performed in accordance with the *Fort Monmouth Standard Sampling Operating Procedure* (December 1997). All down-hole sampling equipment was decontaminated prior to use and between each sample. The samples were placed in laboratory-supplied bottles and placed on ice upon collection to ensure samples were kept below 4° C. The groundwater samples were analyzed by the FMETL for TPH, Target Compound List (TCL+30) plus 30 parameters, which includes VOCs and SVOCs, pesticides, PCBs, and TAL metals. A summary of the groundwater sampling activities, including rounds, well IDs, sample IDs, sample locations, collection/analysis date, analytical parameters and analysis method, is provided in **Table 3-8**. Copies of the groundwater sampling chain-of-custody forms and laboratory data sheets are presented in **Appendix F**. The results of the groundwater monitoring well sampling are presented and discussed in **Section 4.4**.

3.6.2 Groundwater Depth Measurements

During the monitoring well sampling conducted at the 13 wells at Building 886 on February 5 and February 12, 2003, groundwater was encountered in the 13 monitoring wells at Building 886 at depths ranging from 6.38 to 11.03 feet bgs (**Table 3-9**) with a varying gradient toward the northwest (**Figure 3-6**).

4.0 REMEDIAL ACTION RESULTS

This section includes a discussion of the chemical characterization of the site at Building 886 based on the various samples collected and analyzed, which include monitoring well groundwater samples and post-excavation RA soil samples. TVS personnel were responsible for the collection of samples during this RI. Sample analyses were performed by the FMETL.

4.1 Post-Excavation RA Soil Sampling Results

This section presents a discussion of the results of laboratory analyses performed for the 83 post-excavation RA soil samples collected from January 2002 through February 2003 to evaluate the effectiveness of the contaminated soil excavation activities with respect to soil contamination at Building 886. The laboratory data reports are included as **Appendix B. Figure 3-1** and **Figure 3-5** show the remaining soil contamination at the excavation site at Building 886.

During two post-excavation soil sampling events (Phase 1 and Phase 2) conducted from January 2002 to March 2002 and from November 2002 through February 2003, TPH was detected in 43 soil samples. Eleven samples contained soils which exceeded the NJDEP RDCSCC for TPH (>10,000 ppm), while the remaining 32 were detected below the NJDEP RDCSCC. No VOCs were detected in the soil samples at concentrations above their respective NJDEP RDCSCC. Analytes detected in post-excavation soil samples at concentrations above the NJDEP RDCSCC are highlighted and printed in bold typeface in **Table 4-1** (Phase 1) and **Table 4-6** (Phase 2). An exceedence summary for Phase 2 is included as **Table 4-7**.

4.1.1 TPH

During the Phase 1 RA sampling event, TPH was detected in five post-excavation soil samples all at concentrations below the RDCSCC.

During the Phase 2 soil sampling event, TPH was detected in 38 post-excavation soil samples. TPH was detected in 11 post-excavation soil samples at concentrations that exceed the RDCSCC and in 27 post-excavation soil samples at concentration below the RDCSCC.

TPH was detected in soil samples at concentrations exceeding the NJDEP RDCSCC of 10,000 mg/kg in 11 Phase 2 post-excavation soil sampling locations. Concentrations ranged from 10,284.4 mg/kg at 886-PX23W to 31,639.09 mg/kg at 886-PX24W.

4.1.2 **VOCs**

No VOCs were detected above the appropriate NJDEP RDCSCC at the site.

4.2 Phase 1 RI Soil Sampling Results

During the Phase 1 RI soil sampling, TPH was detected in 128 soil samples. Eleven samples contained soils which exceeded the NJDEP RDCSCC for TPH (>10,000 ppm),

while the remaining 117 were detected below the NJDEP RDCSCC. No VOCs were detected in the soil samples at concentrations above their respective NJDEP RDCSCC. Analytes detected in Phase 1 RI soil samples at concentrations above their respective NJDEP RDCSCC are highlighted and printed in bold typeface in **Table 4-2**. **Figure 3-2** shows the remaining soil contamination at the excavation site at Building 886 and an exceedence summary is included as **Table 4-3**.

4.2.1 TPH

During the Phase 1 RI soil sampling, TPH was detected in 127 soil samples; 11 soil samples exceeded the RDCSCC (886-8-72", 886-8-96", 886-8-120", 886-9-96", 886-11-96". 886-13-120", 886-17-48", 886-24-72", 886-29-96", 886-31-96" and 886-41 10'), and 116 soil samples were detected at concentrations below the RDCSCC.

TPH was detected in soil samples at concentrations exceeding the NJDEP RDCSCC of 10,000 mg/kg in 11 Phase 1 RI soil samples. Concentrations ranged from 11,024.72 mg/kg at 886-9-96" to 15,152.37 mg/kg at 886-24-72".

Because concentrations exceeding the NJDEP cleanup criteria were present, further sampling was deemed necessary to delineate the extents of contamination. Phase 2 investigation sampling for Building 886 is discussed in **Section 3.4**.

Boring 886-41 was resampled to confirm that the soil sample taken at 10' bgs exceeded the RDCSCC. The results showed a concentration well below the RDCSCC and that the first sample result was in error. These confirmation results are shown in **Table 4-4**.

4.2.2 **VOCs**

No VOCs were detected above their appropriate NJDEP RDCSCC at the site.

4.3 Phase 2 RI Soil Sampling Results

During the Phase 2 RI soil sampling, TPH was detected in 12 soil samples. Two samples contained soils which exceeded their respective NJDEP RDCSCC for TPH (>10,000 ppm), while the remaining ten were detected below their respective NJDEP RDCSCC.

No VOCs were detected in the soil samples at concentrations above their respective NJDEP RDCSCC.

Analytes detected in Phase 2 RI soil samples at concentrations above their respective NJDEP RDCSCC are highlighted and printed in bold typeface in **Table 4-4**. **Figure 3-4** shows the remaining soil contamination at Building 886. An exceedence summary is included as **Table 4-5**.

4.3.1 TPH

During the Phase 2 RI soil sampling, TPH was detected in two soil samples exceeding the RDCSCC.

TPH was detected in soil samples at concentrations exceeding the NJDEP RDCSCC of 10,000 mg/kg in two Phase 2 RI soil samples. Concentrations ranged from 14,885.10 mg/kg at 886-57-8' to 22,317.07 mg/kg at 886-57-6'.

Based on samples from surrounding borings 886-55,886-56, 886-58, and 886-59, whose sampling results were well below the RDCSCC, it was determined that the contamination found at boring 886-57 is limited to that small area. The occurrence of high voltage utilities in that area prohibited further excavation; therefore, these soils were left in place.

4.3.2 **VOCs**

No VOCs were detected above their appropriate NJDEP RDCSCC at the site.

4.4 Groundwater Monitoring Well Sampling Results

This section presents a discussion of the results of laboratory analyses performed for the 17 groundwater samples from the 13 groundwater monitoring and recovery wells (886MW01, 886MW02, 886MW03, 886MW04, 886MW05, 886RW01, 886RW02, 886RW03, 886RW04, 886RW05, 886RW06, 886RW07 and 886RW08) collected from January 2002 through February 2003 evaluate the effectiveness of the groundwater treatment system with respect to groundwater contamination at the Building 886. The well groundwater samples were analyzed for TPH, TCL+30 parameters and TAL metals. The laboratory data reports are included as **Appendix E**. **Figure 4-2** shows the remaining groundwater contamination at Building 886.

During this sampling event, a total of nine VOCs were detected in site groundwater. Two VOCs were detected at concentrations that exceed their respective GWQC, while the remaining seven VOCs were detected below their respective GWQC. TPH was detected in 12 samples; however there is no NJDEP GWQC for TPH. A total of ten SVOCs were detected in site groundwater. One SVOC was detected at a concentration that exceeded its GWQC, while the remaining nine SVOCs were detected below their respective GWQC. Three pesticides were detected in site groundwater at concentrations below their respective GWQC. A total of 20 metals were detected in site groundwater. Five metals were detected at concentrations that exceed their respective GWQC, while the remaining 15 metals were detected below their respective GWQC. Analytes detected in groundwater samples at concentrations above their respective NJDEP GWQC are highlighted and printed in bold typeface in **Table 4-8**. An exceedance summary is included as **Table 4-9**.

4.4.1 **VOCs**

During this sampling event, a total of two VOCs were detected in site groundwater at concentrations that exceed their respective GWQC.

Benzene was detected at concentrations exceeding the GWQC of 1.0 ug/L at three monitoring well locations. Concentrations ranged from 1.23 ug/L in 886RW07 to 2.16 ug/L in 886RW02.

Methyl ethyl ketone (2-butanone) was detected at concentrations exceeding the GWQC of 300 ug/L at two groundwater monitoring well locations. Concentrations ranged from 29,510.7 ug/L in 886RW08 to 30,039.7 ug/L in 886RW01.

4.4.2 **SVOCs**

During this sampling event, a one SVOC was detected in site groundwater at a concentration that exceeded its GWQC.

N-Nitrosodiphenylamine was detected at a concentration exceeding the GWQC of 20 ug/L at one groundwater monitoring well location. A concentration of 38.99 ug/L was detected in 886MW03.

4.4.3 Pesticides and PCBs

No pesticides or PCBs were detected above the appropriate GWQC at the site.

4.4.4 Metals

Aluminum was detected at concentrations exceeding the GWQC of 200 ug/L at six groundwater monitoring well locations. Concentrations ranged from 212 ug/L in 886MW01 to 1250 ug/L in 886MW03.

Arsenic was detected at a concentration exceeding the GWQC of 8 ug/L at one groundwater monitoring well location. A concentration of 12.2 ug/L was detected in 886MW02.

Iron was detected at concentrations exceeding the GWQC of 300 ug/L at 13 groundwater monitoring well locations. Concentrations ranged from 307 ug/L in 886MW05 to 97,500 ug/L in 886MW02.

Manganese was detected at concentrations exceeding the GWQC of 50 ug/L at 13 groundwater monitoring well locations. Concentrations ranged from 54.7 ug/L in 886MW05 to 3000 ug/L in 886MW02.

Sodium was detected at a concentration exceeding the GWQC of 50,000 ug/L at one groundwater monitoring well location. A concentration of 61,800 ug/L was detected in 886RW03.

4.5 Quality Assurance/Quality Control (QA/QC)

In order to verify the reliability of the analytical results, Versar reviewed the holding times for each sample and the results of the analysis of seven method blanks (five soil and two groundwater), nine trip blanks (seven soil and two groundwater), two field blanks (groundwater only), and 16 field duplicate samples (14 soil and two groundwater). All samples were analyzed by the FMETL within the prescribed holding time requirements for each analytical method.

Method Blanks

Laboratory method blanks accompanied each batch of samples for Building 886. These method blanks consist of laboratory-grade water that is processed identically to the samples and analyzed with the sample batch. A total of seven method blanks, five soil and two groundwater, were analyzed with Building 886 samples.

The results of the method blank analyses showed that one VOC was detected in at least one of the five method blank samples collected from the post-excavation soil at Building 886. Acetone was detected in one of the method blanks at a concentration below its NJDEP RDCSCC. The detection of acetone indicates that the sample handling procedures, including the sample glassware, may have introduced contamination into the sampling and analysis process.

The results of the method blank analyses showed that no VOCs, SVOCs, pesticides or PCBs were detected in the two method blank samples collected from the groundwater at Building 886.

Several metals were detected in at least one method blank groundwater sample, including aluminum, calcium, chromium, copper, lead, magnesium, manganese, potassium, selenium, silver, sodium and zinc. All of the metals were detected in only a few samples at very low concentrations below their respective NJDEP GWQC.

Trip Blanks

A total of nine trip blanks, seven soil and two groundwater, were included as part of Building 886 sampling programs to document that volatile organics were not introduced into the samples during the handling process. The trip blanks were prepared by the FMETL and consisted of sample bottles filled with laboratory deionized water. The trip blanks remained with the sample bottles in coolers and were returned to the laboratory for analysis with the post-excavation soil and groundwater monitoring well samples.

Two VOCs were detected in at least six trip blanks with the post-excavation soil samples. Acetone was detected in six trip blanks, four of which were detected at concentrations exceeding its NJDEP RDCSCC. Chloroform was detected in at least four trip blanks at concentrations above its NJDEP RDCSCC. The detections of chloroform and acetone indicate that the sample handling procedures, including the sample glassware, may have introduced contamination into the sampling and analysis process.

One VOC was detected in at least two trip blanks with the groundwater monitoring well samples. Chloroform was detected in both of the trip blanks at a concentration below its NJDEP GWQC. The detection of chloroform indicates that sample-handling procedures, including the sample glassware, may have introduced contamination into the sampling and analysis process.

Field Blanks

One field blank sample was obtained during each groundwater sampling activity to document the equipment decontamination procedures. A total of two field blanks were

collected during Building 886 groundwater sampling events. The field blanks were collected by rinsing laboratory-supplied deionized water over the sampling equipment used for each day's activities. The water was collected in clean laboratory-supplied sample jars and submitted for analysis along with Building 886 groundwater samples.

The results of the field blank analyses showed that one VOC was detected in at least two field blanks. Chloroform was detected in both of the field blanks at concentrations below its NJDEP GWQC. As noted for the trip blanks, the detection of chloroform indicates that sample-handling procedures, including the sample glassware, may have introduced contamination into the sampling and analysis process. In addition, the same VOCs found in the field blanks were also found in the trip blanks, suggesting that the sampling and decontamination procedures did not introduce additional contamination.

The results of the field blank analyses showed that no SVOCs, pesticides or PCBs were detected in the 16 field blank groundwater samples collected at Building 886.

As noted for the method blanks, several metals were detected in at least one field blank sample, including aluminum, barium, calcium, chromium, copper, iron, magnesium, manganese, potassium, silver, sodium and zinc. Most of the metals were detected in only a few samples at very low concentrations. Because these metals were all also detected in the method blank samples, the sampling and decontamination procedures do not appear to have been the source of sample contamination. However, any subsequent evaluation of the metals analytical results must account for the possibility of laboratory contamination resulting in false positives for the environmental samples.

Duplicate Samples

A total of 16 field duplicate samples (14 soil and two groundwater) were collected during the sampling events to verify the consistency of the entire sampling and analytical procedure throughout the various RI and RA areas. Relative Percent Difference (RPD) was calculated for each duplicate sample. The RPDs for TPH ranged from 2.7% to 200%, however the average RPD for all TPH results is 76.5%. Most of the RPD values are low (below 50%), suggesting reasonable precision in the field and laboratory operations. Some RPD values are high (over 50%), however, this is due to low sample concentrations and a corresponding low MDL used by the laboratory and is not indicative of poor precision because the differences noted may be attributed to the analytical sensitivity. Also, the comparison of one very small number with another very small number will result in a high RPD.

The RPDs for VOCs in soil also ranged from 5.5% to 25.8%, with an average of 9.3%. The RPDs for VOCs in groundwater ranged from 2.2% to 26.4%, and with an average of 9.6%. These RPDs are well below the established limit of 30% for laboratory duplicate samples and indicate that a high level of precision was maintained throughout the sampling and analytical procedures.

Based on average RPDs, the QA/QC sample results indicate good precision for all of the analyses. However, the presence of metals in the method blanks and field blanks indicate

that contamination may have been introduced by the sampling and analysis procedures. Therefore, any subsequent evaluation of the metals analytical results must account for the possibility of laboratory contamination resulting in false positives for the environmental samples.

5.0 CONCLUSIONS AND RECOMMENDATIONS

This section provides a discussion of the findings of the RA activities and recommendations for future action.

In order to determine the remaining contamination in soil and groundwater at Building 886, the first step was to identify exceedances of the NJDEP RDCSCC in the soil excavation and the NJDEP GWQC in monitoring well samples collected at Building 886. These exceedances are presented in **Section 4.0** above and in **Tables 4-2** and **Table 4-4**.

During the Phase 2 post-excavation soil sampling, TPH was detected in two post-excavation soil samples at concentrations exceeding its RDCSCC. As exceedances were identified, further excavation was performed. This eliminated one of the exceedances. The remaining TPH exceedance at 886-PX19/WW 7.5-8' is located on the north-west corner of the excavation wall. Additional excavation could not be performed due to the occurrence of utility lines which run through the center of the island and parallel to the street (**Figure 3-5**).

During the groundwater monitoring well sampling event, a total of eight groundwater constituents (benzene, methyl ethyl ketone, n-nitrosodiphenylamine, aluminum, arsenic, iron, manganese and sodium) were identified at concentrations exceeding their respective GWQC.

Several factors were used to eliminate or identify analytes as contaminants of concern (COCs), including the magnitude and frequency of the exceedances and comparisons to established background concentrations.

Two VOCs were detected in groundwater at Building 886 at concentrations exceeding their respective NJDEP GWQC. Benzene was detected at concentrations exceeding the GWQC of 1.0 ug/L at three monitoring well locations. Methyl ethyl ketone (2-butanone) was detected at concentrations exceeding the GWQC of 300 ug/L at only two groundwater monitoring well locations. Benzene is considered to be a groundwater COC at Building 886. Methyl ethyl ketone will remain a potential COC at Building 886 until further sampling can better assess the occurrence of this contaminant at the site.

886MW03 had been fitted with 4-6 inch adapter for possibility as use as a recovery well. Handex improperly used glue in the installation of the adapter which may have contributed to the appearance of methyl ethyl ketone at the site. These constituents will continue to be monitored.

One SVOC was detected in groundwater at Building 886 at concentrations exceeding their respective NJDEP GWQC. N-Nitrosodiphenylamine was detected at a concentration exceeding the GWQC of 20 ug/L at one groundwater monitoring well location. N-Nitrosodiphenylamine will remain a potential COC at Building 886 until further sampling can better assess the occurrence of this contaminant at the site.

The five different metals that were detected in Building 886 groundwater at concentrations exceeding their respective NJDEP GWQC are separated into background and non-native metals. The indigenous metals are compared to the Main Post Maximum Background Concentrations (MBC) identified in the Weston SI (1995). The non-native metals are discussed in relation to the New Jersey GWQC only.

Of the five metals detected in Building 886 groundwater that exceeded their respective GWQC, four metals (aluminum, iron, manganese and sodium) are common background constituents in Monmouth County soils. Elevated concentrations of these metals are routinely observed in groundwater samples collected at Fort Monmouth. In consideration of these facts, the groundwater analytical results for these metals were compared to their respective MBCs of 121,000 ug/L (aluminum), 431,000 ug/L (iron), 331 ug/L (manganese) and 21,500 ug/L (sodium), as follows:

- Aluminum is not considered to be a COC because aluminum was not detected at concentrations exceeding the MBC.
- Iron is not considered to be a COC because iron was not detected at concentrations exceeding the MBC.
- Manganese is not considered to be a COC because even though there were exceedences of the MBC in this area, these concentrations are not uncommon in other Fort Monmouth groundwater results. Also, manganese cannot be associated with any release at the site.
- Sodium is not considered to be a COC due to the proximity of Building 886 to sea water.

One non-native metal exceeded its GWQC (arsenic). The results of the soil sampling do not support a localized source of arsenic contamination in subsurface soil at Building 886. Arsenic was detected in only one monitoring well at a concentration greater than its NJDEP GWQC, therefore can be considered an anomalous result. It is unlikely that arsenic is adversely affecting the quality of shallow groundwater at Building 886 or that it will migrate offsite.

A groundwater monitoring program, including quarterly groundwater well monitoring for VOCs and SVOCs is recommended at Building 886.

Monitoring Well	Analyzed for	Future Sampling Status	Reason
886MW01	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Quarterly	No COC detections, but is downgradient of exceeding wells.
886MW02	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Quarterly	No COC detections, but is downgradient/cross-gradient of exceeding wells.
886MW03	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Quarterly	Potential COC exceedence.

886MW04	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Eliminate	No COC exceedences and upgradient of exceeding wells.
886MW05	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Quarterly	No COC exceedences but may be cross-gradient of exceeding wells.
886RW01	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	Potential COC exceedence.
886RW02	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	COC exceedence.
886RW03	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	No COC detections, but is downgradient of exceeding wells.
886RW04	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	No COC detections, but is downgradient of exceeding wells.
886RW05	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	COC exceedence.
886RW06	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	No COC detections, but is downgradient/cross-gradient of exceeding wells.
886RW07	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	COC exceedence.
886RW08	VOCs, SVOCs, Pesticides, PCBs, TAL Metals, TPH	Continue VOCs and SVOCs Annually	Potential COC exceedence.

The estimated annual costs for implementation of the remedial actions to be performed at Building 886 are provided below:

Estimated Annual Costs of Remedial Actions to be Performed at Building 886					
TASK	ESTIMATED COSTS				
1. Total Labor Cost	\$ 3,200				
2. Laboratory Cost	\$ 12,925				
TOTAL ESTIMATED COSTS	\$ 16,125				

6.0 REFERENCES

Jablonski, L.A., 1968, Groundwater Resources of Monmouth County, New Jersey. USGS Special Report 23. USGS, Washington, DC.

Martin, M., 1998, Groundwater Flow in the New Jersey Coastal Plain. USGS Professional Paper 1404-H.

Meisler, H., J.A. Miller, L.L. Knobel, and R.L. Wait, 1988, "Region 22, Atlantic and Eastern Gulf Coastal Plan," in Hydrogeology: The Geology of North America, W. Back, J.S. Rosenhein, and P.R. Seaber, editors. Vol. 0-2. pp. 209-218.

Minard, J.P., 1969, Geology of Sandy Hook Quadrangle in Monmouth County, New Jersey. U.S. Government Printing Office, Washington, DC.

New Jersey Geological Survey, 1994, Geologic Map of New Jersey.

Roy F. Weston, Inc. (Weston), December 1995, Site Investigation Report - Main Post and Charles Wood Areas, Fort Monmouth, New Jersey.

USDA Soil Conservation Service, 1989, Soil Survey of Monmouth County, New Jersey.

U.S. Geological Survey, 1981, Long Branch Quadrangle Map.

Zapecza, O., 1989, Hydrogeologic Framework of the New Jersey Coastal Plain. U.S. Geological Survey Professional Paper 1404-B. U.S. Government Printing Office, Washington, DC.

TABLES

Table 3-1 Phase 1 RA Soil Sampling Summary Fort Monmouth, New Jersey

Dound	Field Sample ID	Lab	Date Collected	Matrix	Analytical Parameters	Analytical Methods
Round	Sample 1D	Sample ID	Conected	Matrix	Analytical Parameters	Anarytical Methods
	886-PX1	2003501	1/16/2002	Soil	ТРН	OQA-QAM-025
	886-PX2	2003502	1/16/2002	Soil	TPH	OQA-QAM-025
	886-PX3	2003503	1/16/2002	Soil	TPH	OOA-OAM-025
	886-PX4	2003504	1/16/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2003504)	2003505	1/16/2002	Soil	TPH	OQA-QAM-025
	886-PX5	2004601	1/25/2002	Soil	TPH	OQA-QAM-025
	886-PX6	2004602	1/25/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2004603)	2004603	1/25/2002	Soil	TPH	OQA-QAM-025
	886-PX7/SW	2006301	1/30/2002	Soil	TPH	OQA-QAM-025
	886-PX8/EW	2006302	1/30/2002	Soil	TPH	OQA-QAM-025
	886-PX9/BOT	2006303	1/30/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2006304)	2006304	1/30/2002	Soil	TPH	OQA-QAM-025
	886-PX10/NW	2007301	2/4/2002	Soil	TPH	OQA-QAM-025
	886-PX11/BOT	2007302	2/4/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2007303)	2007303	2/4/2002	Soil	TPH	OQA-QAM-025
	886-PX12/BOT	2008101	2/6/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2008102)	2008102	2/6/2002	Soil	TPH	OQA-QAM-025
	886-PX12A/BM	2011401	2/26/2002	Soil	TPH	OQA-QAM-025
	886-PX13/BM	2011402	2/26/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2011403)	2011403	2/26/2002	Soil	TPH	OQA-QAM-025
	886-PX14/SW	2013601	3/6/2002	Soil	TPH	OQA-QAM-025
	886-PX15/BOT	2013602	3/6/2002	Soil	TPH	OQA-QAM-025
	886-DUP (2013603)	2013603	3/6/2002	Soil	TPH	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/5/2006 Page 1 of 1

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Down J	Field	Lab	Date	Madrin	Amalustical Damanastana	Analysical Mathada
Round	Sample ID	Sample ID	Collected	Matrix	Analytical Parameters	Analytical Methods
	886-1 0-6"	2014601	3/9/2002	Soil	ТРН	OQA-QAM-025
	886-1 0-6 886-1 24"	2014601	3/9/2002	Soil	ТРН	OQA-QAM-025 OQA-QAM-025
	886-1 48"	2014603	3/9/2002	Soil	ТРН	OQA-QAM-025
	886-1 52"	2014604	3/9/2002	Soil	ТРН	OQA-QAM-025 OQA-QAM-025
	886-1 72"	2014605	3/9/2002		ТРН	OQA-QAM-025
	886-2 0-6"	2014606	3/9/2002	Soil Soil	TPH TPH	OQA-QAM-025 OQA-QAM-025
	886-2 24"	2014607	3/9/2002	Soil	TPH	OQA-QAM-025
	886-2 48"	2014608	3/9/2002	Soil	TPH	OQA-QAM-025
	Dup (2014609)	2014609	3/9/2002	Soil	TPH	OQA-QAM-025
	886-2 72"	2014610	3/9/2002	Soil	TPH	OQA-QAM-025
	886-3 0-6"	2014611	3/9/2002	Soil	TPH	OQA-QAM-025
	886-3 24"	2014612	3/9/2002	Soil	ТРН	OQA-QAM-025
	886-3 48"	2014613	3/9/2002	Soil	ТРН	OQA-QAM-025
	886-3 72"	2014614	3/9/2002	Soil	TPH	OQA-QAM-025
	886-4 0-6"	2014701	3/10/2002	Soil	TPH	OQA-QAM-025
	886-4 24"	2014702	3/10/2002	Soil	TPH	OQA-QAM-025
	886-4 48"	2014703	3/10/2002	Soil	TPH	OQA-QAM-025
	886-4 72"	2014704	3/10/2002	Soil	TPH	OQA-QAM-025
	886-4 96"	2014705	3/10/2002	Soil	TPH	OQA-QAM-025
	886-4 120"	2014706	3/10/2002	Soil	TPH	OQA-QAM-025
	886-4 144"	2014707	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 0-6"	2014708	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 24"	2014709	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 48"	2014710	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 72"	2014711	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 96"	2014712	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 120"	2014713	3/10/2002	Soil	TPH	OQA-QAM-025
	886-5 144"	2014714	3/10/2002	Soil	TPH	OQA-QAM-025
	886-6 0-6"	2014715	3/10/2002	Soil	TPH	OQA-QAM-025
	886-6 24"	2014716	3/10/2002	Soil	TPH	OQA-QAM-025
	886-6 48"	2014717	3/10/2002	Soil	TPH	OQA-QAM-025
	886-6 72"	2014718	3/10/2002	Soil	TPH	OQA-QAM-025
	886-6 96"	2014719	3/10/2002	Soil	TPH	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 1 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
1104114	886-6 120"	-			·	·
	886-6 144"	2014720 2014721	3/10/2002 3/10/2002	Soil Soil	ТРН ТРН	OQA-QAM-025 OQA-QAM-025
	Dup (2014722)	2014721	3/10/2002	Soil	трн ТРН	OQA-QAM-025 OQA-QAM-025
	886-7 0-6"	2014/22	3/11/2002	Soil	ТРН	OQA-QAM-025
	886-7 24"	2014901	3/11/2002	Soil	трн ТРН	OQA-QAM-025 OQA-QAM-025
	886-7 48"	2014902	3/11/2002			OQA-QAM-025
	886-7 72"	2014903	3/11/2002	Soil Soil	ТРН ТРН	OQA-QAM-025
	886-7-96"	2014904	3/11/2002		ТРН	
	886-7-120"			Soil	ТРН	OQA-QAM-025
	886-7-144"	2014906	3/11/2002	Soil	трн ТРН	OQA-QAM-025
	886-8-0-6"	2014907	3/11/2002	Soil	трн ТРН	OQA-QAM-025
		2014908	3/11/2002	Soil		OQA-QAM-025
	886-8-24"	2014909	3/11/2002	Soil	TPH	OQA-QAM-025
	886-8-48"	2014910	3/11/2002	Soil	TPH	OQA-QAM-025
	886-8-72"	2014911	3/11/2002	Soil	TPH	OQA-QAM-025
	886-8-96"	2014912	3/11/2002	Soil	TPH	OQA-QAM-025
	886-8-120"	2014913	3/11/2002	Soil	TPH	OQA-QAM-025
	886-8-144"	2014914	3/11/2002	Soil	TPH	OQA-QAM-025
	886-9-0-6"	2014915	3/11/2002	Soil	TPH	OQA-QAM-025
	886-9-24"	2014916	3/11/2002	Soil	ТРН	OQA-QAM-025
	886-9-48"	2014917	3/11/2002	Soil	ТРН	OQA-QAM-025
	886-9-72"	2014918	3/11/2002	Soil	ТРН	OQA-QAM-025
	886-9-96"	2014919	3/11/2002	Soil	TPH	OQA-QAM-025
	886-9-120"	2014920	3/11/2002	Soil	TPH	OQA-QAM-025
	886-9-144"	2014921	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-0-6"	2014922	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-24"	2014923	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-48"	2014924	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-72"	2014925	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-96"	2014926	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-120"	2014927	3/11/2002	Soil	TPH	OQA-QAM-025
	886-10-144"	2014928	3/11/2002	Soil	TPH	OQA-QAM-025
	886-11-0-6"	2015301	3/12/2002	Soil	TPH	OQA-QAM-025
	886-11-24"	2015302	3/12/2002	Soil	TPH	OQA-QAM-025
	886-11-48"	2015303	3/12/2002	Soil	TPH	OQA-QAM-025
	886-11-72"	2015304	3/12/2002	Soil	TPH	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 2 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886-11-96"	-			-	•
		2015305	3/12/2002	Soil	TPH	OQA-QAM-025
	886-11-120" 886-11-144"	2015306 2015307	3/12/2002 3/12/2002	Soil Soil	ТРН ТРН	OQA-QAM-025 OQA-QAM-025
	886-12-0-6"	2015308	3/12/2002	Soil	TPH	OQA-QAM-025
	886-12-24"	2015309	3/12/2002	Soil	TPH	OQA-QAM-025
	886-12-48"	2015310	3/12/2002	Soil	TPH	OQA-QAM-025
	886-12-72"	2015311	3/12/2002	Soil	TPH	OQA-QAM-025
	886-12-96"	2015312	3/12/2002	Soil	TPH	OQA-QAM-025
	886-12-120"	2015313	3/12/2002	Soil	TPH	OQA-QAM-025
	886-12-144"	2015314	3/12/2002	Soil	TPH	OQA-QAM-025
	886-13-0-6"	2015315	3/12/2002	Soil	TPH	OQA-QAM-025
	886-13-24"	2015316	3/12/2002	Soil	TPH	OQA-QAM-025
	886-13-48"	2015317	3/12/2002	Soil	TPH	OQA-QAM-025
	886-13-72"	2015318	3/12/2002	Soil	TPH	OQA-QAM-025
	886-13-96"	2015319	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-13-120"	2015320	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-13-144"	2015321	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-0-6"	2015322	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-24"	2015323	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-48"	2015324	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-72"	2015325	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-96"	2015326	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-120"	2015327	3/12/2002	Soil	TPH	OQA-QAM-025
	886-14-144"	2015328	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-0-6"	2015329	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-24"	2015330	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-48"	2015331	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-72"	2015332	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-96"	2015333	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-120"	2015334	3/12/2002	Soil	TPH	OQA-QAM-025
	886-15-144"	2015335	3/12/2002	Soil	TPH	OQA-QAM-025
	886-16-0-6"	2015336	3/12/2002	Soil	TPH	OQA-QAM-025
	886-16-24"	2015337	3/12/2002	Soil	TPH	OQA-QAM-025
	886-16-48"	2015338	3/12/2002	Soil	TPH	OQA-QAM-025
	886-16-72"	2015339	3/12/2002	Soil	ТРН	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 3 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886-16-96"	2015340	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-16-120"	2015341	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-16-144"	2015342	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-17-0-6"	2015343	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-17-24"	2015344	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-17-48"	2015345	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-17-72"	2015346	3/12/2002	Soil	TPH	OQA-QAM-025
	886-17-96"	2015347	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-17-120"	2015348	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-17-144"	2015349	3/12/2002	Soil	TPH	OQA-QAM-025
	886-18-0-6"	2015350	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-18-24"	2015351	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-18-48"	2015352	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-18-72"	2015353	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-18-96"	2015354	3/12/2002	Soil	TPH	OQA-QAM-025
	886-18-120"	2015355	3/12/2002	Soil	TPH	OQA-QAM-025
	886-18-144"	2015356	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-19-0-6"	2015357	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-19-24"	2015358	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-19-48"	2015359	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-19-72"	2015360	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-19-96"	2015361	3/12/2002	Soil	ТРН	OQA-QAM-025
	886-19-120"	2015362	3/12/2002	Soil	TPH	OQA-QAM-025
	886-19-144"	2015363	3/12/2002	Soil	TPH	OQA-QAM-025
	Dup 1 (2015364)	2015364	3/12/2002	Soil	TPH	OQA-QAM-025
	Dup 2 (2015365)	2015365	3/12/2002	Soil	TPH	OQA-QAM-025
	Dup. 3 (2015366)	2015366	3/12/2002	Soil	TPH	OQA-QAM-025
	886-20-0-6"	2015501	3/14/2002	Soil	TPH	OQA-QAM-025
	886-20-24"	2015502	3/14/2002	Soil	TPH	OQA-QAM-025
	886-20-48"	2015503	3/14/2002	Soil	TPH	OQA-QAM-025
	886-20-72"	2015504	3/14/2002	Soil	TPH	OQA-QAM-025
	886-20-96"	2015505	3/14/2002	Soil	TPH	OQA-QAM-025
	886-20-120"	2015506	3/14/2002	Soil	TPH	OQA-QAM-025
	886-20-144"	2015507	3/14/2002	Soil	TPH	OQA-QAM-025
	886-21-0-6"	2015508	3/14/2002	Soil	TPH	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 4 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
Round	-	-				•
	886-21-24"	2015509	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-21-48"	2015510	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-21-72"	2015511	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-21-96"	2015512	3/14/2002	Soil	TPH	OQA-QAM-025
	886-21-120"	2015513	3/14/2002	Soil	TPH	OQA-QAM-025
	886-21-144"	2015514	3/14/2002	Soil	TPH	OQA-QAM-025
	886-22-0-6"	2015515	3/14/2002	Soil	TPH	OQA-QAM-025
	886-22-24"	2015516	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-22-48"	2015517	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-22-72"	2015518	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-22-96"	2015519	3/14/2002	Soil	TPH	OQA-QAM-025
	886-22-120"	2015520	3/14/2002	Soil	TPH	OQA-QAM-025
	886-22-144"	2015521	3/14/2002	Soil	TPH	OQA-QAM-025
	886-23-0-6"	2015522	3/14/2002	Soil	TPH	OQA-QAM-025
	886-23-24"	2015523	3/14/2002	Soil	TPH	OQA-QAM-025
	886-23-48"	2015524	3/14/2002	Soil	TPH	OQA-QAM-025
	886-23-72"	2015525	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-23-96"	2015526	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-23-120"	2015527	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-23-144"	2015528	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-24-0-6"	2015529	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-24-24"	2015530	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-24-48"	2015531	3/14/2002	Soil	TPH	OQA-QAM-025
	886-24-72"	2015532	3/14/2002	Soil	TPH	OQA-QAM-025
	886-24-96"	2015533	3/14/2002	Soil	TPH	OQA-QAM-025
	886-24-120"	2015534	3/14/2002	Soil	TPH	OQA-QAM-025
	886-24-144"	2015535	3/14/2002	Soil	TPH	OQA-QAM-025
	886-1-120"	2015536	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-1-144"	2015537	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-2-120"	2015538	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-2-144"	2015539	3/14/2002	Soil	TPH	OQA-QAM-025
	886-3-120"	2015540	3/14/2002	Soil	ТРН	OQA-QAM-025
	886-3-144"	2015541	3/14/2002	Soil	ТРН	OQA-QAM-025
	Dup 1 (2015542)	2015542	3/14/2002	Soil	ТРН	OQA-QAM-025
	Dup 2 (2015543)	2015543	3/14/2002	Soil	ТРН	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 5 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	Dup 3 (2015544)	2015544	3/14/2002	Soil	ТРН	OQA-QAM-025
	Dup (2018502)	2018502	4/5/2002	Soil	VOCs	Method 8260
	1-48"	2018503	4/5/2002	Soil	VOCs	Method 8260
	4-72"	2018504	4/5/2002	Soil	VOCs	Method 8260
	5-72"	2018505	4/5/2002	Soil	VOCs	Method 8260
	6-96"	2018506	4/5/2002	Soil	VOCs	Method 8260
	15-72"	2018507	4/5/2002	Soil	VOCs	Method 8260
	7-72"	2018508	4/5/2002	Soil	VOCs	Method 8260
	Dup (2018802)	2018802	4/8/2002	Soil	VOCs	Method 8260
	14-48"	2018803	4/8/2002	Soil	VOCs	Method 8260
	17-72"	2018804	4/8/2002	Soil	VOCs	Method 8260
	8-24"	2018805	4/8/2002	Soil	VOCs	Method 8260
	13-96"	2018806	4/8/2002	Soil	VOCs	Method 8260
	18-48"	2018807	4/8/2002	Soil	VOCs	Method 8260
	18-96"	2018808	4/8/2002	Soil	VOCs	Method 8260
	9-72"	2018809	4/8/2002	Soil	VOCs	Method 8260
	12-72"	2018810	4/8/2002	Soil	VOCs	Method 8260
	11-72"	2018811	4/8/2002	Soil	VOCs	Method 8260
	23-96"	2018812	4/8/2002	Soil	VOCs	Method 8260
	886-25-0-6"	2019701	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-25-24"	2019702	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-25-48"	2019703	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-25-72"	2019704	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-25-96"	2019705	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-25-120"	2019706	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-25-144"	2019707	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-26-0-6"	2019708	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-26-24"	2019709	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-26-48"	2019710	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-26-72"	2019711	4/12/2002	Soil	TPH	OQA-QAM-025
	886-26-96"	2019712	4/12/2002	Soil	TPH	OQA-QAM-025
	886-26-120"	2019713	4/12/2002	Soil	TPH	OQA-QAM-025
	886-26-144"	2019714	4/12/2002	Soil	TPH	OQA-QAM-025
	886-27-0-6"	2019715	4/12/2002	Soil	TPH	OQA-QAM-025
	886-27-24"	2019716	4/12/2002	Soil	ТРН	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 6 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886-27-48"	2019717	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-27-72"	2019718	4/12/2002	Soil	TPH	OQA-QAM-025
	886-27-96"	2019719	4/12/2002	Soil	TPH	OQA-QAM-025
	886-27-120"	2019720	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-27-144"	2019721	4/12/2002	Soil	TPH	OQA-QAM-025
	886-28-0-6"	2019722	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-28-24"	2019723	4/12/2002	Soil	TPH	OQA-QAM-025
	886-28-48"	2019724	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-28-72"	2019725	4/12/2002	Soil	TPH	OQA-QAM-025
	886-28-96"	2019726	4/12/2002	Soil	TPH	OQA-QAM-025
	886-28-120"	2019727	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-28-144"	2019728	4/12/2002	Soil	ТРН	OQA-QAM-025
	Dup (2019729)	2019729	4/12/2002	Soil	ТРН	OQA-QAM-025
	886-29-0-6"	2021101	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-29-24"	2021102	4/18/2002	Soil	TPH	OQA-QAM-025
	886-29-48"	2021103	4/18/2002	Soil	TPH	OQA-QAM-025
	886-29-72"	2021104	4/18/2002	Soil	TPH	OQA-QAM-025
	886-29-96"	2021105	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-29-120"	2021106	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-29-144"	2021107	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-30-0-6"	2021108	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-30-24"	2021109	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-30-48"	2021110	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-30-72"	2021111	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-30-96"	2021112	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-30-120"	2021113	4/18/2002	Soil	TPH	OQA-QAM-025
	886-30-144"	2021114	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-31-0-6"	2021115	4/18/2002	Soil	ТРН	OQA-QAM-025
	886-31-24"	2021116	4/18/2002	Soil	TPH	OQA-QAM-025
	886-31-48"	2021117	4/18/2002	Soil	TPH	OQA-QAM-025
	886-31-72"	2021118	4/18/2002	Soil	TPH	OQA-QAM-025
	886-31-96"	2021119	4/18/2002	Soil	TPH	OQA-QAM-025
	886-31-120"	2021120	4/18/2002	Soil	TPH	OQA-QAM-025
	886-31-144"	2021121	4/18/2002	Soil	TPH	OQA-QAM-025
	886-32-0-6"	2021122	4/18/2002	Soil	TPH	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 7 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
Round	-	-			-	•
	886-32-24"	2021123	4/18/2002	Soil	TPH	OQA-QAM-025
	886-32-48"	2021124	4/18/2002	Soil	TPH	OQA-QAM-025
	886-32-72"	2021125	4/18/2002	Soil	TPH	OQA-QAM-025
	886-32-96"	2021126	4/18/2002	Soil	TPH	OQA-QAM-025
	886-32-120"	2021127	4/18/2002	Soil	TPH	OQA-QAM-025
	886-32-144"	2021128	4/18/2002	Soil	TPH	OQA-QAM-025
	Dup (2021129)	2021129	4/18/2002	Soil	TPH	OQA-QAM-025
	886-33-0-6"	2021301	4/19/2002	Soil	TPH	OQA-QAM-025
	886-33-24"	2021302	4/19/2002	Soil	TPH	OQA-QAM-025
	886-33-48"	2021303	4/19/2002	Soil	TPH	OQA-QAM-025
	886-33-72"	2021304	4/19/2002	Soil	TPH	OQA-QAM-025
	886-33-96"	2021305	4/19/2002	Soil	TPH	OQA-QAM-025
	886-33-120"	2021306	4/19/2002	Soil	TPH	OQA-QAM-025
	886-33-144"	2021307	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-0-6"	2021308	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-24"	2021309	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-48"	2021310	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-72"	2021311	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-96"	2021312	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-120"	2021313	4/19/2002	Soil	TPH	OQA-QAM-025
	886-34-144"	2021314	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-0-6"	2021315	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-24"	2021316	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-48"	2021317	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-72"	2021318	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-96"	2021319	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-120"	2021320	4/19/2002	Soil	TPH	OQA-QAM-025
	886-35-144"	2021321	4/19/2002	Soil	TPH	OQA-QAM-025
	Dup (2021322)	2021322	4/19/2002	Soil	TPH	OQA-QAM-025
	886-36-0-6"	2027001	5/10/2002	Soil	TPH	OQA-QAM-025
	886-36-2'	2027002	5/10/2002	Soil	TPH	OQA-QAM-025
	886-36-4'	2027003	5/10/2002	Soil	TPH	OQA-QAM-025
	886-36-6'	2027004	5/10/2002	Soil	TPH	OQA-QAM-025
	886-36-8'	2027005	5/10/2002	Soil	TPH	OQA-QAM-025
	886-36-10'	2027006	5/10/2002	Soil	ТРН	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 8 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
Round		-			-	•
	886-36-12'	2027007	5/10/2002	Soil	ТРН	OQA-QAM-025
	886-41 0-6"	2035901	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-41 2'	2035902	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-41 4'	2035903	6/10/2002	Soil	TPH	OQA-QAM-025
	886-41 6'	2035904	6/10/2002	Soil	TPH	OQA-QAM-025
	886-41 8'	2035905	6/10/2002	Soil	TPH	OQA-QAM-025
	886-41 10'	2035906	6/10/2002	Soil	TPH	OQA-QAM-025
	886-41 12'	2035907	6/10/2002	Soil	TPH	OQA-QAM-025
	886-40 0-6"	2035908	6/10/2002	Soil	TPH	OQA-QAM-025
	886-40 2'	2035909	6/10/2002	Soil	TPH	OQA-QAM-025
	886-40 4'	2035910	6/10/2002	Soil	TPH	OQA-QAM-025
	886-40 6'	2035911	6/10/2002	Soil	TPH	OQA-QAM-025
	886-40 8'	2035912	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-40 10'	2035913	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-40 12'	2035914	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 0-6"	2035915	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 2'	2035916	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 4'	2035917	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 6'	2035918	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 8'	2035919	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 10'	2035920	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-39 12'	2035921	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 0-6"	2035922	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 2'	2035923	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 4'	2035924	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 6'	2035925	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 8'	2035926	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 10'	2035927	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-38 12'	2035928	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-37 0-6"	2035929	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-37 2'	2035930	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-37 4'	2035931	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-37 6'	2035932	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-37 8'	2035933	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-37 10'	2035934	6/10/2002	Soil	ТРН	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 9 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886-37 12'	2035935	6/10/2002	Soil	ТРН	OQA-QAM-025
	886-47 0-6"	2037901	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-47 2'	2037902	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-47 4'	2037903	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-47 6'	2037904	6/18/2002	Soil	TPH	OQA-QAM-025
	886-47 8'	2037905	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-47 10'	2037906	6/18/2002	Soil	TPH	OQA-QAM-025
	886-47 12'	2037907	6/18/2002	Soil	TPH	OQA-QAM-025
	886-46 0-6"	2037908	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-46 2'	2037909	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-46 4'	2037910	6/18/2002	Soil	TPH	OQA-QAM-025
	886-46 6'	2037911	6/18/2002	Soil	TPH	OQA-QAM-025
	886-46 8'	2037912	6/18/2002	Soil	TPH	OQA-QAM-025
	886-46 10'	2037913	6/18/2002	Soil	TPH	OQA-QAM-025
	886-46 12'	2037914	6/18/2002	Soil	TPH	OQA-QAM-025
	886-42 0-6"	2037915	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-42 2'	2037916	6/18/2002	Soil	TPH	OQA-QAM-025
	886-42 4'	2037917	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-42 6'	2037918	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-42 8'	2037919	6/18/2002	Soil	TPH	OQA-QAM-025
	886-42 10'	2037920	6/18/2002	Soil	TPH	OQA-QAM-025
	886-42 12'	2037921	6/18/2002	Soil	TPH	OQA-QAM-025
	886-43 0-6"	2037922	6/18/2002	Soil	TPH	OQA-QAM-025
	886-43 2'	2037923	6/18/2002	Soil	TPH	OQA-QAM-025
	886-43 4'	2037924	6/18/2002	Soil	TPH	OQA-QAM-025
	886-43 6'	2037925	6/18/2002	Soil	TPH	OQA-QAM-025
	886-43 8'	2037926	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-43 10'	2037927	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-43 12'	2037928	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-44 0-6"	2037929	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-44 2'	2037930	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-44 4'	2037931	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-44 6'	2037932	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-44 8'	2037933	6/18/2002	Soil	ТРН	OQA-QAM-025
	886-44 10'	2037934	6/18/2002	Soil	ТРН	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 10 of 11

Table 3-2 Phase 1 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods	
	886-44 12'	2037935	6/18/2002	Soil	ТРН	OQA-QAM-025	
	886-45 0-6"	2038101	6/19/2002	Soil	TPH	OQA-QAM-025	
	886-45 2'	2038102	6/19/2002	Soil	TPH	OQA-QAM-025	
	886-45 4'	2038103	6/19/2002	Soil	ТРН	OQA-QAM-025	
	886-45 6'	2038104	6/19/2002	Soil	ТРН	OQA-QAM-025	
	886-45 8'	2038105	6/19/2002	Soil	TPH	OQA-QAM-025	
	886-45 12'	2038107	6/19/2002	Soil	TPH	OQA-QAM-025	
	886-48 0-6"	2039901	6/26/2002	Soil	ТРН	OQA-QAM-025	
	886-48 2'	2039902	6/26/2002	Soil	ТРН	OQA-QAM-025	
	886-48 4'	2039903	6/26/2002	Soil	ТРН	OQA-QAM-025	
	886-48 6'	2039904	6/26/2002	Soil	ТРН	OQA-QAM-025	
	886-48 8'	2039905	6/26/2002	Soil	ТРН	OQA-QAM-025	
	886-48 10'	2039906	6/26/2002	Soil	ТРН	OQA-QAM-025	
	886-48 12'	2039907	6/26/2002	Soil	ТРН	OQA-QAM-025	
	16-4'	2066502	9/17/2002	Soil	VOCs	Method 8260	
	25-2'	2066503	9/17/2002	Soil	VOCs	Method 8260	
	29-4'	2066504	9/17/2002	Soil	VOCs	Method 8260	
	30-8'	2066505	9/17/2002	Soil	VOCs	Method 8260	
	31-6'	2066506	9/17/2002	Soil	VOCs	Method 8260	
	34-2'	2066507	9/17/2002	Soil	VOCs	Method 8260	
	40-4'	2066508	9/17/2002	Soil	VOCs	Method 8260	
	41-8'	2066509	9/17/2002	Soil	VOCs	Method 8260	
	FD-4' (2066510)	2066510	9/17/2002	Soil	VOCs	Method 8260	

Notes:

Metals = Target Analyte List Metals; TPH = Total Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 11 of 11

Table 3-3 Product Recovery Measurements Building 886 Fort Monmouth, New Jersey

DATE	Product Thickness (inches)	Volume-Removed (pints)
	RW 4	
4/6/05	0.03	2
4/12/05	trace	0
4/22/05	trace	0
4/29/05	trace	0
5/5/05	trace	0
5/18/05	trace	0
6/27/05	trace	0
9/1/05	0.0	0

Table 3-4 RI Geoprobe Groundwater Sampling Summary 886

Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods	
	Loc. #13 12-16' Loc. #29 12-16'	2040503 2040504	6/27/2002 6/27/2002	Aqueous Aqueous	SVOCs; VOCs SVOCs; VOCs	Method 8270; Method 8260 Method 8270; Method 8260	

Notes: Metals = Target Analyte List Metals; TPH = Total Petroleum Hydrocarbons $VOCs = Volatile\ Organic\ Compounds$

VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds Pest/PCBs = Pesticides/Polychlorinated Biphenyls

Table 3-5 RI Geoprobe Groundwater Sampling Summary 886 Fort Monmouth, New Jersey

WELL ID			Loc. #13 12-	Loc. #29 12-
			16'	16'
Date Collected			6/27/2002	6/27/2002
ANALYTE / Lab ID	Criterion	Units	2040503	2040504
VOCs				
1,1,2,2-Tetrachloroethane	* 1	ug/L	ND	ND
1,2-Dichlorobenzene	600	ug/L	ND	ND
1,3-Dichlorobenzene	600	ug/L	ND	ND
1,4-Dichlorobenzene	75	ug/L	ND	ND
Acetone	700	ug/L	ND	ND
Benzene	1	ug/L	ND	ND
Chloroform	6	ug/L	ND	ND
Dibromochloromethane	10	ug/L	ND	ND
Ethylbenzene	700	ug/L	ND	ND
Methyl ethyl ketone (2-Butanone)	300	ug/L	ND	ND
Methyl tertiary butyl ether (MTBE)	* 70	ug/L	ND	ND
Styrene	100	ug/L	ND	ND
Tetrachloroethylene	1	ug/L	ND	ND
Toluene	1000	ug/L	ND	ND
Xylenes (Total)	* 1000	ug/L	ND	ND
SVOCs			-	3
1,2-Dichlorobenzene	600	ug/l	ND	ND
1,3-Dichlorobenzene	600	ug/l	ND	ND
1,4-Dichlorobenzene	75	ug/l	ND	ND
2-Methylnaphthalene	* 100	ug/l	ND	ND
Acenaphthene	400	ug/l	ND	ND
Acenaphthylene	* 100	ug/l	ND	ND
Bis(2-ethylhexyl)phthalate	30	ug/l	ND	ND
Dibenzofuran	* 100	ug/l	ND	ND
Diethylphthalate	5000	ug/l	ND	ND
Fluorene	300	ug/l	ND	ND
Naphthalene	* 300	ug/l	ND	ND
N-Nitrosodiphenylamine	20	ug/l	ND	ND
Phenanthrene	* 100	ug/l	ND	ND
Pyrene	200	ug/l	ND	ND

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons;

PCBs = polyhloronated biphenyls; MDL = Method Detection Limit; ND = Not Detected;

ug/L = micrograms per liter, equivalent to parts per billoion (ppb); mg/kg = miligrams per kilogram, equivalent to parts per million; NA = Not Analyzed/Not Applicable;

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. *= Interim Criterion;

Sample Group # 0 Page 1 of 1

Tuesday, January 10, 2006

Table 3-6 Phase 2 RI Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886-49-7.5	2079602	11/7/2002	Soil	ТРН	OQA-QAM-025
	886-50-7.5	2079603	11/7/2002	Soil	TPH	OQA-QAM-025
	886-51-7.5	2079604	11/7/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-52-7.5	2079605	11/7/2002	Soil	TPH	OQA-QAM-025
	886-53-7.5	2079606	11/7/2002	Soil	TPH	OQA-QAM-025
	886-Dup (2079802)	2079802	11/8/2002	Soil	TPH	OQA-QAM-025
	886-54-8.5	2079803	11/8/2002	Soil	TPH	OQA-QAM-025
	886-54-10.5	2079804	11/8/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-55-8.5	2079805	11/8/2002	Soil	TPH	OQA-QAM-025
	886-41-8'	2081202	11/14/2002	Soil	TPH	OQA-QAM-025
	886-41-10'	2081203	11/14/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-56-6	2084402	11/25/2002	Soil	TPH	OQA-QAM-025
	886-56-8	2084403	11/25/2002	Soil	TPH	OQA-QAM-025
	886-56-12	2084404	11/25/2002	Soil	TPH	OQA-QAM-025
	886-57-4	2084405	11/25/2002	Soil	TPH	OQA-QAM-025
	886-57-6	2084406	11/25/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-57-8	2084407	11/25/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-57-10	2084408	11/25/2002	Soil	TPH	OQA-QAM-025
	886-57-12.5	2084409	11/25/2002	Soil	TPH	OQA-QAM-025
	886-41-6	2084902	11/26/2002	Soil	TPH	OQA-QAM-025
	886-41-7.5	2084903	11/26/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-41-10	2084904	11/26/2002	Soil	TPH	OQA-QAM-025
	886-41-12	2084905	11/26/2002	Soil	TPH	OQA-QAM-025
	886-58-6	2084906	11/26/2002	Soil	TPH	OQA-QAM-025
	886-58-8	2084907	11/26/2002	Soil	TPH	OQA-QAM-025
	886-58-10	2084908	11/26/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-58-12	2084909	11/26/2002	Soil	ТРН	OQA-QAM-025
	886-59-6	2084910	11/26/2002	Soil	ТРН	OQA-QAM-025
	886-59-8	2084911	11/26/2002	Soil	ТРН	OQA-QAM-025
	886-59-10	2084912	11/26/2002	Soil	ТРН	OQA-QAM-025
	886-59-12	2084913	11/26/2002	Soil	TPH	OQA-QAM-025

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/10/2006 Page 1 of 1

Table 3-7 Phase 2 RA Post-Ex Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886-PX14A/NW	2077901	11/1/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX15A/WW	2077902	11/1/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX16/SW	2077903	11/1/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX17/BOT	2077904	11/1/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX18/BOT	2077905	11/1/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-DUP (2077906)	2077906	11/1/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX19/WW	2079101	11/6/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX20/NW	2079102	11/6/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX21/EW	2079103	11/6/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX22/BOT	2079104	11/6/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-DUP (2079105)	2079105	11/6/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX23 W	2079401	11/7/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX24W	2079402	11/7/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX25 E	2079403	11/7/2002	Soil	ТРН	OQA-QAM-025
	886-PX26 E	2079404	11/7/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX27 B	2079405	11/7/2002	Soil	TPH	OQA-QAM-025
	886-PX28 B	2079406	11/7/2002	Soil	TPH	OQA-QAM-025
	886-PX29 W	2079901	11/8/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX30 W	2079902	11/8/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX31 W	2079903	11/8/2002	Soil	ТРН	OQA-QAM-025
	886-PX32 B	2079904	11/8/2002	Soil	ТРН	OQA-QAM-025
	886-PX33 B	2079905	11/8/2002	Soil	ТРН	OQA-QAM-025
	886-PX34 B	2079906	11/8/2002	Soil	ТРН	OQA-QAM-025
	886-PX35 S	2079908	11/8/2002	Soil	ТРН	OQA-QAM-025
	886-PX36 N	2080001	11/11/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260
	886-PX37 E	2080002	11/11/2002	Soil	TPH	OQA-QAM-025
	886-PX38 E	2080003	11/11/2002	Soil	TPH	OQA-QAM-025
	886-PX39 B	2080004	11/11/2002	Soil	TPH	OQA-QAM-025
	886-Dup (2080005)	2080005	11/11/2002	Soil	ТРН	OQA-QAM-025
	886-PX40 B	2080701	11/13/2002	Soil	ТРН	OQA-QAM-025
	886-PX41 B	2080702	11/13/2002	Soil	TPH	OQA-QAM-025
	886-PX42 B	2080703	11/13/2002	Soil	TPH	OQA-QAM-025
	886-PX43 S	2080704	11/13/2002	Soil	ТРН	OQA-QAM-025

Metals = Target Analyte List Metals; TPH = Total Petroleum Hydrocarbons VOCs = Volatile Organic Compounds Notes:

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/6/2006 Page 1 of 2

Table 3-7 Phase 2 RA Post-Ex Soil Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods	
	886-PX44 E	2080705	11/13/2002	Soil	ТРН	OQA-QAM-025	
	886-PX45 E	2080706	11/13/2002	Soil	TPH	OQA-QAM-025	
	886-PX46 B	2083101	11/21/2002	Soil	ТРН	OQA-QAM-025	
	886-PX47 N	2083102	11/21/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260	
	886-PX48 E	2083103	11/21/2002	Soil	ТРН	OQA-QAM-025	
	886-PX49 W	2083104	11/21/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260	
	886-PX50 N	2086501	12/3/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260	
	886-PX51 N	2086502	12/3/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260	
	886-Dup (2086503)	2086503	12/3/2002	Soil	TPH; VOCs	OQA-QAM-025; Method 8260	
	886-PX52 N	3002501	1/15/2003	Soil	TPH	OQA-QAM-025	
	886-PX53 N	3002502	1/15/2003	Soil	TPH	OQA-QAM-025	
	886-PX54 W	3002503	1/15/2003	Soil	TPH	OQA-QAM-025	
	886-PX55 B	3002504	1/15/2003	Soil	ТРН	OQA-QAM-025	
	886-Dup (3002505)	3002505	1/15/2003	Soil	ТРН	OQA-QAM-025	
	886-PX56 N	3005701	2/3/2003	Soil	ТРН	OQA-QAM-025	
	886-PX57 W	3005702	2/3/2003	Soil	ТРН	OQA-QAM-025	
	886-PX58 S	3005703	2/3/2003	Soil	TPH	OQA-QAM-025	
	886-PX59 B	3005704	2/3/2003	Soil	ТРН	OQA-QAM-025	
	886-Dup (3005705)	3005705	2/3/2003	Soil	ТРН	OQA-QAM-025	
	886-PX60 W	3007101	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-PX61 S	3007102	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-PX62 E	3007103	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-PX63 E	3007104	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-PX64 N	3007105	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-PX65 B	3007106	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-PX66 B	3007107	2/14/2003	Soil	ТРН	OQA-QAM-025	
	886-Dup (3007108)	3007108	2/14/2003	Soil	ТРН	OQA-QAM-025	

SVOCs = Semi-Volatile Organic Compounds
Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/6/2006 Page 2 of 2

Table 3-8 Groundwater Monitoring Well Sampling Summary Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886RW03	3006104	2/5/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW04	3006105	2/5/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW05	3006106	2/5/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW02	3006107	2/5/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW01	3006108	2/5/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW08	3006109	2/5/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW07	3006604	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886RW06	3006605	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886MW03	3006606	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886MW01	3006607	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886MW02	3006608	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886MW05	3006609	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82
	886MW04	3006610	2/12/2003	Aqueous	Metals; Pest/PCBs; SVOCs; TPH; VOCs	SW 846 - 3115B and 3120; Method 608; Method 8270; OQA-QAM-025; Method 82

Notes:

Metals = Target Analyte List Metals; TPH = Total Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds Pest/PCBs = Pesticides/Polychlorinated Biphenyls

1/5/2006 Page 1 of 1

Table 3-9
Groundwater Elevation Summary
Building 886
Fort Monmouth, New Jersey

Well ID	Elev. of Inner Casing Survey Mark	Date	Depth to Water	Ground- water Elev.
886MW01	14.04	02/12/03	6.51	7.53
886MW02	13.99	02/12/03	6.65	7.34
886MW03	14.79	02/12/03	6.38	8.41
886MW04	19.31	02/12/03	7.00	12.31
886MW05	19.38	02/12/03	11.03	8.35
886RW01	14.71	02/05/03	6.97	7.74
886RW02	15.01	02/05/03	7.11	7.90
886RW03	15.03	02/05/03	7.10	7.93
886RW04	14.89	02/05/03	6.95	7.94
886RW05	14.80	02/05/03	6.94	7.86
886RW06	15.25	02/05/03	6.89	8.36
886RW07	15.41	02/05/03	7.39	8.02
886RW08	14.91	02/05/03	6.81	8.10

Notes:

1) Elev.: Elevation in feet above mean sea level.

2) Depth to water: depth in feet from the inner casing survey mark.

Field Sample ID			886-DUP (2003504)	886-DUP (2004603)	886-DUP (2006304)	886-DUP (2007303)	886-DUP (2008102)	886-DUP (2011403)	886-DUP (2013603)	886-PX1	886- PX10/NW	886- PX11/BOT	886- PX12/BOT	886- PX12A/BM	886- PX13/BM	886- PX14/SW
Date Collected			1/16/2002	1/25/2002	1/30/2002	2/4/2002	2/6/2002	2/26/2002	3/6/2002	1/16/2002	2/4/2002	2/4/2002	2/6/2002	2/26/2002	2/26/2002	3/6/2002
ANALYTE / Lab ID	Criterion	Units	2003505	2004603	2006304	2007303	2008102	2011403	2013603	2003501	2007301	2007302	2008101	2011401	2011402	2013601
ТРН	•			•		•						•				
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	2713.56	ND	216.97	ND	272.31	ND	3063.66	ND	ND	ND	365.64

Field Sample ID			886-	886-PX2	886-PX3	886-PX4	886-PX5	886-PX6	886-	886-	886-
			PX15/BOT						PX7/SW	PX8/EW	PX9/BOT
Date Collected			3/6/2002	1/16/2002	1/16/2002	1/16/2002	1/25/2002	1/25/2002	1/30/2002	1/30/2002	1/30/2002
ANALYTE / Lab ID	Criterion	Units	2013602	2003502	2003503	2003504	2004601	2004602	2006301	2006302	2006303
ТРН											
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4-2 Phase 1 RI Soil Sampling Results 886

Field Sample ID			11-72"	12-72"	13-96"	14-48"	1-48"	15-72"	16-4'	17-72"	18-48"	18-96"	23-96"	25-2'	29-4'	30-8'
Date Collected			4/8/2002	4/8/2002	4/8/2002	4/8/2002	4/5/2002	4/5/2002	9/17/2002	4/8/2002	4/8/2002	4/8/2002	4/8/2002	9/17/2002	9/17/2002	9/17/2002
ANALYTE / Lab ID	Criterion	Units	2018811	2018810	2018806	2018803	2018503	2018507	2066502	2018804	2018807	2018808	2018812	2066503	2066504	2066505
VOCs				•	•			•			•			•	•	•
1,1,2,2-Tetrachloroethane	34	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
1,2-Dichlorobenzene	5100	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
1,3-Dichlorobenzene	5100	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
1,4-Dichlorobenzene	570	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Acetone	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Benzene	3	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Chloroform	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Dibromochloromethane	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Ethylbenzene	1000	mg/kg	2.1	0.1	3.6	1.7	ND	ND	0.82	ND	0.78	ND	ND	ND	ND	1.4
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	2.4	3.5	4	3.5	4.4	ND	ND	3.7	3.5	3.5	3.3	ND	ND	ND
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Styrene	23	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Tetrachloroethylene	4	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Toluene	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND						
Xylenes (Total)	NLE	mg/kg	1.8	0.27	2.7	2.9	ND	ND	ND	ND	0.78	ND	ND	ND	ND	ND

Table 4-2 Phase 1 RI Soil Sampling Results 886

Field Sample ID			31-6'	34-2'	40-4'	41-8'	4-72"	5-72"	6-96"	7-72"	8-24"	886-1 0-6"	886-1 24"	886-1 48"	886-1 52"	886-1 72"
Date Collected			9/17/2002	9/17/2002	9/17/2002	9/17/2002	4/5/2002	4/5/2002	4/5/2002	4/5/2002	4/8/2002	3/9/2002	3/9/2002	3/9/2002	3/9/2002	3/9/2002
ANALYTE / Lab ID	Criterion	Units	2066506	2066507	2066508	2066509	2018504	2018505	2018506	2018508	2018805	2014601	2014602	2014603	2014604	2014605
VOCs	-											•		-	•	-
1,1,2,2-Tetrachloroethane	34	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	5100	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	5100	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	570	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Acetone	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	3	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Chloroform	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Dibromochloromethane	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Ethylbenzene	1000	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.42	ND	NA	NA	NA	NA	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	ND	ND	ND	ND	2.2	3.4	4.2	3.9	4.2	NA	NA	NA	NA	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Styrene	23	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Tetrachloroethylene	4	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Toluene	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Xylenes (Total)	NLE	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.71	ND	NA	NA	NA	NA	NA
ТРН	<u> </u>	<u>-</u>	-	∃' ' <u></u>	<u>-</u>	∃' ' <u></u>	∃' ' <u>'</u>	· · · · · · · · · · · · · · · · · · ·	∃' ' <u></u>	· · · · · · · · · · · · · · · · · · ·	∃' ' <u>'</u>	-	∃' ' <u>'</u>	· ·	-	-
Total Petroleum Hydrocarbons	10000	mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	173.42	181.82	2340.92	ND	ND

Field Sample ID			886-10-0-6"	886-10-120"	886-10-144"	886-10-24"	886-10-48"	886-10-72"	886-10-96"	886-11-0-6"	886-11-120"	886-11-144"	886-1-120"	886-11-24"	886-1-144"	886-11-48"
Date Collected	1 1		3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/12/2002	3/12/2002	3/12/2002	3/14/2002	3/12/2002	3/14/2002	3/12/2002
ANALYTE / Lab ID	Criterion	Units	2014922	2014927	2014928	2014923	2014924	2014925	2014926	2015301	2015306	2015307	2015536	2015302	2015537	2015303
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	168.01	1609.5	ND	250.68	ND	ND	3114.83

Field Sample ID			886-11-72"	886-11-96"	886-12-0-6"	886-12-120"	886-12-144"	886-12-24"	886-12-48"	886-12-72"	886-12-96"	886-13-0-6"	886-13-120"	886-13-144"	886-13-24"	886-13-48"
Date Collected	1		3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002
ANALYTE / Lab ID	Criterion	Units	2015304	2015305	2015308	2015313	2015314	2015309	2015310	2015311	2015312	2015315	2015320	2015321	2015316	2015317
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	3914.27	11180.78	ND	533.58	ND	985.28	240.13	5661.55	2251.62	ND	11736.31	456.29	7868.76	7831.4

Field Sample ID			886-13-72"	886-13-96"	886-14-0-6"	886-14-120"	886-14-144"	886-14-24"	886-14-48"	886-14-72"	886-14-96"	886-15-0-6"	886-15-120"	886-15-144"	886-15-24"	886-15-48"
Date Collected	1 1		3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002
ANALYTE / Lab ID	Criterion	Units	2015318	2015319	2015322	2015327	2015328	2015323	2015324	2015325	2015326	2015329	2015334	2015335	2015330	2015331
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	7693.89	8958.46	168.11	1121.51	2345.14	3384.97	9503.83	ND	4044.68	ND	5631.51	1838.33	ND	ND

Field Sample ID			886-15-72"	886-15-96"	886-16-0-6"	886-16-120"	886-16-144"	886-16-24"	886-16-48"	886-16-72"	886-16-96"	886-17-0-6"	886-17-120"	886-17-144"	886-17-24"	886-17-48"
Date Collected	1		3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002
ANALYTE / Lab ID	Criterion	Units	2015332	2015333	2015336	2015341	2015342	2015337	2015338	2015339	2015340	2015343	2015348	2015349	2015344	2015345
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	7480.02	2445.14	ND	1635.23	ND	ND	9572.92	6180.03	1681.86	Nd	2106.94	3565.57	ND	11077.02

Field Sample ID			886-17-72"	886-17-96"	886-18-0-6"	886-18-120"	886-18-144"	886-18-24"	886-18-48"	886-18-72"	886-18-96"	886-19-0-6"	886-19-120"	886-19-144"	886-19-24"	886-19-48"
Date Collected	1 1		3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002	3/12/2002
ANALYTE / Lab ID	Criterion	Units	2015346	2015347	2015350	2015355	2015356	2015351	2015352	2015353	2015354	2015357	2015362	2015363	2015358	2015359
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	7001.18	5869.56	ND	1957.54	3814.19	221.52	5888.09	3106.03	5232.79	ND	244.95	945.1	ND	230.17

Field Sample ID			886-19-72"	886-19-96"	886-2 0-6"	886-2 24"	886-2 48"	886-2 72"	886-20-0-6"	886-20-120"	886-20-144"	886-20-24"	886-20-48"	886-20-72"	886-20-96"	886-21-0-6"
Date Collected	1 1		3/12/2002	3/12/2002	3/9/2002	3/9/2002	3/9/2002	3/9/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002
ANALYTE / Lab ID	Criterion	Units	2015360	2015361	2014606	2014607	2014608	2014610	2015501	2015506	2015507	2015502	2015503	2015504	2015505	2015508
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	230.59

Field Sample ID		886-21-120"	886-21-144"	886-2-120"	886-21-24"	886-2-144"	886-21-48"	886-21-72"	886-2

Field Sample ID			886-21-120"	886-21-144"	886-2-120"	886-21-24"	886-2-144"	886-21-48"	886-21-72"	886-21-96"	886-22-0-6"	886-22-120"	886-22-144"	886-22-24"	886-22-48"	886-22-72"
Date Collected	1		3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002
ANALYTE / Lab ID	Criterion	Units	2015513	2015514	2015538	2015509	2015539	2015510	2015511	2015512	2015515	2015520	2015521	2015516	2015517	2015518
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-22-96"	886-23-0-6"	886-23-120"	886-23-144"	886-23-24"	886-23-48"	886-23-72"	886-23-96"	886-24-0-6"	886-24-120"	886-24-144"	886-24-24"	886-24-48"	886-24-72"
Date Collected	1 1		3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002	3/14/2002
ANALYTE / Lab ID	Criterion	Units	2015519	2015522	2015527	2015528	2015523	2015524	2015525	2015526	2015529	2015534	2015535	2015530	2015531	2015532
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	1430.97	ND	230.71	ND	ND	4499.73	ND	ND	871.84	ND	386.52	15152.37

Field Sample ID			886-24-96"	886-25-0-6"	886-25-120"	886-25-144"	886-25-24"	886-25-48"	886-25-72"	886-25-96"	886-26-0-6"	886-26-120"	886-26-144"	886-26-24"	886-26-48"	886-26-72"
Date Collected	1 1		3/14/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002
ANALYTE / Lab ID	Criterion	Units	2015533	2019701	2019706	2019707	2019702	2019703	2019704	2019705	2019708	2019713	2019714	2019709	2019710	2019711
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	488.06	284.15	ND	ND	1108.77	308.33	ND	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-26-96"	886-27-0-6"	886-27-120"	886-27-144"	886-27-24"	886-27-48"	886-27-72"	886-27-96"	886-28-0-6"	886-28-120"	886-28-144"	886-28-24"	886-28-48"	886-28-72"
Date Collected	1 1		4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002	4/12/2002
ANALYTE / Lab ID	Criterion	Units	2019712	2019715	2019720	2019721	2019716	2019717	2019718	2019719	2019722	2019727	2019728	2019723	2019724	2019725
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-28-96"	886-29-0-6"	886-29-120"	886-29-144"	886-29-24"	886-29-48"	886-29-72"	886-29-96"	886-3 0-6"	886-3 24"	886-3 48"	886-3 72"	886-30-0-6"	886-30-120"
Date Collected	1		4/12/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	3/9/2002	3/9/2002	3/9/2002	3/9/2002	4/18/2002	4/18/2002
ANALYTE / Lab ID	Criterion	Units	2019726	2021101	2021106	2021107	2021102	2021103	2021104	2021105	2014611	2014612	2014613	2014614	2021108	2021113
ТРН															-	
Total Petroleum Hydrocarbons	10000	mg/kg	ND	206.26	466.97	ND	200.85	9425.59	4969.68	11104.81	ND	ND	ND	ND	217.48	433.42

Field Sample ID			886-30-144"	886-30-24"	886-30-48"	886-30-72"	886-30-96"	886-31-0-6"	886-31-120"	886-31-144"	886-3-120"	886-31-24"	886-3-144"	886-31-48"	886-31-72"	886-31-96"
Date Collected			4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	3/14/2002	4/18/2002	3/14/2002	4/18/2002	4/18/2002	4/18/2002
ANALYTE / Lab ID	Criterion	Units	2021114	2021109	2021110	2021111	2021112	2021115	2021120	2021121	2015540	2021116	2015541	2021117	2021118	2021119
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	4574.78	8897.25	ND	ND	ND	729.69	ND	ND	ND	4364.38	11365.22

Field Sample ID			886-32-0-6"	886-32-120"	886-32-144"	886-32-24"	886-32-48"	886-32-72"	886-32-96"	886-33-0-6"	886-33-120"	886-33-144"	886-33-24"	886-33-48"	886-33-72"	886-33-96"
Date Collected	1		4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/18/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002
ANALYTE / Lab ID	Criterion	Units	2021122	2021127	2021128	2021123	2021124	2021125	2021126	2021301	2021306	2021307	2021302	2021303	2021304	2021305
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	503.96	ND	ND	ND	ND	ND	305.54	ND	ND	ND	ND	ND	294.98	266.24

Field Sample ID			886-34-0-6"	886-34-120"	886-34-144"	886-34-24"	886-34-48"	886-34-72"	886-34-96"	886-35-0-6"	886-35-120"	886-35-144"	886-35-24"	886-35-48"	886-35-72"	886-35-96"
Date Collected	7		4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002	4/19/2002
ANALYTE / Lab ID	Criterion	Units	2021308	2021313	2021314	2021309	2021310	2021311	2021312	2021315	2021320	2021321	2021316	2021317	2021318	2021319
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	2155.13	ND	ND	ND	181.7	ND	249.69	173.7	ND	ND	ND

Field Sample ID			886-36-0-6"	886-36-10'	886-36-12'	886-36-2'	886-36-4'	886-36-6'	886-36-8'	886-37 0-6"	886-37 10'	886-37 12'	886-37 2'	886-37 4'	886-37 6'	886-37 8'
Date Collected	1 1		5/10/2002	5/10/2002	5/10/2002	5/10/2002	5/10/2002	5/10/2002	5/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002
ANALYTE / Lab ID	Criterion	Units	2027001	2027006	2027007	2027002	2027003	2027004	2027005	2035929	2035934	2035935	2035930	2035931	2035932	2035933
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-38 0-6"	886-38 10'	886-38 12'	886-38 2'	886-38 4'	886-38 6'	886-38 8'	886-39 0-6"	886-39 10'	886-39 12'	886-39 2'	886-39 4'	886-39 6'	886-39 8'
Date Collected	1 1		6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002
ANALYTE / Lab ID	Criterion	Units	2035922	2035927	2035928	2035923	2035924	2035925	2035926	2035915	2035920	2035921	2035916	2035917	2035918	2035919
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-4 0-6"	886-4 120"	886-4 144"	886-4 24"	886-4 48"	886-4 72"	886-4 96"	886-40 0-6"	886-40 10'	886-40 12'	886-40 2'	886-40 4'	886-40 6'	886-40 8'
Date Collected	1		3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002
ANALYTE / Lab ID	Criterion	Units	2014701	2014706	2014707	2014702	2014703	2014704	2014705	2035908	2035913	2035914	2035909	2035910	2035911	2035912
ТРН																
Total Dataslassa Hadasaakaas	10000		207.70	2217.75	NID	205.00	620 61	£700.0	2004 06	NID.	NID	NID	MD	6416.01	5217 12	677.7

Field Sample ID			886-41 0-6"	886-41 10'	886-41 12'	886-41 2'	886-41 4'	886-41 6'	886-41 8'	886-42 0-6"	886-42 10'	886-42 12'	886-42 2'	886-42 4'	886-42 6'	886-42 8'
Date Collected	1		6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/10/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002
ANALYTE / Lab ID	Criterion	Units	2035901	2035906	2035907	2035902	2035903	2035904	2035905	2037915	2037920	2037921	2037916	2037917	2037918	2037919
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	14258.29	ND	309.9	ND	732.37	2080.96	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-43 0-6"	886-43 10'	886-43 12'	886-43 2'	886-43 4'	886-43 6'	886-43 8'	886-44 0-6"	886-44 10'	886-44 12'	886-44 2'	886-44 4'	886-44 6'	886-44 8'
Date Collected	1		6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002
ANALYTE / Lab ID	Criterion	Units	2037922	2037927	2037928	2037923	2037924	2037925	2037926	2037929	2037934	2037935	2037930	2037931	2037932	2037933
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Field Sample ID			886-45 0-6"	886-45 12'	886-45 2'	886-45 4'	886-45 6'	886-45 8'	886-46 0-6"	886-46 10'	886-46 12'	886-46 2'	886-46 4'	886-46 6'	886-46 8'	
Date Collected			6/19/2002	6/19/2002	6/19/2002	6/19/2002	6/19/2002	6/19/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002
ANALYTE / Lab ID	Criterion	Units	2038101	2038107	2038102	2038103	2038104	2038105	2037908	2037913	2037914	2037909	2037910	2037911	2037912	2037901
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4-2 Phase 1 RI Soil Sampling Results 886

880

Field Sample ID			886-47 10'	886-47 12'	886-47 2'	886-47 4'	886-47 6'	886-47 8'	886-48 0-6"	886-48 10'	886-48 12'	886-48 2'	886-48 4'	886-48 6'	886-48 8'	886-5 0-6"
Date Collected			6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/18/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	6/26/2002	3/10/2002
ANALYTE / Lab ID	Criterion	Units	2037906	2037907	2037902	2037903	2037904	2037905	2039901	2039906	2039907	2039902	2039903	2039904	2039905	2014708
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	265.17

Table 4-2 Phase 1 RI Soil Sampling Results 886

Field Sample ID			886-5 120"	886-5 144"	886-5 24"	886-5 48"	886-5 72"	886-5 96"	886-6 0-6"	886-6 120"	886-6 144"	886-6 24"	886-6 48"	886-6 72"	886-6 96"	886-7 0-6"
Date Collected	1		3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/10/2002	3/11/2002
ANALYTE / Lab ID	Criterion	Units	2014713	2014714	2014709	2014710	2014711	2014712	2014715	2014720	2014721	2014716	2014717	2014718	2014719	2014901
ТРН																
Total Petroleum Hydrocarbons	10000	ma/ka	2828 97	188	312.22	ND	6887.5	4352.24	186 57	4650.82	ND	2330.08	323.87	2717.84	7466 39	363 27

Table 4-2 Phase 1 RI Soil Sampling Results 886

Field Sample ID			886-7 24"	886-7 48"	886-7 72"	886-7-120"	886-7-144"	886-7-96"	886-8-0-6"	886-8-120"	886-8-144"	886-8-24"	886-8-48"	886-8-72"	886-8-96"	886-9-0-6"
Date Collected			3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002
ANALYTE / Lab ID	Criterion	Units	2014902	2014903	2014904	2014906	2014907	2014905	2014908	2014913	2014914	2014909	2014910	2014911	2014912	2014915
ТРН																
Total Petroleum Hydrocarbons	10000	mg/kg	5621.19	4551.69	6191.42	ND	ND	185.56	446.75	12818.89	ND	7226.44	5738.77	13409.44	12440.73	210.65

Table 4-2 Phase 1 RI Soil Sampling Results 886

Field Sample ID			886-9-120"	886-9-144"	886-9-24"	886-9-48"	886-9-72"	886-9-96"	9-72"	Dup (2014609)	Dup (2014722)	Dup (2018502)	Dup (2018802)	Dup (2019729)	Dup (2021129)	Dup (2021322)
Date Collected			3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	3/11/2002	4/8/2002	3/9/2002	3/10/2002	4/5/2002	4/8/2002	4/12/2002	4/18/2002	4/19/2002
ANALYTE / Lab ID	Criterion	Units	2014920	2014921	2014916	2014917	2014918	2014919	2018809	2014609	2014722	2018502	2018802	2019729	2021129	2021322
VOCs	-									-					-	-
1,1,2,2-Tetrachloroethane	34	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
1,2-Dichlorobenzene	5100	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
1,3-Dichlorobenzene	5100	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
1,4-Dichlorobenzene	570	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Acetone	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Benzene	3	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Chloroform	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Dibromochloromethane	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Ethylbenzene	1000	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	2.8	NA	NA	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	NA	NA	NA	NA	NA	NA	3	NA	NA	2.2	3.6	NA	NA	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Styrene	23	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Tetrachloroethylene	4	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Toluene	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA
Xylenes (Total)	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	2.9	NA	NA	NA
ТРН	<u>. </u>	<u></u>	-	-	· · · · · · · · · · · · · · · · · · ·	∃' ' <u>'</u>	· · · · · · · · · · · · · · · · · · ·	<u></u>	∃' ' <u>'</u>	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-	-
Total Petroleum Hydrocarbons	10000	mg/kg	176.5	ND	299.3	872.18	9693.22	11024.72	NA	ND	2291.5	NA	NA	ND	ND	212.64

Table 4-2 Phase 1 RI Soil Sampling Results 886

Field Sample ID			Dup 1 (2015364)	Dup 1 (2015542)	Dup 2 (2015365)	Dup 2 (2015543)	Dup 3 (2015544)	Dup. 3 (2015366)	FD-4' (2066510)
Date Collected			3/12/2002	3/14/2002	3/12/2002	3/14/2002	3/14/2002	3/12/2002	9/17/2002
ANALYTE / Lab ID	Criterion	Units	2015364	2015542	2015365	2015543	2015544	2015366	2066510
VOCs									
1,1,2,2-Tetrachloroethane	34	mg/kg	NA	NA	NA	NA	NA	NA	ND
1,2-Dichlorobenzene	5100	mg/kg	NA	NA	NA	NA	NA	NA	ND
1,3-Dichlorobenzene	5100	mg/kg	NA	NA	NA	NA	NA	NA	ND
1,4-Dichlorobenzene	570	mg/kg	NA	NA	NA	NA	NA	NA	ND
Acetone	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND
Benzene	3	mg/kg	NA	NA	NA	NA	NA	NA	ND
Chloroform	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND
Dibromochloromethane	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND
Ethylbenzene	1000	mg/kg	NA	NA	NA	NA	NA	NA	ND
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	NA	NA	NA	NA	NA	NA	ND
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND
Styrene	23	mg/kg	NA	NA	NA	NA	NA	NA	ND
Tetrachloroethylene	4	mg/kg	NA	NA	NA	NA	NA	NA	ND
Toluene	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND
Xylenes (Total)	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND
ТРН		<u> </u>	-						
Total Petroleum Hydrocarbons	10000	mg/kg	5146.27	ND	9669.3	ND	652.01	2380.19	NA

Table 4-3 Phase 1 RI Soil Sampling Exceedence Summary 886

Fort Monmouth, New Jersey

		1 OIL MOI	illioutii, New Jersey	.			
Analyte	Criterion	Field ID	Round	Date Collected	Lab Sample ID	Result	Units
ТРН							
Total Petroleum Hydrocarbons	10000						
		886-11-96''			Maximu	n Result: 11180.78	mg/kg
				3/12/2002	2015305	11180.78	mg/kg
		886-13-120"			Maximu	n Result: 11736.31	mg/kg
				3/12/2002	2015320	11736.31	mg/kg
		886-17-48''			Maximu	n Result: 11077.02	mg/kg
				3/12/2002	2015345	11077.02	mg/kg
		886-24-72''			Maximu	n Result: 15152.37	mg/kg
				3/14/2002	2015532	15152.37	mg/kg
		886-29-96''			Maximu	n Result: 11104.81	mg/kg
				4/18/2002	2021105	11104.81	mg/kg
		886-31-96''			Maximu	n Result: 11365.22	mg/kg
				4/18/2002	2021119	11365.22	mg/kg
		886-41 10'			Maximu	n Result: 14258.29	mg/kg
				6/10/2002	2035906	14258.29	mg/kg
		886-8-120''			Maximu	n Result: 12818.89	mg/kg
				3/11/2002	2014913	12818.89	mg/kg
		886-8-72''			Maximu	n Result: 13409.44	mg/kg
				3/11/2002	2014911	13409.44	mg/kg
		886-8-96''			Maximu	n Result: 12440.73	mg/kg
				3/11/2002	2014912	12440.73	mg/kg
		886-9-96''			Maximu	n Result: 11024.72	mg/kg
				3/11/2002	2014919	11024.72	mg/kg

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons; MDL = Method Detection Limit; ND = Not Detected; ug/L = micrograms per liter, equivalent to parts per billion (ppb); NA = Not Analyzed/Not Applicable; Criterion = RDCSCC: NJDEP Residential Direct Contact Soil Cleanup Criteria per N.J.A.C. 7:26D

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion.

1/10/2006 Page 1 of 1

Table 4-4 Phase 2 RI Soil Sampling Results 886

Field Sample ID			886-41-10	886-41-10'	886-41-12	886-41-6	886-41-7.5	886-41-8'	886-49-7.5	886-50-7.5	886-51-7.5	886-52-7.5	886-53-7.5	886-54-10.5	886-54-8.5	886-55-8.5
Date Collected			11/26/2002	11/14/2002	11/26/2002	11/26/2002	11/26/2002	11/14/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/8/2002	11/8/2002	11/8/2002
ANALYTE / Lab ID	Criterion	Units	2084904	2081203	2084905	2084902	2084903	2081202	2079602	2079603	2079604	2079605	2079606	2079804	2079803	2079805
VOCs	-		•			•		•	•	•	•		•		•	•
1,1,2,2-Tetrachloroethane	34	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
1,2-Dichlorobenzene	5100	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
1,3-Dichlorobenzene	5100	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
1,4-Dichlorobenzene	570	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Acetone	NLE	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	3.4	NA	NA
Benzene	3	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Chloroform	NLE	mg/kg	NA	2.1	NA	NA	1.8	NA	NA	NA	3.4	NA	NA	ND	NA	NA
Dibromochloromethane	NLE	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Ethylbenzene	1000	mg/kg	NA	0.32	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Styrene	23	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Tetrachloroethylene	4	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Toluene	NLE	mg/kg	NA	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
Xylenes (Total)	NLE	mg/kg	NA	0.14	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA
ТРН		<u> </u>	-	-	-	∃' ' <u>'</u>	-	∃' ' 	-		-	-	-	-	-	-
Total Petroleum Hydrocarbons	10000	mg/kg	ND	4247.64	ND	ND	2172.44	2483.9	ND	ND	5430.58	ND	1187.48	6024.4	3967.85	ND

Table 4-4
Phase 2 RI Soil Sampling Results
886

Field Sample ID			886-56-12	886-56-6	886-56-8	886-57-10	886-57-12.5	886-57-4	886-57-6	886-57-8	886-58-10	886-58-12	886-58-6	886-58-8	886-59-10	886-59-12
Date Collected	\dashv		11/25/2002	11/25/2002	11/25/2002	11/25/2002	11/25/2002	11/25/2002	11/25/2002	11/25/2002	11/26/2002	11/26/2002	11/26/2002	11/26/2002	11/26/2002	11/26/2002
ANALYTE / Lab ID	Criterion	Units	2084404	2084402	2084403	2084408	2084409	2084405	2084406	2084407	2084908	2084909	2084906	2084907	2084912	2084913
VOCs																
1,1,2,2-Tetrachloroethane	34	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	5100	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	5100	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	570	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Acetone	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Benzene	3	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Chloroform	NLE	mg/kg	NA	NA	NA	NA	NA	NA	2.3	1.9	2.1	NA	NA	NA	NA	NA
Dibromochloromethane	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Ethylbenzene	1000	mg/kg	NA	NA	NA	NA	NA	NA	3.4	3.1	ND	NA	NA	NA	NA	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Styrene	23	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Tetrachloroethylene	4	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Toluene	NLE	mg/kg	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA
Xylenes (Total)	NLE	mg/kg	NA	NA	NA	NA	NA	NA	3.6	3.4	ND	NA	NA	NA	NA	NA
ТРН	-	· · · · · · · · · · · · · · · · · · ·	-	∃' ' 	- '	∃' ' <u>'</u>	-	•	-	- '	-		- '	∃' ' <u>'</u>	-	-
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND	ND	ND	22317.07	14885.1	5413.97	ND	ND	3776.99	ND	ND

Table 4-4 Phase 2 RI Soil Sampling Results 886 Fort Monmouth, New Jersey

Field Sample ID			886-59-6	886-59-8	886-Dup (2079802)
Date Collected	1		11/26/2002	11/26/2002	11/8/2002
ANALYTE / Lab ID	Criterion	Units	2084910	2084911	2079802
ТРН					
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	3914.23

Table 4-5

Phase 2 RI Soil Sampling Exceedence Summary

886

Fort Monmouth, New Jersey

			,	Date	Lab		
Analyte	Criterion	Field ID	Round	Collected	Sample ID	Result	Units
<u>rph</u>							
Total Petroleum Hydrocarbons	10000						
		886-57-6			Maximun	mg/kg	
				11/25/2002	2084406	22317.07	mg/kg
		886-57-8			Maximu	mg/kg	
				11/25/2002	2084407	14885.1	mg/kg

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons; MDL = Method Detection Limit; ND = Not Detected; ug/L = micrograms per liter, equivalent to parts per billion (ppb); NA = Not Analyzed/Not Applicable; Criterion = RDCSCC: NJDEP Residential Direct Contact Soil Cleanup Criteria per N.J.A.C. 7:26D

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion.

1/10/2006 Page 1 of 1

Table 4-6
Phase 2 RA Post-Ex Soil Sampling Results

Field Sample ID			886-DUP (2077906)	886-DUP (2079105)	886-Dup (2080005)	886-Dup (2086503)	886-Dup (3002505)	886-Dup (3005705)	886-Dup (3007108)	886- PX14A/NW	886- PX15A/WW	886- PX16/SW	886- PX17/BOT	886- PX18/BOT	886- PX19/WW	886- PX20/NW
Date Collected			11/1/2002	11/6/2002	11/11/2002	12/3/2002	1/15/2003	2/3/2003	2/14/2003	11/1/2002	11/1/2002	11/1/2002	11/1/2002	11/1/2002	11/6/2002	11/6/2002
ANALYTE / Lab ID	Criterion	Units	2077906	2079105	2080005	2086503	3002505	3005705	3007108	2077901	2077902	2077903	2077904	2077905	2079101	2079102
VOCs		l .														
1,1,2,2-Tetrachloroethane	34	mg/kg	0.027	0.44	NA	ND	NA	NA	NA	ND	ND	0.032	ND	0.035	ND	ND
1,2-Dichlorobenzene	5100	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5100	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	0.017	ND	0.033	ND	ND
1,4-Dichlorobenzene	570	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Acetone	NLE	mg/kg	0.75	ND	NA	ND	NA	NA	NA	0.92	0.94	0.81	0.86	0.75	ND	ND
Benzene	3	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Chloroform	NLE	mg/kg	ND	ND	NA	1.7	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NLE	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	0.072	ND	ND	0.031	ND	ND
Ethylbenzene	1000	mg/kg	0.051	ND	NA	1.3	NA	NA	NA	0.06	0.39	ND	0.024	0.056	ND	ND
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Styrene	23	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	0.011	ND	ND	ND	ND
Tetrachloroethylene	4	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Toluene	NLE	mg/kg	ND	ND	NA	ND	NA	NA	NA	ND	ND	ND	ND	0.016	ND	ND
Xylenes (Total)	NLE	mg/kg	0.261	ND	NA	1.4	NA	NA	NA	0.257	0.57	ND	0.258	0.247	ND	ND
ТРН	-	· · · · ·	-	∃' ' <u></u>	· · · · · · · · · · · · · · · · · · ·	∃' ' <u></u>	· ·	∃' ' <u></u>	∃' ' <u>'</u>	-	· · · · · · · · · · · · · · · · · · ·		-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-
Total Petroleum Hydrocarbons	10000	mg/kg	6475.8	17048.12	1446.5	5482.31	6842.01	1108.84	1014.14	11883.9	17095.89	4761.43	6128.37	7320.07	24876.54	16602.2

Table 4-6
Phase 2 RA Post-Ex Soil Sampling Results

Field Sample ID			886- PX21/EW	886- PX22/BOT	886-PX23 W	886-PX24W	886-PX25 E	886-PX26 E	886-PX27 B	886-PX28 B	886-PX29 W	886-PX30 W	886-PX31 W	886-PX32 B	886-PX33 B	886-PX34 B
Date Collected			11/6/2002	11/6/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002	11/8/2002
ANALYTE / Lab ID	Criterion	Units	2079103	2079104	2079401	2079402	2079403	2079404	2079405	2079406	2079901	2079902	2079903	2079904	2079905	2079906
VOCs		•				•		•	•				•	•	•	
1,1,2,2-Tetrachloroethane	34	mg/kg	ND	ND	ND	0.33	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
1,2-Dichlorobenzene	5100	mg/kg	0.41	ND	ND	0.31	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
1,3-Dichlorobenzene	5100	mg/kg	0.33	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
1,4-Dichlorobenzene	570	mg/kg	0.33	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Acetone	NLE	mg/kg	ND	1.6	1.7	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Benzene	3	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	0.086	NA	NA	NA	NA
Chloroform	NLE	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	1.7	1.5	NA	NA	NA	NA
Dibromochloromethane	NLE	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Ethylbenzene	1000	mg/kg	ND	ND	0.15	0.26	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Styrene	23	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Tetrachloroethylene	4	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Toluene	NLE	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA
Xylenes (Total)	NLE	mg/kg	ND	ND	ND	ND	NA	ND	NA	NA	ND	0.23	NA	NA	NA	NA
ТРН	-	· · · · ·	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·	∃' ' <u></u>	∃' ' <u>'</u>	<u>-</u>	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	-	-	-	· · · · · · · · · · · · · · · · · · ·
Total Petroleum Hydrocarbons	10000	mg/kg	5102.5	ND	10284.4	31639.09	6348.55	11162.05	ND	ND	13469.45	12009.29	ND	ND	ND	ND

Table 4-6
Phase 2 RA Post-Ex Soil Sampling Results

Field Sample ID			886-PX35 S	886-PX36 N	886-PX37 E	886-PX38 E	886-PX39 B	886-PX40 B	886-PX41 B	886-PX42 B	886-PX43 S	886-PX44 E	886-PX45 E	886-PX46 B	886-PX47 N	886-PX48 E
Date Collected			11/8/2002	11/11/2002	11/11/2002	11/11/2002	11/11/2002	11/13/2002	11/13/2002	11/13/2002	11/13/2002	11/13/2002	11/13/2002	11/21/2002	11/21/2002	11/21/2002
ANALYTE / Lab ID	Criterion	Units	2079908	2080001	2080002	2080003	2080004	2080701	2080702	2080703	2080704	2080705	2080706	2083101	2083102	2083103
VOCs																
1,1,2,2-Tetrachloroethane	34	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
1,2-Dichlorobenzene	5100	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
1,3-Dichlorobenzene	5100	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
1,4-Dichlorobenzene	570	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Acetone	NLE	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.35	NA
Benzene	3	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Chloroform	NLE	mg/kg	NA	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.4	NA
Dibromochloromethane	NLE	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Ethylbenzene	1000	mg/kg	NA	0.32	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Styrene	23	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Tetrachloroethylene	4	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Toluene	NLE	mg/kg	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Xylenes (Total)	NLE	mg/kg	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
ТРН	-	<u>-</u>	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	∃' ' <u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	∃' ' <u></u>	-	· · · · · · · · · · · · · · · · · · ·
Total Petroleum Hydrocarbons	10000	mg/kg	ND	6435.11	814.68	430.77	ND	ND	ND	ND	ND	ND	ND	569.08	4227.31	7186.7

Table 4-6
Phase 2 RA Post-Ex Soil Sampling Results

Field Sample ID			886-PX49	886-PX50 N	886-PX51 N	886-PX52 N	886-PX53 N	886-PX54	886-PX55 B	886-PX56 N	886-PX57	886-PX58 S	886-PX59 B	886-PX60	886-PX61 S	886-PX62 E
			W					W			W			W		
Date Collected	\neg		11/21/2002	12/3/2002	12/3/2002	1/15/2003	1/15/2003	1/15/2003	1/15/2003	2/3/2003	2/3/2003	2/3/2003	2/3/2003	2/14/2003	2/14/2003	2/14/2003
ANALYTE / Lab ID	Criterion	Units	2083104	2086501	2086502	3002501	3002502	3002503	3002504	3005701	3005702	3005703	3005704	3007101	3007102	3007103
VOCs		-	•				•	•	•			•	•	•	•	•
1,1,2,2-Tetrachloroethane	34	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	5100	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	5100	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	570	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	NLE	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	3	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroform	NLE	mg/kg	1.4	1.8	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	NLE	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1000	mg/kg	0.16	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl ethyl ketone (2-Butanone)	1000	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl tertiary butyl ether (MTBE)	NLE	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	23	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethylene	4	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	NLE	mg/kg	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (Total)	NLE	mg/kg	0.25	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ТРН	-	<u>-</u>	-	-	-	· · · · · · · · · · · · · · · · · · ·	-	∃' ' <u>'</u>	-	-	· · · · · · · · · · · · · · · · · · ·	-	-	∃' ' <u>'</u>	-	-
Total Petroleum Hydrocarbons	10000	mg/kg	19065.98	2910.5	2088.35	5930.63	230.57	776.88	ND	ND	540.71	370.97	ND	193.33	1770.76	4927.25

Table 4-6 Phase 2 RA Post-Ex Soil Sampling Results 886

Field Sample ID			886-PX63 E	886-PX64 N	886-PX65 B	886-PX66 B
Date Collected			2/14/2003	2/14/2003	2/14/2003	2/14/2003
ANALYTE / Lab ID	Criterion	Units	3007104	3007105	3007106	3007107
ТРН						
Total Petroleum Hydrocarbons	10000	mg/kg	ND	ND	ND	ND

Table 4-7 Phase2 RA Post-Ex Soil Sampling Exceedence Summary 886

Fort Monmouth, New Jersey

Date

Lab

Analyte	Criterion	Field ID	Round	Collected	Sample ID	Result	Units
<u>TPH</u>							
Total Petroleum Hydrocarbons	10000						
		886-DUP (2079105)			Maximu	m Result: 17048.12	mg/kg
				11/6/2002	2079105	17048.12	mg/kg
		886-PX14A/NW				ım Result: 11883.9	mg/kg
				11/1/2002	2077901	11883.9	mg/kg
		886-PX15A/WW				m Result: 17095.89	mg/kg
				11/1/2002	2077902	17095.89	mg/kg
		886-PX19/WW	-	1		m Result: 24876.54	mg/kg
				11/6/2002	2079101	24876.54	mg/kg
		886-PX20/NW	-	1		ım Result: 16602.2	mg/kg
				11/6/2002	2079102	16602.2	mg/kg
		886-PX23 W		1		ım Result: 10284.4	mg/kg
				11/7/2002	2079401	10284.4	mg/kg
		886-PX24W		1 [m Result: 31639.09	mg/kg
				11/7/2002	2079402	31639.09	mg/kg
		886-PX26 E		1 [m Result: 11162.05	mg/kg
				11/7/2002	2079404	11162.05	mg/kg
		886-PX29 W		, .		m Result: 13469.45	mg/kg
				11/8/2002	2079901	13469.45	mg/kg
		886-PX30 W		1		m Result: 12009.29	mg/kg
				11/8/2002	2079902	12009.29	mg/kg
		886-PX49 W		1 [m Result: 19065.98	mg/kg
				11/21/2002	2083104	19065.98	mg/kg

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons; MDL = Method Detection Limit; ND = Not Detected; ug/L = micrograms per liter, equivalent to parts per billion (ppb); NA = Not Analyzed/Not Applicable; Criterion = RDCSCC: NJDEP Residential Direct Contact Soil Cleanup Criteria per N.J.A.C. 7:26D

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion.

1/6/2006 Page 1 of 1

Table 4-8 Groundwater Monitoring Well Sampling Results 886

WELL ID																
			886MW01	886MW02	886MW03	886MW04	886MW05	886RW01	886RW02	886RW03	886RW04	886RW05	886RW06	886RW07	886RW08	Dup (3006103
Date Collected			2/12/2003	2/12/2003	2/12/2003	2/12/2003	2/12/2003	2/5/2003	2/5/2003	2/5/2003	2/5/2003	2/5/2003	2/12/2003	2/12/2003	2/5/2003	2/5/2003
ANALYTE / Lab ID	Criterion	Units	3006607	3006608	3006606	3006610	3006609	3006108	3006107	3006104	3006105	3006106	3006605	3006604	3006109	3006103
VOCs																
1,1,2,2-Tetrachloroethane	* 1	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	600	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	700	ug/L	4.18	3.33	6.75	ND	ND	40.9	ND	3.08	1.5	3.86	2.05	6.52	42.88	2.96
Benzene	1	ug/L	0.59	ND	ND	ND	ND	ND	2.16	0.77	0.67	1.23	ND	1.17	ND	1.09
Chloroform	6	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	0.47	ND	ND	ND	ND	ND
Dibromochloromethane	10	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	ug/L	ND	ND	ND	3.56	ND	ND	2.13	ND	0.69	2.32	ND	6.59	ND	2.16
Methyl ethyl ketone (2-Butanone)	300	ug/L	0.93	ND	0.77	ND	ND	30039.7	ND	ND	ND	1.16	ND	ND	29510.7	ND
Methyl tertiary butyl ether (MTBE)	* 70	ug/L	ND	ND	2.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100	ug/L	ND 0.64	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene Toluene	1000	ug/L ug/L	0.64 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.45	ND ND	ND ND
Yylenes (Total)	* 1000	ug/L ug/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.12	ND ND	ND ND	ND 2.26	ND ND	5.23	ND ND	ND 2.11
	· 1000	ug/L	ND	ND	ND	ND	ND	ND	2.12	ND	ND	2.20	ND	3.23	ND	2.11
ТРН																
Total Petroleum Hydrocarbons	NLE	mg/L	2.1	0.8	13.3	1.7	ND	1.3	1.4	1.5	1.5	2	1.7	4	9.4	2
SVOCs																
1,2-Dichlorobenzene	600	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	600	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	* 100	ug/l	1.72	ND	17.64	28.73	ND	3.37	37.63	75.88	31.36	60.8	40.39	59.97	ND	50.3
Acenaphthene	400	ug/l	2.77	ND	8.92	7.64	ND	1.8	1.89	2.82	2.45	5.64	2.27	3.51	3.53	4.6
Acenaphthylene	* 100	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.08
Bis(2-ethylhexyl)phthalate	30	ug/l	2.04	1.66	ND	1.9	ND	4.7	2.07	ND	ND	1.3	ND	2.49	2.8	1.28
Dibenzofuran	* 100 5000	ug/l	2.71 ND	ND ND	ND ND	ND 1.6	ND 1.14	ND ND	ND ND	1.96 ND	2.08 ND	4.92 ND	ND ND	ND 1.15	ND ND	4.8 ND
Diethylphthalate Fluorene	300	ug/l ug/l	2.9	ND ND	11.75	8.63	ND	1.73	1.96	3.11	3.11	6.37	2.84	3.97	3.17	5.64
Naphthalene	* 300	ug/l	ND	ND ND	4	21.33	ND ND	ND	ND	5.66	7.44	13.36	15.94	18.16	ND	12.08
N-Nitrosodiphenylamine	20	ug/l	ND	ND	38.99	ND	ND	ND	ND	1.89	2.49	1.05	ND	2.66	ND	ND
Phenanthrene	* 100	ug/l	1.83	ND	24.07	8.36	ND	ND	1	2.08	2.21	4.7	1.8	4.29	1.06	4.89
Pyrene	200	ug/l	ND	ND	1.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pest/PCBs												· · · · · · · · · · · · · · · · · · ·				
4.4'-DDE	.1	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	0.01	ND	ND	ND	ND	ND
delta-BHC	* 100	ug/I ug/I	ND ND	ND ND	ND ND	ND ND	ND ND	0.03	0.1	0.59	0.01	0.07	ND ND	ND ND	ND ND	0.04
gamma-BHC	.2	ug/l	ND	ND	ND	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals		u _b ,	1,2	1,2	112	0.01	1.2	1.12		1.12	1.2	110	1.2	1.12		
Aluminum	200	na/l	212	240	1250	288	458	34	15.6	59.9	49	31.1	269	151	35.6	50
Arsenic	8	ug/l ug/l	5.91	12.2	ND	ND	458 ND	ND	15.6 ND	59.9 ND	ND	31.1 ND	ND	ND	33.0 ND	ND
Arsenic Barium	2000	ug/I ug/l	15.3	12.2	69.3	ND 12	33.3	ND 35.9	ND 42.2	ND 42.7	ND 42	ND 24.5	37.2	ND 34.1	32	ND 47.9
Beryllium	2000	ug/l	ND	ND	0.597	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	4	ug/l	1.55	2.38	ND	0.598	ND	ND	0.581	0.662	ND	0.609	ND	ND	ND	0.6
Calcium	NLE	ug/l	15000	29600	18600	5650	6600	15300	18600	23500	18600	16800	12300	10600	46400	16900
Chromium III	NLE	ug/l	1.78	2.92	2.26	1.79	1.88	6.64	2.53	1.03	1.58	0.63	1.17	1.56	5.08	1.3
Cobalt	* 100	ug/l	ND	16.4	10	0.886	4.64	5.42	7.81	7.4	3	0.578	17.4	10.4	20.5	ND
Copper	1000	ug/l	ND	ND	3.54	5.49	3.02	2.53	ND	ND	5.37	ND	2.81	4.17	ND	3
Iron	300	ug/l	67300	97500	6070	15500	307	6800	14800	19000	1930	22300	14200	14100	3590	21800

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons;

PCBs = polyhloronated biphenyls; MDL = Method Detection Limit; ND = Not Detected;

ug/L = micrograms per liter, equivalent to parts per billoion (ppb); mg/kg = miligrams per kilogram, equivalent to parts per million; NA = Not Analyzed/Not Applicable;

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion;

Tuesday, January 10, 2006

Sample Group # 0 Page 1 of 2

Fort Monmouth, New Jersey

WELL ID																
			886MW01	886MW02	886MW03	886MW04	886MW05	886RW01	886RW02	886RW03	886RW04	886RW05	886RW06	886RW07	886RW08	Oup (3006103
Date Collected			2/12/2003	2/12/2003	2/12/2003	2/12/2003	2/12/2003	2/5/2003	2/5/2003	2/5/2003	2/5/2003	2/5/2003	2/12/2003	2/12/2003	2/5/2003	2/5/2003
ANALYTE / Lab ID	Criterion	Units	3006607	3006608	3006606	3006610	3006609	3006108	3006107	3006104	3006105	3006106	3006605	3006604	3006109	3006103
Metals																
Lead	10	ug/l	1.18	2.8	ND	1.23	ND	ND	ND	ND	ND	ND	1.23	1.25	ND	1
Magnesium	NLE	ug/l	7460	11200	8950	3100	6510	8230	8090	5160	7650	6270	6470	7660	14900	6290
Manganese	50	ug/l	900	3000	400	203	54.7	495	635	827	276	529	773	620	1880	524
Nickel	100	ug/l	ND	4.08	13.7	1.58	8.24	3.43	4.97	7	5.32	ND	6.35	3.5	6.68	ND
Potassium	NLE	ug/l	1640	4330	3870	1040	1300	2760	3340	3570	2980	2020	2140	2530	2310	2000
Selenium	50	ug/l	ND	ND	ND	ND	ND	ND	ND	ND	5.11	ND	ND	ND	7.72	ND
Silver	* 30	ug/l	4.72	3.83	22.7	3.66	1.27	2.36	2.69	1.39	3.92	2	2.56	4.61	1.75	6
Sodium	50000	ug/l	19400	24800	22900	4830	9490	47600	45900	61800	17200	39500	11900	12400	12900	40100
Vanadium	NLE	ug/l	1.56	2.32	ND	0.967	0.859	ND	ND	ND	ND	ND	2.61	0.87	ND	ND
Zinc	5000	ug/l	11.1	18.3	41.5	14	29.2	8.45	10.7	43.1	22.8	ND	32.1	16.7	8.94	10

Tuesday, January 10, 2006

Table 4-8 Groundwater Monitoring Well Sampling Results 886 Fort Monmouth, New Jersey

WELL ID			Dup (3006603)
Date Collected			2/12/2003
ANALYTE / Lab ID	Criterion	Units	3006603
VOCs			
1,1,2,2-Tetrachloroethane	* 1	ug/L	ND
1,2-Dichlorobenzene	600	ug/L	ND
1,3-Dichlorobenzene	600	ug/L	ND
1,4-Dichlorobenzene	75	ug/L	ND
Acetone	700	ug/L	3.95
Benzene	1	ug/L	0.63
Chloroform	6	ug/L	ND
Dibromochloromethane	10	ug/L	ND
Ethylbenzene	700	ug/L	ND
Methyl ethyl ketone (2-Butanone)	300	ug/L	1.03
Methyl tertiary butyl ether (MTBE)	* 70	ug/L	ND
Styrene	100	ug/L	ND
Tetrachloroethylene	1	ug/L	ND
Toluene	1000	ug/L	ND
Xylenes (Total)	* 1000	ug/L	ND
TPH			
Total Petroleum Hydrocarbons	NLE	mg/L	2
SVOCs			
1,2-Dichlorobenzene	600	ug/l	ND
1,3-Dichlorobenzene	600	ug/l	ND
1,4-Dichlorobenzene	75	ug/l	ND
2-Methylnaphthalene	* 100	ug/l	1.68
Acenaphthene	400	ug/l	2.73
Acenaphthylene	* 100	ug/l	ND
Bis(2-ethylhexyl)phthalate	30	ug/l	1.64
Dibenzofuran	* 100	ug/l	ND
Diethylphthalate	5000	ug/l	1.36
Fluorene	300	ug/l	2.63
Naphthalene	* 300	ug/l	ND
N-Nitrosodiphenylamine	20	ug/l	ND
Phenanthrene	* 100	ug/l	1.05
Pyrene	200	ug/l	ND
Pest/PCBs			
4,4'-DDE	.1	ug/l	ND
delta-BHC	* 100	ug/l	ND
gamma-BHC	.2	ug/l	ND
Metals			
Aluminum	200	ug/l	205
Arsenic	8	ug/l	4.83
Barium	2000	ug/l	15.2
Beryllium	20	ug/l	ND
Cadmium	4	ug/l	1.56
Calcium	NLE	ug/l	15000
Chromium III	NLE	ug/l	3.26
Cobalt	* 100	ug/l	0.589
Copper	1000	ug/l	ND
Iron	300	ug/l	67500

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons;

PCBs = polyhloronated biphenyls; MDL = Method Detection Limit; ND = Not Detected;

ug/L = micrograms per liter, equivalent to parts per billoion (ppb); mg/kg = miligrams per kilogram, equivalent to parts per million; NA = Not Analyzed/Not Applicable;

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion;

Tuesday, January 10, 2006

Sample Group # 1 Page 1 of 2

Table 4-8 Groundwater Monitoring Well Sampling Results 886 Fort Monmouth, New Jersey

WELL ID			Dup (3006603)
Date Collected			2/12/2003
ANALYTE / Lab ID	Criterion	Units	3006603
Metals			
Lead	10	ug/l	2.1
Magnesium	NLE	ug/l	7480
Manganese	50	ug/l	901
Nickel	100	ug/l	ND
Potassium	NLE	ug/l	1620
Selenium	50	ug/l	ND
Silver	* 30	ug/l	4.15
Sodium	50000	ug/l	19600
Vanadium	NLE	ug/l	1.43
	•		
Zinc	5000	ug/l	12

Fort Monmouth, New Jersey

		POIT MOI	mouth, New Jersey	Date	Lab		
Analyte	Criterion	Field ID	Round	Collected	Sample ID	Result	Units
<u>'OCs</u>							
Benzene	1						
		886RW02			Maxi	mum Result: 2.16	ug/L
				2/5/2003	3006107	2.16	ug/L
		886RW05			Maxi	mum Result: 1.23	ug/L
				2/5/2003	3006106	1.23	ug/L
		886RW07			Maxi	mum Result: 1.17	ug/L
				2/12/2003	3006604	1.17	ug/L
		Dup (3006103)			Maxi	mum Result: 1.09	ug/L
				2/5/2003	3006103	1.09	ug/L
1ethyl ethyl ketone (2-Butanone)	300						
		886RW01	1			m Result: 30039.7	ug/L
				2/5/2003	3006108	30039.7	ug/L
		886RW08				m Result: 29510.7	ug/L
				2/5/2003	3006109	29510.7	ug/L
<u>VOCs</u>							
N-Nitrosodiphenylamine	20						
		886MW03		2/12/2002		num Result: 38.99	ug/l
[-4-1-				2/12/2003	3006606	38.99	ug/l
<u>letals</u> Juminum	200						
Mullimuli	200	886MW01			Mov	imum Result: 212	no/1
		9901/1 // 01		2/12/2003	3006607	212	ug/l ug/l
		99/3/11/02		2/12/2003			
		886MW02		2/12/2003	3006608	imum Result: 240	ug/l ug/l
		0067477403	<u> </u>	2/12/2003			
		886MW03		2/12/2003	3006606	mum Result: 1250 1250	ug/l ug/l
		00 (3 533)0 4		2/12/2003			
		886MW04		2/12/2003	3006610	imum Result: 288	ug/l
				2/12/2003			ug/l
		886MW05		2/12/2003	3006609	imum Result: 458	ug/l
				2/12/2003			ug/l
		886RW06		2/12/2003	3006605	imum Result: 269	ug/l
				2/12/2003			ug/l
		Dup (3006603)		2/12/2002	3006603	imum Result: 205	ug/l
Arsenic	8			2/12/2003	3000003	205	ug/l
Arsenic	ð	886MW02			Mavi	mum Result: 12.2	ug/l
		300141 44 02		2/12/2003	3006608	12.2	ug/l
ron	300						
		886MW01			Maxim	um Result: 67300	ug/l
				2/12/2003	3006607	67300	ug/l
		886MW02			Maxim	um Result: 97500	ug/l
				2/12/2003	3006608	97500	ug/l
		886MW03		-	Maxii	mum Result: 6070	ug/l
				2/12/2003	3006606	6070	ug/l
		886MW04				um Result: 15500	ug/l
		000112 11 07		2/12/2003	3006610	15500	ug/l
		886MW05	l			imum Result: 307	ug/l

Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons; MDL = Method Detection Limit; ND = Not Detected; ug/L = micrograms per liter, equivalent to parts per billion (ppb); NA = Not Analyzed/Not Applicable; Criterion = GW Criterion: NJDEP Groundwater Quality Criteria (Higher of GWQC and PQL) per N.J.A.C. 7:9-6

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion.

1/10/2006 Page 1 of 3

Fort Monmouth, New Jersey

Analyte	Criterion	Field ID	mouth, New Jersey Round	Date Collected	Lab Sample ID	Result	Units
				2/12/2003	3006609	307	ug/l
		886RW01			Max	imum Result: 6800	ug/l
				2/5/2003	3006108	6800	ug/l
		886RW02	•	-	Maxir	num Result: 14800	ug/l
				2/5/2003	3006107	14800	ug/l
		886RW03			Maxii	num Result: 19000	ug/l
				2/5/2003	3006104	19000	ug/l
		886RW04	<u>.</u>		Max	imum Result: 1930	ug/l
				2/5/2003	3006105	1930	ug/l
		886RW05		<u> </u>	Maxii	num Result: 22300	ug/l
				2/5/2003	3006106	22300	ug/l
		886RW06				num Result: 14200	ug/l
				2/12/2003	3006605	14200	ug/l
		886RW07				num Result: 14100	ug/l
				2/12/2003	3006604	14100	ug/l
		886RW08				imum Result: 3590	ug/l
				2/5/2003	3006109	3590	ug/l
	D	up (3006103)		2/5/2002		num Result: 21800	ug/l
				2/5/2003	3006103	21800	ug/l
	D	up (3006603)	1	2/12/2002		num Result: 67500	ug/l
Manganese	50			2/12/2003	3006603	67500	ug/l
vranganese		886MW01			Ma	ximum Result: 900	ug/l
		3301111101		2/12/2003	3006607	900	ug/l
		886MW02				imum Result: 3000	ug/l
		000111 11 02		2/12/2003	3006608	3000	ug/l
		886MW03			Ma	ximum Result: 400	ug/l
		0001.17700		2/12/2003	3006606	400	ug/l
		886MW04			Ma	ximum Result: 203	ug/l
				2/12/2003	3006610	203	ug/l
		886MW05			Max	dimum Result: 54.7	ug/l
				2/12/2003	3006609	54.7	ug/l
		886RW01			Ma	ximum Result: 495	ug/l
				2/5/2003	3006108	495	ug/l
		886RW02			Ma	ximum Result: 635	ug/l
				2/5/2003	3006107	635	ug/l
		886RW03			Ma	ximum Result: 827	ug/l
				2/5/2003	3006104	827	ug/l
		886RW04			Ma	ximum Result: 276	ug/l
				2/5/2003	3006105	276	ug/l
		886RW05			Ma	ximum Result: 529	ug/l
				2/5/2003	3006106	529	ug/l
		886RW06			Ma	ximum Result: 773	ug/l
				2/12/2003	3006605	773	ug/l
		886RW07			Ma	ximum Result: 620	ug/l
				2/12/2003	3006604	620	ug/l
		886RW08				imum Result: 1880	ug/l

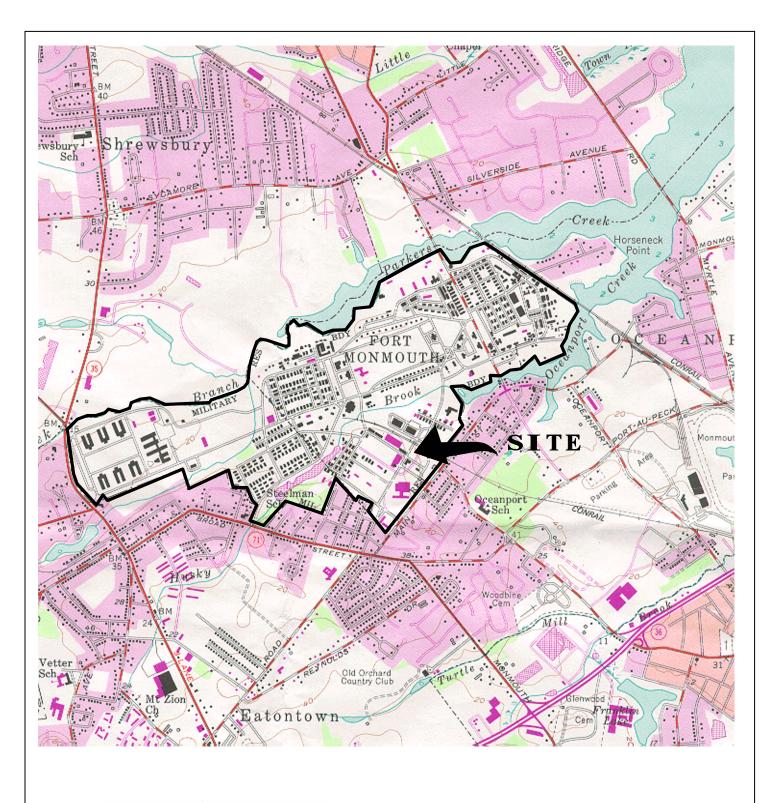
Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons; MDL = Method Detection Limit; ND = Not Detected; ug/L = micrograms per liter, equivalent to parts per billion (ppb); NA = Not Analyzed/Not Applicable; Criterion = GW Criterion: NJDEP Groundwater Quality Criteria (Higher of GWQC and PQL) per N.J.A.C. 7:9-6

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion.

1/10/2006 Page 2 of 3

Fort Monmouth, New Jersey

Analyte	Criterion	Field ID	Round	Date Collected	Lab Sample ID	Result	Units
				2/5/2003	3006109	1880	ug/l
		Dup (3006103)			Maxi	mum Result: 524	ug/l
				2/5/2003	3006103	524	ug/l
		Dup (3006603)			Maxi	mum Result: 901	ug/l
				2/12/2003	3006603	901	ug/l
Sodium	50000						
		886RW03			Maximu	ım Result: 61800	ug/l
				2/5/2003	3006104	61800	ug/l


Notes: VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; TPH = Total Petroleum Hydrocarbons; MDL = Method Detection Limit; ND = Not Detected; ug/L = micrograms per liter, equivalent to parts per billion (ppb); NA = Not Analyzed/Not Applicable; Criterion = GW Criterion: NJDEP Groundwater Quality Criteria (Higher of GWQC and PQL) per N.J.A.C. 7:9-6

Shaded block identifies sample and associated constituent concentration that exceeds the criterion. * = Interim Criterion.

1/10/2006 Page 3 of 3

FIGURES

LONG BRANCH, N. J. 40073-C8-TF-024

1954 PHOTOREVISED 1981 DMA 6164 I SE-SERIES V822

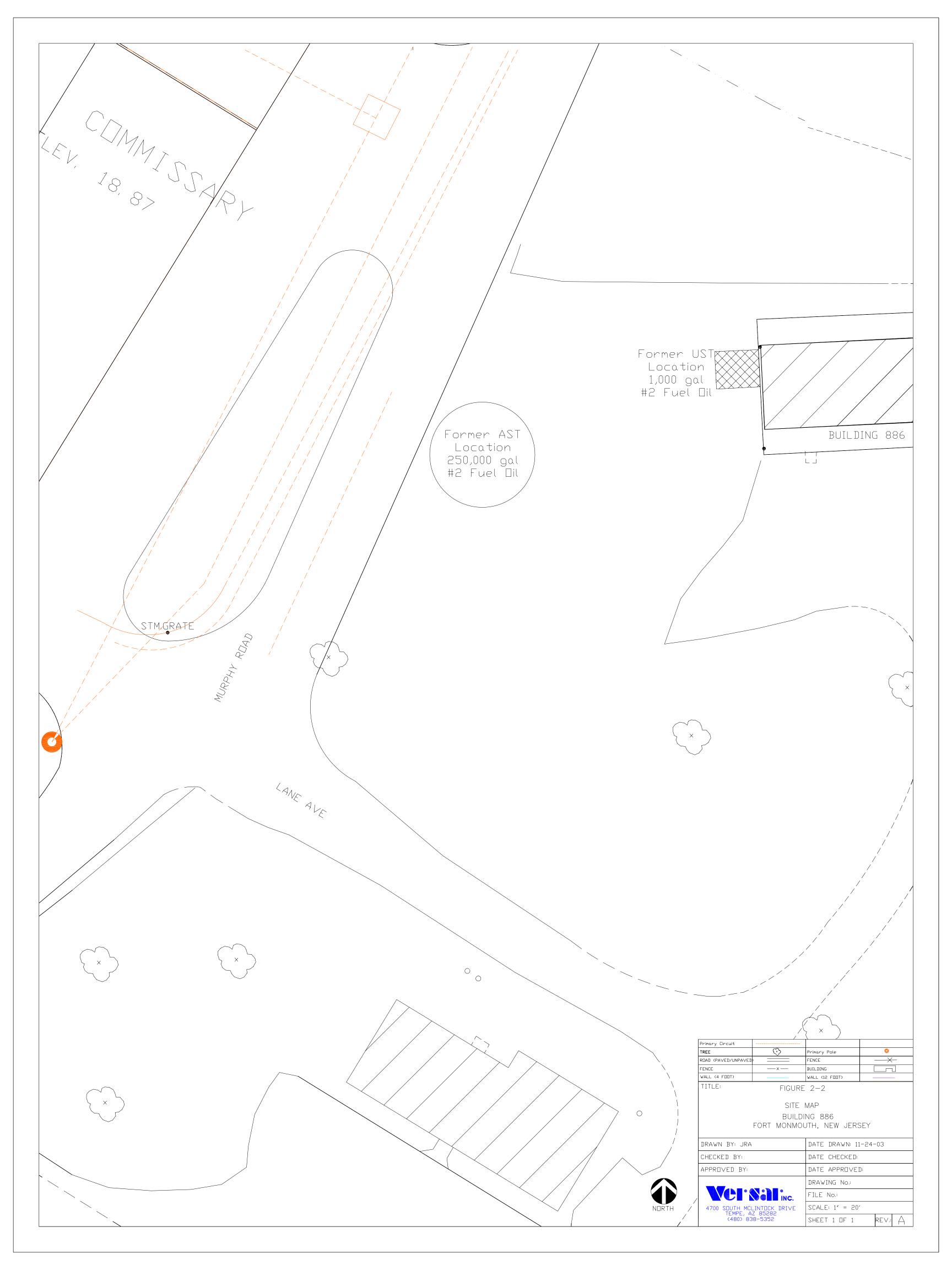
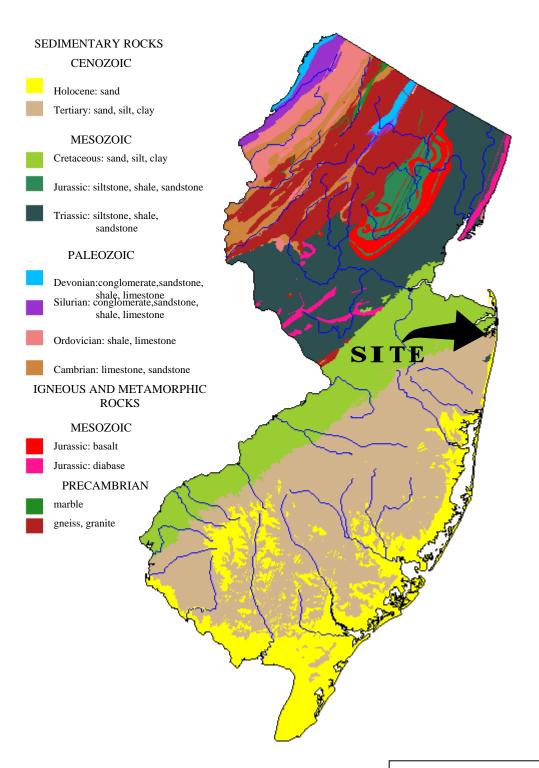


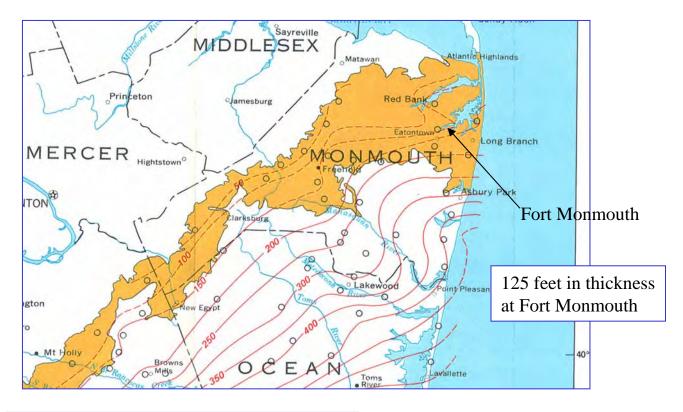
Figure 2-1 **Site Location Map Site 886** Fort Monmouth, New Jersey

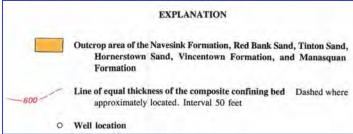


201 Gibraltar Road, Suite 100

Mapped, edited and published by the Geological Survey

Geologic Map of New Jersey




FIGURE 2-3

Geologic Map of New Jersey Building 886 – Main Post Fort Monmouth, New Jersey

201 Gibraltar Road, Suite 100 Horsham, Pennsylvania, 19044 (215)-957-0955

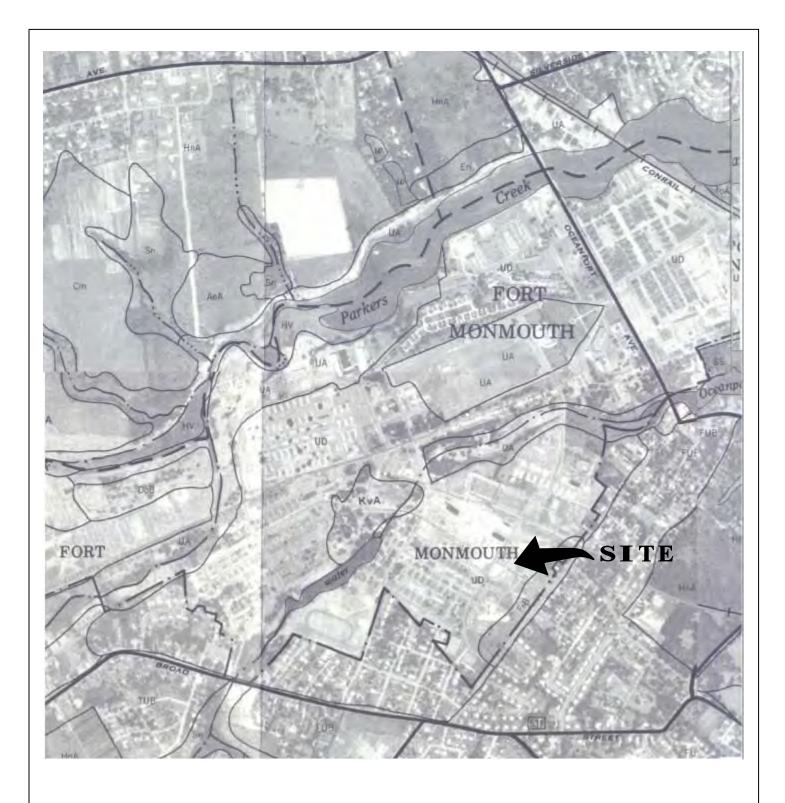
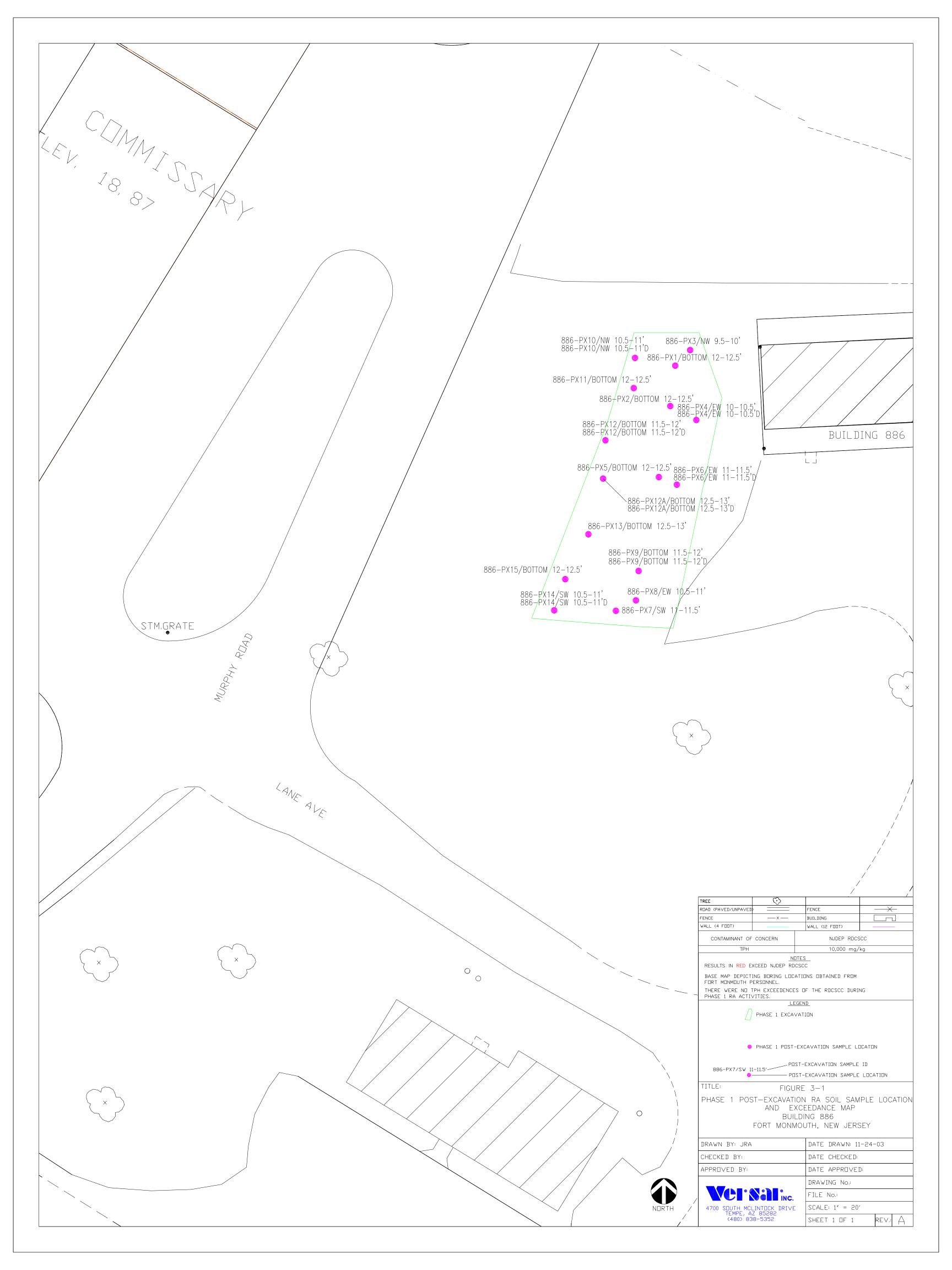

Source: Zapecza, O. 1989. Hydrogeologic Framework of the New Jersey Coastal Plain. USGS Professional Paper 1404-B. U.S. Government Printing Office, Washington, DC.

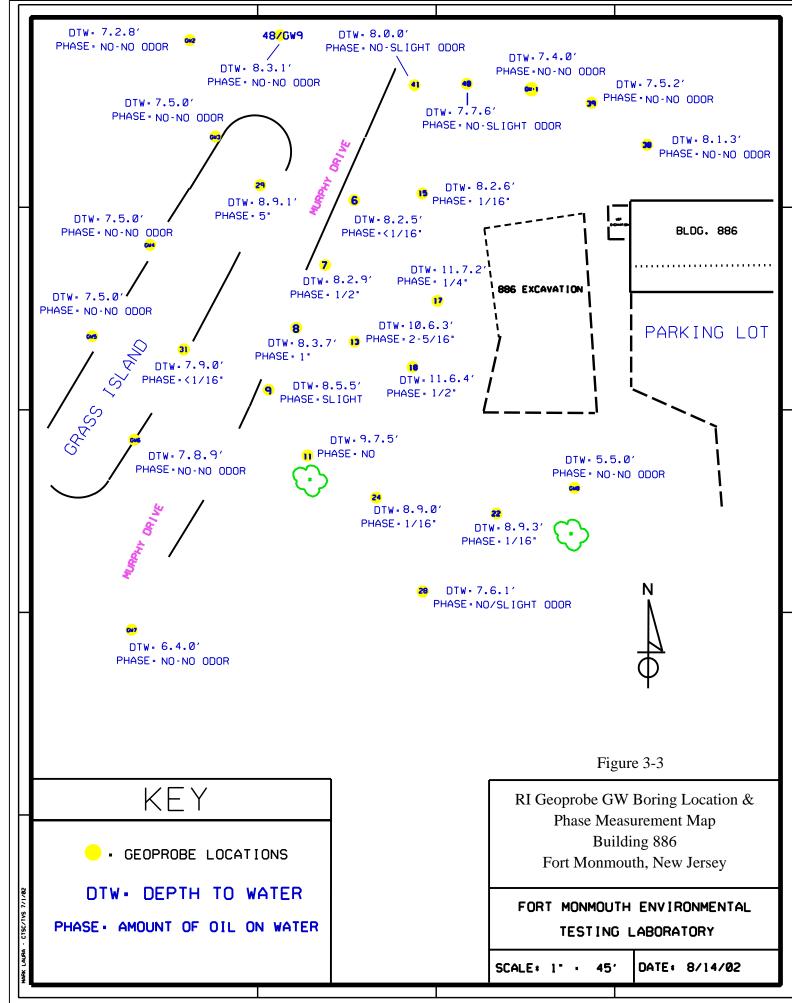
FIGURE 2-4

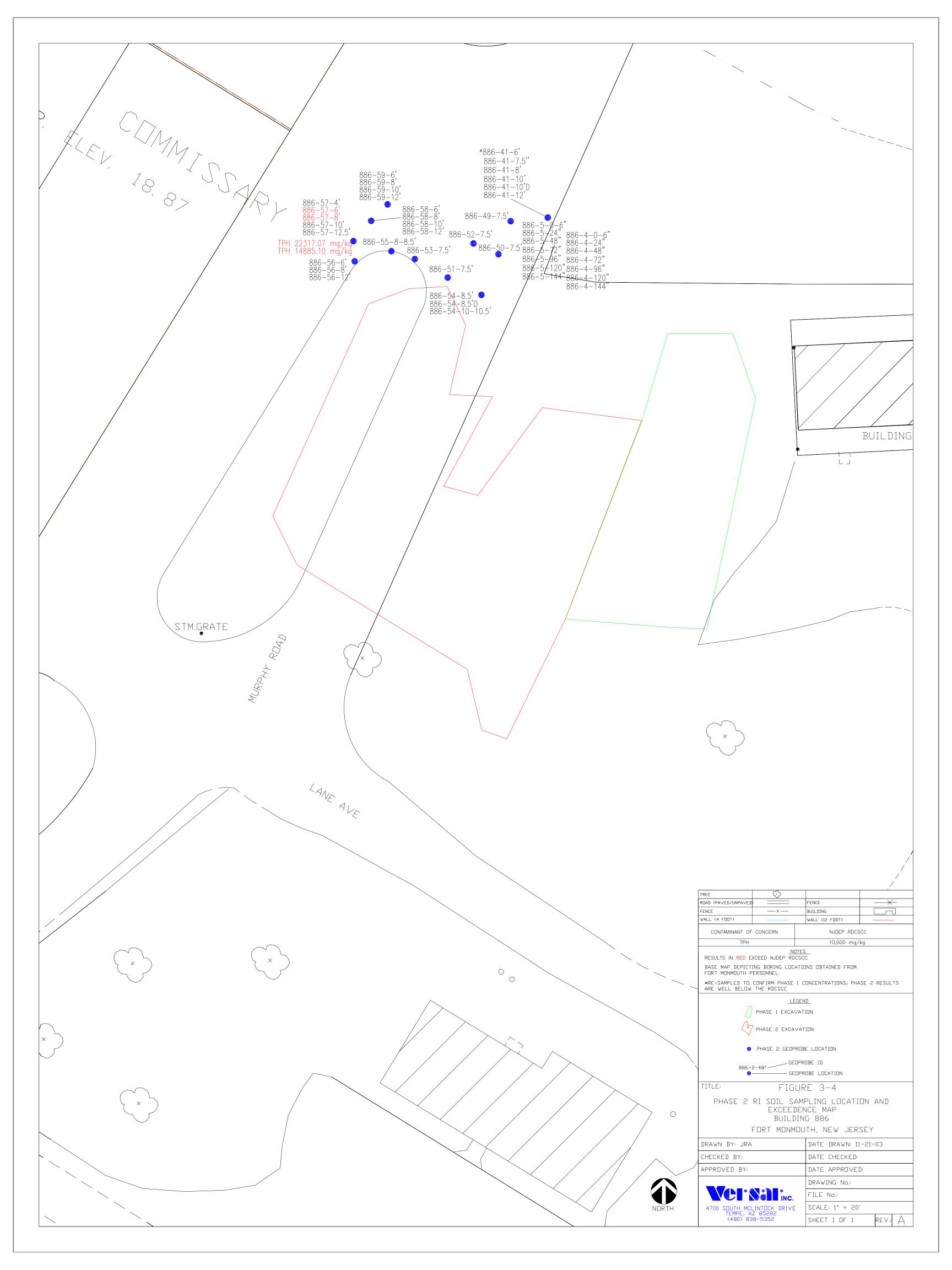
Outcrop and Thickness of Composite Confining Unit Building 886 – Main Post Fort Monmouth, New Jersey

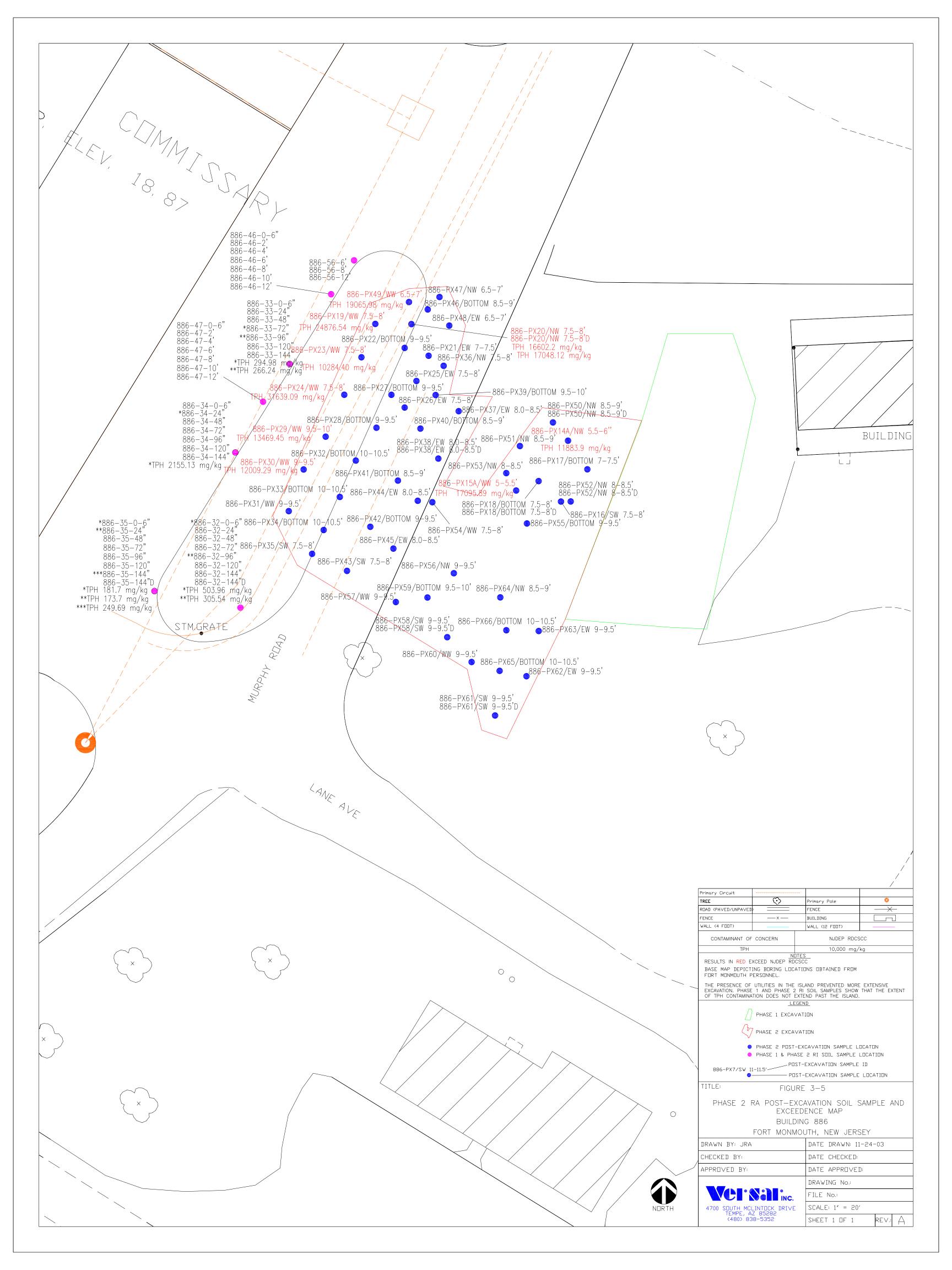
201 Gibraltar Road, Suite 100

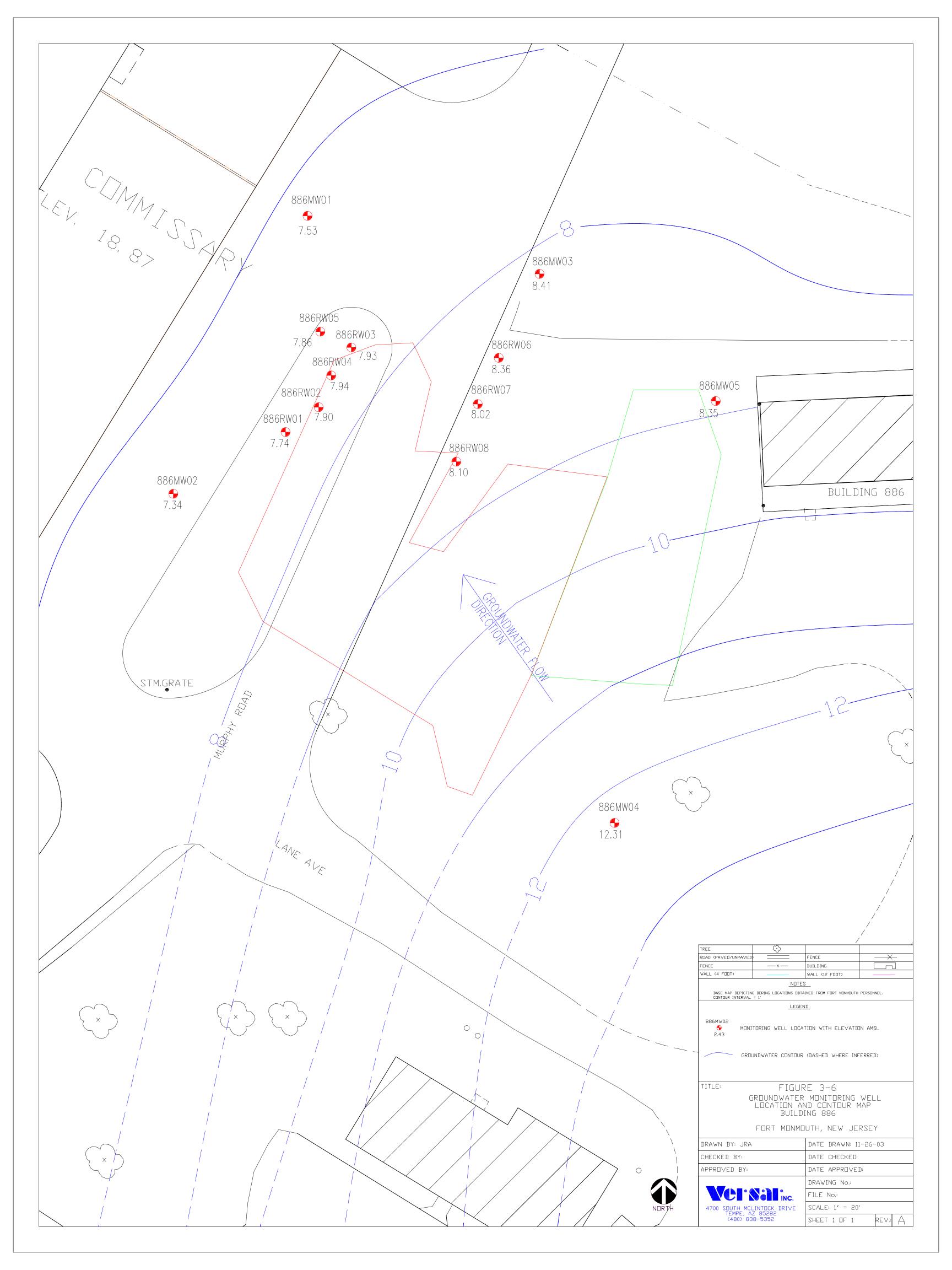


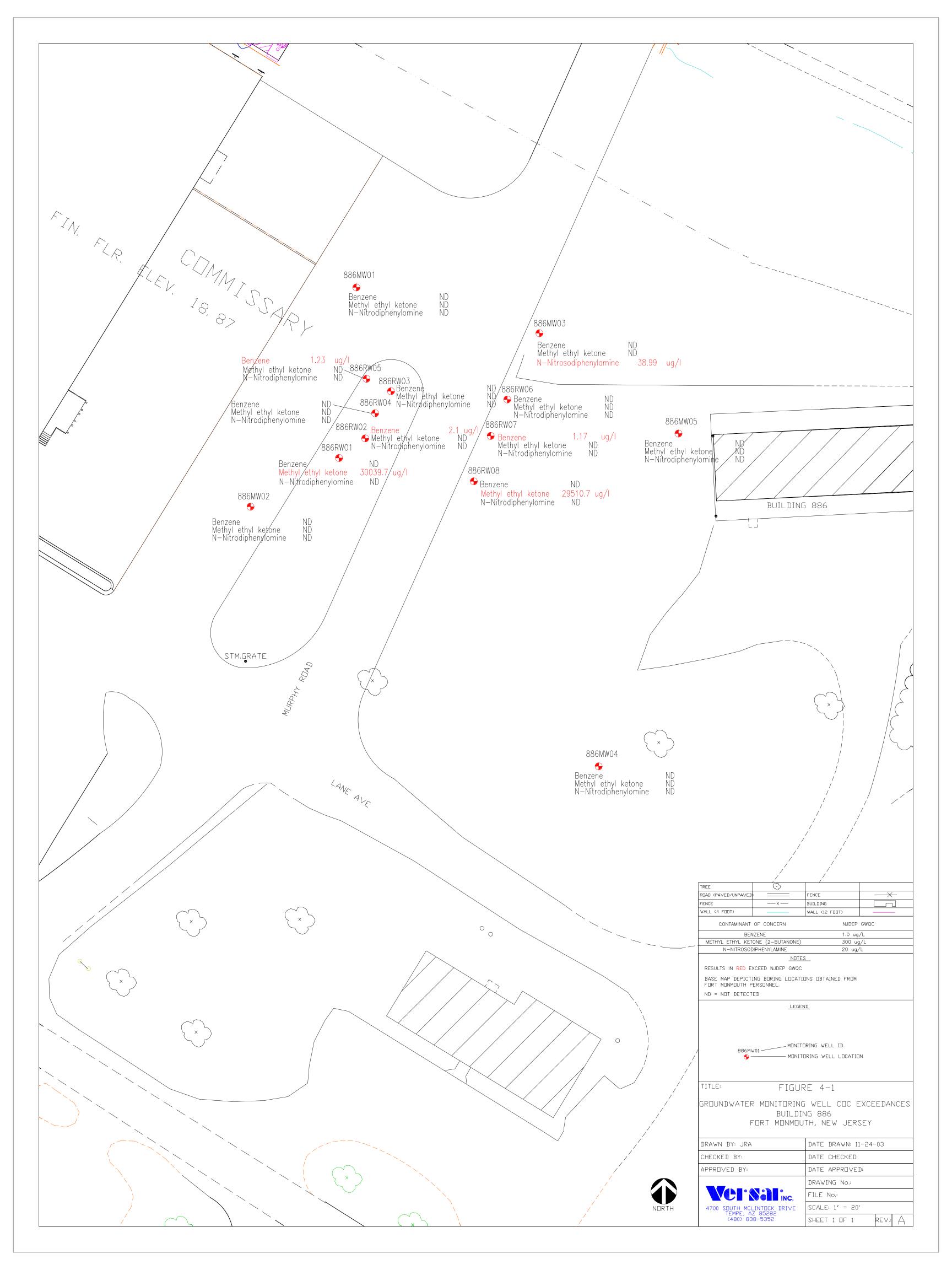

US Department of Agriculture Soil Conservation Service Soil Survey of Monmouth County, NJ April 1989


Figure 2-5 Soil Map of Monmouth County **Building 886** Fort Monmouth, New Jersey




201 Gibraltar Road, Suite 100





APPENDICES

APPENDIX A

Monitoring Well Construction Logs, Permits and Survey Records, Groundwater Treatment System O&M Manual and As-Built Site Plan

September 8, 2003

Mr. Douglas C. Guenther Environmental Protection Specialist U.S. Army, Directorate of Public Works Attn: SELFM-PW-EV, Bldg. 173 Fort Monmouth, NJ 07703

RE: Product Recovery System

Building 886

Fort Monmouth, NJ

Dear Mr. Guenther,

Please find the attached O&M sheets for the installation of the product recovery system located at building 886. A description of the work that was performed each day is summarized on each sheet. Please contact me at 732-536-8667 ext. 337 with any questions you may have.

Sincerely,

Fred M. Howlett

Associate Project Manager

Enclosure(s)

Cc: Handex – File Copy

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

			Well Pern	nit No	294	7835	
			Atlas Shee	et Coordina	tes:_	13 :	669
OWNER IDENTIFICATION - Owner AddressBUILDING	US ARMY FORT HONK	OUTH DP	₩				
CityFORT_MONI	MOUTH State	— NJ			Zip Code		
WELL LOCATION - If not the same as ow County	Municipality oor	AMBODT	DODO IO	· No	ura Block		 M/A
Address BUILDING 886 MURI	PHY DR					1.0.	<u> </u>
Address BUILDING 886 MURI TYPE OF WELL (as per Well Permit Cate	acrical MONITOR	THE	DAT	E WELL CO	OMPLETED/	LI_8_1	$\frac{03}{03}$
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gones) <u>nort tok</u>	IIIG _	Case I.I	D.#	·		
	4 :				Tele. # <u>13</u> 2		137/
CONSULTING FIRM/FIELD SUPERVISO	H (If applicable)/1C	u ruc	Λ		1ele. # _10&	000	0/6
WELL CONSTRUCTION Total depth drilled 17 ft	Note: Measure all depths from land surface	Depth to	Depth to	Diameter (inches)	Material	Wgt./F (lbs/sc	
Total depth drilledft. Well finished toft.	Single/Inner Casing	Top (ft.)	Bottom (ft.)	(inches)	PVC	- `	
Borehole diameter:	Middle Casing	0	3	_7	100	DU	40
Topin. Bottomin.	(for triple cased wells only)		·				
	Outer Casing (largest diameter)						
Well was finished: ☐ above grade flush mounted	Open Hole or Screen	2	10	11	010	01-	CI
If finished above grade, casing height (stick	(No. Used) Blank Casings	2	17	4	PVC	1.010	<u>S6</u> #
up) above land surface ft.	(No. Used)						
Was steel protective casing installed?	Tail Piece						
Static water level after drilling ft.	Gravel Pack	2	17	10	sand	++	= /
Water level was measured using Proble	Grout	0	72	10	Neat Cement	97	_ lbs.
Well was developed for hours at gpm	L		L		Bentonite	7	lbs.
Method of development pump +		routing M Prillina Me	ethod <i>ff</i> thod	ressi Hollo	w Stem	A111	2015
Was permanent pumping equipment installed	O .						
Pump capacitygpm		GEOLOGIC LOG Note each depth where water was encountered in consolidated					
Pump type:		forma	•	oro water w	ao onocariorea		alou
	4 Bin B 59	0-1	7 Bro	wn 7	give to	Concs	70
_			Sa		HIE SI	T.	
Health and Safety Plan submitted? X Yes	\sim	<u> </u>			. . 		 .
Level of Protection used on site (circle one)	None D C B A						
I certify that I have constructed the a							
accordance with all well permit requirence State rules and regul			· · · · · · · · · · · · · · · · · · ·				
Drilling CompanyHANDEX_CORP_/(CHRIS O'SHAUGHNES	_					
Taccon	Yarchesi				LL LOCATIO		
Well Driller (Print)	914 0,45	N.I			ONTAL DATU INATE IN US SU		ET
Driller's Signature		.]
Registration No. MD 512	Date 1 / 8 /03	NOI	CTHING:		_ EASTING: OR		
		LATITUE)E:	· ' — - · —''	OR LONGITUDE:	'	"
COPIES: White DEE	Canany - Driller	Dinte	O	Caldania	d - Health Den		

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

			Well Perm	nit No	29478	37	
			Atlas Shee	et Coordinat	es:	- 13- :	669
OWNER IDENTIFICATION - OwnerAddressBUILDING	US ARMY FORT MONMO	OUTH OP	W				
CityFORT_MONM	OUTH State			2	Zip Code		
WELL LOCATION - If not the same as own County	ner please give address. Municipalityncf4	OWNER	s well No enen Lot	No	N/A Block N	No	/۸_
Address BUILDING 886 MURP	HY DR			DATE 14/51 1	OTABTED 1	, 8,	72
TVDE OF MELL (as per Moll Permit Cate	aorice) MONTTODI	(NC	DAT	E WELL CO	MPLETED	1810	53
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gones) <u>nontron</u>		Case I.I	D.#			
CONSULTING FIRM/FIELD SUPERVISO						•	37
		7_100	· · · · · · · · · · · · · · · · · · ·		Tele. #	·	
WELL CONSTRUCTION Total depth drilled / 7 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rati	
Total depth drilledft. Well finished toft.	Single/Inner Casing	+3		4	PVC	Sch	
Borehole diameter:	Middle Casing					150.0	\sim
Topin. Bottomin.	(for triple cased wells only)				·	ļ	{
Well was finished: Jabove grade	Outer Casing (largest diameter)						į
flush mounted	Open Hole or Screen	Q	17	4	PVC	.0105	7
If finished above grade, casing height (stick	(No. Used) Blank Casings	<u> </u>	//		7 . 0	1,0103	
up) above land surface T_3 ft. Was steel protective casing installed?	(No. Used)	,					
Yes ☐ No	Tail Piece						
Static water level after drillingft.	Gravel Pack	2	17	10	Sand	# (
Water level was measured using proble	Grout	0	2	10	Neat Cement	97	
Well was developed for			ethod P_{Γ}		Bentonite	<u> </u>	103.
Method of development Pump +	_	rilling Me	thod	How	Stem	Auge	2/2
Was permanent pumping equipment installed	. ()		 	0501.00	210.1.00		
Pump capacitygpm		Note e	ach depth wh	GEOLOG ere water w	as encountered in	consolidate	ed
Pump type:		forma	tions.				
Drilling Fluid Type of	of Rig <u>B-59</u>	0-	-17'	Brow		to	
Health and Safety Plan submitted? XYes	-			Coar	se san	d,	
Level of Protection used on site (circle one)	V '/			. / 			
	\mathcal{O}						
I certify that I have constructed the all accordance with all well permit require							
State rules and regul		<u> </u>					
Drilling CompanyHANDEX CORP./C	HRIS O'SHAUGHNES						
Well Driller (Print) Jeffrey	Marchesi				LL LOCATION ONTAL DATUM		
	1-1-	NJ			NATE IN US SUR		
Driller's Signature	anie	NOI	RTHING:	,	_ EASTING:		İ
Registration No. 7981512	Date / 18 103	LATITUE	OE:O	,	DR LONGITUDE:	0 ,	- "
COPIES: White - DEF	Canary - Driller	Pink -	 Owner		d - Health Dept.		

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

47838

Well Permit No. 29

					tes:	13 : 669
OWNER IDENTIFICATION - Owner			4			
Address <u>BUILDING</u> City <u>FORT MONM</u>	173 State	Al T			Zin Code	
•					_	
WELL LOCATION - If not the same as ow CountyMONMOUTH	ner please give address.	Owner's	s Well No	MU	$\frac{1-9}{N/A}$ Block N	lo N/A
COURTY MUNMMATER	iviui licipanty octi	HITE OR 1 1	JOILO LO	INO	DIOCK IN	O
Address <u>BUILDING 886 MURP</u>				DATE WEL	L STARTED/_	18103
TYPE OF WELL (as per Well Permit Cate	gories) MONITOR	ING			OMPLETED _/_	103
Regulatory Program Requiring Well		 -				
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)	Ha	ndex		Tele. #	1536-13
WELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating
Total depth drilledft. Well finished toft.	from land surface	Top (ft.)		(inches)	Iviateriai	(lbs/sch no.)
vveil finished to / it.	Single/Inner Casing	+3	2	4	PVC	50L40
Borehole diameter: Top	Middle Casing (for triple cased wells only))				
Bottom	Outer Casing (largest diameter)					
flush mounted	Open Hole or Screen (No. Used)	2	17	4	PVC	,010S/ot
If finished above grade, casing height (stick up) above land surface <u>+3</u> ft.	Blank Casings (No. Used)					
Was steel protective casing installed? ✓ Yes No	Tail Piece					
Static water level after drilling 6 ft.	Gravel Pack	2	17	10	Sand	#/
Water level was measured using probl	Grout		2	10	Neat Cement	<u>97</u> lbs.
Well was developed forhours			·		Bentonite	lbs.
atgpm	G munde f	irouting M	lethod	1055 HOLLON	ure V Stem	Auner
Method of development pump	,	Juliu ig ivie	:IIIOU	10/100	0 3301	rigu
Was permanent pumping equipment installed	? LYes No			GEOLO	GIC LOG	
Pump type:		Note e forma	•	ere water w	as encountered in	consolidated
Pump type:	_ 2-59	ļ				
Drilling Fluid Type o		0-	-17 B	rown	fine	70
Health and Safety Plan submitted? XYes [] No			oars		1
Level of Protection used on site (circle one)	None D C B A			/i++i	le silt.	
I certify that I have constructed the a						
accordance with all well permit requi						
Drilling CompanyHANDEX_CORP./		_[
Well Driller (Print) Jeffrey	Marchesi				LL LOCATION CONTAL DATUM)
Driller's Signature	Mart	NJ			INATE IN US SUR	
1100517	Data / 80,03				_ EASTING:	
Registration No	Date / / 8 / ()-3	LATITUE	DE: O	· ' ' - '	OR LONGITUDE:	o'
COPIES: White - DEF	Canary - Driller	Pink -	Owner	Goldenro	d - Health Dept.	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

Well Permit No. ______29 ____47839

OWNED IDENTIFIC	ATION Owner	uo épul cont volue		Atlas She	et Coordinat	es <u>29</u> :	13 .:669
		US ARMY FORT MONM	OOTH DR	₩		·	
City	BUILDING FORT MONM	OUTH State	ил_			Zip Code	
WELL LOCATION - I	f not the same as ow	ner please give address. MunicipalityOCE	Owner's	s Well No	MU	N/A Block N	lo N/A
Address R	UNITUUTA 884 MIIRO	HV DD	HIXE UK 1	BORO LO		M/H DIOUR I	
TYPE OF WELL (as Regulatory Program	per Well Permit Cate Requiring Well	gories) <u>MONITOR</u>	ING	DAT Case I.I	E WELL CO	OMPLETED	18103
CONSULTING FIRM	/FIELD SUPERVISO	R (if applicable)	Hai	ndex	·	Tele. # <u>73</u> 2/	536-137
WELL CONSTRUCTOR Total depth drilled Well finished to	17ft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished to	<u>/ /</u> tt.	Single/Inner Casing	+3	a	4	PVC	SCL 40
Borehole diameter: Top Bottom	1 O in.	Middle Casing (for triple cased wells only)					
Well was finished: X	bove grade	Outer Casing (largest diameter)					
If finished above grade	lush mounted	Open Hole or Screen (No. Used)	2	17	4	PVC	.do 5/ot
up) above land surface	e +3 ft.	Blank Casings (No. Used)					
Was steel protective ca XYes ☐ No	,	Tail Piece				**	
Static water level after	ì	Gravel Pack	3	17	10	Sand	#1
Water level was measu	ured using proble	Grout		2	20	Neat Cement	97_lbs.
Well was developed for at gpm	r <u>12</u> hours			ethod	0005	Bentonite Supple	<u>Slbs.</u>
Method of developmen	Dump	+ surge	routing M Prillina Me	etnoa thod	Hollo	w Stem	Auger
Was permanent nump	ing equipment installed	2 Pares N/No					
Pump capacity			Notes	aala alamah uula	GEOLOG		a a ma a li data d
Pump type:	9p		format		ere water w	as encountered in	Consolidated
Drilling Fluid	Type o	f Rig <u>B-59</u>		-12 1	Brown	fine -	<i>L</i>
Health and Safety Pla	n submitted? XYes [] No				se san	<i>d</i> ,
Level of Protection use	ed on site (circle one)	None D C B A			Titt	e silt	-
accordance with		bove referenced well in rements and applicable ations.					
Drilling Company	HANDEX CORP./(CHRIS O'SHAUGHNES	-				
Well Driller (Print)	Jeffre	y Marchesi	L	(NAD	83 HORIZ	LL LOCATION ONTAL DATUM	
Driller's Signature Jeffy Manne						NATE IN US SUR	
Registration No	MB1512	Date / / 8 / 03	NOI LATITUD			_ EASTING: PR LONGITUDE:	
COF	PIES: White - DEP	Canary - Driller	Pink -	 Owner	Goldenro	d - Health Dept.	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

			Well Pern	nit No	-2 <u>9</u> 47	7840	
				et Coordinat	es <u>29</u>	13	_66
OWNER IDENTIFICATION - OwnerAddressBUILDIN		MOUTH C)PW				
City FORT MO	NMOUTHState	N.	I		Zip Code		
WELL LOCATION - If not the same as ow County	ner please give address. Municipality 00	Owner's	s Well No r BORO Lo	PRU.	/ — N/A Block N	lo. N	!/A
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) RECOVE	RY	DAT Case I.	DATE WELL E WELL CO D.#	STARTED /	10	3
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)	ano	lex	· · · · · · · · · · · · · · · · · · ·	Tele. # <u>73</u> 2/	536-13'	76
WELL CONSTRUCTION Total depth drilledft. Well finished toft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating	
Well finished toft.	Single/Inner Casing	0	2	6	PVC	SUL 4	0
Borehole diameter: Topin. Bottom Hin.	Middle Casing (for triple cased wells only)						
Well was finished: □above grade	Outer Casing (largest diameter)						
If finished above grade, casing height (stick	Open Hole or Screen (No. Used)	2	17	6	PVC	,010 S/c	山
up) above land surface ft. Was steel protective casing installed?	Blank Casings (No. Used)	ļ			_		
Yes No Static water level after drilling ft.	Tail Piece		, 7	-	 		
Water level was measured using probe	Gravel Pack	<u> </u>	17	14	Sand Neat Cement	94 lb	·
Well was developed for hours at gpm	Grout	routing M	othod G	14	Bentonite Displac	lb:	s.
Method of development Pump 4		rilling Me	thod	Tollow	J Stem /	Juger	<u>S</u>
Was permanent pumping equipment installed	~~			GEOLOG	2001.000		
Pump capacitygpm Pump type:	, .	Note e			as encountered in	consolidated	7
	of Rig B-59]					-1
Health and Safety Plan submitted? Yes		0-		ourse	fine to	7,4410	
Level of Protection used on site (circle one)				11+,+	race d	ay.	-
I certify that I have constructed the all accordance with all well permit requin State rules and regul	rements and applicable						_ _ _
Drilling Company HANDEX CORP.	/CHRIS O'SHAUGHNES	-	-				
Well Driller (Print) Teffrey	Marchesi		(NAD	83 HORIZ	LL LOCATION ONTAL DATUM		
Driller's Signature	when.	.]			NATE IN US SUR		}
Registration No. MD 1512	Date / 18 103	LATITUD			_ EASTING: DR LONGITUDE:		"
COPIES: White - DEP	Canary - Driller	Pink -	Owner	Goldenroo	d - Health Dept.		

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

Well Permit No. ______29___47841

				Atlas Shee	et Coordina	tes;	-13 [:] 66
OWNER IDENTIFICATION - Ow			IOUTH D P	\			
Address	<u>UILDING 173 </u> ORT MONMOUTH	State	N,T			Zip Code	
						_	
WELL LOCATION - If not the sa County	me as owner ple	ase give address. nicipality occ	Owner's	S Well No	No.	N/A Block N	NO. 11/A
Address BUILDING						•	
				D 4T	DATE WELI F WELL CO	L STARTED	1 18 103
TYPE OF WELL (as per Well Per Regulatory Program Requiring V	ermit Categories) Nell	RECOVER	!Y				•
-						,	
CONSULTING FIRM/FIELD SUI	PERVISOR (if ap	plicable)	tano	XOX		Tele. # <u>'/</u> 52/	536-1379
WELL CONSTRUCTION	Note:	Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating
Total depth drilled	_ft. fro	m land surface	Top (ft.)		(inches)		(lbs/sch no.)
5	Single	Inner Casing	0	2	6	PVC	SCL 40
Borehole diameter: Topin. Bottomin.	Middle (for trip	Casing ole cased wells only)		i			
Bottom/ in.	[Outer	Casing					
Well was finished: ☐above grade		st diameter) Hole or Screen	ļ·				- 01.
Tush mounted	(No. U		2	17	6	PVC	.010 Slot
If finished above grade, casing heig up) above land surface ft.	(No. U	Casings sed)					
Was steel protective casing installed ☐Yes No	d?	ece			v		
Static water level after drilling 6	ft., Gravel	Pack	1	17	14	sand	# /
Water level was measured using	robe Grout		0		14	Neat Cement	94 lbs.
Well was developed for	_hours			1		Bentonite	lbs.
atgpm	0 0 5111	G ~ <i>A Q</i> _	routing M Prilling Me	ethod <u>(5 /</u> thod <i>FT?</i>	MOW	Stem A	LINEY
Method of development pumping aguipment		9			77.00		J.
Was permanent pumping equipment Pump capacity			21-4	-1-111	GEOLOG		
				acn depth wh ions.		as encountered in	consolidated
Pump type:		a. 59	0-	10 B	70 WN	fine to	course
Drilling Fluid	Type of Rig	D- 3 1		sa Sa		14/e 51	
Health and Safety Plan submitted?		^	ļ	tr	ade	day	
Level of Protection used on site (ci	rcle one) None ([C B A					
I certify that I have construc	cted the above re	ferenced well in					
accordance with all well per	rmit requirements and regulations.	s and applicable					
Drilling Company HANDEX	CORP./CHRIS	O'SHAUGHNES		AS-1	BUILT WE	LL LOCATION	
Well Driller (Print)	ey Mai	mhesi		(NAD	83 HORIZ	ONTAL DATUM	
Driller's Signature	- Men	Le.	NJ	STATE PLAN	E COORD	NATE IN US SUR	VEY FEET
AKO E	<u> </u>	1 , 8,03	NOF	RTHING:		_ EASTING:	
Registration No	Date_	1 / 0/03	LATITUD	E: o	-''	OR LONGITUDE:	· · · · · · · · · · · · · · · · · · ·
COPIES: WI	hite - DEP	Canary - Driller	Pink -	Owner	Goldenro	d - Health Dept.	

New Jersey Department of Environmental Protection

Bureau of Water Allocation MONITORING WELL RECORD Well Permit No. _______ 29 ____47842

			Atlas Shee	et Coordina	les	-13:
OWNER IDENTIFICATION - Owner		ID HTUOMA	P Ų			
Address BUILDIN City FORT MO	IG 173 State				Zin Code	
·					_	
WELL LOCATION - If not the same as or	wner please give address	s. Owner's	s Well No	RW	<u>- 3</u>	
County	Municipalityo	CEANPORT	_ <u>B0R0</u> Lot	No	N/A Block N	ю. <u>н/а</u>
AddressBUILDING_886_MU TYPE OF WELL (as per Well Permit Cat	RPHT_UK			DATE WELI	STARTED	, 03
TYPE OF WELL (as per Well Permit Cat Regulatory Program Requiring Well	egories) <u>RECOV</u>	ERY	DAT	E WELL CO	OMPLETED	170 03
						,
CONSULTING FIRM/FIELD SUPERVISO	OR (if applicable)	Hand	dex		Tele. # <u>732</u>	536-137
WELL CONSTRUCTION	Note: Measure all depth	s Depth to		Diameter	Material	Wgt./Rating
Total depth drilledft. Well finished toft.	from land surface	Top (ft.)		(inches)		(lbs/sch no.)
•	Single/Inner Casing	0	a	6	PVC	SCL 40
Borehole diameter: Top in. Bottom in.	Middle Casing (for triple cased wells on	ly)				
Bottom	Outer Casing (largest diameter)					
Mush mounted	Open Hole or Screen (No. Used)	2	17	6	PVC	-010S/ot
If finished above grade, casing height (stick up) above land surface ft.	Blank Casings (No. Used)					
Was steel protective casing installed? ☐Yes ☑ No	Tail Piece					
Static water level after drilling ft.	Gravel Pack	1	17	14	sand	#/
Water level was measured using Probe	Grout	0	,	14	Neat Cement	94 lbs. 5 lbs.
Well was developed for hours at gpm					Bentonite	
	L SIMP.	Grouting M Drilling Me	ethod <u>Or</u> thod H	aury	Displace Stern A	uaers
Method of development pump sequipment installed	d2 Tives Rives					
Pump capacitygpm	и. _П тоо ја то	Note	aab danth wh	GEOLOG	SIC LOG as encountered in	annalidate d
Pump type:			tions.		as effcountered in	consolidated
	of Rig B-59	0-	17 Br	nwo	fine to	coanse
				und,	little si	1+,
Health and Safety Plan submitted? Yes Level of Protection used on site (circle one)				ace	gay	
I certify that I have constructed the a accordance with all well permit requ State rules and regu	iirements and applicable					
	/CHRIS O'SHAUGHNES	<u> </u>				
Well Driller (Print) Jeffrey	Marchesi				LL LOCATION ONTAL DATUM	D.
Driller's Signature	Parker	NJ	STATE PLAN	E COORD	NATE IN US SUR	VEY FEET
11/2/-	Date 1 / 8 / 0	NOI	RTHING:		EASTING:	
Registration No. MDD 12	_ Date/_ <i>_</i> _/_O_	LATITUD	E:O	·''	OR LONGITUDE:	0
COPIES: White - DE	P Canary - Driller	Pink -	Owner	Goldenro	d - Health Dept.	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

			Well Perm	nit No	29 47	843	
					les 29 :	13:	66
OWNER IDENTIFICATION - Owner		40UTH D	PW				
Address BUILDING City FORT MON	MOUTH State	LK			Zip Code		
WELL LOCATION - If not the same as ow	ner please give address. Municipality 001	Owner's	s Well No B0R0 Lot	RU No.	ノー ゲ N/A Block I	No.	N/A
Address <u>BUILDING 886 MUF</u>	PHY DR			DATE WELL	STARTED /	, 29,0	13
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) RECOVE	RY	DAT	E MELL CO	OMPLETED	<u> </u>	73
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)	and	'ex		Tele. # 232/3	36-13	76
WELL CONSTRUCTION Total depth drilled ft. Well finished to ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rat	
Well finished toπ.	Single/Inner Casing	0	2	6	PVC	Sch	40
Borehole diameter: Topin. Bottom/in.	Middle Casing (for triple cased wells only)						
Well was finished: above grade	Outer Casing (largest diameter)						
If finished above grade, casing height (stick	Open Hole or Screen (No. Used)	2	17	6	PVC	.0/05	61
up) above land surface ft. Was steel protective casing installed?	Blank Casings (No. Used)						
☐Yes X No	Tail Piece	<u> </u>	1		·····]
Static water level after drilling 6 ft.	Gravel Pack	1	17	14	sand		
Water level was measured using problem Well was developed for hours	Grout	0	/	14	Neat Cement Bentonite	94 S	lbs. lbs.
at gpm	G	routina M	ethod Gr	. ,	Displac		
Method of development Pump	I surge D	rilling Me	thod #E	1/ow	Stem /	Jugers	
Was permanent pumping equipment installed	? LI Yes MNo			GEOLOG			
Pump capacity gpm Pump type:		Note e format	•	ere water w	as encountered in	consolidate	ed
Drilling Fluid Type o	of Rig B-59	0.		Brown	fine t	to coa	rsa
Health and Safety Plan submitted? Yes] No 🚃		\overline{I}	100 g		41	
Level of Protection used on site (circle one)	None(D)C B A					/ <u> </u>	
I certify that I have constructed the all accordance with all well permit requires and regularity.	rements and applicable						
Drilling CompanyHANDEX_CORP_	/CHRIS O'SHAUGHNES	-					
Well Driller (Print) Jeffrey M		(NAD	83 HORIZ	LL LOCATION ONTAL DATUM			
Driller's Signature	archei	. }			NATE IN US SUR		l
Registration No	Date 1 / 8 / 03	LATITUD			_ EASTING: PR LONGITUDE:		
COPIES: White - DEF	Canary - Driller	Pink -			d - Health Dept.		

New Jersey Department of Environmental Protection

Well Permit No. ______ 29 47844

Bureau of Water Allocation MONITORING WELL RECORD

				et Coordina	tes	13 :66	
OWNER IDENTIFICATION - Owner							
Address BUIL City FORT	MONMOUTH State	NJ			Zip Code		
WELL LOCATION - If not the same a	as owner please give address	. Owner's	s Well No	RW	-5		
County <u>MONMOUTH</u>	Municipality	EANPORT	BORO Lo	t No	_N∕A Block N	NoN/A	
Address BUILDING 886	MURPHY UK			DATE WEL	L STARTED /	19 8 ,03	
TYPE OF WELL (as per Well Permit Regulatory Program Requiring Well	Categories)RECOVE	RY	DAI	E MELL CO	DMPLETED	1160103	
CONSULTING FIRM/FIELD SUPER	VISOR (if applicable)	- 4	ander	<u>C</u>	Tele. #	1536-1370	
WELL CONSTRUCTION Total depth drilledft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)	
Total depth drilledft. Well finished toft.	Single/Inner Casing	0	\mathcal{Q}	6	PVC	SCLYO	
Borehole diameter: Top in. Bottom / Y in.	Middle Casing (for triple cased wells only	()					
Well was finished: ☐ above grade	Outer Casing (largest diameter)						
If finished above grade, casing height (s	Open Hole or Screen (No. Used)	Q	17	6	PUC	010 Slot	
up) above land surface ft.	Blank Casings (No. Used)						
Was steel protective casing installed? Yes X No	Tail Piece						
Static water level after drilling ft.		1	17	14	sand	#1	
Water level was measured using prob	Grout	0	/	14	Neat Cement Bentonite	94 lbs. 5 lbs.	
Well was developed for horat gpm	urs (ethod 618		Displac		
Method of development PUMP		Drilling Me	thod Ho	llow	Stem A	ugers	
Was permanent pumping equipment ins				CEOL O	2101.00		
Pump capacity	gpm	GEOLOGIC LOG Note each depth where water was encountered in consolidated					
Pump type:		forma	tions.				
Drilling Fluid	Type of Rig <u>B-59</u>)-12	Brow			
Health and Safety Plan submitted?	Yes No			Coar	se san le silt	- - - - -	
Level of Protection used on site (circle	7			Fra	de cla	1	
I certify that I have constructed accordance with all well permit State rules and	requirements and applicable						
Drilling CompanyHANDEX_CO	ORP./CHRIS O'SHAUGHNES						
Well Driller (Print) Jeffrey	Marchesi	_			LL LOCATION ONTAL DATUM	[)	
Driller's Signature	Ventar .	NJ			INATE IN US SUR		
Registration No. MD 1512		NOI	RTHING:	(_ EASTING: OR	0	
<u> </u>		LATITUD	DE:	-'· - ''	LONGITUDE:	' <u>_</u>	
COPIES: White	- DEP Canary - Driller	Pink -	Owner	Goldenro	d - Health Dept.		

New Jersey Department of Environmental Protection

Bureau of Water Allocation MONITORING WELL RECORD Well Permit No. ______29 ____47845

				Atlas Shee	et Coordinat	es;	13 669
OWNER IDENTIFICATION - Owner _ AddressBUILDII		MY FORT HONMO	UTH DPW	 			
City FORT_M	NG 173	State	NJ			Zip Code	
WELL LOCATION - If not the same as County	s owner plea	se give address.	Owner's	s Well No	RW	-6	
Address BUILDING 886 MI						-	• •
TYPE OF WELL (as per Well Permit C Regulatory Program Requiring Well _	Categories)	RECOVERY				STARTED / DMPLETED /	
CONSULTING FIRM/FIELD SUPERV	'ISOR (if app	olicable)	land	ex		Tele. # <u>り3</u> み	1536-1376
WELL CONSTRUCTION Total depth drilledft. Well finished toft.		Measure all depths in land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished toft.	Single/I	nner Casing	0	J	6	PVC	sch 40
Borehole diameter: Topin. Bottom/4in.	Middle (for trip	Casing le cased wells only)					
Bottom	Outer C	Casing t diameter)					
If finished above grade, casing height (stic	(No. Us		2	17	6	PVC	,010Slot
up) above land surface ft.	Blank (Casings sed)	1				
Was steel protective casing installed? ☐Yes X No	Tail Pie	есе					
Static water level after drilling ft.	Gravel	Pack	/	17	14	sand	#1
Water level was measured using prob Well was developed forhour			0	,	14	Neat Cement Bentonite	94 lbs. 5 lbs.
atgpm	·	G	routing M	ethod <u>G</u> r	avity	Display	rement
Method of developmentpump	4 34		rilling Me	thod <u>H</u> C	How'	Stem A	ugers
Was permanent pumping equipment insta					GEOLOG	SIC LOG	
Pump capacity gp	om		Note each depth where water was encountered in consolidated formations.				
• • •	ype of Rig	2-59	0-	-17 1	brown	fine to	coarso
					and,		511+
Health and Safety Plan submitted? (ESC) Level of Protection used on site (circle or)сва		<i>+</i>	race	- Clay	
I certify that I have constructed the accordance with all well permit re State rules and r	ne above ref equirements	erenced well in					
Drilling Company HANDEX CORP	./CHRIS O	[*] SHAUGHNES					
Well Driller (Print)	y Ma	rchesi		(NAD	83 HORIZ	LL LOCATION ONTAL DATUM	
Driller's Signature	March	<u>~</u>	. NOT			NATE IN US SUR	
Registration No. M91512	Date	1,8,03	LATITUD	0		_ EASTING: DR LONGITUDE:	0 ,
COPIES: White -	DEP C	anary - Driller	Pink -	Owner	Goldenro	d - Health Dept.	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

Well Permit No. _____ - 29 47846

			Atlas She	et Coordina	tes 29	<u>i</u> 3
OWNER IDENTIFICATION - Owner	US ARMY FORT HO	HTUOHK	OPW -			
Address BUILDI City FORT M	NG 173 ONMOUTH State				Zip Code	
WELL LOCATION - If not the same as ow County	nor nlease dive address	Owner's	s Well No	RU	υ - 7	
Address BUILDING 886 M	минорану	CEANPOR	ST BOKO LO	. 110	N/A BIOCK	N/I
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) <u>RECOV</u>	ERY	DAT Case I.I	D.#		
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)	tano	lex		Tele. # <u>232</u>	1536-13!
WELL CONSTRUCTION Total depth drilledft. Well finished toft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished to ft.	Single/Inner Casing	\bigcirc	2	6	PVC	SCL 40
Borehole diameter: Top in. Bottom in.	Middle Casing (for triple cased wells only)					
Well was finished: ☐ above grade	Outer Casing (largest diameter)					
flush mounted	Open Hole or Screen (No. Used)	2	17	6	PVC	.010 Stot
If finished above grade, casing height (stick up) above land surface ft.	Blank Casings (No. Used)					
Was steel protective casing installed? Yes No	Tail Piece					
Static water level after drilling ft.	Gravel Pack	/	17	14	sand	#/
Water level was measured using Probl	Grout	1	/	14	Neat Cement Bentonite	97 lbs.
Well was developed for hours at fgpm		routing M	othod G	100 11 54		
Method of development Pump 4	SUCAL D	rilling Me	thod H	llow	y Displa	voecs
i i						0
Was permanent pumping equipment installed Pump capacity gpm	- Li les Live				GIC LOG	
Pump type:		Note e format		ere water w	as encountered in	consolidated
Drilling Fluid Type o	of Rig <u>B-59</u>	(A)=	(2)	004)		CONTRA
Health and Safety Plan submitted? 🂢 Yes 🗌	7 No	1-0		rown	Little 3	sill garre
Level of Protection used on site (circle one)	*			-race	Jay	
I certify that I have constructed the all accordance with all well permit requir State rules and regul	rements and applicable					
Drilling CompanyHANDEX_CORP.	./CHRIS O'SHAUGHNES	-				
Well Driller (Print) Jeffrey	Marchesi		(NAD	83 HORIZ	LL LOCATION ONTAL DATUM	
Driller's Signature Jeff Ma	rehi:				INATE IN US SUR	VEY FEET
Registration No. 1901512	Date 1 / 8 / 03	NOF LATITUD	0		_ EASTING: OR LONGITUDE:	0 , , , ,
COPIES: White - DEP	Canary - Driller	Pink -	Owner		d - Health Dept.	

New Jersey Department of Environmental Protection Bureau of Water Allocation MONITORING WELL RECORD

47847

Well Permit No. _____29

					Atlas She	et Coordina	tes:		
OWNER IDENTIFICATION -			MY FORT MONM	90 HTU0	\				669
Address	BUILDING	173 —	State				Zip Code		
						^	_		
WELL LOCATION - If not the	e same as owr	er pleas	se give address.	Owner's	Well No	KW	- Block	·	
County MONMOUT	H SSK MIDD		огранту <u>ос</u> е	ANPORT.	BORO LO	I INO	N/A Block I	VO	N/A
Address BUILDIN TYPE OF WELL (as per Wel	ia doo nong					DATE WELI	STARTED/	108	03
									<u>در</u>
Regulatory Program Requiri								,	
CONSULTING FIRM/FIELD	SUPERVISOR	R (if app	licable)	ande	Х	·	Tele. # _23-2	536	<u>-139</u> 6
WELL CONSTRUCTION	ſ		easure all depths	Depth to	·	Diameter		Wgt./Ra	
Total depth drilled	ft.		land surface	Top (ft.)	Bottom (ft.)		Material	(lbs/sch	
Well finished to	π.	Single/Ir	ner Casing	0	3	6	PVC	SCA	-40
Borehole diameter: Top	_in.	Middle C (for triple	Casing cased wells only)						
Well was finished: ☐ above gra	i	Outer C (largest	asing diameter)						
If finished above grade, casing	ınted		ole or Screen	B	17	6	PVC	.010	5/5/
up) above land surface	_ft.	Blank Co (No. Use							
Was steel protective casing inst	,	Tail Pied	ce						
Static water level after drilling _	· 1	Gravel P	ack	1	17	14	sand		
Water level was measured using		Grout		0	1	14	Neat Cement	99	_ lbs. _ lbs.
Well was developed for gpm	hours				othod GC		Bentonite Displace		
Method of development	ump 4	Su	irae c	Prilling Me	thod	1000	Siem	Dug-	ers
Was permanent pumping equip	ment installed?	☐Yes]	· · · · · · · · · · · · · · · · · · ·	r		<u> </u>		رے	
Pump capacity		_ /		Note e	ach depth wh	GEOLOC ere water w	BIC LOG as encountered in	consolida	ted
Pump type:					tions.				
Drilling Fluid	Type of	Big P	-59						
_	\ -			_0	-17	Brow	n fine	10	
Health and Safety Plan submit	۲.		lo B A]		11416	Si (1		
Level of Protection used on site	e (circle one) i	IOIIE D	CBA			race	clay	, /	
I certify that I have cons accordance with all well State ru		ements a							
Drilling CompanyHANDI	EX CORP./CH	RIS O	SHAUGHNES	-					
Well Driller (Print)	frey	Ma	nchesi		(NAD	83 HORIZ	LL LOCATION ONTAL DATUM		
Driller's Signature	Ma	ut	د:	-		E COORD	NATE IN US SUR	VEY FEE	Γ
Registration No.	512	Date	1,8,03	LATITUD	RTHING:		_ EASTING: DR LONGITUDE:	0,	- ''
CORIES	White - DEP	0	anani Drillar	Dinle	Ourpor	Caldana	d Hoolth Dont		

DWR-133M 2/00

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION TRENTON, NJ

2947835 -THRU-2947839

Registration No.

	MONITORING W	ELL PERMIT	2947839 Permit No
Mail To: NJDEP	VALID ONLY AFTER APPL	ROVAL BY THE D.E.P.	rerint No.
BUREAU OF WATER ALLOCATIO PO BOX 426	N		20 12 110
TRENTON, NJ 08625-0426		COORD #:	29.13.669
Owner U.S. Army Fire	Managorth DPM	Driller Hands	ex of New Terriey
Address Building	173	Address <u>703</u>	Ginesi Drive
Fort Monroe	utt. NT 07703_	Morgo	mulle NJ07751
Name of Facility U.S. Acm	y Fort Moorkutto	Diameter L/	Proposed
	1 22 2 11 1 1	of Well(s) # of Wells	Inches Depth of Well(s) Feet Will pumping equipment
Address <u>Guilding</u>	7 /	Applied for (max. 10) Type of Well	be utilized? YES NO A
Tort Monine	445 NJ 07702	(see reverse) Mont Offi	capacity cumulative GPM
	LOCATION OI	F WELL(S)	<i>J</i>
	unicipality County Orth Montrouth Montrouth	Duore destale of mall	(a) magnest monds buildings at a mid-
	O O		l(s) nearest roads,buildings, etc. with in feet. Each well MUST be labeled
State Atlas Map No	mw-5	with a name	and/or number on the sketch.
40 • 20 •	mw.	<u>عن'</u> ا ا	
	F	>	
	7.	1,77	
1 2 3	W2, 8 100, -		30' mw-2
		26	<u> </u>
X + + + + + + + + + + + + + + + + + +	14	(w-1 (c) 5	ā,
4 5 6		8 30,	
,	7 3	1mw-3	
		Prof. Charge the sharp to have your security of the same of	The state of the s
7 8 9	Anson Avenu	162.	•
/ 8 9			
			•
40012	ł		N 1
TOP NO TROUBLE DECOMPANY WELL S OF	P DISTONMETERS THE FOUL OWING MUST BE COMPLETED	DV.	
THE APPLICANT. PLEASE INDICATE WHY THE WI	R PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED ELLS ARE BEING INSTALLED:	DI	This Space for Approval Stamp
Spill Site			· · · · · · · · · · · · · · · · · · ·
ISRA Site			Act of the second second
CERCLA (Superfund) Site		CASE I.D. Number	WELL PERMIT APPROVED
RCRA Site Underground Storage Tank Site		CASE I.D. Number	N.J. D.E.P.
Operational Ground Water Permit Site		i,	
Pretreatment and Residuals Site		<u>.</u> .	NOV 18 2002
■ Water and Hazardous Waste Enforcement C	Case	, in the second second	NOV 18 2002
Water Supply Aquifer Test Observation We	Al		
Other (explain)		<u> </u>	BUREAU OF WATER ALLOCATION
			
	t to the conditions attached. (see next page)	The well(s) may not be con	npleted with more than 25 feet of total screen
D.E.P. Grown For monitoring purposes only	James James	or uncased borehole.	The state of the s
SEE REVERSE SIDE FOR IMPORTANT PROVISION	S PERTAINING TO THIS PERMIT.		

Signature of Driller

Signature of Property Owner <u>Friff</u>

DWR-133M 2/00

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION TRENTON, NJ

2947840 Thru 294784'

Registration No.

	MONITORING W	ぐ VELL PERMIT	294784'
Mail To: NJDEP BUREAU OF WATER ALLOCATION	VALID ONLY AFTER APP	PROVAL BY THE D.E.P.	Permit No.
PO BOX 426 TRENTON, NJ 08625-0426		COORD #:	29.18.469
Owner US ALTHY From A	Johnsoln DAV	O Driller Hander	of New Tecsey
Address Bulling 173	3		oesi Drive
Foot Marmouth		Morgai	
Name of Facility (1.5. AVN)	at Monnouth Murchy Drive	Diameter of Well(s) Incl # of Wells	Proposed uss Depth of Well(s) Will pumping equipment
Address Bulding 8 klo For I Monkuth	NET 07763	Applied for (max. 10) Type of Well (see reverse)	be utilized? YES NO I
	LOCATION O		
Lot # A Block # A Municipality N A For Me	inneath County	Draw sketch of well(s)	nearest roads,buildings, etc. with
State Atlas Map No.	79		eet. Each well MUST be labeled
		with a name and	l'or number on the sketch.
+- 40 • 30'			
1 2 3	ENS 10'	2W-3	15' PW 4
		\$	15 (* 16 (*)
5 6	* 8 8 2	3 2 8 PV	
0 4 5 6 0	52	5' (8)	12 8 RU-8
)/	128	
7 8 9			A.
		11000	n Avenue
<u> 70° 16'</u>			N A
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMET. THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BE	ERS, THE FOLLOWING MUST BE COMPLETED ING INSTALLED:	OBY .	This Space for Approval Stamp
☐ Spill Site ☐ ∠ISRA Site		wife and a const	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CERCLA (Superfund) Site			WELL PERMIT APPROVED
RCRA Site		CASE I.D. Number	N.J. D.E.P.
☐ Underground Storage Tank Site ☐ Operational Ground Water Permit Site			
Pretreatment and Residuals Site			NOV 18 2002
Water and Hazardous Waste Enforcement Case	· ·		
☐ Water Supply Aquifer Test Observation Well ☐ Other (explain)			BUREAU OF WATER ALLOCATION
FOR			The same that th
FOR Issuance of this permit is subject to the cond D.E.P. Pror monitoring purposes only USE	itions attached. (see next page)	The well(s) may not be complete or uncased borehole.	ed with more than 25 feet of total screen
SEE REVERSE SIDE FOR IMPORTANT PROVISIONS PERTAININ In compliance with N.J.S.A.58:4A-14, application is made for a per			

Signature of Driller

Signature of Property Owner /

TIME & MATERIAL -	- HYDI	ROGEO	LOGIST	Work Date: _		_7_/_	02	·-									1. 3
	<u>.</u>			Work Day:	Tuesda	11			VP	•	OPG		#		5	285	3/61)
Handex Pro	oject String	g Tolor		Work Day:	aut Ma	4	200	- 4 81da 9	እጸረ '\	·	_ ONG		_#			_00	TK-)
125100000	uso	17/2/9) no					o sey.	<u> </u>			-	CC	DDED	BY:		\mathcal{X}
Loc Code Contract	Handex Code	Task C	lient Code	Address:	,						·	-					de
Expense/UP Code:								· _ · _ ·		·	-:	-	EN	NTER	ED B	Y:	
		`		Town:								-					
Mileage:		!		Org. I. D			Sta	te:		····		-					
Last Name, First Initial			AM				PM									Travel	Total
mittai	Emp.		Labor Prep.	5 6	7 8	9 10	11 12	2 1 2	131	4	5	6	7	8	9	Time	Hours
	Code		Class Time		┯┵╂╾┰┷╂╸	- 		- 	$+$ $\dot{\tau}$ $+$		TXP	 +		<u> </u>	+	-	
Errickson, J	10597		1.5		1 DIX	╅╅	+++	$\frac{1}{2}$	- - -		140	┦			 	1.0	1475
<u> </u>					+++	+		4			44	1-1	-			ļ	<u> </u>
								N	111	_						<u> </u>	<u> </u>
												\prod	7]				
								4									
<u></u>	لـــــــــــــــــــــــــــــــــــــ	"X" - D	enotes Start/	Finish Time o	n Job Site	, l -, l , . l , . l .	"O" - De	enotes Time	Left and	Return	to Sho)D				ــــــــــــــــــــــــــــــــــــــ	
Weather Conditions:		χ υ		1 111011 111110 0	002 010			nple(s) Shipn					l):				
Handex V#	Hours	s Used				Meters	Used	,			٧	VOR	K PER	FORM	/ED		
# Car	1.	0	EV78080			14	11	O-Uhtt	Times								
		<u> </u>	EV/0000	Description	1	item #	Hours	Calibrated	ilmes	l D	מלול רת						
# 599 Pickup Truck			EV78040	OVA/FID	<u> </u>	EQ80320	Hours	yes/no	Times	1	πllin	1					
	U.O.M.		EV78040) 	EQ80320 EQ80370			Times	1		1	ut	ret	Ess		
# 599 Pickup Truck			EV78040	OVA/FID HNU/PID		EQ80320 EQ80370 EQ80310		yes/no yes/no yes/no	Times	1	rell i	1	иt	ret	Ess	\	
# 509 Pickup Truck Materials	U.O.M. ea		EV78040 Item # ER0103000	OVA/FID HNU/PID		EQ80320 EQ80370 EQ80310 EQ80311		yes/no yes/no yes/no yes/no	Times	1		1	u to	riet	Zon		
# 509 Pickup Truck Materials Absorbent Pad	U.O.M. ea		EV78040 Item # ER0103000 AL4140400	OVA/FID HNU/PID Kurz	ion)	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402		yes/no yes/no yes/no yes/no yes/no	Times	1		1	ut	ret	Ein		
# 509 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock)	U.O.M. ea ea		EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000	OVA/FID HNU/PID Kurz MSA (Explose Multimeter (A	ion) \ir) Vater)	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401		yes/no yes/no yes/no yes/no yes/no yes/no	Times	1		1	u to	ret	Eos		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges	U.O.M. ea ea ea		EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chroma	ion) Air) Vater) tograph	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694		yes/no yes/no yes/no yes/no yes/no yes/no yes/no	Times	1		1	иъ	ret	Eis		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit	U.O.M. ea ea ea ri		EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000	OVA/FID HNU/PID Kurz MSA (Explose Multimeter (A Multimeter (V Gas Chromat Hermit 2/4 Cl	ion) Air) Vater) tograph han.	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250		yes/no yes/no yes/no yes/no yes/no yes/no yes/no yes/no yes/no	Times	1		1	44	ret	Ess		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Rooties (Yellow)	ea ea ea ri ea ea pr	Quant	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chroma Hermit 2/4 Cl Hermit 8 Cha	ion) Air) Vater) tograph han.	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270		yes/no	Times	1		1	u to	ret	Eos		
# 509 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green)	U.O.M. ea ea ea rl ea ea		EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chromat Hermit 2/4 Cl Hermit 8 Cha Water Level	ion) Air) Vater) tograph han. an.	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80681		yes/no	Times	1		1	44	ret	Ein		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) s (Latex)	ea ea ri ea ea pr pr	Quant	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000	OVA/FID HNU/PID Kurz MSA (Explose Multimeter (A Multimeter (V Gas Chromat Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equir	ion) Air) Vater) tograph han. an.	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80681 EQ81137		yes/no	Times	1		1	44	ret	Łòs .		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) S (Latex) Water	U.O.M. ea ea ea rl ea ea pr pr	Quant	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chroma Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit	sion) Air) Vater) tograph han. an. Probe	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80881 EQ81137 EQ80373		yes/no	Times	1		1	44	net	Eis		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) s (Latex)	ea ea ri ea ea pr pr	Quant	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chromat Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit Interface Pro	ion) Nir) Vater) tograph han. an. Probe oment	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80681 EQ81137		yes/no	Times	1		1	4+	ret	Σώ		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) S (Latex) Water	ea ea ri ea ea pr pr	Quant	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000	OVA/FID HNU/PID Kurz MSA (Explose Multimeter (A Multimeter (V Gas Chromat Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit Interface Pro	vion) Vater) tograph han. an. Probe oment	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80881 EQ81137 EQ80373		yes/no	Times	1		1	14 +	ret	Eas.		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) S (Latex) Water	ea ea ri ea ea pr pr	Quant	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chromat Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit Interface Pro	vion) Vater) tograph han. an. Probe oment	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80881 EQ81137 EQ80373		yes/no	Times	1		1		ret	Σώ		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) S (Latex) Water	ea ea ri ea ea pr pr	Quant 5	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000 MS283100	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chroma Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit Interface Pro Line Locator Photographs	ion) Air) Vater) tograph han. Probe oment be Taken:	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80881 EQ80373 EQ80373	Rolls of fil	yes/no			ress.	Com		ret	Σòs		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) S (Latex) Water	ea ea ri ea ea pr pr	Quant 55	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000 MS283100 Signature:	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chroma Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit Interface Pro Line Locator Photographs	ion) Air) Vater) tograph han. Probe oment be Taken:	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80881 EQ81137 EQ80373	Rolls of fil	yes/no Date			7_1_	C		ret	Σώ		
# 599 Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Sooties (Yellow) ves (Nitrile Green) S (Latex) Water	ea ea ri ea ea pr pr	Quant 55	EV78040 Item # ER0103000 AL4140400 DR4331003 AL4337000 MS703100 AL7054000 ER7053000 AL3932000 AL3921000 MS283100	OVA/FID HNU/PID Kurz MSA (Explos Multimeter (A Multimeter (V Gas Chroma Hermit 2/4 Cl Hermit 8 Cha Water Level Survey Equip GPS Unit Interface Pro Line Locator Photographs	ion) Air) Vater) tograph han. Probe oment be Taken:	EQ80320 EQ80370 EQ80310 EQ80311 EQ80402 EQ80401 EQ80694 EQ80250 EQ80270 EQ80881 EQ80373 EQ80373	Rolls of fil	yes/no			ress.	C		ret	Σώ		

TIME & MATERIAL -		ST											2					V-5				_						04 28.5 (
Handex Pro	U3 C	75 G	Client		Wor Clie Add																					C	JUE	ם ט	Y:	4	411 511
Expense/UP Code:	Code	B145	Code D		_		-												<u>.</u>							E١	NTE	REC) BY	: - -	1
					Tow	n: ₋												10												(
Mileage:			_		Org.	I. C). <u> </u>								Sta	te: _		W	-												
ast Name, First nitial	Emp.	Bill	Labor	AM · Prep.	5	6	 5	7	;	в	9	1	0	· РМ	12	- 1	 	2		3	4		5	6		7	8	 	9	Travel Time	Total Hours
	Code		Class	Time															+	$\dot{\top}$	H	+	-	/ >	11:7-						
Etticken, J	1059			1.0	\dashv	X QX X X X X X X X X X X X X X X X X X														0	+	+		-	+	1.0	16.75				
									†		\top	十		_	11	N			\top	\prod	1	+	T.		\top			\top	T	-	
															+	1															
									\top				\sqcap			H		\Box	1		1	十			\top						
leather Conditions:		"X" - D	enotes	Start	/Finis	h Ti	me	on J	lob s	Site				"O'				ime Shipn								·					
landex V#		s Used												s Us							,			W	DRK	PEF	RFO	RME	D		
Car	/	1D		/78080	De	scri	ptic	n				tem			urs			ated	Tin	nes	Į.	77(llx	ny							
Pickup Truck				/78040		A/EI					_	Q80				 	yes/r				 			<u> </u>						.	
<u>Materials</u>	U.O.M.	Quant		em #		U/P	ID_					Q80 Q80				-	yes/r yes/r				├	<u>we</u>	U	<u>(3)</u>	057	ru	12	01			_
Absorbent Pad	ea	-		103000	_							Q80					yes/r				├									-0	<u> </u>
<u>3ripper Plug 4" (non-lock)</u> ³ adlock	ea		_	140400 33100				osion)			Q80				<u> </u>	yes/r				-	ויען	70		ep	21-	ر د	ع) ز	Q.	red i	<u> </u>
Plastic Sheeling (6ml)	ea rl			337000				(Wat	er)			Q80					yes/r		-												
Respirator Cartridges	ea			03100				atog)	T E	Q80	0694	+			yes/r	10				_		·······							_
Tyvek Suit	ea			054000	_			Char			E	Q80	0250	,			yes/r	10													
ooties (Yellow)	pr			05300		rmit	8 CI	nan.			E	Q8(0270)			yes/ı	10							•						
ves (Nitrile Green)	pr		AL3	932000) Wa	ater l	_eve	l Pro	be								yes/r	10													
V- / - 1 - 3																	yes/r	าด													<u> </u>
∖s (Latex)	pr	5	AL3	921000) <u> Su</u>	rvey	Equ	יווועוו									100/	20													
(Latex) Water		5	1	921000 83100		rvey S U						Q80					yes/r	<u> </u>			<u> </u>										
	pr	5	1		GF	S U	nit	obe	-			Q80 Q80			· · ·		yes/r yes/r			···											
Water	pr	5	1		GF Inte	S U	nit e Pr	obe	-						s of fil																<u> </u>
Water	pr	5	1		GF Inte	S U erfac e Lo	nit e Pr	obe							s of fil													· · · ·			
Water	pr		1	83100	GF Inte	S U erfac e Lo	nit ce Pr cato raph	obe r s Ta	ken:			Q80	0685	Roll	s of fil		yes/r						0								

TIME & MATERIAL -	- HYDI	ROGEO	LOGIS	T	Worl	c Date	9:	1		1	2_/		02	_														•	J 4	
Handay Dua	sia at Ctain.	_			Work	c Day	: <u>}</u>	<u> Vi</u>	dau	1	/								YR.			OR	G		#			52	285	3/12
Handex Pro							_		- M			_			······								- 							IV
1251100000	Handex		Client		Addr	ess: _			· · · · · <u>-</u>																Ç	ODE	ו ט:	BY:		H
Loc Code Contract	Code	na	4 <i>50</i>							·					_										Εħ	NTE	RE	D BY	<u>/:</u>	
Expense/UP Code:		01	130		Towr	n:																								
Mileage:		I			Org.	I. D	·				<u>.</u>		8	tate	e:	. 4	<i>D</i> J													
Last Name, First Initial				AM								F	PM -																Travel	Tota
IIIstra	Emp.			Prep.	5	6	1 7	,	8	9	10	1	1	12	1 1		2	1 :	3	4	1	5	6	ĺ	7	8	1	9	Time	Hou
C. 'b ==	Code			Time	<u> </u>		10	+	11	-		+		T	-	X				$\overline{\top}$	+		Ť	+	Ť	H	+	Ť	/ ^	1,
Errickson, J	LOS97			0.5	+		44	4	++		\vdash	╀		4	┼╌	X '	4	\vdash	\vdash	+	+	\vdash			+	╁	+	+-	110	7,5
							+			-		+	1	4	+	-		-	┵	_ -	┼	$\vdash \vdash$	-+		-	$\vdash \downarrow$	_	_		
· · · · · · · · · · · · · · · · · · ·						<u> </u>	$\perp \downarrow$	_				_	1	_	11	\bot			Ц			Ш	_	4		Ш	4			
													1	1																ļ
	1													A	I					Ţ		H								T
Veather Conditions:		"X" - De	enotes	Start/	Finish	Tim	e on	Job	Site			u			notes ole(s										:					
			· · · ·						· · · · · · · · · · · · · · · · · · ·								<u> </u>		<u>` </u>				_	<u>_</u>			-	_==		
Handex V#	Hours	s Used									Mete	rs	Used										WC)RK	PEF	REOF	RMI	FD		
Handex V# # Car	Hours		EV7	78080	Des	cript	ion			lt	Mete		Used Hou		Calit	orat	ed	Tim	es)	٠		DRK	PEF	RFO	RMI	ED		
				78080 78040		cript	ion			خلب						orat s/no		Tim	es	ı	<u> </u>	Lliz		ORK	PEF	RFO	RMI	ED		
# Car	/.		EV7		OVA		ion			E	em#	20			ye			Tim	ies	<u> </u>			ig	-				ED		
# Car # Pickup Truck	/.	0	EV7	78040	OVA	VFID J/PID	ion			E	em # 28032	20			ye:	s/no		Tim	ies	<u> </u>			ig	-						
# Car # Pickup Truck Materials	<u>/،</u> U.O.M.	0	EV7	78040 em #	OV/ HNU Kurz	VFID J/PID z		on)		E	2803 2803 2803 2803	20 70 10			ye: ye:	s/no s/no		Tim	ies		We To	u K	ig Ce D	ens Ta	tru	ich ITP	20/	, wel	1 Des	
# Car # Pickup Truck Materials Absorbent Pad	<u>/,</u> <u>U.О.М.</u> ea	0	EV7 Ite ER01 AL41	78040 em # 103000	OVA HNU Kurz MSA	VFID J/PID z A (Exp	olosio			E E	2803 2803 2803 2803 2803 2804	20 70 10 11			ye: ye: ye: ye:	s/no s/no s/no s/no		Tim	ies		We To	u K	ig Ce D	ens Ta	tru	ich ITP	20/	, wel	1 Des	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock)	U.O.M. ea ea	0	EV7 Ite ER01 AL41 DR43	78040 em # 103000 40400	OVA HNU Kurz MSA Mult	VFID J/PID z A (Exp	olosic	r)		E	2803 2803 2803 2803 2803 2804 2804	20 70 10 11 02			yes yes yes yes	s/no s/no s/no s/no s/no		Tim	ies		Ne Too Me	U ASU	ig Ce D	TU TU	tru	ich ITP	20/	, wel	1 Dep	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock	U.O.M. ea ea ea	0	EV7 Ite ER01 AL41 DR43 AL43	78040 em # 103000 40400 331003	OVA HNU Kurz MSA Mult	VFID J/PID z A (Exp	olosic r (Air r (Wa	r) ater)		E E E	2803 2803 2803 2803 2804 2804 2804	20 70 10 11 02 01			yes yes yes yes yes	s/no s/no s/no s/no s/no s/no		Tim	ies		Ta Me Là	U asu tei	Ce D ve	TU TU	tru), l	ich ITP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml)	U.O.M. ea ea ea	0	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70	78040 9m # 103000 40400 331003 337000 03100 954000	OVA HNU Kurz MSA Multi Gas Heri	VFID J/PID z A (Exp timete timete c Chro mit 2/4	olosic r (Air r (Wa mato 4 Cha	r) ater) ograj an.		E E E	2803 2803 2803 2803 2804 2804 2804 2806	20 70 10 11 02 01 94			yes yes yes yes yes yes	s/no s/no s/no s/no s/no s/no		Tim	ies		Ta Me Là	U asu tei	Ce D ve	TU TU	tru), l	ich ITP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Coties (Yellow)	U.O.M. ea ea ea rl ea	Quant	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70	78040 9m # 103000 40400 331003 337000 03100 054000 053000	OVA HNU MS/ MS/ Multi Gas Herr Herr	VFID J/PID Z A (Exptimete timete Chromit 2/4 mit 8 (olosio er (Air er (Wa mato 4 Cha Chan	r) ater) ograj an.	oh	E E E	2803 2803 2803 2803 2804 2804 2804 2806 2802	20 70 10 11 02 01 94 50			yes yes yes yes yes yes yes yes	s/no s/no s/no s/no s/no s/no s/no		Tim	les		Ta Me Là	U asu tei	Ce D ve	TU TU	tru), l	ich ITP W	100	wel	1 Deg 005e	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit	U.O.M. ea ea ea rl ea ea	0	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70	78040 9m # 103000 40400 331003 337000 03100 954000	OVA HNU MS/ MS/ Multi Gas Herr Herr	VFID J/PID Z A (Exptimete timete Chromit 2/4 mit 8 (olosio er (Air er (Wa mato 4 Cha Chan	r) ater) ograj an.	oh	E E E	2803 2803 2803 2803 2803 2804 2804 2806 2806 2802 2806	20 70 10 11 11 22 20 1 20 1 31			yes yes yes yes yes yes yes yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	les		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru 1ts	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Cooties (Yellow) Ves (Nitrile Green)	U.O.M. ea ea ea rl ea ea pr	Quant	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39	78040 9m # 103000 40400 331003 337000 03100 054000 053000	OVA HNU Kurz MSA Mult Gas Heri Heri Wat	VFID J/PID z A (Exp timete timete c Chro mit 2/4 mit 8 (er Lev	olosic er (Air er (Wa mato 4 Cha Chan vel Pi	r) ater) ograj an. i.	ph)	E E E	2803: 2803: 2803: 2803: 2804: 2804: 2806: 2802: 2806: 2806: 2806: 2806:	20 70 10 111 202 201 204 2050 70 201 201 201 201 201 201 201 201 201 20			yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	ies		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru), l	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Coties (Yellow) Ves (Nitrile Green)	U.O.M. ea ea ea rl ea ea pr pr	Quant	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39	78040 em # 103000 40400 331003 37000 03100 054000 053000	OVA HNU Kurz MSA Mult Gas Herr Herr Wat Sur	VFID J/PID z A (Exp timete timete c Chro mit 2/4 mit 8 (er Lev	olosic er (Air er (Wa mato 4 Chan Chan vel Pi	r) ater) ograj an. i.	ph)		2803 2803 2803 2803 2803 2804 2804 2806 2802 2802 2806 2802 2806 2802	20 70 111 111 122 123 124 125 12	Hour	8	yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	les		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru 1ts	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Cooties (Yellow) Ves (Nitrile Green)	U.O.M. ea ea ea rl ea ea pr pr	Quant	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39 AL39 MS28	78040 em # 103000 40400 331003 337000 03100 053000 032000 021000 33100	OVA HNU Kurz MSA Multi Gas Herr Wat Sun GPS	VFID J/PID z A (Exptimete timete Chromit 2/4mit 8 (er Levyey Ec	olosic r (Air r (Wa mato 4 Cha Chan vel Pi	ater) ograp an. cobe ment	ph)		2803: 2803: 2803: 2803: 2804: 2804: 2806: 2802: 2806: 2806: 2806: 2806:	200 70 10 111 111 202 201 201 31 37 773 335	Hour	3 (yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	les		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru 1ts	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Coties (Yellow) Ves (Nitrile Green) S (Latex) Water	U.O.M. ea ea ea rl ea ea pr pr	Quant	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39 AL39 MS28	78040 2m # 103000 40400 331003 37000 03100 054000 032000 021000	OVA HNU HNU MSA Multi Gas Herri Herri Sun GPS Inte	J/PID z A (Exp timete timete c Chro mit 2/4 mit 8 (cer Lev vey Ec S Unit rface	olosic r (Air r (Wa mato Chan vel Pr probe	ater) ograp an. robe nent	ph		2803 2803 2803 2803 2803 2804 2804 2806 2802 2802 2806 2802 2806 2802	200 70 10 111 111 202 201 201 31 37 773 335	Hour	3 (yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	les		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru 1ts	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Coties (Yellow) Ves (Nitrile Green) S (Latex) Water	U.O.M. ea ea ea rl ea ea pr pr gl	Quant 5	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39 AL39 MS28	78040 em # 103000 40400 331003 337000 03100 053000 032000 021000 33100	OVA HNU Kurz MSA Mult Gas Herr Wat Sun GPS Inte Tho	J/PID z A (Exptimete commit 8	plosic r (Airr (Wamato Mato Chan chan probotor probotor	r) ater) ogra an. robe ment	ph		2803 2803 2803 2803 2803 2804 2804 2806 2802 2802 2806 2802 2806 2802	200 70 10 111 111 202 201 201 31 37 773 335	2 so Rolls o	(2)	yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	les		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru 1ts	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Coties (Yellow) Ves (Nitrile Green) S (Latex) Water	U.O.M. ea ea ea rl ea ea pr pr gl	Quant 5	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39 AL39 MS28	78040 em # 103000 40400 331003 337000 03100 053000 032000 021000 33100	OVA HNU Kurz MSA Mult Gas Herr Wat Sun GPS Inte Tho	J/PID z A (Exp timete timete c Chro mit 2/4 mit 8 (cer Lev vey Ec S Unit rface	plosic r (Air r (Wa mato 4 Chan Chan vel Propulpro probes T	r) ater) ograf an. robe nent	en:		2803 2803 2803 2803 2804 2804 2804 2802 2802 2806 2802 2806 2803 2806	200 70 111 112 1	219 Rolls o	CO of film	yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim	les		Too Me Là Des	U asu ter	Co D Are	Tel Tel el el	tru 1ts	TP W	100	wel	0050	
# Car # Pickup Truck Materials Absorbent Pad Gripper Plug 4" (non-lock) Padlock Plastic Sheeling (6ml) Respirator Cartridges Tyvek Suit Coties (Yellow) Ves (Nitrile Green) S (Latex) Water	U.O.M. ea ea ea rl ea ea pr pr gl	Quant 5	EV7 Ite ER01 AL41 DR43 AL43 MS70 AL70 ER70 AL39 AL39 MS28	78040 m # 103000 40400 331003 337000 03100 054000 032000 03100 03100	OVA HNU Kurz MSA Mult Gas Herr Wat Sun GPS Inte Tho	J/PID z A (Exptimete commit 8	plosic r (Air r (Wa mato 4 Chan Chan vel Propulpro probes T	r) ater) ograf an. robe nent	ph		2803 2803 2803 2803 2804 2804 2804 2802 2802 2806 2802 2806 2803 2806	200 70 111 112 1	2 so Rolls o	CO of film	yes	s/no s/no s/no s/no s/no s/no s/no s/no		Tim			Too Me Là	U k asu test vel eest	Co Co D Are	Tai we el	tru 2, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1	TP W	100	wel	0050	

					jor .																		02
1 / 3 / 3 /		S	RIL	LING					ı	7	٠.	>	YR		ORG		#	[59	02	28	}	
	- 8 <i>b</i>		ΠŢ	76	1 [Nork		•		<u> </u>	- 0	<u>د</u>					- 4,	of nor	4 .	haata		ached [,
1/4 5/	100	<u>니니</u>	O Z		ent	Nork		y:	<u> </u>	TU	<u>.e</u>		~				# (or per	IL. S	neets	A	acnea [1
	Contrac	at C	Code	Co	de (Clien	_		<u> </u>	<u>_</u> c	जी		wi	4			C	odec	І Ву	/_	1	X/A_	
/s	942	<u>8</u>	-			Addr			K	<u>~1.</u>		5					Er	ntere	ed B	ју: _	X)4/	'_
Mileage:			-		-	Towr	n: 🗲	0	on I	كارب	<u> </u>		Stat	:e:	05.	<u>′</u>					4		
Full Name (Last Name First)	Emp.	Bill	Labor	AM Prep				i · · ·	1	<u>}</u>		PM	· · · · ·	. ₁		í · · · · ·		1	· i ·	<u>-</u> -			
Initial	Code	Code	Class	Time	6	7	8	9	10	11	12	1	2	3	4	5	6	7		8	9	Travel	
211 11	1.00=		1	3	+	\top	1.	1	+	╁╌	 	+	+	+.			\vdash	╁╌	+	\dashv	т	Time	Hours
OSHOZHA	5000		A		-+-	+	X	 	╁	╁┼	14	++	++		++-	$\vdash\vdash$	\vdash	++	+	┼┼	╀	1	64
Maetesi	1009		D	کرا	\square	+	X	 	-	1	n	1-1-	+		X		$\vdash \vdash$	++	+	₩	+	1	10,5
15×2847	10669		4	5	$\sqcup \bot \sqcup$	\dashv	X			$\vdash \vdash$	 	\sqcup	+	+	X		$oxed{\sqcup}$	44	\bot	oxdot	\downarrow		10,5
GARLAZI	1206		N	3		\perp	7	+	11	\sqcup	 	$\bot \downarrow$	$\bot \bot$	$\perp \perp$	X		Ш	$\perp \downarrow$	_	Ц	\perp	1	10.5
KADTILLA	1234		14	7		Ш	<u> </u>		<u> </u>					Щ	1					<u> </u>		1	کـوړ
<u>Item</u> Multipurpose Rig				Item#		urs	ŀ	Drilli PVC	ing M 3/4" :	lateri x 5' (i <u>als</u> Casing	ı (Tl	n)		Item DR1	<u>#</u> 84007	75	Q	uan	<u>tity</u>		<u> Մ.Օ</u> F	<u>.М.</u> а.
Heavy Duty Auge	r	B59		EV740	59 🔀	3.5	-	PVC	2" x1	0, C	asing	TI)	n)		DR1	74020	00	-				E	a. ,
Light Duty Auger Portable Drill Equ	ip.			EV740			-				asing asing					74040 74060		-					а. a.
Support Truck (Si	ngle Ax)			EV780)50	· ·	_	PVC	3/4"	x 5' S	Scree	n (Tl	h)		DR7	2400	75	_					a. a.
Support Truck (Ta Pickup Truck	andem)			EV780		112	_				creer creer					'1402('1404(_					a. a.
Pressure Washer Grout Mixer				EQ740			-	PVC	2" x 5	5' Sc	reen	' ('' Т				24020		_					a. a.
Jackhammer		_		EQ72	180 _		-		4" x !		reen	(T	h)			2404		_					a.
Air Compressor 1 Generator 5K	85 CFM	Day Day		EQ720			-	3/4"	Glov Cap	es		(S	lip)			94000 34007		-					r. a.
301.0,121.21		,					_	2" G	ripper		j (loci	king)	• •		AL4	04020	0	_				Ε	a.
Geoprobe											g (nor g (locl		ang)			14020 14040		-				E	a. a.
Geo/Earth probe, Geo/Earth probe,							- }	4" G	ripper	Plug	nor (nor	-lock	ing,		AL4	14040	00	-				Ε	a.
Geo/Earth probe,							- - !				/Cond					14402 14404		-				_	lip lip
							į	Fadi	ock						DR4	3310	03	-				Ε	a.
Other Equipme	ont & Ma	atoriale:							Grav		ıg (6n	al)				:8500(33700		-	2.	1			ag oli
Other Equipme	STAC OF IMIC	ateriais.					-				e plug		ag)			8110		-					ag
VAC-n-	DIL		8	5.5	No	2	_		hole 1							118M		_					a.
	ں اے۔۔۔ ۔	· O				$\overline{\lambda}$			hole 1 Nele/9							i016M i116M		-					a. a.
- 6	XST	<u> Yv</u>		<u> 1051</u>		A			edila	dit	hel					8380		_				В	ag
24	C 12	Ruc		340	100			Blac	egt/) ktop	CU	THU.					(8190) 81300		-					ag ag
3 - 6 u	62	Ren	रा		20	1,			ty Co	ne _	`					04000		-					~ э а.
Work Descript	-	<u>.</u>		$\overline{\sim}$	7		to	40	X		, 			-				_	-	7			
Drilled and insta	alled	<u>د</u>	R 🕙	overy	Monite	oring	Wei	ils							Dispo			8/No				ic Yds.	
Drilled and sam	npled		Soil	/Test	Boring	S									es/Noo : Yes				Em∣	pioye	es	(98000)
Drilling Comple	te: Ye	s (No)	Sp	lit Spo	ons: _	<u>) (</u>	7				evel o				С			_	/ee l	No. F	łoui	rs	
Manholes Com	plete: Y	es/l	_														_						<u> </u>
Method of Drilli	ng: <u>/</u>	, 1/4	<i>L</i> 1	HSA	<u> </u>	·	· .	· ——													_		<u>-</u>
Detailed Descri		5	HOL.	دک	u	lx T	N	U	AC	- 1	7~	<u>D</u> u		Rol	Ra	ير.[76	u	B	Pot	<u>6</u>	2_	
Demo	3		5 4	γv	L	R	23	لحرط	7_	W	e	ح کے		7	0	1	>		-				
BILLING INFO	RMATIC	ON N							(IP	Tasi	k Nam	e				.O.M.			ıant.			Bill	ode
UP Task Name	. I	J.O.M.		Qu	ant.		Bill	Code					nt 2" i	Dia W	ell ft				\equiv			9114	

Bill Code

Quant.

UP Task Name Mob/Demob

U.O.M.

ea

ALLINGIN		YRORG	# <u>59031</u>
ing (all the control of the control	Work Date: 1-9-03		
43075 960		<u> </u>	# of per ft. sheets attached []
Handex Task Client Contract Code Code	Client: FORT HONDOUTH		Coded By:
A450	Address: <u>PT 35.</u>		- Entered By
	TOWN: EATONTOWN	State: NJ	
Name AM		PM	
Last Name First) Emp. Code Code Class Time 6	7 8 9 10 11 12	1 2 3 4 5	6 7 8 9 Travel Total Time Hours
MARCHESI J. 2	χ		
BROPHI S. 3			
BANKASZI J.	X c		1 83
PATTINO E.			1 83
	dours Drilling Materials	!tem#	Quantity U.O.M.
Multipurpose Rig Heavy Duty Auger Light Duty Auger Portable Drill Equip. Support Truck (Single Ax) Support Truck (Tandem) Pickup Truck Pressure Washer Grout Mixer Jackhammer Air Compressor 185 CFM Generator 5K Ceoprobe Geo/Earth probe, w/tools & supplies (HR) Geo/Earth probe, >50 miles, Mob/Demob (MI) Mischammer Air Compressor 185 CFM Day EV74056 Geo/Earth probe, somiles, Mob/Demob (MI) EV74051 Geo/Earth probe, >50 miles, Mob/Demob (MI) EV81373 Other Equipment & Materials:	PVC 4" x 10' Casing PVC 6" x 10' Casing PVC 3/4" x 5' Screen PVC 2" x 10' Screen PVC 4" x 10' Screen PVC 2" x 5' Screen PVC 4" x 5' Screen PVC Gloves 3/4" Cap 2" Gripper Plug (locking 2" Gripper Plug (non- 4" Gripper Plug (non- 4" Gripper Plug (non- 2" Well Bottom/Cone Well Bottom/Cone Padlock Well Gravel Plastic Sheeting (6ml) Bertonite. Hole plug	(Th) DR17402 (Th) DR17404 (Th) DR17404 (Th) DR17406 (Th) DR72400 (Th) DR71402 (Th) DR71404 (Th) DR72402 (Th) DR72402 (AL39400 (Slip) PL13400 ag AL41404 DR94402 DR94402 DR94402 DR94406	200
6" SCREEN, -5 PIÈCE - 4 EA.	Manhole 10" Bolted Manhole 10" Plain	DR5118I DR5016I	
6' SCALEN - 10' PIECE - 4 EA.	Manhole 9" Bolted Cement (Portland)	DR5116I DR28380	
	Cement (Sakrete)	CN28190	000 Bag
6 BOTTOM CONT - YEA. DRIHOL	Blacktop Safety Cone	AL28130 AL70400	
Drilled and sampled O Soil/Test Bori Drilling Complete: Yes/No Split Spoons Manholes Complete: Yes/No Method of Drilling: No Law 57 M AVS M Detailed Descriptions:	Per Dien Subconf	left on site for Disposaling Charges: Yes No tractors Used: Yes No Protection: C	Cubic Yds. # of Employees (98000) Name: Employee No Hours
BILLING INFORMATION	UP Task Name	U.O.M	. Quant. Bill code
UP Task Name U.O.M. Quant Mob/Demob ea.	. Bill Code Well Abandon	ment 2" Dia Well ft.	91143
Mileage ml.	90010 Well Abandon 90010 Manholes Cor	ment 4" Dia Well ft. npleted ea	91144
Drilling <30' ft. 30	Wallioles ou	hrs.	94000

					/B# A	601												E (م م	20		UZ.
		A	fina	LING					اما	م ت		Υ	′R	(ORG		# .		70	29		
				al al	_ _			ite: _1	-			<u> </u>					# of	ner ff	shee	ts att	ached.(1
		9 1413 Har	ndex Task					iy: <u>w</u>										-				1
Z.	Contract		Code	Coc	le (Clien	t: _	FOLT	/	PONI	YOU	74					Co	ded l	Зу: _	4	XN	4
150	450		-		F	∖ddre	ess		<i>T</i>	<u>35</u> _							Ent	tered	Ву:	<u> </u>		_
pb:			_		7	Fown	1: <u>E</u>	ATOP'	OWN			8	State:	_	10:					Ĭ	1	
Name (Last Name First)	Emp.	Bill	Labor	AM . Prep		· · · i		7				M .			i · · · · i		· · · · · i					
(Last Name First)	Code	Code	Class	Time	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	Travel	
• • • • • • • • • • • • • • • • • • • •				t	7	,	T	╁┯╡			+	+		_	1.4			 		-	Time	Hou
MRCHEST J			D	3	-+-+	4	╁	╂╂┨	+	1	4	++		+		-	+		-	-		10-
short 5				5	-+-	4-1	+	+++	+1				+	+	Х		+	Н-	-	 	-	105
BARKASZI J			1	5		<u> </u>	+	+++	+		+ -				🗓			$\vdash \vdash$	4		1	105
ARTILLO E							_	++1	- -	-1-1	`\\	-1-1		1		$\sqcup \bot \sqcup$	_ _	Ц.	Щ.	$oxed{oxed}$	1	10
		<u></u>		1			<u> </u>			بليله								<u> </u>				
tem				Item# EV740		urs	-			terial 5' Ca		(Th)	i		Item# DR18	<u>#</u> 34007	' 5	Qua	ntity	,	<u>U.O</u> E	<u>.М.</u> а.
Multipurpose Rig Heavy Duty Auger	Ť	B59		EV740	59 🔽	0/	/	PVC:	2" x10)' Casi	ing	(Th)	ı		DR17	74020	0	_			E	a.
ight Duty Auger Portable Drill Equi	p.			EV740 EQ740	70 —		-			0' Cas 0' Cas		(Th) (Th)				74040 74060		~	- 0	<u>′</u>		а. a.
Support Truck (Sir	ngle Ax)			EV780 EV780	50	0/	-	PVC	3/4" x	5' Sc	reen	(Th))		DR72	24007	'5	_		_	Ε	a.
Support Truck (Ta Pickup Truck	inderg)			EV780	40					0' Scr 0' Scr		(Th) (Th)				14020 14040				-		а. а.
Pressure Washer Grout Mixer				EQ740	119 — 187		-	PVC.	2" x 5	' Scre	en	(Th))		DR72	24020	00				E	a.
Jackhammer Air Compressor 18	DE CEM	Day		EQ740 EQ721 EQ720	80		_	PVC		' Scre	en	(Th))			24040 94000		ک	V	-	E P	а. r
Generator 5K	DO CEIVI	Day		EQ503				3/4" (Cap			(Slip	o)		PL13	34007	5	_	V	_	Ε	a.
•										Plug (Plug (na))4020 4020		_		-		а. а.
Geoprobe Geo/Earth probe.	w/table 9	cupplic	.c (UD)	E\/740	E			4" Gr	pper	Plug (locki	ng			AL41	4040	0		S J	-	Ε	a.
Geo/Earth probe,	w/tools &	supplie	s (DY)	EV740	51		-			Plug (ttom/C		lockir	ng,			14040 44020		_		- -		a. lip
Geo/Earth probe,	>50 miles,	, Mob/Dei	mob (MI)	EV813	73	7	-			ttom/C	one					44040		3	N/	_	S	lip
						/_		Padio Well	_	el						33100 85000		Z	0.	-		a. ag
Other Equipme	ent & Ma	aterials	: <u>VA</u>	<u> </u>	016	10	HAS	Plast	iċ She	eting	(6ml))			AL43	33700	0	- -	-/-	_	R	oĬĬ
							-			Hole p 0" Boli		(bag	g)			81100 118M		رد	<u></u>	_		ag a.
							-	Manh	ole 1	0" Plai	n				DR5	016M	10		1	_	Ε	a.
							-			" Bolte ortlan						116M0 83800		_	<u> </u>	-		a. ag
							_	Ceme	ent (S	akrete					CN2	81900	00	6	¥	_	, В	ag
							_	Black Safet		ne						31300 04000		بد	<u>!</u>	-		ag a.
Work Descript Drilled and insta Drilled and sam	alled		Soil	overy/ /Test l	Boring	s		lls		Per Su b	Dien con	n Cha tract	arges: o rs U	Ye sed :			Nam	# of E e:	mplo	yees	ic Yds. (98000))
Drilling Comple	te: 🚱	ể/No	Sp	lit Spo	ons: _	· 0	_			Lev	el of	Prote	ection	: '	С		Em	ploye	e No.	. Hou	rs	
Manholes Com		_				=											_		/			_
Method of Drilli	ng: <u>H</u> O	new	278	<u> </u>	Au	SEL																_
Detailed Descri	ptions:	NSTAL	·10	5	(4	<u>('')</u>	M	مرا م	1	WE	LIJ		p0	51	9m/	642				ant	forE	
BILLING INFO	RMATIC	ON								Task N						O.M.		Qua	<u></u> nt.		Bill	
UP Task Name Mob/Demob	_	<mark>U.O.M.</mark> ∋a.		<u>Q</u> u	ant. λ		Bill 900	Code 00		ll Aba Il Aba									·		9114 9114	
Mileage	r	ml.				,	900	10	-	nholos						_					0400	

Drillin-

							YR			OR	G		#	Ł	5	9	U.	52	•									
	•	11/2	07	s a		ate:				· · · · -						-		_	of	ner f	t s	heet	s att	ached [1			
		Ha	ndex Task	Clie	ay: _{																1	, a.(1				
£	Contrac		Code	FORT	ρŢ		シー	MA								. (Coc	ied	By	A	絥	<u> </u>	_					
3	945	U	-			A(auı	ess Ø	ATON	~^.	<u>:</u>	<u> </u>			C1-				_ _		. E	Ente	ered	d t	(אני	亿		_
₫ê:			-		<u>.</u>			1. 5	74100	700	-,-				Sta	te: 	_	<u>ر ر</u>	_									
Full Name (Last Name First) Initial	Emp. Code	Bill Code	Labor Class		6		7	8	9	1	0	11	12	PM 1	2		3	4	,	5	6	;	7		8	9	Trave Time	
halouse T		 	D	2	Т	\dagger	Т	X	$\dagger T$	\dagger	rt	γ	4	T	T	\top	Τ	\vdash	\sqcap	Т	$\dagger \lnot$		T	\dagger	T	Т	1	6-3
BROPHY S.		11	T		χ		$\dagger \dagger$	$\dagger \dagger$	+	\dagger	H	Н	十	H	1	+	†	H	十	1	ا ک							
RITOLH! 7.		+	\dagger	H	 	7		††	+	†	H	H	十	Ħ		\dagger	t	H	+	† '	ءَ دِ							
		++	†	††	+	\vdash	\vdash	H	+	十	H	H	十	Н		+	十	Ħ	+	†								
		+	+	\Box			11	11	+	\dagger	H	H	\dashv	╁		十	十	${\dagger}{\dagger}$	\top	+-	ļ. <u></u>							
ltem	<u> </u>	<u> </u>	<u> </u>	Item#		Hou	<u> </u>		Drill	lina	Mat	teria	ıls	<u> </u>	ليا			lte.	m#	<u> </u>	بــــــــــــــــــــــــــــــــــــــ		Qu Qu	an'	tity	<u>_</u>	11.0).M.
Multipurpose Rig Heavy Duty Auger Light Duty Auger Portable Drill Equi Support Truck (Si Support Truck (Ta Pickup Truck Pressure Washer Grout Mixer Jackhammer Air Compressor 18 Generator 5K Geoprobe Geo/Earth probe, Geo/Earth probe, Geo/Earth probe, Geo/Earth probe Other Equipme PILOTECT Work Descripti Drilled and insta	p. ngle Ax) ndem) 35 CFM w/tools 8 w/tools 8 >50 miles nt & Ma prece ore ore ons:	S supplies Mob/De	es (HR) es (DY) mob (MI) L 1 64	EV740 EV813 R 50 STrc	059 040 070 050 060 040 061 087 087 087 087 087 087 087	West of the second	\$ \(\psi \)		PVC PVC PVC PVC PVC 3/4" G 2" G 4" G 4" G 4" G Well Plas Ben Man Man Cen Blac Safe	24" 256" 3/4" 22" 24" 256" 256" 256" 256" 256" 256" 256" 256	x 10 x 10 x 10 x 10 x 10 x 5 v 25 poer F Boer F Boer F Boer F Boer F e 10 e 10 e 9" t (Poer F t (Sa p)	o' Ca 5' So' So' Sor' 5' Sor' 5' Sor' 5 Sor' 6' Sor' 9' Sor' 9' Sor' 9' Sor' 9' Sor' 9' Sor' 9' Pla 9' Pla	sing sing creer reen reen (lock (non (lock (non Cone Cone plug plug blted blind ed)	(Th (Th (Th (Th (Th (Si ing) -lock ing -lock	i) i) i) i) i) i) ii) iip) iing)			DF D	R17 R17 R72 R71 R71 R71 R72 R31 R13 R13 R14 R14 R14 R14 R14 R14 R14 R14 R14 R14	7402 7404 7406 7406 7406 7406 7400 7400 7400	00 00 075 000 000 000 000 000 00			2 17				a. a
Drilled and sam Drilling Complet Manholes Comp Method of Drillin Detailed Descrip PLILL G BILLING INFOR	ENT.	-		Le	vel o	f Prof	tecti	On:	ed	: Ÿ	Z.	/No	E	eme	oloye	ee I	No.	Hou	ve c									
UP Task Name		U.Q.M.		Qu	ıanı	<u>t.</u>		Bill	Code				<u>Nam</u> ando		nt 2"	Dia	W	ell		<u>O.M.</u>			Qua	ت Tut			<u>Bill</u> 911	<u>code</u> 43
Mob/Demob	-	ea.			2	_			000	_	Well	l Aba	ando	nmer	nt 4"	Dia	W	ell	ft.								911	44
Mileage		ml.						900			Man	hole	s Co	mple	eted				ea	ì							940	00
Drilling <30'	f	ft.		_1	7			910	000		Star	ndby	,						hr	S.			,	_			960	00 -

Standby

hrs.

96000

TIME & MATERIA	TIME & MATERIAL — INSTALLATION Handex Project String Work Date: / - / 3																																U3
The second secon	Handex Project String World Wo														A.																1/	155	:2n
12510000	U30	759	02				٠ ــــــــــــــــــــــــــــــــــــ	<u> </u>	- J				7	4-	-								Y	R: _									20
Loc Code Contract	Handex Code	Task C	lient ode		Clien	t:		<u> </u>	CUI		none L	mo	ar 1	<u>~</u>											_		0	RDE	:R: _		4	1/1	}
Unit Price Code:	85º	<u> </u>	ł		Addre Town	355:	-	<u>ه</u> تر	0	16	7	<u>U 11</u> Gre	~~	_	g					Sta	le ·	2		 -	-		С	ODE	DB'	Y: _	<i>Щ</i>		<u> </u>
Mileage:	· · · · · · · · · · · · · · · · · · ·																	-	Hy	dro		3	he	55	_		E	NTE	RED	BY		<u>/</u>	
Last Name, First	Γ	T	<u> </u>	1	_	_	_		_			_		-																			T
Initial	Emp. Code Bill Code Labor Class Prep. Time 5 A M M 6 7 8 9 10 11 12 P M M 1 2 3 4 5 6 7 F1220L Fore Image: Free Free Free Free Free Free Free Fr															8	<i>'</i>	9	Trave	Total													
																\sqcap	十	7		 													
	F2309L Oper															П	十	1															
	F3314L Tech															П																	
	F3314L Tech															\Box	$oxed{oxed}$																
SASITINI C		F1815L	Labor	1.0		Ц		0	X							<u></u>	\perp				\perp	\perp	\perp	12	X	0			Ц	1		1.5	110
		ļ			Ш	\sqcup		4	\perp	_	Ц	1					_	L		_	\perp	\perp	Ļ	_		Ц		_	Ш	_	1	<u> </u>	<u> </u>
	<u> </u>	<u> </u>			Щ	Щ			1	<u></u>							<u>_</u>			ل_	\perp	\perp		<u> </u>		Ш			Ш	丄	Щ	<u> </u>	<u></u>
Number Operating	Fauinme	ent Used T	<u>(" - Deno</u>	tes Sta		ish T Hou					e Dien	ı Ch			De	note								_	mpl	love	es.	· · · · · ·				(98000	<u>))</u>
Mobile (Box)				/72530]					 1 (atta	ch re	eceit	pts)						-						-	-						•	7
Dump Truck Dump Truck	2 yd.		[E/	/72500] /72510]		_			.	Bill	Fron	racı n: T	tors M/P	use D	:a:	Y	:5/	NO	W	ork						-	<u>-</u> (2)						
Dump Truck 1 Pickup Truck Room Truck	8 yd. (Tai	ndem)	[E\	/72520] /78040]		11			.	Att	ach r	ece	ipts						pe	rf.													
Boom muck (crane)	[E\	/73030]					L	eve	el of	Pro	tecti	on:	С	D	lour	s :_			_ea.	En	npl.	#_					_Em	ıpl. #	<u> </u>		
Back Hoe Trailer, Lowbo			[E\	272120] /72490]																												2000] pi	
Air Compress Concrete Cutt	ing Saw		[EC	272070] 272460]	į	_	- -		=			[11.0		==					==	==		==		==	=		==			==	===		
Hand Held Cu Hand Held Cu	itting Saw	Blades	įΕC	272470] 272450]					E	Equi	ipme	nt In	nstall	ed:		Υİ	ES/	NO	CO	NT	ROL	NU	IM8	ER:	:				tion				,
Jackhammer OVA Meter	(Pavemer	it Breaker)		272180] 280320]							She		•												_						—-		
HNU/PID Met		eter (DY)		280372] 2806931			. <u> </u>	•		Cart /es:	oon C sel Si	Char ize (nge: (ea)	Chip Tota	opin al M	ig/Ct filead	iemi de (r	cals	us d tr	_bs (ai			yes	Exc	es	no s of	50 r	nl			(9180	08)	
rials:	Gas Chromatograph Meter (DY) [EQ80693] — - —													Tota	al P	ound	ls of	Ca	rboı	i						Liqu	id/V	apor	(circ	le o		,	
Full Description	on (Incl. t	ype of M	at.)	<u> </u>	M	em :	#			Wo	rk Pe	erfo	rme	d: .	,																		
judge die	esel 1	zump.							_].				\underline{w}	<u>el</u>	<u>L</u>	_d	ec	<u>, e</u>	16	p	M	e	س	1									
AS CHA	- pon	·		2//V		<u></u> ₹	<u> </u>				_P	U M	6	17	Λι	(M	<u>e </u>	<u>0 r</u>	<u>.</u>													
\		 -		+					-																								
				+-					┥.					·																			
	4	1	1					_				,	1	, ,	<u>م</u>))		L		L	l	بارو	ŀ.	1	T-	26/	, ショ	 3.					
•	ture		7 3					_ Da	ited:			·/		/ -		<u> </u>	_ `	nec	ked	DУ				_/_(<u> </u>					 -	_	

TIME & MATERIA	TIME & MATERIAL — INSTALLATION Handey Project String Work Date:														and the same		1000 A												vu
Handex Pro	oject String	9			Work	: Date	: <u> </u>	[1]	1 1	/						Est.										A			
125180 880	04.	156	1		Work	Day	: 1	<u>v 95</u>	a	M Y		1	,							Y	′R:		OR	3 <u></u>	#	1	<u>. 4</u>	55	<u>12</u>
	Handex	Task C	lient		Clien	t:	Ŀ	m	h	non-	MO	שנב										_		ORDE	:R: _		1	(N	\ .
Loc Code Contract	Code	. c	ode		Addr	ess:		bv	ιW	ling	8	86										-						*	1
Unit Price Code:	1 4 4 C	<u>V O</u>			Town	:	{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{	. K	(0	nto	مرب	5						State	N	1		•	(CODE	D BY	: L	4	4	/
Mileage:	_	×.			Org I	.D.:		D	3	かる							 Hy	dro .	<u>ہ</u> ع	lus	Ź	-	ı	ENTE	RED	3Y: _	<u></u>		
Last Name, First	Emp. Bill Labor Prep. 5 A 6 7 8 9 10																1												
Initial	Emp. Code Bill Code Labor Class Prep. Time 5 A M 6 7 8 9 10 11 12 P M 1 2 3 4 5 F1220L Fore Image: Fixed control of the c																6	7	8	9	'	Travel	Total						
	F1220L Fore															T	\top	\sqcap	•										
	F3314L Tech															П													
·		F3314L	Tech		П			\prod							П		П				\prod				П		Π		
SADITINI C		F1815L	Labor	15		П	0	V	7					1			П					X O						10	1/
311011110	†					\sqcap	\top	11	1	\top							П				\Box	1	Ì						
		<u> </u>		1	H	\Box	+	11	+	\top	\top	\top				十	П	\top	\Box	_	11	十	\Box		\Box	11			
	<u> </u>	")	x" - Deno	tes Sta	art/Fir	nish 7	ime	on Jo	b S	LL Site			0" - [)eno	tes T	ime	and	Retu	rn to	Sho	p				<u> </u>				
Number Operating	g Equipme	ent Used T				Hour		$\neg \neg$	Pe	r Dien			s:	,	YES	/ No) If \	ÆS,	Nur	nber	of Err	ploy	ees:				(8	8000)	
Mobile (Box)				/72530]					(att	tach re	eceip	pts) tors i	lsed	. ,	YFS	/ NC) (1)						1(2)						
Dump Truck Dump Truck				√72500] √72510]						bcont ill Fro				•			Wo	rk					(-)						
Domest Total	18 yd. (Tai	ndem)	[E/	/72520]		7/2	σ	1	• A	ttach ı	ecei	ipts					pei	f					L						
Pickup Truck Boom Truck		crane)		√78040] √73030]		<u> </u>			Le	vel of	Pro	tecti	on: C	۔	Hou	irs:_			ea. I	Empl.	.#				_ Emp	ol. # _			
Back Hoe Trailer, Lowbo	· ·			Q72120 /72490]							_																		
Air Compress		85 CFM)		272070			_	ı	Res	p. Cart.	(MS	70310	0] ea.	T <u>:</u>	yvek [/	AL705	4000]	ea	В	ooties	[ER70	5300]	pr	_ Glov	es, Nitr	le [AL3	3932	000] pr.	
Concrete Cutt				272460 272470			_						Subr	nit E	auip	mer	nt an	d Pa	rts S	hee	s wit	h FII	NAL	Loca	tion '	M&			
Hand Held Cu	utting Saw	Blades	[E	272450)		_	ļ	Eq	uipme	nt In	nstalle	ed:	•	YES .	/ NC	COI	NTR	OL N	IUME	BER:								
Jackhammer OVA Meter	(Pavemer	it Breaker)		Q72180 Q80320			_		Pa	rt She	et C	ompl	eted:	•	YES	/ NC	CO	NTR	OL N	IUME	BER:						—		
HNU/PID Met		-t (D)0	įΈ	280372	1				Ca	rbon (ssel S	Char	nge: (Chipp	ing/(Chem	nical	s use	d		_ yes	S	_ n	0	l		(0	180	0/	
Gas Chromat	ograph Me	eter (DY)	[E	Q80693 T	J				ve:	ssei S	ize ((ea) [Total	Pou	nds o	of Ca	arbon) <u> </u>			EXC	_Liq	uid/	Vapor	(circl			0)	
Full Descripti	on (Incl. 1	type of M	at.)	-	١	tem #	ŧ		w	ork P	erfo	rme	1.												-,			_	
Sa CARbo	, ک	· · · · · · · · · · · · · · · · · · ·		1	PXI	7/1	ZZ.	10		OIK I			••	L	ell		مل	6	La	Ph	<u>nen</u>	71							-
lex di		DUMP	mod h	050	8	1							n	L K	\ A	-	ha	-			ทอน	<u> </u>				*****	_		
1 CARbe di																						,							
Lex di	Mature 2		1		_		1	Date	q.	1	,	/)) _/ ,		> 6	Cher	ked	hv '	U	(/	10/0	13							
1131491111	7						'	_ ~			·	/ /			<u> </u>	-,,,,,,		~ <i>,</i>		t	·				•				•

عو	TIME & MATERIA Handex Pr		Work	. Date	: <u> </u>		14	10	3	•	िल्ला																U3			
	25100000	030		Work Clien	Day:	1	RI	es A	m	y Na	-	rk.		•					Y	'R: _						,	155	18		
Lo	Code Contract	Handex Code	Task Ci	ient ode		Addr	ess:		8	80	6	20	ilo	Em	7					<u></u>			-		ORD	-		<i>A</i> (·
Ui	nit Price Code: 87	7751				Town	: .	_6	Pa	1	on	10	rus	<u>~</u>					State		n f		_				- 1	17 V		—
Mileage: _			Org I	.D.:		1	1								Hy	dro _	2	No	155	<u> </u>		ENTE	RED	BY.						
Last Nam Initial	e, First	Emp. Code	Prep. Time		6					9	10	11		. РМ. 12 Р М					4		- 1	6	7	\	3	9	Trave	Total		
		П	T	1	Ţ			П	T	\top	1	T^{\dagger}	T	\sqcap	\top	\prod	T	\sqcap		T	\prod	\Box	7	T						
- KBAG	UKASTIJ				ĵχ							4				\prod			X						1	11 -				
1 Part	114C	1234	F3314L		1.5	\sqcup	\sqcup	\mathcal{E}	P		\bot	Ц		\sqcup	_	41	\perp	\sqcup	\bot		\perp	\coprod	Ý	0	Ш	44	4		/	111
		_	F3314L	<u> </u>	ļ	$\vdash \vdash$	++	1	\perp	\sqcup	_	\sqcup	_	\sqcup	4	$\perp \downarrow \downarrow$	_	\sqcup	_	\sqcup	_		_	_	\sqcup	44	4			
		 	F1815L	Labor	-	- -	- -	+-	+-			H		╁╌╁	+	+		-	+-	\dashv		-	-		₩.	+	_	+-		
<u> </u>		 	<u></u>			\vdash	╁┼	+	+	\vdash	+	\vdash	+	╁┼	+	+	\dashv	╁┼	+-	H	+	++	\dashv	+	₩	┽┥	+		—	
L		<u> </u>	<u>} </u>	(" - Denc	tes Sta	L_L art/Fir	ish T	ime	on J	lob :	Site	Ш		<u> </u>	 Der	notes	Time	and i	Retu	m to	Sho			-	<u> </u>				<u></u>	
Number	Operatin	g Equipme					Hours			Pe	r Die		harg							_			nplo	yees	s:			(98000)
	_ Mobile (Box) _ Dump Truck		,		/72530] /72500]			_			ttach ıbcor			Use	d:	YES	S/NC	<u>)</u> (1)					-	<u> </u> (2)						
	Dump Truck Dump Truck	5 yd.		(E\	/72510] /72520]						Bill Fro Attach							Wo	ork rf.											
LOGI	Pickup Truck Boom Truck			[E\	/78040] /73030]		<u>#</u> .			1			•		. I	D Ha	nine.													
	Back Hoe	-	cialie)	įΕC	272120] /72490]]		_																						
	Trailer, Lowb	sor (150/18	85 CFM)	įΕC	272070]]	 -			Re	sp. Car	t. [M	S7031	00] ea.	_	Tyvek	[AL70	54000]	ea	B	ooties	(ER70	5300)) pr	Glo	ves, Ni	trile [/	AL393	2000] pr	·
	Concrete Cu Hand Held C	utting Saw	.	įEC	272460] 272470]	j	_:					41		Sub	mit	Equi	pme	nt and	d Pa	rts S	Sheet	s wit	th F	INA	L Loc	ation	T&1	М		
	Hand Held C Jackhammer			(EC	272450] 272180]	j		_		Pa	irt Sh	ent (Comp	lea: leted	: ·	YES	S/NC	COI	NTR	OL N	IUME	BER:								
	OVA Meter HNU/PID Me			įΈ(Q80320] Q80372]	i	_:			Ca	arbon	Cha	inge:	Chip	ping	g/Che ileage	mical	s use	d		_ yes	·		no _		_				
	Gas Chroma	tograph Me	eter (DY)	[EC	280693]				V∈ [essel	Size	(ea)]	Tota Tota	l Po	ileage ounds	of Ca	nd trip arbon	P) 			Exc	ess Li	of 50 iquid	0 ml _ ∕Vapo	r (circ	cle o	(9180 ne)	18)	
	Full Description (Incl. type of Mat.)											Perf	orme	d: _																
	(A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C											,	··· ,	<u></u>	4	26	11		La	nc	Li	ng				1 -				
										┨-		N		IM	<u>\$</u>	140	<u>cl</u>		<u>be</u>	L			<u>es</u>		<u>u/</u>	$\mathcal{I}\mathcal{K}$	<u> </u>	54	2	
										┨-	8		0-07			-0	Pa	六七	TC.	0	A-C	<u> K</u>	F1	<u>u_</u>						
		······································								<u> </u>				<u> </u>				•												
TOTAL PROPERTY OF THE PARTY OF	HIII	ture/		- /					Date	ed: _	/	_/_	//	<u> </u>		5	Chec	ked l	by	29	<i>(</i> ,	//	70/	0	3.				_	

	TIME & MATERIA	L IN	STALLA	NOITA					/	.	/	ः >	1																	03
	Handex Pro					Work Work	Date:	Z	<u> -</u>	<u>) (</u>	res	<u> </u>		ieriki 2 una 1								-		-				1 /	1 <u>55</u>	1 9
	125100000	130	75 9	00		Client					_		1	-h	c	0	6													
	Loc Code Contract Unit Price Code:	Handex Code	Task C	lient ode		Addre																			ORD	ER:				/
	Unit Price Code: 51	לכו	J74		_	Town:	_	E	AT	161	v70	wy	v						state		17		_		COD	ED	BY:	-		8A-
	Mileage:	_				Org I.	D.:		18	7					·····			_Hyo	dro .	8,	No	<u>25'</u>	<u>-</u> .		ENT	ERE	D BY	':	41	
	Last Name, First			<u> </u>	1		_		_			_													·····					T
	Initial	Emp. Code	Bill Code	Labor Class	Prep. Time	5 A M	6		7	8		9	10	11	12	М	1	2		3	4	'	5 .	6	7		8	9	Travel	Total
			F1220L	Fore		\prod	T	T	T	Т	十	П	Т			1		T	┪	П	\neg				T	1	T			
7	BANKASTI I	1306	F2309L	Oper	1.0			X		0	9				4								0						15	
53	PARTILLAE		X		0					1				\perp			X	0		Ц	\perp			1.5	10.5					
b			\perp	\sqcup	_		\sqcup	_ _		\coprod				\downarrow		\perp	\perp	\sqcup	\perp	\coprod	\perp	\coprod	\perp	<u></u>						
			\bot	\sqcup	\dashv		\Box			\coprod	+	_		\bot	\bot		-	\sqcup	_	-	+	\sqcup	-		 					
		- -	+	1-1	4		\vdash		\vdash	╂-┼	-		\sqcup	- -	\mathbb{H}	\dashv	-	\sqcup	-	- -	+	1-1	+	 	 					
		ish <u>T</u> i	me (on Jo	<u> </u>	Site			0" - C	enot	es Ti	ime	and I	Retu	ım to	Sho	<u></u>	Ш	.	LL		<u>L</u>	L_	<u> </u>	<u> </u>					
	Number Operating	Hours			Pe	r Die		hargo								_		mplo	oyees	s:				(98000)					
	Mobile (Box) S Dump Truck	2 yd.				Su	tach bcor ill Fro	ntrac	tors	Used:	: Y	ES /	NO.	_ (1) Wo						_ (2)										
ý)	Dump Truck Dump Truck Pickup Truck	18 yd. (Tar	Z_{Z}	多	1		ttach			_														<u>.</u>						
	Room Truck			l	Le	vel o	f Pro	otecti	on: C	₽	Hou	rs:		•	ea.	Empl	.#_				<u>E</u>	mpl.	#	<u>.</u>						
	Back Hoe Trailer, Lowbo	3	5																					2000] pr						
	Air Compress Concrete Cutt	_:	_	ŀ	==				Subn		==							==	_				` 							
Thy.	Hand Held Cu Hand Held Cu]	_:	_		Eq	uipm	ent li	nstall	ed: leted:	Υ	ES/	/ NO	CON	NTR	OL N	MŲM	BER:	:											
	Jackhammer OVA Meter]]]		_					•	Chipp				•																
,	- HNU/PID Met Gas Chromate		_		Ve	ssel	Size	(ea)	Total Total	Milea	ıge (roun	ıd trip	o)		_ ,	/ Exc	cess	of 50	ml_ Vapo	-	irala ((918	08)						
	els: Full Description	em#			<u> </u>					Pour	us u	n Ca	10011	_					iquiu	/vapc) (C	iicie (Jile)	·						
					W	ork l	,	orme Ad	//	3011		101	T	A	, Q	πΛ	4 .7	-01	IA	15	n	nak		SAFO	Type					
	18 / 18 / No.				6	NS	24	6-		noe										RU				Meet	Mag					
\$ P 										_	Sc	157	em		5/						وبن									
	E17212 / 173	 			+					_				<u> </u>																
4			82	~						_					^ '					_	110	1/-	ala	2						
		ure	<u>/</u>	<u>/ </u>				1	Dated	d:		_/_	//	_/_	<u>U</u>		Chec	ked l	ру	a		112	1	<i>-</i>					_	

TIME & MAI	EKIAL IN	SIALLA	AHON		Work	Dat	٠.	//		1/0	3				2.50		100																00
	lex Project String	-	 1		Work	k Dav	1: 1	1/1	UN		IAS	7	400			of College	Section							-		-					1 /	15	513
125100	900 430	75/8	00		Clier			_				N H			1_				•							0				•			
Loc Code C	Handex ontract Code	Task C	lient ode			π:		1	<u>~ /</u>	3/2	110	vg	<u> </u>	87	<u> </u>												Ol	RDE	R: _			1/	<u> </u>
Unit Price Code:	89451-3	Men			Adar	ess:		5	<u>10</u>	700	<u> </u>	2 11	<u>. 0</u>	00								10					C	ODE	D BY	/: _	4		$\bigcup_{}$
•	タロンノア ク ニ ター	Men			Oral	ı. LD :		<i></i> 2	17	<u> </u>		Tw.	Υ						. <u>.</u>) Ole	ne ,	247					_		RED			\mathcal{O}	
Mileage:	- 21	<u>^</u>			Olgi	ו.ט.:		_//	لحا											yard			0.	<u>رر</u>			Er	NIE	KED	BY:		<u></u>	
Last Name, First		1																				·											.
Initial	Emp. Code	Bill Code	Labor Class	Prep. Time	5 A M	i	3	7		8	9	1	0	11		12 P M	1	1	1	2	3		4		5	6		7	8		9	Trav	el Total
		F1220L	Fore	<u></u>																													
BARKASZI.	5 1306	F2309L	Oper	1.5	П	\prod		0	4							1		T	Γ			Ţ	T	Ţ	X	0			\prod	Ţ		loc) //4
PARTILA E	2 134	F3314L	Tech	,5	\prod	\prod		0							T	1	T	T		П		T	T			0	\top		П		T	1 0	11
SABITINI C		F3314L	Tech	1.5		\Box		তী		T				T	T	7		T	X	П			T	T	8	\Box	\top	1	П		1	,5	
		F1815L	Labor					7	1				\sqcap	\top	1		十					\top	丁	1	T		\top	\top	\sqcap		\top		1
							7	1	十					十	1	1	十	T	Г		\neg	+	7	十	T	\Box	\top	1	\sqcap	1	†		†
		 		 		+	1	\dashv	十		$\vdash \uparrow$	+	\dashv	\top	†	+	+	t	-	H	+	+	+	+	+	\vdash	+	+-		+	+-		+
	<u></u>	·	r" - Deno	tes Sta	art/Fir	nish "	Time	e on	Jol	b Site	┡═┷┸ ═	!	<u>ا</u> ا)" - [) Der	notes	s Ti	me	and	لـــا Re	turn	to	Sho	 D	<u></u>	<u>. </u>			بلسل			<u> </u>	
Number Op	erating Equipme					Hou			_		_	n Cha													mpl	oye	es: _				(9800	0)
Dump 1 Dump 1 Dump 1 Pickup Boom 1 Back H Trailer, Air Con	Tryck (mounted	crane)	(E) (E) (E) (E) (E) (E) (E)	V72530] V72500] V72510] V72520] V78040] V73030] Q72120] V72490] Q72460]]]] 			• • • •		Subo • Bill • Atta Leve Acco	Front Front Ich r I of Juntin	eceipteractom: TM receipterece	rs L /PC ts Ctic Co	on: C de _ o] ea.		O H	lour	rs:_ L705	4000	0] ea	_ea	. E E _Bo	mpl. mpl. oties	#_ #_ (ER	70530	00] pr	_	Glove	Em Em	pl. # pl. # rile [A	L393		
Hand H Hand H	ield Cutting Saw ield Cutting Saw mmer (Pavemen	Blades	[E(Q72470 Q72450 Q72180 Q80320]]				-	Part	She	nt Ins et Co	alle nple	ed: eted:	;	YE YE	ES/	NÇ NÇ	CC	TNC	ROI ROI	NI NI	JME JME	BER BER	<u> </u>				tion	T&N	/		
HNU/PI	D Meter romatograph Me	eter (DY)	[EC	Q80372 Q80693]			- -	- 11	Vess	el Si	Chang ize (e	a) ˈ	Γotal	lМi	leag	ae (r	roui	nd tr	rip)			- 1	/Ex	ces	s of t	50 m	ni apor	(circ	(le or	(918) ne)	08)	
Full Des	tem a	#		-	Woi	k Pe	erforr	ned	:																			··					
	۴					_		<u> </u>		<u> </u>	ري		P	ĹΩ	<u>C</u>	JQ	_		56	2 <u>C</u>	JR.	<u>e</u>	19	RE	PA								
				_			PA	2	22	كے	g _a	N	K	. V		1		m		les	T.	K											
	·			4																													
	—								\dashv											 -													 -
		1/													<u> </u>											/-		<u> </u>					
		1	_ ^		<u> </u>			_ Da	ited	:	1		2	_/_(0	3	C	hec	ked	by		4	Ų) <u> </u>		P	0/0	7	2				
		/								7		_													\mathcal{I}	-	ι						

I IME & MAI ERIAL — INSTALI	AHON	Vork [//	20	/ 2	ž		<i></i>	_																	
Handex Project String	Date: _{ Day: 🍒	110	4 9/	AU	, ,	-	•															1 /	55	71			
1251 00 000 430 75	300			•			_											Y	R: _								
Handex Task	Client Code		Client:						rell													ORD	ER:			A	
Unit Price Code: Contract Code	COUR			SS:	1	1010	1	ig_	886										7	_		COD	ED	BY:	#	KI	1
SIME FINES GOOD.			own:	\		100	1/0	× 2							_ St	ate	<u> </u>	LY Ur	<u> </u>	_					,4		
Mileage:		C	Jrg 1.L).:		<u>~</u>			·····						nya	10 _2		70,	<u> </u>			ENII	EKC	וסט	: 14/		
Last Name, First		AM					• • • • •			 -			١.,						· · · ·							 I	Τ
Initial Emp. Bill Code Code		Prep.	5 A	6	7		8	9	10	1	1		V V	1	2	3	3	4		5	6	7		8	9	Trave	Total
F122				T	\vdash	十	7	$\vdash \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	11	\dagger	Н	T	十	T^{\dagger}	7	+	П	T	\dagger	T^{\dagger}	\top	17	+	T^{T}		<u> </u>	}
Juntary I BOG F230	9L Oper	.54		\vdash	0	×	+		++	†	-	H	1	11	\dashv	+		15	0	$\dagger \dagger$	十	++	+	+		17	100
P. Filla E 1234 F331	4L Tock				b	X	+-		++	十			2	1-1	+	+	H		Ö		+	††	十	+		1	10.0
F331					1		+-		11	†			+	\top	十	+	П	7	Ť	$\dagger \dagger$	1	11	十	+	1	<u> </u>	
F181	5L Labor						1		11	1		\Box	\top	\Box	十	\top		十	\dagger	$\dagger \dagger$	7	11	7	1		1	†
	1						+		11	1			\top	\top	十	†	\sqcap	十	T	\Box	十	††	7	1		1	
					1		\top		++	+	T		\top	$\dagger \dagger$	+	+	П	7	+	\Box	\dashv	††	7			 	
	"x" - Denot	tes Sta	rt/Fini	sh Tir	ne o	n Jol	Site	e		"O"	- D		es Ti													·	
Number Operating Equipment Use	d Today			Hours					Charg			Y	'ES /	NO	lf Y	ES,	Nun	nber	of E	mpl	oyee	s:				(9800))
_5_13_ Mobile (Box) Shop		72530]		9.0					ceipts) ractors		ed:	Y	'ES /	NO	(1)						_](2)					
Dump Truck 2 yd. Dump Truck 5 yd.	(EV	72500] 72510]		<u> </u>		- 1			n: TM/F						Wo	rk											
Dump Truck 18 yd. (Tandem) Pickup Truck		72520] 78040]		<i>To</i> 3	<u> </u>	1.1			eceipts						•												
	[EV	73030] [72120]		8.0			Leve	of I	Protec	tion:	: C	D	Hou	rs:		е	a. E	mp	.#_				}	Empl.	#		
Trailer, Lowboy	(EV	72490]			_				19 DIII ([MS703																		
Air Compressor (150/185 CFN Concrete Cutting Saw		[72070] [72460]			-	=			[,,,,,,,,	===	==	===	==	===	===	===	==	==	==	===	==	===	==		===		
Hand Held Cutting Saw Hand Held Cutting Saw Blades		72470] 72450]				١,	Eaui	pmer	nt Insta			it Ed Y	quipr 'ES /	nen NO	t and CON	i Par ITRO	ts S)L N	ihee IUMI	ts w 3er	rith I :	FINA	L Lo	cati	on T	3.M		
Jackhammer (Pavement Breat	er) [EQ	72180]							et Com			Y	ES/	NO	CON	ITRO	DL N	UM	3ER	:							
OVA Meter HNU/PID Meter	(EQ	80320] 80372]					Çarb	on C	hange	Chi	ppir	ng/C	hemi	icals	use	d		_ ye	s		no _						
Gas Chromatograph Meter (D'	() [EQ	80693]			 		vess [sel Si	hange ze (ea)	Tot	tai N tal F	viilea Poun	ige (i ids of	roun f Ca	a trip bon	"			/ Ex	cess	ot 5 .iquic	∪ mi l/Vap	or (c	circle	_ (មាខ one)	(80	
rials: Full Description (Incl. type of	Mat.)	-	lte	em#		(erform																		
		- 					****	IKF	Fin		/			لاحاد	15		_	<u> </u>	ومسر.		10	يرزا	O	^			
73 a / /a / 7 N							To	100	du	201	0	N	-//)	0	Se.	100	20.	Sì	10				·			
R\$ / \$																											
	·. · · · · · · · · · · · · · · · · · ·				<u> </u>	_				<u></u>					<u></u>												
ure GM.																											
ure <u>GH.</u> 1/20/0					D	ated:			/	/			c	hecl	ked t	y											
11/3/1/1/1/1/1/1/201	3	·														/:/	Par	63					-				

	TIME	& MATERIA	AL IN	STALL	ATION		14/~	k Dat	L	11	6	1/2	2	••1	J																	
	,,,,,,,,,	Handex Pr	·				VVOII	k Dat k Day	e	7	000	1	011	-	453	-		A.C.	Gran.											1,	155	60
	libiail	00000	11/20	7519	00		YYOH	k Day	y:	_		1					,						Y	R: _		_ 01	₹G_		_ # -	_ <u>_</u>	<u> 455</u>	03
	<u></u>		Handex	Task C	lient		Clier	nt:					M														OR	DER	t:		A	Λ
	Loc Code	Contract		• С	ode		Addı	ess:		130	111	td	IN	9	88	56											-00	~~~		4	#\	
	Unit Price	Code:	1421				Towr	1:			a	10	n/	ou	N	, 				_ Sta	ate .	1	/		_		CO	DED	BY:	-W		
	Mileage:	Org	I.D.:	-		N	/						 -	ا	Hydr	ک۔ ہ	2	lf c	<u>کی /</u>	€_		EN	TERI	ED B	Y:							
	Last Name, First			T		AM			• • • •		.;													:								1
	Initial		Emp. Code	Bill Code	Labor Class	Prep. Time	5 A	6	3	7		8	9	10	'	11	12 P M		1	2	3		4	5	5	6		7	8	9	Travel	Total
				F1220L	Fore																											
	BARKAS	215	1306	F2309L	Oper	1	П		0	A		П		\prod			1			T	\prod			X	0	T			77		II	1015
	PartillA		1234	F3314L	Tech	,	П			Ø	T	П	\top	П	T		1		П	T	П		T		0	\top	\prod			\sqcap	1	10,5
	SADITINI	C		F3314L	Tech		П				0	K		\prod	\top		7	1		T	П		\top	K	0		\prod				1	9.
,	JAD. ILI		1	F1815L				+ 1			1		\top	\top	1	T	1			1	\sqcap	1	7		\sqcap	十	77	1	\top	\sqcap	1	
		····	 	 	 	 	11	1-1	Н	1	T	11	+	11	1	\Box	+	1		\top	\Box	十	+		H	+	11		1		 	1
			 	}		}	\vdash	+	\dashv		+-	+	\dashv	++	十	+	+	+	+	+-	H	十	+	\vdash	H	+	++	-	+-	 	+	-
	<u>L</u>		<u></u>	l	x" - Deno	tes Sta		nish 7	L_L Tim	e 00	Joh	Site			ـلـ	ليا. De -	notes	s Tin	ne ar	ld Re	<u>L l</u>	Lto:	Shor	<u>. </u>	Ш	<u> </u>	لىك	سل	لسلب			<u> </u>
	Number	Operating	g Equipme			100 010	21.01.11	Hour			_		iem (Char											mple	yee	s:				(98000)
	513	Mobile (Box) Dump Truck				/72530] /72500]		\$		-	S	attac Subc	h rec ontra	eipts actor) s Us	ed:	YE	S/1	NO ,	(1) (1)						_ [(2)					
•	~	Dump Truck Dump Truck		ndem)		/72510] /72520]		مینو					ch re					-	_	oerf.						\perp						
	762	Pickup Truck Boom Truck			[E\	/78040]		To			1.	ovol	of D	rata	tion	. ~	ח ה	lour	.,		02	_	mni	#					Emni	#		
	1380M	Back Hoe		Ciane)	ĮΕC	/73030] 272120]]	35.	0	- - ,	Ā	CCOL	inting	Bill	Code	. U 9			»			Ē	mpl.	#_				<u> </u>	Empl.	#		
		Trailer, Lowbo		85 CFM)	(EV	/72490] 272070]	1			<u>-</u>	R	esp. C	art. [l	MS703	100] 6	ea	_ Tyve	k [AL	70540	00) ea	a	_ Bo	oties [ER70	0530	0) pr.	G	loves	, Nitrile	[AL393	32000] pr.	·
6		Concrete Cut Hand Held Co	ting Saw	•	ĮΕC	272460] 272470]]			-	F				Su	ıbmi	t Ear	maiı	ent :	and	Part	s Si	heet	s wi	th F	INA	L Lc	cati	on T8	EM	=====	
		Hand Held Co	utting Saw	Blades	įΕC	272450]]			-			ment		alled:	:	YE	S/I	NO C	ONT	rro	L NI	JMB	ER:								
1	19.	Jackhammer OVA Meter	(Pavemen	t Breaker)		272180] 280320]				-	1				•																	
		j]	<u></u>		- -	\ \ \ \ \	arbo esse	n Ch I Siz				g/Ch fileag ound						yes /	Exc					circle	_ (918 .cne)	(80						
	ls:	Full Descripti	on (Incl. t	vno of M	at \	-		tem :	#]-					1011	Ou, IO		Caro										#1 OIC			
	Control of the Contro	is A		""	 -	- '	Worl	(Per	form	ed:	10	α	1 <i>A</i> -	~h	sl.e	2 1	65	1.00	ے	~~	ىد	c l	۷.	ck O .								
					\exists	M	Flee	rif	16	<u> </u>	on	1	20	<u>`</u>	S F	 ~	d	<u>Ci</u>	40	1_	ā	RG	25	کرر	a e							
	* i i i i i i i i i i i i i i i	A			↲.	Te	51	A	in	7	سآ	es	•	se.	<u> </u>	IR	e_	31	7	2'												
\$5 \$6											╣.																					
Mer.	And The second s				_ [_													,	,	-,-												
	C. Amilian Comment of Marie Land Comment of		·		_ Dat	led:		<u></u>	2	<u>ر ز</u>		(ر	_ Cł	ecke	d by	4	14	<u>f.</u>	4	23	103	<u>ት</u>	 -									

TIME & MATERIAL — Handex Project 12510000000000000000000000000000000000	String String Handex Task Code Code	ient de	V 4 T	Vork Client Addre Town: Org 1.1	ss: D.:	_ {	υε σῦ Βυ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ch.	- en Ing Teo	۸ ب	8°	36		Н			N				(ORD COD	ER:	BY!	_	A	570 D
	mp. Bill	Labor E	AM Prep. Fime	5 A	6	7	7			10									 -	5	1	6	7	1	8	9	Trave	Total
C	Code Code F1220L	Class Fore	IIIIe	<u>M</u>		╀	+	T	-	+-	├-	\vdash	-,'' 		+	+	_	+-	+	Т	+	T		+				┼
BARKAS ZÍN B	206 F2309L		2	+	6	X	┝┼╴	+		++	\vdash		֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֡֓֡֓֓֓֡֡֡֡	-	+	+	+	++	+	X	9	+	\vdash	+	+-		1	1019
	236/ F3314L		8	\top	2		H	+		11	\vdash				+		1	† †		Ž C		+		+	+		1	10.5
	436 F3314L	Tech	8		C	_							' -							0	0						1	10,5
	F1815L	Labor																П										
i				\perp		_		_					$\perp \downarrow$			Ш					1	1	Ц	1				<u> </u>
		(" - Denote	l			<u> </u>	Щ	1			Ļ	Щ	notes			ليا		ليل						\perp	1_	Ш	<u> </u>	
Number Operating Equ 513 Mobile (Box) Shop Dump Truck 2 yd Dump Truck 2 yd Dump Truck 5 yd Dump Truck 18 yd Pickup Truck Boom Truck (mou Back Hoe Trailer, Lowboy Air Compressor (Concrete Cutting SHand Held Cutting Hand Held Cutting Jackhammer (Pav OVA Meter Gas Chromatograms: Full Description (ISSAND)		Hours S	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		(atta Sub Billi Atta Accor Resp. Equi Part Cart Vess	ch recontract From ach recontract From ach recontract From Cart. [From Sheet From Chart. [From Chart. From Chart. [From Chart. From Cha	t Install t Composite (ea)	Use O ion: ode 00] e Su led: Olete Chi Tot Tot	ed: C C C C C C C C C C C C C C C C C C C	YES Tyvek Equi YES yChe ileage ounds	ipm ipm ipm ic ipm ic ic ic ic ic ic ic ic ic ic ic ic ic	PP PP PP PP PP PP PP PP PP PP PP PP PP	1) Vork erf. 00] ea ————————————————————————————————————	_ea.	Emp Emp Bootie Shee NUM NUM	ol. # lol. witt R: _ R: _	r ss c	prNAL	Gli Loco	cation	Empl Empl Nitrile	# # [AL39 R.M _ (918 one)	32000] p	or				

	TII	ME & MATERI	AL — IN	STALLA	TION		Work		1	10.	2/	/ 12				4	1	Total Control		i.												
	1100	Handex P	roject String				work Work	Day:	1	Thu	R5	di	24							, 44			YR:		0	RG		#	1	455	568	3
	lle/	II ab lab	Handex		00		Client	t:		Gor	1	1) 101 .	Mo	07.	イ	Ÿ													tre	N	
	Loc Coo	rice Code:	7/2/ Code	e C	ode		Addre			DU	14	di	Na	18	386														$\overline{}$	#X	1	
	Unit P	rice Code: _O_	1731				Town:			64	<u>To</u>	MT	ر <u>نان ٥</u>	N					:	Stat	e	N-	5			СО	DED	BY	A	/X	\sim	
	Mileage:		-				Org I.	D.:		No	1_	,							_Hy	dro	ے۔	Hu	55			EN	ΓER	ED B	Y://			
	Last Name, I	irst	T	Ì											_					_			;								.	
	Initial	····-	Emp. Code	Code	Labor Class	Prep. Time	5 A M	6		7	8			10	11	12	M	1	2		3	4		5	6			8	9	Trav	el To	ıtal
9			<u> </u>	F1220L	Fore	<u> </u>																	┛.	\bot					$\sqcup \bot$	1_		
ኧ	BARKA	5217	1306	F2309L	Oper											14		\perp											Ш	1/	10	25
7	Partille	re -			Tech				0	الخراد				\bot		1	Ш	\perp	Ш	\perp		\sqcup					\Box		$\sqcup \bot$	1	10	<u> </u>
4	D'DEN	enico T	1633	F3314L	Tech	۱۰۶		Ц) 10	\perp			1		1	Ц	\perp		\perp	\perp	\coprod	1	$^{\circ} \mathcal{E}$	Ц					1	10	15
7	L		L	F1815L	Labor			Ш						\perp					Ш				\perp	\perp		\perp				<u> </u>		
			<u> </u>		<u> </u>									\perp			Ш													1		
			<u> </u>							$\perp \perp$	┙	\perp												丄						<u> </u>		
	1 November	0				otes Sta							Ch																	(0800	<u></u>	
	Number			ent Used 1		/725201				ea	(at	tach r	eceip	pts)				•						•	•					- `	U)	
).	Last Name, First																															
		Dump Truck Dump Truck	5 yd. 18 yd. (Tai	ndem)																												
	e e T	Pickup Truck Boom Truck	(mounted	crane)							Le	vel of	Pro	tecti	on: C	. D	Ήοι	ırs:			ea.	Emp	i. #					Empl	. #			
	_30K	Back Hoe		-1-1-7	įΕC	Q72120]	<u>ø</u> .	<u>v</u>																							
		Air Compres	sor (150/1	85 CFM)	[EC	Q72070	j	_:		ì	Res	p. Cart	. [MS	70310	0) ea.	T	yvek [/	AL70!	54000	ea.		Bootie	s [ER	7053	00] pr.	G	loves	, Nitrile	[AL39	32000]	pr	
		Hand Held C	utting Saw					_:	_							mit E	quip	mei	nt an	d P	arts	Shee	ets v	vith	FINA	L Lo	cati	on T	&M			
	*								_								YES	/ NC) CO	N I F NTF	ROL	NUM	BEF	₹: ₹:								_
		OVA Meter HNU/PID Me)	 -	_		1			•																		_			
		Gas Chroma		eter (DY)		Q80372 Q80693					Ve	rbon (ssel S	Size ((ea)	Tota	Mile	age	(rou	nd tri	p) _			/E	ces	s of 5	0 ml			_ (918	308)		
		É. II Danai	Car Osal (7					<u> </u>					Pou	nds o) Ca	arbor	<u>'</u> _					Liquid	a/vap	701 (0	circle	one)			
		Full Descrip	uon (Inci. 1	type of Ma	at.)			em#			W	ork P	erfo	rme		^_	. 4			1		۹ .	•	_		Ľ		7	0			
		4.5		·,—·,—·				*					<u>구</u>	<u>e,</u>	4.													TNA				
Ø ≀ ≥											_	eus Da					<u>De</u>					So					_	CK	7-10	<u>-L</u>		
						1					-	7	<u></u>				ب لو			_/-		<u>~~~</u>		ر پ	<u></u> /	10	<u></u>	<u>`</u>				
]_			_/~																		
			The same of the sa		, A 1	J /)			Date	۸.	1	,) 4	Z ,	۵	7.	^ha-	ked	by.												
X	1/8/1	/////	·		70					Date	u		_'	_/	'		<u> </u>	OI IE	vea	IJУ _		 -										
		•				đ																										

TIME & MATERIA	AL — IN	STALLA	ATION				,	he	/	2	1	V	/																	
Handex Pr					Work Work	Date Day:	: <u>/</u>	RIO	AV	<u>5</u> '															_			14	55	72
125/00000			00							nno	- A										YH	k:								<u> </u>
Loc Code Contract		C	lient ode		Addre	ess:	B	vile	<u>no</u> Si s	UNIO Va	88	6												(4	4	TVX	1
Unit Price Code: <u>89</u>	451				Town:		2	Part	10	n 70	Tron							Stat	e _	1	5			C	ODE	DB	Ý: 🗡		X	
Mileage:		* . 1			Org I.	D.:		N	<u>J</u>								_Hy	dro	2	yv:	<u>55</u>				NTE	RED	BY:	1	$\stackrel{\smile}{=}$	
Last Name, First	T	T		1								-			_		1										 .		 I	
Initial	Emp. Code	Bill Code	Labor	Prep. Time		6		7	8	9	10		11	12	P M	1	2		3	'	4	5		6	7	8	'	9	Travel	Total
,		F1220L	Fore				1	\prod								T			\top		П	T		\prod	T	\prod				
BARKASZIS	1306	F2309L	Oper	15	П			K			\prod	I		4			X		floor							\prod	\bot		1	7.5
PANTICIA E Rule C	1234	F3314L		15				8		$\bot \bot$			$\downarrow \downarrow$	4		_	Ĺ		(0		Ш	_	_	Ш	4	Ц	\bot	\bot	1	85
1 Rule C	10436		 	15	-		9	P	_	┦-}-	$\downarrow \downarrow$	_	4-4	4	_	\downarrow	\vdash		10	1	\sqcup	\dashv	4	\sqcup		\sqcup	+	44		815
	 	F1815L	Labor			$\vdash \vdash$	╀	++	+	++	+	+	╁┥	-	+	╀	\vdash	+	+	╀	H		╀	$\left \cdot \right $		╀	+			
	 	ļ			$\vdash \vdash$		+	╂╂	+	++	++	+	+-{	\dashv	+	╀╌	\vdash	+	+	╀╌	Н	+	+	╁┤	+	H	+	┼┤		
		",	x" - Deno	tes Sta	art/Fin	ish Ti	ime	on Jo	b Si	te		" <u>O"</u>		not	es Ti	me	and	Ret	urn 1	to SI	hop	<u> </u>	<u> </u>	<u> </u>	<u>_</u>		<u> </u>			L:
	g Equipme	nt Used T		V72530]		Hours				Diem ach rec				Y	ES /	NC) If	YES	6, Nu	ımbı	er of	f Em	ploye	ees:				(98000))
Mobile (Box) Dump Truck				ļ	Sub	contra	actors	Us O	sed:	Y	ES /	NO	(1)	nek						(2) _										
Dump Truck Dump Truck	5 yd. 18 yd. (Ta	ndem)	įΕ\	√72510] √72520]		\$				tach re						_													<u> </u>	
Pickup Truck Boom Truck		crane)	įΈν	/78040] /73030]		8			Lev	el of P	rotec	tion	1: C	Đ-	Hour	rs:_			_ea.	Em	pl. #	<u> </u>				_ Em	ıpl.#	<u> </u>		
Back Hoe Trailer, Lowb	oy ;		įE\	Q72120 V72490]	ĺ		_																						2000] pr.	
Air Compress Concrete Cur	tting Saw	-	įΕ	272070 272460 272470	Ī		_	F				==		=	==	==	==	===	===	==	===	==	===	==	Loca	=		===		
Hand Held C Hand Held C	j		_		Equ	ipmen t Sheet	t Insta	lled	:	Y	ËŠ/	NO	CO	NT	ROL	NUI	MBE	R: _	_					" ——						
Jackhammer OVA Meter]]			1		bon Ch		•											_											
HNU/PID Me Gas Chroma]]		_	}	Ves	sel Siz	e (ea	To	otal N	Ailea	ige (r	rour	nd tri	p) _			_/ i	Exce	SS 0	f 50	ml_	(ala	((9180)8)					
Full Descript	l+	em#		7	`				otal P	oun	ids o	- Ca	rboi	<u>'</u> _			_		_LIQ	ula/\	/apor	(GIT		ne)						
Fig. 1		.ypc 01 101		 		· ·			Wo	ork Pe	rtorm	ed; C/	2 pr	9	/	r Cr K	0		50	<i>;</i> /	_	71	1 21	·	S.	1				
										Çr	6	10	KF	ill	in	<u> </u>	1	2 e	Δ.	λe	<u>.</u> ح				_5c	<u></u>				
Full Descript														<u>.</u>							_									·
				+					<u></u>			<u> </u>	. <u></u>																	
		11	/7										. ^	· •					-											
	ature	K					!	Dated	l:		<u>d</u>		<u>ر</u>	٧	_c	hec	ked	by _											-	

TIME 8	& MATERIA	L IN	STALLA	TION		\Alark	Do t o:	. /	//	/ 1 7.	/0	3		pu															,	•
1125,1	Handex Pro					Work	Date.	2	7001	da,	7	<u></u>	-								YR	k:	(ORG		#	1	.4	<u>55</u>	73
	h hah	Handex		ient		Clien	_	For	17	BON	NO	TIK	Ĺ													 R:		Ā		
Loc Code	Contract	Code		ode		Addre			,				2															籽	51	
Unit Price	Code: <u>89</u>	/ 3 /				Town:	-	2	Ale	20	tou	N						s	ate _	1	<u>J</u>			C		D BÝ:	_/_	₽	Hr.	
Mileage:		-	1			Org I.	D.:		¥I.		·			,				_Hyd	<u>ح</u> ro	H	<u>155</u>			El	NTEF	RED E	3Y:_	<u>'\</u>		
Last Name, First					AM										., P	М														
Initial	1	Emp. Code	Bill Code	Labor Class	Prep. Time			1	7	8	9	1	0	11	12	P M	1	2	3		4	. 5	1	3	7	8	9	, -	Travel	Total
			F1220L	Fore		T		+-	\sqcap	Τ		+	П	\top	\vdash	+	T	\vdash	+	+	П	T	+-	巾	7		\dagger	\dashv		
BARKASZI =	7	0	1/	+		+	H	+		+	T	XO	11	1	$\dagger \dagger$	_	1	1	+	-	\Box	\dashv	7	7.5						
Brophy 5	- <u>` </u>	Ò		1		1	П		1	1		X D		1	П	1	\top	\Box	7			\top	,	7.5						
21.4			7		1			П																						
			F1815L	Labor			П	T					П			\top				1	П							\sqcap		
									П				П						П		П							\sqcap		
							П	T	П		П		П		П	1			\prod	T								1		
				(" - Deno	tes Sta									O" - D																
Number	Operating		nt Used To				Hours				Diem ch re			S:)	res /	Ν̈́C	<u>L</u> If Y	ES, N	umb	er of	Em	ploye	es: _		···		_(9	8000)	
	Mobile (Box) S Dump Truck				/72530] /72500]		_:			Sub	contr	acto	rs l	Jsed: `	١	/ES <u>/</u>	NO	(1)	4,					(2) _						
	Dump Truck 19		ndem)		/72510] /72520]				.	· Atta	ach re	ceip	ts	,				perf	·											
762	Pickup Truck Boom Truck (i	-		[EV	/78040] /73030]		フ ニ		1																					
580M	Back Hoe		Gane)	ĮΕC	272120]		ZK			Acco	untin	g Bill	Co	de _	. <u></u>	11001		<u> </u>	cu	Em	ipl. #	=				Emp	i.#_			
HITTES	Trailer, Lowboy Air Compresso	or (150/18	B5 CFM)	ĮΕC	/72490] 272070]		Z :		1	Resp.	Cart.	[MS70	310	0] ea	Ту	vek [A	L705	4000] €	a	_ Boot	ies [E	R705	300] p	r	Glove	s, Nitri	e [AL:	39320	000] pr.	
	Concrete Cutti Hand Held Cut		,		(172460) (172470)								;	Subm												tion 1				
177	Hand Held Cut Jackhammer (272450] 272180]		6.0	2		Equi _l Part	pmen Shee	it Insi	talle mol	eted:)	(ES / (ES /	NO NO	CON	TROI	NU . NU	MBE MRE	:R: _								
	OVA Meter HNU/PID Mete			[EC	280320] 280372]				- 1				•																	
	Gas Chromato		eter (DY)		280693]					Vess	sel Siz	ze (e	a)	Total	Mile	age (roun	d trip			_/i	Exce	ss of	50 n	nl	(-11-	_ (9	180	8)	
ials:	Full Description	- /ll +	of 14	-4 \	\exists	14			<u> </u>	l.				Total I	Pour	105 0	T Ca	roon ,			==		_LIQL	IIQ/V	apor	(circle	one	<u>) </u>		
	ruii Descriptio	on (Inc. t	ype or wa	at.)	- 	- II	em#			Woi	rk Pe	rform	ned	l: _ <i>f</i>	_		_)	. /	· ~ ~	•		1					
			 -			 -			-		1 4	V	1	()/ -~~			, <u>C</u>		AK	<u>/ ^</u>	OE	<u> </u>		<u>U</u> S	12	19		-		
			· · · · · · · · · · · · · · · · · · ·	······································	1				\neg	~	7.75			-707																
									_].												, -									
								Г)ated:	: /	,	د ،	1	غه لـا) C	hec	ked h	v 6	JI,	(_								
										-+	·				-,;					1	b	10	5.						-	

IIME	& MAIERIA	YL IN:	SIALLA	AHON			_		//	10	103		Ų																		
	Handex Pro	oject String	3									_ /																4	1 1		7 4
Model	90000	1/30	709	00		Work	Day:				~											YR:			RG		#		<u>L4</u>	55	14
[A-DI	361866	Handex		lient		Client	t:		Est		non	noch	74														R:			1	
Loc Code	Contract	Code		ode		Addre	•	4	Buil	d	ing	8	78	<u> </u>															, P	17.	4
Unit Price	Code: <u>899</u>	5				Town:		1	34	221	Tou	e n							State	е .	Ν'n	7			CC	DE	D BY	:	\mathcal{L}	χ_{A}	
Mileoge			٠.			Org I.	ם:		11	4	Tou							Hv	dro	Ē	4	25	?		F۸	JTFF	RED E	8Y. Z		<i>X</i> / `	
Mileage:		-	1			O.g	.											' ' <i>'</i>			<u> </u>				L-1	116	\LU !	··· -			
Last Name, First		T	T	1	1																										<u> </u>
Initial		Emp.	Bill		Prep. Time	5 A	6		7	8	9	10	1	11		P	1	2		3	4	·	5	6	. -	7	8	1 5	9	Travel	Total
		Code	Code	Class		 "		4	 -			┿-	+	-	١.,						ļ.,			╁-,	-		 	┿	┯┼		
1		<u> </u>	F1220L	Fore		_ _		1_	$\bot \bot$	\perp	11	11	1	4	Ш	\perp	1	Ш	4		Ш		\perp	\sqcup	_	$oxed{oxed}$			Ц		<u></u>
DARKAGO	17	1306	F2309L	Oper	0	Ш	1	5/	11				┸	1	X	\perp	L			\perp			\perp		\perp	$\perp \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$			Ш	15	5.5
Brophy	ک	[X							X							1									(5)				
					\prod	Τ	\prod	\prod	T			T	T	П	T	T			T	П	T	\prod	\prod	T	П						
			1	11	+	11	11	T	\top		\top	+	\Box	+	十		1	十	\Box	\top	\vdash	\sqcap	1	H							
			+-	++-	十	+-+-	1-1	十	+		+	+-	1-1	十	+	\vdash	+	+-	+	+	+-1	\vdash	1-	$\vdash \vdash$		 					
 		┝┼	+-	╂╌╂╌	+-	+-+-	+	+	+-	-		┼	┝╌┼	+		\vdash	-	+-	┼┤	+	╂╌┦	$\vdash \vdash$	+-	╁		 					
L			<u> </u>					<u>"0</u>											1_1	Щ.	لــــــــــــــــــــــــــــــــــــــ			Ш		<u> </u>					
Number	Operating	ISN 11 Hours		on Job		Diem							and I						love						8000)						
TEZ SERM HUX	Mobile (Box): Dump Truck Dump Truck Dump Truck Pickup Truck Boom Truck Back Hoe Trailer, Lowbo Air Compress Concrete Cutt Hand Held Cu Hand Held Cu Jackhammer OVA Meter HNU/PID Met Gas Chromat	2 yd. 5 yd. 18 yd. (Tar (mounted of or) or (150/18 ting Saw utting Saw utting Saw (Pavemen eer ograph Me	crane) B5 CFM) Blades t Breaker)		/72530] /72500] /72510] /72520] /78040] /73030] 072120 /72490] 072460 072470 072450 072180 080320 080372 080693		3.5 3.6 7.6 7.6	5	E F C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sub Bill Att Leve Accordance Eque Part Cart	ipment Sheet bon Chasel Siz	ectors: TM/F ceipts rotec Bill (MS703 t Insta Com nange se (ea)	tior Cod 100) Silled plet	ea	Ty Ty Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Hou quipp (ES / ES / Chemage (ands o	rs: NLT05 meri NO NO No icals frour f Ca	at and COI COI suse and tripurbon	ea	ea.	Emp Emp Bootie She NUM NUM	ol. # ol. # ets v dBEI dBEI LE dBEI with R: R: xces	FIN. no ss of Liqu	AL L 50 m id/Va	Glove ocat	Emp Emp es, Nitri	ol. # _ ol. # _ ile [AL: r&M	3932 9180 e)	000) pr.		
					-	 -			_				-										<u> </u>								
				, ,																											
	and the second	ature	K		<u> </u>		_	[Dated:		11	30)_	!	0	<u>၂</u> ၀	hec	ked i	by _	U	M						·				
		L.																		سد	2/6	10	3-							_	

					i jili	east F	orm	1)			1		<i>]</i>							0:	2
eri erina	WH.		. ، قرار	/AL (I	North	east F	orn	1)			1	10	J			4	(7 '	20		0	2
			ı ET	77		ate:/		20	2	YF		_ OF	RG	#) J	20			 -
1/2		1	20	JD] w	ork Da	ate:/		7			5		,		· -	Coc	led l	зу: []	ر ا	Λ	
		rask Orda	Clie	de. W	ork Da	ay:	Ne	<u>a</u>	Ne	25	<u>o(</u>	¥			-			A	X	N	7
***						Fo					00	in			-	Ent	ered	ВУ			<u>/</u> _
				A0	aaress	Bru	<u>Keli</u>	$\stackrel{\leftarrow}{\rightarrow}$	00	00					-			_	1,		
	145	51		— <u>т</u>	JWIJ.	Eato			_	<u> </u>	State	a.	17		•						
្តូ _ម ប	P: <u>X</u>	Workshee	t:													-					
		Emp		Bill	Labor						PI				-			<u> </u>	Т		V
, par		Code		Code	Class			7	8 9	10	11 12	1	2 3	4	5 6	7	8	9 10	i_	Trave	┺—
AGUINE	57	100	19	F0616L	Electr.	2			X			1 1							į	3/4	5
				F0616L	Electr.			П		1	\top	П			T				1		T
				 	 	+	1	H	十	††	+	††	+	-	+	\top	$ \uparrow $	++	+		+
				F3314L	 	1	+-	\vdash	+	╁╌╁	+	++	+-	- -	+	\vdash	┝┼	╂┤	+		+
· · · · · · · · · · · · · · · · · · ·				F3314L	Tech.	1		\sqcup	+	+	4	++	_	$\vdash \vdash$	+	\perp	H	44	4		╀-
	4			F1200L	Foremar	<u> </u>	丄	Ш	\perp	\coprod		\coprod									
PLUMBING PA							EL	EC	TRI	CAL											
PVC Ball Valve	ty Code PL8540	2" Qty	Code PL85	e 3" 40200	' Qty	Code PL8540300	PVC	90° S	weep		3/4"	Qty C	ode L7840		l" Qt	<u>y</u>	Code EL78) 40100	_		Code
Brass Ball Valve	PL8514			14200		PL851430	I -			1			L7740					40100			EL77
PVC Pipe (sch. 40) PVC 90 ^d Elbow	PL5940 PL3140			40200		PL5940300 PL3140300							L0340 L0240					40100 40100			EL03
PVC Tee (sch. 40)	PL8140			40200		PL8140300				oling			L2440					40100 40100	L		EL 24
PVC Male Adapter PVC Fem. Adapter	PL0340			40200		PL0340300	1)			L0740 L7343					43100	╁		EL07
PVC Coupling PVC Union	PL2440 PL8440			40200 4020S		PL2440300 PL8440300							L0328 L2328			~		28100 28100	_		EL03 EL23
MISCELLANEO				10200					301 (L						PL	IMF	100	RTS	ALC: N		
		Code					Qt	У	Code)		Alay <u>repre</u>		2000					Qty	C	ode
10-3 SO Cord. (ft.)		EL9720W					1			33100	!()	1&E [Diaphi	agm						М	IS62
12-3 SO Cord. (ft.) 14-3 SO Cord. (ft.)		EL9720W	I .							33100 33100	_}=	1&E F	lap					-		М	IS62
#16 Wire Thhn (ft.)	 -	EL9820W	_ L				+		L	33100		o Pur	np O-	ring k	(it #6	371	18C	-		М	IS62
#14 Wire Thhn (ft.)		EL9820W	14 Flip	Flop Tim	ner ATC	115V	1		F1.43	33100	<u> </u>			T	() ['			
		- (- 											()			
		- (- (-											()			
·			 -	- ' 	<u> </u>										()			
· .		(<u>.</u>	}											()			
		(1								/	,				_		
	1/8-5	to	n	9/4	2sez	0/2	31	t	5	fo	7	00	re	2	A	20	2	ve	4		
Comments:						7			_//	! 					\bigvee_{-}						
						,															
																				<u>. , . ,</u>	
											 	31k								ELEC	

					AL (North	east	Form	1)		1/	14	,					
				TRIC	:AL (North	east	Form	,	Qu			•				į	02
			ing	11710			Jugi		·/· /	1	YR	OF	RG.	#	63	22		
-		u3	075 lex Task	Clier	p v	Vork Da	ate:	<u> </u>	30	<u> </u>	23				Coded F		KV	<u> </u>
\$ 1	contract		ode	Code	" V	Vork Da	ay:	<u> 1 H</u>	L	30	AA	7/			<u> </u>	/	W	1
					_ C	illent: .ddress		<u> </u>	1.	Mon	man CSG	N	$\overline{}$	 [≛ntered	By	2 <u>C</u>	
code: .					P	agress	. <u>/3</u>	aulo	1	}	OOK	<u>. </u>				- (
Price Code:	844	51			- T	own: (Est	mla	~~		State):	11					
周III: TM: 安	UP: 🔀	_Wor	ksheet:			org. I.D.												
Last Name, First		T	Emp.		Bill	Labor					PI						T	1
inidal		<u> </u>	Code		Code	Class	Time	5 6	7 8	B 9 1	0 11 12	1	2 3 4	5 6	7 8 9	10	Trave	
TAGUIN	01	11	00	9	F0616L	Electr.	1			X	16	Ш		×		\coprod	1	19/2
					F0616L	. Electr.					10							
		1			F3314L	Tech.					1					\prod		
-		+-				+	 	++	ff	++	1	1+	++	 		$\dagger \dagger$	+-	
	······	+-			F 33 141	Tech.	-	╂╂╌	$\vdash \vdash$	╁┼	+ 1;	++	++			++	 	
<u> </u>	*	1			F1200l		n			<u> </u>	TH					<u> </u>	<u> </u>	<u> </u>
PLUMBING P	ARTS		2" Qty	Code		" Qty	Code	EL	ECT	RIC	AL PA 3/4" (1" Qty	Code		2" Qty	Code
PVC Ball Valve	PL854		z Qiy	PL854		Qty	PL85403				3/4 \		L7840075		EL784		z Czty	EL7840200
Brass Ball Valve	PL85			PL851			PL85143 PL59403				100		L7740075		EL774			EL7740200
PVC Pipe (sch. 40) PVC 90 ⁰ Elbow	PL594			PL594	0200			00 PVC					L0340075 L0240075		EL034			EL0340200 EL0240200
PVC Tee (sch. 40)	PL814			PL814	0200		PL81403	00 PVC	Elec. (Coupling	,	E	L2440075		EL244			EL244020
PVC Male Adapter	PL03			PL034				00 PVC					L0740075		EL074			EL074020
PVC Fem. Adapter PVC Coupling	PL024			PL024	10200		PL02403	300 Sean	- :		7)		L7343075 L0328075		EL734 EL032			EL734320 EL032820
PVC Union		40150		<u> </u>	10205		PL84403						L2328075		EL232			EL232820
MISCELLANE	OUS MA	TER	IALS							and the second				PU	MP PAI	RTS		
Description				antii		EBC (S. P. and Carling Street					9/0 Wari						
		_	2011		- 1	ERS	~	Desc						Qı	antity		ERS	Code
1/2 PVC C	-brolin	<u> </u>	7-011	30	-,([65x	1 8	_594	010	<u>so</u>				1-	······································			
+ VISA PURI	1 .		 		-:-									()			
4 112 14 (AM	unes		 `		- 									()			
	· · · · ·		 											()			
			 		_)									()			
			(·		·					···	()			
		,	(·	· · · · · · · · · · · · · · · · · · ·			-	()			
L					_)_	···				·				()			
Comments: /	Van	~70	L,	/_	_//	Bar	100		7		1		_ Cs		/.	/		
assoun	-1 -		 2	1		<u>an</u>	1	1/1	7.	<u> </u>	120	in	_ 0	مد	dui		-	
Cortovic	٠ , ر		<u> </u>	7	2 0	7	Tru	Ker	n re	7			,					
		<u> </u>		/	—-{	/		-	. ·)_								
	·																	
····													·	·				
																		
·		7																·
Authorization:	_ 41	('	2/6/0	3.				KP	Da	te: <u>/</u>	310	3					ELEC R	lev. 11/99

ELEC Rev. 11/99

		. 24		i i		orthe	east F	orr	n)			YR	~) () RG		_ ;	#		6	3	3(0	()2	
				Clien Code	Wo Cli	ork Dat ork Day ent: dress:	e: <u>2</u> /:	Je nd	di di lel	<u>у</u> И	os es	3 .d		X						ode			1			_
		Vork	sheet:		– Or	g. I.D.	cte				ydro			e: _		<u>5</u>	2	= = =			- /4	-				
\$ 1V	və [10	Emp. Code	9	Bill Code F0616L	Labor Class Electr.	Time	5 5	6 7	8 /<	9	10		2 1	2	3	4	5	6	7	8	9	10	Trav	1	10
AGLEY			620	<u>}</u>	F0616L F3314L F3314L					K		-	<u>^\</u> +	+									+			æ <u>~</u>
PLUMBING PA	\RTS				F1200L	Foremar			LE	1	RIC	AL			TS			4"	Qty		Cod	ie		2" Qty	Code	
PVC Ball Valve Brass Ball Valve PVC Pipe (sch. 40)	PL8540 PL8540 PL8514	1100 1100 1100	2" Qty	PL85 PL59	40200 14200 40200 40200	Qty	Code PL85403 PL85143 PL59403 PL31403	00 PV	/C 45°	Sw	eep m. Ada		3/4	- Cur	EL	7840 7740 0340 0240	075 075		Qi)		EL7 EL7 EL0	840 740 340	100 100		EL784 EL774 EL034 EL024	0200 10200 10200
PVC 90 ^d Elbow PVC Tee (sch. 40) PVC Male Adapter PVC Fern. Adapter PVC Coupling	PL034 PL034 PL024 PL244	0100 0100 0100		PL81 PL03 PL02	40200 40200 40200 40200		PL81403 PL03403 PL02403 PL24403	00 P\ 00 Se	/C LB ealing ec. Adp	Box Y (E	(XP) raight	(LT)			EL EL	2440 0740 7343 0328	0075 3075 8075	5 5			EL7	7343 7328	100 100 100 100 100		EL244 EL074 EL734 EL032	40200 43200 28200
MISCELLANEC	PL844 DUS MA Qty	ER	ie		4020S	ay #27A	PL84403		ex. Co Qty	C	ode		05			232			PL	IMF	Company of the Compan	interior	TŞ	Qty	Code	144 (146) 114 (146)
10-3 SO Cord. (ft.))ELS	(TVVa)		000	Des	спр	nic.	m		15		.E.D				((uar	ntity	<u>y</u>)			Code	
			()														()				
			(-:)													+	()				
Comments: S	et c	5	, G	in	era ed	to]sc	A nei	/ 	<u>o</u> Zi	2	1	Ó			<u>م</u> ر	_ 元 フ	(5	-) 	/w	Sol (ino	ー シ -
														-												— —
Authorization:	ail.	n lo	3			······································		K	ρ	Da	ate:	<u>၂</u>	110	lo	3_									ELEC	Rev. 1	— 1/99

					J.	AL (North	neast f	-or	m)																		
						7-3			_				YF	₹_		OF	≀G .		#			6.	5 3	54		i		
	* 15%	,	d.	\$	19	19 V	Vork Da	ate: <u>-</u>	<u>ک</u>		7	_	0	<u> 3</u>	<u> </u>					_	_		d B		H	AN.		
			30	Task	Clier	nt M	Vork Da	ay: <u>P</u>	-or	10	7	4								_	Co	de	g B	¥-	A	#7		_
۵			A STATE OF	,		С	lient:	Fo	2/	-	M	۰۰	~~		ul	K		>			- -	.			4	~ 	/	
	and the						ddress													-	En	ter	ed	БУ.	: 7.			
			700			_ ^	adi Coc	·												-								
		89	45	5/_		- -	own:	Eal	7	1	<u></u>	NY.	$\overline{}$	C+		7	2	_	=	-								
	UP:	VV	Vork	sheet:			_													-								
						_ 0	rg. 1.D	·			_	нуа	ro: 															
e First		1		Emp. Code		Bill Code	Labor				T e	1 9	10	11 [PM 12		21	3	4 1	5 T 6	7	8	9	10	,	Trav	el -	Total
70 =							+	+	$\vdash \uparrow$	+	+	+	\vdash		Н	+	+	+	+	+	十	╁╴	ŀ	+	╁┤		】	7
TAGO	ノノて	0	10	001	2_	F0616L	Electr.			4	\bot	_		囚	凶	\downarrow	\downarrow	4	\perp	\downarrow	1	\perp		L	Ц	_		
		Ì		·		F0616L	Electr.						} }			- 1	1	1										
						F3314L	Took		Н	十	T	1	\sqcap		\Box	7	1	7	+	T	1	T		T	\Box		\dashv	
						F3314L	Tech.	 	┝╌┼	-	+	╂-	\vdash		\vdash	\dashv	+	+	+	+	╀	╀	╄	╀	$\vdash \vdash$			
						F3314L	Tech.			[_																L	-	
						F1200L	Forema	<u> </u>		T	7		П				T		T		Τ	Γ		Γ	П		T	-
	DAD				SOLES	to i sui o					<u>_</u>		3														بار منوان	
PLUMBING	1" Qty		2		Code		" Qty	Code		LE	<i>-</i>	ΚIL	-Al			ty C			1	" Q	y	Co	ode			Qty	Coc	ie
PVC Ball Valve		PL85401			PL854			PL854030	—							E	L78	4007	5			EL	784	0100	Ö		-	840200
Brass Ball Valve		PL85141			PL851			PL851430						_				4007				-	.774				+	740200
PVC Pipe (sch. 40)		PL59401			PL594 PL314			PL594030 PL314030					<u> </u>	├				4007 4007				┺	034					340200 240200
PVC 90 Ellow PVC Tee (sch. 40)	<u> </u>	PL81401			PL814			PL814030	-					-				4007		—-		-	244		_			440200
PVC Male Adapter	<u> </u>	PL03401			PL034			PL034030					11.9	┢		-		4007				┺	074					740200
PVC Fem. Adapter		PL02401			PL024			PL024030						┢				4307				┺	734					343200
PVC Coupling	 	PL24401	00		PL24	10200		PL244030)O Ele	ec. Adp	t. St	aight	(LT)	1		E	L03:	2807	5			EL	032	8100	計			328200
PVC Union		PL84401	50		PL844	10208		PL844030	0 Fle	ex. Co	ndu	it (LT)			E	L23:	2807	5	_		EL	232	8100	٥		EL2	328200
MISCELLAN	EOUS	MATE	RIA	ALS						5 L 2 3 MA 2	70.									Pι	JMI	p P	AF	I				
<u> </u>		Qty (Code	•						Qty	C	ode	_												Qty	$\overline{}$	Code	3
10-3 SO Cord. (fi	t.)	I	EL97	20W31	War	rick Rel	ay #27A	IEO			E	L683	3100	5	СH	SE C	Diap	hrad	m					\dashv	<u> </u>		MS6	23100
12-3 SO Cord. (fl		<u> </u>			<u> </u>		ay #27B				_1_		3100	7		_									<u> </u>	l		
14-3 SO Cord. (ff		L					ay #67 S		_		L.		3100			&E F									L	1		231002
#16 Wire Thhn (f					i .	-	Relay A						3100		Аго	Pun	np C	O-rir	ıg K	it #6	3371	1180	0				MS6	23100
#14 Wire Thhn (f		L			1		ner ATC	en. Purp.)	-+				3100 3100		Aro	Pun	np [Diap	hra	gm i	¥90:	533-	2				MS6	23100
#12 Wire Thin (f		1			1		Relay B		-+				3100		Abs	orbe	ent I	Pad	(gra	ade	100) (e:	a.)				ER0	103000
TO VIIIC THINK!		L!		Ī (12.1.2) [1.		I.	 27.	Y : _ :	I.	L			-		``(·	· · · ·	7	<u>.</u> .			
				1		- ,														() [
<u> </u>				+		- 														(\prod				
				 		- (1														(7				
				1			·													-				Ħ				
)														1				$\frac{1}{2}$				
				()			Ĺ											(1 -	ᆜ				
<u></u>	K	<u> </u>						0	. /	,		^		1			٠		T S	7	_	U	Ŋ	,				
Comments:		Nex	2_	M	ā	(e)	rial	\leq	XS	7	9	7				27		100						_1				
		V							1_		4	\angle																
								-			し																	
																												
																												
															h										·			
		1.	U	21	110	7		-	k	P	•)ate	e: '	2/	110	10	3				_					ELE	C Re	ev. 11/9

KP_Date: 2/10/03

·. Mile	Loc Code Unit Pric	Handex Pr	Handex Code	75 P	ATION lient ode		Work Work Clien Addr Town Org I	c Da nt: ess: :	ay: _	7. F.	Solo Solo	To To	Sol Zno Qi	371		8 J	80		4			tate		Na	_ _			OI C	RDEI	# R: D BY: RED E			_	
Las	st Name, Fin	st	Emp. Code	Bill Code F1220L	Labor Class Fore	Prep. Time	5 A M	1				8	9	·	10		11	12 F			2			4		5 T	6		7	8	9		ravel	_
	ARKASZ DOTILLA	; T	1386	F2309L F3314L	Oper Tech	.50		+	0	XX	+	+			+	-		1	+	H	7	1	F		7			1	\Box		+	+	T	10
3	rophy	ح	010669	F3314L F1815L				L		£		1						4														1		9,9
					x" - Deno	otes Sta	art/Fir	nish	Tim	ne or	n Jo	b Sit	ie_			*O"	- De	note	es Ti	me :	and 1	Retu	ırn t	o She	Op_	1	Н	1		<u></u>		1		
	lumber	Mobile (Box) Dump Truck Dump Truck Pickup Truck Boom Truck Back Hoe Trailer, Lowb Air Compress Concrete Cu Hand Held C Hand Held C Jackhammer OVA Meter HNU/PID Me Gas Chroma	2 yd. 5 yd. 18 yd. (Tank (mounted of sor (150/18 tting Saw cutting Saw cutting Saw (Pavement eter ttograph Me	ndem) crane) B5 CFM) Blades t Breaker)		V72530) V72500) V72510) V72520] V73030) V73030) Q72120 V72490] Q72460 Q72470 Q72450 Q72450 Q80320 Q80372 Q80693		720	ours U			(atta Sub • Bill • Att Leve Acco Resp	el of continuation of the continuation of the	ecei trac m: T rece Pro ing E ing E	nstal Compone:	Use O code souled: Sulled: Chi	ed: : C ea ebmi	D I	Hour ek [Al uipr ES / ES /	NO L705- men NO NO icals	(1) Wo per 4000] t and CON Use	ea	ea.	Emp Emp Bootle Shee NUM NUM	ol. # s [ER ets v BEF BEF	7053	00) pr	2) AL L	Glove:	Emp Emp s, Nitril	le [AL3	1808	00] pr	
<u> </u>	Rei	Full Descript				V	<i>a</i> ·	tem A					MA	mi	me hol hol	ig es	in	no A c	<u>(</u> 55	50		٠ (د	FI	ies	2	20	<u>3 (7</u>	K.	<u>'0 '</u>	(77	e u	- 10 R	K	

	TIME	& MATERIA	AL — IN	STALLA	TION					,	_	,	_						Ŋ	,															
•		, Handex Pr	oject String)			Worl	k Da	ite:_	<u>/-</u>	<u>ئ</u>	/-	23																		1				
	125/	00 000	6/25	756	00		Worl	(Da				1	_				,								YR	::		ORC	₃		#_		er er er er		
			Handex	Task CI	lient		Clier	ıt:	_	Fo	0	7	300	non	nov	11	<u>(</u>											(ORDI	ER:	_		ie.	· .	
	Loc Code	Contract Code: 89	・46フ		ode		Addr	ess	:	_2	<u> 30</u>	jla	170	g	E	80	6								_				CODE		7	712			
	Unit Price	Code:	102				Town	ı:	_		29	Tol	100	ur					4			Stat	e _/	VJ							C	X	4	٠	
ı	Mileage:		_				Org !	l.D.:	_		1/5	<u></u>									_Hy	dro	2	110	<u> 25°</u>	Σ		E	ENTE	ERE) BY	<i>(</i> : _	7		
Г	Last Name, First		T		T	AM.												. PN	1														£	Y	
	Initial		Emp.	Bill	Labor	Prep. Time		1	6	7		8	9)	10	1	1	12		1	2		3	4		5		6	7	1	8	9	Trave	el\	
}			Code	Code	Class	111110	 ' '	+	7	ļ.,	\dashv		↓ ,	_	_	Ļ,	_	'	<u>"</u> _		ļ.,	+		 	_		+	, 		+			 	+	
,	· · · · · · · · · · · · · · · · · · ·	 _	 	F1220L	Fore	 	\sqcup	4	1	\sqcup		+	\perp	_		Ц		4	_	1	\sqcup	4	_	-	_	_	\downarrow	44	+		\vdash		┦		ķ
4			1000	F2309L	Oper	1		1	╀		\downarrow	4	\sqcup	_	_			4	\bot	1		4	_	\perp		_	4	44	4	_	\sqcup	\vdash	 	_	Ì
رد.	PARTILA	ε	234	F3314L		1.5	\sqcup	\perp	_		_	_ <u> </u> X			4			۷ N	4	\perp		4	4		X	_	\bot	11	\bot		\Box		1.0		(
S	Brophy .	5	010669	F3314L	Tech	1.5		L		Ш	\bot	_X		\perp		L		<u>e</u>				_	1	$\perp \downarrow$	X		↓	$\bot \downarrow$	\bot		\Box	\bot	1.0	2/	<u>_</u>
L				F1815L	Labor						\perp		Ш				Ш	4	\perp			\bot			\bot		$oldsymbol{\perp}$	Ш	\bot	\bot			<u></u>		_
																												Ш	\perp			\perp			
														_					\perp								\perp	Ш	丄		Ш				
_					x" - Deno	otes St	art/Fi				_						· De							o Sh			·						·000		
	Number	· · · · · · · · · · · · · · · · · · ·	g Equipme	nt Used To					urs L	Ised		Per (atta			narge ots)	BS:		Y	ES /	NC) It.	YES	, Nu	mbe	r ot	⊢mį	ploy	ees:	—				_(9800	0)	
٤	513	Mobile (Box) Dump Truck				V72530 V72500		-/		2 -	ı	Sub	con	tract	tors			Y	ES /	NO	- (1)	· —						(2)_							
_		Dump Truck	5 yd.		[E/	V72510	Ì			-	- 1				M/Po ipts						We be	ork rf.						1							
-	733	Dump Truck Pickup Truck				√72520; √78040;		Z	Z	2	- 1				•																				_
-	<i>51</i> 0	Boom Truck Back Hoe	(mounted	crane)		√73030 Q72120		2	<u> 3</u>	_		Leve	el of	Pro	tecti	ion:	C_	لــــ	Hou	rs:_			ea.	Emp	ol.# sl.#	<u></u>				_ Er	npl.	#			_
_	-52-0	Trailer, Lowb			įE/	V72490]	j			-																							32000]		
-		Air Compress Concrete Cut		35 CFM)		Q72070 Q72460		_			=	11000	- Quit.	. [IVIC		===		==			==						==				_				Ξ
-		Hand Held C	utting Saw		(EC	Q72470	j	_		-	- 1	Fau	inme	ant Ir	netali	Sul	bmi	t Eq	juipi ES⊿	men	t an	d P	arts ≀∩ı	She	ets //RF	with	1 FII	NAL	Loca	atior	1 T&	έM			
-		Hand Held C Jackhammer	utting Saw (Pavemen	biades t Breaker)	[E	Q72450 Q72180	j	_		_	1	Part	She	et C	omp	lete	d:	Ÿ	ES I	NO	žŏ	NTF	ROL	NUN	MBE	R: _									_
-		OVA Meter HNU/PID Me	ter			Q80320 Q80372	•	_	-	-										_															
/2	RENTAL)	Gas Chroma		eter (DY)				7	5	-	- 1	Ves	sel S	Size ((ea)	Tot	al M	lilea	ge (rour	d tri	p) _			_/ Ē	Exce	SS C	of 50	ml_	- /		(918	308)		
Ų	мівс. матепаів:						•				_	Į.				1100	ai P	oun	us o	f Ca	IDOI	<u>'</u> _						µid∧	/apo	i (Cii	Cie (one)			_
_	QTY.	Full Descript	ion (Incl. t	ype of Ma	at.)	- - -		ltem	#		_	Wo	rk P		rme			_								<i>i</i> .		,	_				_		
_											\dashv				110.	DE		<u>Cc</u>		PI	2	<u>Se</u>	<u>n</u>	A	n		OR.	ode	<u>16/</u>	<u> </u>	17	#	~		
-						+					ᅱ			w/	'S 1		50	9/		g		O ^V	0	X	2	0		<u> </u>	<u>wh</u>	065	25	.			_
											\dashv		··			_				<u></u>					-			<u></u>							_
_			· · · · ·						_		\dashv																	—							_
				1									~									_	_	//	77	,		7.					,		_
	Sur	pervisor Signa	ature	1	_~				·	_ Da	ated	l:	<u>L</u>	_/	<u>ر</u>		<u>2</u>	<u>ک</u>	c	hec	ked	by _		<u></u>	1.		1/6	1/0	<u>ک</u>	, 					

rw

	TIME	& MATERIA		-	TION		Work	Date	e:∠	1	9	7/2	こつ	3	L	שו														V				
	24/	Handex Pr		•	10		Work	Day	: _	W	غرر	d	, 											Υ	R: _		_ 0	RG.		_ #	1	Sary -		
			Handex	Task Cl	ient		Client	:		<u> </u>	<u> </u>	Z	7 <u>0</u> 7	nn	no	T	h											OF	₹DEF	₹:				
L	oc Code Jnit Price	Contract Code: 8-9	95	, C	ode						<u>,⊃∪</u>	100	2 (,	NC		<u>5 8</u>	<u>6</u>									_		CC	DEI	D BY:			`	
			•						_4												اک Hvd:	ate ₋	E	H		_						入	ė.	
			-						_		0																						امن الما	
Last Nar Initial	ne, First		Emp. Code	Bill Code	Labor Class	Prep.	5 A	6		7		8	9)	10	1	1	12 P	.			1	1		1			1	7	8	9	Trav		
	·····			F1220L	Fore	1	İT				\top		П		\Box					П			T						\prod				Λ	w.X
BARI	1452	1.7			Oper				P	0	K							1											\square	$oldsymbol{\perp}$	\coprod	1		
9 PAR	TICLA	Ed	/	<u> </u>		15			£		4	_		_	\bot		-	4	ļ	\sqcup	_	1-1	4	_	K	9	4	\downarrow	\sqcup	_	$\bot \downarrow$	11	<u> </u>	
Drop	phy	<u>S</u>	20669				\vdash	$\left \cdot \right $	-	4	+		H	\dashv	+	-	4	4	╁	╁┼	+	\dashv	+	+	\forall	\vdash		+	┼┤	+	++	10	P	
	-		 	FIGIOL	Labor		\vdash	H	\dashv	+	+	╀	H	\dashv	+-	H	+	+	\vdash	Н	+	+ +	\dashv	+	+-	Н	\dashv	+	┼┤	+	╁┼	+	+	
			 			 		H	\dashv	+	╁	+	Н	+	+		\dashv	\dashv	+-	\vdash	\dashv	+ +	╁	+	╁	H	\dashv	十	┼┽	+	++	+	+	
				">	r" - Deno	tes Sta	art/Fini	ish T	im	e or	1 Jol	o Sit	<u>е</u>			O" -	De										<u> </u>		<u></u>	<u> </u>				
Numbe	er			nt Used T				Hour	s U	sed						es:		YE	S /	NO	If Y	ES, N	lum	ber (of E	mpl	oyee	:s: _				_(980	00)	
		Dump Truck	2 yd.		įΕ\	/72500				-	- 9	Sub	cont	trac	tors		d:	YE	S /_	NO	(1) _ \//or						_ (2)					-	
		Dump Truck	18 yd. (Tar	ndem)	įΈ\	/72520										,					perf	·												
		Boom Truck	(mounted	crane)	[E\	73030	ĺ					Leve	el of	Pro	otect	ion:	С	Д_ Н	lour	s:		ea	ı. E	mpl.	#					Emp	l.#_			
_5&01	<u> </u>	Trailer, Lowb			[Ε\	/72490]		<i>a</i> .	_	- -	- 1																							
				85 CFM)	ĒΕ	272460	Ī			-	=	Nesp.	Cart.	. [IVIC	===		_		_													32000]		=
									- -	-					nstall	ed:		ΥĒ	S/	NO (CON	TRO	L N	UMB	ER:						&M			
	- -	Jackhammer OVA Meter	(Pavemen	t Breaker)					_	-	- 1				•																	——		
				eter (DY)					. 	-		Carb Vess	on (sel S	Cha Size	nge: (ea)	Chir Tota	pin al M	g/Ch ileag	emio je (r	cals ound	used I trip			yes /	Exc	ess	no of 5	50 m	ni I		(91	808)		
Loc Code																																		
Lies Lies																																		
	עץי	Cemer	v(///	IKER	Ken!	AL	<u>-VIS</u>	<u>sa</u>			\dashv																							
	ya	_3	SNCA	<i>te j</i> e		37	···				\dashv	1	<u> </u>	<u>IR</u>		<u>Da</u>	<u>a</u>	Va	#3 o T	<u> </u>	<u>C</u> (<u> </u>	R.	26	ar g	2 9	o <u>k</u> Das	<u>ی سی</u> حدو	2 R	CR.	<u>=/ e</u>	_ /		
																					<u>, , , , , , , , , , , , , , , , , , , </u>	7	/			J	1			<u> </u>				
	-										_].																7 /							
	Sup	ervisor Sign:	ature	K	- 1	بر	1		_	_ Da	ated	<i>A</i>	2	1	7	J	උ	<u>)</u>	_ CI	heck	ed b	y_4	10	1.		2/	6/0	3						
	•	•				0				_																								

TIME & MATER	RIAL IN	STALL	ATION		Work		-	2	2-	12	of the St						% .:															
Handex	Project Strin	g			Work Work	Date		<u> </u>		<u> </u>			ggenegre.	24.																4.	4.	
125110000	0 430	135	00		VVOIK	Day:										,						Y	R: _		_0	RG		#	#	1	i i	
Loc Code Contra	Handex	Task C	Client Code		Client				9		Zezo Zezo	1 1	70	UT.	K											O	RDE	R: _		\leq	4	
Unit Price Code:	_		,ou o		Addre	ess: _		<i>1</i> 24	<i>710</i>	ď	IK	アン	0	5 6	•											CC	ODE	D R'	γ.	4	1	
·				•	Town: Org I.	٠.		A	10	100°		Z.S	21_			a			Sta	ite _	1	6	1/Z	<u>-</u>								٠.
Mileage:					Olg i.	D		<u>/ (</u>	<u> </u>	-,					_				iyara	· _			Z	-		EP	N I E	KED	RY	:	\neg	a'
Last Name, First				AM	_	2	_									PM.					1		· · · ·									(
Initial	Emp. Code	Bill Code	Labor Class	Prep. Time	5 A M	6	-	7	8	3	9	10	9	11		12 P M	1	ı	2	3		4		5	6		7	8	1	9	Trave	el
		F1220L	+		 	\vdash_{T}	+	1		\vdash	7	+	\dashv	Т	\dagger	T	1	+-	T		+	7	+	П	Т	十	Т	Н	+	1	 	+
BARKASZIJ	1306		 		\vdash	+	+	+-	Н	+	┿	++	1	Q X	+	1		+	+	\vdash	+	+	V	0	\dashv	+	┿	$\vdash \vdash$	\dashv	+	17	+
PatillAE	1239		+	15	$\vdash \vdash$	\vdash	10) K	Н	+	┿	+	╣	4		<u>/</u>	-	╁	+	\dashv	+	+	_	0	-+	+	+	H	+	+	+	
Brook &	10669	+	 		H^{-}			坟			+	+	+	+			+	十	Н	\vdash	╁	+	犮	М	-	+	+	H	_	+	9	1/3
viaging c	10607	F1815L	 	4			F				+	╌┼╌┤	\dashv	+	+		+	+	+	\dashv	+	+-	⇈	H	+	+	+	H	\dashv	十	+-	 '
	-					 	+	+	\ \		+-	+-1	\dashv	+	\dagger	+		╁	\vdash	-+	+	+	十	H	\dashv	+	+	H	ᆉ	+	+	
<u> </u>	-	 				\vdash	┰	╁╴	\vdash	+	╁	+	\dashv	┰	\dagger	+	十	╁	+	\dashv	+	+	\vdash	H	\dashv	\dagger	+		\dashv	+	+-	╫
		1	x" - Deno	tes Sta	art/Fin	ish T	ime	on J	lob (L Site			_ <u>'</u> _)" - [)en	otes	Time	e an	d Re	turn	to S	Shor	J			Щ.		ll.			<u> </u>	
Number Opera	ting Equipme					Hours			Pe	er Di	em	Cha	rge			YE	_							mpl	oyee	es:_					(9800	0)
Mobile (Bo				72530] 72500]			_					ceipts actor		lsed	:	YE	3 / N	O (1) _						_ (2	2)						
Dump Truc	xk 5 yd.		[EV	72510]			_					: TM/ eceipt					_	Ý	Vork		_						-					
Dump Truc Pickup Truc Boom Truc	k 18 yd. (Ta ck	ndem)		72520] 78040]		2	<u> </u>	A				•																				
Boom Truc Back Hoe	k (mounted	crane)		73030] [72120]		3.	ō		Le	vel	of P	rote	Co	n: C		<u> H</u> o	ours:	·		_ea	. Er	mpl.	#_					Em	ipl. #	#		
Trailer, Lov			[EV	72490]	•																											pr
Concrete C	essor (150/1 Cutting Saw			(72070) (72460)			_		=				==		=	===			=	===			===	===		==			==			
	Cutting Saw Cutting Saw			(72470) (72450)		 -	_		Ec	ngiur	neni	t Inst	alle	subn d:	nıt	Equi YES	ipme 3 / N	ent a O C	na i DNT	ROL	s Sr . Nl	neet JMB	S W	ith i	-INA	\L L	oca	tion	181	M		
Jackhamm	er (Pavemei) [EQ	72180		 -	-		Pa	art SI	heet	t Con	nple	eted:		YES	3 / N	0 0	TMC	ROI	L NU	JMB	ER:									
OVA Meter	/leter		[EQ	(80320 <u>]</u> (80372 <u>]</u>	ĺ				Ca	arbo	n Ch	hange ze (ea	e: C	hipp	ing	/Che	mica	ıls u	sed			yes			no					(0.4.0		
	natograph M	eter (DY)	[EC	80693]] V	esse	i Siz	ze (ea	ין (נ זן נ	otal	Mii Po	ieage unds	of C	and t	rip) On				EXC	ess L	i 10 i	d∕Va	n	(circ	ele o	(918 (ne)	U8)	
Misc. Materials: QTY. Full Descri	ption (Incl.	type of M	lat.)	7	lt	em#	ŧ			Vork	Dai	rform	har														<u> </u>					
				 					1 "	TOIR	. 1 61	110111	ieu L	_	P	<u>Z.</u>		رصا	0	· _		7m	10	10	s s	71						
] _		Dc	17				in												Po	IM	10		
]		11	í.s	2	74	,		_					RA		A			-					
									 																							
				ــــــــــــــــــــــــــــــــــــــ			<u>-</u>		J											<u></u>												
Supervisor Sig	nature -	/			<u> </u>			Date	ed:	ر	1	-6		<i>)</i> (\bigcirc)	Che	cke	d by	_	ZL	1.	_ 7	2/	13/	0 =	3,					
. •									_	-		-							-					. 7	-							

Dated: / 120 1 2 Checked by 44 11 /20 /05

Initial

	1 1141	E & MAIERI	ML 114	SIALLA	TION		۱۸/۰-	d Da	·+~·	2	4.		~3 .0				15 (6) (15	de de	144	5																UJ
			roject String		,		Wor	rk Da	11.E	10	<u>-</u>	~~	-da	11			er i i e Bantoscoriu																	1 /	155	٩n
	1251	00000	1430	18	00				·y· ~					<i>_</i>			-6												_ 0	RG	<u> </u>	_ *	<u> </u>		12/	۲
	Loc Code	Contract	Handex	Task C	lient ode		Clie							lon 1											•						RDE	_		4	XX	L
	Unit Pri	ce Code: 89	45	7			Add	lress:	:	<u>^</u>	<u> </u>		(0)	1/K	9	<u> </u>	8	0							7	1		•		CC	DDE	D B		M	21_	_
				<u>.</u>			Ora	n: 	_			<i>[2]</i>	<u> </u>	or	<u>~7</u>	<u> </u>						- Of	ate	2		<u>z</u> Z		•			ITEF			U		
	Mileage:			•			Oig	1.0	-	٠.		/									Г	ıyuı	٠ ٦					•		Εľ	4≀⊑r	ベニレ	DI.			
	Last Name, Fi	rst	1			AM																						• • •								
	Initial		Emp. Code	Bill Code	Labor Class	Prep. Time	5 A	À	6	7		8		9	10		11	12	М	1		2		3	4		5		6		7	8		9	Travel	Tota
				F1220L	Fore																															
Q	BANKA	571 I	1306	F2309L	Oper	10	\prod		P	S	X			П				4									X	0	1						1	//
0	PartillA	Æ	1234	F3314L	Tech	10	•		p	0	X		\top					4									(8	9	3						1	101
A	Brophy	4	10669	F3314L	Tech	15			P		Ø							4								/	((1	10
· ·				F1815L	Labor																							Ŷ,								
							П																													
							П		Τ	П	Т			П	T		Τ										T	Τ						T		
					x" - Deno	otes Sta	art/Fi	inish	Tim	ne o	<u>1 J</u> ç							enot					_													
	Number	Mobile (Box) Dump Truck Dump Truck Dump Truck	2 yd. 5 yd.		[E' [E]	V72530] V72500] V72510] V72520]) 		urs L	Jsed 2	ᅱ	(at	ttach	em C recei ntrac om: 1 n rece	pts)	Ī												•	-						(98000))
	769 762 580M	Pickup Truck Boom Truck Back Hoe	([E/	√78040] √73030] Q72120) 		9.C 9.5																											·····
	550M	Trailer, Lowb		85 CFM)	[Ε\	V72490] Q72070]			حـ د																										2000] pr.	
		Concrete Cu Hand Held C Hand Held C	itting Saw Cutting Saw		[E(Q72460 Q72470 Q72450]	_		_				nent I		lled	:		ĖŚ	/ NO	o c	ON'	TRO)L	MUN	BE	R: _									
		Jackhamme OVA Meter HNU/PID Me	eter	·	[E(Q72180 Q80320 Q80372]]	_		 		_		eet (Cha Size		. ^L	· •	10	· I															(040	00)	
		Gas Chroma	atograph Me	eter (DY)	[E	Q80693]			~ 		γe [essei	Size	(ea) C T	otal i otal f	villea Poun	age ids ((rou of C	ına arb	trip) on	_		<u> </u>	<u> </u>	XCE	ess Li	ot s guid	n ux sV\t	n	(circ	le o	(918) ne)	08)	
, j	isc. Materials:	Full Descript	tion (Iricl. t	vpe of M	at.)	-		Item	1 #					Perf				·	<u> </u>							_		_			<u> </u>	<u> </u>		<u> </u>		
;	Fe	wce S	 _	vre	· ciù			•				_	TOIR		اران محمد	Za	Ц	/	\mathcal{L}_{a}	2		<u></u>	_	1	۔ احریحا	Z	70	1		<u> </u>	4	ي	2_			
1	T C	be cha	KKKW	y [· ·	,				\dashv	-			5	31	æ	le		a	1		-		<u>l</u>		24	20	M	he	Le	<u>`</u>				
3 /	15/42										-	_		100	m	24	26	<u> </u>		Α,	4	2	22	~ ~	1.0	4	2_									
	15/1/1			 							_	_			:_	<u>:</u>												*****								-
The Carte Patering		igr	nature	L			_			D		d: _	2	/_	6		0)		Che	cke	d by	, 4		4.	2	11	6/	03	3.						

Regulation The		alvi de	String	- I KIC			heast F			VD	A n				63	29	•	02
The General Park		10 0	307	1/7/	PW	ork D	ate: C	文 -	5~0	۲ห څخ		ORG _	#_					$\overline{\tau}$
	Contr		landex Task Code	Clien Code	,	ork D	ay: <u>(</u>	ed	we s	50	(a,			Co	oded	Ву∩∠	K	
Photograph and the second second second							Fo									X	λ	
					A	ddres	s:	wila	lin -	0	W			En	terec	JøyX		
ise Code		~0	رسع وص	1	_				()	_0_	00						V	
init Price Code					- To	own.	Eator	Mar	<u></u>		Stata:	A-7-						
Bill: TM:	_ UP: _	N ×	orksheet/	t:)					///	7					
Last Name, First			Emp.		Bill		r Prep		_ riyuii	U					,			
Initial			Code		Code	Class	· · · · · ·		7 8 9	10 1	PM 1 12 1	2 3	4 5	6 7	B 9	101	Trav	el
AG	21.7	01	100	19	F0616L	Electr		11	111	士	d/	† † †	$\downarrow \vdash$	-	++	++	+	
SMAGL	-()	-				ato	er .	++-	╂╂┤	- '	14	 	4		$\bot\bot$	$\bot\bot$	1!	<
JNIAGE	EY		162	9 1	-0616L	Electr.	1/2			_ X	$\langle q \rangle$		ХЫ			11	11	
				F	-3314L	Tech.					N				\sqcap	$\dagger \dagger$	1	+
						<u> </u>	++	++	1-1-1	+		+++	$\dashv \dashv$		╂╌╂╌	++	┼	
				 	-3314L	Tech.	+	44	+ + +	4	14		\perp		Ш		<u> </u>	
				F	1200L	Forema	n				H						1	
PLUMBING								ELE	CTRIC	AL	PART	S						<u></u>
PVC Ball Valve	1" Qty C	Code PL854010	2" Qty	Code PL8540		Qty	Code				3/4" Qty	Code	1" (Qty	Code	2	" Qty	Code
Brass Ball Valve		L851410		PL8514			PL8540300 PL8514300			+		EL784007 EL774007			EL784			EL784
PVC Pipe (sch. 40)		L594010		PL5940			PL5940300			ter		EL034007			EL774 EL034			EL774 EL034
PVC 90° Elbow PVC Tee (sch. 40)		L3140100 L8140100		PL3140			PL3140300			L		EL024007			EL024			EL024
PVC Male Adapter		L0340100		PL0340			PL8140300 PL0340300			+		EL244007 EL074007			EL244 EL074			EL244
PVC Fem. Adapter PVC Coupling		L0240100		PL0240			PL0240300					EL734307			EL734			EL074
PVC Union		L2440100 L8440150		PL24402 PL84402			PL2440300 PL8440300			r)		EL032807 EL232807			EL032			EL032
MISCELLANE	ous	MATER	RIALS					TALE SE	Table 1			EL232807	me carre	area sepe	EL232	Name of Street	THE TAX OF	EL232
	C		ode		i grange		ang an gang ga	Qty	Code	(+ - <u>x</u>) .			द्वार १८ <mark>म</mark> ्	DIMIL	PAR		i c	ode
10-3 SO Cord. (ft.)	- 1		.9720W31						EL6831	005	CUSE	Diaphrag				Qt	,	
12-3 SO Cord. (ft.)			.9720W33	1	k Relay	#27BI	EO		EL68310	007	СПаЕ	Diapitrag	im				IM	IS623
14-3 SQ Cord. (ft.)	L	IEI	07701405	1144	7			,					<u> </u>)			
· · · · · · · · · · · · · · · · · · ·			()								()			
			()								()			
			()								()			
	•		()								()			
			()								(• • • • • •)			•
······································			7		,	-							1)			
			1,		$\frac{1}{\sqrt{1-\epsilon}}$								 		· ·			
			1 , 		/	_	1						<u> </u>		`,	L		
comments:	· * .	o-+	the same	d		/ru	ildi		. Co	m	pla	te	_ (ישי	al	int		•
04100	<u> - بر -</u>		- - -		2.6	ran	and C	2)		^		500	L.	2 ^	: 1			.0
11/	-	~~~	<u>0</u>	1 / 2	n		300	/)		<u> </u>	٧	<u> </u>		<u></u>		P	anu	
anacc	<u></u>	w	18C) /	on.	su	5 p	and	x										
			· .															
				_														

	ing	RIC	AL (I	North	east F	orn	n)	10)	R		ORC	FA)	¥		63	3 4	1		0	2
*	3075	90	фw	ork Da	te:	<u>L -</u>	- 1	<u>3</u>	, <u>, , , , , , , , , , , , , , , , , , </u>	<u>ò</u>	3		<u> </u>	<u></u>	- -					1		\wedge
	Handex Task Code	Client Code	W	ork Da	y: <u> </u>	40	IR	<u>SI</u>	BC	4	, 					C	odeo	aВ	y: Z	Δ	\mathcal{H}	1
	Code				Fo	•				•		Π						1)/X	\mathcal{V}
	<u> </u>		. ^	Idreco	B	ul	dî	~	8	80	<u></u>	<u> </u>		_	_	Er	nter	ed	Ву	X	7	
· · ·			. Au	iui 635.			_	7		<u> </u>					_				·			
95	154				C 7	, ,	/	_					A F	-	=							
<u> </u>	Vorksheet:										ate:		<u>~</u>	<u>_</u>	-							
T	Emp. Code		Bill Code	Labor Class	1 - ' -		71	8	9 10		PM 12	1 2	3	4	5 6	7	7 8	9	10	\dashv	Travel	Tot
<u>,</u> ; ;	100)	9	06161	Electr		+		<i>x</i> †	+1		d	+		7	十	\dagger	+		H	\dashv	1	C
- []		1			1	+	+1	7	+	\vdash	7	+	\vdash	쉬	+	╁	十	\vdash	H	+		8
		^F	0616L	Electr.	├	+	╀┦	4	+			+	\vdash	\dashv	4	\downarrow	+	-	H	+		ـــ
		F	3314L	Tech.							7				\perp	1		L	Ш	\perp		
		F	3314L	Tech.							\subseteq	1										
_		F	1200L	Foremar		1	\prod	7	\top		H	\top	\prod	寸	1	十	1		\Box	7		1
<u> </u>	A september							TE)	CA		ΔE	TG										
code	2" Qty	Code	3"					لای					le		1" Q1	y	Co	de		2" (Qty C	ode
	00	PL8540			PL8540300	PVC	90° S	wee	5			EL7	8400	-		_	EL	7840	100		Ē	L7840
										<u> </u>							-					L7740
										╀-				_		_	+			<u> </u>		L0340
						_				╀							-			├		L0240 L2440
								_	parig	\vdash	_			-4			-			\vdash		L0740
									P)	╁				-4						 		L7343
L24401	00	PL2440	200									ELC	3280	75			EL	0328	3100		E	L0328
L84401	50	PL8440	208	ang and a sign of the control of the	PL8440300	Flex	. Con	duit (LT)		incest d	EL2	3280	75	Star Straight and		EL	232	3100		E	L2328
									in the second						PL	JM	PP	AR	TŞ			
		<u> </u>				Q				_									- [Qty	C	ode
											CH8	E Dia	phra	gm					_		M	S6231
		l				1_					ČI I	r Fla		_					-+		-	00004
				<u> </u>		\perp		L			CH	kE FIA	р						- [I _W	S6231
		1				1_		L		I`	Aro	Pump	O-ri	ng i	(it #6	37	1180	;	1		M	S6231
						\perp		L			Аго	Pump	Diar	ohra	gm i	# 90	533-	2	\dashv		- IM	S6231
	EL9820W12								83100	D1]		•	•		•				4		L	
	EL9820W10	1				4			83100	_											L_	₹0103
		u Warric	k Prob	e End#	3W2	1	···	EL6	83100	ן סכ	Chic	o Sea	ıl (Se	alir	ig Co	omp	o.) (b	g/b>	0]		EI	7308
	EL 9820W(08														1 (ſ)			
	EL 9820W08			·											+	<u> </u>			$\overline{}$			
	EL 9820W(08)	_ -											+	()			
	Scode L85401 L85141 L59401 L31401 L03401 L02401 L24401 L84401 WAT E	Code Code	Emp. Code Code Plance P	S	Town:	Town:	Norksheet:	Town: Class Town: Org. I.D. Emp. Bill Labor Code AM Time 5 6 7	Norksheet: Org. I.D. Hy Norksheet: Org. I.D. Hy Emp. Code Code Class Time S 6 7 8 1 1 1 1 1 1 1 1 1	Town: Companies Code C	Norksheet:	Worksheet:	Now Now	North Nort	Now Now	Norksheet:	Norksheet:	Norksheet:	Norksheet:	Norksheet: Org. I.D.	Worksheet: Org. I.D.	Norksheet: Org. I.D. Hydro: State: Org. I.D. Hydro: Hydro: State: Org. I.D. Hydro: Org. I.D. H

			EL	ECT	RIC	CAL (North	neast	For	m)	K	\ \	J		(De	2))	63	34	2		02	
			130	, 	90	D v	Jork Da	ate: <u>⊿</u>	1	14/	103	YF	₹	0	RG _		#						<u></u>	
			Handex		Clier	nt 10	ork Da		1	式	rel		~					Cd	odeo	і Ву	":	M	\perp	
	Çol	ntract	Code)	Cod	-					2/ 1/-)	1	/		_					TAN	J ,	
Santa and				_			lient: _		-//	7	7		200	20	5			Er	itere	ed B	<i>р</i> Ву: _	LX.	\angle	
do						Α	ddress	: <u>B</u>	No	lin	4	#	<u>88</u>	6					·					
		80	45	य			<u></u>		-															
Code		,		/		— т	own: _	East	on	6	~	<u> </u>	Stat	e:	N	<u> </u>	_							
<i>f</i> i:	_UP:	<u>×</u>	Works	heet:		c	rg. I.D				Hyd				•							•		
ame, First				Emp.		Bill	Labor		АМ				F	M								т		
anie, i iio			L	Code		Code	1		5 6	7	8 9	10		2 1	2 3	4	5	6 7	-8	9	10	Trav	rei	Total
						FOCACI	Clasts			\top			1			\Box	1				1	†	_	
Z	, , , , , , , , , , , , , , , , , , , 					F0616L	Electr.	 	⊢⊢			╀		4-)	-	╀┤	\dashv	-	1	$\vdash \vdash$	+	↓		
STA GU	Tine	07	10	0/0/	19	F0616L	Electr.		H		X		L	///				1				11	- 1	/
2 L					-/-		1	1/2			ᄼ	П	٦,	17		11	\top	十	十		十	†;	\top	<u>~</u>
BART	152		L- <i>-</i> -/	30	6	F3314L	Tech.	11/4	- -	\perp	<u>~</u> _	\sqcup	_ ^	1/4		\sqcup	4	\bot	1	$\vdash \downarrow$	_	 	4	11á
[F3314L	Tech.				ľ		c					ı					- 1	
							-			1		$\dagger \dagger$	7	<u>.</u>	 	╀┪	十	+	1	\vdash	十	+	十	
<u></u>			<u> </u>			F1200L	Forema	n	<u> </u>	نــــــــــــــــــــــــــــــــــــــ	<u></u>				<u> </u>	Ц		\perp		Ц		<u> L.</u> ,		
PLUMBING				No.					_ EL	<u>EC</u>	TRIC	CAL						7.5						
DVC Bell Vehic	1" Qty				Code PL854		" Qty	Code PL854030	O DVC	2 000 0			3/4"		Code	_	1" C	lty	Co			" Qty	Cod	
PVC Ball Valve Brass Ball Valve					PL851	<u>_</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PL851430				_			EL7840 EL7740					78401 77401	_			840200 740200
PVC Pipe (sch. 40)	 	PL5940			PL594			PL594030			<u> </u>	lapter			EL0340					3401				340200
PVC 90 ⁰ Elbow		PL3140			PL314			PL31403							EL0240				ELC	02401	00			240200
PVC Tee (sch. 40)		PL8140			PL814			PL814030		_		ing	<u> </u>		EL2440				 _	24401				440200
PVC Male Adapter					PL034			PL034030 PL024030					-		EL0740 EL7343				-	07401 73431				740200 343200
PVC Coupling		PL2440			PL244			PL24403			<u>. </u>	(LT)	_		EL0328				 -	3281				328200
PVC Union		PL8440	150		PL844	020\$		PL844030	00 Flex	c. Con	duit (L1	7)			EL2328	075			EL2	23281	00		EL2	328200
MISCELLAN	EOU!	S MAT	ERIA	LS													P	UM	PP,	ART	S			
		Qty	Code						Q	ty	Code										Q	ty	Code	
10-3 SO Cord. (fl	•		1				ay #27A				EL68			H&E	Diaphi	ragm					╁	<u> </u>	MS62	23100
12-3 SO Cord. (ft			L		L		y #27B				EL68		7								4			
14-3 SO Cord. (ff		<u> </u>	I .				ay #67 S				EL68			H&E	riap]	MS62	23100
#16 Wire Thhn (f			L				Relay A				EL68			ro Pu	mp O-	ring	Kit #	637	118C		T		MS62	23100
#14 Wire Thhn (f		ļ	1		ł	-	ner ATC		_ _		EL43		J A 1	o Pu	mp Di	aphra	agm	#90	533-2	2	╁		MS62	23100
#12 Wire Thhn (f		<u> </u>						n. Purp.)	_		EL68			boorb	ent Pa	od (a	rado	100) (oo		-	1		
#10 Wire Thhn (f		ļ	EL982	200010	8 PII	Octai	Relay Ba	ise	L_	.,	EL68	3100	2 14	OSOID	EIII F	<u> </u>	Laus (LUL)				
			- '			- 										十	`							
^				<u>(</u>)										-+	<u>\</u>			$\frac{\prime}{\cdot}$				
				()										_)				
				()											()				
						7											(5				
		<u>.</u>		<u>'</u>				i																
Comments: 5	iys ,	ten	<u> </u>	enj	Ži.		as	rd	W	·	ir)											
(((_/				-(/					· · ·							_
								<u>.</u>							·									
																				_				
																		••						
																								
	G PARTS 1" Qty Code PL8544 PL944 PL																				· 			
A - 14 - 1 - 4*									KP) ,	ate:	لد	181	B	•							ELEC	Rev	11/99
Authorization	11.								1	┗	att.	<u>~ *</u>		<u>ب</u>				-					• •	

	. 1	ELI	ECT	RICA	AL (I	North	east	For	m)					(Â	6)		6	3	44		()2
		30119	767	ga	o w	ork Da	ıte [.]	ユ		ょ	۰ 0	YR ~ c	 うき	7O_	Ğ_	_	/ #					/	A	<u> </u>
d		Handex T	ask	Client										<u> </u>		_		C	Code	ed E	34/m	#\	/ \	/
sont	ract	Code		Code	VV	ork Da	ıy: <u>-</u>	<u> </u>	4-	100 110	n s	=	}	1	\neq	<u> </u>					7		刀,	1/
					CI	ient: _	Tè	N	<u>t</u> ,	70	07	Ky	ha	200			_	E	Ente	red	אצא	M	V	
	. 1				Ac	dress	· 				`	_							•		_	K	7	
-8	940	- W																						
	7	- D			Т	own: a	Eat	ml	5	$\overline{\sim}$		(State	e: <i>y</i>	今	_	-							
.UP: _	X /	Vorkst	neet:																					
			•	$\neg \top$	Bill																———	1		Τ
				-+	Code	Class	Time	5 (6 /	8	9	10	11 12	11	2 3	4	l ³	6	7 -	Ή,	10		ave	Total
1,1/6	81	100	> / 6	7 F	0616L	Electr.				×	Ц	시		Ш	1	L					Ш		_	1/3
				F	0616L	Electr.																		
				F	3314L	Tech.					П	\top		11		Τ					\sqcap	1		
					22141	Tooh		$\vdash \vdash$	+		\vdash	十	\top	$\dagger \dagger$	十	十	Н	•	-+	†-		十		 -
		,					 -	+	+	Н	H	\dashv	+	┼┼	+	╁			-	+	H	+-		
سند						<u>t </u>	<u> </u>	Ц.			Ц	_			<u> </u>					L				<u> </u>
		On (=	=(0		RIC											2" 04		Code
								0 PV	C 90°	Swe	ер	-	3/4			075	₩	uty				2 Qt		Code EL7840200
													-				T	_				 	_	EL7740200
	PL5940	100		PL5940:	200									E	0340	075			E	L034	0100			EL0340200
					_												_							EL0240200
											ouplin	ıg					├		-			├—		EL2440200 EL0740200
1											(P)	\dashv	-				-					├		EL7343200
								1		•		Τ)					t^-		_			 		EL0328200
	PL8440	50		PL8440	208		PL844030	0 Fle	x. Con	duit	(LT)			E	232	3075			E	L232	8100		口	EL2328200
ous	MAT	ERIAL	.s														F	U	VIP F	PAF	RTS			
	Qty	Code			•			C	ùty	Co	de											Qty	TC	ode
)		EL972	DW31	Warric	k Rela	y #27Al	EO			EL	.683	100	5 CF	I&E D	iaph	ragn	n				-+	<u> </u>	┪	IS623100
)				L						1			7								4			
)										.i				1&E F	lap						1	•	IM	IS623100
)													— 1´¨	o Pun	рΟ	ring	Kit	#63	7118	С	T		M	IS623100
)					-								—IAr	o Pun	p Di	aphi	ragn	n #9	0533	-2	+		1	S623100
)				<u> </u>									1 [•	-	_				-			
)				•		-		4					2 AL	SOIDE	III P	au (ç	grau	e 10	JU) (E	a.)	$\perp L$	***************************************		R0103000
	.	FI 982	(IWarsa)												()				
		<u> </u>	()												()	$oldsymbol{\perp}$			
		—⊢															1 ,				1			
			() [Γ)	1			
	PAR 'Qty	PARTS "Qty Code PL8540" PL8514" PL5940" PL8140 PL0240" PL8440 PL2440 PL8440 PL8440 PL940" PL8440 PL940" PL8440 PL940" PL8440	PARTS "Qty Code 2" (PL8540100 PL8514100 PL91440100 PL9240100 PL9240100 PL9240100 PL9240100 PL9240100 PL9240100 PL9240100 PL9920 EL9720 EL9720 EL9720 EL9720 EL9720 EL9720 EL9720 EL9820 EL9820 EL9820 EL9820 EL9820 EL9820	PARTS "Qty Code 2" Qty PL8540100 PL8514100 PL3140100 PL3140100 PL0340100 PL2440100 PL2440100 PL2440100 PL2440150 PL8540150 PL85400150 PL85400150 PL85400150 PL85400150 PL85400150 PL85400150 PL854000150 PL85400000 PL8540000 PL8540000 PL8540000 PL8540000 PL8540000 PL8540000 PL8540000 PL8540000 PL85400000 PL8540000 PL85400000 PL854000000 PL85400000 PL85400000 PL85400000 PL85400000 PL8540000 PL8540000 PL8	Code	Handex Task Code	Handex Task Code	Handex Task Code	Handex Task Code	Client: Tart Code	Code	Client:	Code	Colent	Address: Town: Cotonton State: Mydro:	Code	Code	Code	Hardex Task Clode	Code	Code	Code	Code	Code

. 2		et St		rric	CAL ((North	neast F	oru	m)	·	' YF	₹			2"/ G_		#		6	3	6 0)		02	1
i.s	Æ	Han	dex Task	Clie			ate: av:				3								Code	ed l	Зу:		W	A	
	Contract		184	رُ قُصْ	y c	lient:	ay: <u>T</u> Foul		M	5 N	ná	w	U	=	_		_	E	Ente	red	Ву		1	N	
ode:						ddress	S:													•			~~	7	
rice Code:_					_				-								-								
#: TM: U		_ Wo	rksheet:				Eati									7_	_						•		
ast Name, First nitial	- <u></u>	Τ	Emp. Code		Bill Code	Labo Class			5 7	8 9	10		PM 12	1 2	2 3	4	5	6	7	8 9	10	\exists	Trav	el	Tota
,					F0616L	. Electr.								1											
TAGUI	vaī	1	001		F0616L	Electr.				X				4	1								1		6
GRANIC GRANIC LOCK WO		10	017	<u> </u>	F3314L	. Tech.	11	\perp	<u> </u>					_/	y/						L	Ш	1		9
coctwo	<u>-d</u>	2	033	9	F3314L	Tech.	1	1		4				(1/2				\perp		1		1	1	9
	·· <u>·</u> ··· <u>·</u> ··· <u>·</u> ··	<u></u>			F1200L	Forema	in		<u> </u>			<u>_</u>		7							<u> </u>				
PLUMBING P	ARTS Oty Code		2" Qty	Code		" Qty	Code		LEC	TRIC				y Co			1" (254		ode		On.	Qty		
PVC Ball Valve		40100		PL854		Qty	PL854030	PVC	2 90°	Sweep		3/4	<u> </u>		7840		 ``	цy		L784			Qiy	Cot EL7	1 0 8402
Brass Ball Valve	PL85	14100		PL85	14200		PL851430	PVC	C 45°	Sweep				EL	7740	075			E	L774	0100	1			7402
PVC Pipe (sch. 40)		40100			10200		PL594030	_							0340					L034				EL0	3402
PVC 90° Elbow		40100	ļ	PL314			PL314030	┺				L			0240	_	L		-	L024					2402
PVC Tee (sch. 40)		40100 40100		PL814	40200		PL814030				ing	_			2440 0740		<u> </u>			L244					4402
PVC Male Adapter		40100	 		10200		PL024030	-							7343		<u> </u>		_	L734					74020 34320
PVC Coupling		40100	 		10200		PL244030		<u>_</u>	<u> </u>		 			0328		-			L032		+-			3282
PVC Union		40150		PL844	10205		PL844030	Flex	c. Cor	duit (L1	ŋ	Ĺ		EL	2328	075				L232					32820
MISCELLANEC	US MA	TER	IALS														F	UN	AP I	PAF	राऽ				
	Qty	Co		<u> </u>				Q	ty	Code												Qty	.]	Code	;
10-3 SO Cord. (ft.)			9720W31					\perp		EL68	3100	5	CH8	E Di	aphr	agm								VIS6	2310
12-3 SO Cord. (ft.)		_ !	9720W33					\perp				: ⊩												400	
14-3 SO Cord. (ft.)			97 20W 35							EL68			SH&	E FI	ар									VIS6	2310
#16 Wire Thhn (ft.)		1	9820W16		-	-		\perp		EL68		ı`	Aro i	Pum	p O-	ring	Kit #	#637	7118	3C			1	MS6	2310
#14 Wire Thhn (ft.)			9820W14							EL43			Ατο	Pum	p Dia	aphr	agm	#9	0533	3-2			 ,	4S6	2310
#12 Wire Thhn (ft.)							en. Purp.)			EL68		<u> </u>													
#10 Wire Thhn (ft.)		- 1	9820W10	L				\bot		EL68					nt Pa				IO) (6	ea.)	- 1		- ['	ERO	1030
#8 Wire Thhn (ft.)		EL	9820W08	War	rick Pro	be End	#3W2			EL68	3100	0 7	Chic	a.S.	ع) باد	نلمما	7			and the last	$\overline{\mathbf{T}}$			-	
O Miss The /A			1)												1								
			+		-)												+				' 十				
			1		- 												1	(4				
			1															(·)]				
			()_											•									
)				ge_	1		2.1		بسد	0	,										
Comments: D	ic o	w	F-19	<u> </u>		zar	rest 1			- (†	1		-//		1	<u> </u>									
D //			$^{-}$ $^{\prime}$	ראנ	n (·	pac	1 ce	n	Te	<u> </u>	(0		1/5	11	<u>u</u>	<u> </u>	*								
tyl	750	200	1/1/		1/:	n - (ant	<u>_</u>		,															
type	00	72	e pr		ew.	-																			
1																									
						<u> </u>																		_	
							=																		
									,																
				17				1.	<u> </u>	_ Da		2	(1	10	ス					5	H		ELE	C R	ev.
Authorization	1:			<u></u>	_			_\$_	1_	na	ιe: _	<u></u>	1 1	~~					-	1	1				

					AL (North	neast l	For	m))	Y	u)			'				6	36	〈 1		ι	1 ∠
			,		الم		ate:	\$	_		7 -	YI	R _	,	OR	G _		#				۱ د 			
			1/18		ent W	OLK D	ate:	3	٠, ۴	$\frac{1}{2}$	A	5	<u></u>						С	ode	ed B	3y: _			
				Co	de W	OFK Da	To:	1	-1 1	1/1		L		_	+	==							7	M	1
							: Bld					NV	<u>Ca</u>	<u> </u>	/1	≃_			E	nte	red	By:	4	K	
					A(adress	: 00		<u>0</u> C) (c					·								Ĭ		
		3	454				Eato		/-	_			Ct-			1-		 '			٠				
	- 3	1	Workshee	::						_				ate:		<i>_</i>	<u>۔۔</u>	_							
		2.	Emp		Bill Code	Labor			6	71	8 9	10		PM	1 2	3	141	5	6	71	8 9	1101	7	Travel	Total
					F0616L	Electr.	1	\forall	+	\dagger	+	\vdash		1	1	+	H	7	+	+	1	Н	\dashv		Total
	SI.				 	 	+		╁	+	+	\vdash	\vdash	\dashv	+	+	\vdash	-	\dashv	+	╁	H	+		
ANT Exckus	IND	7	1001		F0616L	Electr.	 	\vdash	+	1	<u>'4</u> _	\vdash		닉	+	+	\sqcup	X	\dashv	+	_	\sqcup	\dashv		9 -
ANI	7		1017		F3314L	Tech.	<u> </u>		_ 2	Ų.	\perp			Ц	\perp	↓_		X	4	_	_	Ц	\perp	1.	10%
eckwe	OOI	>	203	39	F3314L	Tech.)	1								X						1	10%
435					F1200L	Forema		П	T	1					T	T				T	T	П	T		
PLUMBING	PAR	TS						F		<u>_</u>	IRIO			71:	TE										
	1" Qty	Code	2" Qty	Cod		Qty	Code	\perp							ty Co	ode		1" (Oty		ode		2" (Qty (Code
PVC Ball Valve Brass Ball Valve		PL8540 PL8514			14200		PL854030 PL851430			_			┞			7840 7740				_	L784		<u> </u>		L7840200
PVC Pipe (sch. 40)	 	PL5940			40200		PL594030			_	<u> </u>	lapter	+-		-	0340					L034		╁─		L7740200 L0340200
PVC 90° Elbow		PL3140	100	PL31	40200		PL314030	0 PV	C Fer	n. T	em. Ad	apter			EL	0240	075			E	L024	0100			L0240200
PVC Tee (sch. 40)		PL8140			40200		PL814030	_		_		ing	L			2440		_			L244				L2440200
PVC Male Adapter PVC Fem. Adapter		PL0340			40200		PL034030 PL024030			_			╀			0740 7343					L074		├—		L0740200 L7343200
PVC Coupling		PL2440			40200		PL244030		-			(LT)	3				075		2		T63%		\vdash		L0328200
PVC Union	/_	PL8440	150	PL84	4020S	مسودة أأووا أأووية	PL844030	0 Fle	x. C	ond	luit (L1)		51	EL	2328	0//5		5	/ 5	1232	8100		1	L2328200
MISCELLAN	EOUS																	F	UN	P	PAR	TS			
10.0.00.01 /6		Qty	Code EL9720W3	4 10/2	rials Dals	#274	<u> </u>	-4	Qty		Code											- 1	Qty	lc.	ode
10-3 SO Cord. (ff			EL9720W3			-		-+			EL98			СН	E Di	aphi	agm	١.						М	S6231001
14-3 SO Cord. (ff		30'	EL9720W3	_				\dashv			EL68			СН8	kE FI	ар						\dashv		М	S6231002
#16 Wire Thhn (f	<u> </u>	 	EL9820W1					-		_	EL68			Aro	Pum	n O-	rina	Kit:	#637	7118	C	\dashv			S6231004
#14 Wire Thhn (f	t.)		EL9820W1	4 Flip	Flop Tin	ner ATC	115V	_		1	EL43	3100	14			· 						_			
#12 Wire Thhn (f	t.)	50'	EL9870W1	2 220	V Pole R	elay (ge	n. Purp.)	7			EL68	3100)1 L		Pum									_ M	S623100(
#10 Wire Thhn (f	t.)	60'	EL9820W1								EL68	3100)2	Abs	orbei	nt Pa	ad (g	rad	e 10	0) (6	ea.)			E	R0103000
#8 Wire Thhn (ft.			EL9820W0	1							EL68	3100	00	Chic	o Se	al (S	Seali	na (Com).La	ba/b	द		le	7200000
#8 Wire Thhn (ft.)		EL9820W0	61120	V.Conta													1	· · · · · · · · · · · · · · · · · · ·		<u></u>	+			
			- ;)													+	<u>, </u>			+			
			1)										<u> </u>			1	`					1.	
											0	1		-	Ns.	e,	120		<u>`</u>	_	<u>Ci</u>)-7·	Ole	ut	
Comments:	IN S	tall	Deal c	<u> Ine</u>	of R	um	9,0	0	7	1	<u>10</u>	<u> </u>		<u></u> بور	1	0	L	21	he	è	L				
<i>_ _ _ _ _ _ _ _ _ _</i>	rul	di	-		my	ess	10	-11	14	4	LA		5	/	7		7	_							
	Ties	de	- 1	m		y	ter	n	<u>.t</u>	+		/	_	-t	/										
		7	/			<u> </u>				_	_														
			Re	od	4	80	7	lo	2	1		4	ر												
					1	()_						/													
							·		_				~	Τ	~loc					ſ	T	·		FIF	Rev. 1
A Ab a rizat	ion:							K	P		Dat	te: .	<u> </u>	Щ	30	د				- (Ľ	"	,			

Date 1-10-02 10 Tocator B104 886 457

Project / Client

ENCE USIN KOMATSU EXCHUNTER (PC 228 USLE) swora nul Kimoveo + TRUCKLOADS (40 CY) CONTAINMATEDSON IN SAVARD HAS STOCKLICED & TRUCKSMS STOPPED & 1200 SVETO LAIN 5 Muckomy 10 BELLIN EXCHUNTION OF CONTRAINMENTED EXCAVATED + STACK PIVETS 6 TRYCKLOWING 4 TRUCKLOMPS 100% i TRUBE LOAD EXCHAMPED IN 6 TRUCKLOHOS (60 CT) SAMPLES TRUCK LOADS ENOHUMD + STOCKPILED 20 court 2 POST-6x 50 14 E TOHUMENO + CTOCKPILLED or communities con OF CONTAINT AND COL 70.0 EXCEMPTED +TRANSPORTED FXAMMARD + STOCKPILED BARE CONTAM NATE SOIL Coop to contra TAMINATED SOILS MANNETTED SOILS TE XCANATED

Project / Client Location _

Location BLD6, SSBAST Date Grand Services A. 100 76. 40 1 *** CALE IIM 2 20 FT. W 174 Project / Client -B Date Location BLD4, 886 157 Project / Client

Project / Client Location 1-16-02 1-25-4 1-30-02 2-4.02 DAR Date 1 7-6 . 7 1-11 7 5 -3 11:0 010 501-01 12-12,5 11-115 511-11 12-12,5 9,5-10 12-125 886-PXIII BOTTOM 12-12,5 886-PX9 BOTTOM 11,5-12 11-501 11-5-11 THIS THE TOWNS OFFILE 876 PXS WOKTH 886 PX4 SHST PEL PXI ROTTOM Me PKKI BOTTOM SIC PXIX BOTTOM 886-PX10 WATH REGERY ENT. Project / Client 916- PX13

Date:

Monday, November 17, 2003

To:

Christopher Snyder

Versar, Inc.

201 Gibraltar Road, Suite 100

Horsham, Pa 19044

Re:

Monitoring Well Location

Fort Monmouth Military Base

Eatontown, NJ

We are transmitting the following:

886 Survey Documents

arate Cover

ıger

press

Copies	Description /
13	Monitoring Well Certification Form B
1	Monitoring and Recovery Well Elevations

• Comments:

Thank you,

NAIK-PRASAD, Inc.

Jøseph A DiBuono, PLS

Name of Owner:	U.S Army			
Name of Facility:	Fort Monmouth, Ea	atontown, NJ		
Location:	Site 886			
Case Number(s):		(UST	#, ISRA #, In	cident #, or EPA #)
	R'S CERTIFICATION			
Well Permit Numl (This number mu	ber: st be permanently affixed to the	well casing.)		·
•	nber (As shown on application o	•		MW-1
	dinate NAD 83 (to nearest 1/10 o	. ,		
Longitude: W	est <u>74° 02' 16.53"</u>	Latitude:	North	40° 18' 37.50"
New Jersey State	Plane Coordinates NAD 83 to n	earest 10 feet	:	
Ne	orth <u>538324</u>		East	620981
Elevation of Top reference mark (n	of Inner Casing (cap off) at nearest 0.01'):	_	14.04	
	on datum (benchmark, number/o entify here, assume datum of 10			
Station El	even 2 (NAVD 88)			
Significant obser	vations and notes: <u>Benchmark</u>	is located 66	feet west of	the centerline of Ocean
Avenue in Long E	Branch, 86 feet south of the sout	heast corner	of the Coast	Guard Station
<u>AUTHENTICATIO</u>	<u>N</u>			
submitted in this immediately resp accurate and com	nalty of law that I have personal document and all attachments a onsible for obtaining the inform oplete. I am aware that there are ding the possibility of fine and in	and that, base ation, I believe significant pe	d on my inque the submit enalties for s	uiry of those individuals ted information is true,
Q de	AL LL		11/13/0	13
PROFESSIONAL	LAND SURVEYOR'S SIGNATUR		DATE	
PROFESSIONAL	. DiBuono, New Jersey License LAND SURVEYOR'S NAME AND		MBER	
(Please print o	or type)			

Naik-Prasad, Inc., 10 Parsonage Road, Edison, NJ 08837, 732-205-0540
PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

Name of Owne	er:	U.S Army				
Name of Facili	ity:	Fort Monmouth,	Eatontown, NJ			
Location:		Site 886				
			(UST	#, ISRA #, I	ncident #, or EPA #)	
Well Permit Nu		CATION nently affixed to to	he well casing.)			
Owners Well N	· Number (As sho	wn on applicatior	n or plans):		MW-2	
Geographic Co	oordinate NAD 8	33 (to nearest 1/10	of second):			
Longitude:	West <u>74° 02'</u>	17.22"	Latitude:	North	40° 18' 36.45"	
New Jersey St	ate Plane Coord	linates NAD 83 to	nearest 10 feet			
	North <u>538217</u>			East	620928	
	op of Inner Casi k (nearest 0.01')	• • •	_	13.99		
					/datum. If an on-site d actual elevation.)	
Station	n Eleven 2 (NAV	/D 88)				
Significant obs	servations and	notes: <u>Benchma</u>	ark is located 66	6 feet west o	of the centerline of O	<u>cean</u>
Avenue in Lon	ig Branch, 86 fe	et south of the so	outheast corner	of the Coas	t Guard Station	
AUTHENTICAT	<u> FION</u>					
submitted in the immediately reaccurate and couracters.	his document a esponsible for o complete. I am	nd all attachment	s and that, base mation, I believer are significant pe	ed on my inc e the submi enalties for	liar with the informat quiry of those individ itted information is tr submitting false	uals
DBOEKSSION	SEAL SUBVI	EVOD'S SIGNATI	<u></u>	11/13/ DATE	/03	
- KUFESSIUN	HL LAND SUKVI	EYOR'S SIGNATU	rc	DATE		
	AL LAND SURVI	ew Jersey Licens EYOR'S NAME AN		MBER		
Naik-Pi	rasad, Inc., 10 P	arsonage Road, I	<u>Edison, NJ 0883</u>	7, 732-20 <u>5</u>	5-0540	

Name of Owne	r: U.S Army		
Name of Facili	ty: <u>Fort Monmouth, E</u>	atontown, NJ	
Location:	Site 886		
Case Number(s):	(UST #, ISRA #,	Incident #, or EPA #)
Well Permit Nu	<u>'OR'S</u> <u>CERTIFICATION</u> Imber: nust be permanently affixed to the	well casing.)	- <i>-</i>
	lumber (As shown on application o		MW-3
	oordinate NAD 83 (to nearest 1/10 c	· ,	
Longitude:	West <u>74° 02' 15.36"</u>	Latitude: North	40° 18' 37.28"
New Jersey St	ate Plane Coordinates NAD 83 to n	earest 10 feet:	÷
	North <u>538302</u>	East	621072
	op of Inner Casing (cap off) at c (nearest 0.01'):	14.7	79 ·
	ation datum (benchmark, number/ , identify here, assume datum of 10		
Station	Eleven 2 (NAVD 88)		
Significant obs	servations and notes: <u>Benchmar</u>	k is located 66 feet west	of the centerline of Ocean
Avenue in Lon	g Branch, 86 feet south of the sou	theast corner of the Coa	ast Guard Station
<u>AUTHENTICA</u>	<u>'ION</u>		
submitted in the immediately reaccurate and couracters.	penalty of law that I have personal nis document and all attachments a sponsible for obtaining the inform complete. I am aware that there are cluding the possibility of fine and i	and that, based on my in ation, I believe the subre e significant penalties fo	nquiry of those individuals mitted information is true,
	SFAL Dur	11/1	
PROFESSION	AL LAND SURVEYOR'S SIGNATUR		
	A. DiBuono, New Jersey License AL LAND SURVEYOR'S NAME AND nt or type)		
Naik-P	asad, Inc., 10 Parsonage Road, Ed	lison, NJ 08837	<u>_</u>

Name of Owne	r:	U.S Army				
Name of Facili	ty:	Fort Monmouth	n, Eatontown, NJ			
Location:		Site 886				
Case Number(s):		(UST	#, ISRA #,	Incident #, or EPA #)	
LAND SURVEY Well Permit Nu		ERTIFICATION				
		permanently affixed to	the well casing.)			
Owners Woll N	سمط مسا	/As shown on application	an ar alana).		BANA/ A	
Owners wen in	lulliber	(As shown on application	on or plans).		MW-4	
Geographic Co	oordina	te NAD 83 (to nearest 1/	10 of second):			
Longitude:	West _	74° 02' 15.00"	Latitude:	North	40° 18' 35.19"	
New Jersey St	ate Plar	e Coordinates NAD 83	to nearest 10 feet	:		
	North	538090	-	East	621100	
Elevation of To	•	ner Casing (cap off) at st 0.01'):	_	19.3	1	
		atum (benchmark, numb y here, assume datum c				
Station	Elever	2 (NAVD 88)		٠		
		· -			-541	
Significant obs	servatio	ns and notes: <u>Benchr</u>	nark is located be	reet west	of the centerline of Oc	<u>cean</u>
Avenue in Lon	g Branc	th, 86 feet south of the s	southeast corner	of the Coa	st Guard Station	
AUTHENTICAT	ION					
		of law that I have now			.:	
_		of law that I have persoument and all attachmen	-			
		ole for obtaining the info				ue,
		 e. I am aware that there the possibility of fine ar 			r submitting false	
	Ū		•			
	SEAL					
17						
(//		٠,		11/1:	3/03	
PROFESSION	AL LAN	SURVEYOR'S SIGNAT	URE	DATE		
		uono, New Jersey Lice				
		SURVEYOR'S NAME A	AND LICENSE NU	MBER		
(Please pri	iii or ty	Je)				
		nc., 10 Parsonage Road				
PROFESSION A	AL LANI	SURVEYOR'S ADDRE	SS AND PHONE N	IUMBER		

Name of Owne	er:	U.S Army				
Name of Facili	ity:	Fort Monmouth, Ea	tontown, NJ			
Location:	;	Site 886				
Case Number((s):		(UST	#, ISRA #, II	ncident #, or EPA #)	
Well Permit Nu		ATION ently affixed to the v	vall casing \			
(Tills Humber	must be perman	entity arrixed to the v	ven casing.			
Owners Well N	lumber (As show	n on application or	plans):		MW-5	
Geographic Co	oordinate NAD 83	3 (to nearest 1/10 of	second):			
Longitude:	West <u>74° 02' 1</u>	4.47"	Latitude:	North	40° 18' 36.79"	
New Jersey St	ate Plane Coordi	nates NAD 83 to ne	arest 10 feet	:		
	North <u>538253</u>			East	621141	
	op of Inner Casir k (nearest 0.01'):	g (cap off) at	_	19.38		
		nchmark, number/dossume datum of 100			/datum. If an on-site d actual elevation.)	
Station	n Eleven 2 (NAVI	O 88)	· · · · · · · · · · · · · · · · · · ·			
Significant obs	servations and n	otes: <u>Benchmark</u>	is located 66	6 feet west o	of the centerline of Oc	<u>cean</u>
Avenue in Lon	g Branch, 86 fee	t south of the south	east corner	of the Coas	t Guard Station	
AUTHENTICAT	<u> </u>					
submitted in the immediately reaccurate and couracters.	his document an esponsible for ob complete. I am a	d all attachments a	nd that, base tion, I believ significant p	ed on my inque the subminents of the subminer	liar with the informati puiry of those individe tted information is tr submitting false	uals
	Du.		_	11/13/	703	
PROFESSION	AL LAND SURVE	YOR'S SIGNATURE		DATE		
		ew Jersey License N				
PROFESSIONA (Please pri		YOR'S NAME AND I	LICENSE NU	MBER		
Naik-P	rasad, Inc., 10 Pa	rsonage Road, Edis	son, NJ 08 <mark>8</mark> 3	7		

Name of Owne	er:	U.S Army			
Name of Facili	ity:	Fort Monmouth, E	atontown, NJ		
Location:		Site 886			
Case Number	(s):		(UST	*#, ISRA #, Ir	ncident #, or EPA #)
Well Permit Nu		CATION nently affixed to the	well casing.)		
•	•	•	σ,		
Owners Well N	Number (As sho	wn on application o	or plans):		<u>RW-</u> 1
Geographic Co	oordinate NAD 8	33 (to nearest 1/10 o	of second):		
Longitude:	West <u>74° 02'</u>	16.65"	Latitude:	North	40° 18' 36.69"
New Jersey St	tate Plane Coord	dinates NAD 83 to n	earest 10 feet	t:	
	North <u>538242</u>			East	620972
	op of Inner Casi k (nearest 0.01')		_	14.71	
					/datum. If an on-site d actual elevation.)
Station	n Eleven 2 (NAV	/D 88)			
Significant ob	servations and	notes: <u>Benchmar</u>	k is located 6	6 feet west o	of the centerline of Ocean
Avenue in Lon	ng Branch, 86 fe	et south of the sou	theast corner	of the Coas	t Guard Station
AUTHENTICAT	<u> </u>				
submitted in the immediately reaccurate and couracters.	his document a esponsible for o complete. I am	nd all attachments	and that, base ation, I believ significant p	ed on my ind re the submi penalties for	liar with the information quiry of those individuals itted information is true, submitting false
PROFESSION	SEAL ALLAND SURVI	EYOR'S SIGNATUR	_	11/13/ DATE	/03
r Kureosiyiv	AL LAND SURVI	LION 3 SIGNATUR	L	DATE	
		lew Jersey License			
PROFESSIONA (Please pri		EYOR'S NAME AND	LICENSE NU	IMBER	
Naik-P	<u>rasad, Inc., 10 P</u>	arsonage Road, Ed	lison, NJ 0883	37	<u>_</u>

Name of Owner:	U.S Army	<u> </u>		<u> </u>
Name of Facility:	Fort Monmouth, Eat	ontown, NJ		
Location:	Site 886			
Case Number(s):		(UST	#, ISRA #, Inc	cident #, or EPA #)
LAND SURVEYOR'S CERTIL Well Permit Number:	FICATION .			
(This number must be perm	anently affixed to the v	vell casing.)		·
Owners Well Number (As sh	nown on application or	plans):		RW-2
Geographic Coordinate NAI	O 83 (to nearest 1/10 of	second):		
Longitude: West 74° 0	2' 16.47"	Latitude:	North	40° 18' 36.78"
New Jersey State Plane Cod	ordinates NAD 83 to ne	arest 10 feet	:	
North <u>5382</u>	51		East	620985
Elevation of Top of Inner Careference mark (nearest 0.0	• • • •	_	15.01	
Source of elevation datum (
Station Eleven 2 (N	AVD 88)	=	<u> </u>	
Significant observations an	d notes: <u>Benchmark</u>	is located 66	6 feet west of	the centerline of Ocean
Avenue in Long Branch, 86	feet south of the south	<u>least corner</u>	of the Coast	Guard Station
AUTHENTICATION I certify under penalty of law submitted in this document				
immediately responsible for accurate and complete. I are information including the positions of the position of the position including the position including the position of	r obtaining the informa m aware that there are s	tion, I believ significant p	e the submit enalties for s	ted information is true,
SEAL	~	_	11/13/0	03
PROFESSIONAL LAND SUF	EVEYOR'S SIGNATURE		DATE	
Joseph A. DiBuono, PROFESSIONAL LAND SUR (Please print or type)	New Jersey License N VEYOR'S NAME AND I		MBER	
	Parsonage Road, Edis	son, NJ 0883	37	

Name of Owne	er:	U.S	Army				
Name of Facili	ity:	For	t <u>Monmouth, E</u>	atontown, NJ		· · · · · · · · · · · · · · · · · · ·	
Location:		Site	886				
Case Number	(s):			(UST	*#, ISRA#	#, Incident #, or EPA #	#)
LAND SURVEY Well Permit No (This number	umber:		ON y affixed to the	e well casing.)	_		_
Owners Well	Number	(As shown o	on application o	or plans):		_RW-3	
Geographic C	oordina	te NAD 83 (to	o nearest 1/10 (of second):			
Longitude:	West_	74° 02' 16.3	1"	Latitude:	North _	40° 18' 37.00"	
New Jersey St	tate Plai	ne Coordinat	es NAD 83 to n	earest 10 feet	t:		
	North	538273			East	620998	
Elevation of Treference mar			cap off) at	_	15.	.03	
		•	-	-		on/datum. If an on-s ated actual elevation.	
Station	n Elever	2 (NAVD 8	3)				
Significant ob	servatio	ns and note	s: <u>Benchmar</u>	k is located 60	6 feet wes	st of the centerline of	Ocean
Avenue in Lon	ng Brand	ch, 86 feet so	outh of the sou	theast corner	of the Co	oast Guard Station	
<u>AUTHENTICA</u>	TION						
submitted in the immediately reaccurate and contracts	his doci esponsi complet	ument and a ble for obtai e. I am awai	I attachments ning the inform	and that, base ation, I believ significant p	ed on my ve the sub enalties f	miliar with the inform inquiry of those indiv omitted information is for submitting false	/iduals
4	SEAL)	Zu			11/	113/03	
PROFESSION	AL LAN	D SURVEYO	R'S SIGNATUR	Ē	DATE		
	AL LAN	D SURVEYO	Jersey License R'S NAME AND		MBER		
Naik-P	rasad, I	nc., 10 Parso	nage Road, Ed	lison, NJ 0883	37		

Name of Owne	er:	U.S Army			
Name of Facil	ity:	Fort Monmouth, Ea	tontown, NJ		
Location:		Site 886			
Case Number	(s):		(UST	#, ISRA #,	Incident #, or EPA #)
Well Permit N		CATION nently affixed to the	well casing.)		
Owners Well I	Number (As sho	wn on application o	r plans):		RW-4
Geographic C	oordinate NAD	33 (to nearest 1/10 o	f second):		
Longitude:	West <u>74° 02'</u>	16.41"	Latitude:	North	40° 18' 36.90"
New Jersey St	tate Plane Coord	dinates NAD 83 to n	earest 10 feet	::	
	North <u>538263</u>	<u> </u>		East	620990
	op of Inner Cas k (nearest 0.01')	• • •	_	14.8	9
	•	-	•		on/datum. If an on-site ted actual elevation.)
Station	n Eleven 2 (NA\	/D 88)		٠	
Significant ob	servations and	notes: <u>Benchmark</u>	is located 60	6 feet west	of the centerline of Ocean
Avenue in Lor	ng Branch, 86 fe	et south of the sout	<u>heast corner</u>	of the Coa	st Guard Station
<u>AUTHENTICA</u>	<u>TION</u>				
submitted in t immediately re accurate and	his document a esponsible for o complete. I am	nd all attachments a	and that, base ation, i believ significant p	ed on my ir re the subr enalties fo	niliar with the information nquiry of those individuals mitted information is true, or submitting false
	SEAL			11/1	3/03
PROFESSION	AL LAND SURV	EYOR'S SIGNATUR	Ē	DATE	
PROFESSION (Please pri	AL LAND SURV int or type)	lew Jersey License EYOR'S NAME AND	LICENSE NU		
naik-P	<u>Tasau, Inc., Tu f</u>	<u>'arsonage Road, Ed</u>	<u>15011, NJ 0883</u>) [

Name of Owner:	U.S Army			
Name of Facility:	Fort Monmouth, Ea	tontown, NJ		
Location:	Site 886		_	
Case Number(s):		(UST	#, ISRA #, Ir	ncident #, or EPA #)
LAND SURVEYOR'S CERTI Well Permit Number:	· · · · · · · · · · · · · · · · · · ·			·
(This number must be pern	nanently affixed to the v	well casing.)		
Owners Well Number (As s	hown on application or	plans):		RW-5
Geographic Coordinate NA	D 83 (to nearest 1/10 of	second):		
Longitude: West 74°	02' 16.47"	Latitude:	North	40° 18' 37.06"
New Jersey State Plane Co	ordinates NAD 83 to ne	arest 10 feet	::	
North <u>5382</u>	279		East	620985
Elevation of Top of Inner C reference mark (nearest 0.0		_	14.80	
Source of elevation datum datum is used, identify her				
Station Eleven 2 (N	AVD 88)			
Significant observations ar	nd notes: <u>Benchmark</u>	is located 60	6 feet west o	f the centerline of Ocean
Avenue in Long Branch, 86	feet south of the south	neast corner	of the Coas	t Guard Station
AUTHENTICATION				
I certify under penalty of la submitted in this documen immediately responsible fo accurate and complete. I a information including the p	t and all attachments a r obtaining the informa m aware that there are	nd that, base ition, I believ significant p	ed on my inque the subminer the	uiry of those individuals tted information is true,
PROFESSIONAL LAND SUI	RVEYOR'S SIGNATURE	-	11/13/ DATE	<u>'03</u>
Joseph A. DiBuono PROFESSIONAL LAND SUI (Please print or type)	, New Jersey License I RVEYOR'S NAME AND		MBER	
Naik-Prasad, Inc., 1	0 Parsonage Road, Edi	son, NJ 0883	37	

Name of Owner:	U.S	Army				
Name of Facility	: For	t Monmouth, Eato	ntown, NJ			
Location:	Site	886				
Case Number(s)	:	-	(UST #,	ISRA#, Inc	cident #, or EPA #)	
LAND SURVEYO	OR'S CERTIFICATION	<u>ON</u>		_	_	
	ust be permanentl	y affixed to the w	ell casing.)			
Owners Well Nu	mber (As shown o	n application or p	olans):		RW-6	
Geographic Cod	ordinate NAD 83 (to	nearest 1/10 of s	second):			
Longitude: V	West <u>74° 02' 15.5</u>	7"	Latitude: N	lorth	40° 18' 36.97"	_
New Jersey Stat	te Plane Coordinat	es NAD 83 to nea	rest 10 feet:			
h	North <u>538270</u>		E	ast	621055	
Elevation of Top	o of Inner Casing ((nearest 0.01'):	cap off) at		15.25		
	tion datum (bench dentify here, assu				latum. If an on-site actual elevation.)	
Station I	Eleven 2 (NAVD 88	3)				
Significant obse	ervations and note	s: <u>Benchmark is</u>	s located 66 fe	eet west of	the centerline of Ocea	<u>ın</u>
Avenue in Long	Branch, 86 feet so	outh of the southe	east corner of	the Coast	Guard Station	_
AUTHENTICATION	<u>0N</u>					
submitted in this immediately res accurate and co	s document and al	I attachments and ning the informati e that there are s	d that, based on, I believe t ignificant pen	on my inqu the submitt	ar with the information iry of those individua ed information is true ubmitting false	ls
	LAND SURVEYOR	R'S SIGNATURE		<u>11/13/0</u> DATE	3	
	A. DiBuono, New . . LAND SURVEYOI or type)			BER		
Naik-Pra	sad. Inc 10 Parso	nage Road, Edisc	on. NJ 08837			

Name of Owner:	U.S Army			<u></u>
Name of Facility:	Fort Monmouth, Ea	atontown, NJ		
Location:	Site 886	· · · · · · · · · · · · · · · · · · ·	 	
• •		(UST	#, ISRA #,	Incident #, or EPA #)
LAND SURVEYO Well Permit Num	R'S CERTIFICATION			
	ist be permanently affixed to the	well casing.)		
Owners Well Nur	nber (As shown on application o	r plans):		RW-7
Geographic Cool	rdinate NAD 83 (to nearest 1/10 o	of second):		
Longitude: W	/est <u>74° 02' 15.66"</u>	Latitude:	North	40° 18' 36.79"
New Jersey State	Plane Coordinates NAD 83 to n	earest 10 feet	:	
N	orth <u>538252</u>		East	621048
Elevation of Top reference mark (of Inner Casing (cap off) at nearest 0.01'):	_	15.4 ⁻	1
	on datum (benchmark, number/d lentify here, assume datum of 10			
Station E	leven 2 (NAVD 88)			
Significant obser	vations and notes: <u>Benchmark</u>	s is located 66	6 feet west	of the centerline of Ocean
-	Branch, 86 feet south of the sout			
AUTHENTICATIO	<u> N</u>			
submitted in this immediately respaccurate and cor	nalty of law that I have personal document and all attachments a consible for obtaining the inform nplete. I am aware that there are iding the possibility of fine and in	and that, base ation, I believ significant p	ed on my in e the subm enalties fo	quiry of those individuals nitted information is true,
	Du		11/1:	3/03
PROFESSIONAL	LAND SURVEYOR'S SIGNATUR	E	DATE	
locanh A	DiRuana Naw Jareau License	No. 36220		
	DiBuono, New Jersey License LAND SURVEYOR'S NAME AND or type)		MBER	
Naik-Pras	sad, Inc., 10 Parsonage Road, Ed	ison, NJ 0883	7	

Name of Owner	: U.S Army		
Name of Facility	y: <u>Fort Monmouth, Ea</u>	tontown, NJ	
Location:	Site 886		
Case Number(s):	(UST #, ISRA #,	Incident #, or EPA #)
Well Permit Nu	OR'S CERTIFICATION mber: nust be permanently affixed to the	well casing)	·
•		• ,	
Owners Well No	umber (As shown on application o	r plans):	RW-8
Geographic Co	ordinate NAD 83 (to nearest 1/10 o	f second):	
Longitude:	West <u>74° 02' 15.78"</u>	Latitude: North	40° 18' 36.59"
New Jersey Sta	te Plane Coordinates NAD 83 to ne	earest 10 feet:	
	North <u>538231</u>	East	621039
Elevation of To reference mark	p of Inner Casing (cap off) at (nearest 0.01'):	14.9	<u>!</u>
	tion datum (benchmark, number/d identify here, assume datum of 10	•	
Station	Eleven 2 (NAVD 88)		
Significant obs	ervations and notes: <u>Benchmark</u>	is located 66 feet west	of the centerline of Ocean
Avenue in Long	Branch, 86 feet south of the sout	heast corner of the Coas	st Guard Station
AUTHENTICATI	<u>ON</u>		
submitted in the immediately restacturate and co	penalty of law that I have personally is document and all attachments a sponsible for obtaining the information of the lam aware that there are luding the possibility of fine and in	nd that, based on my in ation, I believe the subm significant penalties for	quiry of those individuals itted information is true,
	SEAL OU	11/13	8/03
PROFESSIONA	L LAND SURVEYOR'S SIGNATURE	DATE	
.losenh	A. DiBuono, New Jersey License	No. 36239	
	L LAND SURVEYOR'S NAME AND		
Naik-Pra	asad, Inc., 10 Parsonage Road, Edi	son, NJ 08837	

April 29, 2003

Mr. Douglas C. Guenther Environmental Protection Specialist U.S. Army, Directorate of Public Works Attn: SELFM-PW-EV, Bldg. 173 Fort Monmouth, NJ 07703

RE:

Product Recovery System Building 886

Fort Monmouth, NJ

Dear Mr. Guenther,

Please find the attached O&M manual and as built site plan for the product recovery system located at building 886. Also included are the well records and well permits for the monitoring and recovery wells. Please contact me at 732-536-8667 ext. 337 with any questions you may have.

Sincerely,

Fred M. Howlett

Associate Project Manager

Enclosure(s)

Cc: Handex - File Copy

Down-well Controllerless Genie Product Only Recovery System

SPECIFICATIONS

The GNE/200/SOS System is a controllerless Product Only Recovery System that removes tree-floating hydrocarbon down to a sheen (< 0.01 in.) from depths of 200 feet in wells as small as 2 inches in diameter. This system is upgradeable to include Tank-Full Shut-Off (see "System Options" for more Information). The GNE/200/SOS System contains a Selective Oil Skimmer (SOS), a Genie controllerless, down-well, resilient bladder product pump (GNE), and a hose & hardware package.

METHOD OF OPERATION

The skimmer is located below the Genie Controllerless Pump. The skimmer has a floating intake head that follows the fluctuating water table.

Hydrocarbon first enters the Genie System through the floating intake's outer debrie screen, then through an inner olleophilic hydrophobic screen, down through a flexible, yellow tube, up into the hollow guide tube, and into the Bladder Pump portion of the Genie.

The Genie Controlleriess Pump draws product from the skimmer and pushes it to the surface. It cycles at a preset rate, introducing and releasing compressed air to the Bladder Pump portion of the Genie. When compressed air is introduced to the Bladder Pump, the bladder collapses. When the air is released, the bladder expands drawing in hydrocarbon from the skimmer of the Genie System. As compressed air is introduced again, the bladder collapses, pushing the hydrocarbon in the bladder up through the product hose and into a surface-mounted holding tank.

This process repeats itself automatically at a predetermined rate.

SELECTIVE OIL SKIMMER (SOS)

The SOS Skimmer consists of three main items: a Floating Intake Head, Guide Rod & Flexible Tube, and 2 Well Centering Disks.

The Floating Intake Head:

- Consists of an outer debris screen, a floatation collar, and an inner semi-permeable (selective) screen which repels water and allows liquid hydrocarbons to pass.
- Removes free-floating hydrocarbon to a sheen (≤ 0.01 Inches).
- Floats at the product-water interface in the well and automatically adjusts to any
 groundwater fluctuation within its travel range.
- Slides on a hollow, stainless steel guide tube which passes down through the center of the skimmer head.
- Is connected to the guide tube via a flexible (fuel rated) tube which hangs below the skimmer head and guide tube.

The Well-Centering Disks:

- Prevent the Skimmer Floating Intake Head from contacting the sides of the well casing.
- Reside on upper and lower ends of the skimmer.

4

GNE/200/80\$ (Cont'd)

SYSTEM REQUIREMENTS/PARAMETERS

The Genie/200/SOS Product Only Recovery System:

- Uses less than 0.5 scfm of compressed air @ 80 psi for most applications.
- · Has an operating pressure from 40 to 120 psi.
- Requires a Female NPT fitting on the product recovery tank (which is typical of 55 gallon drums) for the product discharge adapter (Male NPT).
- · Functions up to a total pressure head of 200 feet.
- Includes SOS Skimmers that function best with light hydrocarbons having low viscosity such as gasoline, diesel, and jet fuels. More viscous hydrocarbons may require the use of CEE Specific Gravity (SPG) Skimmers described at the beginning of this section. Please refer to the white "Active Skimmers" tab of this section for additional details.
- · Can pass wet, oily compressed air.

SYSTEM OPTIONS

The Genie/200/SOS Product Only Recovery System is fully expandable for multi-well applications and has several upgrade options. It has the option of:

- Adding Tank-Full Shut-Off (TFSO) logic for overfill protection of the product storage tank. Please refer to the blue "Tank-Full Shut-Off System" tab.
- Adding High-Water Shut-Off (HWSO) logic which turns off the Product Pump temporarily and prevents water contamination in the product storage tank during highwater conditions.
- Adding Product Sensing Recovery (PSR) logic which will turn on the Genle Pump only when product is present in the well.
- Using tubing with barbs instead of industrial grade hose with quick-connects.
- Using different types of well caps (i.e. with barbs, quick-connects, well seal, and/or blind flange).
- Pump cycle counters are easily connected in series between the air supply and Genie system to count the number of pump cycles that occur within a given time period.

MATERIALS OF CONSTRUCTION

SOS Skimmer.

- Stainless Steel
- Closed Cell Foam

Brass.

Viton

Deirin & other Engineering Plastics

Product Pump:

Brass

- Vitori
- Stainless Steel

COMPONENT AND SHIPPING WEIGHTS

Genie Pump Hoses		Varies		Varies	
		6.0 /	2.7	9	/ 4.1
	SOS-4	3.5 /	1.6	5	/ 2.3
Skimmers:	SOS-2	1.5 /	0.7	3	7 1.4

TOUGH PUMPS

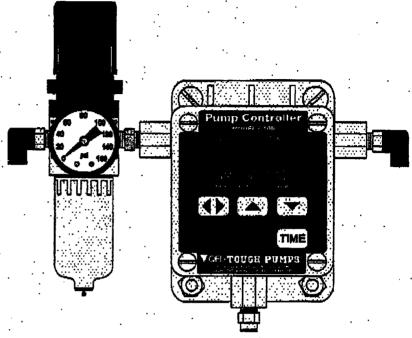
SOLAR/ELECTRICAL/PNEUMATIC DIGITAL PUMP CONTROLLER

C100

Optimize Floating Hydrocarbon Recovery

with the Digital Controller from QED

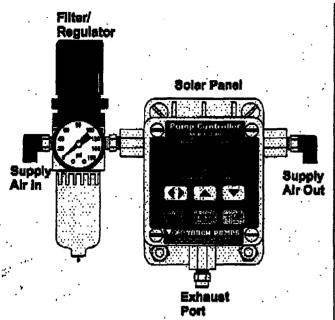
Versatile Ferret Controller Provides Easy Adjustment of Floating Hydrocarbon Removal Rates, Including Programmed "OFF" Periods


Ferret In-Well Separators are effective, versatile tools for removing floating hydrocarbons without water, and now they're even more versatile with the C100 Digital Controller. The C100 offers easy digital control of Ferret operation to match your project's specific floating hydrocarbon, (LNAPL) properties and site conditions. The C100 controller even includes at no extra cost the ability to program system "OFF" periods, so that the maximum LNAPL flow through the soil can be maintained. Such "OFF" periods can enhance higher net LNAPL removal rates.

Every C100 includes both solar power and AC power choices. The solar powered mode of operation includes a 10 - day battery backup, and has been field proven even under northern Midwestern winter conditions. The solar mode also bears a CSA intrinsic safety rating. For indoor applications, an AC powered adapter is simply plugged into the C100.

The electronics in the C100 are specially sealed for long life and have been proven reliable under extreme climate conditions.

VQED Environmental Systems, Inc.


C100 Benefits

- Easy digital control and display of Ferret cycle softings
- Includes programmable system "OHF" periods to optimize ENAPL removal rates to match site conditions
- Intrinsically safe solar power with 10 - day hattery backup
- AC power choice included.
- Compact enclosure
- Sealed electronics
- Designed for rugged site conditions

P.O. Box 3726, Ann Arbor, Michigan 46106 e 734-996-2647 600-624-2026 Fax: 734-995-1170 e E-Meil: Info@quedenv.com Website: http://www.qedenv.com P/N 2240 REV. #1 2-25-99

TECHNOLOGY SEED OF TONS FEET

E-PAPEZ-GIFFE PHENE TO

CONTROL KEYS:

Allows manual toggling of valve and system ON & OFF cycles. Also allows enabling & disabiling of system.

Multi screen key to sequentially display well status, battery status, solar panel voltage, ON/OFF and system valve.

Allows system counts and time sums, and valve time settings.

SET KEYS:

Left/right cursor key

Up or add key.

Down or subtract key.

NOTE:

Display turns off after five minutes of non activity. Press any key to turn display back on.

CONTROLLER TYPE:

SOLAR/ELECTRICAL/PNEUMATIC

ENCLOSURE:

DIMENSIONS - 3.5" (8.9 cm) W x 3.65" (9.3 cm) H x 3.5" (8.9 cm) D

WEIGHT - 3 LBS. (1.4 kg)

TYPE - Fiber reinforced thermoplastic NEMA 4X & UL 508

POWER:

SOLAR - Shatterproof solar panel on enclosure top, with backup battery pack with 10 day reserve capacity. CSA compliance, intrinsically safe, class 1, division 1, group C & D

C100 is CSA rated intrinsically safe when USED in Solar mode

110 VAC - Power converter plugs in to standard 110 VAC outlet and supplies 6 VDC, (300 milliamp) to connector plug in enclosure bottom

C100 IS <u>NOT</u> RATED INTRINSICALLY SAFE WHEN USED WITH 110 VAC POWER CONVERTER

TEMPERATURE:

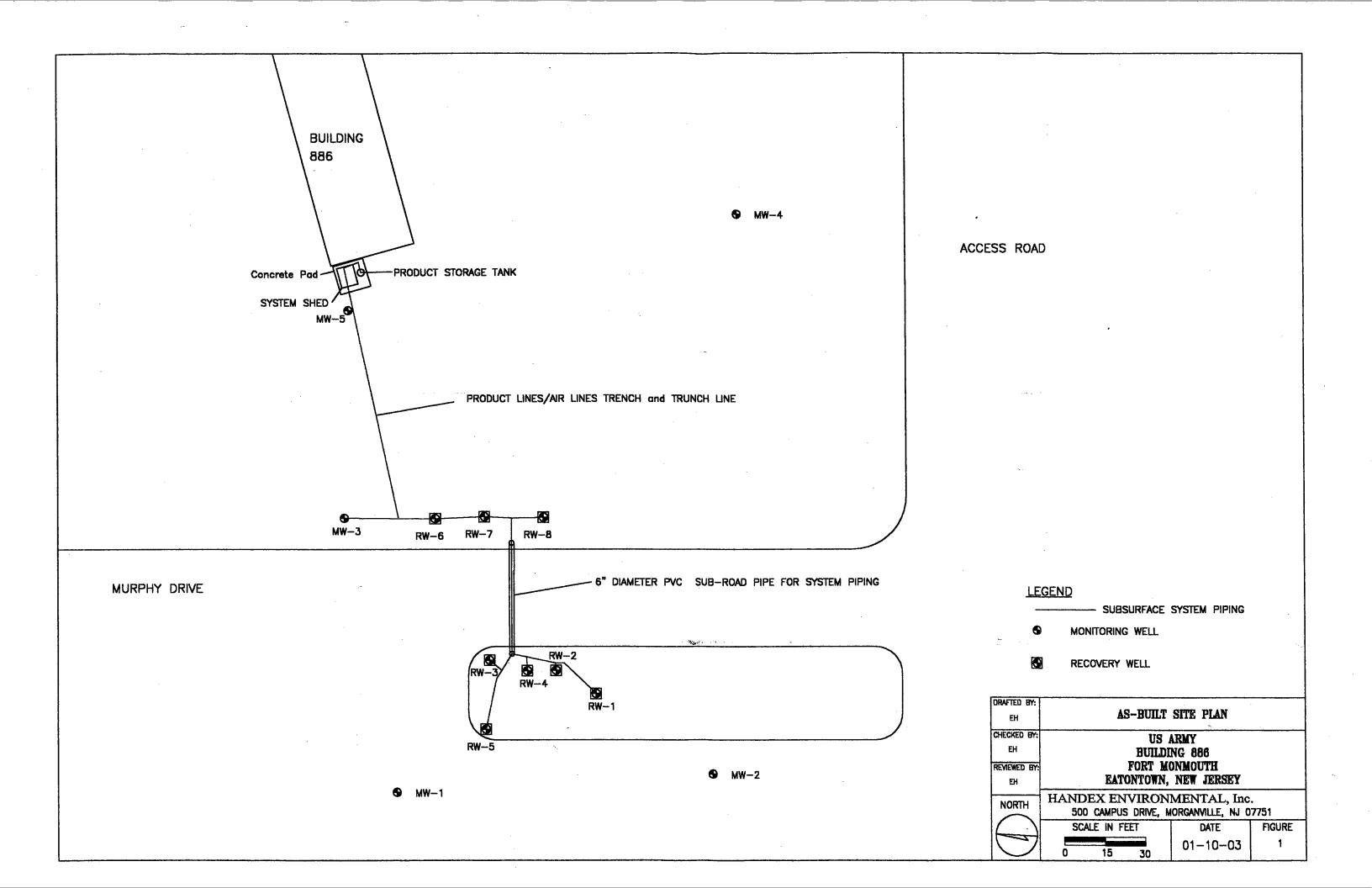
OPERATING --20° F to 150° F (28.9° C to 65.6° C)

DISPLAY:

TYPE - LCD display, 16 character alphanumeric w/ temperature compensated contrast and power off control

WINDOW - Non-glare, double hardened optical acrylic

PNEUMATIC CONTROL:


TYPE - Latching solenoid w/ dual port manifold

FITTINGS - Female 1/4-18 NPT brass with nickel plating

PRESSURE - 100 P.S.I. (690 kPa) maximum

FLOW CAPACITY:

Sufficient for single Ferret - Call factory for other requirements

APPENDIX B

RI/RA Activities Photographic Log

APPENDIX B Site 886 Photographic Log

Photo #1: Undisturbed Site – Looking West Across Murphy Drive

Photo #2: Looking West - Actively Excavating Murphy Drive

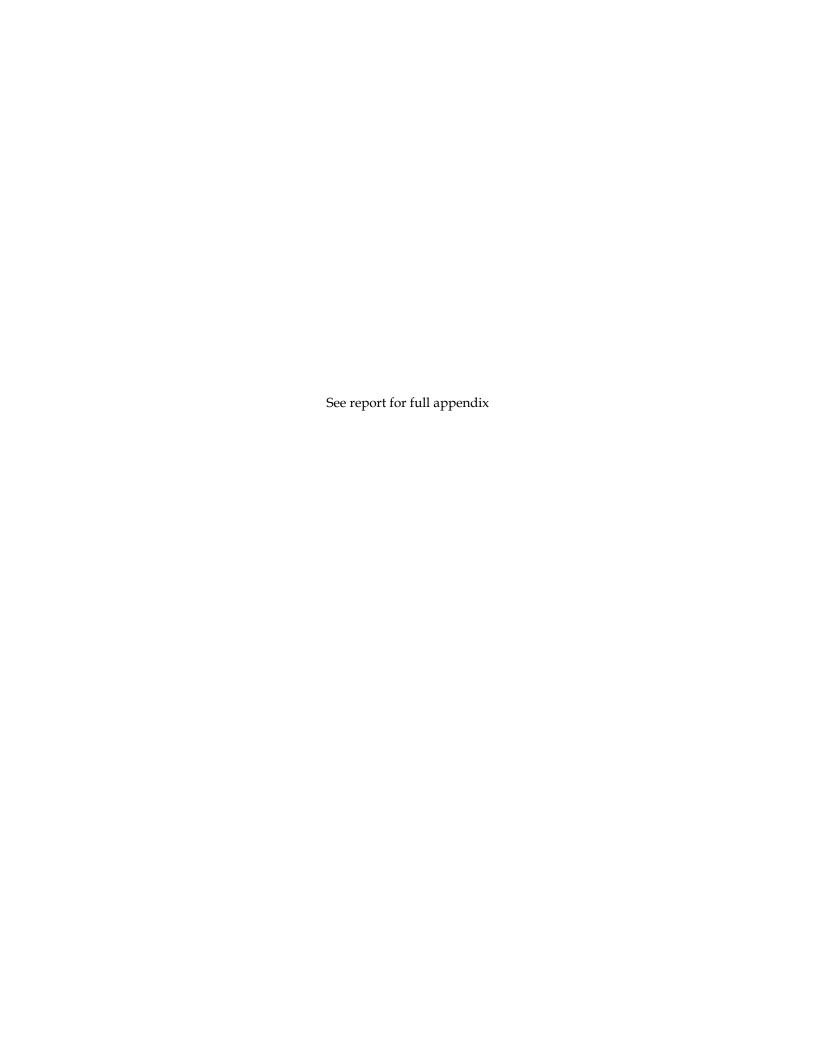
Photo #3: Looking Southwest - Actively Excavating Murphy Drive and Grass Island

Photo #4: Looking Northeast - Actively Excavating Murphy Drive and Grass Island

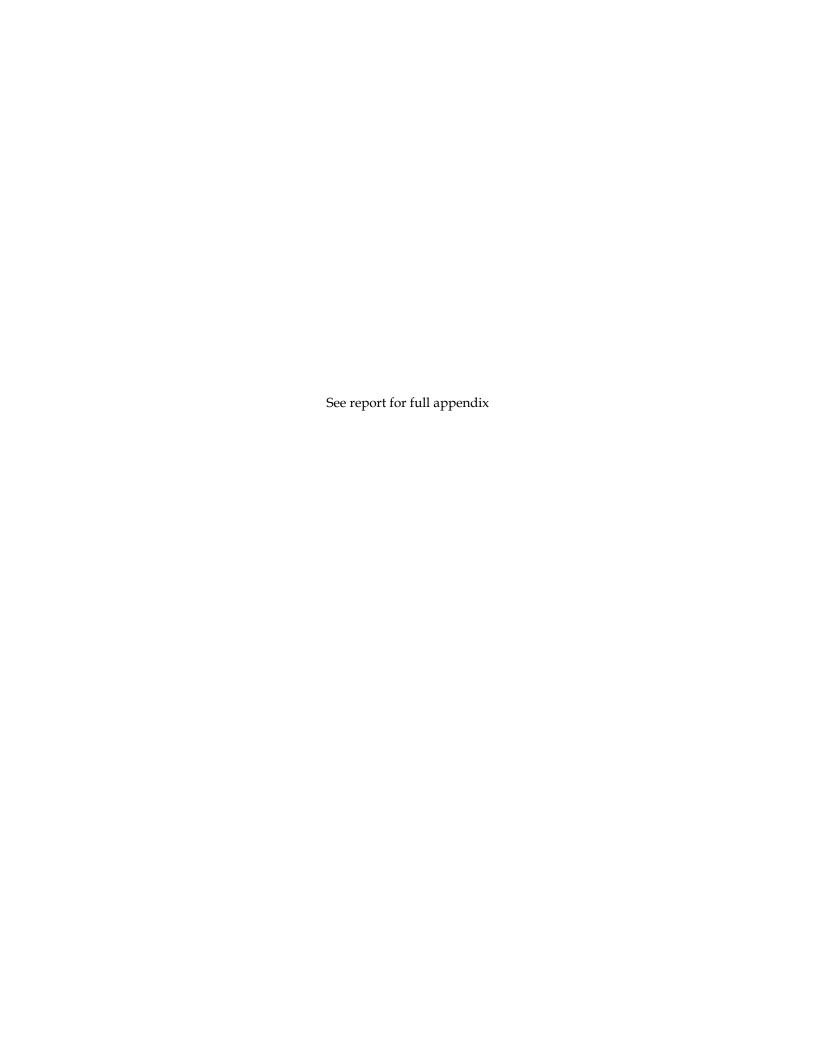
Photo #5: Looking East - Actively Excavating Grass Area Southeast side of Murphy Drive

Photo #6: Looking Southeast - Excavation in Grass Area; Bldg. 886 in Background

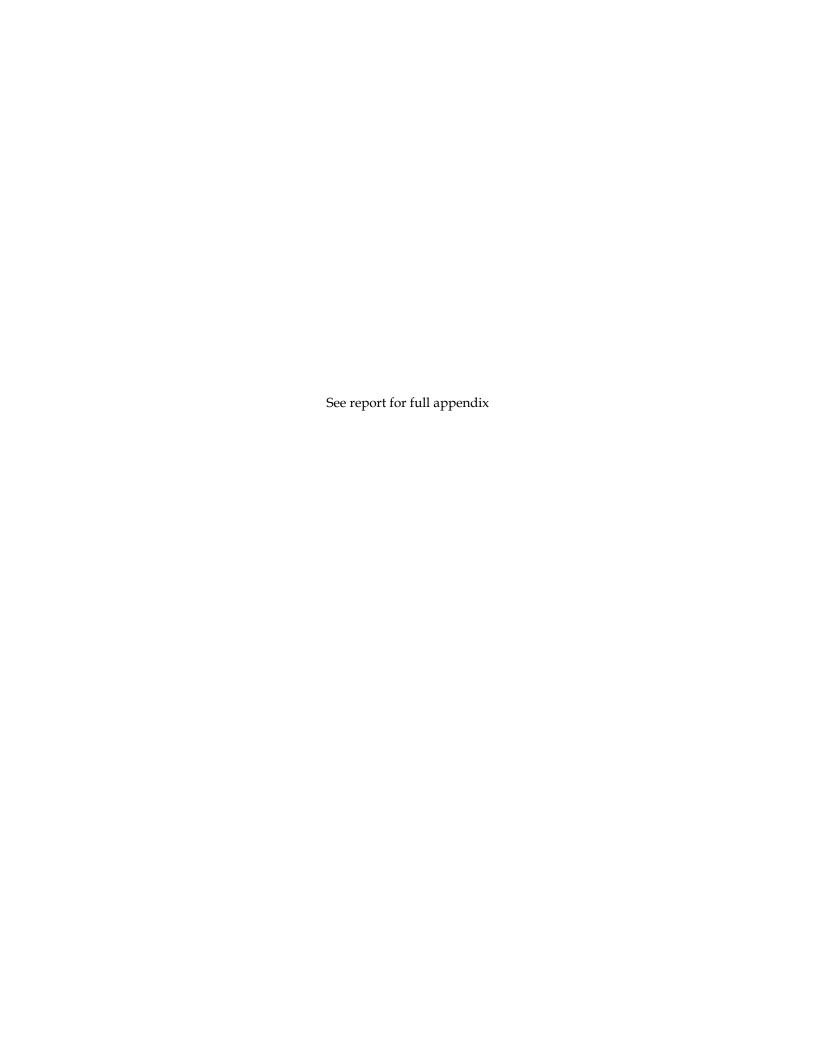
Photo #7: Looking North - Excavation in Grass Area


Photo #8: Looking South - Backfilling of Excavation

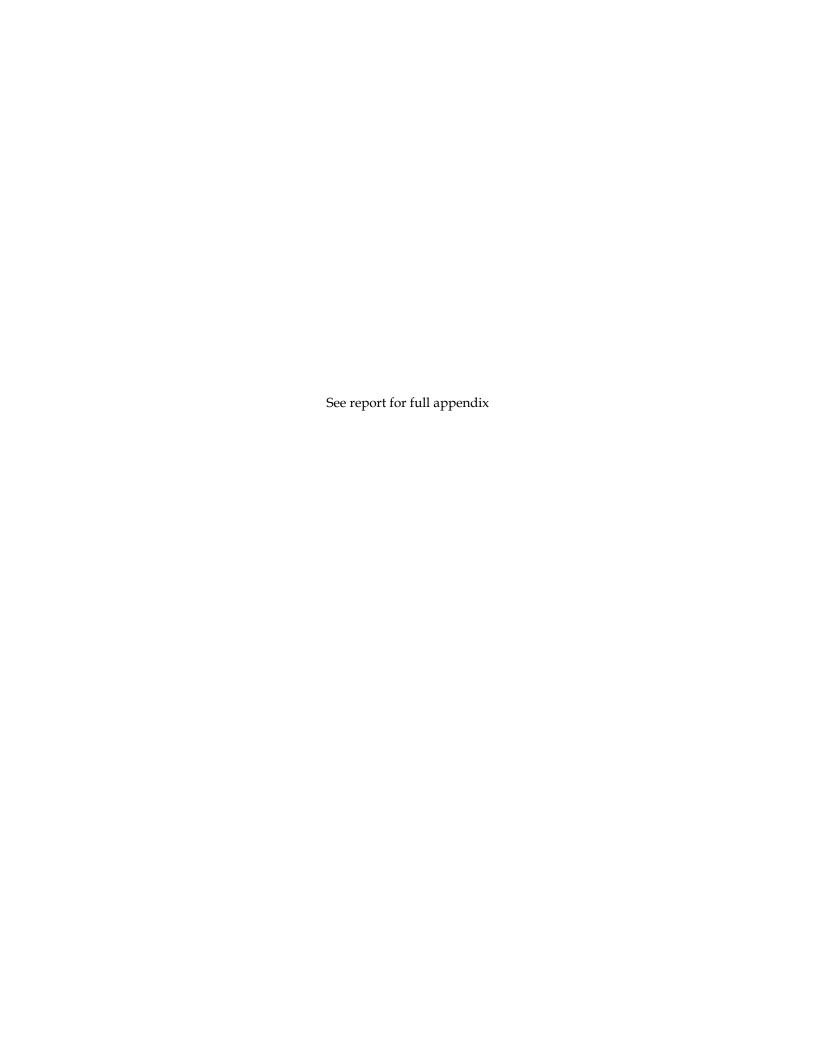
APPENDIX C


Laboratory Data Sheets for Remedial Action Soil Sampling

APPENDIX D


Laboratory Data Sheets for Remedial Investigation Soil Sampling

APPENDIX E


Laboratory Data Sheets for Geoprobe Groundwater Sampling

APPENDIX F

Laboratory Data Sheets for Monitoring Well Groundwater Sampling

DEPARTMENT OF THE ARMY

HEADQUARTERS, U.S. ARMY GARRISON FORT MONMOUTH FORT MONMOUTH, NEW JERSEY 07703-5000

REPLY TO ATTENTION OF

Directorate of Public Works

ULI 2 2 2010

Mr. Larry Quinn, Site Manager New Jersey Department of Environmental Protection Bureau of Investigation, Design and Construction 401 East State Street, P.O. Box 413 Trenton, New Jersey 08625-0413

Re: Site 886 (FTMM-66) Remedial Action Progress Report

April 2003 through December 2008 (2nd Quarter 2003 – 4th Quarter 2008)

Dated: September 2010 Fort Monmouth, New Jersey

Dear Mr. Quinn:

U.S. Army Fort Monmouth, New Jersey is pleased to submit the *Remedial Action Progress Report* (RAPR) for Site 886 (FTMM-66), Fort Monmouth, New Jersey. This RAPR was prepared in accordance with the voluntary cleanup agreement between U.S. Army and the New Jersey Department of Environmental Protection (NJDEP) dated August 2000, and the NJDEP's *Technical Requirements for Site Remediation (TRSR)*, New Jersey Administrative Code 7:26E-6.5 (February 2002). Enclosed please find the Electronic Data Delivery (EDD) documents and the completed RAPR Checklist.

Should you have any questions or require any additional information, please contact Mr. Charles Appleby, Environmental Protection Specialist, at 732-532-2692 or email: Charles.Appleby@US.Army.mil

Sincerely,

Joseph M. Fallon, CHMM Chief, Environmental Branch

Encl. 1: RAPR, (2nd Quarter 2003 through 4th Quarter 2008)

Encl. 2: Completed RAPR Checklist

Encl. 3: EDD, one disk

Encl. 2, Completed RAPR Checklist

SRP		REMEDIAL ACTION PROGRESS REPORT		
CHECKLIST:		2 nd Quarter 2003 through 4 th Quarter 2008		
	N.J.A.C. 7:26E-	Site 886 (FTMM-66) Use this checklist to assure that the remedial action progress report is complete and meets all technical requirements.	Included: Yes/No/NA	Page #
	6.6(a)	Have progress reports been submitted as required?	NA	
	6.6(b)1	Is a description of each remedial action included and adequate?	Yes	3-1
	6.6(b)2	Is a discussion of problems and proposal for correction included and adequate?	NA	
	6.6(b)3	Are proposals for deviation from approved WP adequately addressed?	NA	
		6.3(e)3iii If requesting to reduce sampling frequency have the requirements at 6.3(e)3iii and in Appendix C been met?	NA	
	6.6(b)4	Is a revised schedule included and adequate?	Yes	6-2 & App.E
	6.6(b)5	Is the status of permit applications included and adequate?	NA	
	6.6(b)6	Is a list of upcoming remedial actions included and adequate?	Yes	6-2 & App.E
	6.6(b)7	Is the cost of each remedial action adequately documented?	Yes	6-1 & App.E
	6.6(b)8	Is a table of sampling results, summary of data and conclusions included and adequate?	Yes	6-1 & Tables Section
	6.6(b)9	Is information for active GW remediation included and adequate?	NA	
		6.6(b)9i Has a ground water Contour Map Reporting Form (Appendix G) been completed and included?	Yes	Figures Section
	6.6(b)10	Is information for natural GW remediation included and adequate?	Yes	4-1 & 5-1
	6.6(b)11	Is a description of wastes generated included and adequate?	Yes	4-2
	6.6(b)12	Has other important information been included:	NA	
		If not previously provided, has a map of the CEA been included along with a CEA Factsheet from Appendix F?	NA	
		If the RAPR includes a proposal to revise the CEA, has all the necessary information per 6.3 and Appendix F been included?	NA	
		Does the report indicate whether biennial certifications have been submitted for CEAs &/or DERs?	NA	

United States Army Fort Monmouth, New Jersey

Site 886 (FTMM-66) Remedial Action Progress Report

(2nd Quarter 2003 through 4th Quarter 2008) NJDEP Case Number # 97-1-11-0938-02

U.S. Army Garrison Fort Monmouth, Main Post Fort Monmouth, New Jersey

Prepared By:

113 Centrewest Court Cary, N.C. 27513 919-388-0037

Work Order No. 1042-06-017

July 2010

TABLE OF CONTENTS

EXECU	UTIVE SUMMARY	i
1.0 II	NTRODUCTION	1-1
1.1	Objectives	1-1
1.2	Report Organization	1-1
2.0 S	ITE BACKGROUND	2-1
2.1	Site Location and Description	2-1
2.2	2100 1115001	
,	2.2.1 Remedial Action Report (RAR), 2006 - VERSAR	2-1
3.0 R	EMEDIAL ACTIVITIES	3-1
4.0 N	IONITORING AND SAMPLING ACTIVITIES	4-1
4.1	Ground Water Monitoring	4-1
4.2	Ground Water Sampling	4-2
4.3	Types of Waste Generated and Disposal Methods	4-2
5.0 S	ITE ANALYTICAL RESULTS	5-1
5.1	Ground Water Sampling Results	
:	5.1.1 Contaminants of Concern (COCs)	5-2
5.2	Tentatively Identified Compounds (TICs)	
5.3	Quality Assurance/Quality Control (QA/QC)	
6.0 R	EMEDIAL ACTION PROGRESS	6-1
6.1	Cost of Remediation Incurred To Date	6-1
6.2	Conclusions	6-1
6.3	Recommendations	6-1
(6.3.1 Sampling Program	
6.4		
7.0 R	EFERENCES	7-1

FIGURES 3.1	Charles and the same of the sa
Figure 2-1	Site Location Map
Figure 2-2	Site Layout Map
Figure 4-1	Ground Water Contour Map (May 22, 2003)
Figure 4-2	Ground Water Contour Map (July 22, 2003)
Figure 4-3	Ground Water Contour Map (October 14, 2003)
Figure 4-5	Ground Water Contour Map (May 25, 2004)
Figure 4-6	Ground Water Contour Map (August 4, 2004)
Figure 4-7	Ground Water Contour Map (October 20, 2004)
Figure 4-9	Ground Water Contour Map (April 6, 2005)
Figure 4-10	Ground Water Contour Map (July 12, 2005)
Figure 4-11	Ground Water Contour Map (October 19, 2005)
Figure 4-13	Ground Water Contour Map (April 11, 2006)
Figure 4-14	Ground Water Contour Map (July 11, 2006)
Figure 4-18	Ground Water Contour Map (August 2, 2007)
Figure 4-21	Ground Water Contour Map (June 25, 2008)
Figure 4-22	Ground Water Contour Map (September 16, 2008)
Figure 4-23	Ground Water Contour Map (November 12, 2008)
Figure 5-1	Ground Water Contaminants of Concern Distribution Map
Figure 5-2	Benzene Concentrations vs. Time at 886RW01
Figure 5-3	Benzene Concentrations vs. Time at 886RW02
TABLES	
Table 3-1	Product Recovery Measurements
Table 4-1	Ground Water Elevation Summary
Table 4-2	Ground Water Sampling Summary
Table 5-1	886MW01 Ground Water Sampling Results
Table 5-2	886MW02 Ground Water Sampling Results
Table 5-3	886MW03 Ground Water Sampling Results
Table 5-4	886MW04 Ground Water Sampling Results
Table 5-5	886MW05 Ground Water Sampling Results
Table 5-6	886RW01 Ground Water Sampling Results
Table 5-7	886RW02 Ground Water Sampling Results
Table 5-8	886RW03 Ground Water Sampling Results
Table 5-9	886RW04 Ground Water Sampling Results
Table 5-10	886RW05 Ground Water Sampling Results
Table 5-11	886RW06 Ground Water Sampling Results
Table 5-12	886RW07 Ground Water Sampling Results
Table 5-13	886RW08 Ground Water Sampling Results
Table 5-14	Ground Water Exceedance Summary
Table 5-15	886 VOC Tentatively Identified Compounds (TICs)
Table 5-16	886 SVOC Tentatively Identified Compounds (TICs)
Table 5-17	Relative Percent Difference Calculations

APPENDICES	
Appendix A	Versar, Inc., January 2006. Remedial Action Report for Soil and
	Ground Water Contamination – Building 886, Fort Monmouth,
	New Jersey
Appendix B	Ground Water Monitoring Well Laboratory Analytical Data, 2 nd
	Quarter 2003 through 4 th Quarter 2008
Appendix C	Fort Monmouth Directorate of Public Works Analytical Standard
	Operating Procedures
Appendix D	NJDEP Approval Letter, November 10, 2004, Reduction of
	Ground Water Sampling Analyses - Main Post and Charles
	Woods, Fort Monmouth, New Jersey
Appendix E	Costs and Schedule for Site 886

THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

This *Remedial Action Progress Report* (RAPR) documents the quarterly sampling of five monitoring wells and eight recovery wells at Site 886 (FTMM-66) from the 2nd Quarter 2003 through the 4th Quarter 2008 (Rounds 2 through 24) to monitor the progress of the natural attenuation program in reducing contaminant levels in ground water.

Site 886 is located at the Main Post Area of Fort Monmouth, New Jersey (Figure 2-1). Site 886 includes Building 886, a former equipment-storage building, and is located in the south part of the Main Post Area at the intersection of Murphy Road and Lane Avenue, approximately 950 feet south of Husky Brook. A 250,000-gallon aboveground storage tank (AST) for #2 fuel oil was removed from the site in the 1970s. The AST was remotely filled from a railroad siding and connected underground piping which started approximately 200 feet to the West of the AST site at a historic railroad siding. During the removal of a 1,000-gallon #2 fuel underground storage tank (UST) in April 1998, extensive subsurface petroleum contamination was found. On January 11, 1997, New Jersey Department of Environmental Protection (NJDEP) Case #97-1-11-0938-02 was assigned to Site 886.

The Directorate of Public Works (DPW) subsequently conducted a Remedial Investigation (RI) to delineate impacts of petroleum product on soils and ground water. The RI was conducted in two phases, followed by excavation of contaminated soils and confirmation sampling. This work was completed between January 2002 and February 2003. 4,000 tons of fuel-impacted soils were excavated, and a product-recovery system was installed in January 2003 to remove free product from the ground water table. The recovery system included five monitoring wells and eight recovery wells and was first sampled in February 2003. This system is used for long term monitoring, but the amount of recoverable free product has been minimal and the recovery system has not been activated on a full-time basis.

Based on the results of the initial sampling, benzene was identified as a Contaminant of Concern (COC) in ground water. Predictive modeling in the *Remedial Action Report* (RAR) indicated that after source removal, benzene concentrations would degrade naturally to below NJDEP Class II-A Ground Water Quality Standard (GWQS), and the plume would not migrate offsite.

During the current sampling period, benzene was detected above the NJDEP standard of 1.0 $\mu g/L$ in samples collected at wells 886RW01, 886RW02 and 886RW08 at concentrations ranging from not detected (ND) to 7.95 $\mu g/L$. Benzene concentrations have generally decreased with time.

The reduction of benzene concentrations in these wells and the absence of benzene exceeding GWQS in wells downgradient and in the source area confirm that the plume is degrading and not migrating offsite. Benzene concentrations continue to be detected in 886RW01 on the same order of magnitude as the GWQS. Benzene concentrations continue to be detected in 886RW02; however, concentrations have not exceeded the GWQS for the last three years of monitoring. Benzene has not been detected in 886RW08 in the last five years of monitoring.

The RAR prepared by Versar, Inc. (VERSAR) dated January 2006 stated N-Nitrosodiphenylamine as a potential COC based on a concentration of $38.99~\mu g/L$ detected in 886MW03 once on February 12, 2003. N-Nitrosodiphenylamine was not detected in 886MW03 since its detection in February 2003 and therefore is no longer a potential COC.

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

1.0 INTRODUCTION

A monitored natural attenuation program to remediate benzene at Site 886 is being conducted in accordance with the RAR prepared by VERSAR dated January 2006. Site 886 is located at the Main Post Area of Fort Monmouth, New Jersey (Figure 2-1). The U.S. Army Garrison Fort Monmouth, DPW and Chenega Technology Services Corporation issued the contract under Chenega purchase order number C06-02456 to VEETech, P.C. (VEETech) to prepare this RAPR. This report documents ground water monitoring during the current reporting period of the 2nd Quarter 2003 through the 4th Quarter 2008 (Rounds 2 through 24).

1.1 Objectives

The objective of this RAPR is to document the implementation of the remedial action program performed at Site 886 during the current reporting period of the 2nd Quarter 2003 through the 4th Quarter 2008. Monitored natural attenuation was implemented by the DPW as a Remedial Action (RA). The purpose of the RA was to monitor the contaminant-affected areas at the site to evaluate the effectiveness of natural attenuation to reduce the contaminant concentrations to comply with the NJDEP Class II-A aquifer GWQS. The remedial activities were conducted in accordance with the NJDEP *Technical Requirements for Site Remediation* (September 2, 2008), N.J.A.C. 7:26E *et seq.* and the Site 886 RAR (Appendix A).

The RA and subsequent preparation of this RAPR encompassed the following:

- Conducting quarterly rounds of ground water sampling and documenting the results to evaluate the effectiveness of the RA,
- Comparing the results of the ground water sampling with the NJDEP GWQS,
- Identifying and discussing recommendations with the DPW for the continuation of this RA, and
- Documenting remedial activities as required by the NJDEP *Technical Requirements for Site Remediation*, N.J.A.C. 7:26E *et seq.*

1.2 Report Organization

Section 2.0 discusses the site history and background information for Site 886. Section 3.0 discusses the remedial activities (natural attenuation) conducted at Site 886. Section 4.0 discusses ground water monitoring and sampling activities at the site. Section 5.0 presents the analytical results of the ground water sampling. Section 6.0 discusses the effectiveness of the RA and provides recommendations to the DPW for Site 886. Section 7.0 is the reference section.

THIS PAGE INTENTIONALLY LEFT BLANK

2.0 SITE BACKGROUND

The following sections describe the site background of Site 886. Included is a description of the site location, site history, and background investigations.

2.1 Site Location and Description

Fort Monmouth is located in the central-eastern portion of New Jersey in Monmouth County, approximately 45 miles south of New York City and 70 miles northeast of Philadelphia (Figure 2-1). The U.S. Army Garrison Fort Monmouth incorporates the Main Post and a subpost, the Charles Wood Area. The Main Post is approximately 630 acres and is linked to the State Highway 35. Figure 2-1 shows the location of Site 886. Site 886 includes Building 886 and is located in the south part of the Main Post Area at the intersection of Murphy Road and Lane Avenue, approximately 950 feet south of Husky Brook. A site layout map is provided in Figure 2-2. The environmental setting (regional/local geology and hydrogeology) of the site is described in the RAR prepared by VERSAR, dated January 2006 (Appendix A).

2.2 Site History and Background Investigations

In the early 1990s, the DPW developed an underground storage tank (UST) program for managing approximately 506 USTs located throughout the Fort Monmouth installation (Main Post and Charles Wood areas). This program was created to work toward replacing the use of heating oil as a major energy source with natural gas. The program also included the closure of regulated waste oil and gasoline USTs.

Building 886 was used for equipment storage. A 250,000-gallon above ground storage tank (AST) for #2 fuel oil was removed from the site in the 1970s. During the removal of a 1,000-gallon #2 fuel UST in April 1998, holes were observed in the tank walls and extensive soil and ground water contamination was discovered. Further investigation was conducted to delineate the extent of impact to the site. This was followed by excavation and removal of limited volumes of petroleum impacted soils. The DPW conducted additional Remedial Investigation (RI) to fully delineate the extent of contamination and initiated further remediation. The results of this additional activity were presented in the RAR, summarized in the following section.

2.2.1 Remedial Action Report (RAR), 2006 - VERSAR

VERSAR prepared and submitted a RAR dated January 2006 to Fort Monmouth (Appendix A) that analyzed data collected by the Fort Monmouth DPW RI and documented the remedial activities conducted at the site.

The Phase I RA conducted from January through March 2002 included excavation and off-site disposal of contaminated soils in the areas of the former storage tanks. Excavation and confirmation sampling occurred in several stages. The confirmation sampling indicated that contamination was more extensive and product was observed at the water table in the excavations.

A Phase I RI was conducted from March through June 2002 to define the aerial extent of remaining contamination in soils and ground water in the vicinity of Building 886. This included Geoprobe borings for soil sampling and limited excavation of contaminated soils. 345 subsurface soil samples were collected and analyzed for Total Petroleum Hydrocarbons (TPHC).

27 soil samples from borings that contained TPHC concentrations over 1,000 milligram per kilogram (mg/Kg) were analyzed for Volatile Organic Compounds (VOCs).

Because free product was observed in the excavation, 27 temporary well points were installed. Free hydrocarbon product was observed in 12 of the temporary wells. Ground water samples were collected in June 2002 from two of the impacted wells. Samples were analyzed for VOCs and Semi-Volatile Organic Compounds (SVOCs). VOCs and SVOCs were not detected in either sample exceeding the NJDEP GWQS.

The Phase II RI was conducted in November 2002 and included 31 additional samples from 12 Geoprobe locations to complete the soils delineation. Based on the results of the investigation, additional remedial action was implemented from November 2002 through February 2003. This included the excavation and disposal of over 4,000 tons of hydrocarbon impacted soils that exceeded the NJDEP Residential Direct Contact Soil Cleanup Standard (RDCSCS) for TPHC (10,000 mg/Kg) and post excavation sampling. These soils were removed from an area separate from the UST area. This release may have been associated with the 250,000 gallon AST removed in the 1970s.

A system to recover product from the ground water surface was installed in January 2003. The system included five monitoring wells outside of the source area, eight recovery wells within the source area, and an automated product recovery system.

Initial sampling of the monitoring and recovery wells in February 2003 resulted in detection of benzene above the NJDEP GWQS in three wells (886RW02, 886RW05 and 886RW07) at concentrations ranging from 1.09 to 2.16 micrograms per liter (μ g/L). 2-Butanone (methyl ethyl ketone or MEK) was also detected in two recovery wells (886RW01 and 886RW08) at very high concentrations 29,510.7 – 30,039.7 μ g/L. The source of the MEK was suspected to be the result of use of pipe joint glue in the recovery system installation. A SVOC, N-Nitrosodiphenylamine was also detected in one well, 886MW03, at a concentration exceeding the GWQS. The source of this compound was not identified, and the distribution did not appear to be extensive. Based on these results, benzene was designated as a COC, and N-Nitrosodiphenylamine was designated as a potential COC pending further analytical results.

Ground water modeling results presented in the RAR (Appendix A) indicated that benzene would not migrate from the source area at Site 886 to a nearby Husky Brook within the time period that it was predicted to degrade below the GWQS. Based on these results and the removal of the contaminant sources, the proposed additional RA was to allow the benzene plume to naturally attenuate until concentrations reduced to comply with the NJDEP Class II-A GWQS. Progress would be confirmed by quarterly monitoring of ground water.

3.0 REMEDIAL ACTIVITIES

An LNAPL (light non-aqueous phase liquid) skimmer system to recover free phase separating hydrocarbon (PSH) product from the ground water surface was installed in January 2003. The system included eight recovery wells within the source area, five monitoring wells outside of the source area, and an automated LNAPL recovery system. The amount of recoverable PSH product has been minimal and the recovery system has not been activated on a full-time basis. The product recovery system was operated by Handex Inc. until March 2004. The system has not been operational since that time.

Manual product gauging has taken place at recovery well 886RW04. Eight recovery events occurred at 886RW04 during the period from April 6, 2005 to September 1, 2005. Two pints of product were removed on April 6, 2005. Six of the following recovery events discovered a trace of product, and measurable product was not found in the final recovery event (September 1, 2005). Table 3-1 summarizes the product recovery measurements.

Sampling results documented in the VERSAR's RAR (January 2006) for Site 886 indicated that the shallow ground water contained the COC benzene at concentrations that exceeded the NJDEP GWQS. The benzene concentrations in ground water were expected to gradually decrease through natural attenuation.

The existing monitoring wells (886MW01 through 886MW05) and recovery wells (886RW01 though 886RW08) were adequately placed to monitor downgradient ground water; therefore, the DPW proposed natural attenuation with LTM as the remediation remedy for Site 886. Ground water samples are collected on a quarterly basis.

THIS PAGE INTENTIONALLY LEFT BLANK

4.0 MONITORING AND SAMPLING ACTIVITIES

As part of the Long Term Monitoring (LTM) program at Site 886, quarterly ground water monitoring continued from the 2nd Quarter 2003 through the 4th Quarter 2008 (Rounds 2 through 24). Ground water samples were collected from five monitoring wells (886MW01, 886MW02, 886MW03, 886MW04, and 886MW05) and eight recovery wells (886RW01, 886RW02, 886RW03, 886RW04, 886RW05, 886RW06, 886RW07, and 886RW08) during twenty-three quarterly sampling events. Laboratory analytical reports for the Site 886 LTM during this reporting period are presented in Appendix B, and the analytical results are presented and discussed in the following Section 5.0 and Tables 5-1 through 5-13 of this RAPR.

Sampling was conducted by the DPW in accordance with the established protocols as described in the *Fort Monmouth Standard Sampling Operating Procedure* (SOP No.: SAM-0205, August 1999, Revision #1 January 2003, Revision #2 September 2004, Revision #3 January 2006, and Revision #4 April 2008, Appendix C) and the *NJDEP Field Sampling Procedures Manual*, August 2005. Ground water samples were analyzed for VOCs, SVOCs, pesticides, polychlorinated biphenyls (PCBs) and Target Analyte List (TAL) metals. Analysis of pesticides/PCBs and Metals was discontinued in November 2004 after approval from NJDEP (Appendix D). Laboratory analyses of the samples were conducted at the Fort Monmouth Environmental Testing Laboratory (FMETL), a New Jersey certified laboratory (Certification No. 13461).

4.1 Ground Water Monitoring

During this reporting period at Site 886 (2nd Quarter 2003 through the 4th Quarter 2008), ground water was encountered at elevations ranging from 7.23 to 14.45 feet above mean sea level (msl). Static depth to water from the top of the well casings were measured at each monitoring well on a quarterly basis except for 886MW05, which was not measured during the 4th Quarter 2004 (Round 8) and the 1st Quarter 2005 (Round 9). Measurements were taken at 886RW01 and 886RW08 on a quarterly basis in 2003. All recovery wells were measured on an annual basis from the 1st Quarter 2004 (Round 5) to the 1st quarter 2006 (Round 13) then quarterly thereafter, with two exceptions. Recovery well 886RW07 was not sampled in the 1st Quarter 2005 (Round 9). Additionally, measurements were not taken at any recovery wells in the 3rd Quarter 2006 (Round 15).

On January 24, 2006 (Round 13) during the regular quarterly sampling event, 0.03 foot of PSH product was observed in recovery well 886RW04. As a result of the product thickness, recovery well 886RW04 was not sampled. Figure 2-2 illustrates the locations of the monitoring wells. Depth to water measurement results are summarized in Table 4-1.

Ground water-elevation contour maps were generated for 15 of 23 rounds of sampling. Contour maps were not constructed for Round 5, Round 9, Round 13, Round 16, Round 17, Round 18, Round 20, and Round 21 due to depth to ground water gauging activities conducted on multiple days. To prevent inconsistency in ground water direction and contour lines, these ground water-elevation contour maps were eliminated from reporting. The contour maps are presented in Figures 4-1 through Figure 4-23 along with the required NJDEP contour map reporting forms.

The contour maps indicate that shallow ground water underlying Site 886 consistently flows to the north-northwest. Significant variations in ground water flow conditions were not observed through the current monitoring period.

4.2 Ground Water Sampling

Quarterly ground water sampling of the five monitoring wells and eight recovery wells was conducted by the DPW. Quality control samples for the monitoring period included 33 method blanks, 31 trip blanks, 31 field blanks, and 31 field duplicate samples.

Sampling equipment was thoroughly decontaminated before and after each use. Following collection, the ground water samples were immediately placed in laboratory-supplied bottle ware. Sample containers were labeled, sealed, packed in ice, and transported to the FMETL under proper chain-of-custody procedures.

Copies of the chain-of-custody forms and the laboratory analytical data sheets are presented in Appendix B. A summary of the ground water sampling activities for the remediation monitoring (Rounds 2 through 24) including round numbers, well IDs, sample IDs, sample locations, collection dates, analytical parameters, and analysis methods is provided in Table 4-2. Figure 2-2 illustrates the locations of the monitoring wells. The analytical results are discussed in Section 5.1.

4.3 Types of Waste Generated and Disposal Methods

The waste types generated by the remedial activities included three-gallon polyethylene pails, polyethylene tubing, Teflon[®] bailers, mason string, and personal protective equipment (PPE). The pails were recycled, and the other materials were disposed of in accordance with the Fort Monmouth Solid Waste Management Plan.

5.0 SITE ANALYTICAL RESULTS

This section includes a summary discussion of the chemical characterization of Site 886 based on the samples collected and analyzed for the current reporting period, including twenty-three quarterly rounds of ground water monitoring for five monitoring wells (886MW01 through 886MW05) and eight recovery wells (886RW01 through 886RW08).

5.1 Ground Water Sampling Results

Analytical results from each of the five monitoring wells and eight recovery wells on Site 886 for Rounds 2 through 24 are summarized in Tables 5-1 through Table 5-13. Ground water summary tables include detected analytical results for Site 886 and are divided by monitoring well number and sampling date. The characterization of ground water quality at Site 886 contains 23 quarterly ground water sampling events conducted from May 2003 through November 2008. The ground water results are compared to the NJDEP GWQS and are presented in three different tabs reflecting changes to the NJDEP standard. The first set of data is compared against the January 7, 1993 standard; the next is when a standard change occurred on November 7, 2005; followed by another standard change on July 27, 2007.

The results in the ground water summary tables include analyte detections as well as exceedances of the NJDEP GWQS, which are bolded and shaded. VOCs, SVOCs, pesticides/PCBs, and metals are presented as required to summarize results for detected compounds. Detections are presented in the ground water sampling result summary tables as follows:

- Xylenes are reported as total xylenes (the sum of *o*-xylene and *m*,*p*-xylenes).
- Tentatively Identified Compounds (TICs) are added and reported as a total concentration for the sum of TICs detected for VOCs and SVOCs.
- Duplicate samples are included after the respective primary sample.
- A "J" value is a concentration exceeding the Method Detection Limit (MDL) but less than the Reporting Limit (RL) for VOCs, SVOCs, and pesticides/PCBs.
- Estimated Results "ER" are concentrations exceeding the MDL and less than the RL for metals.
- A "B" value is a compound detected in the sample and its associated blank sample.
- Sample suites that were discontinued are recorded in the footnotes along with a date of NJDEP case manager approval.
- If a particular sample suite or analyte was not detected in a monitoring well, the suite/analyte is not presented in the monitoring well summary table.

VOCs

During twenty-three quarterly sampling events for the current reporting period, eight VOCs were detected in Site 886 ground water samples. One VOC (benzene) was detected at concentrations that exceeded the GWQS. Benzene was detected above GWQS in more than one sample. Seven VOCs (acetone, ethylbenzene, 2-butanone, methyl *tert*-butyl ether, toluene, xylenes, and *cis*-1,2-dichloroethene) were detected below their respective GWQS.

Analytical results for wells sampled during the current reporting period exceeded the NJDEP GWQS for benzene in recovery wells 886RW01, 886RW02, and 886RW08. Benzene has been identified as the Contaminant of Concern (COC).

SVOCs

During the sampling events for the current reporting period, 11 SVOCs were detected in Site 886 ground water samples. One SVOC (bis (2-ethylhexyl) phthalate) was detected at a concentration exceeding its GWQS. Bis (2-ethylhexyl) phthalate was detected in only one ground water sample. 10 SVOCs (2-methylnaphthalene, acenaphthene, dibenzofuran, diethyl phthalate, fluorene, naphthalene, n-nitrosodiphenylamine, phenanthrene, anthracene, and 4-methylphenol) were detected below their respective GWQS.

The concentration of bis (2-ethylhexyl) phthalate exceeded the NJDEP GWQS in monitoring well 886MW04 for only one quarterly ground water monitoring event (Round 20) and is not considered a COC. The remaining SVOCs were detected below their respective GWQS.

Metals

During sampling events taking place up to November 2004, ten metals were detected in Site 886 ground water samples. Four metals (aluminum, arsenic, cadmium, and lead) were detected at concentrations that exceeded their respective GWQS. Samples that exceeded the GWQS did not exceed the Maximum Background Concentration (MBC) for ground water established in the Weston (1995) report.

Table 5-14 summarizes the analytical results which exceeded the GWQS during the current reporting period. Figure 5-1 illustrates the analytical results for benzene on the site layout map.

5.1.1 Contaminants of Concern (COCs)

Benzene was detected in 886RW01 at concentrations ranging from not detected to 7.95 μ g/L (Round 2) during the current reporting period. The NJDEP GWQS for benzene is 1 μ g/L. Figure 5-2 illustrates the benzene concentration trend over time in recovery well 886RW01, including all quarters of the Long Term Monitoring (LTM) program since May 2003.

Benzene was detected above NJDEP GWQS in 886RW02 at concentrations ranging from not detected to 2.14 µg/L (Round 5). Benzene concentrations in 886RW02 have generally decreased over time and have been below the NJDEP GWQS since January 2005. Figure 5-3 illustrates the benzene concentration trend over time in recovery well 886RW02, including all quarters of the Long Term Monitoring (LTM) program since February 2004.

Benzene was detected above NJDEP GWQS in 886RW08 at concentrations ranging from not detected to $2.13~\mu g/L$ (Round 2). Benzene concentrations in 886RW08 have not been detected since October 2003.

N-Nitrosodiphenylamine was not detected in 886MW03 since its detection in February 2003. N-Nitrosodiphenylamine is no longer a potential COC as it has not been detected since that first round of sampling.

5.2 Tentatively Identified Compounds (TICs)

During the reporting period, all of the thirteen wells sampled had VOC TICs detected for at least one sampling event. Twelve of the wells had TIC concentrations below the NJDEP GWQS. 886RW01 had VOC TIC concentrations detected that exceeded the NJDEP GWQS in one round

(Round 19). Round 19 had an individual TIC estimated concentration of 120 μ g/L for an unknown TIC and 150 μ g/L for 2-methylnaphthalene, which exceeded the individual TIC GWQS of 100 μ g/L. The total concentration of 15 TICs for Round 19 was 519 μ g/L, which also exceeded the GWQS for total TICs of 500 μ g/L. Table 5-15 summarizes the analytical results for the VOC TICs during this reporting period.

During this reporting period, all of the thirteen wells sampled had SVOC TICs detected for at least four sampling events. On five sampling events (Round 3, Round 9, Round 13, Round 18, and Round 21) analytical results indicated concentrations of TICs exceeding the NJDEP GWQS of $100 \, \mu \text{g/L}$ for an individual compound or $500 \, \mu \text{g/L}$ for total TIC concentrations.

- In Round 3 monitoring well 886MW05 had a total concentration of 722 μg/L for 25 TICs, which exceeded the GWQS of 500 μg/L for total TICs.
- In Round 9 recovery well 886RW04 had a total concentration of 789 μg/L for 25 TICs, which exceeded the GWQS of 500 μg/L for total TICs.
- In Round 13 recovery well 886RW01 had a total concentration of 732 μ g/L for 25 TICs, which exceeded the GWQS of 500 μ g/L for total TICs.
- In Round 18 monitoring well 886MW04 had an individual TIC estimated concentration of 170 μg/L for 4-hydroxy-4-methyl-2-pentanone, which exceeded the individual TIC GWQS of 100 μg/L.
- In Round 21 recovery well 886RW01 had a total concentration of 516.23 μg/L for 25 TICs, which exceeded the GWQS of 500 μg/L for total TICs.

5.3 Quality Assurance/Quality Control (QA/QC)

To verify the reliability of the analytical results, VEETech reviewed the holding times for each sample and the results of the analyses of 33 method blanks, 31 trip blanks, 31 field blanks, and 31 field duplicate samples for the ground water samples. The discussion below is based on QA/QC for the ground water samples. Samples were analyzed by the FMETL within the prescribed holding time requirements for the analytical methods.

Method Blanks

Laboratory method blanks were prepared by the laboratory for each batch of analyses performed for Site 886. These method blanks consisted of laboratory-grade water that is processed identically to the samples and analyzed with the sample batch. A total of 33 VOC method blanks were analyzed with the Site 886 samples during this reporting period.

Acetone was detected in two method blank samples at concentrations of 2.60 μ g/L (Round 17) and 4.57 μ g/L (Round 18), below the NJDEP GWQS of 6,000 μ g/L for acetone. Acetone is a common laboratory contaminant and detection in the method blank sample is not indicative of a widespread laboratory contamination problem.

Chloroform was detected in two of the method blank samples at concentrations of 4.07 μ g/L (Round 4) and 1.30 μ g/L (Round 14), below the NJDEP GWQS of 70 μ g/L for chloroform. Chloroform is also a common laboratory contaminant, and detection in two of the method blank samples is not indicative of a widespread laboratory contamination problem.

Benzene (the only COC) was not detected in the method blank samples.

Trip Blanks

A total of 31 trip blanks were included as part of the Site 886 sampling program for this reporting period to check for the potential for volatile organics to have been introduced into the samples during the handling process. The trip blanks were prepared by the FMETL and consisted of sample bottles filled with laboratory deionized water. The trip blanks remained with the sample bottles in coolers and were returned to the laboratory for analysis along with the ground water samples.

Chloroform was detected in nine of the trip blanks at concentrations ranging from 0.37 μ g/L (Round 17) to 6.31 μ g/L (Round 4), below the NJDEP GWQS of 70 μ g/L for chloroform.

Acetone was also detected in two of the trip blanks at concentrations of 27.86 μ g/L (Round 23) and 5.60 μ g/L (Round 24), below the NJDEP GWQS of 6,000 μ g/L for acetone.

The detection of chloroform and acetone in trip blanks indicates that sample handling procedures, including sample containers, may have introduced VOC contamination into the sampling and analysis process. However, benzene (the only COC) was not detected in any of the trip blank samples.

Field Blanks

One field blank sample was obtained during each day's sampling activities to check for potential introduction of contaminants from the field sampling and equipment decontamination procedures. A total of 31 field blanks were collected during the Site 886 sampling program during this reporting period. The field blanks were collected by rinsing deionized water, supplied by the laboratory, over the sampling equipment used for daily activities. The water was collected in clean laboratory-supplied containers and submitted for analysis along with the Site 886 ground water samples.

Two VOCs (Chloroform and Acetone) were detected in the Field Blank analyses.

Chloroform was detected in ten field blank samples collected at concentrations ranging from $0.31 \,\mu\text{g/L}$ (Round 17) to $6.31 \,\mu\text{g/L}$ (Round 4), below the NJDEP GWQS of 70 $\mu\text{g/L}$.

Acetone was detected in two field blanks at concentrations of 27.79 μ g/L (Round 22) and 5.08 μ g/L (Round 23), below the NJDEP GWQS of 6,000 μ g/L for acetone.

As noted for the trip blanks, these detections indicate that sample handling procedures, including sample containers, may have introduced contamination into the sampling and analysis process. However, benzene (the only COC) was not detected in any of the field blanks.

Duplicate Samples

A total of 31 field duplicate samples were also collected during this reporting period for the Site 886 sampling events to verify the consistency of the entire sampling and analytical procedure. Results from two of the field duplicates collected (Round 21) were not reported in the analytical data report for that quarter. Two field duplicate samples were collected for two days of sampling for Rounds 5, 9, 13, 16, 17, 18, 20, and 21.

A total of 28 sets of duplicate analyses were available for comparison. Two duplicate sets were not analyzed (Round 21). In Round 9 a duplicate (Sample ID # 5000903) had an unknown

original. As a result, these duplicate sets could not be included in the Relative Percent Differences (RPDs) analysis.

The results for all of the duplicate sample analyses were close to those obtained for the primary sample analyses. The RPDs for the duplicate sample analyses ranged from 0.00 percent to 151.07 percent. The average RPD for the total sets of duplicate analyses was 11.41 percent. The duplicate sample analyses indicate a reasonable level of precision relative to typical environmental laboratory analytical result data sets. Table 5-17 summarizes the RPD calculations for duplicate samples collected for ground water.

THIS PAGE INTENTIONALLY LEFT BLANK

5-6

6.0 REMEDIAL ACTION PROGRESS

The long-term ground water monitoring results indicate the concentrations of benzene have generally decreased in ground water at Site 886. There is also no indication of plume migration offsite. The LNAPL recovery system discontinued operating in March 2004 due to lack of efficiency in recovering PSH from the Site.

6.1 Cost of Remediation Incurred To Date

The total cost to date for the annual implementation of the remedial actions performed at Site 886 is approximately \$137K (Appendix E). This includes the preliminary assessment phase, site investigation, remedial investigation/feasibility study (RI/FS), remedial design (RD), long term monitoring (LTM), and reporting.

6.2 Conclusions

Benzene was detected above the NJDEP GWQS in 886RW01 during the current reporting period. Concentrations ranged from not detected to 7.95 μ g/L (Round 2). The NJDEP GWQS for benzene is 1 μ g/L. Figure 5-2 illustrates the trend in concentration of benzene relative to the current GWQS in well 886RW01 over time.

Benzene was detected above the NJDEP GWQS in 886RW02 during the current reporting period. Concentrations ranged from not detected to 2.14 µg/L (Round 5). Benzene concentrations have been below the GWQS since 2005. Figure 5-3 illustrates the trend in concentration of benzene relative to the current GWQS in well 886RW02.

Benzene was detected above the NJDEP GWQS in 886RW08 during the current reporting period. Concentrations ranged from not detected to $2.13~\mu g/L$ (Round 2). Benzene has not been detected in 886RW08 since 2003.

Benzene was detected below NJDEP GWQS in wells 886MW01 and 886RW05. Benzene was not detected in wells 886MW02, 886MW03, 886MW04, 886MW05, 886RW03, 886RW04, 886RW07.

The January 2006 RAR submitted to NJDEP stated N-Nitrosodiphenylamine as a potential COC based on a concentration of $38.99~\mu g/L$ detected in 886MW03 detected once on February 12, 2003. N-Nitrosodiphenylamine was not detected in 886MW03 since its detection in February 2003. N-Nitrosodiphenylamine is no longer a potential COC as it has not been detected since that first round of sampling.

6.3 Recommendations

VEETech recommends that the DPW continue quarterly ground water sampling and monitoring activities, as concentrations of benzene in ground water (886RW01) continue to exceed NJDEP GWQS. Due to a decrease in detection of the COC (benzene) throughout Site 886, a significant reduction in the sampling program is warranted. Future sampling and analysis recommendations are summarized by well in the following section. Only one SVOC exceedance has been detected in the current reporting period (Round 20). The SVOC has not been detected since this exceedance. Remedial action progress will be monitored and reported to the NJDEP periodically.

During the current reporting period, several wells had VOC TICs and SVOC TICs detected above the NJDEP GWQS of 100 µg/L for an individual compound or 500 µg/L for total TIC

concentrations. These TIC concentrations were not significant to warrant remedial action for TICs. Wells at Site 886 will continue to be monitored quarterly for TICs.

6.3.1 Sampling Program

The existing sampling plan will continue to monitor the site. The following table provides a summary of the current quarterly ground water sampling program at Site 886.

Monitoring Well	Analyzed for	Recommended Future Sampling	Reason	
886MW01	VOCs, SVOCs	Continue Sampling	Downgradient Well	
886MW02	VOCs, SVOCs	Continue Sampling	Side Gradient Well	
886MW03	VOCs, SVOCs	Continue Sampling	Downgradient Well	
886MW04	VOCs, SVOCs	Continue Sampling	Upgradient Well	
886MW05	VOCs, SVOCs	Continue Sampling	Side Gradient Well	
886RW01	VOCs, SVOCs	Continue Sampling	COC exceedances of GWQS for benzene.	
886RW02	VOCs, SVOCs	Continue Sampling	COC exceedances of GWQS for benzene and detection of COC throughout the current reporting period.	
886RW03	VOCs, SVOCs	Continue Sampling	Downgradient Well	
886RW04	VOCs, SVOCs	Continue Sampling	COC not detected.	
886RW05	VOCs, SVOCs	Continue Sampling	Downgradient Well	
886RW06	VOCs, SVOCs	Continue Sampling	Side Gradient Well	
886RW07	VOCs, SVOCs	Continue Sampling	Side Gradient Well	
886RW08	VOCs, SVOCs	Continue Sampling	Upgradient Well	

6.4 Remedial Action Schedule

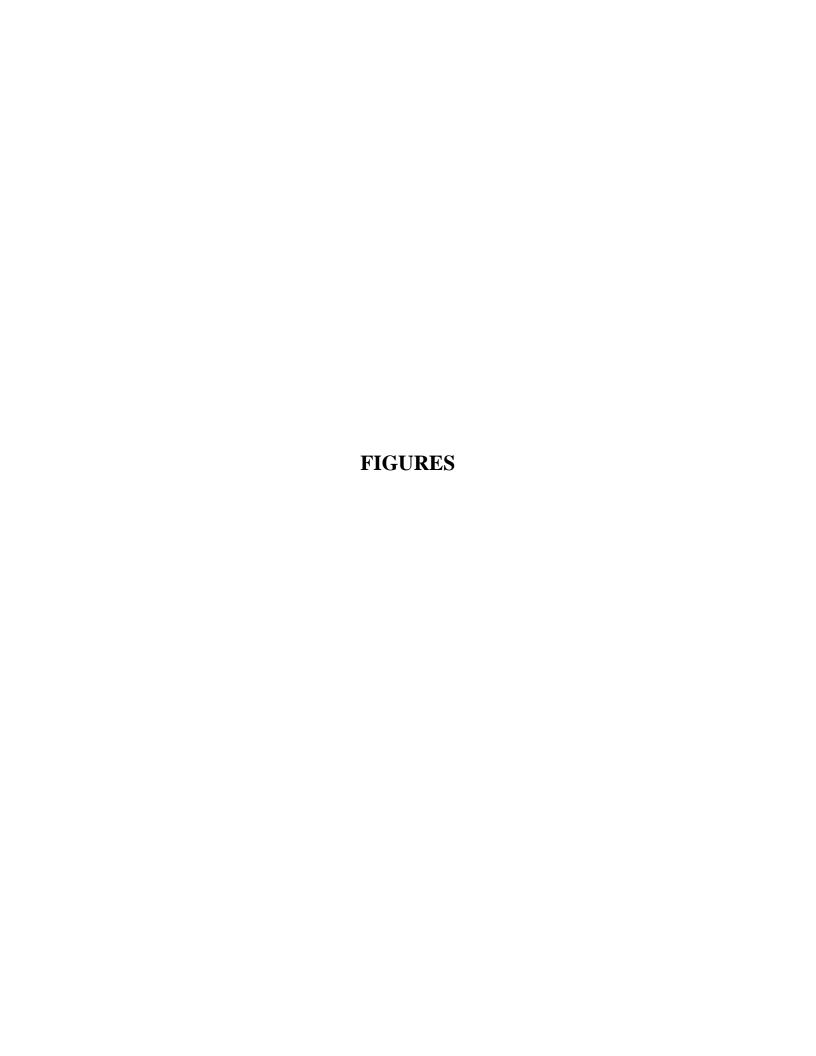
The table and Gantt Chart provided in Appendix E is a schedule summary for remedial activities at Site 886 from the Preliminary Assessment phase through the end of this reporting period and estimated into the future. This table/chart includes actual costs and schedule to date and estimated/anticipated costs and schedule projected for future activities.

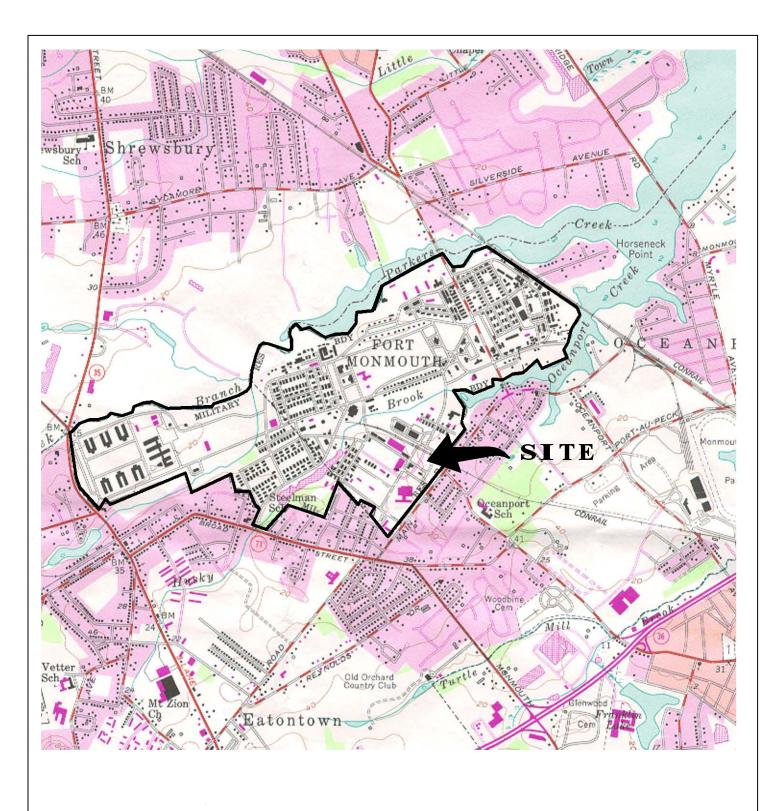
7.0 REFERENCES

U.S. Geological Survey, Photorevised 1981, Long Branch Quadrangle Map.

Roy F. Weston, Inc. (Weston), December 1995, Site Investigation Report – Main Post and Charles Wood Areas, Fort Monmouth, New Jersey.

New Jersey Department of Environmental Protection, August 2005, *Field Sampling Procedures Manual*.


New Jersey Department of Environmental Protection, September 2008, *Technical Requirements for Site Remediation*, N.J.A.C. 7:26E


U.S. Army Garrison, Fort Monmouth, New Jersey, Directorate of Public Works (DPW), August 1999, Revision #1 January 2003, Revision #2 September 2004, Revision #3 January 2006, and Revision #4 April 2008, Fort Monmouth Standard Sampling Operating Procedure (SOP No.: SAM-0205)

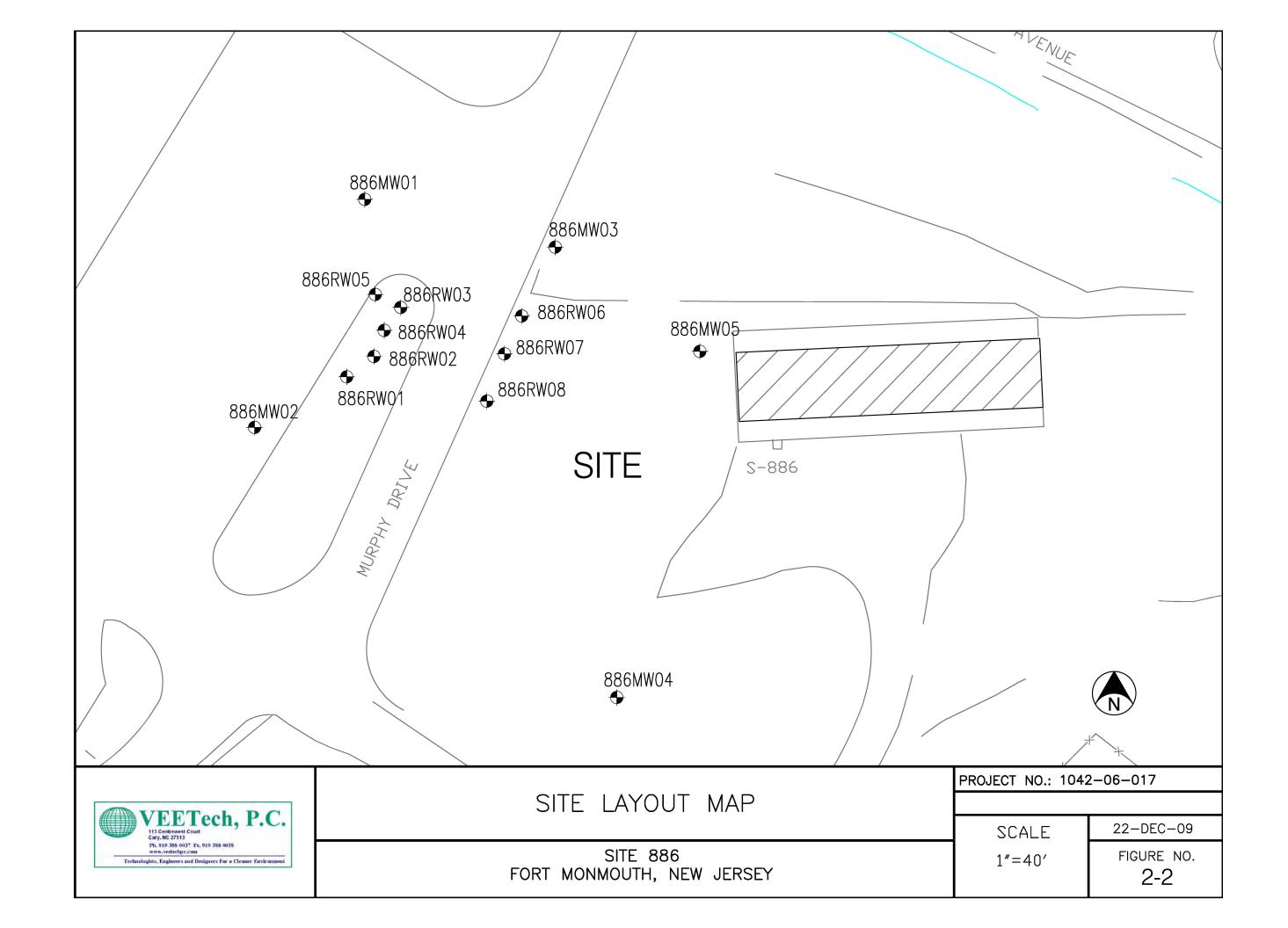
Versar Inc., January 2006, Remedial Action Report (RAR) – Building 886, Main Post, Fort Monmouth, New Jersey.

THIS PAGE INTENTIONALLY LEFT BLANK

7-2

LONG BRANCH, N. J. 40073-C8-TF-024

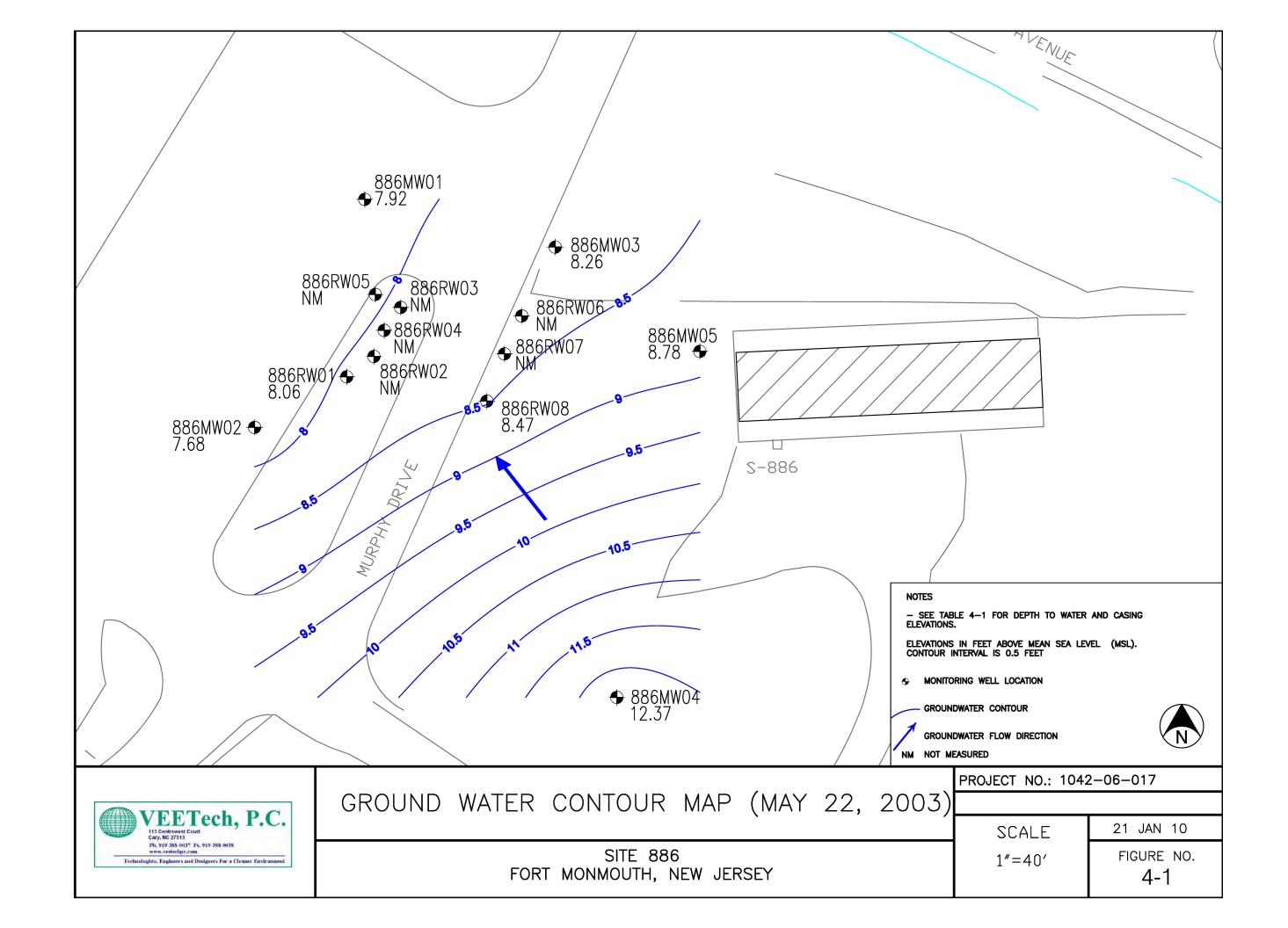
1954 PHOTOREVISED 1981 DMA 6164 I SE-SERIES V822


Fig 2-1 Site 886 Location Map Fort Monmouth, New Jersey

www.veetechpc.com

Technologists, Engineers and Designers For a Cleaner Environment

Mapped, edited and published by the Geological Survey

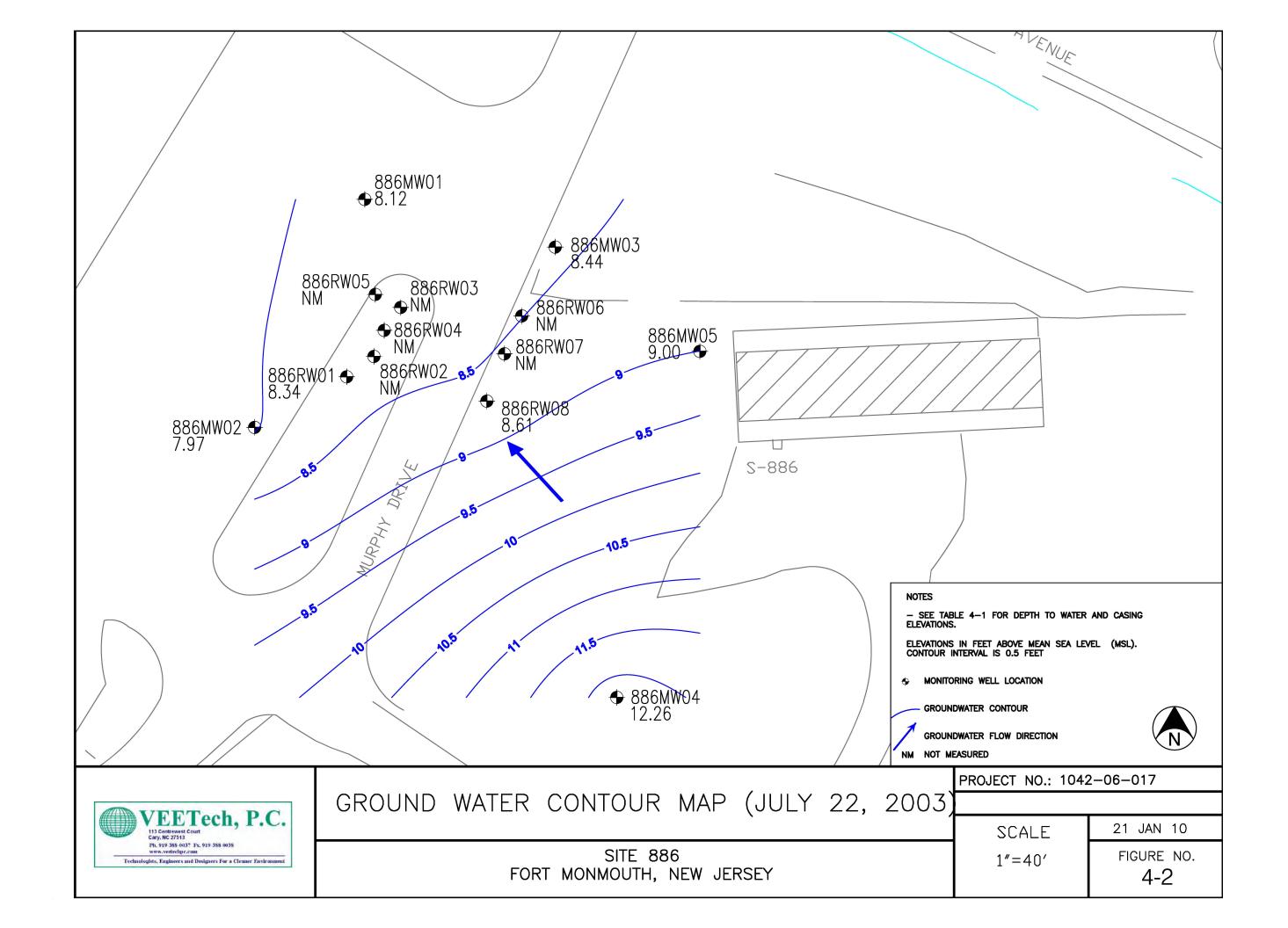


APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-1 (May 22, 2003)
1. Did any surveyed well casing elevations change from the previous sampling event? YesNo_X If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes No_X If yes, identify these wells.
3. Are there any monitor wells present at the site but omitted from the contour map? Yes_X_No Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Recovery wells 886RW02, 886RW03, 886RW04, 886RW05, 886RW06, and 886RW07 are omitted from the contour map, as these recovery wells were not monitored during this quarter.
4. Are there any monitor wells containing separate phase product during this measuring event? Yes No_X Were any of the monitor wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.

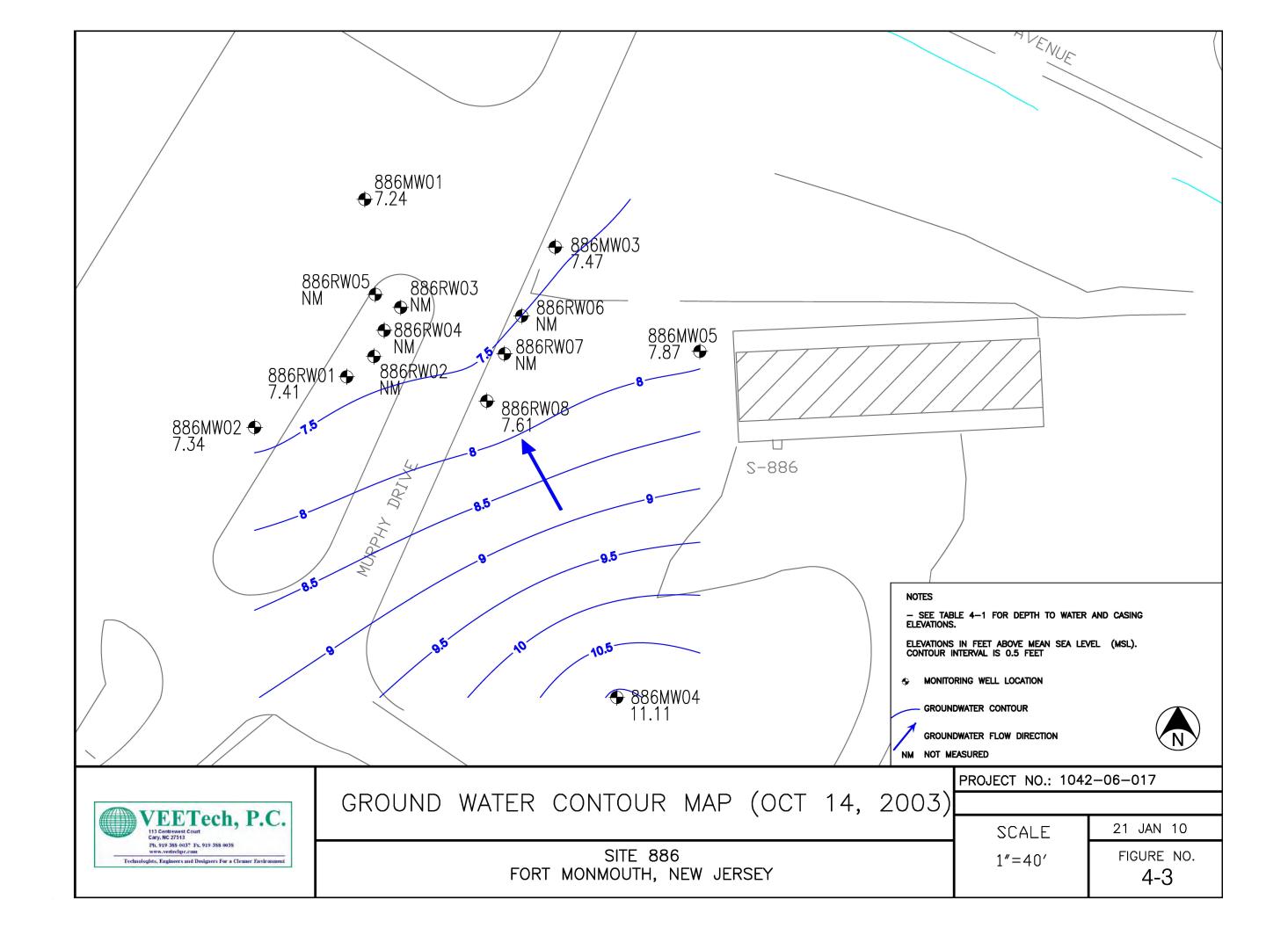
COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program



APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program


APPENDIX G **Contour Map Reporting Form**

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-3 (October 14, 2003)

1. Did any surveyed well casing elevations change from the previous sampling event? Yes____ $No \times X$. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No_X_. If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Recovery wells 886RW02, 886RW03, 886RW04, 886RW05, 886RW06, and 886RW07 are omitted from the contour map, as these recovery wells were not monitored during this quarter. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground wa	ter contour map submittal.	Use additional
sheets as necessary.		

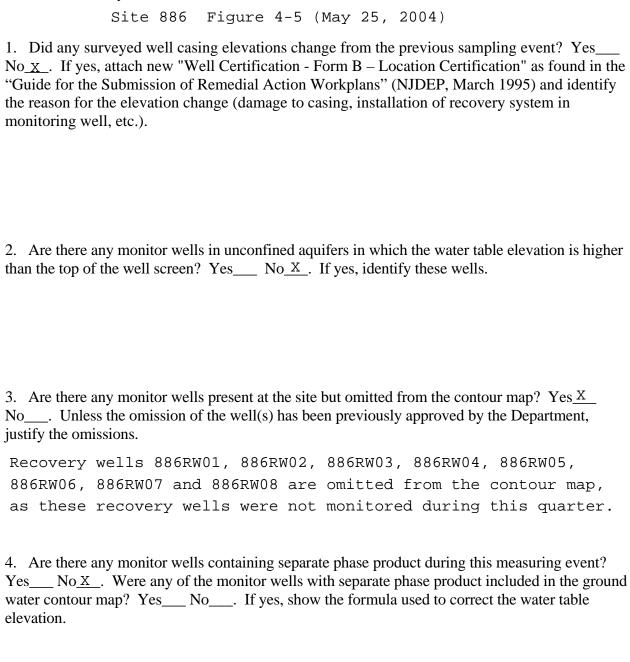
Site 886 Figure 4-4 (contour map not constructed) (February 2 & 3, 2004)

1. Did any surveyed well casing elevations change from the previous sampling event? Yes_No \underline{X} _. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).

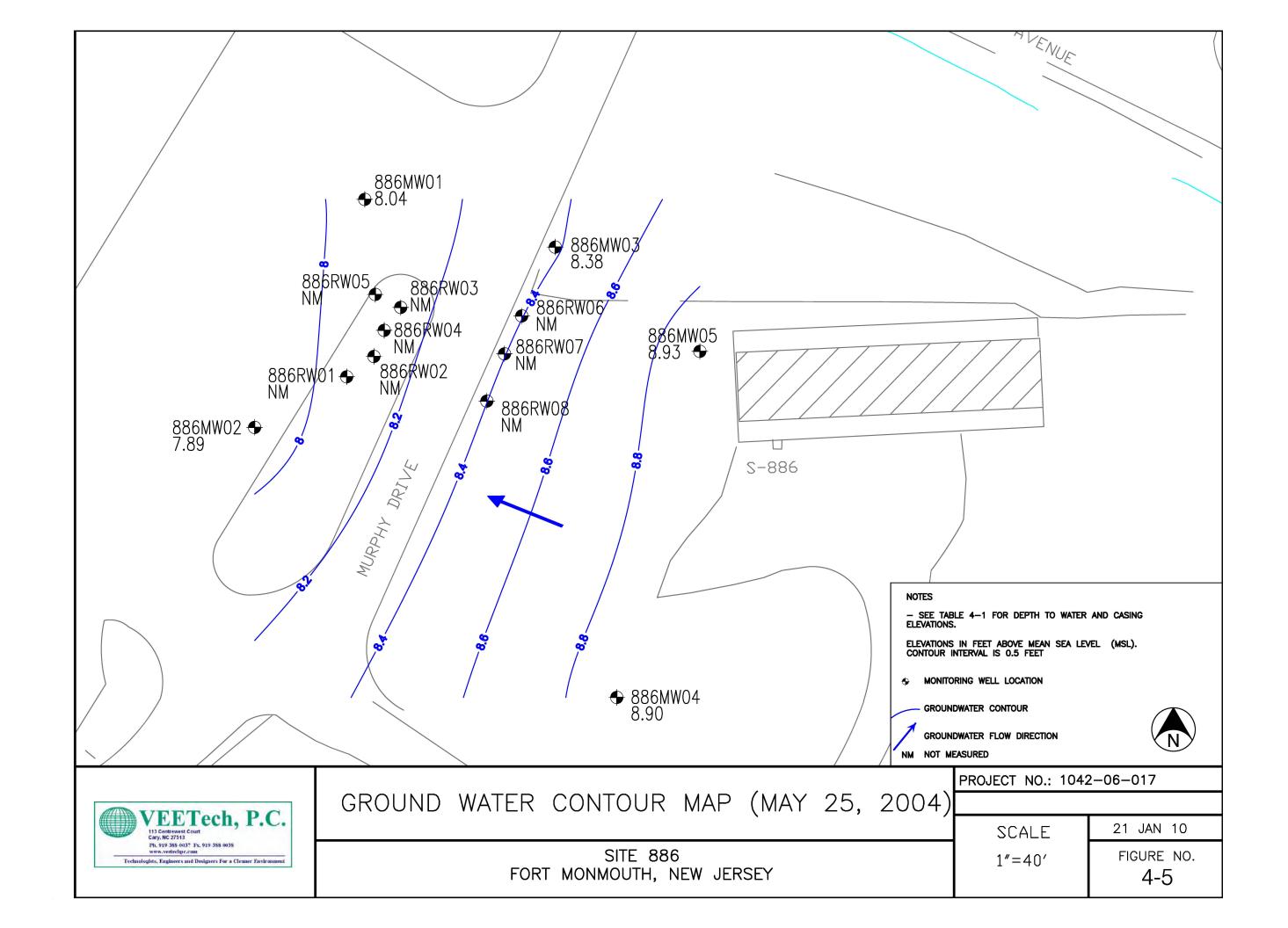
2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No_ \underline{X} . If yes, identify these wells.

3. Are there any monitor wells present at the site but omitted from the contour map? Yes \underline{X} No___. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.

Due to the ground water gauging event occurred on two separate days, this contour map is omitted.

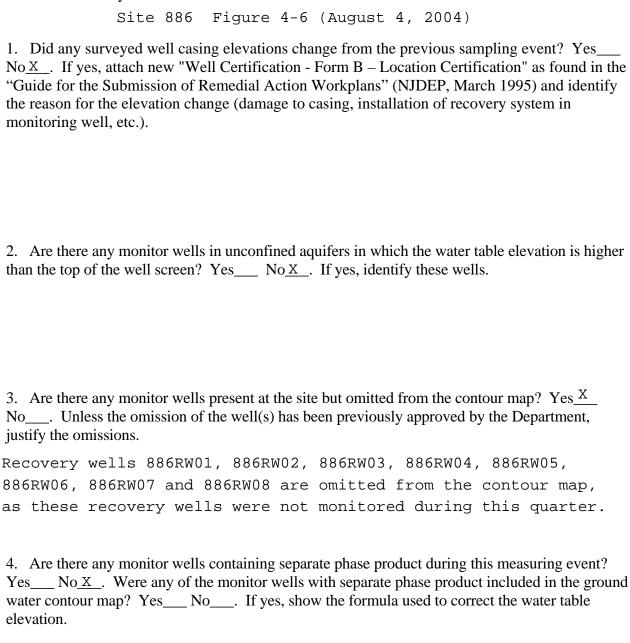

4. Are there any monitor wells containing separate phase product during this measuring event? Yes____ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

NOTE: THIS IS A COURTESY COPY OF THIS RULE. ALL OF THE DEPARTMENT'S RULES A	٩LL
COMPILED IN TITLE / OF THE NO ADMINISTRATIVE CODE.	

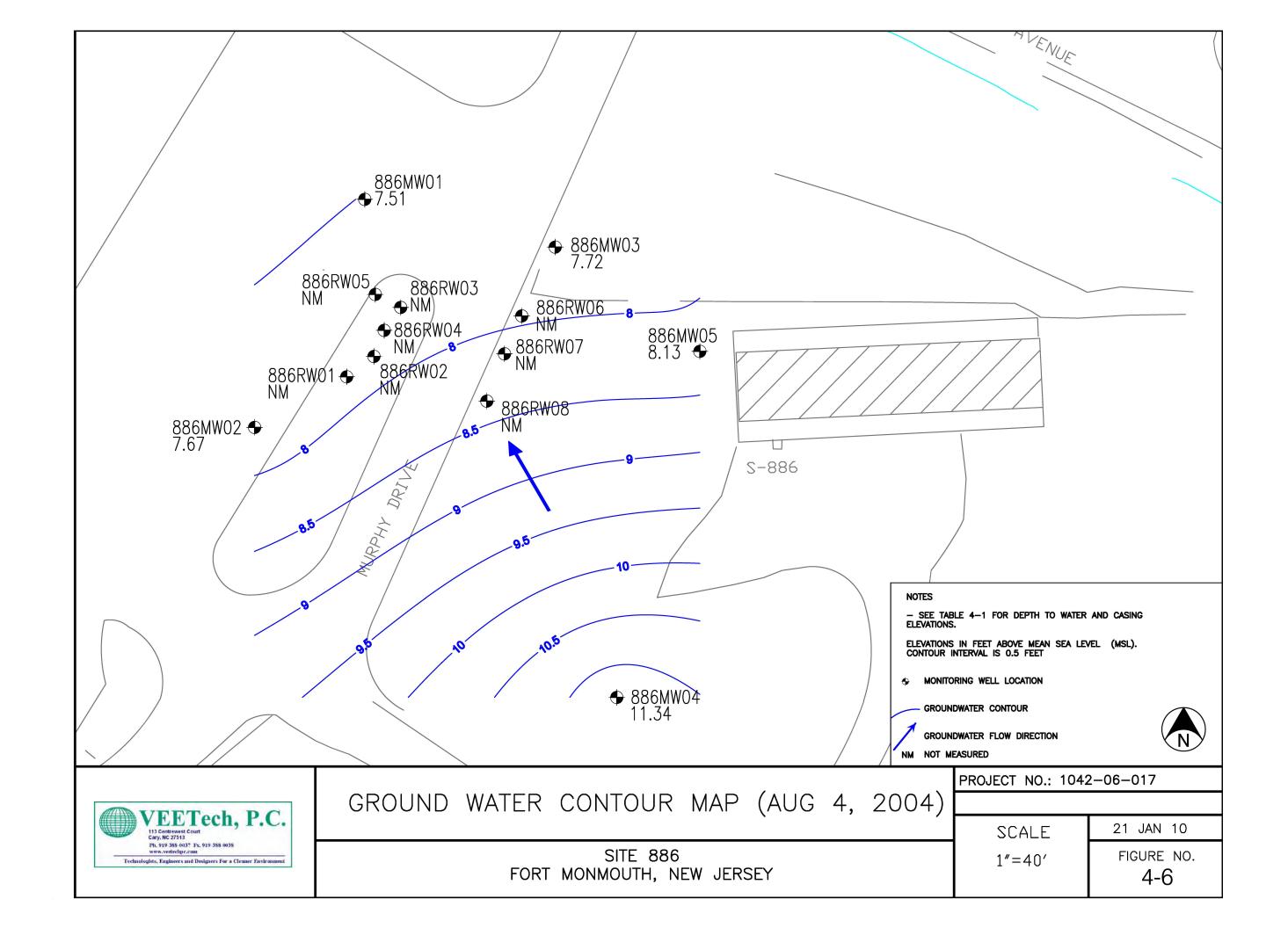

6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence. N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes_x_No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. N/A

APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

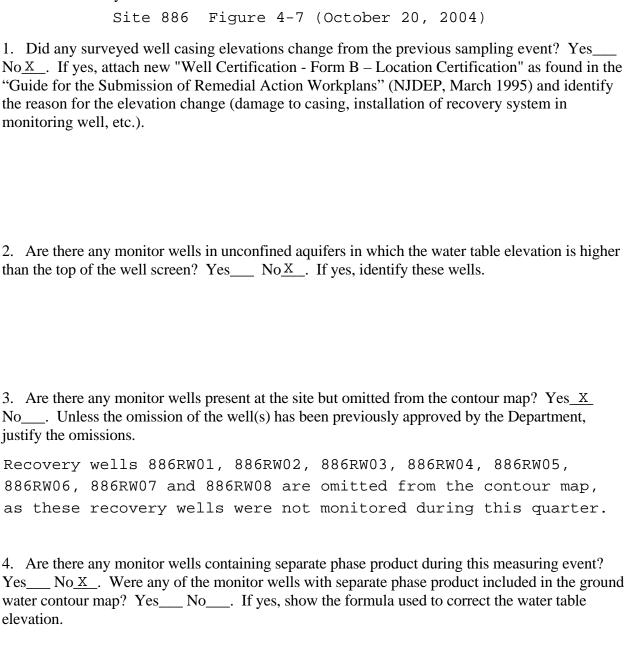


COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? YesNo_x Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes_X_No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

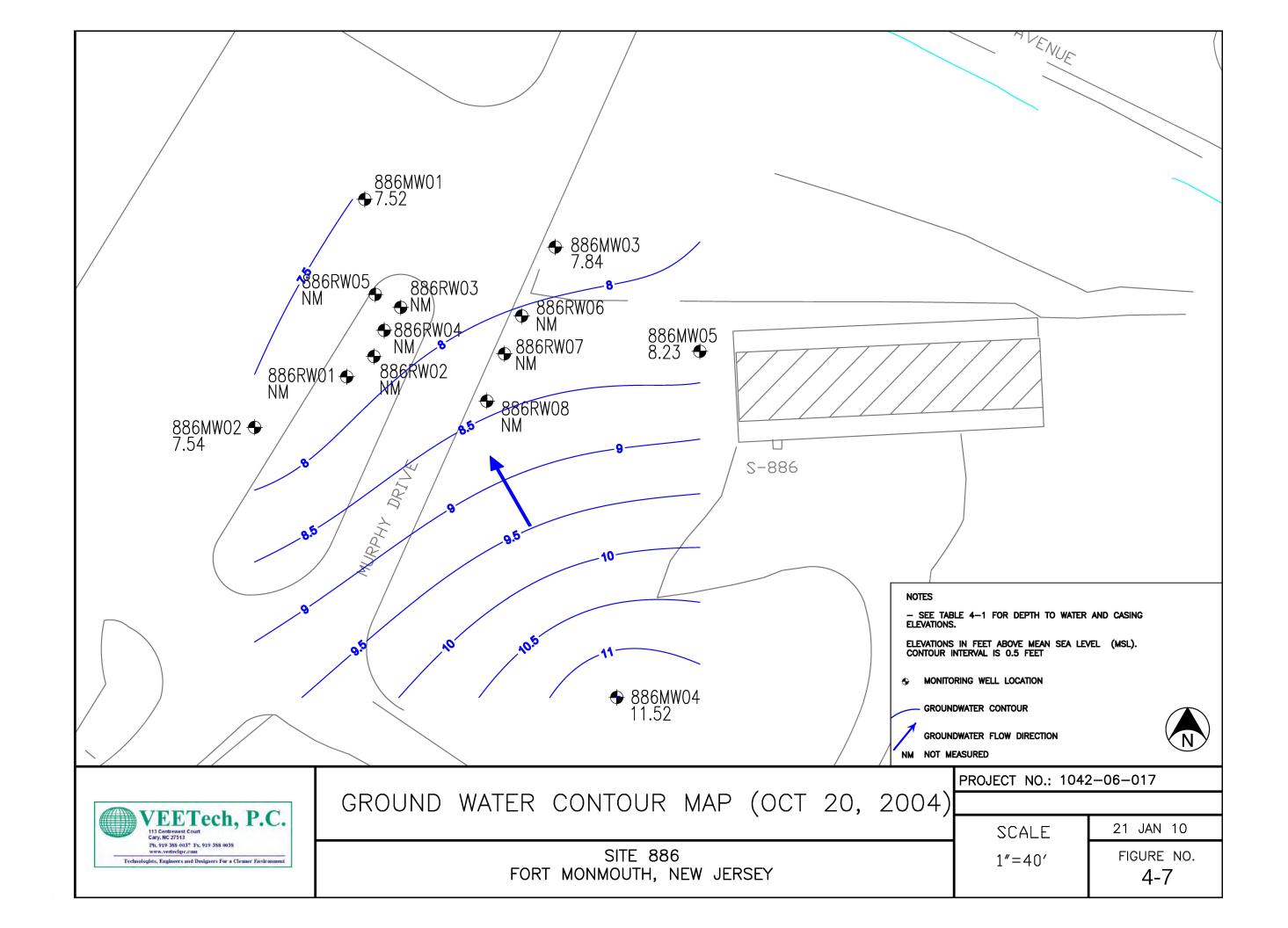


APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.



COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

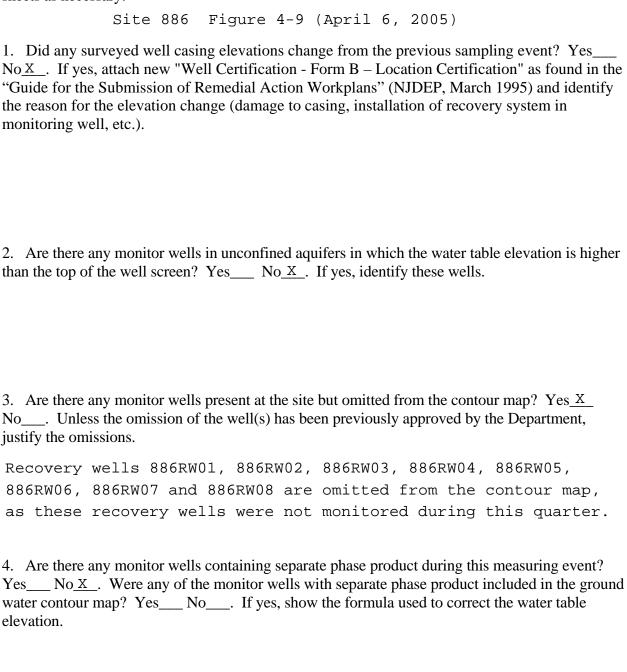


APPENDIX G Contour Map Reporting Form

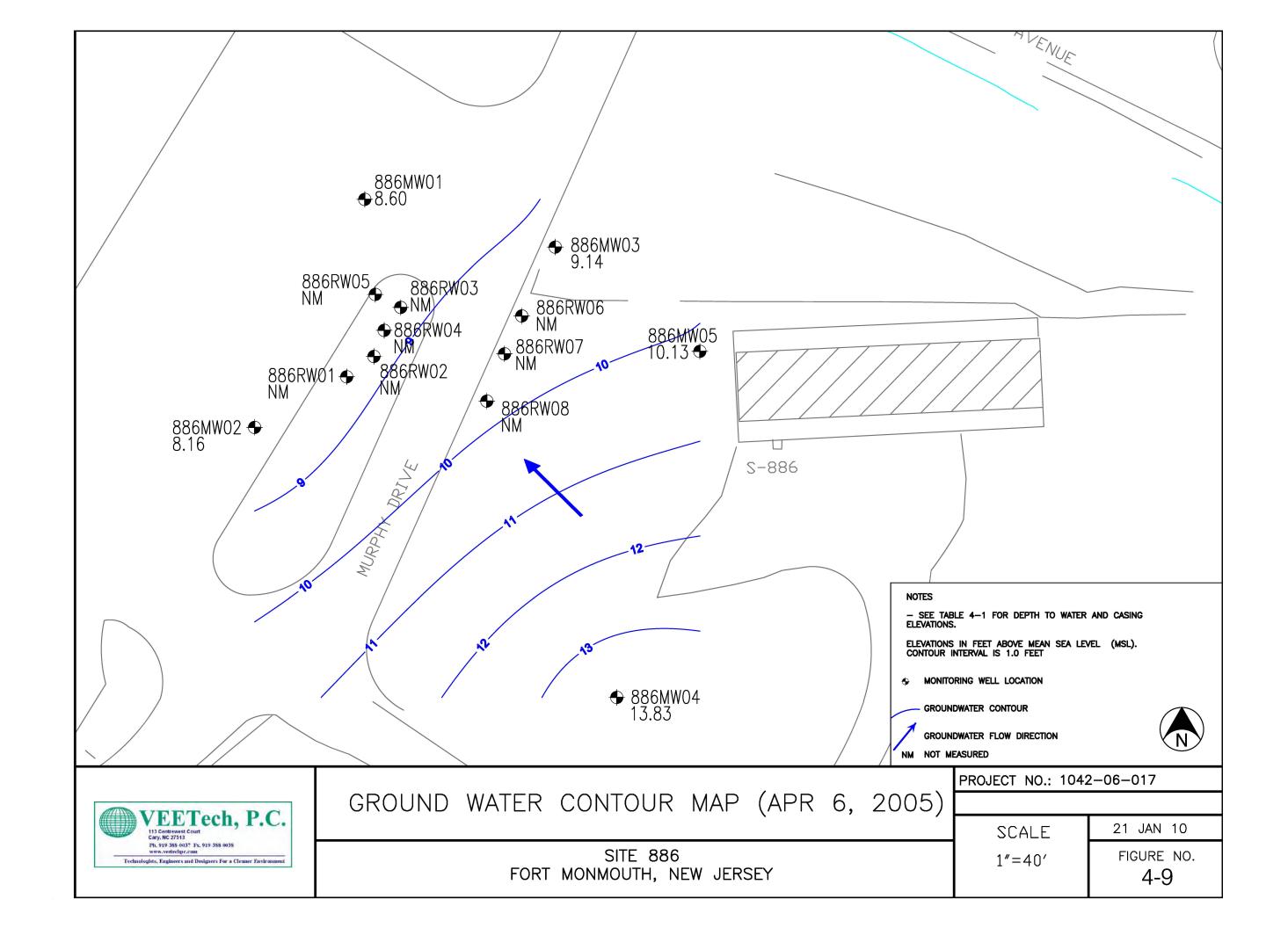
This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G **Contour Map Reporting Form**

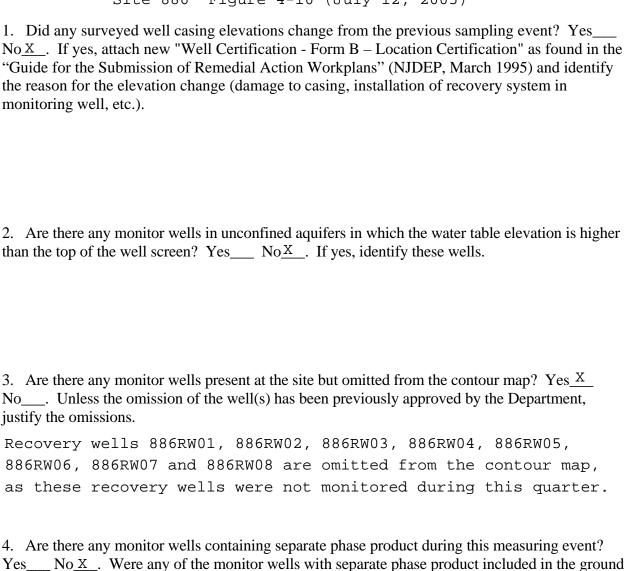

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-8 (contour map not constructed) (January 6 & 7, 2005) 1. Did any surveyed well casing elevations change from the previous sampling event? Yes____ $No \times X$. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No \underline{X} _. If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Due to the ground water gauging event occurred on two separate days, this contour map is omitted. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.


COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G Contour Map Reporting Form

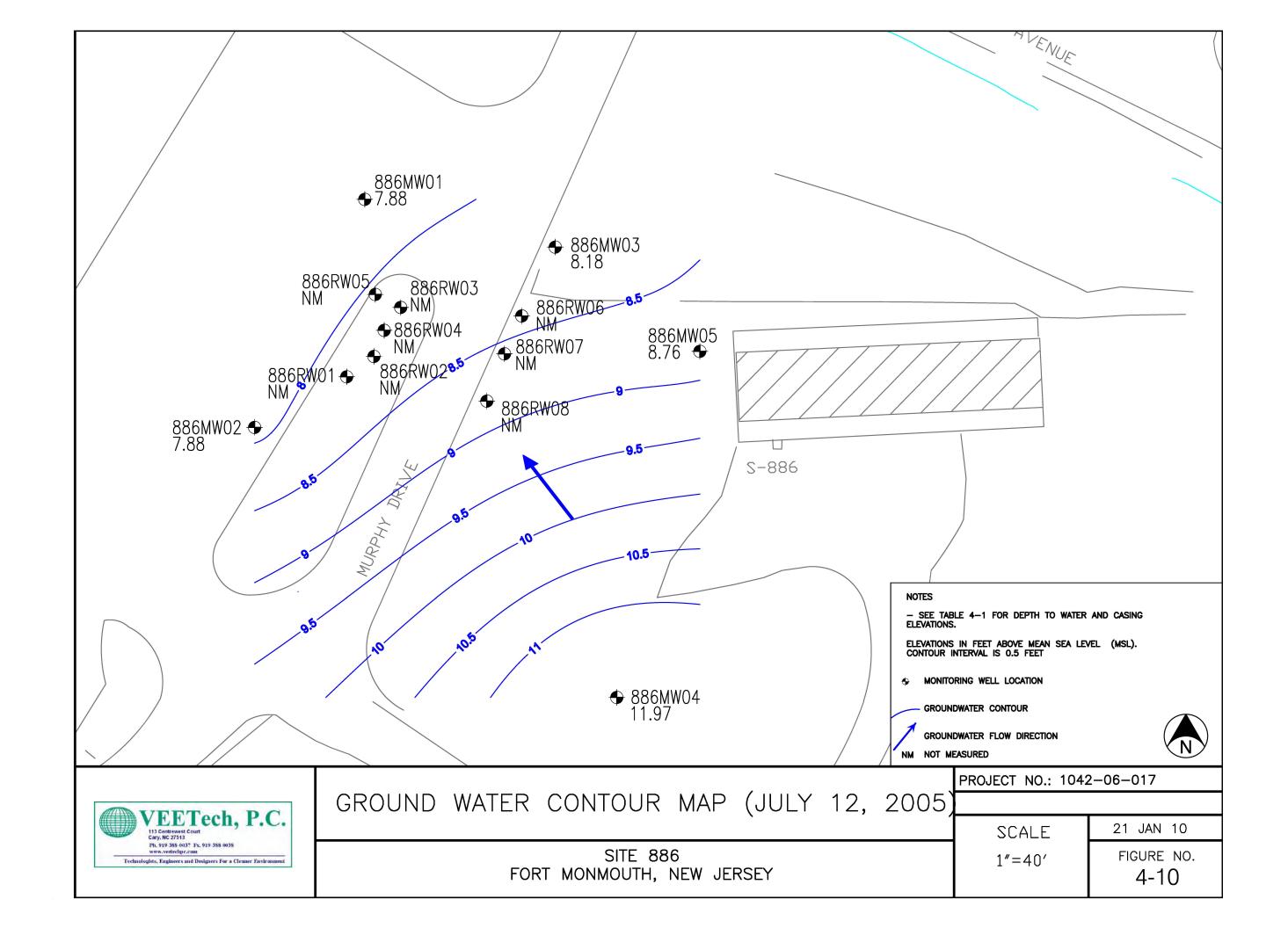
This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.


COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G Contour Map Reporting Form

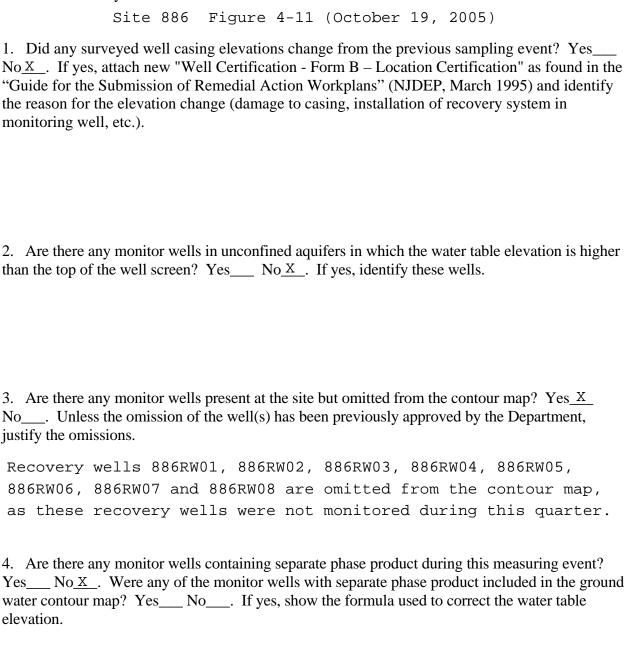
This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-10 (July 12, 2005)

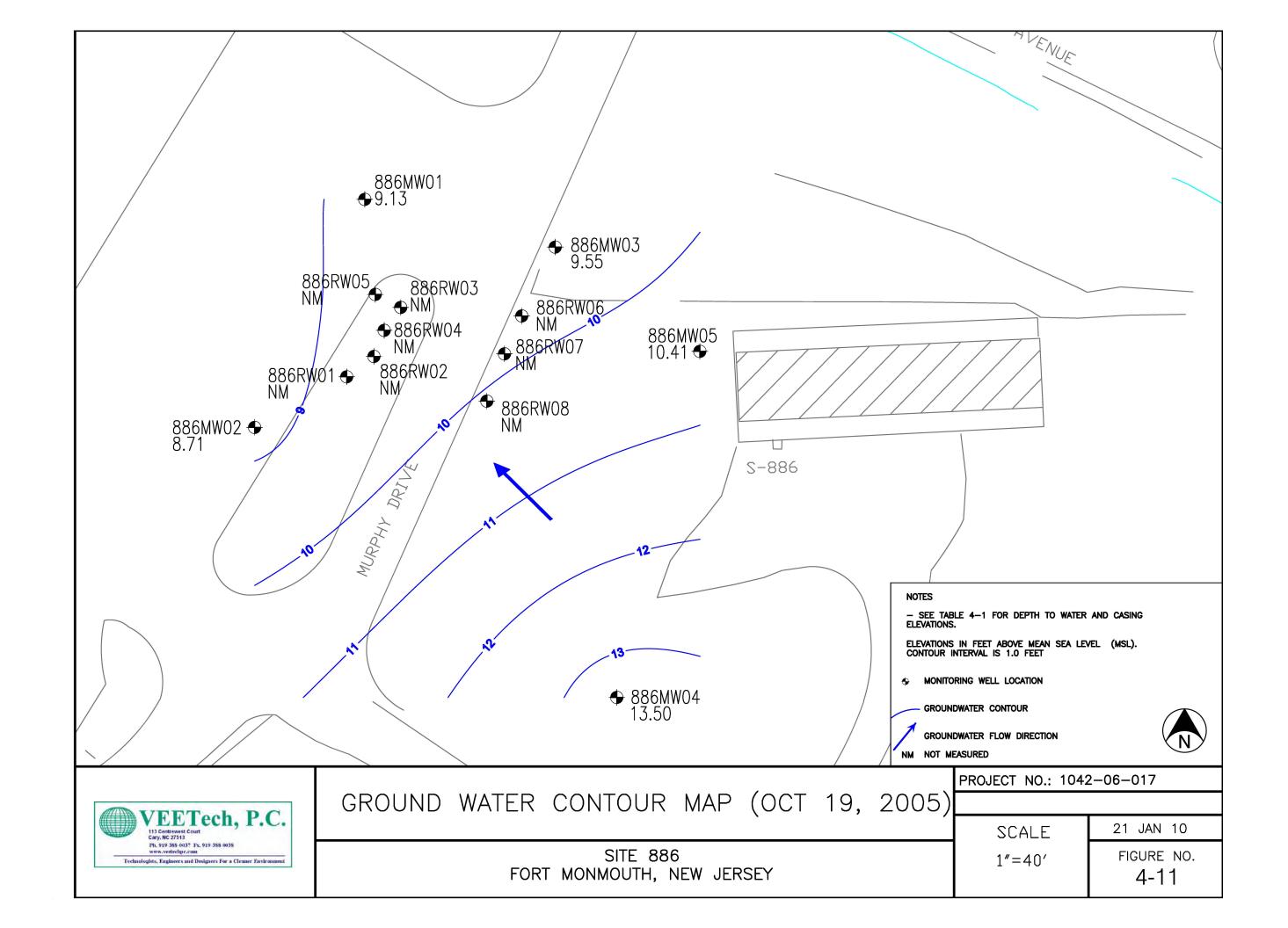


5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes___ No_X_. If yes, discuss the reasons for the change.

water contour map? Yes___ No___. If yes, show the formula used to correct the water table


elevation.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes_X_No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X_, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program


APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes___ No_X_. If yes, discuss the reasons for the change.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes_X_No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X_, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal.	Use additional
sheets as necessary.	

Site 886 Figure 4-12 (contour map not constructed) (January 24 & 25, 2006)

1. Did any surveyed well casing elevations change from the previous sampling event? Yes____No \underline{X} _. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).

2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No_X_. If yes, identify these wells.

3. Are there any monitor wells present at the site but omitted from the contour map? Yes____No_x_. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.

Due to the ground water gauging event occurred on two separate days, this contour map is omitted.

4. Are there any monitor wells containing separate phase product during this measuring event? Yes____ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

Recovery well 886RW04 had 0.03 foot of LNAPL

Depth to ground water was corrected for LNAPL using formula

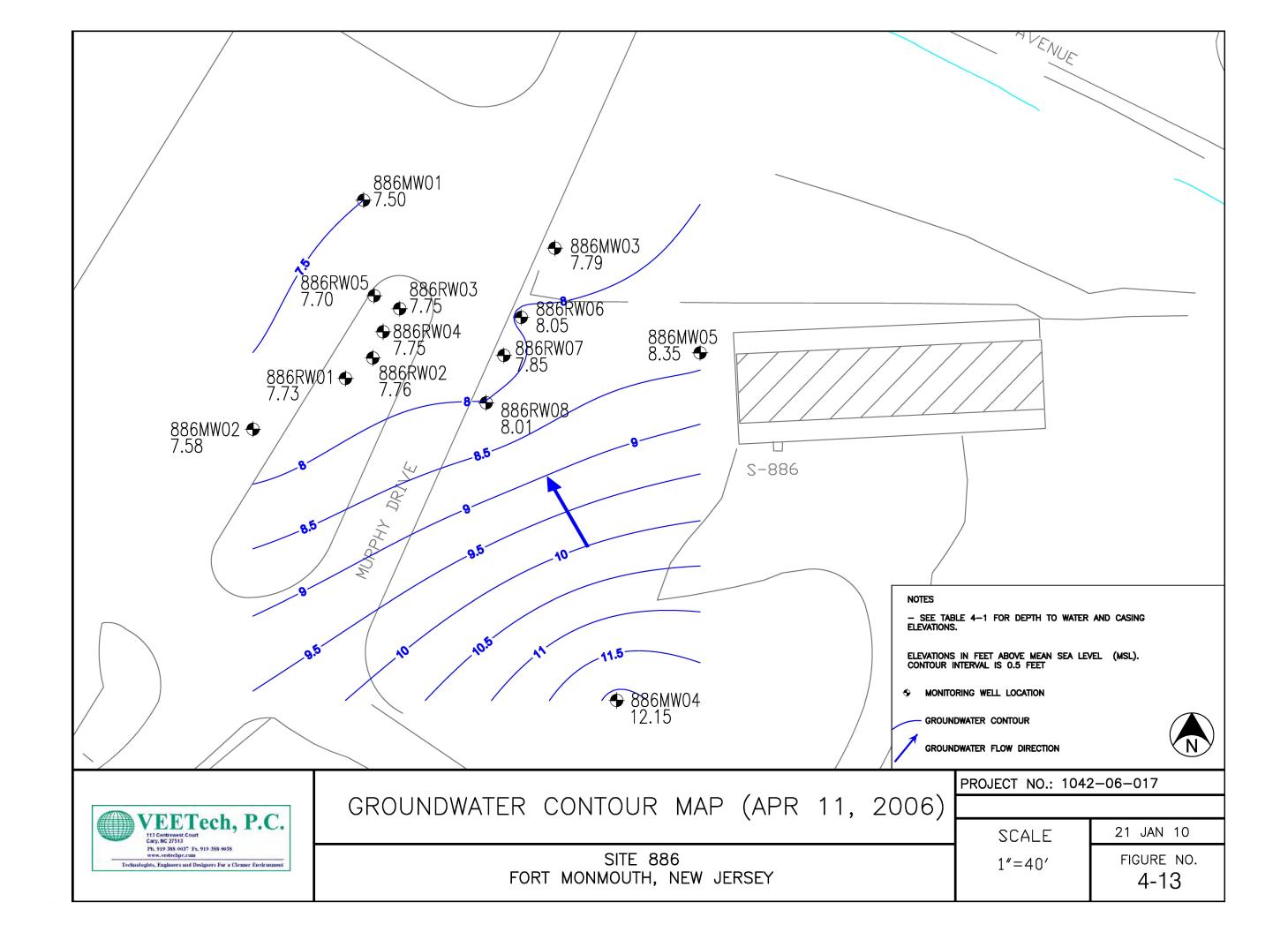
DTW(corrected)=DTW(measured) - [DTW(measured)-DTP(measured)]x0.8

5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes___ No___. If yes, discuss the reasons for the change. N/A

	COURTESY		THE DEPAR	RTMENT'S F	RULES ALL

6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. N/A

APPENDIX G Contour Map Reporting Form

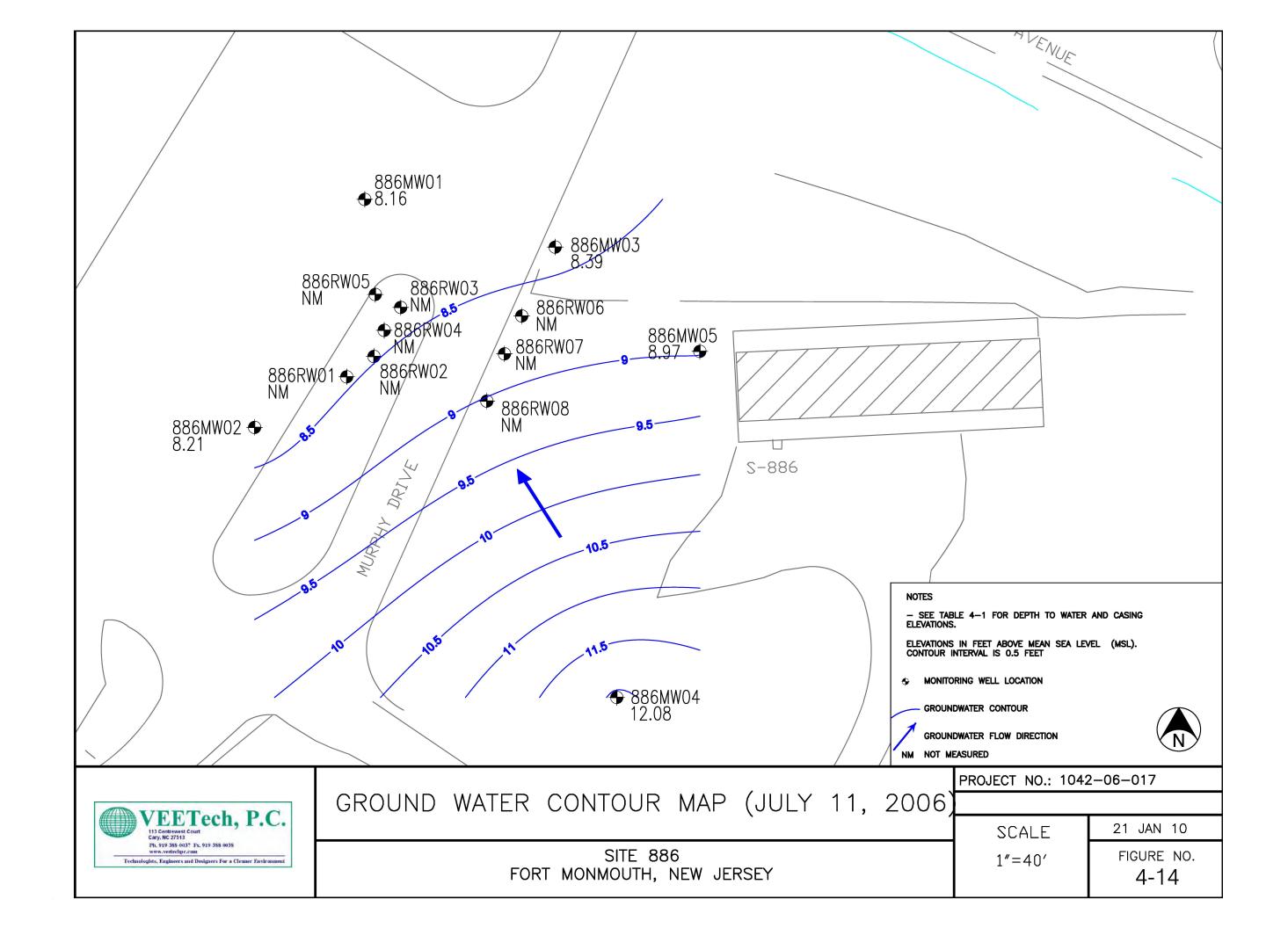

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-13 (April 11, 2006)

1. Did any surveyed well casing elevations change from the previous sampling event? YesNo_X If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes No_ \underline{x} . If yes, identify these wells.
3. Are there any monitor wells present at the site but omitted from the contour map? YesNo_X Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4. Are there any monitor wells containing separate phase product during this measuring event? Yes No_X Were any of the monitor wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes No \times No \times If yes, discuss the reasons for the change.

NOTE: THIS IS A COURTESY COPY OF THIS RULE. ALL OF THE DEPARTMENT'S RULES ALL COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X_, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used.

Surfer Contouring Program


APPENDIX G **Contour Map Reporting Form**

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-14 (July 11, 2006)

- 1. Did any surveyed well casing elevations change from the previous sampling event? Yes____ No_x_. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ Nox_. If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Recovery wells 886RW01, 886RW02, 886RW03, 886RW04, 886RW05, 886RW06, 886RW07, and 886RW08 are omitted from the contour map, as these recovery wells were not monitored during this quarter. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes____ No_X. If yes, discuss the reasons for the change.

NOTE: THIS IS A COURTESY COPY OF THIS RULE. ALL OF THE DEPARTMENT'S RULES ALL COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used.
Surfer Contouring Program

APPENDIX G **Contour Map Reporting Form**

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-15 (contour map not constructed) (November 14 & 15, 2006) 1. Did any surveyed well casing elevations change from the previous sampling event? Yes____ $No \times X$. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes___ No \underline{X} . If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Due to the ground water gauging event occurred on two separate days, this contour map is omitted. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

5. Has the ground water flow direction changed more than 45 degrees from the previous ground

water contour map? Yes___ No___. If yes, discuss the reasons for the change. N/A

NOTE: THIS IS A COURTESY COPY OF THIS RULE. ALL OF THE DEPARTMENT'S RULES ALL COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence. N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X
No If no, justify inclusion of those wells.

N/A

APPENDIX G **Contour Map Reporting Form**

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-16 (contour map not constructed) (January 25 & 26, 2007) 1. Did any surveyed well casing elevations change from the previous sampling event? Yes____ $No \times X$. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No_X_. If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Due to the ground water gauging event occurred on two separate days, this contour map is omitted. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

5. Has the ground water flow direction changed more than 45 degrees from the previous ground

water contour map? Yes___ No___. If yes, discuss the reasons for the change. N/A

NOTE:	THIS IS A	COURTESY	COPY OF 1	THIS RULE.	ALL OF	THE DEP	ARTMENT'S	RULES	ALL
COMP	LED IN TIT	TLE 7 OF THE	NJ ADMIN	ISTRATIVE	CODE.				

6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-
N/A
drawn? If computer aided or generated, identify the interpolation method(s) used.

APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal.	Use additional
sheets as necessary.	

Site 886 Figure 4-17 (contour map not constructed)
(April 18 & 19, 2007)
Surveyed well casing elevations change from the previous sampling event? Y

1. Did any surveyed well casing elevations change from the previous sampling event? Yes____No $\underline{\times}$ _. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).

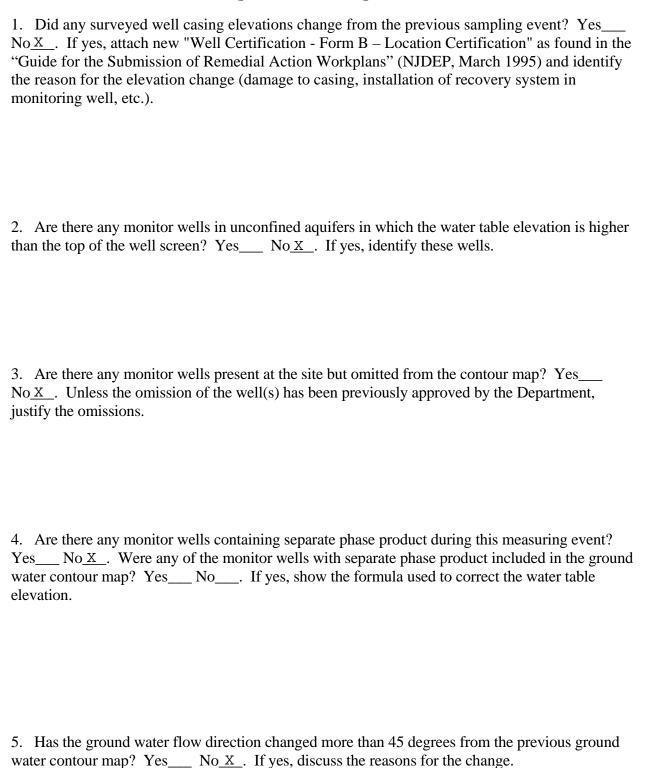
2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No \underline{X} _. If yes, identify these wells.

3. Are there any monitor wells present at the site but omitted from the contour map? Yes<u>x</u> No___. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.

Due to the ground water gauging event occurred on two separate days, this contour map is omitted.

4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes____ No___. If yes, discuss the reasons for the change.


NOTE:	THIS IS A	COURTESY	COPY OF TH	HIS RULE.	ALL OF	THE DEP	ARTMENT'S	RULES	ALL
COMPI	LED IN TIT	TLE 7 OF THE	NJ ADMINIS	STRATIVE	CODE.				

6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence. N/A
N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used.
N/A

APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-18 (August 2, 2007)

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G **Contour Map Reporting Form**

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-19 (contour map not constructed) (October 11 & 12, 2007) 1. Did any surveyed well casing elevations change from the previous sampling event? Yes____ $No \times X$. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No_X_. If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Due to the ground water gauging event occurred on two separate days, this contour map is omitted. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

N/A

5. Has the ground water flow direction changed more than 45 degrees from the previous ground

water contour map? Yes___ No___. If yes, discuss the reasons for the change.

 	PY OF THIS RULE ADMINISTRATIVE	 EPARTMENT'S RULE	S ALL

6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence. N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. N/A

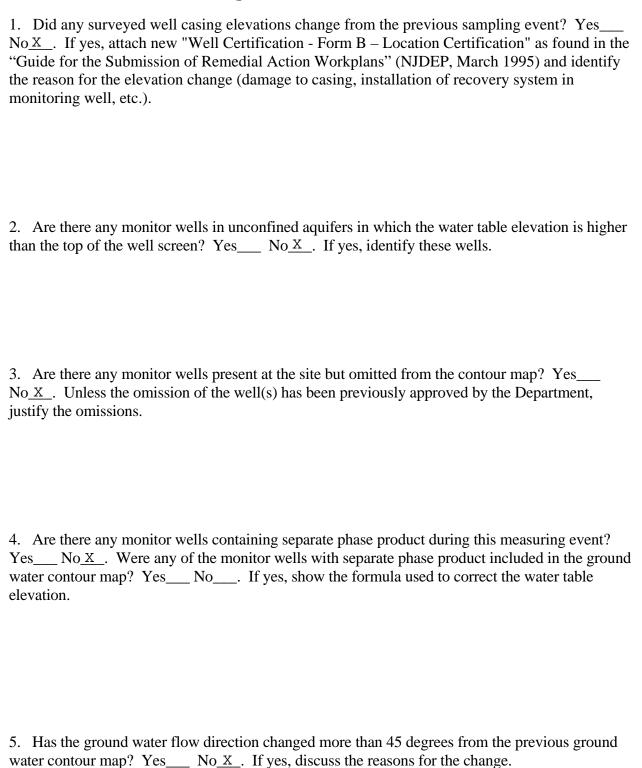
APPENDIX G **Contour Map Reporting Form**

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

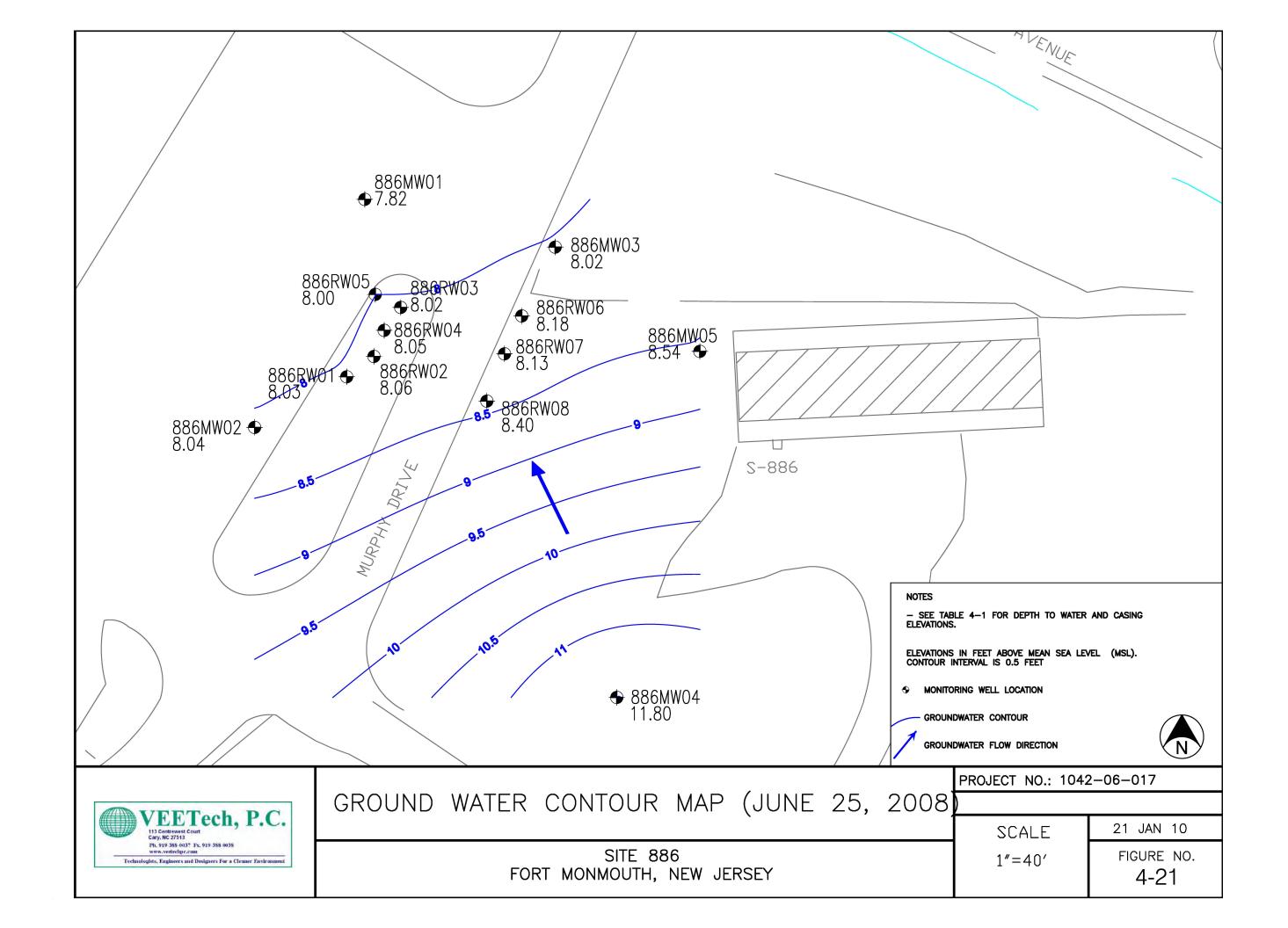
Site 886 Figure 4-20 (contour map not constructed) (March 27 & 28, 2008) 1. Did any surveyed well casing elevations change from the previous sampling event? Yes $No \times X$. If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.). 2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes____ No_X_. If yes, identify these wells. 3. Are there any monitor wells present at the site but omitted from the contour map? Yes X No . Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Due to the ground water gauging event occurred on two separate days, this contour map is omitted. 4. Are there any monitor wells containing separate phase product during this measuring event? Yes___ No_X_. Were any of the monitor wells with separate phase product included in the ground water contour map? Yes___ No___. If yes, show the formula used to correct the water table elevation.

5. Has the ground water flow direction changed more than 45 degrees from the previous ground

water contour map? Yes___ No___. If yes, discuss the reasons for the change.


NOTE: THIS IS A COURTESY CO COMPILED IN TITLE 7 OF THE NJ	 OF THE DEPARTMENT'S RULES ALL DE.

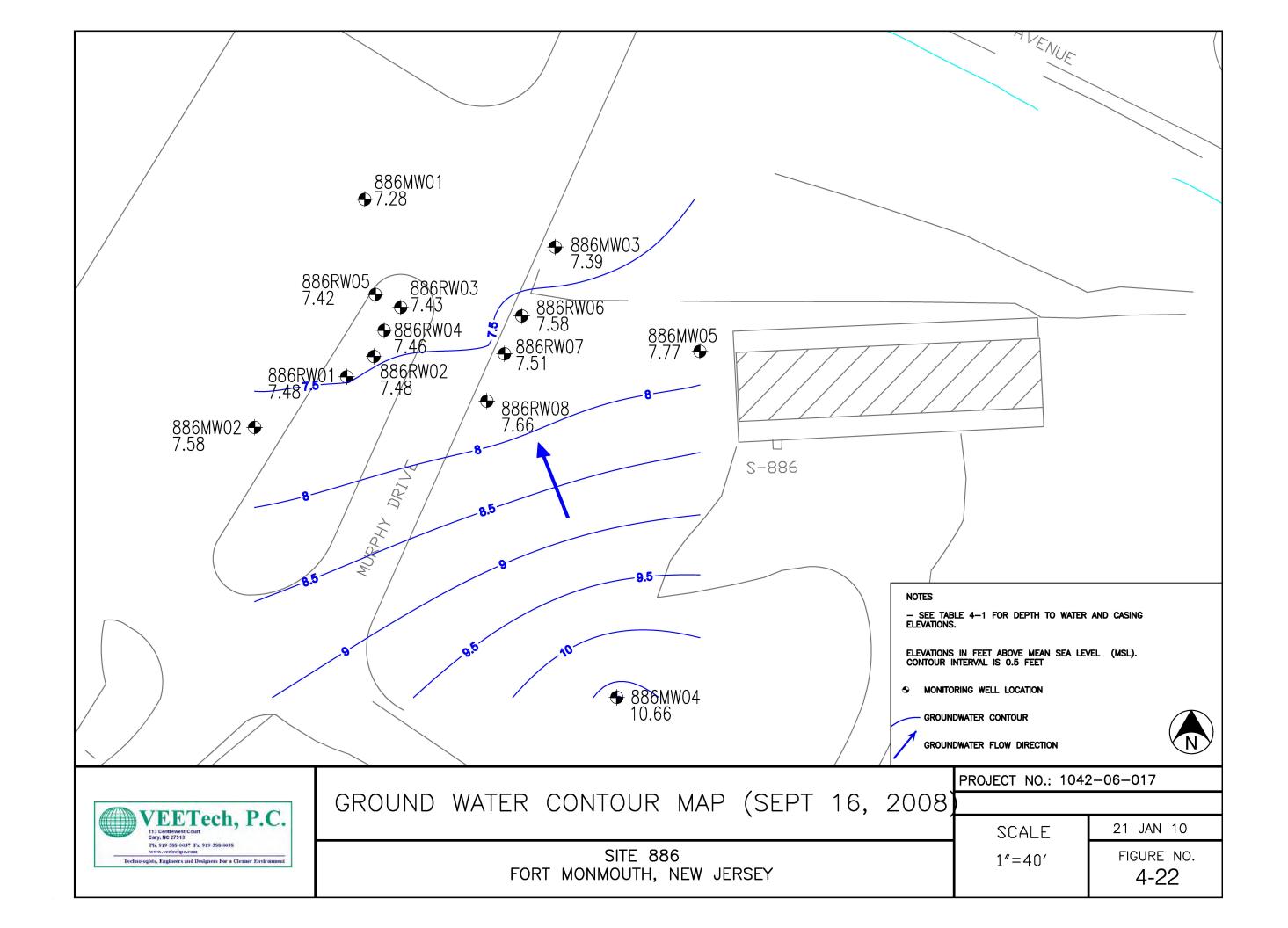
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
N/A
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes_X_No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. N/A


APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-21 (June 25, 2008)

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes_X_No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X_, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program


APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-22 (September 16, 2008)

1. Did any surveyed well casing elevations change from the previous sampling event? Yes No_X If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes No_X If yes, identify these wells.
3. Are there any monitor wells present at the site but omitted from the contour map? Yes No_X Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4. Are there any monitor wells containing separate phase product during this measuring event? Yes No_X Were any of the monitor wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes No X . If yes, discuss the reasons for the change.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

APPENDIX G Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Site 886 Figure 4-23 (November 12, 2008)

1. Did any surveyed well casing elevations change from the previous sampling event? YesNo_X If yes, attach new "Well Certification - Form B – Location Certification" as found in the "Guide for the Submission of Remedial Action Workplans" (NJDEP, March 1995) and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
2. Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes No_ \overline{X} If yes, identify these wells.
3. Are there any monitor wells present at the site but omitted from the contour map? Yes No_x Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
4. Are there any monitor wells containing separate phase product during this measuring event? Yes No_X Were any of the monitor wells with separate phase product included in the ground water contour map? Yes No If yes, show the formula used to correct the water table elevation.
5. Has the ground water flow direction changed more than 45 degrees from the previous ground water contour map? Yes No_X If yes, discuss the reasons for the change.

COMPILED IN TITLE 7 OF THE NJ ADMINISTRATIVE CODE.
6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes No_X Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No If no, justify inclusion of those wells.
8. Were the ground water contours computer generated, computer aided_X, or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. Surfer Contouring Program

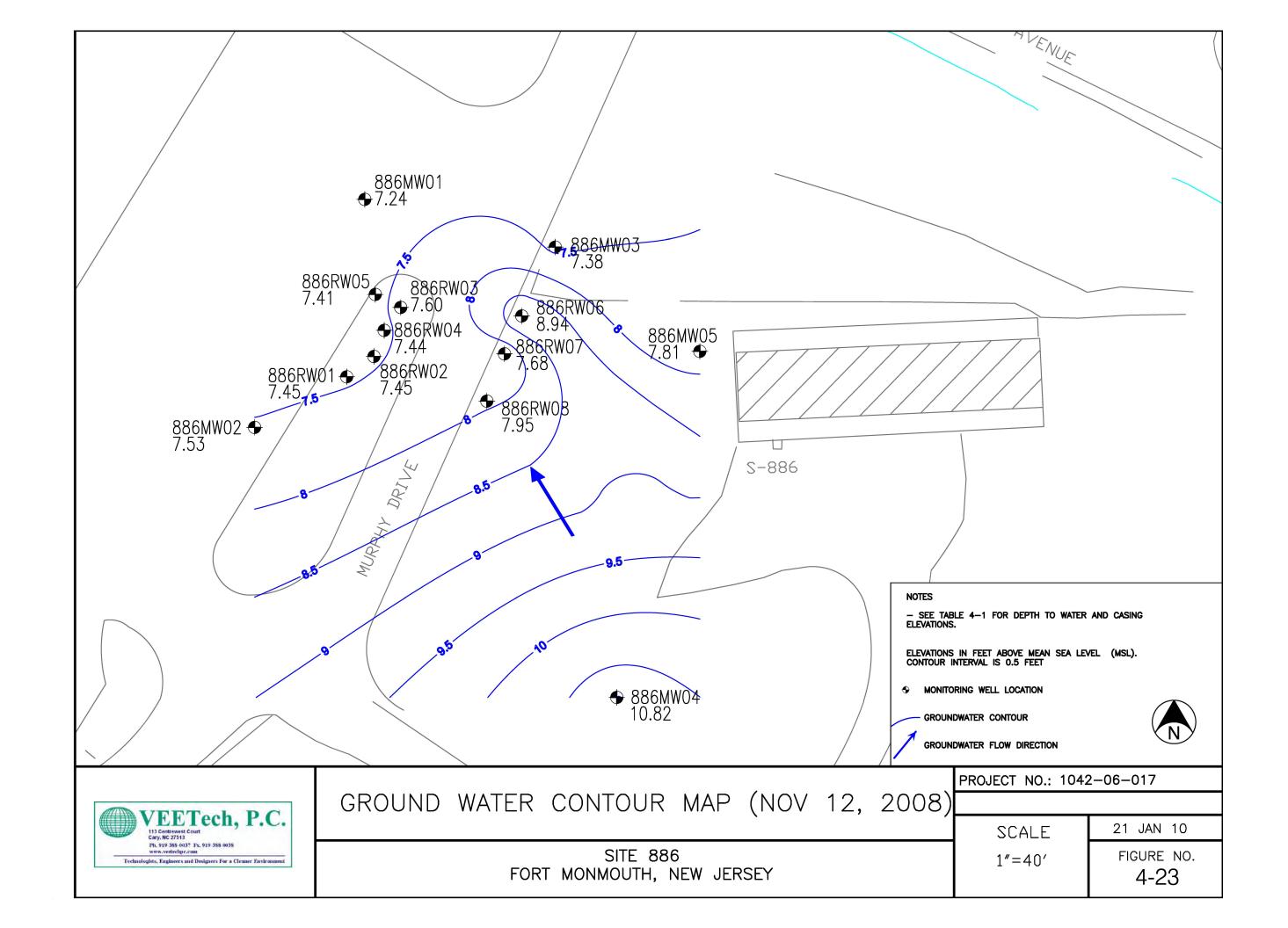


FIGURE 5-2
Benzene Concentrations vs Time at 886RW01
(1st Quarter 2003 through 4th Quarter 2008)
Site 886
Fort Monmouth, New Jersey

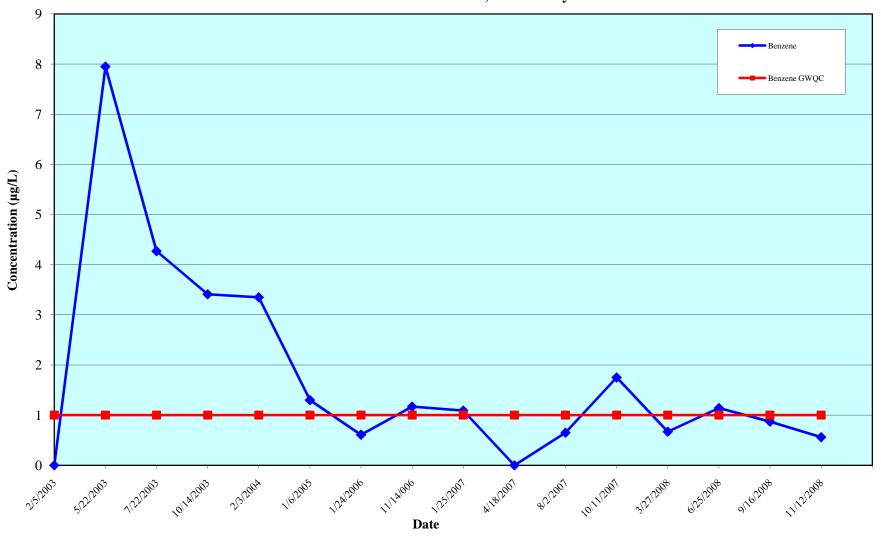
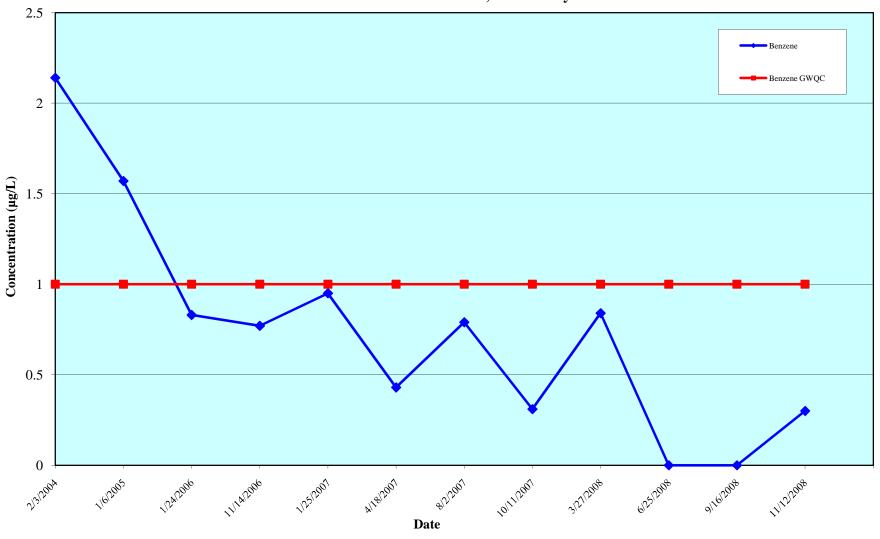
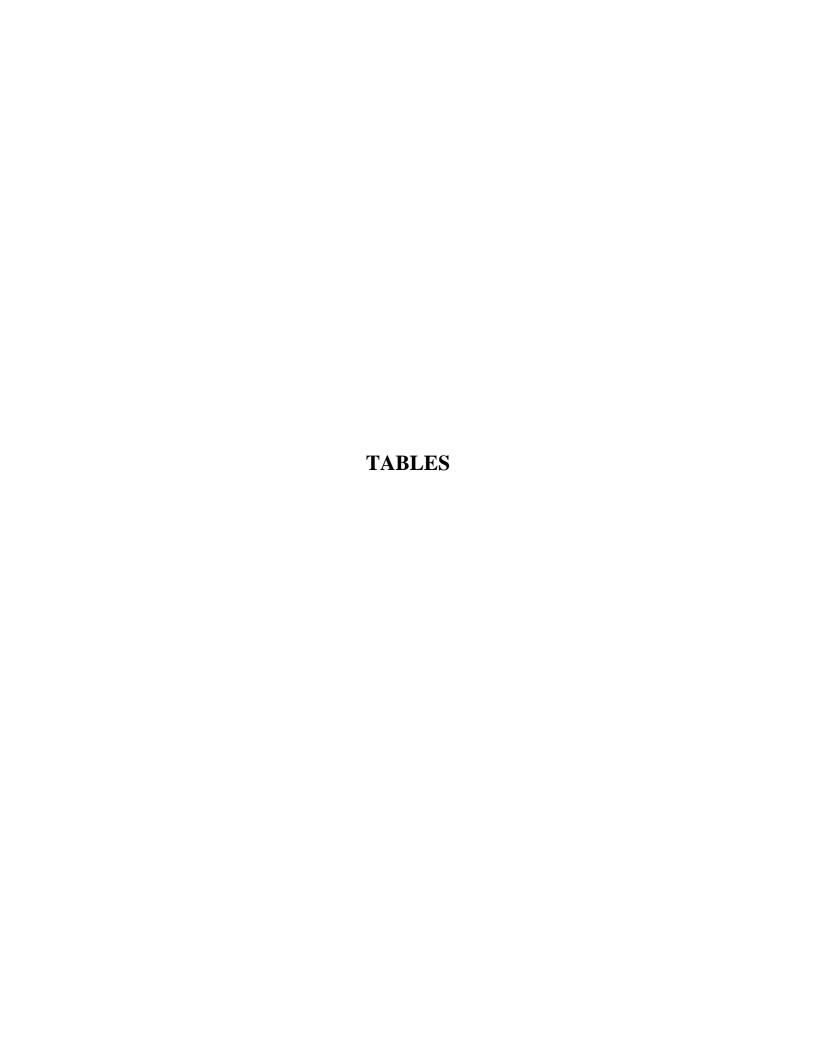




FIGURE 5-3
Benzene Concentrations vs Time at 886RW02
(1st Quarter 2004 through 4th Quarter 2008)
Site 886
Fort Monmouth, New Jersey

Table 3-1 Product Recovery Measurements Site 886

Fort Monmouth, New Jersey

Date	Product Thickness (Inches)	Volume Removed (Pints)
	886RW04	
4/6/05	0.03	2
4/12/05	Trace	0
4/22/05	Trace	0
4/29/05	Trace	0
5/5/05	Trace	0
5/18/05	Trace	0
6/27/05	Trace	0
9/1/05	0	0

Table 4-1 Ground Water Elevation Summary Site 886 Fort Monmouth, New Jersey

#2 #3 #4

Well ID	TOC ⁽¹⁾	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)
886MW01	14.04	05/22/03	6.12	7.92	07/22/03	5.92	8.12	10/14/03	6.80	7.24
886MW02	13.99	05/22/03	6.31	7.68	07/22/03	6.02	7.97	10/14/03	6.65	7.34
886MW03	14.79	05/22/03	6.53	8.26	07/22/03	6.35	8.44	10/14/03	7.32	7.47
886MW04	19.31	05/22/03	6.94	12.37	07/22/03	7.05	12.26	10/14/03	8.20	11.11
886MW05	19.38	05/22/03	10.60	8.78	07/22/03	10.38	9.00	10/14/03	11.51	7.87
886RW01	14.71	05/22/03	6.65	8.06	07/22/03	6.37	8.34	10/14/03	7.30	7.41
886RW02	15.01	NM	NM	NM	NM	NM	NM	NM	NM	NM
886RW03	15.03	NM	NM	NM	NM	NM	NM	NM	NM	NM
886RW04	14.89	NM	NM	NM	NM	NM	NM	NM	NM	NM
886RW05	14.80	NM	NM	NM	NM	NM	NM	NM	NM	NM
886RW06	15.25	NM	NM	NM	NM	NM	NM	NM	NM	NM
886RW07	15.41	NM	NM	NM	NM	NM	NM	NM	NM	NM
886RW08	14.91	05/22/03	6.44	8.47	07/22/03	6.30	8.61	10/14/03	7.30	7.61

Notes:

- (1) Elevation of survey mark at top of casing (TOC).
- (2) Depth to water (DTW) is collected on multiple days.
- (3) Depth to water in feet from TOC.
- (4) Ground water elevation in feet above mean sea level (msl).

NM = Not Measured.

Table 4-1 Ground Water Elevation Summary Site 886 Fort Monmouth, New Jersey

#5 #6 #7

Well ID	TOC ⁽¹⁾	Date (2)	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)
886MW01	14.04	02/03/04	6.75	7.29	05/25/04	6.00	8.04	08/04/04	6.53	7.51
886MW02	13.99	02/03/04	6.76	7.23	05/25/04	6.10	7.89	08/04/04	6.32	7.67
886MW03	14.79	02/03/04	7.21	7.58	05/25/04	6.41	8.38	08/04/04	7.07	7.72
886MW04	19.31	02/03/04	7.46	11.85	05/25/04	10.41	8.90	08/04/04	7.97	11.34
886MW05	19.38	02/03/04	11.25	8.13	05/25/04	10.45	8.93	08/04/04	11.25	8.13
886RW01	14.71	02/02/04	7.28	7.43	NM	NM	NM	NM	NM	NM
886RW02	15.01	02/02/04	7.51	7.50	NM	NM	NM	NM	NM	NM
886RW03	15.03	02/02/04	7.51	7.52	NM	NM	NM	NM	NM	NM
886RW04	14.89	02/02/04	7.30	7.59	NM	NM	NM	NM	NM	NM
886RW05	14.80	02/02/04	7.43	7.37	NM	NM	NM	NM	NM	NM
886RW06	15.25	02/02/04	7.58	7.67	NM	NM	NM	NM	NM	NM
886RW07	15.41	02/02/04	7.79	7.62	NM	NM	NM	NM	NM	NM
886RW08	14.91	02/02/04	7.22	7.69	NM	NM	NM	NM	NM	NM

Notes:

- (1) Elevation of survey mark at top of casing (TOC).
- (2) Depth to water (DTW) is collected on multiple days.
- (3) Depth to water in feet from TOC.
- (4) Ground water elevation in feet above mean sea level (msl).

NM = Not Measured.

Table 4-1 Ground Water Elevation Summary Site 886 Fort Monmouth, New Jersey

#8 #9 #10

Well ID	TOC ⁽¹⁾	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)
886MW01	14.04	10/20/04	6.52	7.52	01/07/05	5.14	8.90	04/06/05	5.44	8.60
886MW02	13.99	10/20/04	6.45	7.54	01/07/05	6.32	7.67	04/06/05	5.83	8.16
886MW03	14.79	10/20/04	6.95	7.84	01/07/05	6.45	8.34	04/06/05	5.65	9.14
886MW04	19.31	10/20/04	7.79	11.52	01/07/05	6.28	13.03	04/06/05	5.48	13.83
886MW05	19.38	10/20/04	11.15	8.23	01/07/05	10.40	8.98	04/06/05	9.25	10.13
886RW01	14.71	NM	NM	NM	01/06/05	6.44	8.27	NM	NM	NM
886RW02	15.01	NM	NM	NM	01/06/05	6.98	8.03	NM	NM	NM
886RW03	15.03	NM	NM	NM	01/06/05	4.88	10.15	NM	NM	NM
886RW04	14.89	NM	NM	NM	01/06/05	6.88	8.01	NM	NM	NM
886RW05	14.80	NM	NM	NM	01/06/05	6.82	7.98	NM	NM	NM
886RW06	15.25	NM	NM	NM	01/07/05	2.34	12.91	NM	NM	NM
886RW07	15.41	NM	NM	NM	01/07/05	6.13	9.28	NM	NM	NM
886RW08	14.91	NM	NM	NM	01/07/05	3.95	10.96	NM	NM	NM

Notes:

- (1) Elevation of survey mark at top of casing (TOC).
- (2) Depth to water (DTW) is collected on multiple days.
- (3) Depth to water in feet from TOC.
- (4) Ground water elevation in feet above mean sea level (msl).

NM = Not Measured.

Table 4-1 Ground Water Elevation Summary Site 886 Fort Monmouth, New Jersey

#11 #12 #13

Well ID	TOC ⁽¹⁾	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date (2)	Depth to Water ⁽³⁾	Ground Water Elevation(4)
886MW01	14.04	07/12/05	6.16	7.88	10/19/05	4.91	9.13	01/24/06	4.92	9.12
886MW02	13.99	07/12/05	6.11	7.88	10/19/05	5.28	8.71	01/24/06	5.36	8.63
886MW03	14.79	07/12/05	6.61	8.18	10/19/05	5.24	9.55	01/25/06	5.13	9.66
886MW04	19.31	07/12/05	7.34	11.97	10/19/05	5.81	13.50	01/25/06	4.86	14.45
886MW05	19.38	07/12/05	10.62	8.76	10/19/05	8.97	10.41	01/25/06	8.62	10.76
886RW01	14.71	NM	NM	NM	NM	NM	NM	01/24/06	5.35	9.36
886RW02	15.01	NM	NM	NM	NM	NM	NM	01/24/06	5.55	9.46
886RW03	15.03	NM	NM	NM	NM	NM	NM	01/24/06	5.17	9.86
886RW04	14.89	NM	NM	NM	NM	NM	NM	01/24/06 *	5.37	9.52
886RW05	14.80	NM	NM	NM	NM	NM	NM	01/24/06	5.37	9.43
886RW06	15.25	NM	NM	NM	NM	NM	NM	01/25/06	2.08	13.17
886RW07	15.41	NM	NM	NM	NM	NM	NM	01/25/06	4.73	10.68
886RW08	14.91	NM	NM	NM	NM	NM	NM	01/25/06	3.33	11.58

Notes:

- (1) Elevation of survey mark at top of casing (TOC).
- (2) Depth to water (DTW) is collected on multiple days.
- (3) Depth to water in feet from TOC.
- (4) Ground water elevation in feet above mean sea level (msl).

NM = Not Measured.

Table 4-1 Ground Water Elevation Summary Site 886 Fort Monmouth, New Jersey

#14 #15 #16

Well ID	TOC ⁽¹⁾	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date (2)	Depth to Water ⁽³⁾	Ground Water Elevation(4)
886MW01	14.04	04/11/06	6.54	7.50	07/11/06	5.88	8.16	11/14/06	5.46	8.58
886MW02	13.99	04/11/06	6.41	7.58	07/11/06	5.78	8.21	11/14/06	5.48	8.51
886MW03	14.79	04/11/06	7	7.79	07/11/06	6.4	8.39	11/14/06	5.93	8.86
886MW04	19.31	04/11/06	7.16	12.15	07/11/06	7.23	12.08	11/14/06	6.29	13.02
886MW05	19.38	04/11/06	11.03	8.35	07/11/06	10.41	8.97	11/14/06	9.75	9.63
886RW01	14.71	04/11/06	6.98	7.73	NM	NM	NM	11/14/06	5.89	8.82
886RW02	15.01	04/11/06	7.25	7.76	NM	NM	NM	11/14/06	6.17	8.84
886RW03	15.03	04/11/06	7.28	7.75	NM	NM	NM	11/14/06	5.52	9.51
886RW04	14.89	04/11/06	7.14	7.75	NM	NM	NM	11/14/06	6.05	8.84
886RW05	14.80	04/11/06	7.1	7.70	NM	NM	NM	11/14/06	6	8.80
886RW06	15.25	04/11/06	7.2	8.05	NM	NM	NM	11/15/06	2.17	13.08
886RW07	15.41	04/11/06	7.56	7.85	NM	NM	NM	11/15/06	5.67	9.74
886RW08	14.91	04/11/06	6.9	8.01	NM	NM	NM	11/15/06	4.44	10.47

Notes:

- (1) Elevation of survey mark at top of casing (TOC).
- (2) Depth to water (DTW) is collected on multiple days.
- (3) Depth to water in feet from TOC.
- (4) Ground water elevation in feet above mean sea level (msl).

NM = Not Measured.

Table 4-1 Ground Water Elevation Summary Site 886 Fort Monmouth, New Jersey

#17 #18 #19

Well ID	TOC ⁽¹⁾	Date (2)	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date (2)	Depth to Water ⁽³⁾	Ground Water Elevation(4)	Date	Depth to Water ⁽³⁾	Ground Water Elevation(4)
886MW01	14.04	01/25/07	5.89	8.15	04/19/07	4.58	9.46	08/02/07	5.92	8.12
886MW02	13.99	01/25/07	6.02	7.97	04/19/07	5.18	8.81	08/02/07	5.98	8.01
886MW03	14.79	01/26/07	6.38	8.41	04/19/07	4.88	9.91	08/02/07	6.45	8.34
886MW04	19.31	01/26/07	6.69	12.62	04/19/07	5.08	14.23	08/02/07	7.26	12.05
886MW05	19.38	01/26/07	10.34	9.04	04/19/07	8.46	10.92	08/02/07	10.49	8.89
886RW01	14.71	01/25/07	6.48	8.23	04/18/07	5.05	9.66	08/02/07	6.47	8.24
886RW02	15.01	01/25/07	6.66	8.35	04/18/07	5.17	9.84	08/02/07	6.71	8.30
886RW03	15.03	01/25/07	6.69	8.34	04/18/07	4.01	11.02	08/02/07	6.73	8.30
886RW04	14.89	01/25/07	6.54	8.35	04/18/07	4.98	9.91	08/02/07	6.59	8.30
886RW05	14.80	01/25/07	6.49	8.31	04/18/07	4.94	9.86	08/02/07	6.53	8.27
886RW06	15.25	01/26/07	6.42	8.83	04/18/07	2.08	13.17	08/02/07	6.5	8.75
886RW07	15.41	01/26/07	6.91	8.50	04/19/07	5.22	10.19	08/02/07	6.92	8.49
886RW08	14.91	01/26/07	5.81	9.10	04/19/07	3.01	11.90	08/02/07	5.98	8.93

Notes:

- (1) Elevation of survey mark at top of casing (TOC).
- (2) Depth to water (DTW) is collected on multiple days.
- (3) Depth to water in feet from TOC.
- (4) Ground water elevation in feet above mean sea level (msl).

NM = Not Measured.

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
#2	886MW01	3024904	5/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW02	3024905	5/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW03	3024906	5/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW04	3024907	5/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW05	3024908	5/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886RW01	3024909	5/22/2003	Aqueous	VOCs	624
	886RW08	3024910	5/22/2003	Aqueous	VOCs	624
#3	886MW01	3038404	7/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW02	3038405	7/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW03	3038406	7/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW04	3038407	7/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW05	3038408	7/22/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886RW01	3038409	7/22/2003	Aqueous	VOCs	624
	886RW08	3038410	7/22/2003	Aqueous	VOCs	624
#4	886MW01	3064804	10/14/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW02	3064805	10/14/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW03	3064806	10/14/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW04	3064807	10/14/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886MW05	3064808	10/14/2003	Aqueous	VOCs, Metals, Pest/PCBs, SVOCs, TPHs	624, 3120B, 3112B (mercury), 608, 625
	886RW01	3064809	10/14/2003	Aqueous	VOCs	624
	886RW08	3064810	10/14/2003	Aqueous	VOCs	624
#5	886MW01	4009404	2/3/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW02	4009405	2/3/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW03	4009406	2/3/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW04	4009407	2/3/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW05	4009408	2/3/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW01	4009004	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW02	4009005	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW03	4009006	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW04	4009007	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW05	4009008	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW06	4009009	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW07	4009010	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886RW08	4009011	2/2/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
#6	886MW01	4038804	5/25/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW02	4038805	5/25/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW03	4038806	5/25/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW04	4038807	5/25/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW05	4038808	5/25/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
#7	886MW01	4057804	8/4/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW02	4057805	8/4/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW03	4057806	8/4/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW04	4057807	8/4/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW05	4057808	8/4/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
#8	886MW01	4072804	10/20/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW02	4072805	10/20/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW03	4072806	10/20/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW04	4072807	10/20/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
	886MW05	4072808	10/20/2004	Aqueous	VOCs, Metals, SVOCs, TPHs	624, 3120B, 3112B (mercury), 625
#9	886MW01	5000907	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW02	5000908	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW03	5000909	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW04	5000910	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW05	5000911	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW01	5000604	1/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW02	5000605	1/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW03	5000608	1/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW04	5000607	1/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW05	5000606	1/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW06	5000904	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW07	5000905	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
	886RW08	5000906	1/7/2005	Aqueous	VOCs, SVOCs	624, 625
#10	886MW01	5018704	4/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW02	5018705	4/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW03	5018706	4/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW04	5018707	4/6/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW05	5018708	4/6/2005	Aqueous	VOCs, SVOCs	624, 625

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
#11	886MW01	5034204	7/12/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW02	5034205	7/12/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW03	5034206	7/12/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW04	5034207	7/12/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW05	5034208	7/12/2005	Aqueous	VOCs, SVOCs	624, 625
#12	886MW01	5053704	10/19/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW02	5053705	10/19/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW03	5053706	10/19/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW04	5053707	10/19/2005	Aqueous	VOCs, SVOCs	624, 625
	886MW05	5053708	10/19/2005	Aqueous	VOCs, SVOCs	624, 625
#13	886MW01	6004504	1/24/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW02	6004505	1/24/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW03	6005204	1/25/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW04	6005205	1/25/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW05	6005206	1/25/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW01	6004506	1/24/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW02	6004507	1/24/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW03	6004508	1/24/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW05	6004509	1/24/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW06	6005207	1/25/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW07	6005208	1/25/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW08	6005209	1/25/2006	Aqueous	VOCs, SVOCs	624, 625
#14	886MW01	6014704	4/11/2006	Aqueous	VOCs, TPHs	624
	886MW02	6014705	4/11/2006	Aqueous	VOCs, TPHs	624
	886MW03	6014706	4/11/2006	Aqueous	VOCs, TPHs	624
	886MW04	6014707	4/11/2006	Aqueous	VOCs, TPHs	624
	886MW05	6014708	4/11/2006	Aqueous	VOCs, TPHs	624
	886RW01	6014709	4/11/2006	Aqueous	TPHs	625
	886RW02	6014710	4/11/2006	Aqueous	TPHs	625
	886RW03	6014711	4/11/2006	Aqueous	TPHs	625
	886RW04	6014712	4/11/2006	Aqueous	TPHs	625
	886RW05	6014713	4/11/2006	Aqueous	TPHs	625
	886RW06	6014714	4/11/2006	Aqueous	TPHs	625
	886RW07	6014715	4/11/2006	Aqueous	TPHs	625

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886RW08	6014716	4/11/2006	Aqueous	TPHs	625
#15	886MW01	6030704	7/11/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW02	6030705	7/11/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW03	6030706	7/11/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW04	6030707	7/11/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW05	6030708	7/11/2006	Aqueous	VOCs, SVOCs	624, 625
#1 С	886MW01	6040604	11/14/2006	A	NOC- SNOC-	(24, (25
#16	886MW02	6049604 6049605	11/14/2006 11/14/2006	Aqueous	VOCs, SVOCs	624, 625
				Aqueous	VOCs, SVOCs	624, 625
	886MW03	6049606	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW04	6049607	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886MW05	6049608	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW01	6049609	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW02	6049610	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW03	6049611	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW04	6049612	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW05	6049613	11/14/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW06	6049804	11/15/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW07	6049805	11/15/2006	Aqueous	VOCs, SVOCs	624, 625
	886RW08	6049806	11/15/2006	Aqueous	VOCs, SVOCs	624, 625
#17	886MW01	7002904	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW02	7002905	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW03	7003004	1/26/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW04	7003005	1/26/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW05	7003006	1/26/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW01	7002906	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW02	7002907	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW03	7002908	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW04	7002909	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW05	7002910	1/25/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW06	7003007	1/26/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW07	7003008	1/26/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW08	7003009	1/26/2007	Aqueous	VOCs, SVOCs	624, 625
#18	886MW01	7014204	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
13	886MW02	7014205	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
	0001.102	.01.200	., 19, 200,		. 000, 0 . 000	02., 020

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886MW03	7014206	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW04	7014207	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW05	7014208	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
#18	886RW01	7014104	4/18/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW02	7014105	4/18/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW03	7014106	4/18/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW04	7014107	4/18/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW05	7014108	4/18/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW06	7014109	4/18/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW07	7014209	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW08	7014210	4/19/2007	Aqueous	VOCs, SVOCs	624, 625
#19	886MW01	7029004	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW02	7029005	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW03	7029006	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW04	7029007	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW05	7029008	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW01	7029009	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW02	7029010	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW03	7029011	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW04	7029012	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW05	7029013	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW06	7029014	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW07	7029015	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW08	7029016	8/2/2007	Aqueous	VOCs, SVOCs	624, 625
#20	886MW01	7038804	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW02	7038805	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW03	7038806	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW04	7038807	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
	886MW05	7038808	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW01	7038404	10/11/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW02	7058405	10/11/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW03	7038406	10/11/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW04	7038407	10/11/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW05	7038408	10/11/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW06	7038409	10/11/2007	Aqueous	VOCs, SVOCs	624, 625
	886RW07	7038809	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
				7	,	

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
'	886RW08	7038810	10/12/2007	Aqueous	VOCs, SVOCs	624, 625
#21	886MW01	8009804	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
#21	886MW02	8009805	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
#21	886MW03	8009904	3/28/2008	Aqueous	VOCs, SVOCs	624, 625
1121	886MW04	8009905	3/28/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW05	8009906	3/28/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW01	8009806	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW02	8009807	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW03	8009808	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW04	8009809	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW05	8009810	3/27/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW06	8009907	3/28/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW07	8009908	3/28/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW08	8009909	3/28/2008	Aqueous	VOCs, SVOCs	624, 625
				1		
#22	886MW01	8921104	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW02	8921105	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW03	8921106	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW04	8921107	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW05	8921108	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW01	8921109	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW02	8921110	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW03	8921111	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW04	8921112	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW05	8921113	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW06	8921114	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW07	8921115	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW08	8921116	6/25/2008	Aqueous	VOCs, SVOCs	624, 625
#23	886MW01	8033304	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW02	8033305	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW03	8033306	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW04	8033307	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW05	8033308	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW01	8033309	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW02	8033310	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW03	8033311	9/16/2008	Aqueous	VOCs, SVOCs	624, 625

Table 4-2 Ground Water Sampling Summary Site 886 Fort Monmouth, New Jersey

Round	Field Sample ID	Lab Sample ID	Date Collected	Matrix	Analytical Parameters	Analytical Methods
	886RW04	8033312	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW05	8033313	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW06	8033314	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW07	8033315	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW08	8033316	9/16/2008	Aqueous	VOCs, SVOCs	624, 625
#24	886MW01	8040904	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW02	8040905	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW03	8040906	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW04	8040907	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886MW05	8040908	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW01	8040909	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW02	8040910	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW03	8040911	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW04	8040912	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW05	8040913	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW06	8040914	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW07	8040915	11/12/2008	Aqueous	VOCs, SVOCs	624, 625
	886RW08	8040916	11/12/2008	Aqueous	VOCs, SVOCs	624, 625

Table 5-1 **Ground Water Sampling Results** Site 886 MW01 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			1	1	2	2	3	4	4	5	(7	7	8	9
	**		1	MW01 Duplicate		MW01 Duplicate	-		4 MW01 Duplicate		6	/	/ MW01 Duplicate	·	_
WELL ID	NJDEP	Units	886MW01		0001111101	•	886MW01	886MW01	•	886MW01	886MW01	886MW01		886MW01	886MW01
Date Collected	Criteria		2/12/2003	2/12/2003	5/22/2003	5/22/2003	7/22/2003	10/14/2003	10/14/2003	2/3/2004	5/25/2004	8/4/2004	8/4/2004	10/20/2004	1/6/2005
ANALYTE / Lab ID			30066.07	30066.03	30249.04	30249.03	30384.04	30648.04	30648.03	40094.04	40388.04	40578.04	40578.03	40728.04	50009.07
VOCs						1		1			1				
Acetone	700	μg/L	4.18	3.95	ND	ND	ND	ND	ND	ND	ND	ND	2.87	ND	ND
Benzene	1	μg/L	0.59 J	0.63 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	0.93 J	1.03 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.79 J	1.40 J
Tetrachloroethylene	1	μg/L	0.64 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.62 J	0.38 J
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.49 J
TICs*	500	μg/L	50.0	50.0	39.0	35.0	55.0	13.0	13.0	32.0	68.0	7.0	5.0	108.0	55.0
TPH	•	- '													
Total Petroleum Hydrocarbons	NLE	mg/L	2.1	2.0	1.8	1.4	1.6	1.6	1.7	1.9	1.5	1.0	1.0	1.7	NA
SVOCs															
2-Methylnaphthalene	NLE	μg/L	1.72 J	1.68 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	2.77 J	2.73 J	2.61 J	2.96 J	2.81 J	1.56 J	1.42 J	2.03 J	2.72 J	ND	ND	1.84 J	2.87 J
Bis(2-ethylhexyl) phthalate	30	μg/L	2.04 J	1.64 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	2.71 J	ND	2.58 J	2.87 J	2.71 J	1.52 J	1.31 J	2.28 J	2.39 J	ND	1.02 J	2.0 J	2.70 J
Diethyl phthalate	5000	μg/L	ND	1.36 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	2.9 J	2.63 J	2.81 J	2.93 J	3.36 J	1.04 J	ND	2.13 J	2.89 J	ND	ND	2.13 J	2.64 J
Naphthalene	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	1.83 J	1.05 J	ND	ND	1.0 J	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	222.0	215.0	162.0	183.0	137.0	22.0	15.0	153.0	105.0	ND	136.0	86.0	135.0
Metals															
Aluminum	200	μg/L	212	205	1320	1110	128 ER	1100	630	170 ER	234	204	348	307	NA
Arsenic	8	μg/L	5.91 ER	4.83 ER	46.9	41.9	8.22	14.2	12.0	27.3	12.7	8.78	21.5	8.85	NA
Barium	2000	μg/L	15.3 ER	15.2 ER	17.0	15.8	13.7	43.5	41.0	12 ER	14.3	52.5 ER	57.6 ER	22.8 ER	NA
Beryllium	20	μg/L	ND	ND	0.180 ER	0.131 ER	0.0283 ER	0.233 ER	ND	ND	ND	ND	ND	ND	NA
Cadmium	4	μg/L	1.55 ER	1.56 ER	4.16	3.9	2.41	1.70 ER	1.10 ER	ND	8.85	ND	3.41 ER	3.93 ER	NA
Chromium III	100	μg/L	1.78 ER	3.26 ER	11.9	9.68	1.45 ER	8.6	4.90 ER	ND	ND	ND	ND	ND	NA
Copper	1000	μg/L	ND	ND	ND	ND	ND	123.0	ND	ND	23.4	5.33 ER	ND	ND	NA
Lead	10	μg/L	1.18 ER	2.1 ER	5.43	4.41 ER	2.49 ER	11.2	3.0 ER	ND	11.5	ND	ND	ND	NA
Nickel	100	μg/L	ND	ND	1.33	ND	0.727 ER	14.0	6.0	ND	ND	12.1 ER	12.7 ER	ND	NA
Selenium	50	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Notes:		1.6													

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled. NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb.

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter dated November 2004.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

Table 5-1 Ground Water Sampling Results Site 886 MW01 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No. ** WELL ID Date Collected NJDEP Criteria NJDEP Criteria WIDEP MARCHYTE / Lab ID VOCs Sol187.04 Sol342.04 Sol187.04 Sol342.04 VOCs	11	12	12
Date Collected	MW01 Duplicate	886MW01	MW01 Duplicate
VOCs 50187.04 50342.04 Acetone 700 μg/L ND ND Benzene 1 μg/L ND ND Methyl ethyl ketone (2-Butanone) 300 μg/L ND ND Methyl tert-butyl ether (MTBE) NLE μg/L ND ND Tetrachloroethylene 1 μg/L ND ND Toluene 1000 μg/L ND ND Xylenes (Total) 1000 μg/L ND ND TTH Total Petroleum Hydrocarbons NLE mg/L NA NA SVOCs 2-Methylnaphthalene NLE μg/L NA NA 2-Methylnaphthalene NLE μg/L 1.95 J ND Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L	7/12/2005	10/19/2005	10/19/2005
Acetone 700	50342.03	50537.04	50537.03
Benzene			
Methyl ethyl ketone (2-Butanone) 300 μg/L ND ND Methyl tert -butyl ether (MTBE) NLE μg/L ND ND Tetrachloroethylene 1 μg/L ND ND Toluene 1000 μg/L ND ND Xylenes (Total) 1000 μg/L ND ND TICs* 500 μg/L 69.0 16.0 TPH Total Petroleum Hydrocarbons NLE mg/L NA NA SVOCs 2-Methylnaphthalene NLE μg/L ND ND Acenaphthene 400 μg/L 2.02 J 1.29 J Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.06 JB ND ND ND ND ND ND <	ND	ND	ND
Methyl tert -butyl ether (MTBE) NLE μg/L ND ND Tetrachloroethylene 1 μg/L ND ND Toluene 1000 μg/L ND ND Xylenes (Total) 1000 μg/L ND ND TICs* 500 μg/L 69.0 16.0 TPH Total Petroleum Hydrocarbons NLE mg/L NA NA SVOCs 2-Methylnaphthalene NLE μg/L ND ND Acenaphthene 400 μg/L 1.95 J ND Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.06 JB ND Fluorene 300 μg/L ND ND NLE μg/L ND ND Phenanthrene NLE μg/	ND	ND	ND
Tetrachloroethylene	ND	ND	ND
Toluene	ND	2.09	2.08
Xylenes (Total) 1000 μg/L ND ND TICs* 500 μg/L 69.0 16.0 TPH Total Petroleum Hydrocarbons NLE mg/L NA NA SVOCs 2-Methylnaphthalene NLE μg/L ND ND Acenaphthene 400 μg/L 2.02 J 1.29 J Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Cadmium 4 μg/L NA NA Cadmium 100 μg/L NA NA Chromium III 100 μg/L NA NA Calmium 100 μg/L NA NA Chromium III 100 μg/L NA NA Calmium 100 μg/L NA NA Chromium III 100 μg/L NA NA Total Petroleum III 100 μg/L N	ND	ND	ND
TICs* 500 μg/L 69.0 16.0	ND	0.51 J	0.49 J
TPH Total Petroleum Hydrocarbons NLE mg/L NA NA SVOCs 2-Methylnaphthalene NLE μg/L ND ND Acenaphthene 400 μg/L 2.02 J 1.29 J Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L NA NA Barium 2000 μg/L NA NA Barium 2000 μg/L NA NA Reryllium 20 μg/L NA NA	ND	0.51 J	0.48 J
Total Petroleum Hydrocarbons NLE mg/L NA NA	15.0	68.0	71.0
SVOCs 2-Methylnaphthalene NLE μg/L ND ND Acenaphthene 400 μg/L 2.02 J 1.29 J Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA		•	•
2-Methylnaphthalene NLE μg/L ND ND Acenaphthene 400 μg/L 2.02 J 1.29 J Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L NA NA Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	NA	NA	NA
Acenaphthene 400 μg/L 2.02 J 1.29 J Bis(2-ethylhexyl) phthalate 30 μg/L 1.95 J ND Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA			
Bis(2-ethylhexyl) phthalate 30	ND	ND	ND
Dibenzofuran NLE μg/L 1.82 J 1.54 J Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA NA NA NA Chromium III 100 μg/L NA NA Cadmium 100 μg/L NA NA Chromium III 100 μg/L NA NA Cadmium 100 μg/L NA	1.49 J	3.31 J	3.15 J
Diethyl phthalate 5000 μg/L 1.06 JB ND Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	ND	ND	ND
Fluorene 300 μg/L 1.96 J 1.21 J Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	1.79 J	3.45 J	3.37 J
Naphthalene NLE μg/L ND ND Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	ND	ND	ND
Phenanthrene NLE μg/L ND ND TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	1.46 J	3.85 J	3.74 J
TICs* 500 μg/L 67.0 27.0 Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	ND	ND	ND
Metals Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	ND	0.84 J	0.91 J
Aluminum 200 μg/L 212 212 Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	40.0	143.0	131.0
Arsenic 8 μg/L NA NA Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA			
Barium 2000 μg/L NA NA Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	212	212	212
Beryllium 20 μg/L NA NA Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	NA	NA	NA
Cadmium 4 μg/L NA NA Chromium III 100 μg/L NA NA	NA	NA	NA
Chromium III 100 μg/L NA NA	NA	NA	NA
	NA	NA	NA
Copper 1000 µg/L NA NA	NA	NA	NA
	NA	NA	NA
Lead 10 μg/L NA NA	NA	NA	NA
Nickel 100 μg/L NA NA	NA	NA	NA
Selenium 50 μg/L NA NA	NA	NA	NA

letter dated November 2004.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb.

Total xylenes= $\sum of o$ -xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

Table 5-1 Ground Water Sampling Results Site 886 MW01 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	15	16	17	18	18
WELL ID	** NJDEP	TT 14	886MW01	886MW01	886MW01	886MW01	886MW01	886MW01	MW01 Duplicate
Date Collected	Criteria	Units	1/24/2006	4/11/2006	7/11/2006	11/14/2006	1/25/2007	4/19/2007	4/19/2007
ANALYTE / Lab ID	1		60045.04	60147.04	60307.04	60496.04	70029.04	70142.04	70142.03
VOCs								•	
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	0.07	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	0.50 J	ND	ND	ND	ND	ND
Tetrachloroethylene	1	μg/L	ND	ND	ND	ND	ND	ND	ND
Toluene	1000	μg/L	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	0.65 J	0.33 J	ND	ND
TICs*	500	μg/L	107.0	12.0	ND	11.0	54.0	13.0	12.0
ТРН								•	•
Total Petroleum Hydrocarbons	NLE	mg/L	NA	0.4 J	NA	NA	NA	NA	NA
SVOCs									
2-Methylnaphthalene	NLE	μg/L	ND	NA	ND	1.68 J	ND	ND	ND
Acenaphthene	400	μg/L	2.90 J	NA	ND	1.11 J	3.17 J	3.01 J	2.58 J
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	ND	0.66	ND
Dibenzofuran	NLE	μg/L	2.72 J	NA	ND	0.95 J	2.79 J	ND	2.23 J
Diethyl phthalate	5000	μg/L	ND	NA	ND	ND	ND	ND	ND
Fluorene	300	μg/L	3.0 J	NA	ND	0.81 J	3.26 J	3.10 J	2.76 J
Naphthalene	300	μg/L	ND	NA	ND	ND	ND	ND	ND
Phenanthrene	100	μg/L	ND	NA	ND	ND	ND	ND	ND
TICs*	500	μg/L	104.0	NA	ND	21.0	132.0	153.0	179.0

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

Total xylenes= \sum of o-xylene and m, p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Table 5-1 **Ground Water Sampling Results** Site 886 MW01 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	19	20	20	21	21	22	22	23	24	24
WELL ID	** NJDEP	Units	886MW01	MW01 Duplicate	886MW01	MW01 Duplicate	886MW01	MW01 Duplicate	886MW01	MW01 Duplicate	886MW01	886MW01	MW01 Duplicate
Date Collected	Criteria	Units	8/2/007	8/2/007	10/12/2007	10/12/2007	3/27/2008	3/27/2008	6/25/2008	6/25/2008	9/16/2008	11/12/2008	11/12/2008
ANALYTE / Lab ID			70290.04	70290.03	70388.04	70388.03	80098.04	80098.03	80098.04	80098.03	80333.04	80409.04	80409.03
VOCs													
Acetone	6000	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	3.86	4.46	2.48	NA	16.76	17.05	3.88	2.21	2.29
Tetrachloroethylene	1	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Toluene	600	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	0.38 J	NA	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	242.0	NA	ND	ND	ND	13.0	11.0
ТРН													
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs													
2-Methylnaphthalene	NLE	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	6.18	NA	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	170.46	NA	ND	ND	61.0	19.0	4.0

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter dated November 2004.

Table 5-2 **Ground Water Sampling Results** Site 886 MW02 (Feb03-Oct05) Fort Monmouth, New Jersey

	,					1							
Round No.			1	2	3	4	5	5	6	7	8	9	10
WELL ID	** NJDEP	Units	886MW02	886MW02	886MW02	886MW02	886MW02	MW02 Duplicate	886MW02	886MW02	886MW02	886MW02	886MW02
Date Collected	Criteria	Cinto	2/12/2003	5/22/2003	7/22/2003	10/14/2003	2/3/2004	2/3/2004	5/25/2004	8/4/2004	10/20/2004	1/7/2005	4/6/2005
ANALYTE / Lab ID			30066.08	30249.05	30384.05	30648.05	40094.05	40094.03	40388.05	40578.05	40728.05	50009.08	50187.05
VOCs													
Acetone	700	μg/L	3.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.10 J
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	0.30 J	ND	ND
TICs*	500	μg/L	16.0	ND	43.0	ND	9.0	ND	28.0	ND	51.0	10.0	ND
ТРН													
Total Petroleum Hydrocarbons	NLE	mg/L	0.8	0.8	ND	1.0	ND	0.9	0.8	ND	ND	NA	NA
SVOCs													
Bis(2-ethylhexyl) phthalate	30	μg/L	1.66 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	5000	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	17.0	27.0	12.0	14.0	ND	ND	ND	ND	ND	11.0	5.0
Metals													
Antimony	20	μg/L	ND	3.89 ER	ND	ND	ND	ND	ND	ND	ND	NA	NA
Arsenic	8	μg/L	12.2	28.7	43.9	19.4	11.9	13.0	14.4	11.4	9.84	NA	NA
Barium	2000	μg/L	107 ER	82.2	77.9	74.0	88.4 ER	87 ER	67.1 ER	54.9 ER	50.1 ER	NA	NA
Beryllium	20	μg/L	ND	0.250 ER	0.0749 ER	0.316 ER	ND	ND	ND	ND	ND	NA	NA
Cadmium	4	μg/L	2.38 ER	4.15	4.32	0.960 ER	ND	ND	2.92 ER	ND	ND	NA	NA
Chromium III	100	μg/L	2.92 ER	15.2	6.65	15.5	16.4 ER	15.5 ER	5.06 ER	ND	ND	NA	NA
Copper	1000	μg/L	ND	ND	ND	11.3	14.6 ER	19.5 ER	ND	11.8 ER	ND	NA	NA
Lead	10	μg/L	2.8 ER	5.49	4.71 ER	5.14	13.7	13.6	6.55 ER	7.57 ER	ND	NA	NA
Nickel	100	μg/L	4.08 ER	2.71 ER	2.81 ER	4.16 ER	12.6 ER	12.6 ER	13 ER	14.2 ER	13.6 ER	NA	NA
Selenium	50	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
			•	•						•			

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

letter dated November 2004

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

Table 5-2 **Ground Water Sampling Results** Site 886 MW02 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			10	11	12
WELL ID	** NJDEP	Units	MW02 Duplicate	886MW02	886MW02
Date Collected	Criteria	Ullits	4/6/2005	7/12/2005	10/19/2005
ANALYTE / Lab ID			50187.03	50342.05	50537.05
VOCs					
Acetone	700	μg/L	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	1.08 J	1.58 J	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND
TICs*	500	μg/L	ND	ND	14.0
ТРН			•		
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA
SVOCs					
Bis(2-ethylhexyl) phthalate	30	μg/L	ND	ND	ND
Diethyl phthalate	5000	μg/L	0.97 JB	ND	ND
TICs*	500	μg/L	ND	6.0	ND
Metals					
Antimony	20	μg/L	NA	NA	NA
Arsenic	8	μg/L	NA	NA	NA
Barium	2000	μg/L	NA	NA	NA
Beryllium	20	μg/L	NA	NA	NA
Cadmium	4	μg/L	NA	NA	NA
Chromium III	100	μg/L	NA	NA	NA
Copper	1000	μg/L	NA	NA	NA
Lead	10	μg/L	NA	NA	NA
Nickel	100	μg/L	NA	NA	NA
Selenium	50	μg/L	NA	NA	NA

** - NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

letter dated November 2004

Table 5-2 **Ground Water Sampling Results** Site 886 MW02 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	15	16	17	18
WELL ID	** NJDEP	Units	886MW02	886MW02	886MW02	886MW02	886MW02	886MW02
Date Collected	Criteria	Ullits	1/24/2006	4/11/2006	7/11/2006	11/14/2006	1/25/2007	4/19/2007
ANALYTE / Lab ID			60045.05	60147.05	60307.05	60496.05	70029.05	70142.05
VOCs								
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	1.34 J	1.04 J	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	4.0	6.0	3.0	ND	ND
SVOCs								
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND	ND
TICs*	500	μg/L	ND	NA	ND	ND	ND	25.0

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

letter dated November 2004.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-2 **Ground Water Sampling Results** Site 886 MW02 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	Units	886MW02	886MW02	886MW02	886MW02	886MW02	886MW02
Date Collected	Criteria	Ullits	8/2/2007	10/12/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.05	70388.05	80098.05	89211.05	80333.05	80409.05
VOCs								
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	ND	ND
SVOCs						-	=	•
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	15.0	39.3	ND	23.0	4.0

Notes:

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

27, 2007) B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

SVOCs. No individual compound can exceed 100 ppb

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter dated November 2004.

Table 5-3 Ground Water Sampling Results Site 886 MW03 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			1	2	3	3	4	5	6	7	8	9	10
WELL ID	** NJDEP	Units	886MW03	886MW03	886MW03	MW03 Duplicate	886MW03	886MW03	886MW03	886MW03	886MW03	886MW03	886MW03
Date Collected	Criteria	Units	2/12/2003	5/22/2003	7/22/2003	7/22/2003	10/14/2003	2/3/2004	5/25/2004	8/4/2004	10/20/2004	1/7/2005	4/6/2005
ANALYTE / Lab ID	1		30066.06	30249.06	30384.06	30384.03	30648.06	40094.06	40388.06	40578.06	40728.06	50009.09	50187.06
VOCs										•			
Acetone	700	μg/L	6.75	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	0.77 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	2.26	ND	1.24 J	1.03 J	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	102.0	ND	ND	ND	ND	ND	3.0	ND	ND	ND	ND
ТРН													
Total Petroleum Hydrocarbons	NLE	mg/L	13.3	1.5	3.4	3.5	2.5	1.4	1.2	1.5	0.6	NA	NA
SVOCs													
2-Methylnaphthalene	NLE	μg/L	17.64	ND	ND	ND	ND	ND	ND	1.29 J	ND	ND	ND
Acenaphthene	NLE	μg/L	8.92 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	11.75	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	NLE	μg/L	4.0 J	ND	ND	ND	1.64 J	1.48 J	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	20	μg/L	38.99	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	24.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	μg/L	1.31 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	2671.0	30.0	15.0	25.0	30.0	9.0	ND	29.0	15.0	11.0	51.0
Pest/PCBs													
4,4'-DDE	0.1	μg/L	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA
delta-BHC	NLE	μg/L	ND	0.16	ND	ND	ND	NA	NA	NA	NA	NA	NA
gamma-BHC	0.2	μg/L	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA
Metals													
Antimony	20	μg/L	ND	ND	ND	4.49 ER	ND	ND	ND	ND	ND	NA	NA
Arsenic	8	μg/L	ND	ND	9.32	8.02	10.8	11.1	18.5	7.44 ER	8.54	NA	NA
Barium	2000	μg/L	69.3 ER	40.3	28.9	25.4	39.4	45.4 ER	39.8 ER	31.7 ER	18.1 ER	NA	NA
Beryllium	20	μg/L	0.597 ER	0.187 ER	0.066 ER	0.0662 ER	0.476 ER	ND	2.6 ER	ND	ND	NA	NA
Cadmium	4	μg/L	ND	0.801 ER	0.891 ER	0.678 ER	1.06 ER	ND	3.66 ER	ND	ND	NA	NA
Chromium III	100	μg/L	2.26 ER	3.42 ER	3.64 ER	3.42 ER	14.3	9.8 ER	17.4 ER	5.09 ER	13.4 ER	NA	NA
Copper	1000	μg/L	3.54 ER	0.654 ER	1.15 ER	1.30 ER	12.5	ND	16.7 ER	10.4 ER	15.8 ER	NA	NA
Lead	10	μg/L	ND	1.59 ER	0.938 ER	1.15 ER	6.1	ND	10.5	ND	ND	NA	NA
Nickel	100	μg/L	13.7 ER	8.05	5.69	4.25 ER	16.6	9.67 ER	23 ER	7.62 ER	5.96 ER	NA	NA
Selenium	50	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Notes:	•												

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the

* TICs = Tentatively Identified Compunds, can not

exceed 500 ppb for VOCs and SVOCs. No

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

Table 5-3 Ground Water Sampling Results Site 886 MW03 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			11	12
WELL ID	** NJDEP	Units	886MW03	886MW03
Date Collected	Criteria	Omis	7/12/2005	10/19/2005
ANALYTE / Lab ID			50342.06	50537.06
VOCs				
Acetone	700	μg/L	ND	243.78
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND
TICs*	500	μg/L	ND	ND
ТРН				
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA
SVOCs				
2-Methylnaphthalene	NLE	μg/L	ND	ND
Acenaphthene	NLE	μg/L	ND	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	ND	ND
Fluorene	300	μg/L	ND	ND
Naphthalene	NLE	μg/L	ND	ND
N-Nitrosodiphenylamine	20	μg/L	ND	ND
Phenanthrene	NLE	μg/L	ND	ND
Pyrene	200	μg/L	ND	ND
TICs*	500	μg/L	18.0	15.0
Pest/PCBs				
4,4'-DDE	0.1	μg/L	NA	NA
delta-BHC	NLE	μg/L	NA	NA
gamma-BHC	0.2	μg/L	NA	NA
Metals				
Antimony	20	μg/L	NA	NA
Arsenic	8	μg/L	NA	NA
Barium	2000	μg/L	NA	NA
Beryllium	20	μg/L	NA	NA
Cadmium	4	μg/L	NA	NA
Chromium III	100	μg/L	NA	NA
Copper	1000	μg/L	NA	NA
Lead	10	μg/L	NA	NA
Nickel	100	μg/L	NA	NA
Selenium	50	μg/L	NA	NA
Notes:				

Notes

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the

* TICs = Tentatively Identified Compunds, can not

exceed 500 ppb for VOCs and SVOCs. No

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

Table 5-3 Ground Water Sampling Results Site 886 MW03 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	14	15	15	16	17	17	18
WELL ID	** NJDEP	TT '.	886MW03	886MW03	MW03 Duplicate	886MW03	MW03 Duplicate	886MW03	886MW03	MW03 Duplicate	886MW03
Date Collected	Criteria	Units	1/25/2006	4/11/2006	4/11/2006	7/11/2006	7/11/2006	11/14/2006	1/26/2007	1/26/2007	4/19/2007
ANALYTE / Lab ID	1		60052.04	60147.06	60147.03	60307.06	60307.03	60496.06	70030.04	70030.03	70142.06
VOCs											
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	11.68
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	4.0	8.0	ND	ND	ND	ND	11.0	ND
SVOCs											
2-Methylnaphthalene	NLE	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	NA	ND	ND	ND	1.40 J	ND	ND
Fluorene	300	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
Pyrene	200	μg/L	ND	NA	NA	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	NA	NA	ND	ND	5.0	ND	ND	28.0

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the

* TICs = Tentatively Identified Compunds, can not

exceed 500 ppb for VOCs and SVOCs. No

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-3 **Ground Water Sampling Results** Site 886 MW03 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	21	22	23	24
WELL ID	** NJDEP	Units	886MW03	886MW03	886MW03	MW03 Duplicate	886MW03	886MW03	886MW03
Date Collected	Criteria	Omis	8/2/2007	10/12/2007	3/28/2008	3/28/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.06	70388.06	80099.04	80099.03	89211.06	80333.06	80409.06
VOCs									
Acetone	6000	μg/L	ND	ND	ND	NA	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	NA	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	ND	ND	ND
ТРН									
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA	NA
SVOCs									
2-Methylnaphthalene	NLE	μg/L	ND	ND	ND	NA	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	NA	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	NA	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	NA	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	NA	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	NA	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	NA	ND	ND	ND
Pyrene	200	μg/L	ND	ND	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	NA	ND	ND	8.0
Notes									

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the

* TICs = Tentatively Identified Compunds, can not

exceed 500 ppb for VOCs and SVOCs. No

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were

Table 5-4 Ground Water Sampling Results Site 886 MW04 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			1	2	3	4	5	6	7	8	9	10	11
WELL ID	** NJDEP	Units	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04
Date Collected	Criteria	Omis	2/12/2003	5/22/2003	7/22/2003	10/14/2003	2/3/2004	5/25/2004	8/4/2004	10/20/2004	1/7/2005	4/6/2005	7/12/2005
ANALYTE / Lab ID			30066.1	30249.07	30384.07	30648.07	40094.07	40388.07	40578.07	40728.07	50009.1	50187.07	50342.07
VOCs													
Ethylbenzene	700	μg/L	3.56	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND	ND	1.80 J	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	128.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ТРН													
Total Petroleum Hydrocarbons	NLE	mg/L	1.7	1.0	ND	1.2	ND	ND	ND	ND	NA	NA	NA
SVOCs	•		•	•	•	-		•	-	-	•		
2-Methylnaphthalene	NLE	μg/L	28.73	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	7.64 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	1.9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	5000	μg/L	1.6 J	1.33 J	ND	ND	1.33 J	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	8.63 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	NLE	μg/L	21.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	8.36 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	1183.0	16.0	8.0	ND	4.0	ND	11.0	ND	19.0	4.0	ND
Pest/PCBs	•		•	•	•	•		•	•	•			
4,4'-DDE	0.1	μg/L	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
delta-BHC	NLE	μg/L	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
gamma-BHC	0.2	μg/L	0.01 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Metals													
Arsenic	8	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
Barium	2000	μg/L	12 ER	33.1	65.8	77.2	69 ER	19 ER	70.1 ER	54.8 ER	NA	NA	NA
Beryllium	20	μg/L	ND	0.335 ER	0.342 ER	0.588 ER	ND	ND	ND	ND	NA	NA	NA
Cadmium	4	μg/L	0.598 ER	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
Chromium III	100	μg/L	1.79 ER	4.60 ER	1.49 ER	3.30 ER	ND	ND	ND	ND	NA	NA	NA
Copper	1000	μg/L	5.49 ER	ND	0.319 ER	1.91 ER	ND	ND	ND	ND	NA	NA	NA
Lead	10	μg/L	1.23 ER	1.87 ER	0.841 ER	2.68 ER	ND	ND	ND	ND	NA	NA	NA
Nickel	100	μg/L	1.58 ER	4.23 ER	12.1	12.4	9.72 ER	ND	11.1 ER	7.52 ER	NA	NA	NA
Selenium	50	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
Notes:							•	•	•	•		•	

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Table 5-4 Ground Water Sampling Results Site 886 MW04 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			12
WELL ID	** NJDEP	Units	886MW04
Date Collected	Criteria	UIIIIS	10/19/2005
ANALYTE / Lab ID			50537.07
VOCs			
Ethylbenzene	700	μg/L	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND
TICs*	500	μg/L	ND
ТРН			
Total Petroleum Hydrocarbons	NLE	mg/L	NA
SVOCs	-		
2-Methylnaphthalene	NLE	μg/L	ND
Acenaphthene	400	μg/L	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	ND
Diethyl phthalate	5000	μg/L	ND
Fluorene	300	μg/L	ND
Naphthalene	NLE	μg/L	ND
Phenanthrene	NLE	μg/L	ND
TICs*	500	μg/L	ND
Pest/PCBs	-		
4,4'-DDE	0.1	μg/L	NA
delta-BHC	NLE	μg/L	NA
gamma-BHC	0.2	μg/L	NA
Metals			
Arsenic	8	μg/L	NA
Barium	2000	μg/L	NA
Beryllium	20	μg/L	NA
Cadmium	4	μg/L	NA
Chromium III	100	μg/L	NA
Copper	1000	μg/L	NA
Lead	10	μg/L	NA
Nickel	100	μg/L	NA
Selenium	50	μg/L	NA
Notes:		·	

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

Table 5-4 Ground Water Sampling Results Site 886 MW04 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	15	16	17	18
WELL ID	** NJDEP	T I '	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04
Date Collected	Criteria	Units	1/25/2006	4/11/2006	7/11/2006	11/14/2006	1/26/2007	4/19/2007
ANALYTE / Lab ID			60052.05	60147.07	60307.07	60496.07	70030.05	70142.07
VOCs								
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	4.0	ND	ND	ND	ND
SVOCs								
2-Methylnaphthalene	100	μg/L	ND	NA	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	NA	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND	ND
Fluorene	300	μg/L	ND	NA	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	NA	ND	ND	ND	ND
Phenanthrene	100	μg/L	ND	NA	ND	ND	ND	ND
TICs*	500	μg/L	ND	NA	ND	ND	ND	170.0

riotes.

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-4 **Ground Water Sampling Results** Site 886 MW04 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	Units	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04
Date Collected	Criteria	Onits	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.07	70388.07	80099.05	89211.07	80333.07	80409.07
VOCs								
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	ND	ND	ND	2.26
TICs*	500	μg/L	ND	ND	ND	ND	ND	ND
SVOCs								
2-Methylnaphthalene	NLE	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	3.76 J	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	4.0	ND	ND	14.0	12.0

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July 27,

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and SVOCs

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter

Table 5-5 Ground Water Sampling Results Site 886 MW05 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			1	2	3	1	5	6	6	7	8	8	9
WELL ID	** NJDEP		886MW05	886MW05	886MW05	886MW05	886MW05	886MW05	MW05 Duplicate	886MW05	886MW05	MW05 Duplicate	886MW05
Date Collected	Criteria	Units	2/12/2003	5/22/2003	7/22/2003	10/14/2003	2/3/2004	5/25/2004	5/25/2004	8/4/2004	10/20/2004	10/20/2004	1/7/2005
ANALYTE / Lab ID	Cinteria		30066.09	30249.08	30384.08	30648.08	40094.08	40388.08	40388.03	40578.08	40728.08	40728.03	50009.11
VOCs	l l		30000.09	30249.08	30364.06	30046.06	40094.08	40366.06	40366.03	40376.06	40726.06	40728.03	30009.11
Acetone	700	μg/L	ND	ND	ND	ND	6.59	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L μg/L	ND ND	7.06	4.02	1.73 J	1.52 J	1.43 J	0.97 J	1.17 J	0.90 J	1.02 J	0.50 J
Xylenes (Total)	1000		ND	2.04	4.02 ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L μg/L	ND ND	234.0	138.0	79.0	76.0	64.0	34.0	91.0	125.0	144.0	19.0
TPH	300	μg/L	ND	234.0	136.0	79.0	70.0	04.0	34.0	91.0	123.0	144.0	19.0
Total Petroleum Hydrocarbons	NLE	mg/L	ND	1.6	10.5	3.1	1.9	1.9	1.7	2.8	1.3	1.5	NA
SVOCs	NLE	IIIg/L	ND	1.0	10.5	3.1	1.9	1.9	1./	2.6	1.3	1.5	INA
2-Methylnaphthalene	NLE	μg/L	ND	1.90 J	21.72	4.06 J	2.48 J	1.52 J	1.41 J	4.22 J	ND	ND	ND
Acenaphthene	400	μg/L μg/L	ND	2.16 J	7.50 J	4.59 J	2.76 J	2.32 J	2.23 J	4.29 J	2.76 J	2.01 J	1.39 J
Anthracene	2000	μg/L μg/L	ND	ND	1.85 J	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L μg/L	ND	ND	ND	3.58 J	2.39 J	ND	ND	3.89 J	ND	ND	1.16 J
Diethyl phthalate	5000	μg/L	1.14 J	ND	ND	ND	1.39 J	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	2.15 J	8.70 J	5.33 J	2.87 J	2.20 J	2.05 J	5.07 J	2.71 J	2.07 J	1.52 J
Naphthalene	NLE	μg/L	ND	4.87 J	21.31	8.30 J	6.55 J	6.32 J	5.87 J	10.23	8.57 J	6.32 J	3.24 J
N-Nitrosodiphenylamine	20	μg/L	ND	ND	4.85 J	1.08 J	1.39 J	ND	ND	1.79 J	1.05 J	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	8.68 J	2.94 J	1.35 J	0.89 J	0.82 J	3.55 J	1.25 J	0.99 J	ND
TICs*	500	μg/L	11.0	270.0	722.0	269.0	240.0	168.0	144.0	330.0	261.0	142.0	84.0
Metals	•		•	!		•	!	!			•	•	
Arsenic	8	μg/L	ND	3.9 ER	6.76	6.39	16.7	ND	6.3 ER	11.9	5.78 ER	6.9 ER	NA
Barium	2000	μg/L	33.3 ER	7.19	7.34	18.0	20.4 ER	17.4 ER	16.3 ER	11.7 ER	12.9 ER	13.3 ER	NA
Beryllium	20	μg/L	ND	0.155 ER	0.0578 ER	0.408 ER	0.705 ER	ND	ND	ND	ND	ND	NA
Cadmium	4	μg/L	ND	1.07 ER	0.803 ER	0.576 ER	ND	ND	ND	2.25 ER	2.11 ER	2.41 ER	NA
Chromium III	100	μg/L	1.88 ER	ND	1.01 ER	5.36	12.5 ER	ND	ND	5.2 ER	6.09 ER	7.94 ER	NA
Copper	1000	μg/L	3.02 ER	ND	ND	1.83 ER	10.7 ER	ND	ND	ND	ND	ND	NA
Lead	10	μg/L	ND	0.924 ER	0.845 ER	2.93 ER	ND	5.04 ER	6.46 ER	ND	ND	ND	NA
Nickel	100	μg/L	8.24 ER	ND	ND	1.02 ER	ND	ND	ND	ND	ND	ND	NA
Selenium	50	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Notes:					•				•				

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter

dated November 2004.

Table 5-5 Ground Water Sampling Results Site 886 MW05 (Feb03-Oct05) Fort Monmouth, New Jersey

Round No.			10	11	12
WELL ID	** NJDEP	Units	886MW05	886MW05	886MW05
Date Collected	Criteria	Units	4/6/2005	7/12/2005	10/19/2005
ANALYTE / Lab ID			50187.08	50342.08	50537.08
VOCs			•		•
Acetone	700	μg/L	ND	ND	5.89
Ethylbenzene	700	μg/L	0.29 J	0.74 J	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND
TICs*	500	μg/L	ND	137.0	ND
ТРН			•		
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA
SVOCs			-		
2-Methylnaphthalene	NLE	μg/L	ND	1.31 J	ND
Acenaphthene	400	μg/L	ND	2.95 J	ND
Anthracene	2000	μg/L	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	1.96 J	ND
Diethyl phthalate	5000	μg/L	ND	ND	ND
Fluorene	300	μg/L	ND	3.11 J	ND
Naphthalene	NLE	μg/L	1.03 J	5.95 J	ND
N-Nitrosodiphenylamine	20	μg/L	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	1.61 J	ND
TICs*	500	μg/L	4.0	260.0	76.0
Metals	•		•	•	-
Arsenic	8	μg/L	NA	NA	NA
Barium	2000	μg/L	NA	NA	NA
Beryllium	20	μg/L	NA	NA	NA
Cadmium	4	μg/L	NA	NA	NA
Chromium III	100	μg/L	NA	NA	NA
Copper	1000	μg/L	NA	NA	NA
Lead	10	μg/L	NA	NA	NA
Nickel	100	μg/L	NA	NA	NA
Selenium	50	μg/L	NA	NA	NA
Notes:	•				

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter dated November 2004.

Table 5-5 Ground Water Sampling Results Site 886 MW05 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	15	16	17	18
WELL ID	** NJDEP	Units	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05
Date Collected	Criteria	Units	1/25/2006	4/11/2006	7/11/2006	11/14/2006	1/26/2007	4/19/2007
ANALYTE / Lab ID			60052.06	60147.08	60307.08	60496.08	70030.06	70142.08
VOCs								
Acetone	6000	μg/L	5.89	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	0.36 J	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	24.0	9.0	ND	4.0	ND
SVOCs								
2-Methylnaphthalene	100	μg/L	ND	ND	ND	2.22 J	5.79 J	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	1.22 J	ND
Anthracene	2000	μg/L	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND	ND	0.82 J	ND
Diethyl phthalate	5000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	1.17 J	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	100	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	5.0	5.0	ND	ND	9.0	52.0

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

letter dated November 2004.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

^{*} TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Table 5-5 **Ground Water Sampling Results** Site 886 MW05 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	Units	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05
Date Collected	Criteria	Ollits	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.08	70388.08	80099.06	89211.08	80333.08	80409.08
VOCs								
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	28.0	35.0	6.0	23.0	17.0	60.0
ТРН								
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	13.7	24.29	ND	ND	ND	11
Acenaphthene	400	μg/L	ND	2.88 J	ND	ND	ND	ND
Anthracene	2000	μg/L	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	2.05 J	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	3.29 J	ND	ND	ND	ND
Naphthalene	300	μg/L	1.15 J	1.02 J	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	1.44 J	ND	ND	ND	ND
TICs*	500	μg/L	21.0	100.0	10.1	34.0	90.0	67.0
Notes:	-				•		•	

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

27, 2007)
B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter

dated November 2004.

Table 5-6 Ground Water Sampling Results Site 886 RW01 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.			1	2	3	4	5	5	9	9
WELL ID	** NJDEP	Units	886RW01	886RW01	886RW01	886RW01	886RW01	RW01 Duplicate	886RW01	RW01 Duplicate
Date Collected	Criteria	Ullits	2/5/2003	5/22/2003	7/22/2003	10/14/2003	2/3/2004	2/3/2004	1/6/2005	1/6/2005
ANALYTE / Lab ID			30061.08	30249.09	30384.09	30648.09	40090.04	40090.03	50006.04	50006.03
VOCs										
Acetone	700	μg/L	40.9	ND	ND	ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	7.95	4.27	3.41	3.35	3.35	1.3 J	1.24 J
cis - 1,2- Dichloroethene	10	μg/L	ND	ND	ND	ND	ND	ND	ND	0.32 J
Ethylbenzene	700	μg/L	ND	8.51	2.88	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	30039.7	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1000	μg/L	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	6.82	1.27 J	ND	0.49 J	0.46 J	ND	ND
TICs*	500	μg/L	4130.0	100.0	246.0	96.0	161.0	116.0	88.0	81.0
ТРН										
Total Petroleum Hydrocarbons	NLE	mg/L	1.3	NA	NA	NA	2.5	2.6	NA	NA
SVOCs	•		•	•	-	•	•	•		,
2-Methylnaphthalene	NLE	μg/L	3.37 J	NA	NA	NA	20.39	22.44	35.02	38.61
4-Methylphenol	NLE	μg/L	ND	NA	NA	NA	ND	ND	ND	ND
Acenaphthene	400	μg/L	1.8 J	NA	NA	NA	2.38 J	2.58 J	2.26 J	2.47 J
Bis(2-ethylhexyl) phthalate	30	μg/L	4.7 J	NA	NA	NA	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	NA	NA	NA	3.24 J	3.46 J	3.09 J	3.26 J
Diethyl phthalate	5000	μg/L	ND	NA	NA	NA	ND	ND	2.66 JB	3.01 JB
Fluorene	300	μg/L	1.73 J	NA	NA	NA	3.07 J	3.38 J	2.98 J	3.20 J
Naphthalene	NLE	μg/L	ND	NA	NA	NA	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	NA	NA	NA	2.59 J	2.76 J	2.10 J	2.14 J
TICs*	500	μg/L	311.0	NA	NA	NA	256.0	276.0	247.0	268.0
Pest/PCBs										
4,4'-DDE	0.1	μg/L	ND	NA	NA	NA	NA	NA	NA	NA
delta-BHC	NLE	μg/L	0.03	NA	NA	NA	NA	NA	NA	NA
gamma-BHC	0.2	μg/L	ND	NA	NA	NA	NA	NA	NA	NA
Metals										
Arsenic	8	μg/L	ND	NA	NA	NA	18.3	17.1	NA	NA
Barium	2000	μg/L	35.9 ER	NA	NA	NA	36.9 ER	36.7	NA	NA
Beryllium	20	μg/L	ND	NA	NA	NA	ND	ND	NA	NA
Cadmium	4	μg/L	ND	NA	NA	NA	ND	ND	NA	NA
Chromium III	100	μg/L	6.64 ER	NA	NA	NA	ND	ND	NA	NA
Copper	1000	μg/L	2.53 ER	NA	NA	NA	ND	ND	NA	NA
Lead	10	μg/L	ND	NA	NA	NA	ND	ND	NA	NA
Nickel	100	μg/L	3.43 ER	NA	NA	NA	ND	ND	NA	NA
Selenium	50	μg/L	ND	NA	NA	NA	ND	ND	NA	NA
Notes:						-				-

Notes:

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter dated November 2004.

Table 5-6 **Ground Water Sampling Results** Site 886 RW01 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	16	16	17	18	18
WELL ID	** NJDEP	** **	886RW01	886RW01	886RW01	RW01 Duplicate	886RW01	886RW01	RW01 Duplicate
Date Collected	Criteria	Units	1/24/2006	4/11/2006	11/14/006	11/14/006	1/25/2007	4/18/2007	4/18/2007
ANALYTE / Lab ID			60045.06	60147.09	60496.09	60496.03	70029.06	70141.04	70141.03
VOCs					•				
Acetone	6000	μg/L	3.95	NA	1.08 J	1.70 J	ND	ND	ND
Benzene	1	μg/L	0.61 J	NA	1.17 J	1.24 J	1.09 J	ND	ND
cis - 1,2- Dichloroethene	70	μg/L	ND	NA	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	3.62	NA	2.15	2.02	1.51 J	1.78 J	1.56 J
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	NA	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	NA	0.63 J	0.62 J	2.06	ND	ND
Toluene	1000	μg/L	ND	NA	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	0.46 J	NA	0.78 J	0.79 J	0.37 J	ND	ND
TICs*	500	μg/L	169.0	NA	72.0	42.0	102.0	7.0	ND
ТРН									
Total Petroleum Hydrocarbons	NLE	mg/L	NA	10.93	NA	NA	NA	NA	NA
SVOCs									
2-Methylnaphthalene	NLE	μg/L	55.44	NA	10.52	13.91	22.7	ND	ND
4-Methylphenol	NLE	μg/L	ND	ND	ND	1.05 J	ND	ND	ND
Acenaphthene	400	μg/L	4.69 J	NA	2.62 J	3.15 J	3.53 J	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	3.40 J	NA	2.18 J	ND	3.33 J	ND	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND	ND	ND
Fluorene	300	μg/L	5.98 J	NA	3.04 J	3.72 J	4.01 J	ND	ND
Naphthalene	300	μg/L	3.66 J	NA	ND	1.41 J	1.23 J	ND	ND
Phenanthrene	NLE	μg/L	5.80 J	NA	2.04 J	2.70 J	2.17 J	ND	ND
TICs*	500	μg/L	732.0	NA	238.0	309.0	294.0	65.0	110.0

** - NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled. NLE-No Limit Established

ER-Estimated Result

1-Estimated Concentration observed greater than the
* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb
Total xylenes= \sum of o-xylene and m.p-xylene.

Sampling for Metals and PCBs/Pesticides were

discontinued as per NJDEP approval letter dated

Table 5-6 **Ground Water Sampling Results** Site 886 RW01 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	Units	886RW01	886RW01	886RW01	886RW01	886RW01	886RW01
Date Collected	Criteria	Units	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.09	70384.04	80098.06	89211.09	80333.09	80409.09
VOCs			•	•			•	
Acetone	6000	μg/L	ND	ND	4.16	8.98	ND	ND
Benzene	1	μg/L	0.65 J	1.75 J	0.67 J	1.14	0.87	0.56
cis - 1,2- Dichloroethene	1	μg/L	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	5.81	9.0	3.34	3.05	1.84
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	0.93 J	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	3.86	ND	10.14	4.3	4.83
Toluene	600	μg/L	ND	ND	ND	ND	ND	0.27
Xylenes (Total)	NLE	μg/L	ND	1.92 J	2.09 J	1.02	1.16	0.97
TICs*	500	μg/L	519.0	93.0	333.0	271.0	169.0	159.0
ТРН		•		-				
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	35.03	18.28	ND	ND	ND	ND
4-Methylphenol	NLE	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	3.21 J	3.59 J	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	2.43 J	2.84 J	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	3.60 J	4.04 J	ND	ND	ND	ND
Naphthalene	300	μg/L	1.67 J	1.34 J	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	2.71 J	2.91 J	ND	ND	ND	ND
TICs*	500	μg/L	313.0	301.0	516.23	30.00	135.00	391.00

Notes:

- ** NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July
- B-Compound detected in the sample and its associated blank sample
- NA-Not Analyzed
- NS- Not Sampled.
- NLE-No Limit Established
- ER-Estimated Result
- J-Estimated Concentration observed greater than the MDL and less than the RL
- * TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and Total xylenes= Σ of o -xylene and m.p -xylene.
- Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval
- letter dated November 2004.

Table 5-7 Ground Water Sampling Results Site 886 RW02 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.			1	5	9
WELL ID	** NJDEP	T T 14	886RW02	886RW02	886RW02
Date Collected	Criteria	Units	2/5/2003	2/3/2004	1/6/2005
ANALYTE / Lab ID			30061.07	40090.04	50006.05
VOCs			•	•	
Benzene	1	μg/L	2.16	2.14	1.57 J
Ethylbenzene	700	μg/L	2.13	1.48 J	0.99 J
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	3.11
Xylenes (Total)	1000	μg/L	2.12 J	1.55 J	1.42 J
TICs*	500	μg/L	150.0	160.0	65.0
ТРН				-	•
Total Petroleum Hydrocarbons	NLE	mg/L	1.4	1.8	NA
SVOCs					
2-Methylnaphthalene	NLE	μg/L	37.63	6.94 J	12.52
Acenaphthene	400	μg/L	1.89 J	2.01 J	2.45 J
Bis(2-ethylhexyl) phthalate	30	μg/L	2.07 J	ND	ND
Dibenzofuran	NLE	μg/L	ND	2.48 J	3.15 J
Diethyl phthalate	5000	μg/L	ND	ND	2.21 JB
Fluorene	300	μg/L	1.96 J	2.98 J	3.42 J
Naphthalene	NLE	μg/L	ND	ND	ND
Phenanthrene	NLE	μg/L	1.0 J	1.99 J	2.18 J
TICs*	500	μg/L	343.0	137.0	169.0
Pest/PCBs					
4,4'-DDE	0.1	μg/L	ND	NA	NA
delta-BHC	NLE	μg/L	0.1	NA	NA
gamma-BHC	0.2	μg/L	ND	NA	NA
Metals					
Arsenic	8	μg/L	ND	12.0	NA
Barium	2000	μg/L	42.2 ER	44.1 ER	NA
Beryllium	20	μg/L	ND	ND	NA
Cadmium	4	μg/L	0.581 ER	ND	NA
Chromium III	100	μg/L	2.53 ER	ND	NA
Copper	1000	μg/L	ND	ND	NA
Lead	10	μg/L	ND	ND	NA
Nickel	100	μg/L	4.97 ER	ND	NA
Selenium	50	μg/L	ND	ND	NA

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and SVOCs

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval letter

Table 5-7 **Ground Water Sampling Results** Site 886 RW02 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	13	14	16	17	17	18
WELL ID	** NJDEP	** *.	886RW02	RW02 Duplicate	886RW02	886RW02	886RW02	RW02 Duplicate	886RW02
Date Collected	Criteria	Units	1/24/2006	1/24/2006	4/11/2006	11/14/2006	1/25/2007	1/25/2007	4/18/2007
ANALYTE / Lab ID			60045.07	60045.03	60147.1	60496.1	70029.07	70029.03	70141.05
VOCs									
Benzene	1	μg/L	0.83 J	0.78 J	NA	0.77 J	0.95 J	0.92 J	0.43 J
Ethylbenzene	700	μg/L	0.66 J	0.49 J	NA	0.61 J	0.87 J	0.82 J	0.53 J
Methyl tert -butyl ether (MTBE)	70	μg/L	0.64 J	0.57 J	NA	0.83 J	2.33	2.08	1.45 J
Xylenes (Total)	1000	μg/L	ND	ND	NA	0.76 J	0.55 J	0.55 J	ND
TICs*	500	μg/L	46.0	37.0	NA	29.0	11.0	11.0	ND
TPH									
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	0.36 ER	NA	NA	NA	NA
SVOCs									
2-Methylnaphthalene	NLE	μg/L	1.53 J	1.71 J	NA	ND	4.76 J	3.57 J	9.26 J
Acenaphthene	400	μg/L	2.25 J	2.30 J	NA	ND	1.56 J	1.22 J	1.04 J
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	NA	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	2.44 J	2.56 J	NA	ND	1.56 J	1.21 J	1.06 J
Diethyl phthalate	6000	μg/L	ND	ND	NA	ND	ND	ND	ND
Fluorene	300	μg/L	2.73 J	2.84 J	NA	ND	1.91 J	1.44 J	1.11 J
Naphthalene	300	μg/L	ND	ND	NA	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	1.0 J	1.05 J	NA	ND	ND	ND	ND
TICs*	500	μg/L	99.0	106.0	NA	50.0	51.0	34.0	56.0

B-Compound detected in the sample and its associated blank sample NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb

Total xylenes= \sum of o -xylene and m,p -xylene. Sampling for Metals and PCBs/Pesticides were

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-7 **Ground Water Sampling Results** Site 886 RW02 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	23	24
WELL ID	** NJDEP	** **	886RW02	886RW02	886RW02	886RW02	886RW02	RW02 Duplicate	886RW02
Date Collected	Criteria	Units	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID	1		70290.1	70384.05	80098.07	89211.1	80333.1	80333.03	80409.1
VOCs									
Benzene	1	μg/L	0.79 J	0.31 J	0.84 J	ND	ND	ND	0.3
Ethylbenzene	700	μg/L	ND	ND	0.46 J	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	4.14	2.75	5.03	1.32	5.26	5.62	2.9
Xylenes (Total)	1000	μg/L	ND	ND	0.88 J	ND	ND	ND	ND
TICs*	500	μg/L	77.0	35.0	97.0	ND	46.0	30.0	36.0
TPH									
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA	NA
SVOCs									
2-Methylnaphthalene	NLE	μg/L	16.05	18.48	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	2.0 J	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	1.8 J	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	71.0	99.0	51.08	14.00	132.00	185.00	50.00

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July 27, 2007)

B-Compound detected in the sample and its associated blank sample
NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

$$\label{eq:total xylenes} \begin{split} &\text{Total xylenes} = \sum \text{of } o\text{-xylene and } m.p\text{-xylene}. \\ &\text{Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval} \end{split}$$

Table 5-8 Ground Water Sampling Results Site 886 RW03 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.			1	5	9
WELL ID	** NJDEP	Units	886RW03	886RW03	886RW03
Date Collected	Criteria	Ullits	2/5/2003	2/3/2004	1/6/2005
ANALYTE / Lab ID			30061.04	40090.06	50006.08
VOCs					
Acetone	700	μg/L	3.08	ND	ND
Benzene	1	μg/L	0.77 J	ND	ND
Chloroform	6	μg/L	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND
TICs*	500	μg/L	161.0	116.0	4.0
ТРН	•		•	•	•
Total Petroleum Hydrocarbons	NLE	mg/L	1.5	ND	NA
SVOCs		•			
2-Methylnaphthalene	NLE	μg/L	75.88	ND	ND
Acenaphthene	400	μg/L	2.82 J	ND	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	ND	ND	ND
Dibenzofuran	NLE	μg/L	1.96 J	ND	ND
Diethyl phthalate	5000	μg/L	ND	ND	1.67 JB
Fluorene	300	μg/L	3.11 J	ND	ND
Naphthalene	NLE	μg/L	5.66 J	ND	ND
N-Nitrosodiphenylamine	20	μg/L	1.89 J	ND	ND
Phenanthrene	NLE	μg/L	2.08 J	ND	ND
TICs*	500	μg/L	545.0	4.0	6.0
Pest/PCBs					
4,4'-DDE	0.1	μg/L	ND	NA	NA
delta-BHC	NLE	μg/L	0.59	NA	NA
gamma-BHC	0.2	μg/L	ND	NA	NA
Metals					
Arsenic	8	μg/L	ND	ND	NA
Barium	2000	μg/L	42.7 ER	48.9 ER	NA
Beryllium	20	μg/L	ND	ND	NA
Cadmium	4	μg/L	0.662 ER	ND	NA
Chromium III	100	μg/L	1.03 ER	15.7 ER	NA
Copper	1000	μg/L	ND	ND	NA
Lead	10	μg/L	ND	ND	NA
Nickel	100	μg/L	7 ER	ND	NA
Selenium	50	μg/L	ND	ND	NA
Notes:					•

Notes:

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were

Table 5-8 Ground Water Sampling Results Site 886 RW03 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.	1 1		13	14	16	17	18
	** NJDEP						
WELL ID		Units	886RW03	886RW03	886RW03	886RW03	886RW03
Date Collected	Criteria		1/24/2006	4/11/2006	11/14/2006	1/25/2007	4/18/2007
ANALYTE / Lab ID			60045.08	60147.11	60496.11	70029.08	70141.06
VOCs							
Acetone	6000	μg/L	ND	NA	ND	ND	ND
Benzene	1	μg/L	ND	NA	ND	ND	ND
Chloroform	70	μg/L	ND	NA	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	NA	ND	ND	ND
ТРН	•		•	-	-	•	-
Total Petroleum Hydrocarbons	NLE	mg/L	NA	ND	NA	NA	NA
SVOCs							
2-Methylnaphthalene	NLE	μg/L	ND	NA	ND	ND	ND
Acenaphthene	400	μg/L	ND	NA	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	1.91 J
Dibenzofuran	NLE	μg/L	ND	NA	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND
Fluorene	300	μg/L	ND	NA	ND	ND	ND
Naphthalene	300	μg/L	ND	NA	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	NA	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	NA	ND	ND	20
Notes							

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-8 Ground Water Sampling Results Site 886 RW03 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP		886RW03	886RW03	886RW03	886RW03	886RW03	886RW03
Date Collected	Criteria	Units	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.11	70384.06	80098.08	89211.11	80333.11	80409.11
VOCs	- 1							
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND	ND
Chloroform	70	μg/L	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	1.71 J	ND	ND	ND	ND
TICs*	500	μg/L	ND	7.0	ND	ND	12.0	ND
ТРН	•		•	•			•	•
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	ND	7.0
Notes								

Notes

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o -xylene and m,p -xylene.

^{** -} NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

^{27, 2007)}

Table 5-9 **Ground Water Sampling Results** Site 886 RW04 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.			1	5	9
WELL ID	** NJDEP	TT '4	886RW04	886RW04	886RW04
Date Collected	Criteria	Units	2/5/2003	2/3/2004	1/6/2005
ANALYTE / Lab ID			30061.05	40090.07	50006.07
VOCs	'		•		•
Acetone	700	μg/L	1.5 J	ND	ND
Benzene	1	μg/L	0.67 J	ND	ND
Chloroform	6	μg/L	0.47 J	ND	ND
Ethylbenzene	700	μg/L	0.69 J	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	7.51
Toluene	1000	μg/L	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND
TICs*	500	μg/L	139.0	52.0	29.0
ТРН	•				•
Total Petroleum Hydrocarbons	NLE	mg/L	1.5	1.5	NA
SVOCs	'		•		•
2-Methylnaphthalene	NLE	μg/L	31.36	ND	45.56
4-Methylphenol	NLE	μg/L	ND	ND	1.13 J
Acenaphthene	400	μg/L	2.45 J	ND	4.40 J
Bis(2-ethylhexyl) phthalate	30	μg/L	ND	ND	ND
Dibenzofuran	NLE	μg/L	2.08 J	ND	3.55 J
Diethyl phthalate	5000	μg/L	ND	ND	2.02 JB
Fluorene	300	μg/L	3.11 J	1.31 J	5.87 J
Naphthalene	NLE	μg/L	7.44 J	ND	2.50 J
N-Nitrosodiphenylamine	20	μg/L	2.49 J	ND	ND
Phenanthrene	NLE	μg/L	2.21 J	ND	8.46 J
TICs*	500	μg/L	319.0	50.0	789.0
Pest/PCBs			•		
4,4'-DDE	0.1	μg/L	0.01 J	NA	NA
delta-BHC	NLE	μg/L	0.02	NA	NA
gamma-BHC	0.2	μg/L	ND	NA	NA
Metals			•		•
Arsenic	8	μg/L	ND	14.1	NA
Barium	2000	μg/L	42 ER	79 ER	NA
Beryllium	20	μg/L	ND	ND	NA
Cadmium	4	μg/L	ND	ND	NA
Chromium III	100	μg/L	1.58 ER	29.3 ER	NA
Copper	1000	μg/L	5.37 ER	14.6 ER	NA
Lead	10	μg/L	ND	7.65 ER	NA
Nickel	100	μg/L	5.32 ER	7.61 ER	NA
Selenium	50	μg/L	5.11 ER	ND	NA
Notes:			•		

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

Table 5-9 Ground Water Sampling Results Site 886 RW04 (Apr06-Apr07) Fort Monmouth, New Jersey

Round No.			14	16	17	18
WELL ID	** NJDEP		886RW04	886RW04	886RW04	886RW04
Date Collected	Criteria	Units	4/11/2006	11/14/2006	1/25/2007	4/18/2007
ANALYTE / Lab ID	1		60147.12	60496.12	70029.09	70141.07
VOCs						
Acetone	6000	μg/L	NA	ND	ND	ND
Benzene	1	μg/L	NA	ND	ND	ND
Chloroform	70	μg/L	NA	ND	ND	ND
Ethylbenzene	700	μg/L	NA	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	NA	1.66 J	1.93 J	2.52
Toluene	1000	μg/L	NA	ND	ND	ND
Xylenes (Total)	1000	μg/L	NA	ND	ND	ND
TICs*	500	μg/L	NA	13.0	7.0	ND
ТРН	•		•	-	•	-
Total Petroleum Hydrocarbons	NLE	mg/L	12.4	NA	NA	NA
SVOCs						
2-Methylnaphthalene	NLE	μg/L	NA	12.63	3.64 J	ND
4-Methylphenol	NLE	μg/L	NA	1.05 J	ND	ND
Acenaphthene	400	μg/L	NA	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	NA	ND	ND	1.33 J
Dibenzofuran	NLE	μg/L	NA	ND	ND	ND
Diethyl phthalate	6000	μg/L	NA	ND	ND	ND
Fluorene	300	μg/L	NA	1.95 J	ND	ND
Naphthalene	300	μg/L	NA	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	NA	3.68 J	ND	ND
Phenanthrene	NLE	μg/L	NA	1.54 J	ND	ND
TICs*	500	μg/L	NA	419.0	118.0	25.0
Notes:			•		•	•

Notes:

letter dated November 2004.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

Table 5-9 **Ground Water Sampling Results** Site 886 RW04 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	20	21	22	23	24
WELL ID	** NJDEP		886RW04	886RW04	RW04 Duplicate	886RW04	886RW04	886RW04	886RW04
Date Collected	Criteria	Units	8/2/2007	10/11/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.12	70384.07	70384.03	80098.09	89211.12	80333.12	80409.12
VOCs	1						1		
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND	ND	ND
Chloroform	70	μg/L	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	0.28	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	2.22	4.71	4.78	15.92	11.48	6.65	4.62
Toluene	600	μg/L	ND	ND	ND	ND	ND	0.31	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	0.18	0.65	ND
TICs*	500	μg/L	102.0	23.0	14.0	97.0	81.0	72.0	59.0
ТРН			-	-	•		-	-	
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA	NA
SVOCs									
2-Methylnaphthalene	NLE	μg/L	15.63	7.14 J	10.23	ND	ND	ND	ND
4-Methylphenol	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	1.20 J	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	2.68 J	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	2.30 J	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	201.0	62.0	106.0	196.46	ND	339.0	6.0

Notes:

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

letter dated November 2004.

^{** -} NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

^{27, 2007)} B-Compound detected in the sample and its associated blank sample

^{*} TICs = Tentatively Identified Compunds, can not exceed 500 ppb for VOCs and

Table 5-10 Ground Water Sampling Results Site 886 RW05 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.	1 1		1	1	5	9
WELL ID	** NJDEP		886RW05	RW05 Duplicate	886RW05	886RW05
Date Collected	Criteria	Units	2/5/2003	2/5/2003	2/3/2004	1/6/2005
ANALYTE / Lab ID	Cinena		30061.06	30061.03	40090.08	50006.06
VOCs			30001.00	30001.03	40090.08	30000.00
Acetone	700	a/I	3.86	2.96	ND	ND
Benzene	1	μg/L	3.80 1.23 J		0.48 J	ND ND
	700	μg/L	2.32	1.09 J 2.16	0.48 J ND	ND ND
Ethylbenzene	300	μg/L		2.16 ND		ND ND
Methyl ethyl ketone (2-Butanone)	NLE	μg/L	1.16 J ND	ND ND	ND ND	0.92 J
Methyl tert -butyl ether (MTBE)		μg/L				
Xylenes (Total) TICs*	1000 500	μg/L	2.26 J 198.0	2.11 J 142.0	0.68 J 70.0	ND 14.0
	500	μg/L	198.0	142.0	/0.0	14.0
TPH	NIE	/т	2.0	2.0	1.0	NT A
Total Petroleum Hydrocarbons	NLE	mg/L	2.0	2.0	1.9	NA
SVOCs Mathylpophthalana	NLE	па/І	60.8	50.3	ND	ND
2-Methylnaphthalene	400	μg/L	5.64 J	30.3 4.6 J	2.26 J	ND ND
Acenaphthene		μg/L		4.6 J 1.08 J		
Acenaphthylene	100 30	μg/L	ND 1.3 J	1.08 J	ND ND	ND ND
Bis(2-ethylhexyl) phthalate		μg/L				
Dibenzofuran	NLE	μg/L	4.92 J	4.8 J	1.96 J	ND 2.20 ID
Diethyl phthalate	5000	μg/L	ND C 27 I	ND 5.64 I	ND 2.12.I	2.28 JB
Fluorene	300	μg/L	6.37 J	5.64 J	2.12 J	ND
Naphthalene	NLE	μg/L	13.36	12.08	2.47 J	ND
N-Nitrosodiphenylamine	20	μg/L	1.05 J	ND	ND	ND
Phenanthrene	NLE	μg/L	4.7 J	4.89 J	ND 140.0	ND
TICs*	500	μg/L	513.0	506.0	149.0	8.0
Pest/PCBs	1 04 1		1.75	177	27.	
4,4'-DDE	0.1	μg/L	ND	ND	NA	NA
delta-BHC	NLE	μg/L	0.07	0.04	NA	NA
gamma-BHC	0.2	μg/L	ND	ND	NA	NA
Metals	1 0 1		1.75	177	10.0	
Arsenic	8	μg/L	ND	ND	13.9	NA
Barium	2000	μg/L	24.5 ER	47.9 ER	31.5 ER	NA
Beryllium	20	μg/L	ND	ND	ND	NA
Cadmium	4	μg/L	0.609 ER	0.6 ER	ND	NA
Chromium III	100	μg/L	0.63 ER	1.3 ER	ND	NA
Copper	1000	μg/L	ND	3 ER	ND	NA
Lead	10	μg/L	ND	1	ND	NA
Nickel	100	μg/L	ND	ND	ND	NA
Selenium	50	μg/L	ND	ND	ND	NA
Notes:						

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

Table 5-10 Ground Water Sampling Results Site 886 RW05 (Apr06-Apr07) Fort Monmouth, New Jersey

Round No.			13	14	16	17	18
WELL ID	** NJDEP	Units	886RW05	886RW05	886RW05	886RW05	886RW05
Date Collected	Criteria	Units	1/24/2006	4/11/2006	11/14/2006	1/25/2007	4/18/2007
ANALYTE / Lab ID			60045.09	60147.13	60496.13	70029.1	70141.08
VOCs							
Acetone	6000	μg/L	ND	NA	ND	ND	ND
Benzene	1	μg/L	ND	NA	ND	ND	ND
Ethylbenzene	700	μg/L	ND	NA	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	NA	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	NA	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	NA	ND	ND	ND
TICs*	500	μg/L	13.0	NA	ND	ND	ND
ТРН							
Total Petroleum Hydrocarbons	NLE	mg/L	NA	0.18 ER	NA	NA	NA
SVOCs							
2-Methylnaphthalene	NLE	μg/L	ND	NA	ND	2.22 J	ND
Acenaphthene	400	μg/L	ND	NA	ND	ND	ND
Acenaphthylene	100	μg/L	ND	NA	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	NA	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND
Fluorene	300	μg/L	ND	NA	ND	ND	ND
Naphthalene	300	μg/L	ND	NA	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	NA	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	NA	ND	ND	ND
TICs*	500	μg/L	17.0	NA	51	ND	4

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the

* TICs = Tentatively Identified Compounds, cannot

Total xylenes= \sum of o -xylene and m,p -xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-10 Ground Water Sampling Results Site 886 RW05 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	TT '4	886RW05	886RW05	886RW05	886RW05	886RW05	886RW05
Date Collected	Criteria	Units	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.13	70384.08	80098.1	89211.13	80333.13	80409.13
VOCs				•	•	•	•	•
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	2.36	ND	0.36	0.33
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	4.0	ND	4.0	ND
ТРН								
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	ND	3.53 J	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	μg/L	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	20.0	10.0	ND	60.0	13.0

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o -xylene and m,p -xylene.

Table 5-11 **Ground Water Sampling Results** Site 886 RW06 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.			1	5	9
WELL ID	** NJDEP	Units	886RW06	886RW06	886RW06
Date Collected	Criteria	Units	2/12/2003	2/3/2004	1/7/2005
ANALYTE / Lab ID			30066.05	40090.09	50009.04
VOCs					
Acetone	700	μg/L	2.05	ND	ND
TICs*	500	μg/L	99.0	16.0	ND
ТРН					
Total Petroleum Hydrocarbons	NLE	mg/L	1.7	1.2	NA
SVOCs					
2-Methylnaphthalene	NLE	μg/L	40.39	ND	ND
Acenaphthene	400	μg/L	2.27 J	ND	ND
Bis(2-ethylhexyl)phthalate	30	μg/L	ND	ND	ND
Diethyl phthalate	5000	μg/L	ND	ND	1.28 JB
Fluorene	300	μg/L	2.84 J	ND	ND
Naphthalene	NLE	μg/L	15.94	ND	ND
Phenanthrene	NLE	μg/L	1.8 J	ND	ND
TICs*	500	μg/L	313.0	ND	6.0
Metals					
Arsenic	8	μg/L	ND	5.19 ER	NA
Barium	2000	μg/L	37.2 ER	44.9 ER	NA
Beryllium	20	μg/L	ND	ND	NA
Cadmium	4	μg/L	ND	ND	NA
Chromium III	100	μg/L	1.17 ER	21.2 ER	NA
Copper	1000	μg/L	2.81 ER	5.9 ER	NA
Lead	10	μg/L	1.23 ER	5.43 ER	NA
Nickel	100	μg/L	6.35 ER	ND	NA
Selenium	50	μg/L	ND	ND	NA

B-Compound detected in the sample and its associated blank sample

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

Total xylenes= \sum of σ -xylene and m.p-xylene. Sampling for Metals and PCBs/Pesticides were discontinued as per NJDEP approval

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Table 5-11 Ground Water Sampling Results Site 886 RW06 (Jan06-Apr07) Fort Monmouth, New Jersey

r .							
Round No.			13	14	16	17	18
WELL ID	** NJDEP	Units	886RW06	886RW06	886RW06	886RW06	886RW06
Date Collected	Criteria	Omis	1/25/2006	4/11/2006	11/15/2006	1/26/2007	4/18/2007
ANALYTE / Lab ID			60052.07	60147.14	60498.04	70030.07	70141.09
VOCs							
Acetone	6000	μg/L	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	NA	ND	ND	ND
ТРН							
Total Petroleum Hydrocarbons	NLE	mg/L	NA	ND	NA	NA	NA
SVOCs							
2-Methylnaphthalene	NLE	μg/L	ND	NA	ND	ND	ND
Acenaphthene	400	μg/L	ND	NA	ND	ND	ND
Bis(2-ethylhexyl)phthalate	3	μg/L	ND	NA	1.34 J	ND	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND
Fluorene	300	μg/L	ND	NA	ND	ND	ND
Naphthalene	300	μg/L	ND	NA	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	NA	15.0	ND	ND

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-11 Ground Water Sampling Results Site 886 RW06 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
	** MDED							
WELL ID	** NJDEP	Units	886RW06	886RW06	886RW06	886RW06	886RW06	886RW06
Date Collected	Criteria	Omts	8/2/2007	10/11/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.14	70384.09	80099.07	89211.14	80333.14	80409.14
VOCs								
Acetone	6000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	ND	ND
ТРН								
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	17.0	ND	ND	100.0	37.0

Notes:

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

Total xylenes= \sum of o -xylene and m,p -xylene.

^{** -} NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

^{27, 2007)} B-Compound detected in the sample and its associated blank sample

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Table 5-12 Ground Water Sampling Results Site 886 RW07 (Feb03-Jan05) Fort Monmouth, New Jersey

Round No.	_		1	5	9
WELL ID	** NJDEP	Units	886RW07	886RW07	886RW07
Date Collected	Criteria	Omis	2/12/2003	2/3/2004	1/7/2005
ANALYTE / Lab ID			30066.04	40090.1	50009.05
VOCs					
Acetone	700	μg/L	6.52	ND	ND
Benzene	1	μg/L	1.17 J	ND	ND
Ethylbenzene	700	μg/L	6.59	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND
Methyl tert -butyl ether (MTBE)	NLE	μg/L	ND	ND	ND
Toluene	1000	μg/L	1.45 J	ND	ND
Xylenes (Total)	1000	μg/L	5.23	ND	ND
TICs*	500	μg/L	121.0	5.0	ND
ТРН			•		
Total Petroleum Hydrocarbons	NLE	mg/L	2.1	1.1	NA
SVOCs					
2-Methylnaphthalene	NLE	μg/L	59.97	ND	ND
Acenaphthene	400	μg/L	3.51 J	ND	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	2.49 J	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND
Diethyl phthalate	5000	μg/L	1.15 J	ND	1.32 JB
Fluorene	300	μg/L	3.97 J	ND	ND
Naphthalene	NLE	μg/L	18.16	ND	ND
N-Nitrosodiphenylamine	20	μg/L	2.66 J	ND	ND
Phenanthrene	NLE	μg/L	4.29 J	ND	ND
TICs*	500	μg/L	769.0	ND	6.0
Metals			•		
Arsenic	8	μg/L	ND	11.5	NA
Barium	2000	μg/L	34.1 ER	28.6 ER	NA
Beryllium	20	μg/L	ND	ND	NA
Cadmium	4	μg/L	ND	ND	NA
Chromium III	100	μg/L	1.56 ER	26.4 ER	NA
Copper	1000	μg/L	4.17 ER	102 ER	NA
Lead	10	μg/L	1.25 ER	7.78 ER	NA
Nickel	100	μg/L	3.5 ER	ND	NA
Selenium	50	μg/L	ND	ND	NA

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

Total xylenes= \sum of o -xylene and m,p -xylene.

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

J-Estimated Concentration observed greater than the MDL and less than the RL

^{*} TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Table 5-12 Ground Water Sampling Results Site 886 RW07 (Jan06-Apr07) Fort Monmouth, New Jersey

Round No.			13	13	14	16	17	18
WELL ID	** NJDEP	Units	886RW07	RW07 Duplicate	886RW07	886RW07	886RW07	886RW07
Date Collected	Criteria	Ullits	1/25/2006	1/25/2006	4/11/2006	11/15/2006	1/26/2007	4/19/2007
ANALYTE / Lab ID			60052.08	60052.03	60147.15	60498.05	70030.08	70142.09
VOCs								
Acetone	6000	μg/L	ND	ND	NA	ND	ND	ND
Benzene	1	μg/L	ND	ND	NA	ND	ND	ND
Ethylbenzene	700	μg/L	ND	ND	NA	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	NA	ND	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	NA	ND	ND	ND
Toluene	1000	μg/L	ND	ND	NA	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	ND	NA	ND	ND	ND
ТРН			•	•		-	•	
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	ND	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	ND	ND	NA	10.8	ND	ND
Acenaphthene	400	μg/L	ND	ND	NA	1.30 J	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	NA	ND	1.35 J	ND
Dibenzofuran	NLE	μg/L	ND	ND	NA	1.18 J	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	NA	ND	ND	ND
Fluorene	300	μg/L	ND	ND	NA	1.59 J	ND	ND
Naphthalene	300	μg/L	ND	ND	NA	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	NA	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	NA	ND	ND	ND
TICs*	500	μg/L	ND	5.0	NA	74.0	5.0	86.0

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb

Total xylenes= \sum of o-xylene and m,p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-12 Ground Water Sampling Results Site 886 RW07 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	Units	886RW07	886RW07	886RW07	886RW07	886RW07	886RW07
Date Collected	Criteria	Omts	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID			70290.15	70388.09	80099.08	89211.15	80333.15	80409.15
VOCs								
Acetone	6000	μg/L	ND	ND	ND	2.33	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	3.37	ND	ND
Methyl tert -butyl ether (MTBE)	70	μg/L	ND	ND	0.49 J	ND	0.37	0.36
Toluene	600	μg/L	ND	ND	ND	0.73	1.13	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	5.0	ND	ND	ND	ND
ТРН	-		•	-	•	•	•	
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs								
2-Methylnaphthalene	NLE	μg/L	ND	ND	ND	ND	ND	ND
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	μg/L	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	3.0 J	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	ND
Naphthalene	300	μg/L	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	9.0	ND	ND	7.0	5.0	32.0
Notes:			•	•	•	•	•	

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

27, 2007

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o -xylene and m,p -xylene.

Table 5-13 Ground Water Sampling Results Site 886 RW08 (Feb03-Jan05) Fort Monmouth, New Jersey

D 111	1 1			_				
Round No.			1	2	3	4	5	9
WELL ID	** NJDEP	Units	886RW08	886RW08	886RW08	886RW08	886RW08	886RW08
Date Collected	Criteria		2/5/2003	5/22/2003	7/22/2003	10/14/2003	2/3/2004	1/7/2005
ANALYTE / Lab ID			30061.09	30249.1	30384.1	30648.1	40090.11	50009.06
VOCs								
Acetone	700	μg/L	42.88	ND	ND	ND	1.13 J	ND
Benzene	1	μg/L	ND	2.13	1.86 J	1.83 J	ND	ND
Ethylbenzene	700	μg/L	ND	6.6	10.83	2.44	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	29510.7	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	1.53 J	2.99 J	ND	ND	ND
TICs*	500	μg/L	4080.0	48.0	218.0	25.0	4.0	ND
ТРН								
Total Petroleum Hydrocarbons	NLE	mg/L	9.4	NA	NA	NA	2.2	NA
SVOCs			•		-			
Acenaphthene	400	μg/L	3.53 J	NA	NA	NA	1.12 J	ND
Bis(2-ethylhexyl) phthalate	30	μg/L	2.8 J	NA	NA	NA	ND	ND
Diethyl phthalate	5000	μg/L	ND	NA	NA	NA	ND	1.15 JB
Fluorene	300	μg/L	3.17 J	NA	NA	NA	1.71 J	ND
N-Nitrosodiphenylamine	20	μg/L	ND	NA	NA	NA	2.33 J	ND
Phenanthrene	NLE	μg/L	1.06 J	NA	NA	NA	2.0 J	ND
Pyrene	200	μg/L	ND	NA	NA	NA	ND	ND
TICs*	500	μg/L	2333.0	NA	NA	NA	169.0	6.0
Metals			•		-			
Arsenic	8	μg/L	ND	NA	NA	NA	20.6	NA
Barium	2000	μg/L	32 ER	NA	NA	NA	29 ER	NA
Beryllium	20	μg/L	ND	NA	NA	NA	ND	NA
Cadmium	4	μg/L	ND	NA	NA	NA	ND	NA
Chromium III	100	μg/L	5.08 ER	NA	NA	NA	25.6 ER	NA
Copper	1000	μg/L	ND	NA	NA	NA	ND	NA
Lead	10	μg/L	ND	NA	NA	NA	ND	NA
Nickel	100	μg/L	6.68 ER	NA	NA	NA	ND	NA
Selenium	50	μg/L	7.72 ER	NA	NA	NA	ND	NA
Notes:					•		1	

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (January 7, 1993)

B-Compound detected in the sample and its associated blank sample

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less than the RL

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Table 5-13 Ground Water Sampling Results Site 886 RW08 (Jan06-Apr07) Fort Monmouth, New Jersey

	1 1							
Round No.	」		13	14	16	16	17	18
WELL ID	** NJDEP	Units	886RW08	886RW08	886RW08	RW08 Duplicate	886RW08	886RW08
Date Collected	Criteria	Omis	1/25/2006	4/11/2006	11/15/2006	11/15/2006	1/26/2007	4/19/2007
ANALYTE / Lab ID	1		60052.09	60147.16	60498.06	60498.03	70030.09	70142.1
VOCs								
Acetone	6000	μg/L	ND	NA	ND	ND	ND	ND
Benzene	1	μg/L	ND	NA	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	NA	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	NA	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	NA	ND	ND	ND	ND
TICs*	500	μg/L	ND	NA	ND	ND	ND	ND
ТРН								
Total Petroleum Hydrocarbons	NLE	mg/L	NA	0.08 ER	NA	NA	NA	NA
SVOCs					•			
Acenaphthene	400	μg/L	ND	NA	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	NA	ND	ND	2.58 J	ND
Diethyl phthalate	6000	μg/L	ND	NA	ND	ND	ND	ND
Fluorene	300	μg/L	ND	NA	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	NA	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	NA	ND	ND	ND	ND
Pyrene	200	μg/L	ND	NA	ND	ND	ND	ND
TICs*	500	μg/L	ND	NA	21.0	7.0	24.0	72.0
Notes:								

Notes:

B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb

Total $\widehat{\text{xylenes}} = \widehat{\sum} \widehat{\text{of } o}$ -xylene and m, p-xylene.

Sampling for Metals and PCBs/Pesticides were discontinued as per

^{** -} NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-C (November 7, 2005)

Table 5-13 Ground Water Sampling Results Site 886 RW08 (Aug07-Nov08) Fort Monmouth, New Jersey

Round No.			19	20	21	22	23	24
WELL ID	** NJDEP	Units	886RW08	886RW08	886RW08	886RW08	886RW08	886RW08
Date Collected	Criteria	Omis	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008
ANALYTE / Lab ID	1		70290.16	70388.1	80099.09	89211.16	80333.16	80409.16
VOCs								
Acetone	6000	μg/L	ND	6.11	2.01	ND	ND	ND
Benzene	1	μg/L	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	μg/L	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	μg/L	ND	ND	ND	ND	ND	ND
Xylenes (Total)	1000	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	ND	ND	ND	ND	ND	ND
ТРН								
Total Petroleum Hydrocarbons	NLE	mg/L	NA	NA	NA	NA	NA	NA
SVOCs			•					
Acenaphthene	400	μg/L	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	μg/L	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6000	μg/L	ND	ND	ND	ND	ND	ND
Fluorene	300	μg/L	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	10	μg/L	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	μg/L	ND	ND	ND	ND	ND	ND
Pyrene	200	μg/L	ND	ND	ND	ND	ND	ND
TICs*	500	μg/L	6.0	17.0	241.85	ND	36.0	34.0
Notes:	•		•					

** - NJDEP Ground Water Quality Criteria as per modification of N.J.A.C. 7:9-C (July

27, 2007)
B-Compound detected in the sample and its associated blank sample

ND- Analyte Not Detected in sample.

NA-Not Analyzed

NS- Not Sampled.

NLE-No Limit Established

ER-Estimated Result

J-Estimated Concentration observed greater than the MDL and less

* TICs = Tentatively Identified Compounds, cannot exceed 500 ppb for VOCs and

Total xylenes= \sum of o-xylene and m,p-xylene.

Table 5-14 Ground Water Exceedance Summary Site 886 Fort Monmouth, New Jersey

Analyte	GWQS	Field ID	Round	Date Collected	Lab Sample ID	Result
VOCs						
Benzene	1	886RW01	#2	5/22/2003	3024909	7.95
			#3	7/22/2003	3038409	4.27
			#4	10/14/2003	3064809	3.41
			#5	2/3/2004	4009004	3.35
			#5 (Duplicate)	2/3/2004	4009003	3.35
			#9	1/6/2005	5000604	1.3 J
			#9 (Duplicate)	1/6/2005	5000603	1.24 J
			#16	11/14/2006	6049609	1.17 J
			#16 (Duplicate)	11/14/2006	6049603	1.24 J
			#17	1/25/2007	7002906	1.09 J
			#20	10/11/2007	7038404	1.75 J
			#22	6/25/2008	8921109	1.14
		886RW02	#5	2/3/2004	4009004	2.14
			#9	1/6/2005	5000605	1.57 J
		<u> </u>				
	ļ	886RW08	#2	5/22/2003	3024910	2.13
	ļ		#3	7/22/2003	3038410	1.86 J
			#4	10/14/2003	3064810	1.83 J
SVOCs						
Bis (2-ethylhexyl) phthalate	3	886MW04	#20	10/12/2007	7038807	3.76 J
<u>Metals</u>						
Aluminum	200	886MW01	#2	5/22/2003	3024904	1320
			#2 (Duplicate)	5/22/2003	3024903	1110
			#4	10/14/2003	3064804	1100
			#4 (Duplicate)	10/14/2003	3064803	630
			#6	5/25/2004	4038804	234
			#7	8/4/2004	4057804	204
			#7 (Duplicate)	8/4/2004	4057803	348
			#8	10/20/2004	4072804	307
Augonio	8	886MW01	#2	5/22/2002	3024904	46.9
Arsenic	0	880W W U I	#2 (Duplicate)	5/22/2003 5/22/2003	3024904	41.9
			#3 #4	7/22/2003 10/14/2003	3038404 3064804	8.22 14.2
			#4 (Duplicate)	10/14/2003	3064803	12
			#4 (Duplicate) #5	2/3/2004	4009404	27.3
				5/25/2004	4038804	12.7
	1	 	#6 #7	8/4/2004	4057804	8.78
		 	#7 (Duplicate)	8/4/2004	4057803	21.5
		 	#7 (Duplicate) #8	10/20/2004	4072804	8.85
		† †	110	10/20/2004	TO / 200T	0.00
		886MW02	#2	5/22/2003	3024905	28.7
			#3	7/22/2003	3038405	43.9
			#4	10/14/2003	3064805	19.4
			#5	2/3/2004	4009405	11.9
			#5 (Duplicate)	2/3/2004	4009403	13.0
			#6	5/25/2004	4038805	14.4
			#7	8/4/2004	4057805	11.4
			#8	10/20/2004	4072805	9.84

Table 5-14 Ground Water Exceedance Summary Site 886

Fort Monmouth, New Jersey

Analyte	GWQS	Field ID	Round	Date Collected	Lab Sample ID	Result
Arsenic	8	886MW03	#3	7/22/2003	3038406	9.32
			#3 (Duplicate)	7/22/2003	3038403	8.02
			#4	10/14/2003	3064806	10.8
			#5	2/3/2004	4009406	11.1
			#6	5/25/2004	4038806	18.5
			#8	10/20/2004	4072806	8.54
		886MW05	#5	2/3/2004	4009408	16.7
			#7	8/4/2004	4057808	11.9
		886RW01	#5	2/3/2004	4009004	18.3
			#5 (Duplicate)	2/3/2004	4009003	17.1
		886RW02	#5	2/3/2004	4009004	12
		886RW04	#5	2/3/2004	4009007	14.1
		886RW05	#5	2/3/2004	4009008	13.9
		886RW07	#5	2/3/2004	4009010	11.5
		886RW08	#5	2/3/2004	4009011	20.6
Cadmium	4	886MW01	#2	5/22/2003	3024904	4.16
			#6	5/25/2004	4038804	8.85
		886MW02	#2	5/22/2003	3024905	4.15
			#3	7/22/2003	3038405	4.32
Lead	10	886MW01	#4	10/14/2003	3064804	11.2
			#6	5/25/2004	4038804	11.5
		886MW02	#5	2/3/2004	4009405	13.7
			#5 (Duplicate)	2/3/2004	4009403	13.6
		886MW03	#6	5/25/2004	4038806	10.5

All results are in micrograms per liter ($\mu g/l$).

VOCs = Volatile Organic Compounds.

 $\label{eq:J-Estimated Concentration observed greater than the method detection limit (MDL) and less than the reporting limit (RL)$

GWQS-Ground Water Quality Standard

Table 5-15 VOC Tentatively Identified Compounds (TICs) Site 886 Fort Monmouth, New Jersey

	Well:	886MW01	886MW02	886MW03	886MW04	886MW05	886RW01	886RW02	886RW03	886RW04	886RW05	886RW06	886RW07	886RW08
Round	Date													
2	May-03	39/5	ND	ND	ND	234/15	100/15	NS	NS	NS	NS	NS	NS	48/7
3	Jul-03	55/9	43/7	ND	ND	138/10	246/10	NS	NS	NS	NS	NS	NS	218/10
4	Oct-03	13/1	ND	ND	ND	79/12	96/14	NS	NS	NS	NS	NS	NS	25/5
5	Feb-04	32/5	9/2	ND	ND	76/10	161/10	160/10	116/10	52/6	70/9	16/3	5/1	4/1
6	May-04	68/10	28/6	3/1	ND	64/9	NS							
7	Aug-04	7/1	ND	ND	ND	91/10	NS							
8	Oct-04	108/10	51/3	ND	ND	125/10	NS	NS	NS	NS	NS	NS	NS	NS
9	Jan-05	55/9	10/1	ND	ND	19/4	88/10	65/10	4/1	29/7	14/3	ND	ND	ND
10	Apr-05	69/10	ND	ND	ND	ND	NS							
11	Jul-05	16/2	ND	ND	ND	137/10	NS	NS	NS	NS	NS	NS	NS	NS
12	Oct-05	68/9	14/1	ND	ND	ND	NS							
13	Jan-06	107/10	ND	ND	ND	ND	169/10	46/7	ND	NS	13/3	ND	ND	ND
14	Apr-06	12/2	4/1	4/1	4/1	24/4	NA							
15	Jul-06	ND	6/1	ND	ND	9/2	NS							
16	Nov-06	11/2	3/1	ND	ND	ND	72/10	29/5	ND	13/3	ND	ND	ND	ND
17	Jan-07	54/7	ND	ND	ND	4/1	102/15	11/2	ND	7/2	ND	ND	ND	ND
18	Apr-07	13/2	ND	ND	ND	ND	7/2	ND						
19	Aug-07	ND	ND	ND	ND	28/3	519/15	77/10	ND	102/11	ND	ND	ND	ND
20	Oct-07	ND	ND	ND	ND	35/7	93/15	35/6	7/2	23/5	ND	ND	5/1	ND
21	Mar-08	242/15	ND	ND	ND	6/2	333/15	97/15	ND	97/15	4/1	ND	ND	ND
22	Jun-08	ND	ND	ND	ND	23/4	271/15	ND	ND	81/15	ND	ND	ND	ND
23	Sep-08	ND	ND	ND	ND	17/4	169/15	46/8	12/1	72/11	4/1	ND	ND	ND
24	Nov-08	13/2	ND	ND	ND	60/11	159/15	36/6	ND	59/9	ND	ND	ND	ND

Notes:

Exceedances are bolded and shaded.

Exceedances are based on 100 μ g/L for individual TIC concentrations and 500 μ g/L for Total TICs concentrations.

Results are given as Total TIC concentrations/# TICs.

ND = Not Detected.

Table 5-16 SVOC Tentatively Identified Compounds (TICs) Site 886 Fort Monmouth, New Jersey

	Well:	886MW01	886MW02	886MW03	886MW04	886MW05	886RW01	886RW02	886RW03	886RW04	886RW05	886RW06	886RW07	886RW08
Round	Date													
2	May-03	162/21	27/3	30/3	16/1	270/25	NA	NS	NS	NS	NS	NS	NS	NA
3	Jul-03	137/20	12/2	15/2	8/1	722/25	NA	NS	NS	NS	NS	NS	NS	NA
4	Oct-03	22/4	14/3	30/5	ND	269/25	NA	NS	NS	NS	NS	NS	NS	NA
5	Feb-04	153/23	ND	9/2	4/1	240/24	256/24	137/16	4/1	50/9	149/16	ND	ND	169/23
6	May-04	105/17	ND	ND	ND	168/20	NS	NS	NS	NS	NS	NS	NS	NS
7	Aug-04	ND	ND	29/6	11/2	330/25	NS	NS	NS	NS	NS	NS	NS	NS
8	Oct-04	86/10	ND	15/2	ND	261/25	NS	NS	NS	NS	NS	NS	NS	NS
9	Jan-05	135/21	11/2	11/2	19/2	84/11	247/24	169/20	6/1	789/25	8/1	6/1	6/1	6/1
10	Apr-05	67/12	5/1	51/4	4/1	4/1	NS	NS	NS	NS	NS	NS	NS	NS
11	Jul-05	27/5	6/1	18/1	ND	260/23	NS	NS	NS	NS	NS	NS	NS	NS
12	Oct-05	143/16	ND	15/1	ND	76/12	NS	NS	NS	NS	NS	NS	NS	NS
13	Jan-06	104/15	ND	ND	ND	5/1	732/25	99/14	ND	NS	17/2	ND	ND	ND
14	Apr-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
15	Jul-06	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
16	Nov-06	21/3	ND	5/1	ND	ND	238/25	50/5	ND	419/25	51/9	15/3	74/8	21/4
17	Jan-07	132/20	ND	ND	ND	9/2	294/25	51/7	ND	118/17	ND	ND	5/1	24/2
18	Apr-07	153/21	25/1	28/1	170/1	52/1	65/11	56/6	20/3	25/5	4/1	ND	86/1	72/2
19	Aug-07	ND	ND	ND	ND	21/3	313/25	71/9	ND	201/25	ND	ND	9/1	6/1
20	Oct-07	ND	15/1	ND	4/1	100/14	301/25	99/11	ND	62/10	20/2	17/3	ND	17/1
21	Mar-08	170.46/21	39.3/1	ND	ND	10.1/1	516.23/25	51.08/6	ND	196.46/24	10/1	ND	ND	241.85/23
22	Jun-08	ND	ND	ND	ND	34/5	30/4	14/2	ND	ND	ND	ND	7/1	ND
23	Sep-08	61/8	23/1	ND	14/1	90/13	135/19	132/19	ND	339/26	60/5	100/6	5/1	36/4
24	Nov-08	19/3	4/1	8/1	12/1	67/9	391/21	50/9	7/1	6/1	13/2	37/7	32/4	34/4

Notes:

Exceedances are bolded and shaded.

Exceedances are based on 100 μ g/L for individual TIC concentrations and 500 μ g/L for Total TICs concentrations.

Results are given as Total TIC concentrations/# TICs.

ND = Not Detected.

Table 5-17 Relative Percent Difference Calculations - Ground Water Site 886 (2nd Quarter 2003 through 4th Quarter 2008) Fort Monmouth, NJ

Round 2	Q2 2003	886MW01	1 Sample Multiplier: 1			Average All RPDs
	Field Duplicate	Sample	Average	Difference	RPD	THI KI DS
All Non-Detect	0	0	0	0	0.00%	
				Average	0.00%	0.00%
Round 3	Q3 2003	886MW03	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	1.03	1.25	1.14	0.22	19.30%	
				Average	19.30%	19.30%
Round 4	Q4 2003	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	
				Average	0.00%	0.00%
Round 5a	Q1 2004	886MW02	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	
				Average	0.00%	0.00%
Round 5b	Q1 2004	886RW01	Sample M	ultiplier: 1		
Round 5b	-		Sample Monage Average	ultiplier: 1 Difference	RPD	
Round 5b Benzene	Q1 2004 Field Duplicate 3.35	886RW01 Sample 3.35	-	-	RPD 0.00%	
	Field Duplicate	Sample	Average	Difference		
Benzene	Field Duplicate 3.35	Sample 3.35	Average 3.35	Difference 0	0.00%	3.16%
Benzene	Field Duplicate 3.35	Sample 3.35 0.49	Average 3.35	Difference 0 0.03 Average	0.00% 6.32%	3.16%
Benzene Total Xylenes	Field Duplicate 3.35 0.46	Sample 3.35 0.49	Average 3.35 0.48 Sample M	Difference 0 0.03 Average	0.00% 6.32%	3.16%
Benzene Total Xylenes	Field Duplicate 3.35 0.46 Q2 2004	Sample 3.35 0.49 886MW05	Average 3.35 0.48	Difference 0 0.03 Average ultiplier: 1	0.00% 6.32% 3.16%	3.16%
Benzene Total Xylenes Round 6	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate	Sample 3.35 0.49 886MW05 Sample	Average 3.35 0.48 Sample M Average	Difference 0 0.03 Average ultiplier: 1 Difference	0.00% 6.32% 3.16%	3.16% 38.33%
Benzene Total Xylenes Round 6	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate	Sample 3.35 0.49 886MW05 Sample 1.43	Average 3.35 0.48 Sample M Average	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average	0.00% 6.32% 3.16% RPD 38.33%	
Benzene Total Xylenes Round 6 Ethylbenzene	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate 0.97	Sample 3.35 0.49 886MW05 Sample 1.43	Average 3.35 0.48 Sample M Average 1.2	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average	0.00% 6.32% 3.16% RPD 38.33%	
Benzene Total Xylenes Round 6 Ethylbenzene	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate 0.97 Q3 2004	Sample 3.35 0.49 886MW05 Sample 1.43 886MW01	Average 3.35 0.48 Sample M Average 1.2	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average ultiplier: 1	0.00% 6.32% 3.16% RPD 38.33% 38.33%	
Benzene Total Xylenes Round 6 Ethylbenzene Round 7	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate 0.97 Q3 2004 Field Duplicate	Sample 3.35 0.49 886MW05 Sample 1.43 886MW01 Sample	Average 3.35 0.48 Sample M Average 1.2 Sample M Average	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average ultiplier: 1 Difference	0.00% 6.32% 3.16% RPD 38.33% 38.33%	
Benzene Total Xylenes Round 6 Ethylbenzene Round 7	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate 0.97 Q3 2004 Field Duplicate	Sample 3.35 0.49 886MW05 Sample 1.43 886MW01 Sample 0.4	Average 3.35 0.48 Sample M Average 1.2 Sample M Average	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average ultiplier: 1 Difference 2.47 Average	0.00% 6.32% 3.16% RPD 38.33% 38.33%	38.33%
Benzene Total Xylenes Round 6 Ethylbenzene Round 7	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate 0.97 Q3 2004 Field Duplicate 2.87	Sample 3.35 0.49 886MW05 Sample 1.43 886MW01 Sample 0.4	Average 3.35 0.48 Sample M Average 1.2 Sample M Average 1.635	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average ultiplier: 1 Difference 2.47 Average	0.00% 6.32% 3.16% RPD 38.33% 38.33%	38.33%
Benzene Total Xylenes Round 6 Ethylbenzene Round 7	Field Duplicate 3.35 0.46 Q2 2004 Field Duplicate 0.97 Q3 2004 Field Duplicate 2.87 Q4 2004	Sample 3.35 0.49 886MW05 Sample 1.43 886MW01 Sample 0.4	Average 3.35 0.48 Sample M Average 1.2 Sample M Average 1.635	Difference 0 0.03 Average ultiplier: 1 Difference 0.46 Average ultiplier: 1 Difference 2.47 Average ultiplier: 1	0.00% 6.32% 3.16% RPD 38.33% 38.33% RPD 151.07%	38.33%

Table 5-17 Relative Percent Difference Calculations - Ground Water Site 886 (2nd Quarter 2003 through 4th Quarter 2008) Fort Monmouth, NJ

Round 9a	Q1 2005	886MW05	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
Benzene	1.24	1.3	1.27	0.06	4.72%	1
	•		•	Average	4.72%	4.72%
Round 9b	Q1 2005	Duplicate h	as Unkown	Original		
Round 10	Q2 2005	886MW02	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	1.08	1.1	1.09	0.02	1.83%	1
				Average	1.83%	1.83%
Round 11	Q3 2005	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	1
		<u> </u>	-	Average	0.00%	0.00%
Round 12	Q4 2005	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	2.08	2.09	2.085	0.01	0.48%]
Toluene	0.49	0.51	0.5	0.02	4.00%]
Total Xylenes	0.48	0.51	0.495	0.03	6.06%]
				Average	3.51%	3.51%
Round 13a	Q1 2006	886RW02	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
Benzene	0.78	0.83	0.805	0.05	6.21%]
Ethylbenzene	0.49	0.66	0.575	0.17	29.57%]
MTBE	0.57	0.64	0.605	0.07	11.57%]
				Average	15.78%	15.78%
Round 13b	Q1 2006	886RW07	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	_
All Non-Detect	0	0	0	0	0.00%]
				Average	0.00%	0.00%
Round 14	Q2 2006	886MW03	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%]
				Average	0.00%	0.00%

Table 5-17 Relative Percent Difference Calculations - Ground Water Site 886 (2nd Quarter 2003 through 4th Quarter 2008) Fort Monmouth, NJ

Round 15	Q3 2006	886MW03	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	
	.		•	Average	0.00%	0.00%
Round 16a	Q4 2006	886RW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
Acetone	1.7	1.08	1.39	0.62	44.60%	
Benzene	1.24	1.17	1.21	0.07	5.81%	
Ethylbenzene	2.02	2.15	2.09	0.13	6.24%	
MTBE	0.62	0.63	0.63	0.01	1.60%	
Total Xylenes	0.79	0.78	0.79	0.01	1.27%	
				Average	11.90%	11.90%
Round 16b	Q4 2006	886RW08	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	
				Average	0.00%	0.00%
Round 17a	Q1 2007	886MW03	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	Average 0	0	0.00%	
Tim From Detect		· ·		Average	0.00%	0.00%
Round 17b	Q1 2007	886RW02	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
Benzene	0.92	0.95	0.94	0.03	3.21%	
Ethylbenzene	0.82	0.87	0.85	0.05	5.92%	
MTBE	2.08	2.33	2.21	0.25	11.34%	
Total Xylenes	0.55	0.55	0.55	0	0.00%	
		•	•	Average	5.12%	5.12%
Round 18a	Q2 2007	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	
					0.0001	0.000/
	•			Average	0.00%	0.00%
Round 18b	Q2 2007	886RW01	Sample M		0.00%	0.00%
Round 18b	Q2 2007 Field Duplicate	886RW01 Sample	Sample Mo		0.00% RPD	0.00%
Round 18b Ethylbenzene	_		-	ultiplier: 1		0.00%

Table 5-17
Relative Percent Difference Calculations - Ground Water
Site 886 (2nd Quarter 2003 through 4th Quarter 2008)
Fort Monmouth, NJ

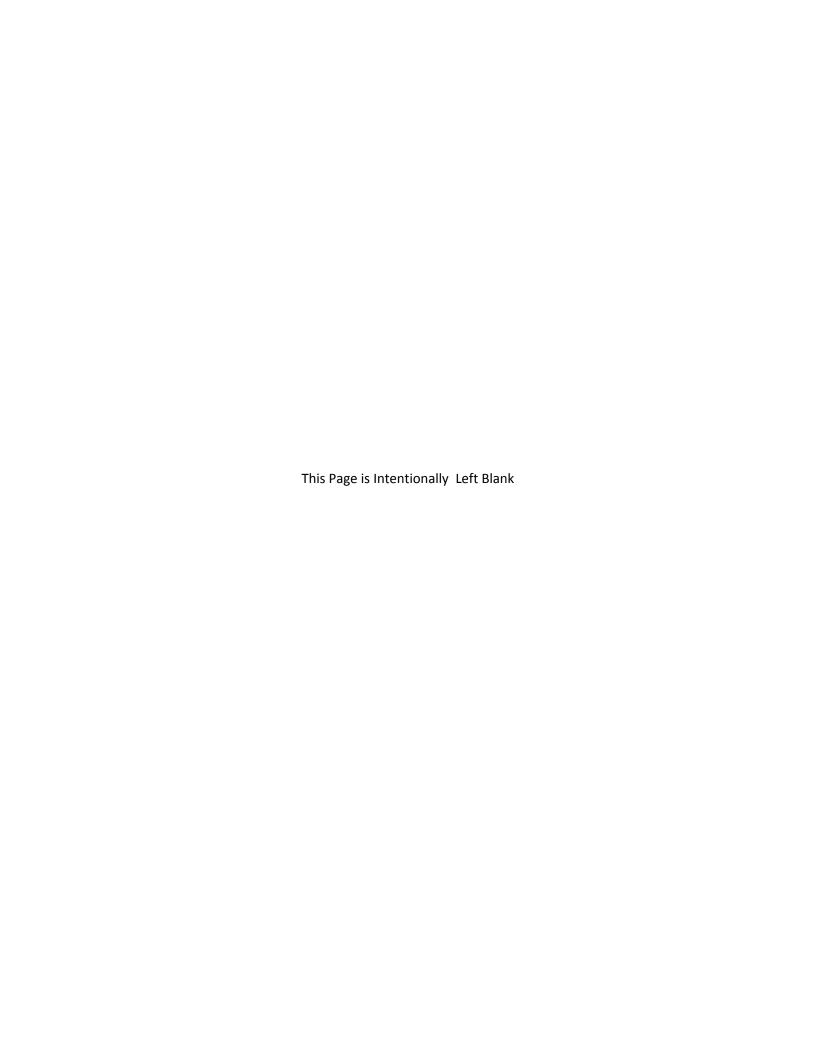
Round 19	Q3 2007	886MW01	Sample M			
	Field Duplicate	Sample	Average	Difference	RPD	
All Non-Detect	0	0	0	0	0.00%	
	1		•	Average	0.00%	0.00%
Round 20a	Q4 2007	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	4.46	3.86	4.16	0.6	14.42%	
				Average	14.42%	14.42%
Round 20b	Q4 2007	886RW04	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	4.78	4.71	4.75	0.07	1.48%	
				Average	1.48%	1.48%
Round 21a	Q1 2008	886MW01	Duplicate	Not Analyzed	l	
Round 21b	Q1 2008	886MW04	Duplicate	Not Analyzed	ì	
Round 22	Q2 2008	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	17.05	16.76	16.91	0.29	1.72%	
				Average	1.72%	1.72%
Round 23	Q3 2008	886RW02	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	5.62	5.26	5.44	0.36	6.62%	
				Average	6.62%	6.62%
Round 24	Q4 2008	886MW01	Sample M	ultiplier: 1		
	Field Duplicate	Sample	Average	Difference	RPD	
MTBE	2.29	2.21	2.25	0.08	3.56%	
				Average	3.56%	3.56%
				tive Percent		0.00%
			_	tive Percent		11.41%
DDD D 1 1 D D D100		Maxim	ım All Rela	tive Percent	Differences	151.07%

RPD=Relative Percent Differences MTBE=Methyl Tert-Butyl Alcohol TBA=Tert-Butyl Alcohol

^{*} Method Detection Limit used for non-detect result.

Appendix A

Versar, Inc., January 2006, Final Remedial Action Report for Soil and Ground Water Contamination – Building 886, Fort Monmouth, New Jersey


(This report is supplied on disc only.)

Appendix B

Ground Water Monitoring Well Laboratory Analytical Data 2nd Quarter 2003 through 4th Quarter 2008 (Reports supplied on disc only.)

Appendix C

Fort Monmouth Directorate of Public Works Analytical Standard Operating Procedures

SOP No.: SAM-0205
Revision No.: Y New

Date Revised: 8/9/99

Page 1 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

1 PURPOSE:

To document current procedures for monitoring well sampling.

2 RESPONSIBILITY:

Designated field samplers who have been properly trained and instructed in NJDEP field sampling procedures and protocol.

3 REFERENCES:

- 3.1 Field Sampling Procedures Manual, May 1992 (most current). New Jersey Department of Environmental Protection and Energy.
- 3.2 Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities developed by NIOSH, OSHA, USCG, EPA. Oct. 1985
- 3.3 NJDEP Field Analysis Manual, July 1994.
- 3.4 On the World Wide Web: www.state.nj.us/dep/srp..
- 3.5 Lab SOP: SAM-0200, SAM-0202, OQC-0302

4 SUMMARY:

The procedures, materials, and equipment describe the recommended methods for sampling monitoring wells. Necessary equipment, calibrations, calculations and appropriate QA/QC procedures are also included. These procedures are to be followed by all personnel involved with the sampling and purging of wells at Fort Monmouth. Persons following this SOP are recommended to also refer to the NJDEP Field Sampling Procedures Manual.

Prepared By	Dexlo D. Wright	Date 8-11-99
Approved By	Jackes Herman	Date 8/11/99
	QA Minager / Laboratory Director	
		etiped 1/28/03

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 2 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

5 EQUIPMENT AND MATERIALS:

- 5.1 Equipment
 - 5.1.1 Dissolved oxygen meter
 - 5.1.2 HNU photo ionizer
 - 5.1.3 Conductivity/pH/temp meter
 - 5.1.4 Peristaltic well pumps
 - 5.1.5 Pump heads and power cables
 - 5.1.6 Water level meter
 - 5.1.7 Oil/water interface probe
 - 5.1.8 Submersible well pumps
 - 5.1.9 Various batteries
 - 5.1.10 Buckets
 - 5.1.11 Miscellaneous tools, i.e. screwdriver, well wrench, etc.

5.2 Materials:

- 5.2.1 Thick wall silicone tubing ¼ inch diameter,
- 5.2.2 Polyethylene (food grade) tubing ¼ inch diameter,
- 5.2.3 12 inch single sample 1 check stop teflon disposable bailers,
- 5.2.4 Mason string.

6 STANDARDS/REAGENTS:

- 6.1 Buffer solutions, calibration gases, decontamination materials, and acids for preservation.
 - 6.1.1 Buffer solutions:
 - 6.1.1.1 7.00 standard buffer solution
 - 6.1.1.2 10.00 standard buffer solution
 - 6.1.1.3 4.00 standard buffer solution
 - 6.1.1.4 Distilled and deionized water
 - 6.1.1.5 Alconox
 - 6.1.1.6 10 % nitric acid rinse (trace metal or higher grade HNO3 diluted with distilled/deionized (ATSM Type II) H2O)
 - 6.1.1.7 Acetone (pesticide grade)
 - 6.1.1.8 Pure nitrogen 100 ppm Isobutylene cal gas.
 - 6.1.2 Acids/materials used in preserving samples:
 - 6.1.2.1 Nitric acid 69, 0-70.0%
 - 6.1.2.2 Sulfuric acid 50% (w/w) solution
 - 6.1.2.3 Hydrochloric acid (trace metal grade)
 - 6.1.2.4 Ice for keeping samples at <4 degrees celcius.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 3 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

Refer to NJDEP Field Sampling Procedure Manual Table 2-1 Aqueous Sampling Equipment Decontamination (Lab and Field).

7 CALIBRATION:

All instruments used for field readings are calibrated before each day of use. The use of pH meters must start out with a calibration using buffer solution standards to check or calibrate accuracy. HNU's are calibrated with a known calibration gas. Dissolved oxygen meters are checked against a winkler method test weekly. All calibrations for a given day's use are recorded in the log provided for each instrument. Refer to equipment directions for calibration instruction. Likewise, specific conductivity meters are checked against standards regularly. Cooler thermometers are calibrated against an NIST traceable thermometer annually.

8 PROCEDURE:

The following articles document the procedures for sampling monitor wells. They are to be used as a guide, by trained personnel, in conjunction with the NJDEP Field Sampling Procedures Manual.

- 8.1.1 Preparation: It should be noted that before going out into the field, certain preparations must be made. This includes the selection of PPE, safety plans, proper bottle acquisition for analytes being tested, site entry, map information, and equipment.
- 8.1.2 Selection of PPE: For adequate protection and prevention of contaminant exposure to workers at hazardous waste sites in all phases of work, PPE is properly used and supplied. Determination of PPE will be outlined in a Health and Safety Plan, and also by preliminary site investigations. Refer to NJDEP Field Sampling Procedures Manual, and the Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities.
- 8.1.3 Health and Safety Plans: These plans are developed to encompass all the aspects of site operations. Plans are available to personnel associated with site sampling and a copy is kept on file at the site (in this case, the laboratory). At a minimum, the plan includes all portions of Site Remediation Program's (SRP) Site Safety and Health Standard Operating Procedures deemed appropriate for site, detailed site description, emergency phone numbers, a map and directions to nearest hospital identified on the map, and all PPE needed.
 - 8.1.4 Proper bottle selection: Please refer to QA/QC section 10.1.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 4 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

8.1.5 Equipment: Please refer to Equipment section 5.

- 8.1.6 Before purge activities: Certain instruments and meters are calibrated before use. Also, certain measurements and calculations are obtained before any purge activities take place. The following is a list of information/data/steps required prior to the commencement of purge activities. Pertinent information is recorded in log books or on well sheets.
- 8.1.7 Date, time and weather conditions: Date and time are needed for holding time purposes and general record keeping. Weather conditions may affect ambient conditions at a particular site, therefore said information is recorded. Tidal influences may also be included here, if wells are in a tidal area.
- 8.1.8 Well number and permit number: These are prominently displayed on the outside of each well in accordance with NJDEP regulations for well construction.
- 8.1.9 Meter and instrument calibrations: Meters utilized in the course of site sampling activities are calibrated at this time, and the findings recorded in the appropriate logbook. Refer to section 7 for instrument/meter calibration directions.
- 8.1.10 PID or FID, HNU reading: This is taken from the well inner casing immediately after the cap is removed, findings are recorded.
- 8.1.11 Free product check: Using ORS meter for interfaces, the presence or absence of free product is determined. Thickness is measured and recorded.
 - 8.1.11.1 Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs): Measurement of thickness for DNAPLs and LNAPLs are performed prior to well purging. An interface probe is used (ORS meter) for this task. If present, LNAPLs are sampled and analyzed for chemical and physical parameters. Sampling is conducted by using a bottom filling bailer which is lowered into the LNAPL layer. DNAPLs are sampled using a dual check valve bailer. If present, DNAPLs are also tested for chemical and physical properties.
- 8.1.12 Dissolved oxygen, pH, temperature, and specific conductivity: Readings are obtained and recorded on well sheets.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 5 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

8.1.13 Total depth of well and depth to water: These readings are taken using a depth meter. Total depth of well, depth to water, and depth to screen are measured from the top of the inner casing or surveyors mark. All data is recorded on well sheet.

- 8.1.14 Calculations: Calculations are made as stated in section 9.
- 8.2 Purging: When pre-purge activities are complete, the purging of a well can begin. This includes pre-entry to the well and pump setup.
 - 8.2.1 Pre-entry to well: Before tubing (refer to materials section) is inserted into a well, it is wiped down and rinsed with DI water. The tubing is then inserted into the well to a maximum depth of six feet below the water table. During purge activities, the depth of the tubing may be adjusted to prevent the static water level from dropping below the end of the tubing.
- 8.2.2 Pump setup: Once the battery powered peristaltic pump is set up, purging can begin. Evacuation rates never exceed that of well development, and total volume purged never exceeds 5 times the amount of standing water. Purge water management practices are described in section 10.1.8.
- 8.3 After Purge: When purging is complete, the pump is removed and tubing is disposed of properly. Data referenced in section 8.3.2 is then taken and recorded.
 - 8.3.1 Pump removal: Tubing is removed from the bottom end while the pump is still running. Tubing is then disposed of. The pump is shut down and decontaminated for its next application.
- 8.3.2 The following data is recorded on the well sheet: Start and end time of purge, purge method, purge rate, total volume purged, dissolved oxygen, pH, temperature, and specific conductivity readings.
- 8.4 Field Blank Sample: At this time the field blank sample is collected. A new bailer is opened from its sealed package and field blank water is run over the bailer or sample equipment and collected into the proper sample containers.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 6 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

- 8.5 Ground water sampling: Following well evacuation procedures, ground water sampling can begin. In most cases, sampling takes place immediately following purge activities. However, due to certain field conditions, well sampling may be postponed for a period not to exceed 2 hours following completion of purge activities. When multiple wells are being sampled, the least contaminated well is sampled first. Subsequent wells are sampled in order of ascending contamination. Sampling is conducted by using a bottom filling teflon bailer, dedicated to each particular monitoring well. The bailer is lowered slowly into water column until submerged, and then slowly retrieved. The sample is then carefully transferred to the appropriate sample containers. Ground water collected in the first bailing sequence is always used for sampling purposes, it is never discarded.
- 8.6 Sample order: Samples are collected in the following order:
 - 8.6.1 volatile organics (VOA)
 - 8.6.2 purgeable organic carbons (POC)
 - 8.6.3 purgeable organic halogens (POX)
 - 8.6.4 total organic halogens (TOX)
 - 8.6.5 total organic carbon (TOC)
 - 8.6.6 base neutrals/acid extractables
 - 8.6.7 TPHC/oil and grease
 - 8.6.8 PCB's/pesticides
 - 8.6.9 total metals
 - 8.6.10 dissolved metals
 - 8.6.11 phenols, cyanide
 - 8.6.12 sulfate and chloride
 - 8.6.13 turbidity
 - 8.6.14 nitrate and ammonia,
 - 8.6.15 preserved inorganics
 - 8.6.16 radionuclides
 - 8.6.17 non-preserved inorganics
 - 8.6.18 bacteria
- 8.7 Dupes and matrix spikes/matrix spike duplicates: These samples are taken in same order at same time. Refer to section 10.2.1.2.
- 8.8 After sampling: The following data is recorded on well sheets: Start and end time of sampling, dissolved oxygen, pH, temperature, specific conductivity, and sampling method.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 7 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

9 CALCULATIONS:

Four calculations are made while in the field. The calculations are as follows: linear feet of water (height of water), the volume to be purged, the volume purged not to be exceeded, and purge rate.

9.1 Linear feet of water: This is calculated by knowing the total depth of a well and subtracting the depth to water as measured by a depth meter. These two numbers are measured to within .01 feet. Through this calculation, the linear feet of water is determined.

Equation: (Total well depth – Depth to water = linear feet of water)

9.2 Volume to be purged and volume not to be exceeded: The second calculation is to determine the minimum volume to be purged from a well before sampling. Utilizing the linear feet of water and then multiplying it by the volume per foot for the proper diameter casing (see Figure 1 below) equals the amount of water in casing. Multiplying the amount of water within a casing by 3 equals the minimum volume to be purged. It should be noted that the amount purged should not exceed 5x the amount of standing water in a well.

Equation:

linear feet of water x volume per ft for well diameter = amount of water in casing) then,

(amount of water in casing x = 3 = minimum volume to be purged)

Equation:

(amount of water in casing x = 5 = total volume not to be exceeded)

Figure 1: Capacity of Common Casing Diameters (Pp. 170 in NJDEP FSPM)

Casing Diameter (ft.)	Gallons/linear foot
2 inch (0.1667)	0.1632
4 inch (0.3333)	0.6528
6 inch (0.5000)	1.4688
8 inch (0.6667)	2.6112
10 inch (0.8333)	4.0800
12 inch (1.0000)	5.8752

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 8 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

9.3 Purge rate: The purge rate is determined by calculating the length of time it takes for a pump to fill a 1 gallon bucket with water. The time is then multiplied by the minimum volume to be purged. The gallons being purged is then divided by this number (which also happens to be the length of time the purge will take in minutes) which equals the gallons per minute or purge rate.

Equation:

(time x minimum volume to be purged = length of purge in minutes) then.

(minimum volume to be purged / length of purge in minutes = gallons per minute or the purge rate)

10 QUALITY CONTROL:

The following QA/QC requirements are established in order to maintain sample integrity. The prime objective is to prevent sample contamination from other sources and ensure potential contaminant concentrations remain stable from sample collection to complete analysis. Refer to the NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology Reference Charts, Pp. 24-74. Also refer to SAM-0200 Sample Containers, Preservation and Holding Times.

- 10.1 Sample Containers: Before sample collection can begin consideration must be given as to what type container will be used to transport and store samples. The lab provides containers based upon requested methodologies. Selection is based on the matrix, potential contaminants, analytical methods, and the laboratory's internal QA/QC requirements. They are selected upon review of the following:
 - 10.1.1 Reactivity of container material with sample. Glass is recommended for hazardous material samples since it is chemically inert to most substances. Plastics may be used when analytes of interest or sample characteristics dictate use instead of glass.
 - 10.1.2 Volume of the container. The volume of sample needed is dictated by the analytical method and the sample matrix. The laboratory supplies bottles that allow for sufficient volumes of sample matrix to be collected.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99 Page 9 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

10.1.3 Color of container. Whenever possible, amber glass is used to prevent photodegradation. If not available, samples are protected from light. One exception is the use of 40 ml clear glass vials which are used for VOA/aqueous analysis.

- 10.1.4 Container closures. All containers utilized have a leak-proof seal and are constructed out of inert material with respect to sampled materials. The closure may also be separated by a closure liner that is inert to sample material.
- 10.1.5 Decontamination of containers and chain of custody. Sample containers are laboratory cleaned or purchased as lab cleaned. Bottles being shipped are accompanied by a chain of custody in a cooler with a custody seal. Custody always accompanies containers to the field, during collection, back to lab, and during analysis. This helps to assure no tampering or contamination from outside sources occurs.
- 10.1.6 Storage and transport. Care is taken to avoid contamination. Clean transport and storage environments are observed. Sample or bottle storage is never near solvents, gasoline, or other equipment that is a potential source of contamination. Samples and chain of custody are secured in coolers or transport, with said chain of custody in with bottles or in the possession of authorized personnel. Also, a temperature blank is included in each cooler to measure temperature of samples on ice (ideally a constant 4 degrees Celsius).
- 10.1.7 Tubing decontamination: ASTM drinking water grade polyethylene tubing is used and discarded after each use. Care is taken to prevent the pump and tubing from coming into contact with the ground surface. Prior to well purging, all tubing is rinsed/wiped with distilled and deionized water to remove any possible residual materials which may be present.
- 10.1.8 Disposal of development, purge, pump test, and decon waters: To determine whether waste waters are contaminated, field instrument readings and previous analytical data is used to characterize it. Water not considered contaminated is reapplied directly to ground surface and permitted to percolate back to the water table. Care is taken to avoid nuisance situations where a discharge may cause undue concern. When water is considered contaminated, the water generated is reapplied only if the following conditions are met: ground water is not permitted to migrate offsite, no potential exists for contaminating a previously uncontaminated aquifer, discharge will not cause an increase to ground surface soil contamination. If these conditions are met, the water is re-applied to the ground surface. If these conditions aren't met, than water

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 10 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

is collected, containerized and secured in a single locale. Subsequently, the water is properly characterized and processed for offsite disposal.

10.2 QA/QC samples: These samples are intended to provide control over the collection of environmental measurements and subsequent validation, review, and interpretation of analytical data. Trip blanks are used exclusively for volatile organic analysis, (aqueous sampling only) and their purpose is to measure possible cross contamination of samples during shipment to and from a site. Trip blanks are never opened and travel to a site with the empty sample bottles and back from a site with the collected samples. Contaminated trip blanks may indicate bottle cleaning or blank water of questionable quality. Trip blanks are collected at the rate of one per day. Likewise, the purpose of a field blank is to place a mechanism of control on sample equipment handling, preparation, storage and shipment. Field blanks travel and are stored with the sample bottles. Field blanks are collected in the following manner. Two identical sets of bottles are prepared. One set is filled with laboratory demonstrated analyte free water (same water used for trip and method blanks). All of the filled bottles are shipped with the other empty sample containers. At the field location, in an area where contamination is suspected, the water is passed from the full set of like-bottles through the dedicated or field decontaminated sampling device and into the empty set of like-bottles. Field blanks are preserved identically to samples receiving the same analyses. Field blanks are collected and analyzed for all of the same parameters as the samples collected that day.

10.2.1 Additional QA/QC samples:

- 10.2.1.1 Duplicate samples: Collection of a dupe provides for evaluation of laboratory performance by comparing the analytical data of two samples from the same location. They are included 1 for every 20 samples (5% or 1 a day/site) and submitted as blind samples. They are obtained by alternately filling sample bottles from the same source/device for each parameter. VOA samples are same bailer and first set filled.
- 10.2.1.2 Matrix spike/Matrix spike duplicate analyses or MS/MSDS sample: The laboratory is supplied with triple volume in order to perform matrix spike and matrix spike dupes. This does not include trips or field blanks. Additional sample volume for MS/MSDS is taken within every set of 20 field samples.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 8/9/99

Page 11 of 11

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP Sites at Fort Monmouth

Sample preservation: Sample bottles are preserved by lab staff based upon analytical requirements. Please refer to SAM-0200 Sample Containers, Preservation, and Holding Times SOP and also NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology reference Charts, Pp. 24-74.

Petrece 10/29/194

STANDARD OPERATING PROCEDURE

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 1 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

1 PURPOSE:

1.1 To document current procedures for monitoring well sampling.

2 RESPONSIBILITY:

2.1 Designated field samplers who have been properly trained and instructed in NJDEP field sampling procedures and protocol.

3 SAMPLE COLLECTION, PRESERVATION AND HANDLING:

3.1 For sample collection, preservation and handling, please refer to SOP No. SAM-200.

4 REFERENCES:

- 4.1 Field Sampling Procedures Manual, May 1992 (most current). New Jersey Department of Environmental Protection and Energy.
- 4.2 NJDEP Field Analysis Manual, July 1994.
- 4.3 On the World Wide Web: www.state.nj.us/dep or www.state.nj.us/dep/srp.
- 4.4 Lab SOP: SAM-0200, SAM-0202, OQC-0302.

5 SUMMARY:

5.1 The procedures, materials, and equipment describe the recommended methods for sampling monitoring wells. Necessary equipment, calibrations, calculations and appropriate QA/QC procedures are also included. These procedures are to be followed by all personnel involved with the sampling and purging of wells at Fort Monmouth. Persons following this SOP are recommended to also refer to the NJDEP Field Sampling Procedures Manual.

6 SAFETY:

6.1 For safety, please refer to CTSC Fort Monmouth, NJ Health and Safety Plan (HASP).

7 EQUIPMENT AND MATERIALS:

- 7.1 Equipment:
 - 7.1.1 Dissolved oxygen meter

Prepared By: Corey McCornach	Date: //30/83
Laboratory Director:	Date: 2-3-23
QA/QC Manager: Ochue Harmen	Date 1/30/03

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 2 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 7.1.2 HNU photo ionizer
- 7.1.3 Conductivity/pH/temp meter
- 7.1.4 Peristaltic well pumps
- 7.1.5 Pump heads and power cables
- 7.1.6 Water level meter
- 7.1.7 Oil/water interface probe
- 7.1.8 Submersible well pumps
- 7.1.9 Various batteries
- 7.1.10Buckets
- 7.1.11Miscellaneous tools, i.e. screwdriver, well wrench, etc.
- 7.2 Materials:
 - 7.2.1 Thick wall silicone tubing ½ inch diameter,
 - 7.2.2 Polyethylene (food grade) tubing ¼ inch diameter,
 - 7.2.3 12 inch single sample 1 check stop Teflon disposable bailers,
 - 7.2.4 Mason string.

8 STANDARDS/REAGENTS:

- 8.1 Buffer solutions, calibration gases, decontamination materials, and acids for preservation.
 - 8.1.1 Buffer solutions:
 - 8.1.1.1 7.00 standard buffer solution.
 - 8.1.1.2 10.00 standard buffer solution.
 - 8.1.1.3 4.00 standard buffer solution.
 - 8.1.2 Distilled and deionized water.
 - 8.1.3 Alconox.
 - 8.1.4 10 % nitric acid rinse (trace metal or higher grade HNO3 diluted with distilled/deionized (ATSM Type II) H2O).
 - 8.1.5 Acetone (pesticide grade).
 - 8.1.6 Pure nitrogen 100-ppm Isobutylene cal gas.

(Refer to NJDEP Field Sampling Procedure Manual Table 2-1 Aqueous Sampling Equipment Decontamination (Lab and Field) for further information)

- 8.2 Acids/materials used in preserving samples:
 - 8.2.1 Nitric acid 69.0-70.0%.
 - 8.2.2 Sulfuric acid 50% (w/w) solution.
 - 8.2.3 Hydrochloric acid (trace metal grade).
- 8.3 Ice for keeping samples at <4 degrees Celsius.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 3 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

9 QUALITY CONTROL:

- 9.1 The following QA/QC requirements are established in order to maintain sample integrity. The prime objective is to prevent sample contamination from other sources and ensure potential contaminant concentrations remain stable form sample collection to complete analysis. Refer to the NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology Reference Charts, Pp. 24-74. Also refer to SAM-0200 Sample Containers, Preservation and Holding Times.
- 9.2 Sample Containers: Before sample collection can begin consideration must be given as to what type of container will be used to transport and store samples. The lab provides containers based upon requested methodologies. Selection is based on the matrix, potential contaminants, analytical methods, and lab's internal QA/QC requirements. They should be selected upon review of the following:
 - 9.2.1 Reactivity of container material with sample. Glass is recommended for hazardous material samples since it is chemically inert to most substances. Plastics may be used when analytes of interest or sample characteristics dictate use instead of glass.
 - 9.2.2 Volume of the container. The volume of sample needed is dictated by the analytical method and the matrix of the sample. The lab will supply bottles that allow for sufficient volumes of sample matrix to be collected.
 - 9.2.3 Color of container. Whenever possible, amber glass is used to prevent photo degradation. If not available, samples should be kept protected from light. One exception is the 40 ml clear glass VOA vials used for VOA/aqueous analysis.
 - 9.2.4 Container closures. All containers utilized have a leak-proof seal and are constructed out of material inert with respect to sampled materials. The closure may also be separated by a closure liner that is inert to sample material.
 - 9.2.5 Decontamination of containers and chain of custody. Sample containers are laboratory cleaned or purchased as lab cleaned. Bottles being shipped are accompanied by a chain of custody in a cooler with a custody seal. Custody must accompany containers to field, during collection, back to lab, and during analysis. This helps to assure no tampering or contamination from outside sources occurs.
- 9.3 Storage and transport. Care is taken to avoid contamination. Clean transport and storage environments are observed. Sample or bottle storage is never near solvents, gasoline, or other equipment that is a potential source of contamination. Samples and chain of custody are secured in coolers for transport, with said chain of custody in with bottles or in the hands of authorized personnel. Also, a temperature blank is included in each cooler to measure temperature of samples on ice in coolers (ideally a constant 4 degrees Celsius).

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 4 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

9.4 Tubing decontamination: ASTM drinking water grade polyethylene tubing is used and discarded after each use. Avoid pump and tubing contact with ground surface. All tubing is rinsed/wiped with distilled and deionized water to remove any possible residual materials on it before entering well.

- 9.5 QA/QC samples: These samples are intended to provide control over the collection of measurements, and subsequent validation, review, and interpretation of analytical data. A trip blank is used for volatile organics and its purpose is to measure possible cross contamination of samples in transit and at a site. It is **never** opened and travels to the site or sites **with** empty sample bottles and back **with** samples. They may also indicate poor cleaning. Like wise, a field blank is used to determine a control on the equipment handling, preparation, storage and shipment. It travels with the samples and is a representative of shipment effects on sample quality. By being opened in the field, transferred over a cleaned sampling device, the blank is indicative of ambient and equipment conditions that may affect quality of associated samples. It also serves as an additional check on possible sources of contamination. Blank water is demonstrated analyte free, and is from the same common source and physical locale in lab.
 - 9.5.1 Aqueous matrix QA/QC blank requirements:
 - 9.5.1.1 Field blanks: They are preserved/analyzed for all the same parameters as samples collected that day. They may be required in order to detect cross contamination from ambient air during a potable sampling if known sources are within proximity or monitoring equipment indicates their presence as background. Field blanks must also be taken once every day during sampling.
 - 9.5.1.2 Trip blanks: Consists of a set of bottles each filled at the lab with analyte free water. They accompany the bottles both to and from each site. They are never opened in field. They are also returned in same bottles they were sent out in. At minimum, a trip blank must be analyzed for volatile organics. Inclusion of additional parameters is at the discretion of the NJDEP. Trip blanks and the samples they accompany are not held on site more than 2 calendar days. A trip blank is included in each sample shipment or trip to field, not to exceed 2 consecutive field days.

9.5.2 Additional OA/OC samples:

9.5.2.1 Duplicate samples: Collection of a dupe provides for evaluation of lab performance by comparing the analytical data of two samples from the same location. They are included 1 for every 20 samples (5% or 1 a day/site) and submitted as blind samples. They are obtained by

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 5 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

alternately filling sample bottles from the same source/device for each parameter. VOA samples are same bailer and first set filled.

- 9.5.2.2 Matrix spike/Matrix spike duplicate analyses or MS/MSDS sample: The lab is supplied with triple volume in order to perform matrix spike and matrix spike dupes. This does not include trips or field blanks. They should occur every case of field samples, every 20-field samples or each 14-day calendar period in which a site is being worked at and samples collected.
- 9.6 Sample preservation: Sample bottles are preserved by lab staff based upon analytical requirements. Please refer to SAM-0200 Sample Containers, Preservation, and Holding Times SOP and also NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology reference Charts, Pp. 24-74.

10 CALIBRATION:

10.1 All instruments used for field readings are calibrated before each day of use. The use of pH meters must start out with a calibration using buffer solution standards to check or calibrate accuracy. HNU's are calibrated with a known calibration gas. Dissolved oxygen meters are checked against a Winkler method test weekly. All calibrations for a given days use are recorded in the log provided for each instrument. Refer to equipment directions for calibration instruction. Like wise, specific conductivity meters are checked against standards regularly. Cooler thermometers are calibrated against a NIST traceable thermometer annually.

11 PROCEDURE:

- 11.1 The following articles document the procedures for sampling monitor wells. They are to be used as a guide by trained personnel in conjunction with the NJDEP Field Sampling Procedures Manual.
 - 11.1.1 Proper bottle selection: Please refer to QA/QC section 10.1.
 - 11.1.2 Equipment: Please refer to Equipment section 5.
 - 11.1.3 Before purge activities: Certain instruments and meters are calibrated before use. Also, certain measurements and calculations are obtained before any purge activity can occur. The following is a list of information/data/steps required before purging and pertinent information recorded in log books or on well sheets: Date, time and weather conditions: Date and time are needed for holding time, and general record keeping. Weather conditions may affect ambient conditions at a particular site, so are therefore recorded. Tidal influences may also be included here, if wells are in a tidal area.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 6 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

11.1.4 Well number and permit number: These are to be prominently displayed on outside of well according to NJDEP regulations for well construction. They also help to identify a particular well more exactly at a site.

- 11.1.5 Meter and instrument calibrations: Any meter utilized in the course of site sampling activities should be calibrated at this time, and then findings recorded in log books. Refer to section 7 and appropriate instrument/meter calibration directions.
- 11.1.6 PID or FID, HNU reading. This is taken from well inner casing immediately after the cap is removed, and findings recorded.
- 11.1.7 Free product check: Using ORS meter for interfaces, the presence or absence of product is determined. Thickness is measured and recorded also.
 - 11.1.7.1 Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs): Measurement of thickness of DNAPLs and LNAPLs must be performed prior to purging wells. An interface probe may be used (ORS meter). Each layer of LNAPLs are sampled and analyzed for chemical and physical parameters. Sampling is by using a bottom filling bailer, lowered through LNAPL layer but not significantly down into next phase. DNAPLs are sampled using a dual check valve bailer or bladder pump. Both then are tested for chemical and physical properties. If both are present, it may be necessary to purge well of one casing volume of water prior to sampling DNAPL provided layer is not disturbed. This is done by setting a submersible pump or suction lift pump several feet above DNAPL.
- 11.2 Dissolved oxygen, pH, temperature, and specific conductivity: Readings should be obtained and recorded on well sheets.
- 11.3 Total depth of well and depth to water: These readings are taken using a depth meter. Total depth of well, depth to water, and depth to screen are measured from the top of the inner casing or surveyor's mark. All are recorded on well sheets.
- 11.4 Calculations: Calculations are then done as stated in section 12.
- 11.5 Purging: When pre-purge activities are complete, the purging of well can begin. This includes pre-entry to the well and pump setup.
- 11.6 Field Blank Sample: At this time the field blank is sampled. A new bailer is opened from its sealed package and then the field blank water is run over the bailer or sample equipment and collected into proper sample containers in correct order.
- 11.7 Pre-entry to well: Before tubing (refer to materials section) is inserted in well, it must be wiped down and rinsed with DI water. Then inserted into well leaving at maximum six feet of distance below water surface. Tubing is then lowered as depth drops, or as needed.

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 7 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

11.8 Pump setup: The peristaltic pump is then setup with its connection to battery and purging begun. Evacuation rate should not exceed that of well development, and total volume purged should not exceed 5 times the amount of standing water. Discharge water must be in compliance with those stated in section 13. Please refer to the NJDEP Field Sampling Procedures Manual as well.

- 11.9 After Purge: When purging is complete, pump is removed and tubing is disposed of properly. Data in section 11.2 is then taken and recorded.
- 11.10 Pump removal: Using peristaltic pumps, the tubing is removed from well at end of purge while pump still running. Tubing is then disposed of. Pump can than be shut down and decontaminated for next use as needed.
- 11.11 The following data must be recorded on well sheet: Start and end time of purge, purge method and purge rate. Total volume purged, dissolved oxygen, pH, temperature, and specific conductivity readings.
- 11.12 Ground water sampling: Following well evacuation procedures, groundwater sampling can begin. This is immediately after purge, not lapsing more than 2 hours afterwards. When multiple wells are being sampled, the least contaminated should be done first in order of ascending contamination. Sampling is done by using a bottom filling Teflon bailer, dedicated to that particular sampling event. Bailer is lowered slowly into water until submerged, and then slowly retrieved. Sample is then carefully transferred to sample containers. The first full bailer of water is used for sampling, it may not be discarded.

Sample order: Samples are collected in the following order:

volatile organics (VOA) purgeable organic carbons (POC) purgeable organic halogens (POX) total organic halogens (TOX) total organic carbon (TOC) base neutrals/acid extractables TPHC/oil and grease PCB's/pesticides total metals dissolved metals phenols, cyanide sulfate and chloride turbidity nitrate and ammonia, preserved inorganics radionuclides

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

Page 8 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

non-preserved inorganics bacteria.

This order must be followed.

- 11.13 Dupes and matrix spikes/matrix spike duplicates: These samples are taken in the same order and at the same time as samples. Refer to sections 9.5.2 and 11.12.
- 11.14 After sampling: The following data is recorded on well sheets: Start and end time of sampling, dissolved oxygen, pH, temperature, specific conductivity, and sampling method.

12 CALCULATIONS:

- 12.1 Four calculations must be done while in the field. The calculations are as follows: linear feet of water (height of water), the volume to be purged, the volume purged not to be exceeded, and purge rate.
 - 12.1.1 Linear feet of water: This is calculated by knowing the total depth of the well and subtracting the depth to water measured by a depth meter. These two numbers should be measured to within .01 feet. Through this calculation, the linear feet of water is determined.

Equation: (Total well depth – Depth to water = linear feet of water)

12.1.2 Volume to be purged and volume not to be exceeded: The second calculation is to determine the minimum volume to be purged from a well before sampling. Utilizing the linear feet of water and then multiplying it by the volume per foot for the proper diameter casing (see Figure 1 below) equals the amount of water in casing. By multiplying the amount of water within a casing by 3 equals the total minimum volume to be purged. It should be noted here that the amount purged should not exceed 5x the amount of standing water in a well.

Equation:

linear ft of water x volume per ft well diameter = amount of water in casing)

then,

(amount of water in casing x = 3 = minimum volume to be purged)

Equation:

SOP No.: SAM-0205

Revision No.: 1

Date Revised: 01/17/03

0

Page 9 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

(amount of water in casing x = total volume **not** to be exceeded)

Figure 1: Capacity of Common Casing Diameters (Pp. 170 in NJDEP FSPM)

Casing Diameter (ft.)	Gallons/linear foot
2 inch (0.1667)	0.1632
4 inch (0.3333)	0.6528
6 inch (0.5000)	1.4688
8 inch (0.6667)	2.6112
10 inch (0.8333)	4.0800
12 inch (1.0000)	5.8752

12.1.3 Purge rate: The purge rate is determined by calculating the length of time it takes for pump to fill a 1-gallon bucket with water. The time is multiplied by the minimum volume to be purged. The gallons being purged is then divided by this number (which also happens to be the length of time the purge will take in minutes) which equals the gallons per minute or purge rate.

Equation:

(time x minimum volume to be purged = length of purge in minutes)

then,

(minimum volume to be purged / length of purge in minutes = gallons per minute or the purge rate)

13 POLLUTION PREVENTION:

13.1 For pollution prevention, please refer to SOP No. SAM-0222.

14 WASTE MANAGEMENT:

14.1 For sample disposal, please refer to SOP No. SAM-0220.

Returned 1/20/06

Attachment 1

FORT MONMOUTH ENVIRONMENTAL LABORATORY

STANDARD OPERATING PROCEDURE REQUEST FOR REVISION FORM

SOP #: SAM - 0205
CATEGORY: Sangle Handling
REVISION: No. 2
TITLE: Monitar Well sampling for IRP sites at Fort Monmouth
*REVISION (Section and Paragraph): D Equipment + Madwials, 7.1 Equipment added 7.1.12
REASON FOR REVISION: added 7.1.12 to adjust for new tech in parameter measuring equipment.
OTHER DOCUMENTS AFFECTED:
*(Attach additional information) AUTHOR: DATE: 9/30/04 APPROVAL: DATE: 19-14-54

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 1 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

1 PURPOSE:

1.1 To document current procedures for monitoring well sampling.

2 RESPONSIBILITY:

2.1 Designated field samplers who have been properly trained and instructed in NJDEP field sampling procedures and protocol.

3 SAMPLE COLLECTION, PRESERVATION AND HANDLING:

3.1 For sample collection, preservation and handling, please refer to SOP No. SAM-200.

4 REFERENCES:

- 4.1 Field Sampling Procedures Manual, May 1992 (most current). New Jersey Department of Environmental Protection and Energy.
- 4.2 NJDEP Field Analysis Manual, July 1994.
- 4.3 On the World Wide Web: www.state.nj.us/dep or www.state.nj.us/dep/srp.
- 4.4 Lab SOP: SAM-0200, SAM-0202, OQC-0302.

5 SUMMARY:

5.1 The procedures, materials, and equipment describe the recommended methods for sampling monitoring wells. Necessary equipment, calibrations, calculations and appropriate QA/QC procedures are also included. These procedures are to be followed by all personnel involved with the sampling and purging of wells at Fort Monmouth. Persons following this SOP are recommended to also refer to the NJDEP Field Sampling Procedures Manual.

6 SAFETY:

6.1 For safety, please refer to CTSC Fort Monmouth, NJ Health and Safety Plan (HASP).

7 EQUIPMENT AND MATERIALS:

- 7.1 Equipment:
 - 7.1.1 Dissolved oxygen meter

Prepared By: Corey Mc Consul	Date: 9/30/04
Laboratory Director:	Date: 10-14-04
QA/QC Manager: A Chip Hep anner	Date 101404
	a and a second

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 2 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 7.1.2 HNU photo ionizer
- 7.1.3 Conductivity/pH/temp meter
- 7.1.4 Peristaltic well pumps
- 7.1.5 Pump heads and power cables
- 7.1.6 Water level meter
- 7.1.7 Oil/water interface probe
- 7.1.8 Submersible well pumps
- 7.1.9 Various batteries
- 7.1.10Buckets
- 7.1.11 Miscellaneous tools, i.e. screwdriver, well wrench, etc.
- 7.1.12 A multi-parameter water quality meter may be used as long as it measures: Conductivity, pH, Temperature, and Dissolved Oxygen.
- 7.2 Materials:
 - 7.2.1 Thick wall silicone tubing 1/4 inch diameter,
 - 7.2.2 Polyethylene (food grade) tubing ¼ inch diameter,
 - 7.2.3 12 inch single sample 1 check stop Teflon disposable bailers,
 - 7.2.4 Mason string.

8 STANDARDS/REAGENTS:

- 8.1 Buffer solutions, calibration gases, decontamination materials, and acids for preservation.
 - 8.1.1 Buffer solutions:
 - 8.1.1.1 7.00 standard buffer solution.
 - 8.1.1.2 10.00 standard buffer solution.
 - 8.1.1.3 4.00 standard buffer solution.
 - 8.1.2 Distilled and deionized water.
 - 8.1.3 Alconox.
 - 8.1.4 10 % nitric acid rinse (trace metal or higher grade HNO3 diluted with distilled/deionized (ATSM Type II) H2O).
 - 8.1.5 Acetone (pesticide grade).
 - 8.1.6 Pure nitrogen 100-ppm Isobutylene cal gas.

(Refer to NJDEP Field Sampling Procedure Manual Table 2-1 Aqueous Sampling Equipment Decontamination (Lab and Field) for further information)

- 8.2 Acids/materials used in preserving samples:
 - 8.2.1 Nitric acid 69.0-70.0%.
 - 8.2.2 Sulfuric acid 50% (w/w) solution.
 - 8.2.3 Hydrochloric acid (trace metal grade).
- 8.3 Ice for keeping samples at <4 degrees Celsius.

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04 Page 3 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

9 QUALITY CONTROL:

- 9.1 The following QA/QC requirements are established in order to maintain sample integrity. The prime objective is to prevent sample contamination from other sources and ensure potential contaminant concentrations remain stable form sample collection to complete analysis. Refer to the NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology Reference Charts, Pp. 24-74. Also refer to SAM-0200 Sample Containers, Preservation and Holding Times.
- 9.2 Sample Containers: Before sample collection can begin consideration must be given as to what type of container will be used to transport and store samples. The lab provides containers based upon requested methodologies. Selection is based on the matrix, potential contaminants, analytical methods, and lab's internal QA/QC requirements. They should be selected upon review of the following:
 - 9.2.1 Reactivity of container material with sample. Glass is recommended for hazardous material samples since it is chemically inert to most substances. Plastics may be used when analytes of interest or sample characteristics dictate use instead of glass.
 - 9.2.2 Volume of the container. The volume of sample needed is dictated by the analytical method and the matrix of the sample. The lab will supply bottles that allow for sufficient volumes of sample matrix to be collected.
 - 9.2.3 Color of container. Whenever possible, amber glass is used to prevent photo degradation. If not available, samples should be kept protected from light. One exception is the 40 ml clear glass VOA vials used for VOA/aqueous analysis.
 - 9.2.4 Container closures. All containers utilized have a leak-proof seal and are constructed out of material inert with respect to sampled materials. The closure may also be separated by a closure liner that is inert to sample material.
 - 9.2.5 Decontamination of containers and chain of custody. Sample containers are laboratory cleaned or purchased as lab cleaned. Bottles being shipped are accompanied by a chain of custody in a cooler with a custody seal. Custody must accompany containers to field, during collection, back to lab, and during analysis. This helps to assure no tampering or contamination from outside sources occurs.
- 9.3 Storage and transport. Care is taken to avoid contamination. Clean transport and storage environments are observed. Sample or bottle storage is never near solvents, gasoline, or other equipment that is a potential source of contamination. Samples and chain of custody are secured in coolers for transport, with said chain of custody in with bottles or in the hands of authorized personnel. Also, a temperature blank is included

SOP No.: SAM-0205

Revision No.: 2 Date Revised: 09/30/04

Page 4 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

in each cooler to measure temperature of samples on ice in coolers (ideally a constant 4 degrees Celsius).

- 9.4 Tubing decontamination: ASTM drinking water grade polyethylene tubing is used and discarded after each use. Avoid pump and tubing contact with ground surface. All tubing is rinsed/wiped with distilled and deionized water to remove any possible residual materials on it before entering well.
- 9.5 QA/QC samples: These samples are intended to provide control over the collection of measurements, and subsequent validation, review, and interpretation of analytical data. A trip blank is used for volatile organics and its purpose is to measure possible cross contamination of samples in transit and at a site. It is **never** opened and travels to the site or sites **with** empty sample bottles and back **with** samples. They may also indicate poor cleaning. Like wise, a field blank is used to determine a control on the equipment handling, preparation, storage and shipment. It travels with the samples and is a representative of shipment effects on sample quality. By being opened in the field, transferred over a cleaned sampling device, the blank is indicative of ambient and equipment conditions that may affect quality of associated samples. It also serves as an additional check on possible sources of contamination. Blank water is demonstrated analyte free, and is from the same common source and physical locale in lab.
 - 9.5.1 Aqueous matrix QA/QC blank requirements:
 - 9.5.1.1 Field blanks: They are preserved/analyzed for all the same parameters as samples collected that day. They may be required in order to detect cross contamination from ambient air during a potable sampling if known sources are within proximity or monitoring equipment indicates their presence as background. Field blanks must also be taken once every day during sampling.
 - 9.5.1.2 Trip blanks: Consists of a set of bottles each filled at the lab with analyte free water. They accompany the bottles both to and from each site. They are never opened in field. They are also returned in same bottles they were sent out in. At minimum, a trip blank must be analyzed for volatile organics. Inclusion of additional parameters is at the discretion of the NJDEP. Trip blanks and the samples they accompany are not held on site more than 2 calendar days. A trip blank is included in each sample shipment or trip to field, not to exceed 2 consecutive field days.
 - 9.5.2 Additional QA/QC samples:
 - 9.5.2.1 Duplicate samples: Collection of a dupe provides for evaluation of lab performance by comparing the analytical data of two samples from the

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 5 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

same location. They are included 1 for every 20 samples (5% or 1 a day/site) and submitted as blind samples. They are obtained by

alternately filling sample bottles from the same source/device for each parameter. VOA samples are same bailer and first set filled.

- 9.5.2.2 Matrix spike/Matrix spike duplicate analyses or MS/MSDS sample: The lab is supplied with triple volume in order to perform matrix spike and matrix spike dupes. This does not include trips or field blanks. They should occur every case of field samples, every 20-field samples or each 14-day calendar period in which a site is being worked at and samples collected.
- 9.6 Sample preservation: Sample bottles are preserved by lab staff based upon analytical requirements. Please refer to SAM-0200 Sample Containers, Preservation, and Holding Times SOP and also NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology reference Charts, Pp. 24-74.

10 CALIBRATION:

10.1 All instruments used for field readings are calibrated before each day of use. The use of pH meters must start out with a calibration using buffer solution standards to check or calibrate accuracy. HNU's are calibrated with a known calibration gas. Dissolved oxygen meters are checked against a Winkler method test weekly. All calibrations for a given days use are recorded in the log provided for each instrument. Refer to equipment directions for calibration instruction. Like wise, specific conductivity meters are checked against standards regularly. Cooler thermometers are calibrated against a NIST traceable thermometer annually.

11 PROCEDURE:

- 11.1 The following articles document the procedures for sampling monitor wells. They are to be used as a guide by trained personnel in conjunction with the NJDEP Field Sampling Procedures Manual.
 - 11.1.1 Proper bottle selection: Please refer to QA/QC section 10.1.
 - 11.1.2 Equipment: Please refer to Equipment section 5.
 - 11.1.3 Before purge activities: Certain instruments and meters are calibrated before use. Also, certain measurements and calculations are obtained before any purge activity can occur. The following is a list of information/data/steps required before purging and pertinent information recorded in log books or on well sheets: Date, time and weather conditions: Date and time are needed for holding time, and general record keeping. Weather conditions may affect ambient

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 6 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

conditions at a particular site, so are therefore recorded. Tidal influences may also be included here, if wells are in a tidal area.

- 11.1.4 Well number and permit number: These are to be prominently displayed on outside of well according to NJDEP regulations for well construction. They also help to identify a particular well more exactly at a site.
- 11.1.5 Meter and instrument calibrations: Any meter utilized in the course of site sampling activities should be calibrated at this time, and then findings recorded in log books. Refer to section 7 and appropriate instrument/meter calibration directions.
- 11.1.6 PID or FID, HNU reading. This is taken from well inner casing immediately after the cap is removed, and findings recorded.
- 11.1.7 Free product check: Using ORS meter for interfaces, the presence or absence of product is determined. Thickness is measured and recorded also.
 - 11.1.7.1 Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs): Measurement of thickness of DNAPLs and LNAPLs must be performed prior to purging wells. An interface probe may be used (ORS meter). Each layer of LNAPLs are sampled and analyzed for chemical and physical parameters. Sampling is by using a bottom filling bailer, lowered through LNAPL layer but not significantly down into next phase. DNAPLs are sampled using a dual check valve bailer or bladder pump. Both then are tested for chemical and physical properties. If both are present, it may be necessary to purge well of one casing volume of water prior to sampling DNAPL provided layer is not disturbed. This is done by setting a submersible pump or suction lift pump several feet above the DNAPL.
- 11.2 Dissolved oxygen, pH, temperature, and specific conductivity: Readings should be obtained and recorded on well sheets.
- 11.3 Total depth of well and depth to water: These readings are taken using a depth meter. Total depth of well, depth to water, and depth to screen are measured from the top of the inner casing or surveyor's mark. All are recorded on well sheets.
- 11.4 Calculations: Calculations are then done as stated in section 12.
- 11.5 Purging: When pre-purge activities are complete, the purging of well can begin. This includes pre-entry to the well and pump setup.
- 11.6 Field Blank Sample: At this time the field blank is sampled. A new bailer is opened from its sealed package and then the field blank water is run over the bailer or sample equipment and collected into proper sample containers in correct order.

SOP No.: SAM-0205

Revision No.: 2 Date Revised: 09/30/04

Page 7 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 11.7 Pre-entry to well: Before tubing (refer to materials section) is inserted in well, it must be wiped down and rinsed with DI water. Then inserted into well leaving at maximum six feet of distance below water surface. Tubing is then lowered as depth drops, or as needed.
- 11.8 Pump setup: The peristaltic pump is then setup with its connection to battery and purging begun. Evacuation rate should not exceed that of well development, and total volume purged should not exceed 5 times the amount of standing water. Discharge water must be in compliance with those stated in section 13. Please refer to the NJDEP Field Sampling Procedures Manual as well.
- 11.9 After Purge: When purging is complete, pump is removed and tubing is disposed of properly. Data in section 11.2 is then taken and recorded.
- 11.10 Pump removal: Using peristaltic pumps, the tubing is removed from well at end of purge while pump still running. Tubing is then disposed of. Pump can than be shut down and decontaminated for next use as needed.
- 11.11 The following data must be recorded on well sheet: Start and end time of purge, purge method and purge rate. Total volume purged, dissolved oxygen, pH, temperature, and specific conductivity readings.
- 11.12 Ground water sampling: Following well evacuation procedures, groundwater sampling can begin. This is immediately after purge, not lapsing more than 2 hours afterwards. When multiple wells are being sampled, the least contaminated should be done first in order of ascending contamination. Sampling is done by using a bottom filling Teflon bailer, dedicated to that particular sampling event. Bailer is lowered slowly into water until submerged, and then slowly retrieved. Sample is then carefully transferred to sample containers. The first full bailer of water is used for sampling, it may not be discarded.

Sample order: Samples are collected in the following order:
volatile organics (VOA)
purgeable organic carbons (POC)
purgeable organic halogens (POX)
total organic halogens (TOX)
total organic carbon (TOC)

base neutrals/acid extractables
TPHC/oil and grease
PCB's/pesticides
total metals
dissolved metals

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 8 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

phenols, cyanide sulfate and chloride turbidity nitrate and ammonia, preserved inorganics radionuclides non-preserved inorganics bacteria.

This order must be followed.

- 11.13 Dupes and matrix spikes/matrix spike duplicates: These samples are taken in the same order and at the same time as samples. Refer to sections 9.5.2 and 11.12.
- 11.14 After sampling: The following data is recorded on well sheets: Start and end time of sampling, dissolved oxygen, pH, temperature, specific conductivity, and sampling method.

12 CALCULATIONS:

- 12.1 Four calculations must be done while in the field. The calculations are as follows: linear feet of water (height of water), the volume to be purged, the volume purged not to be exceeded, and purge rate.
 - 12.1.1 Linear feet of water: This is calculated by knowing the total depth of the well and subtracting the depth to water measured by a depth meter. These two numbers should be measured to within .01 feet. Through this calculation, the linear feet of water is determined.

Equation: (Total well depth – Depth to water = linear feet of water)

12.1.2 Volume to be purged and volume not to be exceeded: The second calculation is to determine the minimum volume to be purged from a well before sampling. Utilizing the linear feet of water and then multiplying it by the volume per foot for the proper diameter casing (see Figure 1 below) equals the amount of water in easing. By multiplying the amount of water within a casing by 3 equals the total minimum volume to be purged. It should be noted here that the amount purged should not exceed 5x the amount of standing water in a well.

Equation:

linear ft of water x volume per ft well diameter = amount of water in casing)

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 9 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

then,

(amount of water in casing x = minimum volume to be purged)

Equation:

(amount of water in casing x = 5 = total volume **not** to be exceeded)

Figure 1: Capacity of Common Casing Diameters (Pp. 170 in NJDEP FSPM)

Casing Diameter (ft.)	Gallons/linear foot
2 inch (0.1667)	0.1632
4 inch (0.3333)	0.6528
6 inch (0.5000)	1.4688
8 inch (0.6667)	2.6112
10 inch (0.8333)	4.0800
12 inch (1.0000)	5.8752

12.1.3 Purge rate: The purge rate is determined by calculating the length of time it takes for pump to fill a 1-gallon bucket with water. The time is multiplied by the minimum volume to be purged. The gallons being purged is then divided by this number (which also happens to be the length of time the purge will take in minutes) which equals the gallons per minute or purge rate.

Equation:

(time x minimum volume to be purged = length of purge in minutes)

then.

(minimum volume to be purged / length of purge in minutes = gallons per minute or the purge rate)

13 POLLUTION PREVENTION:

- 13.1 For pollution prevention, please refer to SOP No. SAM-0222.
- 14 WASTE MANAGEMENT:

SOP No.: SAM-0205

Revision No.: 2

Date Revised: 09/30/04

Page 10 of 10

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

14.1 For sample disposal, please refer to SOP No. SAM-0220.

20/1/2408

Attachment 1

FORT MONMOUTH ENVIRONMENTAL LABORATORY

STANDARD OPERATING PROCEDURE REQUEST FOR REVISION FORM

SOP #:
CATEGORY: Sample Handling
REVISION:
TITLE: Montor Well Sampling for 129 Sites
REVISION (Section and Paragraph):
Monual Monual
OTHER DOCUMENTS AFFECTED:
(Attach additional information)
AUTHOR: Walter tenh DATE: 1/23/06 APPROVAL: Jacker tolken DATE: 1/23/06

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 1 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

1 PURPOSE:

1.1 To document current procedures for monitoring well sampling.

2 RESPONSIBILITY:

2.1 Designated field samplers who have been properly trained and instructed in NJDEP field sampling procedures and protocol.

3 SAMPLE COLLECTION, PRESERVATION AND HANDLING:

3.1 For sample collection, preservation and handling, please refer to SOP No. SAM-200.

4 REFERENCES:

- 4.1 Field Sampling Procedures Manual, August 2005. New Jersey Department of Environmental Protection.
- 4.2 NJDEP Field Analysis Manual, July 1994.
- 4.3 On the World Wide Web: www.state.nj.us/dep or www.state.nj.us/dep/srp.
- 4.4 Lab SOP: SAM-0200, SAM-0202, OQC-0302.

5 SUMMARY:

5.1 The procedures, materials, and equipment describe the recommended methods for sampling monitoring wells. Necessary equipment, calibrations, calculations and appropriate QA/QC procedures are also included. These procedures are to be followed by all personnel involved with the sampling and purging of wells at Fort Monmouth. Persons following this SOP are recommended to also refer to the NJDEP Field Sampling Procedures Manual, August 2005.

6 SAFETY:

6.1 For safety, please refer to CTSC Fort Monmouth, NJ Health and Safety Plan (HASP).

7 EQUIPMENT AND MATERIALS:

- 7.1 Equipment:
 - 7.1.1 Dissolved oxygen meter

, and the second	i v
Prepared By: Walter Fund	Date: 1 23 06
Laboratory Director:	Date: 1-24-06
QA/QC Manager: Q As A Film on	Date: 1/23/07

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 2 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 7.1.2 HNU photo ionizer
- 7.1.3 Conductivity/pH/temperature meter
- 7.1.4 Peristaltic well pumps
- 7.1.5 Pump heads and power cables
- 7.1.6 Water level meter
- 7.1.7 Oil/water interface probe
- 7.1.8 Submersible well pumps
- 7.1.9 Various batteries
- 7.1.10Buckets
- 7.1.11 Miscellaneous tools, i.e. screwdriver, well wrench, etc.
- 7.1.12 A multi-parameter water quality meter may be used as long as it measures: Conductivity, pH, Temperature, and Dissolved Oxygen.
- 7.2 Materials:
 - 7.2.1 Thick wall silicone tubing ¼ inch diameter
 - 7.2.2 Polyethylene (food grade) tubing ¼ inch diameter
 - 7.2.3 12 inch single sample 1 check stop Teflon disposable bailers
 - 7.2.4 Mason string

8 STANDARDS/REAGENTS:

- 8.1 Buffer solutions, calibration gases, decontamination materials, and acids for preservation.
 - 8.1.1 Buffer solutions:
 - 8.1.1.1 7.00 standard buffer solution
 - 8.1.1.2 10.00 standard buffer solution
 - 8.1.1.3 4.00 standard buffer solution
 - 8.1.2 Distilled and deionized water
 - 8.1.3 Alconox
 - 8.1.4 10 % nitric acid rinse (trace metal or higher grade HNO₃ diluted with distilled/deionized (ATSM Type II) H₂O).
 - 8.1.5 Acetone (pesticide grade).
 - 8.1.6 Pure nitrogen 100-ppm Isobutylene cal gas.

(Refer to NJDEP Field Sampling Procedure Manual Table 2-1 Aqueous Sampling Equipment Decontamination (Lab and Field) for further information).

- 8.2 Acids/materials used in preserving samples:
 - 8.2.1 Nitric acid 69.0-70.0%
 - 8.2.2 Sulfuric acid 50% (w/w) solution
 - 8.2.3 Hydrochloric acid (trace metal grade)
- 8.3 Ice for keeping samples at <4 degrees Celsius

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 3 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

9 QUALITY CONTROL:

- 9.1 The following QA/QC requirements are established in order to maintain sample integrity. The prime objective is to prevent sample contamination from other sources and ensure potential contaminant concentrations remain stable form sample collection to complete analysis. Refer to the NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology Reference Charts, Pp. 35-61. Also refer to SAM-0200 Sample Containers, Preservation and Holding Times.
- 9.2 Sample Containers: Before sample collection can begin consideration must be given as to what type of container will be used to transport and store samples. The lab provides containers based upon requested methodologies. Selection is based on the matrix, potential contaminants, analytical methods, and lab's internal QA/QC requirements. They should be selected upon review of the following:
 - 9.2.1 Reactivity of container material with sample. Glass is recommended for hazardous material samples since it is chemically inert to most substances. Plastics may be used when analytes of interest or sample characteristics dictate use instead of glass.
 - 9.2.2 Volume of the container. The volume of sample needed is dictated by the analytical method and the matrix of the sample. The lab will supply bottles that allow for sufficient volumes of sample matrix to be collected.
 - 9.2.3 Color of container. Whenever possible, amber glass is used to prevent photo degradation. If not available, samples should be kept protected from light. One exception is the 40 ml clear glass VOA vials used for VOA aqueous analysis.
 - 9.2.4 Container closures. All containers utilized have a leak-proof seal and are constructed out of material inert with respect to sampled materials. The closure may also be separated by a closure liner that is inert to sample material.
 - 9.2.5 Decontamination of containers and chain of custody. Sample containers are laboratory cleaned or purchased as lab cleaned. Bottles being shipped are accompanied by a chain of custody in a cooler with a custody seal. Custody must accompany containers to field, during collection, back to lab, and during analysis. This helps to assure no tampering or contamination from outside sources occurs.
- 9.3 Storage and transport. Care is taken to avoid contamination. Clean transport and storage environments are observed. Sample or bottle storage is never near solvents, gasoline, or other equipment that is a potential source of contamination. Samples and chain of custody are secured in coolers for transport, with said chain of custody in with bottles or in the hands of authorized personnel. Also, a temperature blank is included in each cooler to measure the temperature of samples on ice in coolers (ideally a constant 4 degrees Celsius).

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 4 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 9.4 Tubing decontamination: ASTM drinking water grade polyethylene tubing is used and discarded after each use. Avoid pump and tubing contact with ground surface. All tubing is rinsed/wiped with distilled and deionized water to remove any possible residual materials on it before entering well.
- 9.5 QA/QC samples: These samples are intended to provide control over the collection of measurements, and subsequent validation, review, and interpretation of analytical data. A trip blank is used for volatile organics and its purpose is to measure possible cross contamination of samples in transit and at a site. It is **never** opened and travels to the site or sites **with** empty sample bottles and back **with** samples. They may also indicate poor cleaning. Like wise, a field blank is used to determine a control on the equipment handling, preparation, storage and shipment. It travels with the samples and is representative of shipment effects on sample quality. By being opened in the field, transferred over a cleaned sampling device, the blank is indicative of ambient and equipment conditions that may affect quality of associated samples. It also serves as an additional check on possible sources of contamination. Blank water is demonstrated analyte free, and is from the same common source and physical locale in lab.
 - 9.5.1 Aqueous matrix QA/QC blank requirements:
 - 9.5.1.1 Field blanks: They are preserved/analyzed for all the same parameters as samples collected that day. They may be required in order to detect cross contamination from ambient air during a potable sampling if known sources are within proximity or monitoring equipment indicates their presence as background. Field blanks must also be taken once every day during sampling.
 - 9.5.1.2 Trip blanks: Consists of a set of bottles each filled at the lab with analyte free water. They accompany the bottles both to and from each site. They are never opened in field. They are also returned in the same bottles they were sent out in. At minimum, a trip blank must be analyzed for volatile organics. Inclusion of additional parameters is at the discretion of the NJDEP. Trip blanks and the samples they accompany are not held on site more than 2 calendar days. A trip blank is included in each sample shipment or trip to field, not to exceed 2 consecutive field days.

9.5.2 Additional QA/QC samples:

9.5.2.1 Duplicate samples: Collection of a duplicate provides for evaluation of lab performance by comparing the analytical data of two samples from the same location. They are included 1 for every 20 samples (5% or 1 a day/site) and submitted as blind samples. They are obtained by alternately filling sample bottles from the same source/device for each

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 5 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

parameter. VOA samples are from the same bailer and are the first set of bottles filled.

- 9.5.2.2 Matrix spike/Matrix spike duplicate analyses or MS/MSD sample: The lab is supplied with triple volume in order to perform matrix spike and matrix spike duplicates. This does not include trip or field blanks. They should occur every case of field samples, every 20-field samples or each 14-day calendar period in which a site is being worked at and samples collected.
- 9.6 Sample preservation: The laboratory staff based upon analytical requirements preserves the sample bottles. Please refer to SAM-0200 Sample Containers, Preservation, and Holding Times SOP and also NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology reference Charts, Pp. 35-61.

10 CALIBRATION:

10.1 All instruments used for field readings are calibrated before each day of use. The use of pH meters must start out with a calibration using buffer solution standards to check or calibrate accuracy. HNU's are calibrated with a known calibration gas. Dissolved oxygen meters are checked against a Winkler method test weekly. All calibrations for a given days use are recorded in the log provided for each instrument. Refer to equipment directions for calibration instruction. Like wise, specific conductivity meters are checked against standards regularly. Cooler thermometers are calibrated against a NIST traceable thermometer annually.

11 PROCEDURE:

- 11.1 The following articles document the procedures for sampling monitor wells. They are to be used as a guide by trained personnel in conjunction with the NJDEP Field Sampling Procedures Manual.
 - 11.1.1 Proper bottle selection: Please refer to QA/QC section 9.
 - 11.1.2 Equipment: Please refer to Equipment section 7.
 - 11.1.3 Before purge activities: Certain instruments and meters are calibrated before use. Also, certain measurements and calculations are obtained before any purge activity can occur. The following is a list of information/data/steps required before purging and pertinent information recorded in logbooks or on well sheets: Date, time and weather conditions: Date and time are needed for holding time, and general record keeping. Weather conditions may affect ambient conditions at a particular site, so are therefore recorded. Tidal influences may also be included here, if wells are in a tidal area.
 - 11.1.4 Well number and permit number: These are to be prominently displayed on the outside of the well according to NJDEP regulations for well construction. They also help to identify a particular well more exactly at a site.

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 6 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 11.1.5 Meter and instrument calibrations: Any meter utilized in the course of site sampling activities should be calibrated at this time, and then findings recorded in logbooks. Refer to section 10 and appropriate instrument/meter calibration directions.
- 11.1.6 PID or FID, HNU reading. This is taken from the wells inner casing immediately after the cap is removed, and the findings are recorded.
- 11.1.7 Free product check: Using ORS meter for interfaces, the presence or absence of product is determined. Thickness is measured and also recorded.
 - 11.1.7.1 Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs): Measurement of thickness of DNAPLs and LNAPLs must be performed prior to purging wells. An interface probe may be used (ORS meter). Each layer of LNAPLs are sampled and analyzed for chemical and physical parameters. Sampling is by using a bottom filling bailer, lowered through LNAPL layer but not significantly down into next phase. DNAPLs are sampled using a dual check valve bailer or bladder pump. Both are then tested for chemical and physical properties. If both are present, it may be necessary to purge well of one casing volume of water prior to sampling DNAPL provided layer is not disturbed. This is done by setting a submersible pump or suction lift pump several feet above the DNAPL.
- 11.2 Dissolved oxygen, pH, temperature, and specific conductivity: Readings should be obtained and recorded on well sheets.
- 11.3 Total depth of well and depth to water: These readings are taken using a depth meter. Total depth of well, depth to water, and depth to screen are measured from the top of the inner casing or surveyor's mark. All are recorded on well sheets.
- 11.4 Calculations: Calculations are then done as stated in section 12.
- 11.5 Purging: When pre-purge activities are complete, the purging of the well can begin. This includes pre-entry to the well and pump setup.
- 11.6 Field Blank Sample: At this time the field blank is sampled. A new bailer is opened from its sealed package and then the field blank water is run over the bailer or sample equipment and collected into proper sample containers in the correct order.
- 11.7 Pre-entry to well: Before the tubing (refer to materials section) is inserted into the well, it must be wiped down and rinsed with DI water. Then inserted into the well leaving at maximum six feet of distance below water surface. Tubing is then lowered as depth drops, or as needed.
- 11.8 Pump setup: The peristaltic pump is then setup with its connection to battery and purging begun. Evacuation rate should not exceed that of well development, and total volume purged should not exceed 5 times the amount of standing water. Discharge water must be in compliance with those stated in section 13. Please refer to the NJDEP Field Sampling Procedures Manual as well.

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 7 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 11.9 After Purge: When purging is complete, the pump is removed and tubing is disposed of properly. Data in section 11.1 is then taken and recorded.
- 11.10 Pump removal: Using peristaltic pumps, the tubing is removed from the well at end of purge while pump still running. Tubing is then disposed of. The pump can then be shut down and decontaminated for next use as needed.
- 11.11 The following data must be recorded on well sheet: Start and end time of purge, purge method and purge rate. Total volume purged, dissolved oxygen, pH, temperature, and specific conductivity readings.
- 11.12 Ground water sampling: Following well evacuation procedures, groundwater sampling can begin. This is immediately after purge, not lapsing more than 2 hours afterwards. When multiple wells are being sampled, the least contaminated should be done first in order of ascending contamination. Sampling is done by using a bottom filling Teflon bailer, dedicated to that particular sampling event. The bailer is lowered slowly into the water until its submerged, and then slowly retrieved. Sample is then carefully transferred to sample containers. The first full bailer of water is used for sampling, it may not be discarded.

Sample order: Samples are collected in the following order: volatile organics (VOA) purgeable organic carbons (POC) purgeable organic halogens (POX) total organic halogens (TOX) total organic carbon (TOC) base neutrals/acid extractables TPHC/oil and grease PCB's/pesticides total metals dissolved metals phenols, cyanide sulfate and chloride turbidity nitrate and ammonia, preserved inorganics radionuclides non-preserved inorganics bacteria.

This order must be followed

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 8 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

11.13 Duplicates and matrix spikes/matrix spike duplicates: These samples are taken in the same order and at the same time as samples. Refer to sections 9.5.2 and 11.12.

11.14 After sampling: The following data is recorded on the well sheets: Start and end time of sampling, dissolved oxygen, pH, temperature, specific conductivity, and sampling method.

12 CALCULATIONS:

- 12.1 Four calculations must be done while in the field. The calculations are as follows: linear feet of water (height of water), the volume to be purged, the volume purged not to be exceeded, and purge rate.
 - 12.1.1 Linear feet of water: This is calculated by knowing the total depth of the well and subtracting the depth to water measured by a depth meter. These two numbers should be measured to within .01 feet. Through this calculation, the linear feet of water is determined.

Equation: (Total well depth – Depth to water = linear feet of water)

12.1.2 Volume to be purged and volume not to be exceeded: The second calculation is to determine the minimum volume to be purged from a well before sampling. Utilizing the linear feet of water and then multiplying it by the volume per foot for the proper diameter casing (see Figure 1 below) equals the amount of water in casing. By multiplying the amount of water within a casing by 3 equals the total minimum volume to be purged. It should be noted here that the amount purged should not exceed 5x the amount of standing water in a well.

Equation:

linear ft of water x volume per ft well diameter = amount of water in casing)

then,

(amount of water in casing x/3 = minimum volume to be purged)

Equation:

(amount of water in casing x = total volume **not** to be exceeded)

SOP No.: SAM-0205

Revision No.: 3

Date Revised: 1/20/2006

Page 9 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

Figure 1: Capacity of Common Casing Diameters

Casing Diameter (ft.)	Gallons/linear foot
2 inch (0.1667)	0.1632
4 inch (0.3333)	0.6528
6 inch (0.5000)	1.4688
8 inch (0.6667)	2.6112
10 inch (0.8333)	4.0800
12 inch (1.0000)	5.8752

12.1.3 Purge rate: The purge rate is determined by calculating the length of time it takes for the pump to fill a 1-gallon bucket with water. The time is multiplied by the minimum volume to be purged. The gallons being purged is then divided by this number (which also happens to be the length of time the purge will take in minutes) which equals the gallons per minute or purge rate.

Equation:

(time x minimum volume to be purged = length of purge in minutes)

then,

(minimum volume to be purged / length of purge in minutes = gallons per minute or the purge rate)

13 POLLUTION PREVENTION:

13.1 For pollution prevention, please refer to SOP No. SAM-0222.

14 WASTE MANAGEMENT:

14.1 For sample disposal, please refer to SOP No. SAM-0220.

Attachment 1

FORT MONMOUTH ENVIRONMENTAL LABORATORY

STANDARD OPERATING PROCEDURE REQUEST FOR REVISION FORM

SOP #: <u>Sam - 0205</u>	
CATEGORY: Sample Handling	
REVISION: 4	
TITLE: MW Sampling for 127 5	des At Ft. Monmouth
*REVISION (Section and Paragraph):	
REASON FOR REVISION: Annual textel	I Changed personnel
THE	1
OTHER DOCUMENTS AFFECTED:	
OTHER DOCUMENTS ATTECTED.	
*(Attach additional information)	
AUTHOR: <u>actio</u> temo	DATE: 4/17/08
	DATE MASINE

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 1 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

1 PURPOSE:

1.1 To document current procedures for monitoring well sampling.

2 RESPONSIBILITY:

2.1 Designated field samplers who have been properly trained and instructed in NJDEP field sampling procedures and protocol.

3 SAMPLE COLLECTION, PRESERVATION AND HANDLING:

3.1 For sample collection, preservation and handling, please refer to SOP No. SAM-200.

4 REFERENCES:

- 4.1 Field Sampling Procedures Manual, August 2005. New Jersey Department of Environmental Protection.
- 4.2 NJDEP Field Analysis Manual, July 1994.
- 4.3 On the World Wide Web: www.state.nj.us/dep or www.state.nj.us/dep/srp.
- 4.4 Lab SOP: SAM-0200, SAM-0202, OQC-0302.

5 SUMMARY:

5.1 The procedures, materials, and equipment describe the recommended methods for sampling monitoring wells. Necessary equipment, calibrations, calculations and appropriate QA/QC procedures are also included. These procedures are to be followed by all personnel involved with the sampling and purging of wells at Fort Monmouth. Persons following this SOP are recommended to also refer to the NJDEP Field Sampling Procedures Manual, August 2005.

6 SAFETY:

6.1 For safety, please refer to CTSC Fort Monmouth, NJ Health and Safety Plan (HASP).

7 EQUIPMENT AND MATERIALS:

- 7.1 Equipment:
 - 7.1.1 Dissolved oxygen meter

l o il		
Prepared By: October House	Date:_	411/08
Technical Supervisor: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Date:_	4/22/08
QA/QC Supervisor: Acho Harner	Date:_	417108
		, ,

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 2 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

- 7.1.2 HNU photo ionizer
- 7.1.3 Conductivity/pH/temperature meter
- 7.1.4 Peristaltic well pumps
- 7.1.5 Pump heads and power cables
- 7.1.6 Water level meter
- 7.1.7 Oil/water interface probe
- 7.1.8 Submersible well pumps
- 7.1.9 Various batteries
- 7.1.10Buckets
- 7.1.11Miscellaneous tools, i.e. screwdriver, well wrench, etc.
- 7.1.12 A multi-parameter water quality meter may be used as long as it measures: Conductivity, pH, Temperature, and Dissolved Oxygen.
- 7.2 Materials:
 - 7.2.1 Thick wall silicone tubing ¼ inch diameter
 - 7.2.2 Polyethylene (food grade) tubing ¼ inch diameter
 - 7.2.3 12 inch single sample 1 check stop Teflon disposable bailers
 - 7.2.4 Mason string

8 STANDARDS/REAGENTS:

- 8.1 Buffer solutions, calibration gases, decontamination materials, and acids for preservation.
 - 8.1.1 Buffer solutions:
 - 8.1.1.1 7.00 standard buffer solution
 - 8.1.1.2 10.00 standard buffer solution
 - 8.1.1.3 4.00 standard buffer solution
 - 8.1.2 Distilled and deionized water
 - 8.1.3 Alconox
 - 8.1.4 10 % nitric acid rinse (trace metal or higher grade HNO₃ diluted with distilled/deionized (ATSM Type II) H₂O).
 - 8.1.5 Acetone (pesticide grade).
 - 8.1.6 Pure nitrogen 100-ppm Isobutylene cal gas.

(Refer to NJDEP Field Sampling Procedure Manual Table 2-1 Aqueous Sampling Equipment Decontamination (Lab and Field) for further information).

- 8.2 Acids/materials used in preserving samples:
 - 8.2.1 Nitric acid 69.0-70.0%
 - 8.2.2 Sulfuric acid 50% (w/w) solution
 - 8.2.3 Hydrochloric acid (trace metal grade)
- 8.3 Ice for keeping samples at <4 degrees Celsius

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 3 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

9 QUALITY CONTROL:

- 9.1 The following QA/QC requirements are established in order to maintain sample integrity. The prime objective is to prevent sample contamination from other sources and ensure potential contaminant concentrations remain stable form sample collection to complete analysis. Refer to the NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology Reference Charts, Pp. 35-61. Also refer to SAM-0200 Sample Containers, Preservation and Holding Times.
- 9.2 Sample Containers: Before sample collection can begin consideration must be given as to what type of container will be used to transport and store samples. The lab provides containers based upon requested methodologies. Selection is based on the matrix, potential contaminants, analytical methods, and lab's internal QA/QC requirements. They should be selected upon review of the following:
 - 9.2.1 Reactivity of container material with sample. Glass is recommended for hazardous material samples since it is chemically inert to most substances. Plastics may be used when analytes of interest or sample characteristics dictate use instead of glass.
 - 9.2.2 Volume of the container. The volume of sample needed is dictated by the analytical method and the matrix of the sample. The lab will supply bottles that allow for sufficient volumes of sample matrix to be collected.
 - 9.2.3 Color of container. Whenever possible, amber glass is used to prevent photo degradation. If not available, samples should be kept protected from light. One exception is the 40 ml clear glass VOA vials used for VOA aqueous analysis.
 - 9.2.4 Container closures. All containers utilized have a leak-proof seal and are constructed out of material inert with respect to sampled materials. The closure may also be separated by a closure liner that is inert to sample material.
 - 9.2.5 Decontamination of containers and chain of custody. Sample containers are laboratory cleaned or purchased as lab cleaned. Bottles being shipped are accompanied with a chain of custody in a cooler with a custody seal. Custody must accompany containers to field, during collection, back to lab, and during analysis. This helps to assure no tampering or contamination from outside sources occurs.
- 9.3 Storage and transport. Care is taken to avoid contamination. Clean transport and storage environments are observed. Sample or bottle storage is never near solvents, gasoline, or other equipment that is a potential source of contamination. Samples and chain of custody are secured in coolers for transport, with said chain of custody in with bottles or in the hands of authorized personnel. Also, a temperature blank is included in each cooler to measure the temperature of samples on ice in coolers (ideally a constant 4 degrees Celsius).

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 4 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

9.4 Tubing decontamination: ASTM drinking water grade polyethylene tubing is used and discarded after each use. Avoid pump and tubing contact with ground surface. All tubing is rinsed/wiped with distilled and deionized water to remove any possible residual materials on it before entering well.

- 9.5 QA/QC samples: These samples are intended to provide control over the collection of measurements, and subsequent validation, review, and interpretation of analytical data. A trip blank is used for volatile organics and its purpose is to measure possible cross contamination of samples in transit and at a site. It is **never** opened and travels to the site or sites **with** empty sample bottles and back **with** samples. They may also indicate poor cleaning. Like wise, a field blank is used to determine a control on the equipment handling, preparation, storage and shipment. It travels with the samples and is representative of shipment effects on sample quality. By being opened in the field, transferred over a cleaned sampling device, the blank is indicative of ambient and equipment conditions that may affect quality of associated samples. It also serves as an additional check on possible sources of contamination. Blank water is demonstrated analyte free, and is from the same common source and physical locale in lab.
 - 9.5.1 Aqueous matrix QA/QC blank requirements:
 - 9.5.1.1 Field blanks: They are preserved/analyzed for all the same parameters as samples collected that day. They may be required in order to detect cross contamination from ambient air during a potable sampling if known sources are within proximity or monitoring equipment indicates their presence as background. Field blanks must also be taken once every day during sampling.
 - 9.5.1.2 Trip blanks: Consists of a set of bottles each filled at the lab with analyte free water. They accompany the bottles both to and from each site. They are never opened in field. They are also returned in the same bottles they were sent out in. At minimum, a trip blank must be analyzed for volatile organics. Inclusion of additional parameters is at the discretion of the NJDEP. Trip blanks and the samples they accompany are not held on site more than 2 calendar days. A trip blank is included in each sample shipment or trip to field, not to exceed 2 consecutive field days.

9.5.2 Additional QA/QC samples:

9.5.2.1 Duplicate samples: Collection of a duplicate provides for evaluation of lab performance by comparing the analytical data of two samples from the same location. They are included 1 for every 20 samples (5% or 1 a day/site) and submitted as blind samples. They are obtained by alternately filling sample bottles from the same source/device for each

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 5 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

parameter. VOA samples are from the same bailer and are the first set of bottles filled.

- 9.5.2.2 Matrix spike/Matrix spike duplicate analyses or MS/MSD sample: The lab is supplied with triple volume in order to perform matrix spike and matrix spike duplicates. This does not include trip or field blanks. They should occur every case of field samples, every 20-field samples or each 14-day calendar period in which a site is being worked at and samples collected.
- 9.6 Sample preservation: The laboratory staff based upon analytical requirements preserves the sample bottles. Please refer to SAM-0200 Sample Containers, Preservation, and Holding Times SOP and also NJDEP Field Sampling Procedures Manual Appendix 2-1 Analytical Methodology reference Charts, Pp. 35-61.

10 CALIBRATION:

10.1 All instruments used for field readings are calibrated before each day of use. The use of pH meters must start out with a calibration using buffer solution standards to check or calibrate accuracy. HNU's are calibrated with a known calibration gas. Dissolved oxygen meters are checked against a Winkler method test weekly. All calibrations for a given days use are recorded in the log provided for each instrument. Refer to equipment directions for calibration instruction. Like wise, specific conductivity meters are checked against standards regularly. Cooler thermometers are calibrated against a NIST traceable thermometer annually.

11 PROCEDURE:

- 11.1 The following articles document the procedures for sampling monitor wells. They are to be used as a guide by trained personnel in conjunction with the NJDEP Field Sampling Procedures Manual.
 - 11.1.1 Proper bottle selection: Please refer to QA/QC section 9.
 - 11.1.2 Equipment: Please refer to Equipment section 7.
 - 11.1.3 Before purge activities: Certain instruments and meters are calibrated before use. Also, certain measurements and calculations are obtained before any purge activity can occur. The following is a list of information/data/steps required before purging and pertinent information recorded in logbooks or on well sheets: Date, time and weather conditions: Date and time are needed for holding time, and general record keeping. Weather conditions may affect ambient conditions at a particular site, so are therefore recorded. Tidal influences may also be included here, if wells are in a tidal area.
 - 11.1.4 Well number and permit number: These are to be prominently displayed on the outside of the well according to NJDEP regulations for well construction. They also help to identify a particular well more exactly at a site.

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 6 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

11.1.5 Meter and instrument calibrations: Any meter utilized in the course of site sampling activities should be calibrated at this time, and then findings recorded in logbooks. Refer to section 10 and appropriate instrument/meter calibration directions.

- 11.1.6 PID or FID, HNU reading. This is taken from the wells inner casing immediately after the cap is removed, and the findings are recorded.
- 11.1.7 Free product check: Using ORS meter for interfaces, the presence or absence of product is determined. Thickness is measured and also recorded.
 - 11.1.7.1 Light Non-Aqueous Phase Liquids (LNAPLs) and Dense Non-Aqueous Phase Liquids (DNAPLs): Measurement of thickness of DNAPLs and LNAPLs must be performed prior to purging wells. An interface probe may be used (ORS meter). Each layer of LNAPLs are sampled and analyzed for chemical and physical parameters. Sampling is by using a bottom filling bailer, lowered through LNAPL layer but not significantly down into next phase. DNAPLs are sampled using a dual check valve bailer or bladder pump. Both are then tested for chemical and physical properties. If both are present, it may be necessary to purge well of one casing volume of water prior to sampling DNAPL provided layer is not disturbed. This is done by setting a submersible pump or suction lift pump several feet above the DNAPL.
- 11.2 Dissolved oxygen, pH, temperature, and specific conductivity: Readings should be obtained and recorded on well sheets.
- 11.3 Total depth of well and depth to water: These readings are taken using a depth meter. Total depth of well, depth to water, and depth to screen are measured from the top of the inner casing or surveyor's mark. All are recorded on well sheets.
- 11.4 Calculations: Calculations are then done as stated in section 12.
- 11.5 Purging: When pre-purge activities are complete, the purging of the well can begin. This includes pre-entry to the well and pump setup.
- 11.6 Field Blank Sample: At this time the field blank is sampled. A new bailer is opened from its sealed package and then the field blank water is run over the bailer or sample equipment and collected into proper sample containers in the correct order.
- 11.7 Pre-entry to well: Before the tubing (refer to materials section) is inserted into the well, it must be wiped down and rinsed with DI water. Then inserted into the well leaving at maximum six feet of distance below water surface. Tubing is then lowered as depth drops, or as needed.
- 11.8 Pump setup: The peristaltic pump is then setup with its connection to battery and purging begun. Evacuation rate should not exceed that of well development, and total volume purged should not exceed 5 times the amount of standing water. Discharge

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 7 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

water must be in compliance with those stated in section 13. Please refer to the NJDEP Field Sampling Procedures Manual as well.

- 11.9 After Purge: When purging is complete, the pump is removed and tubing is disposed of properly. Data in section 11.1 is then taken and recorded.
- 11.10 Pump removal: Using peristaltic pumps, the tubing is removed from the well at end of purge while pump still running. Tubing is then disposed of. The pump can then be shut down and decontaminated for next use as needed.
- 11.11 The following data must be recorded on well sheet: Start and end time of purge, purge method and purge rate. Total volume purged, dissolved oxygen, pH, temperature, and specific conductivity readings.
- 11.12 Ground water sampling: Following well evacuation procedures, groundwater sampling can begin. This is immediately after purge, not lapsing more than 2 hours afterwards. When multiple wells are being sampled, the least contaminated should be done first in order of ascending contamination. Sampling is done by using a bottom filling Teflon bailer, dedicated to that particular sampling event. The bailer is lowered slowly into the water until its submerged, and then slowly retrieved. Sample is then carefully transferred to sample containers. The first full bailer of water is used for sampling, it may not be discarded.

Sample order: Samples are collected in the following order: volatile organics (VOA) purgeable organic carbons (POC) purgeable organic halogens (POX) total organic halogens (TOX) total organic carbon (TOC) base neutrals/acid extractables TPHC/oil and grease PCB's/pesticides total metals dissolved metals phenols, cyanide sulfate and chloride turbidity nitrate and ammonia, preserved inorganics radionuclides

This order must be followed

non-preserved inorganics bacteria.

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 8 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

11.13 Duplicates and matrix spikes/matrix spike duplicates: These samples are taken in the same order and at the same time as samples. Refer to sections 9.5.2 and 11.12.

11.14 After sampling: The following data is recorded on the well sheets: Start and end time of sampling, dissolved oxygen, pH, temperature, specific conductivity, and sampling method.

12 CALCULATIONS:

- 12.1 Four calculations must be done while in the field. The calculations are as follows: linear feet of water (height of water), the volume to be purged, the volume purged not to be exceeded, and purge rate.
 - 12.1.1 Linear feet of water: This is calculated by knowing the total depth of the well and subtracting the depth to water measured by a depth meter. These two numbers should be measured to within .01 feet. Through this calculation, the linear foot of water is determined.

Equation: (Total well depth – Depth to water = linear feet of water)

12.1.2 Volume to be purged and volume not to be exceeded: The second calculation is to determine the minimum volume to be purged from a well before sampling. Utilizing the linear feet of water and then multiplying it by the volume per foot for the proper diameter casing (see Figure 1 below) equals the amount of water in casing. By multiplying the amount of water within a casing by 3 equals the total minimum volume to be purged. It should be noted here that the amount purged should not exceed 5x the amount of standing water in a well.

Equation:

linear ft of water x volume per ft well diameter = amount of water in casing)

then.

(amount of water in casing x = 3 = minimum volume to be purged)

Equation:

(amount of water in casing x = 5 = total volume **not** to be exceeded)

SOP No.: SAM-0205

Revision No.: 4

Date Revised: 4/17/08

Page 9 of 9

CATEGORY: Sample Handling

TITLE: Monitor Well Sampling for IRP sites at Fort Monmouth

Figure 1: Capacity of Common Casing Diameters

Casing Diameter (ft.)	Gallons/linear foot
2 inch (0.1667)	0.1632
4 inch (0.3333)	0.6528
6 inch (0.5000)	1.4688
8 inch (0.6667)	2.6112
10 inch (0.8333)	4.0800
12 inch (1.0000)	5.8752

12.1.3 Purge rate: The purge rate is determined by calculating the length of time it takes for the pump to fill a 1-gallon bucket with water. The time is multiplied by the minimum volume to be purged. The gallons being purged is then divided by this number (which also happens to be the length of time the purge will take in minutes) which equals the gallons per minute or purge rate.

Equation:

(time x minimum volume to be purged = length of purge in minutes)

then,

(minimum volume to be purged / length of purge in minutes = gallons per minute or the purge rate)

13 POLLUTION PREVENTION:

13.1 For pollution prevention, please refer to SOP No. SAM-0222.

14 WASTE MANAGEMENT:

14.1 For sample disposal, please refer to SOP No. SAM-0220.

Appendix D

NJDEP Approval Letter, November 10, 2004, Reduction of Ground Water Sampling Analyses – Main Post and Charles Woods, Fort Monmouth, New Jersey

Guenther, Douglas C MONMOUTH USAG

From:

Greg Zalaskus [Greg.Zalaskus@dep.state.nj.us]

Sent:

Friday, November 12, 2004 2:03 PM

To:

Douglas.Guenther@mail1.monmouth,army,mil

Cc:

John Prendergast; Ken Petrone; Joseph.Fallon@mail1.monmouth.army.mil

Subject:

Re: GROUNDWATER ANALYSES REDUCTION

Doug: The Department has completed a review of your November 10, 04 letter request to reduce the groundwater sampling analysis for the seven site listed in the November 10, 04 letter. The Department hereby approves your request as submitted. Additionally, the updated "Restoration Program Site Report Status Table" you e-mailed is most appreciated. If you have any questions please contact me.

Sincerely, greg

Gregory Zalaskus, Case Manager NJDEP/DRMR/BCM Greg.Zalaskus@dep.state.nj.us 609-984-2065 (direct) 609-633-1439 (fax) 609-633-1455 (main)

>>> "Guenther, Douglas C MONMOUTH USAG" <Douglas.Guenther@mail1.monmouth.army.mil> 11/10/04 01:28PM >>> Greq,

As discussed, attached is the letter identifying analyses reduction at restoration sites and a summary of submitted site reports pending NJDEP review. A hard copy is on the way. Any questions let me know.

Sincerely,

Douglas C. Guenther

Environmental Protection Specialist

U.S. Army, Directorate of Public Works

Attn: SELFM-PW-EV, Bldg. 173

Fort Monmouth, NJ 07703

Phone: 732-532-0986; Fax: 732-532-6263; DSN: 992-0986

E-mail: Douglas.Guenther@Maill.Monmouth.Army.mil

HEADQUARTERS, U.S. ARMY GARRISON FORT MONMOUTH FORT MONMOUTH, NEW JERSEY 07703-5101

REPLY TO ATTENTION OF

Directorate of Public Works

November 10, 2004

ATTN: Mr. Greg Zalaskus
State of New Jersey
Department of Environmental Protection
Division of Responsible Party Site Remediation
Bureau of Case Management
401 East State Street, 5th Fl., West Wing
PO Box 028
Trenton, New Jersey 08625-0028

RE: REDUCTION OF GROUNDWATER SAMPLING ANALYSES-MAIN POST&CHARLES WOODS

Restoration Sites throughout Fort Monmouth, New Jersey

Dear Mr. Zalaskus:

As discussed during our telephone conversation on November 9, 2004, this letter summarizes groundwater sampling revisions at seven active restoration sites on Fort Monmouth property. The Directorate of Public Works (DPW) and TECOM-Vinnell Services (TVS) personnel currently conduct quarterly groundwater monitoring at each of these sites.

The DPW has submitted Remedial Investigation Reports (RIRs), prepared by VERSAR, Inc., requesting no further action (NFA) at four sites including Landfill M-12 (FTMM-12), Landfill M-18/290/296 (FTMM-18/55/54), Landfill M-3 (FTMM-03), and Site 108 (FTMM-57). Two RIRs requesting NFA are pending submittal including Site 80/166 (FTMM-56) and Landfill CW3A (FTMM-25), and one Remedial Action Report for Site 886 (FTMM-66) recommending natural attenuation is also pending submittal.

Initial groundwater sampling at each site consisted of a comprehensive analytical program including volatile organic compounds (VOCs); semi-volatile organic compounds (SVOCs); pesticides/polychlorinated biphenyls (PCBs); and TAL metals. Analytical results were then examined to establish potential contaminants of concern (COCs). Each site report presents the identified potential COCs based on the comparison of groundwater analytical results to the higher of the Practical Quantitation Limits (PQLs) and the NJDEP Groundwater Quality Criteria (GWQC) for Class II-A aquifers (NJAC 7:9-6, Table 1). Further evaluation of the potential COCs was then performed to assess contaminant occurrence/magnitude, transport (modeling), and risk to receptors, the environment and human health to determine if remedial action was warranted.

Based on report conclusions, Fort Monmouth DPW proposes the following revisions to the current groundwater sampling program at these sites to maintain a compliant and cost effective program. As discussed, proposed changes will be implemented immediately unless otherwise directed by the NJDEP.

The following table summarizes the revised sampling program at these sites:

Submitted No Further Action Requests

Site	Was Analyzed:	Revised Analysis:	Potential Contaminants of Concern
Landfill M-12 (FTMM-12)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for TAL Metals.	Arsenic and lead
Landfill M-18/290/296 (FTMM-18/55/54)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for VOCs and TAL Metals.	Benzene, arsenic, cadmium, chromium and lead
Landfill M-3 (FTMM-03)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for VOCs.	Chlorobenzene
Site 108 (FTMM-57)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for TAL Metals.	Arsenic
No Further Acti	on Requests - Submitta	l Pending	
Site 80/166 (FTMM-56)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for Pesticides and TAL Metals.	a-chlordane, g-chlordane, arsenic and lead
Landfill CW3A (FTMM-25)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for TAL Metals.	Non-Native Metals
Natural Attenua	ation Request - Submitt	al Pending	
Site 886 (FTMM-66)	Quarterly for VOCs, SVOCs, pesticides/PCBs, Metals	Quarterly for VOCs and SVOCs	Benzene and 2-butanone

Groundwater sampling and monitoring will continue at these sites as indicated above, in accordance with NJDEP Technical Requirements for Site Remediation (July 1999), NJAC 7:26E, et seq. and Fort Monmouth Standard Sampling Operating Procedure (1997), pending NJDEP review of these site documents. I have attached an updated summary table of site reports previously submitted to NJDEP which are pending review.

If you should have any questions or comments, please contact me at (732) 532-0986.

Sincerely,

Douglas C. Guenther

Environmental Protection Specialist

Directorate of Public Works

Attachment: Restoration Program Report Status Table

cc: File

Appendix E Costs and Schedule for Site 886

ID	Task Name	Start	Finish	Notes	COST (\$000)	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
1	Bldg. 886, AST FTMM-66 Total Cost	Wed 4/1/98	Tue 5/1/12		\$137																				į
2	RI / Remedial Action Report for Soil & GW cont., January 2006	Tue 1/1/02	Mon 3/31/03	Versar Inc.	\$0																				
3	Remedial Action - Operation	Wed 10/2/02	Tue 9/30/08		\$140										=										
4	Product Recovery System Operation	Wed 1/1/03	Wed 3/31/04		\$0																				
5	LTM (Qtrly Monitoring Mar, May Aug & Dec)	Wed 1/1/03	Fri 12/30/11		\$46												-			(11111111111111111111111111111111111111				ļ e	l
6	NJDEP approved RIR/RAWP	Fri 8/27/10	Mon 8/30/10		\$0																		¥		l
7	Annual MW Inspections 2008	Mon 11/3/08	Sun 11/30/08		\$0																ē				l
8	RAPR 2003-2008 (2rd qtr '03 to 4th qtr '08) July 2010	Tue 4/1/03	Wed 12/31/08	VEETech Inc.	\$0											_		—				h			l
9	Annual MW Inspections 2009	Mon 11/2/09	Mon 11/30/09		\$0																	9			l
10	Annual RAPR 2009-2010 (1st qtr '09 to 3rd qtr '10)	Thu 1/1/09	Thu 9/30/10		\$0																		<u> </u>		l
11	Annual MW Inspections 2010	Mon 9/27/10	Thu 9/30/10		\$0																		I		l
12	RAPR 2010-2011 (4th Qtr '10 to 4th Qtr '11)	Fri 10/1/10	Fri 12/30/11		\$0																				l
13	Final RA Report and CEA	Mon 1/2/12	Tue 5/1/12		\$0																			*)
14	MW Abandonment / Site Restoration	Mon 4/2/12	Mon 4/30/12		\$0																				<u> </u>

Costs are primarily based on the DPW Obligation List. Dated 10-29-08

Thu 10/28/10

Task Progress Summary Project Summary Project Summary External Tasks Deadline Faxternal Milestone Project Summary Project Summary Project Summary Project Summary Project Summary Project Summary Page 1

APPENDIX K: FTMM-66 Building 886 Former AST

TABLE OF CONTENTS

1.0	WATER LEVEL MEASUREMENTS AND WELL ASSESSMENT	K-1
2.0	GROUNDWATER SAMPLING	K-1
3.0	HISTORICAL GROUNDWATER SAMPLING RESULTS	K-1
4.0	ANNUAL (FOURTH QUARTER) 2015 GROUNDWATER RESULTS	K-2
5.0	FINDINGS AND RECOMMENDATIONS	K-2

LIST OF TABLES

Table No.	<u>Title</u>
1	Groundwater Gauging Data and Elevations (October 2, 2015) and
	LFPS Sampling Summary
2	Historical Groundwater Analytical Results
3	Groundwater Analytical Results - 2013, 2014 and 2015
4	Review of Historical Groundwater Sampling Results

LIST OF FIGURES

<u>Figure No.</u>	<u>Title</u>
1 2	Layout of FTMM-66 Building 886 Former AST FTMM-66 Shallow Groundwater Contours - October 2, 2015

LIST OF ATTACHMENTS

<u>Attachment</u>	Title
A	LFPS Field Sheets

1.0 WATER LEVEL MEASUREMENTS AND WELL ASSESSMENT

Monitoring wells located within FTMM-66 were gauged on October 2, 2015. Monitoring well locations as well as other site features are provided in **Figure 1**. Details regarding the water level measurements are provided in **Table 1**. Groundwater elevations in monitoring wells ranged from 5.35 (886MW01) to 9.48 (886RW06) feet above mean sea level (amsl). The inferred shallow groundwater flow direction is generally to the north-northwest, as shown in **Figure 2**.

During the groundwater gauging, the physical condition of FTMM-66 monitoring wells were assessed. The site monitoring wells were found to be in good condition.

2.0 GROUNDWATER SAMPLING

Groundwater samples were collected from three monitoring wells located at FTMM-66 as part of the annual (fourth quarter) 2015 groundwater sampling event. The groundwater sampling program included measuring the depth to groundwater in monitoring wells prior to sampling and collection of groundwater samples using low-flow purging and sampling (LFPS). Groundwater samples were collected from wells 886RW01, 886RW06 and 886RW08 on November 20 and 23, 2015. Groundwater samples were analyzed for Target Compound List (TCL) semi-volatile organic compounds (SVOCs) plus Tentatively Identified Compounds (TICs) via USEPA method SW8270D.

The samples were collected in accordance with the New Jersey Department of Environmental Protection (NJDEP) Field Sampling Procedures Manual (FSPM) and the Sampling Analysis Plan (SAP). Field blanks, duplicates, matrix spike, matrix spike duplicate and quality assurance (QA) split samples were collected for every 5% of samples collected per parameter, per matrix, in accordance with the Quality Assurance Project Plan (QAPP). Trip blanks accompanied each cooler each day in which VOCs were collected for laboratory analysis.

The completed LFPS field sheets can be found in **Attachment A**.

3.0 HISTORICAL GROUNDWATER SAMPLING RESULTS

From February 2003 through October 2004, FTMM-66 monitoring wells were sampled for volatile organic compounds (VOCs), SVOCs, total petroleum hydrocarbons (TPH) and metals. From January 2005 to December 2009, FTMM-66 wells were sampled for VOCs and SVOCs. From February 2010 to May 2010, monitoring wells were sampled for VOCs, SVOCs and metals.

In the last four rounds of quarterly groundwater sampling conducted at FTMM-66 from August 2010 to April 2011, samples were also analyzed for VOCs, SVOCs and metals. Within the last four rounds of groundwater sampling at FTMM-66, bis(2-ethylhexyl) phthalate, antimony, arsenic, beryllium and lead were detected above their respective NJDEP Ground Water Quality Standard (GWQS) in monitoring well 886MW01. The bis(2-ethylhexyl) phthalate detections appear to be anomalous as there is no historical trend of bis(2-ethylhexyl) phthalate detections above the GWQS. The detection of phthalates is attributed to the laboratory; it is considered a common laboratory contaminant since it is present in all

laboratory equipment and reagents. The concentrations of antimony, arsenic, beryllium and lead were all below site background conditions (Weston, 1995).

No VOCs or SVOCs were detected in exceedance of any NJDEP GWQS within the last four rounds of historical groundwater sampling. Historical groundwater analytical results are presented in **Table 2**.

During the August 2013 Baseline Sampling Event, thirteen monitoring wells were sampled for VOCs, SVOCs and lead. One parameter, SVOC total tentatively identified compounds (TICs) was detected above its NJDEP GWQS of 500 μ g/L at monitoring wells 886RW01 (879 μ g/L) and 886RW08 (707 JN μ g/L). Groundwater analytical results from samples collected during the August 2013 sampling event are presented in **Table 3**.

The Final August 2013 Baseline Groundwater Sampling Report was accepted by the NJDEP in their February 5, 2015 letter. Based on this approval, 10 out of the 13 groundwater monitoring wells were removed from the long-term monitoring (LTM) program including 886MW01, 886MW02, 886MW03, 886MW04, 886MW05, 886RW02, 886RW03, 886RW04, 886RW05 and 886RW07; and VOC and lead analyses were discontinued.

SVOC total TICs was the only parameter detected in monitoring wells 886RW01 and 886RW08 during the 2014 annual sampling event. Concentrations (15.4J μ g/L and 46.4J μ g/L respectively) were below the NJDEP GWQS of 500 μ g/L. SVOCs were non-detect in the sample collected from 886RW06. Groundwater analytical results from 2014 sampling event are presented in **Table 3**. Based on the collective data, the Annual (Fourth Quarter) 2014 Groundwater Sampling Report recommended that one additional sampling round was needed to demonstrate that SVOC total TICs are below the NJDEP GWQS and discontinue the long-term monitoring program for the site. This was accepted by the NJDEP in their January 26, 2016 letter.

4.0 ANNUAL (FOURTH QUARTER) 2015 GROUNDWATER RESULTS

SVOC total TICs were only detected in monitoring well 886RW01 during the 2015 Annual Sampling Event. The estimated concentration (18JN μ g/L) is below the NJDEP GWQS of 500 μ g/L. SVOCs were non-detect in the samples collected from 886RW06 and 886RW08. Groundwater analytical results from 2015 sampling event are presented in **Table 3**.

5.0 FINDINGS AND RECOMMENDATIONS

Historically, SVOCs (including total TICs) have been detected below the NJDEP GWQS with only a few instances in 2009 and 2010 where bis(2-ethylhexyl)phthalate and total TICs have been above the GWQS. Concentrations of SVOCs (including total TICs) detected during the 2014 and 2015 sampling events were non-detect or below their NJDEP GWQS in wells 886RW01, 886RW06 and 886RW08. Based on the available data, it is recommended to discontinue the LTM sampling s at 886RW01, 886RW06 and 886RW08 and a no further action determination will be requested for groundwater at this site. A review of the historical groundwater sampling results is presented in **Table 4**, which provides the matrix used to determine the status of the wells relative to future groundwater sampling and analyses.

TABLES

Table 1	Groundwater Gauging Data and Elevations (October 2, 2015) and LFPS Sampling Summary
Table 2	Historical Groundwater Analytical Results
Table 3	Groundwater Analytical Results - 2013, 2014 and 2015
Table 4	Review of Historical Groundwater Sampling Results

 $Groundwater\ Gauging\ Data\ and\ Elevations\ (October\ 2,\ 2015)\ and\ LFPS\ Sampling\ Summary$ Annual (Fourth Quarter) 2015 Groundwater Sampling Report Site FTMM-66 Building 886 Former AST Table 1

Fort Monmouth, New Jersey

Site/Well ID	Installation Date	Well Permit #	Y Coord. (North)	X Coord. (East)	Depth (ft. bgs)	Casing Length (ft)	Screen Length (ft)	TOC Elevation (ft)	Gauge Time	PID Reading (ppm)	Gauged Depth to Water (ft. TOC)	Gauged Depth to Gauged Depth to Water Bottom (ft. TOC) (ft. TOC)	Calculated Groundwater Elevation (ft)	Date Sampled
Shallow Monitoring Wells	ing Wells													
886MW01	1/8/2003	29-47835	538325.48	620981.00	17.0	2.0	15.0	12.95	11:58	0.0	7.60	17.30	5.35	
886MW02	1/8/2003	29-47836	538217.44	620928.79	17.0	2.0	15.0	12.90	10:49	0.0	5.87	16.95	7.03	
886MW03	1/8/2003	29-47837	538302.92	621071.25	17.0	2.0	15.0	13.70	12:22	0.0	7.25	17.20	6.45	
886MW04	1/8/2003	29-47838	538089.47	621100.44	17.0	2.0	15.0	18.22	12:30	0.0	8.86	20.35	9.36	
886MW05	1/8/2003	29-47839	538253.49	621193.80	17.0	2.0	15.0	18.29	12:26	0.0	11.63	19.45	99.9	
90WW988	12/9/2010	E201012412	538300.00	620950.00	20.0	5.0	15.0	13.84	11:46	0.0	6.13	19.80	7.71	
886RW01	1/7/2003	29-47840	538241.42	620972.44	17.0	2.0	15.0	13.62	11:13	0.0	6.97	16.18	6.65	11/23/2015
886RW02	1/7/2003	29-47841	538251.08	620895.34	17.0	2.0	15.0	13.92	11:19	0.0	7.32	17.00	09'9	
886RW03	1/7/2003	29-47842	538274.31	620998.04	17.0	2.0	15.0	13.96	11:27	0.0	6.55	16.15	7.41	
886RW04	1/7/2003	29-47843	538263.45	620990.21	17.0	2.0	15.0	13.80	11:24	0.0	7.20	16.82	09'9	
886RW05	1/7/2003	29-47844	538280.46	86.286029	17.0	2.0	15.0	13.71	11:23	0.0	7.23	15.00	6.48	
886RW06	1/7/2003	29-47845	538273.33	621052.87	17.0	2.0	15.0	15.00	12:19	0.0	5.52	15.22	9.48	11/23/2015
886RW07	1/9/2003	29-47846	538252.30	621047.21	17.0	2.0	15.0	14.32	12:14	0.0	7.81	16.15	6.51	
886RW08	1/10/2003	29-47847	538229.91	621038.87	17.0	2.0	15.0	13.84	12:11	0.0	7.22	15.70	6.62	11/20/2015
N-4-2.														

Notes:

¹⁾ The synoptic round of water levels in the wells was collected on October 2, 2015.
2) Information on well permit number, X and Y coordinates, depth, screen length, screen interval and TOC elevation were provided by FTMM in a table in June 2013.

³⁾ ft = feet

⁴⁾ DTW = depth to water (measured from the top of well casing)
5) DTB = depth to bottom of well (measured from the top of well casing)
6) bgs = below ground surface

⁷⁾ ppm = parts per million (of VOCs) 8) TOC = Top of Casing

⁹⁾ Elevation = feet above mean sea level 10) N/A = information not available 11) LPPS = Low-Flow Purging and Sampling

Table 2
Historical Groundwater Analytical Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey

rort womino		·										886N	1W01								
WELL ID				886MW01	MW01 Dup	886MW01	MW01 Dup	886MW01	MW01 Dup	886MW01	MW01 Dup	886MW01	886MW01	MW01 Dup	886MW01	886MW01	MW01 Dup	886MW01	886MW01	MW01 Dup	LF1
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	8/2/2007	8/2/2007	10/12/2007	10/12/2007	3/27/2008	3/27/2008	6/25/2008	6/25/2008	9/16/2008	11/12/2008	11/12/2008	2/11/2009	6/10/2009	6/10/2009	9/28/2009	12/15/2009	12/15/2009	2/24/2010
Volatile Organic Compounds (µg/L)	-		-																		
Acetone	6,000	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		ND	ND	3.86	4.46	2.48	NA	16.76	17.05	3.88	2.21	2.29	ND	0.24 J	0.26 J	4.85	0.92	0.85	1.44
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	0.38 J	NA	ND	ND	ND	ND	ND	ND	0.26 J	0.26 J	ND	0.31 J	0.31 J	ND
TICs*	500	NLE		ND	ND	ND	ND	242	NA	ND	ND	ND	13	11	200	119	124	ND	84	82	41
Total Petroleum Hydrocarbons (mg/L)																					
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg		1	T						1	1			1			1		1	1		T
Acenaphthene	400	NLE		ND	ND	ND	ND	6.18	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.91	1.93	2.08
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.5	1.3 J	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7 J	1.8 J	2.2 J
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.96	1.91	2.31
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J	1.6 J	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene TICs*	200 500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 10	ND 4	ND 15	ND	ND	ND	ND 84.0	ND 70.0	ND 43.5
	500	NLE		ND	ND	ND	ND	170.46	NA	ND	ND	61	19	4	15	96	90	ND	84.9	78.9	45.5
Metals (μg/L) Antimony	6	6	20.70	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	3	i i		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4.00 ER
Arsenic		10	89.30									NA NA					NA NA				15.7
Barium	6,000	2,000	699.00	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	15.7 ND
Beryllium	4	5	2.10 9.50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
Cadmium	· ·			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
Chromium	70	100	191.00	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	·
Copper	1,300	1,300	65.60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
Lead	5	15	22.70	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
Nickel	100	NLE	187	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.90 ER
Selenium	40	50	29.60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR

Notes

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs $\,$ - Tentatively identified compounds, cannot exceed 500 $\mu\text{g/L}$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L.$

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2 **Historical Groundwater Analytical Results** Site FTMM-66 Building 886 Former AST **Annual (Fourth Quarter) 2015 Groundwater Sampling Report** Fort Monmouth, New Jersey

	,					886N	IW01								886MW02					
WELL ID			W 4 1005	LF2	LF3	LF4	LF5	LF5 Dup	LF6	886MW02	886MW02	886MW02	886MW02	886MW02	886MW02	886MW02	MW02 Dup	886MW02	886MW02	886MW02
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	5/24/2010	8/5/2010	10/13/2010	2/11/2011	2/11/2011	4/7/2011	8/2/2007	10/12/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	2/11/2009	6/10/2009	9/28/2009	12/15/2009
Volatile Organic Compounds (µg/L)	-																			
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		1	1.98	0.73	0.32 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35 J	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		27	ND	ND	99	99	123	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)																				
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/																				
Acenaphthene	400	NLE		0.535	ND	ND	4	3.85	3.65	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	0.166	0.164	0.179	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		1.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		1.9 J	ND	ND	2.6 J	2.6 J	3.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		1.65	ND	ND	3.17	3.19	3.71	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	1.39	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	0.345	0.339	0.241	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND 07	ND 105.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 10	ND
TICs*	500	NLE		9	ND	ND	97	105.6	167.9	ND	15	39.3	ND	23	4	11	14	6	10	ND
Metals (µg/L)			20.70	5.01 ER	9.32 ER	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	6	6	20.70	9.1	2.81 ER	2.25	9.8	10.3	19.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Arsenic	3	10	89.30																	
Barium	6,000	2,000	699.00	8.79	40.2	82.3	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	1	4	2.10	0.051 ER	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	4	5	9.50	0.511 ER	ND	ND	ND	ND	ND	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
Chromium	70	100	191.00	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	1,300	1,300	65.60	1.27 ER	1.98 ER	ND	ND	ND	93.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	5	15	22.70	3.68 ER	ND	ND	ND	ND	6.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NLE	187	ND	4.37 ER	13.6	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	40	50	29.60	NR	NR	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes:	•			•																

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L$. NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2 **Historical Groundwater Analytical Results** Site FTMM-66 Building 886 Former AST **Annual (Fourth Quarter) 2015 Groundwater Sampling Report** Fort Monmouth, New Jersey

FOR MORNO	,	.i.o.j							886MW0	2.									8861	1W03			
WELL ID			T	LF1	LF1 Dup	LF2	LF2 Dup	LF3	LF3 Dup	LF4	LF4 Dup	LF5	LF5 Dup	LF6	LF6 Dup	886MW03	886MW03	886MW03		886MW03	886MW03	886MW03	886MW03
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	2/22/2010	2/22/2010	5/24/2010	5/24/2010	8/4/2010	8/4/2010	10/12/2010	10/12/2010		2/9/2011	4/7/2011	4/7/2011	8/2/2007	10/12/2007	3/28/2008			9/16/2008		
Volatile Organic Compounds (µg/L)													,	,			•						
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		0.27 J	0.28 J	0.32 J	0.28 J	0.28 J	0.31 J	0.26 J	0.24 J	0.23 J	0.23 J	0.31 J	0.33 J	ND	ND	ND	NA	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Toluene	600	1,000		0.43 J	0.48 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)			T	22.	22.				24.	***		***											
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (μg/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	\m_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \m		1 175	N.T.	\ T	1 170	NTD.	1 170	1 170	1 170	\ TD	1 170	170	1	1 170	170	\ TD	770
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Anthracene	2,000	NLE		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate 1,1'-Biphenyl	400	NLE NLE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	ND ND
Dibenzofuran	NLE	NLE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Diethyl phthalate	6,000	NLE		ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Di- <i>n</i> -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		5.9	5.8	ND	ND	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	8	10
Metals (μg/L)			•										•	•									
Antimony	6	6	20.70	6.62 ER	ND	10.6	12.1	10.5	12.6	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	3	10	89.30	2.80 ER	2.73 ER	2.82 ER	3.01 ER	3.01 ER	3.51 ER	1.71	1.63	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Barium	6,000	2,000	699.00	130	141	118	114	139	144	141	134	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	1	4	2.10	0.0446 ER	ND	0.141 ER	0.139 ER	0.0887 ER	0.092 ER	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	4	5	9.50	5.53	5.33	0.973 ER	0.903 ER	1.28 ER	1.21 ER	1.68	1.15	3.7	3.8	4.7	4.6	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	70	100	191.00	1.55 ER	1.68 ER	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Copper	1,300	1,300	65.60	ND	ND	ND	1.26 ER	ND	1.27 ER	ND	ND	ND	ND	15.7	ND	NA	NA	NA	NA	NA	NA	NA	NA
Lead	5	15	22.70	ND	ND	2.95 ER	ND	ND	ND	ND	ND	ND	ND	ND	3.2	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NLE	187	31.7	34.3	25.3	23.4	29.7	31.2	27.8	26	27.9	28.5	28.5	27.1	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	40	50	29.60	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Notes:																							

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L$.

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Final Annual (Fourth Quarter) 2015 Groundwater Sampling Report Appendix K

Table 2 **Historical Groundwater Analytical Results** Site FTMM-66 Building 886 Former AST **Annual (Fourth Quarter) 2015 Groundwater Sampling Report** Fort Monmouth, New Jersey

								886MW03										886N	1W04					
WELL ID			W 4 1005	886MW03	886MW03	886MW03	LF1	LF2	LF3	LF4	LF5	LF6	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	886MW04	LF1	LF2
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	6/10/2009	9/28/2009	12/15/2009	2/22/2010	5/24/2010	8/5/2010	10/12/2010	2/10/2011	4/7/2011	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/15/2009	2/24/2010	5/24/2010
Volatile Organic Compounds (µg/L)																								
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.26	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)																	<u> </u>	1	1	1				
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/l			<u> </u>																					
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	1.4 J	1.8 J	ND	1.9 J	ND	ND	1.1 J	ND	ND	3.76 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NLE NLE	NLE		ND	ND	ND	ND	ND	ND	ND	43.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	300	NLE		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	NLE	NLE NLE		ND ND	ND	ND	ND ND	ND ND	ND ND	ND	112 ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
Phenanthrene	200	NLE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pyrene TICs*	500	NLE		7	ND ND	ND	ND ND	8.1	ND ND	ND	327	ND	ND	4	ND ND	ND ND	14	12	12	6 6	ND ND	ND ND	ND ND	64.2
Metals (µg/L)	300	NLL		,	ND	ND	ND	0.1	ND	ND	321	ND	ND	-	ND	ND	14	12	12	0	ND	ND	ND	04.2
Antimony	6	6	20.70	NA	NA	NA	9.92 ER	9.76 ER	10.7	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	5.56 ER
Arsenic	3	10	89.30	NA	NA	NA	1.77 ER	5.86	9.07	8.57	ND	8.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.750 ER
Barium	6,000	2.000	699.00	NA	NA	NA	47.2	20.3	22.1	38.6	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.38 ER	15
Beryllium	1	4	2.10	NA	NA	NA	ND	0.122 ER	0.135 ER	0.673	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.091 ER	0.195 ER
Cadmium	4	5	9.50	NA	NA	NA	1.72 ER	0.531 ER	1.12 ER	1.5	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Chromium	70	100	191.00	NA	NA	NA	ND	1.08 ER	10.2	59.2	ND	44.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.52	ND
Copper	1.300	1.300	65.60	NA	NA	NA	9.33	28.1	23	154	21.2	50.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.38 ER	ND
Lead	5	15	22.70	NA	NA	NA	ND	5.09	7.09	19.3	4.4	11.5	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	ND	ND
Nickel	100	NLE	187	NA	NA	NA	1.81 ER	2.46 ER	6.52	15.4	ND	11.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.66 ER	1.81 ER
Selenium	40	50	29.60	NA	NA	NA	NR	NR	NR	1.67	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR
Notes:	.0		27.00			1	1121	2120	1121	1.07	1,2	1,2									- 11.		1121	- 1121

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L$.

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2
Historical Groundwater Analytical Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey

					886M	W04										886MW05								
WELL ID			***	LF3	LF4	LF5	LF6	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05	886MW05	LF1	LF1 Dup	LF2	LF3	LF4	LF5	LF6
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	8/5/2010	10/13/2010	2/11/2011	4/7/2011	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/15/2009	2/24/2010	2/24/2010	5/24/2010	8/4/2010	10/12/2010	2/10/2011	4/7/2011
Volatile Organic Compounds (µg/L)	•																							
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	28	35	6	23	17	60	ND	3	95	ND	ND	ND	6	22	9	ND	ND
Total Petroleum Hydrocarbons (mg/L)																								
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg																								
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	2.88 J	ND	ND	ND	ND	ND	ND	1.72	ND	ND	ND	0.414	1.34	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.401	ND	ND	ND	ND	0.268	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.7 B	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	ND	ND	ND	2.05 J	ND	ND	ND	ND	ND	ND	1.9 J	ND	ND	ND	0.41 J	1.5 J	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	3.29 J	ND	ND	ND	ND	ND	ND	2.67	ND	ND	ND	0.552	2.13	ND	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	13.7	24.29	ND	ND	ND	11	ND	ND	0.91 J	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	1.15 J	1.02 J	ND	ND	ND	ND	ND	ND	0.439	ND	ND	ND	ND	0.167	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	1.44 J	ND	ND	ND	ND	ND	ND	1.35	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 15	ND	ND	ND	ND	ND	ND	ND	ND 107.0	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	21	100	10.1	34	90	67	17	7	103.6	12.4	ND	ND	7.5	9.2	187.9	ND	4.3
Metals (μg/L)			20.70	5 10 FD	ND	NID	ND	NYA	NYA	NYA	NIA	NYA	NYA	NYA	NIA	NIA	NIA	NID	NID	ND	NID	NID	NID	ND
Antimony	6	6	20.70	5.10 ER 1.20 ER	ND 0.66	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND 2.78 ER	ND 3.57 ER	ND ND	ND ND	ND 3.2
Arsenic	3	10	89.30																					
Barium	6,000	2,000	699.00	34.8	53.4	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.69	6.95	3.83 ER	4.14 ER	15.2	ND	ND
Beryllium	1	4	2.10	0.229 ER	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.044 ER	ND	0.053 ER	ND	ND	ND	ND
Cadmium	4	5	9.50	ND	ND	ND	ND	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	ND 1.46 FP	ND 1 (1 FP	ND	ND	ND	ND	ND
Chromium	70	100	191.00	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.46 ER	1.61 ER	ND	ND	ND	ND	ND
Copper	1,300	1,300	65.60	1.31 ER	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	2.27 ER	1.36	ND	ND
Lead	5	15	22.70	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	2.82 ER	ND	ND	ND	ND
Nickel	100	NLE	187	5.28	8.35	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.25 ER	1.85 ER	ND	ND	ND	ND	ND
Selenium	40	50	29.60	NR	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR	NR	NR	ND	ND	ND
Notes:																								

Notes

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs $\,$ - Tentatively identified compounds, cannot exceed 500 $\mu\text{g/L}$ for

total VOCs and SVOCs. No individual compound can exceed 100 μ g/L. NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Final
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Appendix K

Table 2
Historical Groundwater Analytical Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey

				886N	1W06								886	6RW01									886RW02	
WELL ID			W 4 400=	LF5	LF6	886RW01	886RW01	886RW01	886RW01	886RW01	886RW01	886RW01	886RW01	886RW01	886RW01	LF1	LF2	LF3	LF4	LF5	LF6	886RW02	886RW02	886RW02
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	1/6/2011	4/7/2011	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/16/2009	3/2/2010	5/25/2010	8/10/2010	10/14/2010	2/14/2011	4/11/2011	8/2/2007	10/11/2007	3/27/2008
Volatile Organic Compounds (µg/L)																								
Acetone	6,000	NLE		ND	ND	ND	ND	4.16	8.98	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	0.65 J	1.75 J	0.67 J	1.14	0.87	0.56	0.68	0.51	1.63	0.94	ND	0.30 J	ND	ND	ND	0.46 J	0.79 J	0.31 J	0.84 J
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	0.93 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	0.68J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	5.81	9	3.34	3.05	1.84	1.5	0.29 J	1.32	2.5	ND	ND	ND	ND	ND	ND	ND	ND	0.46 J
Methyl tert -butyl ether	70	NLE		0.25J	0.54	ND	3.86	ND	10.14	4.3	4.83	2.86	7.13	1.11	0.33 J	ND	0.67	1.63	1.8	ND	ND	4.14	2.75	5.03
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	1.92 J	2.09 J	1.02	1.16	0.97	ND	0.30 J	ND	0.27 J	ND	0.30 J	ND	0.27 J	ND	ND	ND	ND	0.88 J
TICs*	500	NLE		ND	ND	519	93	333	271	169	159	176	160	216	190	ND	179	100	75	ND	123	77	35	97
Total Petroleum Hydrocarbons (mg/L)																								
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/	L)																							
Acenaphthene	400	NLE		ND	0.123	3.21 J	3.59 J	ND	ND	ND	ND	ND	ND	2.07	2.74	ND	2.47	1.9	1.98	ND	2.13	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.136	0.153	0.15	ND	0.149	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	2.43 J	2.84 J	ND	ND	ND	ND	ND	ND	1.9 J	1.6 J	ND	2.5 J	2.1 J	2.1 J	ND	1.4 J	2.0 J	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	3.60 J	4.04 J	ND	ND	ND	ND	ND	ND	2.93	2.73	ND	2.88	2.46	2.38	ND	1.96	1.8 J	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	35.03	18.28	ND	ND	ND	ND	15	ND	4.4	9.6	ND	1.6	ND	ND	ND	18.3	16.05	18.48	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		0.167	0.275	1.67 J	1.34 J	ND	ND	ND	ND	ND	ND	0.994	0.871	ND	0.627	ND	ND	ND	0.663	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	2.71 J	2.91 J	ND	ND	ND	ND	ND	ND	0.82	1.01	ND	0.875	0.224	0.171	ND	1.53	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.347	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	313	301	516.23	30	135	391	424	433	776	441.4	7.2	135.3	46.1	69	ND	246.3	71	99	51.08
Metals (μg/L)																								,
Antimony	6	6	20.70	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	8.67 ER	10.2	ND	ND	ND	NA	NA	NA
Arsenic	3	10	89.30	$10.2^{-/a}$	16.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.39 ER	10.75	ND	5.9	ND	5.3	NA	NA	NA
Barium	6,000	2,000	699.00	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.8	41.7	59.8	54	ND	ND	NA	NA	NA
Beryllium	1	4	2.10	ND	1.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.080 ER	ND	ND	ND	ND	NA	NA	NA
Cadmium	4	5	9.50	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.789 ER	1.05 ER	0.812 ER	0.724	ND	ND	NA	NA	NA
Chromium	70	100	191.00	62.4 ^{/a}	61.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.40 ER	1.33 ER	1.87 ER	1.5	ND	ND	NA	NA	NA
Copper	1,300	1,300	65.60	ND	77.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.60 ER	ND	2.68 ER	1.64	ND	ND	NA	NA	NA
Lead	5	15	22.70	11 ^{/a}	11.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	2.50 ER	ND	ND	ND	ND	NA	NA	NA
Nickel	100	NLE	187	42.8 ^{/a}	33.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.95 ER	ND	1.61 ER	ND	ND	ND	NA	NA	NA
Selenium	40	50	29.60	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR	NR	ND	ND	ND	NA	NA	NA
Notes:	•	•	•																					

Notes

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 μ g/L. NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2
Historical Groundwater Analytical Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey

	in, itew se	•									886RW()2									886F	RW03		
WELL ID			W . 4607	886RW02	886RW02	RW02 Dup	886RW02	886RW02	886RW02	886RW02	886RW02	LF1	LF2	LF3	LF4	LF5	LF5 Dup	LF6	886RW03	886RW03	886RW03	886RW03	886RW03	886RW03
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	6/25/2008	9/16/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/16/2009	3/2/2010	5/25/2010	8/10/2010	10/14/2010	2/14/2011	2/14/2011	4/11/2011	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008
Volatile Organic Compounds (µg/L)			-																					
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	0.3	0.98	ND	ND	0.35 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		1.32	5.26	5.62	2.9	4.07	0.52	1.07	0.75	ND	ND	0.45 J	1.22	ND	ND	ND	ND	1.71 J	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	0.22 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	46	30	36	41	ND	29	75	ND	ND	ND	ND	ND	ND	ND	ND	7	ND	ND	12	ND
Total Petroleum Hydrocarbons (mg/L)																								
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/l	,	NA E	ı	NID	NID	ND	NID	ND	NID	2.12	2.02	NID	0.146	l MD	0.166	0.126	NID	0.207	N/D	ND	NID	ND	NID	ND
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	2.12	2.03	ND	0.146	ND	0.166	0.126	ND	0.207	ND	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	0.139	0.22	ND	ND	ND	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3 400	NLE		ND ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	NLE	NLE		ND ND	ND	ND ND	ND	ND	ND ND	ND 0.09 I	ND 0.00 I	ND	ND	ND	ND 0.64 I	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND
Dibenzofuran Diethyl phthalate	6.000	NLE NLE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.98 J ND	0.90 J ND	ND ND	ND ND	ND ND	0.64 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di- <i>n</i> -octyl phthalate	100	NLE	<u> </u>	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	3.6	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fluorene	300	NLE		ND ND	ND ND	ND ND	ND	ND ND	ND ND	2.05	2.38	ND ND	ND	ND ND	0.222	ND ND	ND ND	0.218	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Methylnaphthalene	NLE	NLE		ND ND	ND	ND ND	ND	15	ND ND	3.6	7.9	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND ND	ND	ND
4-Methylphenol	NLE	NLE		ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	ND	0.328	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND ND	ND	ND	ND	ND	ND	0.204	0.351	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
TICs*	500	NLE		14	132	185	50	400	ND	68.6	94.7	ND	5.7	ND	5.3	ND	ND	4.2	ND	ND	ND	ND	ND	7
Metals (µg/L)	200	1,22				100			1,2		7	1,2	<u> </u>	1,2		1,2	1,2		1,2	1 1,2	1,2	1,2	1,2	<u> </u>
Antimony	6	6	20.70	NA	NA	NA	NA	NA	NA	NA	NA	ND	8.76 ER	12.8	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA
Arsenic	3	10	89.30	NA	NA	NA	NA	NA	NA	NA	NA	4.46 ER	9.68	ND	18.56	ND	ND	5.5	NA	NA	NA	NA	NA	NA
Barium	6.000	2,000	699.00	NA	NA	NA	NA	NA	NA	NA	NA	41	42.1	45.7	42.8	ND	ND	ND	NA	NA	NA	NA	NA	NA
Beryllium	1	4	2.10	NA	NA	NA	NA	NA	NA	NA	NA	0.065 ER	0.238 ER	0.085 ER	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA
Cadmium	4	5	9.50	NA	NA	NA	NA	NA	NA	NA	NA	ND	2.42	2.00 ER	1.38	ND	ND	ND	NA	NA	NA	NA	NA	NA
Chromium	70	100	191.00	NA	NA	NA	NA	NA	NA	NA	NA	3.97 ER	4.52 ER	5.72	2.13	ND	ND	ND	NA	NA	NA	NA	NA	NA
Copper	1.300	1.300	65.60	NA	NA	NA	NA	NA	NA	NA	NA	6.66	16.1	5.82	3.32	ND	ND	ND	NA	NA	NA	NA	NA	NA
	,	,	22.70	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	5.42	4.96 ER	ND	ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Lead	5	15	187	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10.5	12.4	4.90 EK	5.41	ND	ND	11.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nickel	100	NLE			ļ					ļ														
Selenium	40	50	29.60	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR	NR	1.68	ND	ND	ND	NA	NA	NA	NA	NA	NA

Notes

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs $\,$ - Tentatively identified compounds, cannot exceed 500 $\mu\text{g/L}$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L.$

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2 **Historical Groundwater Analytical Results** Site FTMM-66 Building 886 Former AST **Annual (Fourth Quarter) 2015 Groundwater Sampling Report** Fort Monmouth, New Jersey

									886R	W03										886RW04				
WELL ID				886RW03	886RW03	886RW03	886RW03	LF1	LF2	LF2 Dup	LF3	LF4	LF5	LF6	LF6 Dup	886RW04	886RW04	RW04 Dup	886RW04	886RW04	886RW04	886RW04	886RW04	886RW04
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	2/11/2009	6/10/2009	9/28/2009	12/16/2009	2/22/2010	5/25/2010	5/25/2010	8/5/2010	10/12/2010	2/10/2011	4/8/2011	4/8/2011	8/2/2007	10/11/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009
Volatile Organic Compounds (µg/L)																								
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.28	ND	ND	ND
Methyl tert -butyl ether	70	NLE		1.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.22	4.71	4.78	15.92	11.48	6.65	4.62	9.93	6.85
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	0.65	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	102	23	14	97	81	72	59	35	54
Total Petroleum Hydrocarbons (mg/L)																								
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/l	,		<u> </u>							1 Vm														
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.20 J	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 2.60 Y	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	ND	ND	ND	18.5 B	ND	4.2	ND	ND	ND	ND	ND	ND	ND	ND	2.68 J	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE 6.000	NLE		ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
Diethyl phthalate	100	NLE NLE		ND ND	ND ND	ND	ND 3.5	ND ND	ND	ND	ND		ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
Di-n-octyl phthalate	300	NLE		ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.30 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1	ND ND
Fluorene 2-Methylnaphthalene	NLE	NLE		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	15.63	7.14 J	10.23	ND	ND ND	ND ND	ND	ND	ND ND
4-Methylphenol	NLE	NLE		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Naphthalene	300	NLE		ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		19	6	ND	ND	ND	ND	4.2	ND	ND	54.6	ND	ND	201	62	106	196.46	ND	339	6	68	161
Metals (µg/L)										- 11-	- 1.2								27 01110			-		
Antimony	6	6	20.70	NA	NA	NA	NA	9.54 ER	5.92 ER	ND	6.76 ER	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	3	10	89.30	NA	NA	NA	NA	ND	1.65 ER	1.61 ER	1.17 ER	1.46	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	6.000	2.000	699.00	NA	NA	NA	NA	128	18.4	17.6	28	35.2	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	1	4	2.10	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	4	5	9.50	NA	NA	NA	NA	ND	ND	ND	ND	0.409	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	70	100	191.00	NA	NA	NA	NA	ND	ND	ND	2.90 ER	19.1	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	1.300	1.300	65.60	NA	NA	NA	NA	ND	ND	ND	3.38 ER	2.22	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	5	15	22.70	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	100	NLE	187	NA	NA	NA	NA	3.04 ER	ND	ND	0.973 ER	2.92	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	40	50	29.60	NA	NA	NA	NA	NR	NR	NR	NR	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes:										-						· · · · · · · · · · · · · · · · · · ·	-				· · ·		·	

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L$.

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Final
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Appendix K

Table 2
Historical Groundwater Analytical Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey

rort Wominou	,	•					886F	W04										886F	RW05						
WELL ID		1		886RW04	886RW04	LF1	LF2	LF3	LF4	LF5	LF6	886RW05	886RW05	886RW05	886RW05	886RW05	886RW05	886RW05	886RW05	886RW05	RW05 Dup	886RW05	RW05 Dup	LF1	LF2
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	9/28/2009	12/16/2009	3/2/2010	5/25/2010	8/9/2010	10/14/2010	2/11/2011	4/11/2011	8/2/2007	10/11/2007	3/27/2008	6/25/2008	9/16/2008	11/12/2008		6/10/2009	9/28/2009	9/28/2009	12/16/2009		2/24/2010	5/25/2010
Volatile Organic Compounds (µg/L)																									
Acetone	6,000	NLE		ND	ND	ND	ND	ND	8.56	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		4.93	1.65	ND	0.51	0.73	1.01	ND	0.81	ND	ND	2.36	ND	0.36	0.33	1.3	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	0.46 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	0.25 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		68	36	ND	ND	31	49	13	22	ND	ND	4	ND	4	ND	4	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)																_		_			_				
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/	,	1														T		1	1		T		1		
Acenaphthene	400	NLE		0.665	0.656	ND	0.441	0.804	1	ND	0.636	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		0.58 J	0.65 J	ND	ND	0.86 J	0.89 J	ND	0.50 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.8	ND	ND
Fluorene	300	NLE		0.622	0.945	ND	0.351	1.19	1.09	ND	0.769	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	3.53 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	0.118	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	0.176	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 12	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		159.5	64.9	4.2	ND	10.9	62.5	108.9	4.7	ND	20	10	ND	60	13	69	21	ND	4	ND	ND	ND	ND
Metals (µg/L)	-		20.70	NIA	NIA	ND	ND	MD	ND	ND	ND	NIA	NA	N/A	NIA	NA	NA	NIA	N/A	N/ A	NIA	NIA	NIA	6 21 ED	ND
Antimony	6	6	20.70	NA NA	NA NA	ND 5.02	ND	ND ND	ND 4.8	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6.21 ER ND	ND 5.28
Arsenic	3	10	89.30				6.6								ļ						ļ				
Barium	6,000	2,000	699.00	NA	NA	28.5	27.6	23.1	31.9	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.66 ER	18.4
Beryllium	1	4	2.10	NA	NA	0.104 ER	0.307 ER	0.117 ER	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.058 ER	0.174 ER
Cadmium	4	5	9.50	NA	NA	1.36 ER	1.08 ER	0.864 ER	1.01	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND 7.22	1.08 ER
Chromium	70	100	191.00	NA	NA	5.99	22.2	9.06	3.25	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.22	13.7
Copper	1,300	1,300	65.60	NA	NA	6.12	5.61	4.99 ER	3.04	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.7	18.9
Lead	5	15	22.70	NA	NA	3.70 ER	5.56	2.93 ER	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	4.79 ER
Nickel	100	NLE	187	NA	NA	6.01	8.32	4.61 ER	18.5	18.4	11.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.59 ER	1.31 ER
Selenium	40	50	29.60	NA	NA	NR	NR	NR	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR

Notes

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs $\,$ - Tentatively identified compounds, cannot exceed 500 $\mu\text{g/L}$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L.$

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2 **Historical Groundwater Analytical Results** Site FTMM-66 Building 886 Former AST **Annual (Fourth Quarter) 2015 Groundwater Sampling Report** Fort Monmouth, New Jersey

						886R	RW05										886RW06	;						
WELL ID			Wests: 1007	LF3	LF3 Dup	LF4	LF4 Dup	LF5	LF6	886RW06	886RW06	886RW06	886RW06	886RW06	886RW06	886RW06	886RW06	886RW06	886RW06	LF1	LF2	LF3	LF4	LF4 Dup
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	8/9/2010	8/9/2010	10/14/2010	10/14/2010	2/11/2011	4/8/2011	8/2/2007	10/11/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/15/2009	2/22/2010	5/25/2010	8/5/2010	10/13/2010	10/13/2010
Volatile Organic Compounds (µg/L)																								
Acetone	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		ND	ND	0.27 J	0.26 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)																								
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg)	1																							
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	10.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7 J	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene TICs*	200 500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 100	ND	ND 22	ND 14	ND	ND	ND	ND	ND	ND 4.0	ND
	500	NLE		ND	ND	ND	ND	9.3	ND	ND	17	ND	ND	100	37	23	14	ND	ND	ND	ND	ND	4.9	ND
Metals (μg/L) Antimony	6	6	20.70	6.83 ER	9.38 ER	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND
· · · · · · · · · · · · · · · · · · ·	3			6.5	9.36 EK	10.42	11.13	ND ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.35 ER	4.14 ER	5.3	2.22	2.27
Arsenic	6.000	2.000	89.30 699.00	19.4	21.6	44.6	45.1	ND	ND	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	28.1	20.7	31.1	26.8	27
Barium	0,000	2,000		0.120 ER	0.124 ER	1.23	1.2	ND ND	ND ND	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	28.1 ND	0.124 ER	0.259 ER	26.8 ND	ND
Beryllium Cadmium	4	5	2.10 9.50	2.68	0.124 ER	3.66	3.45	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	0.259 ER ND	ND ND	ND ND
	1			8.45	9.68	3.00	79.1	ND ND	15.8	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4.47 ER	9.82	26.5	7.9	7.71
Chromium	70	100	191.00																					
Copper	1,300	1,300	65.60	13.7	15.4	54	55.4	ND	ND	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	3.20 ER	6.45	16.1	4.92	5.02
Lead	5	15	22.70	ND	2.91 ER	15.1	12.2	ND	3.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	4.78 ER	9.54	ND	3.45
Nickel	100	NLE	187	2.94 ER	2.87 ER	8.44	8.73	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.60 ER	2.02 ER	4.63 ER	2.7	2.96
Selenium	40	50	29.60	NR	NR	1.43	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR	NR	1.5	ND
Notes:																								

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L$.

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2
Historical Groundwater Analytical Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey

	in, riew se	•		886R	RW06									886RW07									886R	W08
WELL ID				LF5	LF6	886RW07	886RW07	886RW07	886RW07	886RW07	886RW07	886RW07	886RW07	886RW07	886RW07	LF1	LF2	LF3	LF4	LF5	LF6	LF6 Dup	886RW08	886RW08
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	2/11/2011	4/8/2011	8/2/2007	10/12/2007	3/28/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/15/2009	3/2/2010	5/25/2010	8/9/2010	10/13/2010	2/11/2011	4/11/2011	4/11/2011	8/2/2007	10/12/2007
Volatile Organic Compounds (µg/L)																								
Acetone	6,000	NLE		ND	ND	ND	ND	ND	2.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.11
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	3.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		ND	ND	ND	ND	0.49 J	ND	0.37	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	0.73	1.13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)																								
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/	L)																							
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	3.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	9	ND	ND	7	5	32	33	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	17
Metals (μg/L)					1			1			1			1							1			
Antimony	6	6	20.70	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	5.32 ER	7.46 ER	ND	ND	ND	ND	NA	NA
Arsenic	3	10	89.30	ND	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.28 ER	3.16 ER	ND	4.27	ND	3.7	4.3	NA	NA
Barium	6,000	2,000	699.00	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.79	6.28	7.66	20.1	ND	ND	ND	NA	NA
Beryllium	1	4	2.10	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.045 ER	0.113 ER	ND	ND	ND	ND	NA	NA
Cadmium	4	5	9.50	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.09 ER	1.09 ER	0.503 ER	0.859	ND	ND	ND	NA	NA
Chromium	70	100	191.00	ND	27.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.65 ER	2.78 ER	8.57	24.1	ND	22.6	23.7	NA	NA
Copper	1,300	1,300	65.60	ND	10.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.2	14.1	11.3	31.9	10.4	18.4	19.8	NA	NA
Lead	5	15	22.70	ND	7.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	2.62 ER	8.3	ND	5.4	5.5	NA	NA
Nickel	100	NLE	187	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.52 ER	0.556 ER	4.60 ER	4.93	ND	ND	ND	NA	NA
Selenium	40	50	29.60	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR	NR	ND	ND	ND	ND	NA	NA
Notes:					•		•	•			•													

Notes

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs $\,$ - Tentatively identified compounds, cannot exceed 500 $\mu\text{g/L}$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L.$

NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Table 2 **Historical Groundwater Analytical Results** Site FTMM-66 Building 886 Former AST **Annual (Fourth Quarter) 2015 Groundwater Sampling Report** Fort Monmouth, New Jersey

											886RW08							
WELL ID				886RW08	886RW08	886RW08	886RW08	886RW08	886RW08	886RW08	886RW08	LF1	LF1 Dup	LF2	LF3	LF4	LF5	LF6
Date Collected	NJDEP GWQS	USEPA MCL	Weston 1995 Background (Main Post)	3/28/2008	6/25/2008	9/16/2008	11/12/2008	2/11/2009	6/10/2009	9/28/2009	12/15/2009	3/2/2010	3/2/2010	5/25/2010	8/5/2010	10/13/2010	2/11/2011	4/8/2011
Volatile Organic Compounds (µg/L)																		
Acetone	6,000	NLE		2.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone (2-Butanone)	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	700	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	700		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert -butyl ether	70	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	1	5		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	600	1,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	1,000	10,000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (mg/L)																		
Total Petroleum Hydrocarbons	NLE	NLE		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-Volatile Organic Compounds (µg/																		
Acenaphthene	400	NLE		ND	ND	ND	ND	ND	ND	0.158	ND	ND	ND	ND	ND	ND	ND	0.232
Anthracene	2,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	3	NLE		ND	ND	ND	ND	ND	ND	3.4	ND	ND	ND	ND	ND	ND	ND	ND
1,1'-Biphenyl	400	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	6,000	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n -octyl phthalate	100	NLE		ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	300	NLE		ND	ND	ND	ND	ND	ND	0.137	ND	ND	ND	ND	ND	ND	ND	0.219
2-Methylnaphthalene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	300	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NLE	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	200	NLE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TICs*	500	NLE		241.85	ND	36	34	19	22	4.1	4.1	ND	ND	ND	ND	ND	ND	ND
Metals (μg/L)	<u> </u>	<u> </u>																
Antimony	6	6	20.70	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	8.41 ER	7.60 ER	ND	ND	ND
Arsenic	3	10	89.30	NA	NA	NA	NA	NA	NA	NA	NA	1.06 ER	1.10 ER	3.59 ER	3.72 ER	4.88	ND	3.6
Barium	6,000	2,000	699.00	NA	NA	NA	NA	NA	NA	NA	NA	8.95	8.65	10.4	22.8	19.4	ND	ND
Beryllium	1	4	2.10	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	0.080 ER	0.261 ER	ND	ND	ND
Cadmium	4	5	9.50	NA	NA	NA	NA	NA	NA	NA	NA	0.861 ER	0.759 ER	0.984 ER	1.39 ER	1.12	ND	ND
Chromium	70	100	191.00	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	5.85	18.8	26.4	10.5	ND
Copper	1,300	1,300	65.60	NA	NA	NA	NA	NA	NA	NA	NA	10.6	9.99	12	30.4	13.7	ND	ND
Lead	5	15	22.70	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	3.75 ER	5.89	5.87	ND	ND
Nickel	100	NLE	187	NA	NA	NA	NA	NA	NA	NA	NA	0.717 ER	0.793 ER	2.49 ER	5.43	6.04	ND	ND
Selenium	40	50	29.60	NA	NA	NA	NA	NA	NA	NA	NA	NR	NR	NR	NR	ND	ND	ND
Notes:	10	30	27.00	1111	1111	1111	11/1	11/1	11/1	11/1	11/1	1111	7111	7111	1111	110	110	T.D

Shaded cells = concentrations exceed the NJDEP GWQS

*TICs - Tentatively identified compounds, cannot exceed 500 $\mu g/L$ for

total VOCs and SVOCs. No individual compound can exceed 100 $\mu g/L$. NJDEP Ground Water Quality Criteria as per N.J.A.C. 7:9-6 (July 22, 2010)

U.S. Environmental Protection Agency Maximum Contaminant Level (2012)

LF = Low-flow sampling method used to collect sample

ER - Estimated result

J - Estimated concentration exceeds the MDL and is less than the RL

NA - Not analyzed NR - Not reported

ND - Not detected

NLE - No limit established

Appendix K

Table 3 Groundwater Analytical Results - 2013, 2014 and 2015 Site FTMM-66 Building 886 Former AST Annual (Fourth Quarter) 2015 Groundwater Sampling Report Fort Monmouth, New Jersey

Loc ID			886MW01	886MW02	886MW03	886MW04	886MW05		886RW01		886RW02	886RW03	886RW04	886RW05
Sample ID	NJDEP GWQS	2015-06 USEPA MCL	FTMM-66-GW-886MW01	FTMM-66-GW-886MW02	FTMM-66-GW-886MW03	FTMM-66-GW-886MW04	FTMM-66-GW-886MW05	FTMM-66-GW-886RW01	FTMM-66-GW-886RW01-11.55	FTMM-66-GW-886RW01-11.9	FTMM-66-GW-886RW02	FTMM-66-GW-886RW03	FTMM-66-GW-886RW04	FTMM-66-GW-886RW05
Sample Date	GwQs	USEPA MCL	8/23/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/23/2013	10/3/2014	11/23/2015	8/22/2013	8/22/2013	8/22/2013	8/22/2013
QA/QC		l	SA	SA	SA	SA	SA	SA						
Sample Method			LFPS	LFPS	LFPS	LFPS	LFPS	LFPS						
Volatile Organic Compounds (µg/l) 1,1,1,2-Tetrachloroethane	1	NLE	< 1	<1	<1	< 1	<1	<1	NA	NA	< 1	<1	<1	<1
1,1,1-Trichloroethane	30	200	< 1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	1	NLE	< 1	< 1	<1	< 1	<1	<1	NA	NA	<1	<1	<1	< 1
1,1,2-Trichloroethane	3	5	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
1,1-Dichloroethane	50	NLE	<1	<1	<1	<1	<1	<1	NA NA	NA	<1	<1	<1	<1
1,1-Dichloroethene 1,1-Dichloropropene	100	7	< 1 < 1	<1	< 1 < 1	< 1 < 1	<1	<1	NA NA	NA NA	<1	< 1 < 1	<1 <1	< 1 < 1
1.2.3-Trichlorobenzene	100	NLE NLE	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
1,2,3-Trichloropropane	0.03	NLE	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
1,2,4-Trichlorobenzene	9	70	< 1	< 1	<1	< 1	<1	< 1	NA	NA	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene	100	NLE	< 1	< 1	<1	< 1	< 1	< 1	NA	NA	<1	<1	< 1	< 1
1,2-Dibromo-3-chloropropane	0.02	0.2	<1	<1	<1	<1	<1	<1	NA NA	NA NA	< 1	<1	<1	<1
1,2-Dibromoethane 1,2-Dichlorobenzene	0.03 600	0.05 600	< 1 < 1	<1 <1	< 1 < 1	< 1 < 1	<1	<1 <1	NA NA	NA NA	<1 <1	< 1 < 1	<1 <1	< 1 < 1
1,2-Dichloroethane	2	5	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
1,2-Dichloropropane	1	5	<1	<1	<1	<1	<1	<1	NA	NA NA	<1	< 1	<1	<1
1,3,5-Trimethylbenzene	100	NLE	<1	<1	<1	<1	<1	<1	NA	NA	<1	< 1	< 1	<1
1,3-Dichlorobenzene	600	NLE	<1	<1	<1	<1	<1	<1	NA	NA	< 1	<1	<1	< 1
1,3-Dichloropropane	100	NLE 75	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
1,4-Dichlorobenzene 2,2-Dichloropropane	75 100	75 NLE	< 1 < 1	<1 <1	< 1 < 1	< 1 < 1	<1	<1 <1	NA NA	NA NA	<1	< 1 < 1	<1 <1	< 1 < 1
2-Chlorotoluene	100	NLE	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Acetone	6,000	NLE	< 5	< 5	1.8 J	1.4 J	1.6 J	2.1 J	NA	NA	1.4 J	< 5	3.3 J	< 5
Benzene	1	5	<1	<1	<1	<1	<1	<1	NA	NA	<1	< 1	< 1	<1
Bromobenzene	100	NLE	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Bromochloromethane Bromodichloromethane	100	NLE 80	< 1 < 1	<1	<1 <1	< 1 < 1	<1	<1	NA NA	NA NA	<1	< 1 < 1	< 1 < 1	<1
Bromoform	4	80	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Carbon tetrachloride	1	5	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Chlorobenzene	50	100	< 1	< 1	<1	< 1	<1	< 1	NA	NA	< 1	< 1	<1	<1
Chlorodibromomethane	1	80	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	< 1	< 1	< 1	< 1
Chloroform	5	NLE	< 1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Chloroform Cis-1,2-Dichloroethene	70 70	80 70	< 1 < 1	<1	< 1 < 1	< 1 < 1	<1	<1	NA NA	NA NA	<1	< 1 < 1	<1 <1	< 1 < 1
Cis-1,3-Dichloropropene	1	NLE	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Cymene	100	NLE	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Dichlorodifluoromethane	1,000	NLE	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	< 1	< 1	< 1	< 1
Ethyl benzene	700	700	< 1	<1	<1	<1	< 1	<1	NA NA	NA NA	<1	<1	<1	<1
Hexachlorobutadiene Isopropylbenzene	700	NLE NLE	< 1 < 1	<1 <1	< 1 < 1	< 1 < 1	< 1 0.34 J	< 1 0.32 J	NA NA	NA NA	<1 <1	< 1 < 1	<1 <1	< 1 < 1
Meta/Para Xylene	1,000	NLE	< 2	< 2	< 2	<2	< 2	< 2	NA	NA NA	< 2	< 2	< 2	< 2
Methyl bromide	10	NLE	0.3 J	<1	<1	<1	<1	<1	NA	NA	<1	< 1	< 1	<1
Methyl butyl ketone	300	NLE	< 5	< 5	< 5	< 5	< 5	< 5	NA	NA	< 5	< 5	< 5	< 5
Methyl chloride	100	NLE	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Methyl ethyl ketone Methyl isobutyl ketone	300 100	NLE NLE	< 1 < 1	<1 <1	< 1 < 1	< 1 < 1	<1	<1 <1	NA NA	NA NA	<1 <1	<1 <1	<1 <1	< 1 < 1
Methyl Tertbutyl Ether	70	NLE	< 1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Methylene chloride	3	5	<1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Naphthalene	300	NLE	< 1	< 1	< 1	<1	0.21 J	<1	NA	NA	< 1	< 1	< 1	< 1
n-Butylbenzene	100	NLE	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Ortho Xylene n-Chlorotoluene	1,000	NLE NLE	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Propylbenzene	100	NLE NLE	<1	<1	<1	<1	0.46 J	0.3 J	NA NA	NA NA	<1	<1	<1	<1
sec-Butylbenzene	100	NLE	<1	<1	<1	<1	< 1	<1	NA	NA NA	<1	<1	<1	<1
Styrene	100	100	< 1	<1	<1	< 1	<1	<1	NA	NA	<1	< 1	<1	<1
tert-Butylbenzene	100	NLE	< 1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Tetrachloroethene	1	5	<1	<1	<1	<1	<1	<1	NA NA	NA NA	<1	<1	<1	<1
Toluene Total TIC, Volatile	600 500	1,000 NLE	< 1 ND	NA NA	NA NA	< 1 ND	< 1 ND	< 1 ND	< 1 ND					
Total Xylenes	1,000	10,000	< 3	< 3	< 3	<3	<3	< 3	NA NA	NA NA	< 3	< 3	< 3	< 3
Trans-1,2-Dichloroethene	100	100	< 1	<1	<1	<1	<1	<1	NA	NA	<1	<1	<1	<1
Trans-1,3-Dichloropropene	1	NLE	< 1	< 1	<1	< 1	<1	<1	NA	NA	< 1	<1	<1	< 1
Trichloroethene	1 2 200	5	< 1	<1	<1	<1	< 1	<1	NA NA	NA NA	< 1	< 1	< 1	<1
Trichlorofluoromethane Vinyl chloride	2,000	NLE 2	< 1 < 1	<1 <1	< 1 < 1	< 1 < 1	< 1 < 1	<1 <1	NA NA	NA NA	<1 <1	< 1 < 1	<1 <1	< 1 < 1
	1	2	< 1	< 1	< 1	< 1	< 1	< 1	NA.	INA	< 1	< 1	< 1	< 1

Table 3 Groundwater Analytical Results - 2013, 2014 and 2015 Site FTMM-66 Building 886 Former AST Annual (Fourth Quarter) 2015 Groundwater Sampling Report Fort Monmouth, New Jersey

Loc ID			886MW01	886MW02	886MW03	886MW04	886MW05		886RW01		886RW02	886RW03	886RW04	886RW05
Sample ID	NJDEP GWQS	2015-06 USEPA MCL	FTMM-66-GW-886MW01	FTMM-66-GW-886MW02	FTMM-66-GW-886MW03	FTMM-66-GW-886MW04	FTMM-66-GW-886MW05	FTMM-66-GW-886RW01	FTMM-66-GW-886RW01-11.55	FTMM-66-GW-886RW01-11.9	FTMM-66-GW-886RW02	FTMM-66-GW-886RW03	FTMM-66-GW-886RW04	FTMM-66-GW-886RW05
Sample Date	G II QB	OBELL IN MICE	8/23/2013	8/22/2013	8/22/2013	8/22/2013	8/22/2013	8/23/2013	10/3/2014	11/23/2015	8/22/2013	8/22/2013	8/22/2013	8/22/2013
QA/QC Sample Method			SA LFPS	SA LFPS	SA LFPS	SA LFPS	SA LFPS	SA LFPS						
Semivolatile Organic Compounds (µg/l)														22.7%
1,2,4-Trichlorobenzene	9	70	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
1,2-Dichlorobenzene	600	600	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	20 600	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
1,4-Dichlorobenzene	75	75	< 5	< 5	< 5	<5	< 5	<5	< 5.3	< 5	<5	< 5	< 5	< 5
2,4,5-Trichlorophenol	700	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
2,4,6-Trichlorophenol 2,4-Dichlorophenol	20 20	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
2,4-Dienorophenor 2,4-Dimethylphenol	100	NLE	< 5	<5	< 5	<5	< 5	<5	< 5.3	< 5	<5	< 5	< 5	< 5
2,4-Dinitrophenol	40	NLE	< 25	< 25	< 25	< 25	< 25	< 25	< 26	< 25 UJ	< 25	< 25	< 25	< 25
2,4-Dinitrotoluene	10	NLE	< 5	<5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	<5	< 5	< 5
2,6-Dinitrotoluene 2-Chloronaphthalene	10 600	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
2-Chlorophenol	40	NLE	< 5	<5	< 5	< 5	< 5	< 5	< 5.3	<5	< 5	< 5	< 5	< 5
2-Methylnaphthalene	30	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
2-Methylphenol 2-Nitroaniline	100	NLE NLE	< 5 < 25	< 5.3	< 5 < 25	< 5 < 25	< 5 < 25	< 5 < 25	< 5 < 25					
2-Nitroaniline 2-Nitrophenol	100	NLE NLE	< 25 < 5	< 25 < 5	< 25 < 5	<25 <5	< 25 < 5	< 25 < 5	< 26 < 5.3	<25 <5	< 25 < 5	< 25 < 5	< 25 < 5	< 25 < 5
3,3'-Dichlorobenzidine	30	NLE	< 5	< 5	< 5	< 5	<5	< 5	< 5.3 UJ	< 5	< 5	< 5	< 5	< 5
3+4-Methylphenol	NLE	NLE	< 10	< 10	< 10	< 10	< 10	< 10	NA	NA 25 VV	< 10	< 10	< 10	< 10
3-Nitroaniline 4,6-Dinitro-2-methylphenol	100	NLE NLE	< 25 < 25	< 26 < 26	< 25 UJ < 25 UJ	< 25 < 25	< 25 < 25	< 25 < 25	< 25 < 25					
4-Bromophenyl phenyl ether	100	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	<5	< 5	< 5	< 5	< 5
4-Chloro-3-methylphenol	100	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
4-Chloroaniline 4-Chlorophenyl phenyl ether	30	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	<5 UJ	< 5	< 5	< 5	< 5
4-Chlorophenyl phenyl ether 4-Methylphenol	100 NLE	NLE NLE	< 5 NA	< 5.3 < 11	< 5 NA	< 5 NA	< 5 NA	< 5 NA	< 5 NA					
4-Nitroaniline	5	NLE	< 25	< 25	< 25	< 25	< 25	< 25	< 26	< 25	< 25	< 25	< 25	< 25
4-Nitrophenol	100	NLE	< 25	< 25	< 25	< 25	< 25	< 25	< 26	< 25	< 25	< 25	< 25	< 25
Acenaphthene Acenaphthylene	400 100	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Anthracene	2,000	NLE	< 5	<5	< 5	<5	< 5	<5	< 5.3	<5	<5	< 5	< 5	<5
Benzidine	20	NLE	< 100	< 100	< 100	< 100	< 100	< 100	< 110 UJ	< 100	< 100	< 100	< 100	< 100
Benzo(a)anthracene	0.1	NLE	< 5	<5	< 5	< 5	< 5	<5	< 5.3	< 5	<5	< 5	< 5	<5
Benzo(a)pyrene Benzo(b)fluoranthene	0.1	0.2 NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Benzo(ghi)perylene	100	NLE	< 5	<5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Benzo(k)fluoranthene	0.5	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Benzyl alcohol Bis(2-Chloroethoxy)methane	2,000 100	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Bis(2-Chloroethyl)ether	7	NLE	< 5	<5	< 5	<5	< 5	<5	< 5.3	<5	<5	< 5	< 5	<5
Bis(2-Chloroisopropyl)ether	300	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Bis(2-Ethylhexyl)phthalate	3 100	6 NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Butyl benzyl phthalate Carbazole	100	NLE	< 5	<5	<5	< 5	<5	<5	< 5.3	<5	<5	<5	< 5	< 5
Chrysene	5	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Cresol	NLE	NLE	NA	NA 	NA	NA 	NA 	NA 	NA	< 10	NA 	NA 	NA 	NA
Dibenz(a,h)anthracene Dibenzofuran	0.3 100	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Diethyl phthalate	6,000	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Dimethyl phthalate	100	NLE	< 5	< 5	< 5	<5	< 5	< 5	< 5.3	<5	< 5	< 5	< 5	< 5
Di-n-butylphthalate Di-n-octylphthalate	700 100	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Fluoranthene	300	NLE	< 5	< 5	< 5	<5	<5	< 5	< 5.3	<5	< 5	< 5	<5	< 5
Fluorene	300	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Hexachlorobenzene Hexachlorobutadiene	0.02	1 NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Hexachlorocyclopentadiene	40	50	< 5 < 5	< 5.3 < 5.3	<5	< 5 < 5	< 5 < 5	<5 <5	< 5 < 5					
Hexachloroethane	7	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Indeno(1,2,3-cd)pyrene	0.2	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	<5	< 5	< 5	< 5	< 5
Isophorone Naphthalene	40 300	NLE NLE	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5					
Nitrobenzene	6	NLE	< 5	< 5	< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
N-Nitrosodimethylamine	0.8	NLE	< 5	< 5	< 5	< 5	<5	< 5	< 5.3	<5	< 5	< 5	< 5	< 5
N-Nitroso-di-n-propylamine	10	NLE NLE	< 5 < 5	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 5 < 5	< 5.3 < 5.3	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 5 < 5
N-Nitrosodiphenylamine Pentachlorophenol	0.3	NLE 1	< 5 < 25	< 25 < 25	< 5.3 < 26	< 5 < 25	< 5 < 25	< 5 < 25	< 5 < 25	< 25 < 25				
Phenanthrene	100	NLE	< 5	< 5	< 5	<5	< 5	< 5	< 5.3	< 5	< 5	< 5	<5	< 5
Phenol	2,000	NLE	< 5	< 5	< 5	<5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
	200				< 5	< 5	< 5	< 5	< 5.3	< 5	< 5	< 5	< 5	< 5
Pyrene	200	NLE	< 5	< 5							•			
	500	NLE NLE	64.2	14 J	12 J	65 JN	18.3 J	878.9	15.4 J	18 JN	39.7 J	ND	15 J	ND
Pyrene TIC SVOCs (mg/l)												ND 1.9 J		ND 2.2 J

Table 3 Groundwater Analytical Results - 2013, 2014 and 2015 Site FTMM-66 Building 886 Former AST Annual (Fourth Quarter) 2015 Groundwater Sampling Report Fort Monmouth, New Jersey

Loc ID	when	2015.05	886RW05		8	886RW06		886RW07		886RW08	
Sample ID	NJDEP GWQS	2015-06 USEPA MCL	FTMM-66-GW-886RW105	FTMM-66-GW-886RW06	FTMM-66-GW-886RW06-10.12	FTMM-66-GW-886RW106-10.12	FTMM-66-GW-886RW06-8.75	FTMM-66-GW-886RW07	FTMM-66-GW-886RW08	FTMM-66-GW-886RW08-11.22	FTMM-66-GW-886RW08-11.2
Sample Date	GwQs	USEPA MCL	8/22/2013	8/22/2013	10/3/2014	10/3/2014	11/23/2015	8/22/2013	8/22/2013	10/3/2014	11/20/2015
QA/QC			DU	SA	SA	DU	SA	SA	SA	SA	SA
Sample Method			LFPS	LFPS	LFPS	LFPS	LFPS	LFPS	LFPS	LFPS	LFPS
Volatile Organic Compounds (µg/l)	1	1						1			
1,1,1,2-Tetrachloroethane	1	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,1,1-Trichloroethane	30	200	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	3	NLE 5	< 1 < 1	< 1 < 1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,1-Dichloroethane	50	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,1-Dichloroethene	1	7	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,1-Dichloropropene	100	NLE	< 1	<1	NA	NA	NA	<1	<1	NA	NA
1,2,3-Trichlorobenzene	100	NLE	< 1	< 1	NA	NA	NA	< 1	<1	NA	NA
1,2,3-Trichloropropane	0.03	NLE	< 1	<1	NA	NA	NA	<1	<1	NA	NA
1,2,4-Trichlorobenzene	9	70	< 1	< 1	NA	NA	NA	< 1	< 1	NA	NA
1,2,4-Trimethylbenzene	100	NLE	< 1	< 1	NA	NA	NA	< 1	< 1	NA	NA
1,2-Dibromo-3-chloropropane	0.02	0.2	< 1	< 1	NA	NA	NA	< 1	< 1	NA	NA
1,2-Dibromoethane	0.03	0.05	< 1	< 1	NA	NA	NA	<1	< 1	NA	NA
1,2-Dichlorobenzene	600	600	<1	<1	NA NA	NA	NA NA	<1	<1	NA NA	NA
1,2-Dichloroethane	2	5	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,2-Dichloropropane	100	5 NI E	< 1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	100 600	NLE NLE	< 1	<1 <1	NA NA	NA NA	NA NA	<1	<1 <1	NA NA	NA NA
1,3-Dichloropropane	100	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
1,4-Dichlorobenzene	75	75	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA
2,2-Dichloropropane	100	NLE	< 1	< 1	NA	NA	NA	< 1	<1	NA	NA
2-Chlorotoluene	100	NLE	< 1	< 1	NA	NA	NA	< 1	< 1	NA	NA
Acetone	6,000	NLE	< 5	< 5	NA	NA	NA	< 5	1.6 J	NA	NA
Benzene	1	5	< 1	<1	NA	NA	NA	< 1	< 1	NA	NA
Bromobenzene	100	NLE	< 1	<1	NA	NA	NA	< 1	<1	NA	NA
Bromochloromethane	100	NLE	<1	<1	NA	NA	NA	<1	<1	NA	NA
Bromodichloromethane	1	80	<1	<1	NA	NA	NA NA	<1	<1	NA NA	NA
Bromoform Carbon tetrachloride	4	80 5	<1 <1	<1 <1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Chlorobenzene	50	100	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Chlorodibromomethane	1	80	<1	<1	NA	NA NA	NA NA	<1	<1	NA NA	NA
Chloroethane	5	NLE	< 1	<1	NA	NA	NA	<1	<1	NA	NA
Chloroform	70	80	< 1	<1	NA	NA	NA	< 1	< 1	NA	NA
Cis-1,2-Dichloroethene	70	70	< 1	<1	NA	NA	NA	<1	<1	NA	NA
Cis-1,3-Dichloropropene	1	NLE	< 1	< 1	NA	NA	NA	< 1	< 1	NA	NA
Cymene	100	NLE	< 1	<1	NA	NA	NA	<1	<1	NA	NA
Dichlorodifluoromethane	1,000	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Ethyl benzene Hexachlorobutadiene	700	700 NLE	< 1	< 1 < 1	NA NA	NA NA	NA NA	<1	<1 <1	NA NA	NA NA
Isopropylbenzene	700	NLE	<1	<1	NA NA	NA NA	NA NA	<1	0.31 J	NA NA	NA NA
Meta/Para Xylene	1,000	NLE	< 2	< 2	NA	NA	NA	< 2	< 2	NA	NA
Methyl bromide	10	NLE	< 1	<1	NA	NA	NA	<1	<1	NA	NA
Methyl butyl ketone	300	NLE	< 5	< 5	NA	NA	NA	< 5	< 5	NA	NA
Methyl chloride	100	NLE	<1	<1	NA	NA	NA	<1	<1	NA	NA
Methyl ethyl ketone	300	NLE	<1	<1	NA	NA	NA	<1	<1	NA	NA
Methyl isobutyl ketone	100	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA
Methyl Tertbutyl Ether Methylene chloride	70	NLE 5	< 1	< 1 < 1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Naphthalene	300	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1 <1	NA NA	NA NA
n-Butylbenzene	100	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Ortho Xylene	1,000	NLE	<1	<1	NA	NA NA	NA NA	<1	<1	NA NA	NA
p-Chlorotoluene	100	NLE	< 1	< 1	NA	NA	NA	<1	<1	NA	NA
Propylbenzene	100	NLE	< 1	<1	NA	NA	NA	<1	<1	NA	NA
sec-Butylbenzene	100	NLE	<1	< 1	NA	NA	NA	< 1	< 1	NA	NA
Styrene	100	100	<1	<1	NA	NA	NA	<1	<1	NA	NA
tert-Butylbenzene	100	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Tetrachloroethene	1	5	<1	< 1 < 1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Toluene Total TIC, Volatile	600 500	1,000 NLE	< 1 ND	< 1 ND	NA NA	NA NA	NA NA	< 1 ND	< 1 ND	NA NA	NA NA
Total Xylenes	1,000	10,000	ND <3	<3	NA NA	NA NA	NA NA	< 3	< 3	NA NA	NA NA
Trans-1,2-Dichloroethene	1,000	10,000	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA NA	NA NA
Trans-1,3-Dichloropropene	1	NLE	<1	<1	NA NA	NA NA	NA NA	<1	<1	NA	NA
Trichloroethene	1	5	< 1	<1	NA	NA	NA	<1	<1	NA	NA
Trichlorofluoromethane	2,000	NLE	<1	<1	NA	NA	NA	<1	<1	NA	NA
Vinyl chloride	1	2	< 1	< 1	NA	NA	NA	<1	<1	NA	NA

Table 3 Groundwater Analytical Results - 2013, 2014 and 2015 Site FTMM-66 Building 886 Former AST Annual (Fourth Quarter) 2015 Groundwater Sampling Report Fort Monmouth, New Jersey

Loc ID			886RW05		88	86RW06		886RW07		886RW08	
Sample ID	NJDEP	2015-06	FTMM-66-GW-886RW105	FTMM-66-GW-886RW06	FTMM-66-GW-886RW06-10.12	FTMM-66-GW-886RW106-10.12	FTMM-66-GW-886RW06-8.75	FTMM-66-GW-886RW07	FTMM-66-GW-886RW08	FTMM-66-GW-886RW08-11.22	FTMM-66-GW-886RW08-11.2
Sample Date	GWQS	USEPA MCL	8/22/2013	8/22/2013	10/3/2014	10/3/2014	11/23/2015	8/22/2013	8/22/2013	10/3/2014	11/20/2015
QA/QC	1		DU	SA	SA	DU	SA	SA	SA	SA	SA
Sample Method			LFPS	LFPS	LFPS	LFPS	LFPS	LFPS	LFPS	LFPS	LFPS
Semivolatile Organic Compounds (µg/l)											
1,2,4-Trichlorobenzene	9	70	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
1,2-Dichlorobenzene 1,2-Diphenylhydrazine	600 20	600 NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	< 5 < 5	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5 < 5
1,3-Dichlorobenzene	600	NLE	< 5	< 5	< 5.6	< 5.6	<5	< 5	< 5	< 5.6	<5
1,4-Dichlorobenzene	75	75	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
2,4,5-Trichlorophenol	700	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
2,4,6-Trichlorophenol	20	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
2,4-Dichlorophenol	20	NLE	<5	< 5	< 5.6 < 5.6	< 5.6 < 5.6	<5	< 5	< 5	< 5.6 < 5.6	< 5
2,4-Dimethylphenol 2,4-Dinitrophenol	100 40	NLE NLE	< 5 < 25	< 5 < 25	< 28	< 28	< 5 < 25 UJ	< 5 < 25	< 5 < 25	< 28	< 5 < 25
2,4-Dinitrotoluene	10	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
2,6-Dinitrotoluene	10	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
2-Chloronaphthalene	600	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
2-Chlorophenol	40	NLE	< 5	< 5	< 5.6	< 5.6	< 5	<5	<5	< 5.6	< 5
2-Methylnaphthalene 2-Methylphenol	30 100	NLE NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	< 5 < 5	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5 < 5
2-Nitroaniline	100	NLE	< 25	< 25	< 28	< 28	< 25	< 25	<25	< 28	< 25
2-Nitrophenol	100	NLE	< 5	< 5	< 5.6	< 5.6	<5	< 5	<5	< 5.6	< 5
3,3'-Dichlorobenzidine	30	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	<5
3+4-Methylphenol	NLE	NLE	< 10	< 10	NA 20	NA 20	NA 25 U	< 10	< 10	NA 20	NA 25
3-Nitroaniline	100	NLE NLE	< 25 < 25	< 25 < 25	< 28 < 28	< 28 < 28	< 25 UJ < 25 UJ	< 25 < 25	< 25 < 25	< 28 < 28	< 25 < 25
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	100	NLE	< 25 < 5	< 25 < 5	< 28 < 5.6	< 28 < 5.6	< 25 UJ < 5	< 25 < 5	< 25 < 5	< 28 < 5.6	< 25 < 5
4-Chloro-3-methylphenol	100	NLE	< 5	< 5	< 5.6	< 5.6	<5	<5	< 5	< 5.6	< 5
4-Chloroaniline	30	NLE	< 5	< 5	< 5.6	< 5.6	< 5 UJ	< 5	< 5	< 5.6	< 5
4-Chlorophenyl phenyl ether	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
4-Methylphenol	NLE	NLE	NA . 25	NA .25	< 11	< 11	NA . 25	NA . 25	NA · 25	<11	NA . 25
4-Nitroaniline 4-Nitrophenol	5 100	NLE NLE	< 25 < 25	< 25 < 25	< 28 < 28	< 28 < 28	< 25 < 25	< 25 < 25	< 25 < 25	< 28 < 28	< 25 < 25
Acenaphthene	400	NLE	< 5	< 5	< 5.6	< 5.6	<5	< 5	< 5	< 5.6	< 5
Acenaphthylene	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Anthracene	2,000	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Benzidine	20	NLE	< 100	< 100	< 110 UJ	< 110 UJ	< 100	< 100	< 100	< 110	< 100 UJ
Benzo(a)anthracene Benzo(a)pyrene	0.1 0.1	NLE 0.2	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	< 5 < 5	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5 < 5
Benzo(b)fluoranthene	0.1	NLE	<5	< 5	< 5.6	< 5.6	<5	< 5	< 5	< 5.6	<5
Benzo(ghi)perylene	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Benzo(k)fluoranthene	0.5	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Benzyl alcohol	2,000	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)ether	100	NLE NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	< 5 < 5	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5 < 5
Bis(2-Chloroisopropyl)ether	300	NLE	< 5	< 5	< 5.6	< 5.6	<5	< 5	< 5	< 5.6	< 5
Bis(2-Ethylhexyl)phthalate	3	6	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Butyl benzyl phthalate	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Carbazole	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Chrysene Cresol	5 NLE	NLE NLE	< 5 NA	< 5 NA	< 5.6 NA	< 5.6 NA	< 5 < 10	< 5 NA	< 5 NA	< 5.6 NA	< 5 < 10
Dibenz(a,h)anthracene	0.3	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Dibenzofuran	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Diethyl phthalate	6,000	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Dimethyl phthalate	100	NLE NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	<5
Di-n-butylphthalate Di-n-octylphthalate	100	NLE NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	<5 <5	<5 <5	< 5 < 5	< 5.6 < 5.6	<5 <5
Fluoranthene	300	NLE	< 5	< 5	< 5.6	< 5.6	<5	< 5	< 5	< 5.6	< 5
Fluorene	300	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Hexachlorobenzene	0.02	1	< 5	< 5	< 5.6	< 5.6	< 5	<5	< 5	< 5.6	< 5
Hexachlorobutadiene Hexachlorocyclopentadiene	1	NLE	< 5	< 5	< 5.6	< 5.6	< 5	<5	<5	< 5.6	< 5
Hexachlorocyclopentadiene Hexachloroethane	40 7	50 NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	< 5 < 5	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5 < 5
Indeno(1,2,3-cd)pyrene	0.2	NLE	< 5	< 5	< 5.6	< 5.6	<5	< 5	< 5	< 5.6	< 5
Isophorone	40	NLE	< 5	< 5	< 5.6	< 5.6	< 5	<5	<5	< 5.6	< 5
Naphthalene	300	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Nitrobenzene	6	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
N-Nitrosodimethylamine N-Nitroso-di-n-propylamine	0.8	NLE NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	< 5 < 5	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5 < 5
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	10	NLE	< 5 < 5	< 5 < 5	< 5.6 < 5.6	< 5.6 < 5.6	<5 <5	<5 <5	< 5 < 5	< 5.6 < 5.6	<5 <5
Pentachlorophenol	0.3	1	< 25	< 25	< 28	< 28	< 25	< 25	< 25	< 28	< 25
Phenanthrene	100	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Phenol	2,000	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
Pyrene	200	NLE	< 5	< 5	< 5.6	< 5.6	< 5	< 5	< 5	< 5.6	< 5
TIC SVOCs (mg/l) Total TIC, Semi-Volatile	500	NLE	ND	468.7	ND	ND	ND	13	707 JN	46.4 J	ND
Inorganics (µg/l)	300	INLE	ND	408./	I ND	IND	I ND	13	/0/ JN	1 40.4 J	ND
Lead	5	15	1.4 J	1.4 J	NA	NA	NA	1.7 J	< 2	NA	NA
									`~		****

Table 3

Groundwater Analytical Results - 2013, 2014 and 2015 Site FTMM-66 Building 886 Former AST Annual (Fourth Quarter) 2015 Groundwater Sampling Report Fort Monmouth, New Jersey

Footnote:

- 1) All historical data collected prior to 2013 are reported as provided by others.
- 2) Number of Analyses is the number of detected and non-detected results excluding rejected results. Sample duplicate pairs have not been averaged.
- 3) NLE = no limit established.
- 4) ND = not detected in any background sample, no background concentration available.
- 5) Chemical result qualifiers are assigned by the laboratory and is typically evaluated and modified (if necessary) by during data validation.

[blank] = detect, i.e. detected chemical result value.

J = estimated (detect or non-detect) value.

B = Compound detected in the sample and its associated blank sample.

E (or ER) = Estimated result.

R = Rejected, data validation rejected the results.

D = Results from dilution of sample.

U = non-detect, i.e. not detected equal to or above this value.

J-DL = Elevated sample detection limit due to difficult sample matrix.

U-DL = Elevated sample detection limit due to difficult sample matrix.

JN = Tentatively identified compound, estimated concentration.

U-ND = Analyte not detected in sample, but no detection or reporting limit provided.

- 6) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.
- Cell Shade values represent a result that is above the NJ Ground Water Quality Criteria

####

NJDEP Interim Specific GWQC values are presented for the NJ GWQS where there is not a Specific Ground Water Quality Criteria. A full list of compounds is available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

NJDEP Interim Generic GWQC values are presented for the NJ GWQS where there is not a XXXXX or a NJDEP Interim Specific GWQC. Available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

- Bold Outline represent a result that is above the USEPA 2014-05 MCL.
- Cell Style values represent a result that is above the Weston 1995 Background (Main Post).
 n/a = all concentrations were less than the detection limit, therefore, no location of maximum value identified.
 - Dash (-) = only background concentrations for metals are being used as comparison criteria.

###

7) Criteria action level source document and web address.

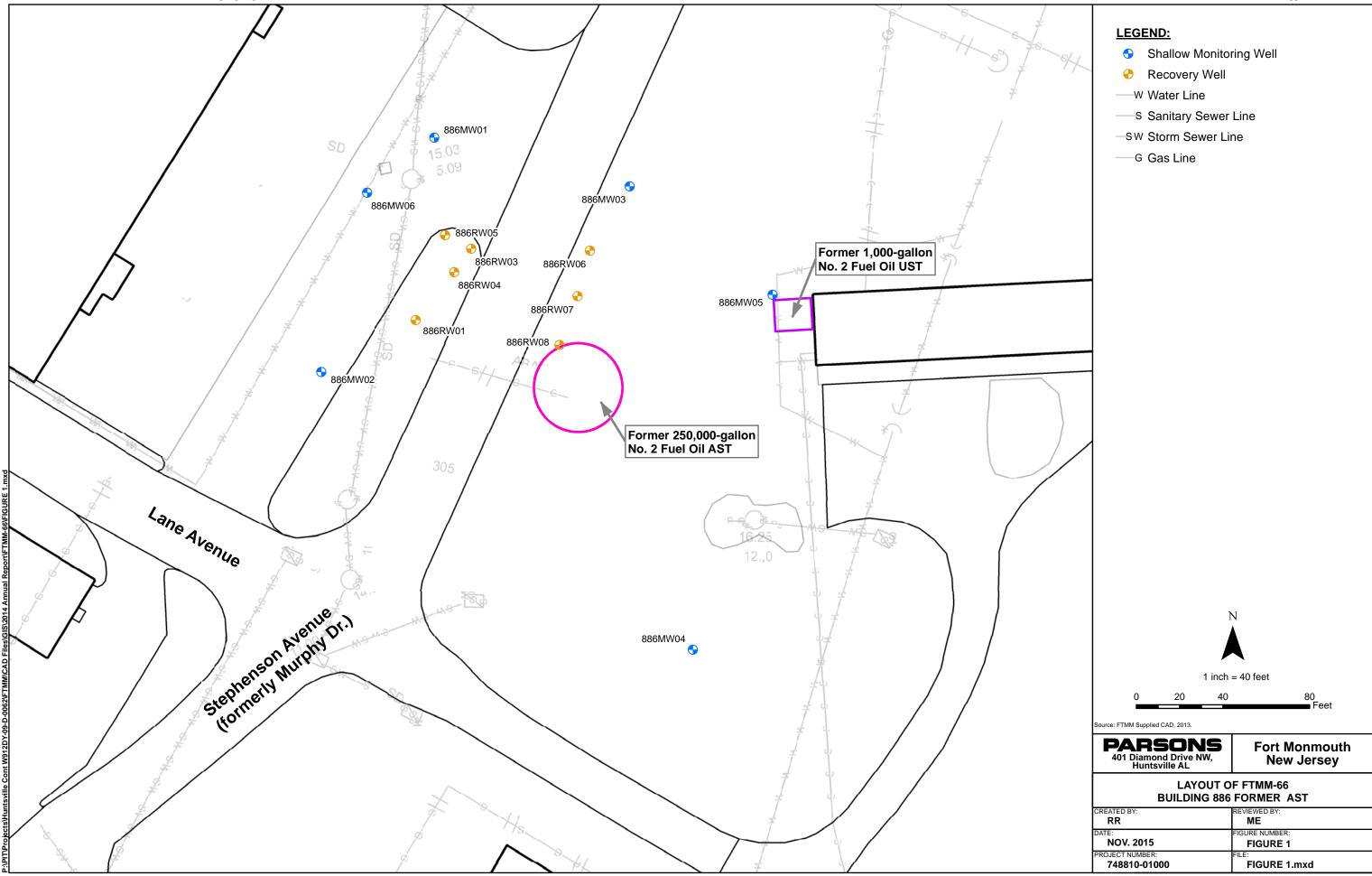
- The NJ Ground Water Quality Criteria refers to the NJDEP Groundwater Quality Standards Adopted July 22, 2010 http://www.state.nj.us/dep/wms/bwqsa/docs/njac79C.pdf
- The 2014-05 USEPA MCL refers to the USEPA's Region 9 Regional Screening Levels (HQ=1.0) 5/31/2014 (Last revised) http://www.epa.gov/region9/superfund/prg/
- The Weston 1995 Background (Main Post) refers to the FTMM reports.

NA

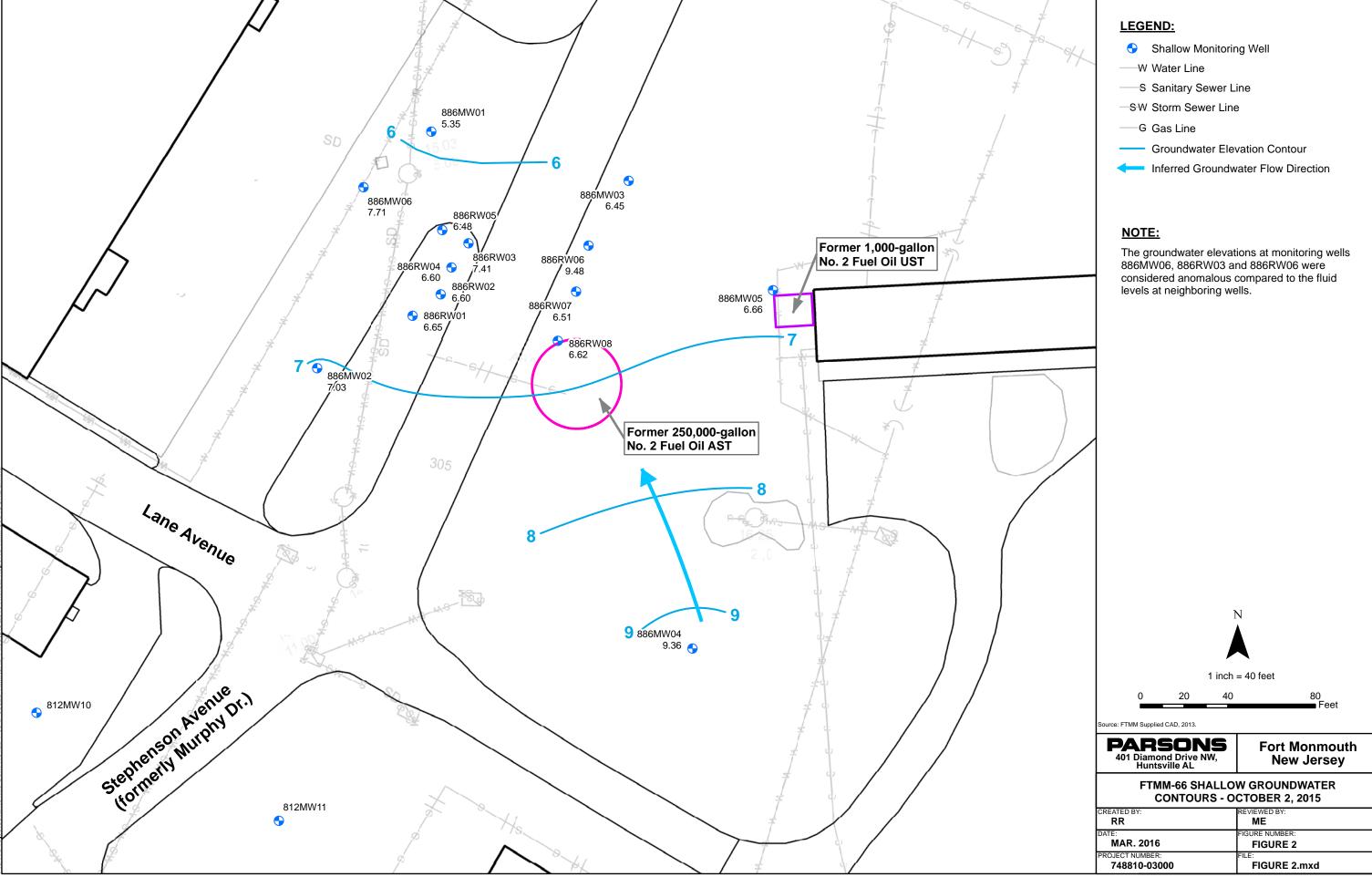
8) Wells sampled in the most recent fourth quarter sampling event are highlighted in yellow.

Sample ID

Table 4
Review of Historical Groundwater Sampling Results
Site FTMM-66 Building 886 Former AST
Annual (Fourth Quarter) 2015 Groundwater Sampling Report
Fort Monmouth, New Jersey


	Inter	Interpretation of Historical and 2015 Results ¹	nd 2015 Results ¹		2015	2015 Evaluation			
Site Name/ Well ID	Chem Class / Analyte	Does it Exceed NJDEP GWQS (Yes or No) (If Yes, identify compound)	Does it Exceed NJDEP GWQS GWQS (Yes or No) (If Yes, identify compound) Concentration (Yes or No) (Types, identify compound)	Seasonal Effect? ² (Y/N)	Anomaly? (Y/N)	Exceedance part of overall trend? (Y/N)	Well needed for sentinel purposes? (Y/N)	Retain Analyte/Well (Yes or No)	Rationale
FTMM-66, B886									
									Metals and VOCs discontinued in 2013.
886RW01		SVOC Total TICs	No	No	No	No	No	Yes	Groundwater sampling results are below
									NJDEP GWQS, discontinue sampling.
									Metals and VOCs discontinued in 2013.
886RW06	SVOC	As, Pb	No	N/A	N/A	N/A	Yes	Yes	Groundwater sampling results are below
									NJDEP GWQS, discontinue sampling.
									Metals and VOCs discontinued in 2013.
886RW08		SVOC Total TICs	No	No	No	No	No	Yes	Groundwater sampling results are below
									NJDEP GWQS, discontinue sampling.

;


- 1. Has any of the analyte compounds exceeded the NJDEP GWQS in the 2015 data and the 4 previous quarterly data rounds or 2 previous annual rounds?
 - a. If yes then keep analyte in LTM list
- b. If no then remove this analyte from LTM list
- c. a and b above may be occasionally superseded on a case-by-case basis, depending on site conditions.
- 2. Has any of the analyte compounds exceeded the NJDEP GWQS seasonally (winter spring vs. summer fall)?
 - 3. TIC Tentatively Identified Compound
- 4. N/A Not applicable
- 5. Per the 2/5/15 NJDEP approval letter of the Final 2013 Baseline Groundwater Report, groundwater monitoring wells 886MW01, 886MW02, 886MW02, 886MW03, 886MW02, 886MW02, 886MW02, 886MW02, 886MW02, 886MW02, 886MW02, 886MW02, 886MW02, 886MW03, 886M 886RW03, 886RW04, 886RW05 and 886RW07 were removed from the long-term monitoring sampling program and VOC and lead analysis were discontinued in 2014.

FIGURES

- Figure 1 Layout of FTMM-66 Building 886 Former AST
- Figure 2 FTMM-66 Shallow Groundwater Contours October 2, 2015

g Report

ATTACHMENTS

Attachment A LFPS Field Sheets

				LOW F	LOW PU	RGE AN	ID SAM	PLING	(LFPS) F	RECORI	- GRO	JNDWA	TER			
PARSON	В				CLIENT:	FTM	n - u	SACE					WELL#:	812	Mho	1
AOC i	ROJEC	_	Q4 M-0		Somplis					WE	LL PERMIT #:	20	74128	75		
SCREENED INTERVA			2	-7 4							PLING PERSO			tson		
BOREHOLE DIAMETE DIAMETER (INCHES) GALLONS/FOOT:		TOR	1 0.041	1.5 0.092	2 0.163	3 0.367	0.654	5 1.02	6 1.47	7 2	8 2.61	9 3.3	10 5.87			****
WELL HEAD VOC CO WELL DEPTH (TOC): FEET OF WATER IN (7		ION (ppm):	0				DEPTH TO W	TURATED SCR VATER BEFOR	E PUMP INST	ALLATION (# be	elow TOC): 2	1.30			
							PU	RGING AND	SAMPLING							
TIME	PURGING	AMPLING	(pH i	units)		/cm)	<u>(n</u>	OTENTIAL	(m	D OXYGEN	TURB (NT	ru)	(degr	RATURE ees C)	PUMPING RATE	WATER
1716	-	67	READING	CHANGE*	READING	CHANGE*	G4.9	CHANGE*	7 77	CHANGE*	JU9-4	CHANGE*	FEADING	CHANGE*	(ml/min) 225	25(

	PURGING	MPLING	p (pH u		SPECIFIC CO		The second second	OTENTIAL	DISSOLVEI		TURB (N1		TEMPER (degre		PUMPING RATE	DEPTH TO WATER (ft below
TIME	5	SA	READING	CHANGE.	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1245	6		7-19	NA	0.430	NA	64.9	NA	7.72	NA	249-4	NA	(297	NA	225	2.51
1250	5		7.02		0-420		79		6-61		234.2		13.49		225	2.36
1255	4		6.49		0.418		26.5	1.0	6.55		212-0		13.43		225	3.00
1300	(6-90		1512.0		91.2		7.14		200-2		13.47		200	5.30
1305	4		6-97		0-423		91.1		6.65		55.8		14.04		200	3-68
1310	6		6.96		0.425		90.8		7.80		56.0		14.16		200	3-82
1315	1		6-93		0.426		91.7		7.34		51.0		14.25		200	3.93
1320	×		6.93		0.426		92.8		7.29		51.8		14.28		200	4.02
1325		x	6-92		0.426		93.9		7.22		53.0		14.22		200	4.12
	\prod	1								-						
	H	1														

		LOW FLOW	PURGE AND S	AMPLING (LFPS)	RECORD - GROUNDW	ATER
PARSONS		CLIENT	USACE			METT#: SISWMOA
	1 000			SAMPLING INFORMATION		
SAMPLING DEVICE:	LPPS			SAMPLING INPORMATION		
SAMPLE NAME (ID):	ITMM-1	64-6W-812	Many-U-	7		
MPLE PARAMETER	TIME					
		YOW VOAS	COLOR	TURBIDITY	CON	MMENTS
VOC.5	1325	TOME VONS	Clew	53.0		
				-	L Part Line Control of the Control o	
					180	
C SAMPLES: ICATE SAMPLE COL ICATE SAMPLE NAM SD SAMPLE COLLEC	E (ID):			AND SAMPLING COMMENTS:		
TIGATION DERIVED	WASTE (IDW):	PTas				
	Date:					
Making Ta	ansfered to Drum:					
Volume 17						
	Drum Number:					

ATTACHMENT F Compliance Averaging Methodology Applied at FTMM-660

ATTACHMENT F

Details Regarding Compliance Averaging using the 95 percent Upper Confidence Limit FTMM-66 (Building 886 Former Aboveground Storage Tank)

INTRODUCTION

This attachment summarizes the methodology and results of compliance averaging using the 95 percent Upper Confidence Limit (UCL) of the mean (95% UCL) for the FTMM-66 site at Fort Monmouth (FTMM) in Oceanport, New Jersey. New Jersey Department of Environmental Protection (NJDEP) technical guidance (2012) provides a 95% UCL approach that can be used for all exposure pathways in the remedial investigation or remedial action phases. At FTMM-66, the site has already been investigated and soils containing total petroleum hydrocarbon (TPH) have already been excavated during previous remedial actions. Compliance averaging is used herein to determine whether the current residential remedial goal for extractable petroleum hydrocarbons (EPH) has been achieved at FTMM-66. The previous TPH results, presented in Table 1 of the letter to which this is an attachment, are considered comparable to EPH results for decision making purposes based on NJDEP guidance (2010a and 2010b).

COMPLIANCE AVERAGING APPROACH

Regulatory Approach: NJDEP's "Technical Guidance for Attainment of Remediation Standards and Site-Specific Criteria" (2012) notes in Section 9.0 that the requirements for investigating EPH are found in the "Protocol for Addressing Extractable Petroleum Hydrocarbons" (NJDEP, 2010a), which provides remedial standards for petroleum hydrocarbons. It is Parsons understanding that NJDEP will accept a compliance averaging approach for EPH if the two following criteria are met: 1) the petroleum hydrocarbons are Category 1 (i.e., No. 2 fuel oil and/or diesel fuel) discharges; and 2) EPH concentrations are less than the 8,000 parts per million (ppm) residual product/free product limit. FTMM-66 meets the first criterion.

With regard to the second criteria, although EPH concentrations greater than 8,000 mg/kg were measured at multiple in-place sample locations at FTMM-66, these sample data are over 14 years old. Because the source of contamination was removed by 2003 and is no longer contributing to the onsite release, it is likely that TPH concentrations have been significantly reduced by natural degradation processes since the remediation occurred. Further, subsequent post-excavation groundwater monitoring has demonstrated the reduction of petroleum constituents in groundwater over time (see Parsons, 2016), as well as the lack of measurable free product, such that long-term groundwater monitoring was discontinued based on the recommendations of the Annual (Fourth Quarter) 2015 Groundwater Sampling Report (Parsons, 2016), which was approved by the NJDEP (2016). Therefore, it is Parsons professional judgment that the site conditions meet the intent of the NJDEP policy criteria for EPH. Compliance averaging was used herein to determine whether the current residential remedial goal for EPH has been achieved at FTMM-66.

Approach to Applying Compliance Averaging: The 95% UCL method for compliance averaging was applied at FTMM-66 using an approach consistent with the attainment guidance (NJDEP, 2012). The horizontal and vertical definition of each functional area was drawn using the data points where soil samples results exceeded the NJDEP RDCSRS and the guidelines provided in Appendix A of the NJDEP attainment guidance (NJDEP, 2012). Two functional areas were defined at FTMM-66: Functional Area 1 (0.33 acres) and Functional Area 2 (0.31 acres) (**Figure 1**). Each functional area has two vertical zones, per NJDEP

PARSONS 1

guidance (NJDEP, 2012): the surface zone, less than two feet bgs (0 to 2 feet bgs) is designated with "A", and the subsurface zone (greater than 2 feet bgs), designated with "B".

The size of the functional areas is constrained horizontally by the NJDEP attainment guidance. The maximum size of the functional area for residential exposure scenarios is 0.25 acres (for ingestion-dermal pathway). The NJDEP guidance indicates that this size represents one-half of the residential lot size, and assumes exposure is occurring in either the front yard or the back yard of the residence. However, the NJDEP guidance allows for an area to be increased by up to 50 percent, to a total of 0.375 acres, if needed; the sizes of the two functional areas at FTMM-66 are within this limit. Also, the NJDEP guidance indicates that the preferred shape of the functional area is a square, but can vary somewhat based on site configuration and contaminant distribution. Therefore, the guidance allows a rectangular functional area, with a length not more than four times the width. The boundaries of the functional areas include samples used to delineate the boundary of contamination (i.e., where TPH was detected at concentrations less than 5,100 mg/kg).

Therefore, using the naming convention for the functional areas above, the functional areas for at FTMM-66 have names as follows: 1A, 1B, 2A, and 2B. The name and definition of each functional area, including acreage and vertical definition, is included on **Table 1** below.

The 95% UCL was calculated for each functional area using ProUCL software (version 5.1). The 95% UCL was calculated using in-place sample results (i.e., following excavation). The 95% UCL is a conservative estimate because it does not account for placement of clean fill after excavation. The higher of field duplicate results was used in the UCL calculations. All data from single sample locations (i.e., from different depth intervals at the same sample location) within the vertical functional area were included in the UCL calculations. Because the reporting limits were not published, the method detection limits were used for non-detects.

Sample location 886-41 was sampled on June 10, 2002, and then resampled in November 2002 with no specific justification provided (Versar, 2006), except that the first sample was in error. Because the resampled location had much lower concentrations at some depths, NJDEP commented on August 27, 2010 (NJDEP, 2010c), that the original sample, with an exceedance of 10,000 mg/kg, could not be dismissed without clear justification. Therefore, the highest value at each depth for sample location 886-41 was selected for the UCL calculation.

At Functional Area 2A, there was not a sufficient number of samples (i.e., 10 or more) or detections for ProUCL to calculate meaningful or reliable statistics. Therefore, the arithmetic mean compliance averaging method was used for this functional area, as described in the NJDEP attainment guidance (NJDEP, 2012).

RESULTS

The results are summarized in **Table 1** below. The supporting documentation for ProUCL and the arithmetic mean calculation are provided in **Attachment A** below. The average TPH concentration for each functional area met the RDCSRS of 5,100 mg/kg (**Table1** below).

PARSONS 2

REFERENCES

- NJDEP, 2010a. Protocol for Addressing Extractable Petroleum Hydrocarbons. Version 5.0, August 9.
- NJDEP, 2010b. Health Based and Ecological Screening Criteria for Petroleum Hydrocarbons, Frequently Asked Questions. Version 4.0, August 9.
- NJDEP, 2010c. NJDEP letter to the Army dated August 27, 2010, re: Remedial Action Report, Building 886 Site Main Post, Fort Monmouth, New Jersey.
- NJDEP, 2012. Technical Guidance for the Attainment of Remediation Standards and Site Specific Criteria. September 24.
- NJDEP, 2016. NJDEP letter to the Army dated November 14, 2016, re: Annual (Fourth Quarter) 2015 Groundwater Sampling Report dated September 2016. Fort Monmouth, Oceanport, Monmouth County.
- Parsons, 2016. Final Annual (Fourth Quarter) 2015 Groundwater Sampling Report, Fort Monmouth, Oceanport, Monmouth County, New Jersey. September.
- Versar, 2006. Remedial Action Report for Soil and Groundwater Contamination. Building 886. U.S. Army Garrison Fort Monmouth, Fort Monmouth, New Jersey. January 13.

ATTACHMENTS

- Table 1. Summary of Compliance Averaging Results
- **Figure 1**. TPH Soil Samples and Functional Areas

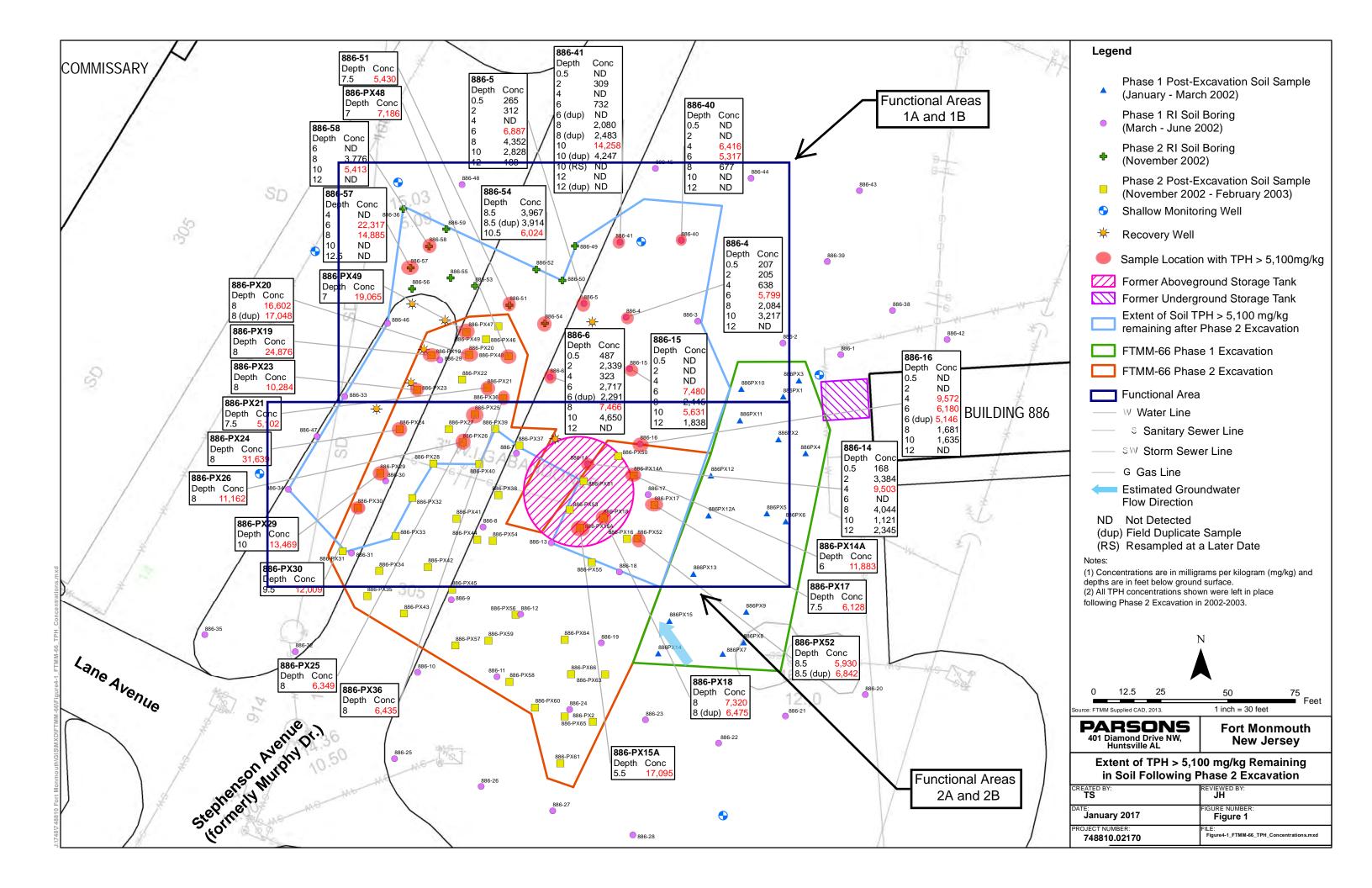
Attachment A. ProUCL Output and Arithmetic Mean Calculation for Functional Area 2A.

PARSONS 3

Table 1. Summary of Compliance Averaging Results

Functional Area	Acreage EPH	Number of Samples ^A Remedial Sta	Functional Area Depth Interval (feet bgs) andard = 5,100 mg/kg	95% Upper Confidence Limit
1A	0.33	28	0 - 2	662
1B	0.33	110	>2	3,333
2A	0.31	8	0 - 2	714 ^B
2B	0.31	56	>2	5,033

Notes:


Abbreviations:

Value UCL achieves compliance with remedial goal

bgs - below ground surface

A – Does not include field duplicates.
 B - Too few detections were available to calculate a UCL. Therefore, the arithmetic mean is presented.

FTMM-66, Functional Area 1A

User Selected Options

Date/Time of Computation ProUCL 5.11/23/2017 6:55:17 AM

From File CA.ProUCL.Input.012317.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

TPH

General Statistics

Total Number of Observations	28	Number of Distinct Observations	19
Number of Detects	7	Number of Non-Detects	21
Number of Distinct Detects	7	Number of Distinct Non-Detects	12
Minimum Detect	206	Minimum Non-Detect	157
Maximum Detect	2340	Maximum Non-Detect	176
Variance Detects	604636	Percent Non-Detects	75%
Mean Detects	589.7	SD Detects	777.6
Median Detects	309.9	CV Detects	1.319
Skewness Detects	2.567	Kurtosis Detects	6.665
Mean of Logged Detects	5.953	SD of Logged Detects	0.848

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.557	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.41	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	265.2	KM Standard Error of Mean	82.83
KM SD	405.8	95% KM (BCA) UCL	426.4
95% KM (t) UCL	406.2	95% KM (Percentile Bootstrap) UCL	415.2
95% KM (z) UCL	401.4	95% KM Bootstrap t UCL	987.8
90% KM Chebyshev UCL	513.7	95% KM Chebyshev UCL	626.2
97.5% KM Chebyshev UCL	782.4	99% KM Chebyshev UCL	1089

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.143	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.724	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.352	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.318	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.846	k star (bias corrected MLE)	1.313	k hat (MLE)
697.2	Theta star (bias corrected MLE)	448.9	Theta hat (MLE)
11.84	nu star (bias corrected)	18.39	nu hat (MLE)
		589 7	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

FTMM-66, Functional Area 1A

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

147.4	Mean	0.01	Minimum
0.01	Median	2340	Maximum
3.048	CV	449.4	SD
0.126	k star (bias corrected MLE)	0.115	k hat (MLE)
1168	Theta star (bias corrected MLE)	1286	Theta hat (MLE)
7.066	nu star (bias corrected)	6.421	nu hat (MLE)
		0.0404	Adjusted Level of Significance (β)
2.043	Adjusted Chi Square Value (7.07, β)	2.207	Approximate Chi Square Value (7.07, α)
509.9	95% Gamma Adjusted UCL (use when n<50)	472	6 Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

95%

Mean (KM)	265.2	SD (KM)	405.8
Variance (KM)	164664	SE of Mean (KM)	82.83
k hat (KM)	0.427	k star (KM)	0.405
nu hat (KM)	23.91	nu star (KM)	22.68
theta hat (KM)	621	theta star (KM)	654.6
80% gamma percentile (KM)	428.6	90% gamma percentile (KM)	747.3
95% gamma percentile (KM)	1097	99% gamma percentile (KM)	1975

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (22.68, α)	12.85	Adjusted Chi Square Value (22.68, β)	12.39
95% Gamma Approximate KM-UCL (use when n>=50)	468	95% Gamma Adjusted KM-UCL (use when n<50)	485.3

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.747	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.312	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	162.3	Mean in Log Scale	3.574
SD in Original Scale	444.5	SD in Log Scale	1.571
95% t UCL (assumes normality of ROS data)	305.4	95% Percentile Bootstrap UCL	319.9
95% BCA Bootstrap UCL	405.5	95% Bootstrap t UCL	648.1
95% H-UCL (Log ROS)	325.4		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	5.28	KM Geo Mean	196.4
KM SD (logged)	0.552	95% Critical H Value (KM-Log)	1.985
KM Standard Error of Mean (logged)	0.113	95% H-UCL (KM -Log)	282.5
KM SD (logged)	0.552	95% Critical H Value (KM-Log)	1.985
KM Standard Error of Mean (logged)	0.113		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

FTMM-66, Functional Area 1A

 Mean in Original Scale
 209.8
 Mean in Log Scale
 4.803

 SD in Original Scale
 429.3
 SD in Log Scale
 0.786

 95% t UCL (Assumes normality)
 347.9
 95% H-Stat UCL
 231.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 626.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

FTMM-66, Functional Area 1B

User Selected Options

Date/Time of Computation ProUCL 5.11/23/2017 6:56:01 AM

From File CA.ProUCL.Input.012317_a.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

TPH

General Statistics

Total Number of Observations	110	Number of Distinct Observations	74
		Number of Missing Observations	6
Number of Detects	45	Number of Non-Detects	65
Number of Distinct Detects	45	Number of Distinct Non-Detects	29
Minimum Detect	188	Minimum Non-Detect	153
Maximum Detect	24877	Maximum Non-Detect	4248
Variance Detects	35024996	Percent Non-Detects	59.09%
Mean Detects	5615	SD Detects	5918
Median Detects	4227	CV Detects	1.054
Skewness Detects	1.783	Kurtosis Detects	2.882
Mean of Logged Detects	8.023	SD of Logged Detects	1.273

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.785	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.221	Lilliefors GOF Test
5% Lilliefors Critical Value	0.131	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2392	KM Standard Error of Mean	444.2
KM SD	4606	95% KM (BCA) UCL	3206
95% KM (t) UCL	3129	95% KM (Percentile Bootstrap) UCL	3110
95% KM (z) UCL	3123	95% KM Bootstrap t UCL	3281
90% KM Chebyshev UCL	3725	95% KM Chebyshev UCL	4328
97.5% KM Chebyshev UCL	5166	99% KM Chebyshev UCL	6812

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.477	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.779	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.108	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.136	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.903	k star (bias corrected MLE)	0.952	k hat (MLE)
6219	Theta star (bias corrected MLE)	5901	Theta hat (MLE)
81.26	nu star (bias corrected)	85.64	nu hat (MLE)
		5615	Mean (detects)

FTMM-66, Functional Area 1B Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2297	Mean	0.01	Minimum
0.01	Median	24877	Maximum
2.034	CV	4672	SD
0.115	k star (bias corrected MLE)	0.112	k hat (MLE)
20050	Theta star (bias corrected MLE)	20593	Theta hat (MLE)
25.21	nu star (bias corrected)	24.54	nu hat (MLE)
		0.0478	Adjusted Level of Significance (β)
14.66	Adjusted Chi Square Value (25.21, β)	14.77	Approximate Chi Square Value (25.21, α)
3949	95% Gamma Adjusted UCL (use when n<50)	3920	Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

95%

Mean (KM)	2392	SD (KM)	4606
Variance (KM)	21212856	SE of Mean (KM)	444.2
k hat (KM)	0.27	k star (KM)	0.268
nu hat (KM)	59.35	nu star (KM)	59.06
theta hat (KM)	8868	theta star (KM)	8911
80% gamma percentile (KM)	3557	90% gamma percentile (KM)	7139
95% gamma percentile (KM)	11332	99% gamma percentile (KM)	22386

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (59.06, α)	42.39	Adjusted Chi Square Value (59.06, β)	42.2
95% Gamma Approximate KM-UCL (use when n>=50)	3333	95% Gamma Adjusted KM-UCL (use when n<50)	3348

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.945	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.122	Lilliefors GOF Test
5% Lilliefors Critical Value	0.131	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2387	Mean in Log Scale	6.096
SD in Original Scale	4629	SD in Log Scale	1.901
95% t UCL (assumes normality of ROS data)	3119	95% Percentile Bootstrap UCL	3118
95% BCA Bootstrap UCL	3262	95% Bootstrap t UCL	3315
95% H-UCL (Log ROS)	4841		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	6.261	KM Geo Mean	523.9
KM SD (logged)	1.677	95% Critical H Value (KM-Log)	2.929
KM Standard Error of Mean (logged)	0.162	95% H-UCL (KM -Log)	3422
KM SD (logged)	1.677	95% Critical H Value (KM-Log)	2.929
KM Standard Error of Mean (logged)	0.162		

FTMM-66, Functional Area 1B

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 2374
 Mean in Log Scale
 5.952

 SD in Original Scale
 4639
 SD in Log Scale
 1.95

 95% t UCL (Assumes normality)
 3108
 95% H-Stat UCL
 4723

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 3333

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

FTMM-66, Functional Area 2A

User Selected Options

Date/Time of Computation ProUCL 5.11/23/2017 6:57:10 AM

From File CA.ProUCL.Input.012317_b.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

TPH

General Statistics

Total Number of Observations	8	Number of Distinct Observations	7
Number of Detects	3	Number of Non-Detects	5
Number of Distinct Detects	3	Number of Distinct Non-Detects	4
Minimum Detect	168.1	Minimum Non-Detect	162
Maximum Detect	3385	Maximum Non-Detect	172
Variance Detects	2634824	Percent Non-Detects	62.5%
Mean Detects	1903	SD Detects	1623
Median Detects	2155	CV Detects	0.853
Skewness Detects	-0.683	Kurtosis Detects	N/A
Mean of Logged Detects	6.976	SD of Logged Detects	1.619

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.982	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.228	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

506.5	KM Standard Error of Mean	815.2	KM Mean
N/A	95% KM (BCA) UCL	1170	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	1775	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	1648	95% KM (z) UCL
3023	95% KM Chebyshev UCL	2335	90% KM Chebyshev UCL
5855	99% KM Chebyshev UCL	3978	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

1.003 k hat (MLE) k star (bias corrected MLE) N/A

FTMM-66, Functional Area 2A

N/A	Theta star (bias corrected MLE)	1897	Theta hat (MLE)
N/A	nu star (bias corrected)	6.018	nu hat (MLE)
		1903	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

713.5	Mean	0.01	Minimum
0.01	Median	3385	Maximum
1.839	CV	1312	SD
0.156	k star (bias corrected MLE)	0.117	k hat (MLE)
4569	Theta star (bias corrected MLE)	6123	Theta hat (MLE)
2.499	nu star (bias corrected)	1.864	nu hat (MLE)
		0.0195	Adjusted Level of Significance (β)
0.142	Adjusted Chi Square Value (2.50, β)	0.241	Approximate Chi Square Value (2.50, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	7403	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	815.2	SD (KM)	1170
Variance (KM)	1368404	SE of Mean (KM)	506.5
k hat (KM)	0.486	k star (KM)	0.387
nu hat (KM)	7.769	nu star (KM)	6.189
theta hat (KM)	1679	theta star (KM)	2107
80% gamma percentile (KM)	1310	90% gamma percentile (KM)	2316
95% gamma percentile (KM)	3426	99% gamma percentile (KM)	6228

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.19, α)	1.737	Adjusted Chi Square Value (6.19, β)	1.208
95% Gamma Approximate KM-UCL (use when n>=50)	2904	95% Gamma Adjusted KM-UCL (use when n<50)	4177

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.86	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.334	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	723.4	Mean in Log Scale	4.219
SD in Original Scale	1306	SD in Log Scale	2.514
95% t UCL (assumes normality of ROS data)	1598	95% Percentile Bootstrap UCL	1413
95% BCA Bootstrap UCL	1717	95% Bootstrap t UCL	17033
95% H-UCL (Log ROS)	2191788		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	5.798	KM Geo Mean	329.6
KM SD (logged)	1.22	95% Critical H Value (KM-Log)	3.987
KM Standard Error of Mean (logged)	0.528	95% H-UCL (KM -Log)	4359

FTMM-66, Functional Area 2A

KM SD (logged) 1.22 95% Critical H Value (KM-Log) 3.987

KM Standard Error of Mean (logged) 0.528

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 765.7
 Mean in Log Scale
 5.381

 SD in Original Scale
 1280
 SD in Log Scale
 1.579

 95% t UCL (Assumes normality)
 1623
 95% H-Stat UCL
 14556

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1775

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

FTMM-66, Functional Area 2B

User Selected Options

Date/Time of Computation ProUCL 5.11/23/2017 7:00:17 AM

From File CA.ProUCL.Input.012317_c.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

TPH

General Statistics

Total Number of Observations	56	Number of Distinct Observations	46
		Number of Missing Observations	8
Number of Detects	27	Number of Non-Detects	29
Number of Distinct Detects	27	Number of Distinct Non-Detects	19
Minimum Detect	217	Minimum Non-Detect	161
Maximum Detect	31639	Maximum Non-Detect	191
Variance Detects	46031506	Percent Non-Detects	51.79%
Mean Detects	6625	SD Detects	6785
Median Detects	5482	CV Detects	1.024
Skewness Detects	2.108	Kurtosis Detects	6.167
Mean of Logged Detects	8.226	SD of Logged Detects	1.254

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.802	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.172	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	3277	KM Standard Error of Mean	768
KM SD	5639	95% KM (BCA) UCL	4715
95% KM (t) UCL	4562	95% KM (Percentile Bootstrap) UCL	4584
95% KM (z) UCL	4541	95% KM Bootstrap t UCL	5046
90% KM Chebyshev UCL	5581	95% KM Chebyshev UCL	6625
97.5% KM Chebyshev UCL	8073	99% KM Chebyshev UCL	10918

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.208	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.773	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.0844	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.173	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.92	k star (bias corrected MLE)	1.00	k hat (MLE)
7203	Theta star (bias corrected MLE)	6580	Theta hat (MLE)
49.66	nu star (bias corrected)	54.37	nu hat (MLE)
		6625	Mean (detects)

FTMM-66, Functional Area 2B Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

3194	Mean	0.01	Minimum
0.01	Median	31639	Maximum
1.796	CV	5737	SD
0.127	k star (bias corrected MLE)	0.122	k hat (MLE)
25084	Theta star (bias corrected MLE)	26189	Theta hat (MLE)
14.26	nu star (bias corrected)	13.66	nu hat (MLE)
		0.0457	Adjusted Level of Significance (β)
6.614	Adjusted Chi Square Value (14.26, β)	6.751	Approximate Chi Square Value (14.26, α)
6887	95% Gamma Adjusted UCL (use when n<50)	6748	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3277	SD (KM)	5639
Variance (KM)	31803102	SE of Mean (KM)	768
k hat (KM)	0.338	k star (KM)	0.332
nu hat (KM)	37.83	nu star (KM)	37.13
theta hat (KM)	9704	theta star (KM)	9885
80% gamma percentile (KM)	5138	90% gamma percentile (KM)	9540
95% gamma percentile (KM)	14511	99% gamma percentile (KM)	27276

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (37.13, α)	24.18	Adjusted Chi Square Value (37.13, β)	23.91
95% Gamma Approximate KM-UCL (use when n>=50)	5033	95% Gamma Adjusted KM-UCL (use when n<50)	5091

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.923	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	3293	Mean in Log Scale	6.627
SD in Original Scale	5682	SD in Log Scale	1.815
95% t UCL (assumes normality of ROS data)	4564	95% Percentile Bootstrap UCL	4580
95% BCA Bootstrap UCL	4983	95% Bootstrap t UCL	5016
95% H-UCL (Log ROS)	9190		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	6.597	KM Geo Mean	733.2
KM SD (logged)	1.789	95% Critical H Value (KM-Log)	3.438
KM Standard Error of Mean (logged)	0.244	95% H-UCL (KM -Log)	8317
KM SD (logged)	1.789	95% Critical H Value (KM-Log)	3.438
KM Standard Error of Mean (logged)	0.244		

FTMM-66, Functional Area 2B

DL/2 Normal DL/2 Log-Transformed

 Mean in Original Scale
 3239
 Mean in Log Scale
 6.28

 SD in Original Scale
 5712
 SD in Log Scale
 2.081

 95% t UCL (Assumes normality)
 4516
 95% H-Stat UCL
 13748

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 5033

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Attachment A Calculation of Arithmetic Mean for Functional Area 2A FTMM-66

Boring ID / Sample	Field Sample ID	Sample Date	Sample Depth (feet bgs)	Sample Type	Total Petroleum Hydrocarbons (mg/kg) Original Results	Total Petroleum Hydrocarbons (mg/kg) Calculation of Arithmetic Mean ^A
886-14	886-14-0-6 "	3/12/2002	0.5	N	168	168
886-14	886-14-24 "	3/12/2002	2	N	3,385	3,385
886-16	886-16-0-6 "	3/12/2002	0.5	N	ND	0
886-16	886-16-24 "	3/12/2002	2	N	ND	0
886-34	886-34-0-6 "	4/19/2002	0.5	N	ND	0
886-34	886-34-24 "	4/19/2002	2	N	2,155	2,155
866-47	866-47-0-6"	6/18/2002	0.5	N	ND	0
866-47	886-47 2'	6/18/2002	2	N	ND	0
					Arithmetic Mean:	714

Notes:

^A - Per NJDEP (2012), nondetects are replaced with 0 when calculating the arithmetic mean. **Bold** indicates sample detection.