U.S. Army GarrisonFort Monmouth, New Jersey

Underground Storage Tank Closure Report

Main Post - (former)Bldg.1076

NJDEP UST Registration No. 081533-209

January 2007

UNDERGROUND STORAGE TANK REPORT

MAIN POST –(FORMER) BUILDING 1076 NJDEP UST REGISTRATION NO. 081533-209

JANUARY 2007

PROJECT NO.: 05-41615

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ DIRECTORATE OF PUBLIC WORKS BUILDING 167 FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY	IV
1.0	UND	ERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES	1
	1.1	Overview	1
	1.2	Site Description	2
		1.2.1 Geological/Hydrogeological Setting	2
	1.3	Health and Safety	4
	1.4	Removal of Underground Storage Tank	4
		1.4.1 General Procedures	4
		1.4.2 Underground Storage Tank Excavation	4
	1.5	Underground Storage Tank Decommissioning and Disposal	5
2.0	SITE	INVESTIGATION ACTIVITIES	6
	2.1	Overview	6
	2.2	Field Screening/Monitoring	6
	2.3	Soil Sampling	7
3.0	CON	CLUSIONS AND RECOMMENDATIONS	8
	3.1	Soil Sampling Results	8
	3.2	Conclusions and Recommendations	8

TABLE OF CONTENTS (CONTINUED)

FIGURES

Figure 1 Site Location Map

Figure 2 Soil Sampling Location Site Map

TABLES

Table 1 Summary of Laboratory Analysis

Table 2 Summary of Laboratory Analytical Results-TPH

APPENDICES

Appendix A Certifications

Appendix B UST Disposal Certificate

Appendix C Soil Analytical Data Package

EXECUTIVE SUMMARY

UST Closure

On January 12, 2005, a double wall fiberglass underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. The UST was located next to former Building 1076 in the Main Post area of Fort Monmouth. UST No. 81533-209 was a 20,000-gallon No. 2 heating oil tank. The fill port and associated double wall supply/return piping was present in the excavation and also removed. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E) and the NJDEP *Field Sampling Procedures Manual (August, 2005)*. Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes. No holes were found in the UST and no contaminated soils were observed surrounding the tank.

After removing the UST and piping, closure soil samples were collected. Samples 1076A, 1076B, 1076C, 1076D, 1076E, 1076F, 1076G, 1076H, 1076I and 1076J-Duplicate were collected from a total of nine (9) locations along the sidewalls bottom of the excavation. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was encountered at approximately 5.5 feet below surface grade in the excavation.

Findings

All the closure soil samples collected from the UST excavation associated with former UST No. 81533-209 contained no TPH concentrations above the laboratory method detection limits. All samples were Not Detected.

Site Restoration

Following receipt of the closure soil sampling results, the excavation was backfilled to grade with a combination of excavated soil and clean fill. The excavation site was then restored to its original grade with four inches of topsoil and seeded.

Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants are not present in the location of the former UST.

No Further Action is proposed in regard to the closure and site assessment of UST No. 81533-209 at (former) Building 1076.

1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No. 081533-209, was closed at (former) Building 1076 of Main Post at U.S. Army Garrison, Fort Monmouth, New Jersey on January 12, 2005. Refer to site location map on Figure 1. This report presents the results of the implementation of the DPW's UST Management Plan, March, 1996. The UST was a 20,000-gallon, double-wall fiberglass tank containing No. 2 heating oil for fuel supply to a boiler plant for the hospital.

Decommissioning activities for UST No. 81533-209 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: N.J.A.C. 7:14B-1 et seq., N.J.A.C. 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure Report has been prepared by TVS to assist the U.S. Army Garrison DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (N.J.A.C. 7:14B-9 et seq. December, 1987 and revisions dated May 19, 2003).

This report was prepared using information required by the *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E) (*Technical Requirements*). Section 1 of this UST Closure Report provides a summary of the UST decommissioning activities. Section 2 of this report describes the UST closure and site investigation activities. Conclusions and recommendations, including the results of the soil sampling investigation, are presented in Section 3 of this report.

1.2 SITE DESCRIPTION

Building 1076, was located in the eastern portion of the Main Post area of Fort Monmouth. UST No. 81533-209 was located on the east side of Building 1076. The fill port, double wall supply/return piping and vent were present in the excavation and also removed. A site map is provided in Figure 1.

1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of the former Building 1076 area. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Main Post area.

Regional Geology

Monmouth County lies within the New Jersey Section of the Atlantic Coastal Plain physiographic province. The Main Post, Charles Wood and the Evans areas are located in what may be referred to as the Outer Coastal Plain subprovince, or the Outer Lowlands.

In general, New Jersey Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, sand and gravel. These formations typically strike northeast-southwest with a dip ranging from 10 to 60 feet per mile and were deposited on Precambrian and lower Paleozoic rocks (Zapecza, 1989). These sediments, predominantly derived from deltaic, shallow marine, and continental shelf environments, date from Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units which are generally thicker to the southeast and reflect a deeper water environment. Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations). The individual thicknesses for these units vary greatly (i.e., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from the Fall Line to greater than 6,500 feet in Cape May County (Brown and Zapecza, 1990).

Local Geology

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile. The upper member

(Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

Hydrogeology

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation.

Based on records of wells drilled in the Main Post area, water is typically encountered at depths of 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may produce 2 to 25 gallons per minute (gpm). Some well owners have reported acidic water that requires treatment to remove iron.

Due to the proximity of the Atlantic Ocean to Fort Monmouth, shallow groundwater may be tidally influenced and may flow toward creeks and brooks as the tide goes out, and away from creeks and brooks as the tide comes in. However, an abundance of clay lenses and sand deposits were noted in borings installed throughout Fort Monmouth. Therefore the direction of shallow groundwater should be determined on a case by case basis.

Shallow groundwater is locally influenced within the Main Post area by the following factors:

- tidal influence (based on proximity to the Atlantic Ocean, rivers and tributaries)
- topography
- nature of the fill material within the Main Post area
- presence of clay and silt lenses in the natural overburden deposits
- local groundwater recharge areas (e.g., streams, lakes)

Due to the fluvial nature of the overburden deposits (e.g., sand and clay lenses), shallow groundwater flow direction is best determined on a case-by-case basis. This is consistent with lithologies observed in borings installed within the Main Post area, which primarily consisted of fine-to-medium grained sands, with occasional lenses or laminations of gravel silt and/or clay.

Building 1076 was located approximately 1,650 feet south of Husky Brook, the nearest water body, which flows into Oceanport Creek and then into the Shrewsbury River. Based on the Main Post topography, the groundwater flow in the area of Building 1076 is anticipated to be to the north.

1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

1.4 REMOVAL OF UNDERGROUND STORAGE TANK

1.4.1 General Procedures

- All underground utilities were marked out by the respective shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.
- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- A certified Subsurface Evaluator was present during all closure activities.

1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was removed to expose the UST. The tank was out-of-service due to the scheduled demolition of the building. It was previously emptied of all liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on polyethylene sheeting, labeled and examined. No holes were observed in the tank during the inspection by the Subsurface Evaluator. Soils surrounding the UST were screened visually and with an OVA for evidence of contamination. No contamination was observed during the UST removal.

1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

The UST was purged with air to remove vapors prior to cutting. A 4 foot by 3 foot access hole was made in the UST using a demolition saw. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS to Recycling Technology Center, Inc., Shafto Rd., Tinton Falls, NJ for disposal in compliance with all applicable regulations and laws. Refer to Appendix B for UST disposal certificate.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

2.0 SITE INVESTIGATION ACTIVITIES

2.1 OVERVIEW

The Site Investigation was managed and carried out by U.S. Army-DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP Field Sampling Procedures Manual (August, 2005). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (December 17, 2002 and revisions dated February 3, 2003) which was the applicable regulation at the date of the closure. All records of the Remedial Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Assessment Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

2.3 SOIL SAMPLING

On January 12, 2005, closure soil samples 1076A, 1076B, 1076C, 1076D, 1076E, 1076F, 1076G, 1076H, 1076I and 1076J-Duplicate were collected from a total of nine (9) locations along the sidewalls of the UST excavation and along the piping. Groundwater was encountered at approximately 5.5 feet in the excavation. All samples were analyzed for TPH.

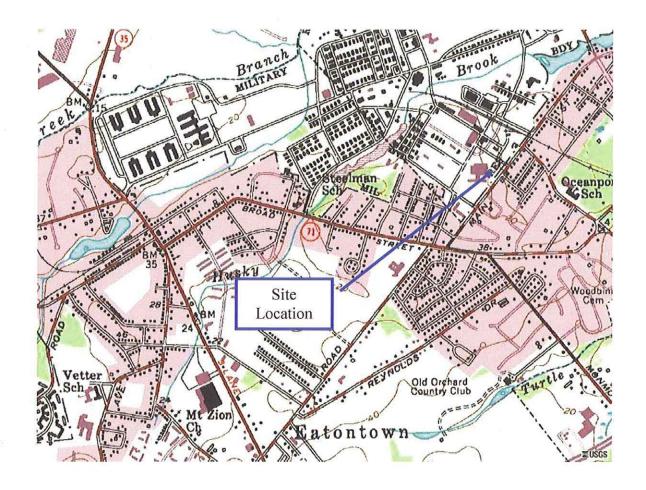
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected using properly decontaminated stainless steel trowels. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

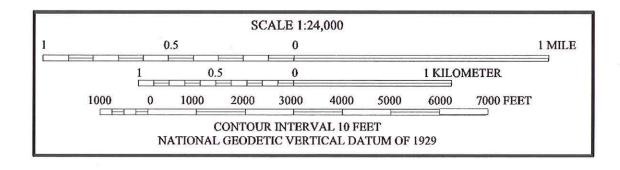
3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of nine locations on January 12, 2005 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (N.J.A.C. 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix C.

Closure soil samples collected on January 12, 2005 from the UST No. 81533-209 excavation contained concentrations of TPH below the laboratory method detection limits. All soil samples were Not Detected.

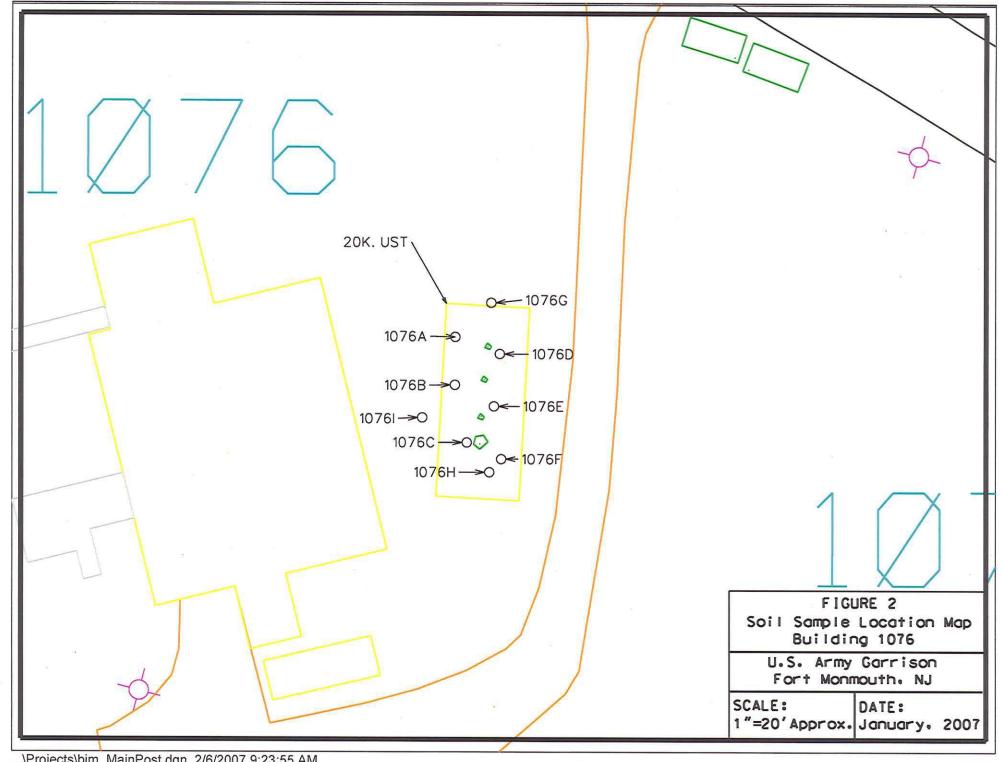

3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all soil samples collected from the UST closure excavation at UST No. 81533-209 were below the NJDEP soil cleanup criteria for total organic contaminants.

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion for total organic contaminants of 10,000 mg/kg are not present at the location of former UST No. 81533-209.

No Further Action is proposed in regard to the closure and site assessment of UST No. 81533-209 at (former) Building 1076.

FIGURES



SOURCE: USGS 7½-MINUTE SERIES (TOPOGRAPHIC) LONG BRANCH QUADRANGLE, NEW JERSEY, 1981.

FIGURE 1

SITE LOCATION MAP BUILDING 1076 UST NO. 81533-209 FT. MONMOUTH, NJ

...\Projects\bim_MainPost.dgn 2/6/2007 9:23:55 AM

TABLES

TABLE 1

SUMMARY OF LABORATORY ANALYSIS FT. MONMOUTH, (FORMER) BUILDING 1076, UST No. 81533-209 12 January 2005

SAMPLE ID	LABORATORY SAMPLE ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTICAL PARAMETER	ANALYTICAL METHOD
1076A	5002001	12-January-05	SOIL	TPH	OQA-QAM-25
1076B	5002002	12-January-05	SOIL	TPH	OQA-QAM-25
1076C	5002003	12-January-05	SOIL	TPH	OQA-QAM-25
1076D	5002004	12-January-05	SOIL	TPH	OQA-QAM-25
1076E	5002005	12-January-05	SOIL	TPH	OQA-QAM-25
1076F	5002006	12-January-05	SOIL	TPH	OQA-QAM-25
1076G	5002007	12-January-05	SOIL	TPH	OQA-QAM-25
1076H	5002008	12-January-05	SOIL	TPH	OQA-QAM-25
1076I	5002009	12-January-05	SOIL	TPH	OQA-QAM-25
1076J (dupl, B)	5002010	12-January-05	SOIL	TPH	OQA-QAM-25
TRIP BLANK	5002011	12-January-05	METHANOL	VOA	SW-846, 8260

ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, Method NJDEP OQA-QAM-25

VOA = Volatile Organic Analysis, EPA SW-846 Method 8260

TABLE 2

SUMMARY OF LABORATORY ANALYTICAL RESULTS FT. MONMOUTH, (FORMER) BUILDING 1076, UST No. 81533-209 12 January 2005

TOTAL PETROLEUM HYDROCARBONS

SAMPLE ID	LABORATORY SAMPLE ID	SAMPLE LOCATION	SAMPLE DEPTH	MATRIX	TPH RESULTS
			(in feet)		mg/kg
1076A	5002001	Northwest Wall UST 1	5.0 - 55	Soil	ND
1076B	5002002	Northwest Wall UST 2	5.0 - 55	Soil	ND
1076C	5002003	Northwest Wall UST 3	5.0 - 55	Soil	ND
1076D	5002004	Southeast Wall UST 1	5.0 - 55	Soil	ND
1076E	5002005	Southeast Wall UST 2	5.0 - 55	Soil	ND
1076F	5002006	Southeast Wall UST 3	5.0 - 55	Soil	ND
1076G	5002007	Northeast Wall UST 1	5.0 - 55	Soil	ND
1076H	5002008	Southwest Wall UST 1	5.0 - 55	Soil	ND
1076I	5002009	Piping	2.0 - 25	Soil	ND
1076J (dupl. B)	5002010	Duplicate (Northwest Wall UST 2)	5.0 – 55	Soil	ND
Trip Blank	5002011			Methanol	

ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

NA = Compound Not Analyzed

*= Further Analyzed for Volatiles

Notes:

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

APPENDIX A CERTIFICATIONS

Site Remediation Program UST Site Remedial Investigation Report							
A. Facility Name:(former) Building 1076, Boiler Plant							
Facility Street Address:Guardrail Ave.							
Municipality: Oceanport County: Monmouth							
Block: NA Lot(s): NA Telephone Number: 732-532-6223							
B. Owner (RP)'s Name: U.S. Army Garrison-Directorate of Public Works							
Street Address: 167 Riverside Ave. City: Ft.Monmouth							
State: NJ Zip: 07703 Telephone Number: 732-532-6223							
C. (Check as appropriate) □ Site Investigation D. (Complete all that apply) Assigned Case Manager: Greg Zalaskus							
Report (SIR) \$500 Fee UST Registration Number: 81533-209 (7 digits)							
□ Remedial Investigation • Incident Report Number:(10 or 12 digits)							
Report (RIR) \$1000 Fee • Tank Closure Number C(N)9 C 9 C9 (7 characters)							
The attached report conforms to the specific reporting requirements of N.J.A.C. 7:26E							
State: NJ Zip:07703 Telephone Number: 732-532-5241							
(NOTE: Certification numbers required only if work was conducted on USTs regulated per N.J.S.A. 5 8: 10A-2 1 et seq.)							
F. Certification by the Responsible Party(ies) of the Facility: The following certification shall be signed [according to the requirements of N.J.A.C. 7: 14B-1.7(b)]as follows: 1. For a Corporation by a person authorized by a resolution of the board of directors to sign the document. A copy of the resolution, certified as a true copy by the secretary of the corporation, shall be submitted along with the certification; or 2. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or 3. For a municipality, State, federal or other public agency by either a principal executive officer or ranking elected Official. "I certify under penalty of law that I have personally examined and am familiar with the information submitted in this application and all attached documents, and that based on my inquiry of those individuals responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."							
Name (Print or Type): Title:							
Signature:							
Company Name: Date:							

APPENDIX B UST DISPOSAL CERTIFICATE

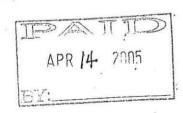
Mazza + Sons C05-00673

BLDG. 1076, 20,000 GAL-OBL. WALL FIBERGLASS UST

Origin: FORT MONMOUTH MONMOUTH

DATE IN: 01/13/2005 TIME IN: 14:54:30

DATE OUT: 01/13/2005 TIME OUT: 15:11


INBOUND TICKET Number: 01-000556

SCALE 1 GROSS WT. 35300 LB SCALE 1 TARE WT. 22500 LB NET WEIGHT 12800 LB

Qty Description Amount 6.40 INCOMING BULKY WAST 550.40

NET CHARGE AMOUNT: 550.40

Frank aurisi

APPENDIX C SOIL ANALYTICAL DATA PACKAGE

FORT MONMOUTH ENVIRONMENTAL

TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-4359 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461, NYSDOH #11699

ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: BLDG. 1076

Bldg, 1076

Field Sample Location	Laboratory Sample ID#	Matrix	Date and Time of Collection	Date Received
1076A-NW Wall 1	5002001	Soil	12-Jan-05 13:55	01/13/05
1076B-NW Wall 2	5002002	Soil	12-Jan-05 14:10	01/13/05
1076C-NW Wall 3	5002003	Soil	12-Jan-05 14:30	01/13/05
1076D-SE Wall 1	5002004	Soil	12-Jan-05 13:00	01/13/05
1076E-SE Wall 2	5002005	Soil	12-Jan-05 13:13	01/13/05
1076F-SE Wall 3	5002006	Soil	12-Jan-05 13:30	01/13/05
1076G-NE Wall	5002007	Soil	12-Jan-05 13:42	01/13/05
1076H-SW Wall	5002008	Soil	12-Jan-05 14:44	01/13/05
1076I-Piping	5002009	Soil	12-Jan-05 15:10	01/13/05
1076J-Duplicate	5002010	Soil	12-Jan-05 14:10	01/13/05
Trip Blank	5002011	Methanol	12-Jan-05	01/13/05

ANALYSIS:

FORT MONMOUTH ENVIRONMENTAL LAB TPHC, % SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright Date Laboratory Director

The enclosed report relates only to the items tested. The report may not be reproduced, except in full, without written approval of the U.S. Army Fort Monmouth Directorate of Public Works.

Table of Contents

Section	Page No.
Chain of Custody	1-4
Method Summary	5-6
Laboratory Chronicle	7-8
Conformance/Non-Conformance Summary	9-10
Total Petroleum Hydrocarbons Result Summary Calibration Summary Surrogate Results Summary MS/MSD Results Summary Raw Sample Data	11 12 13-22 23 24-25 26-47
Laboratory Deliverable Checklist	48
Laboratory Authentication Statement	49

CHAIN OF CUSTODY

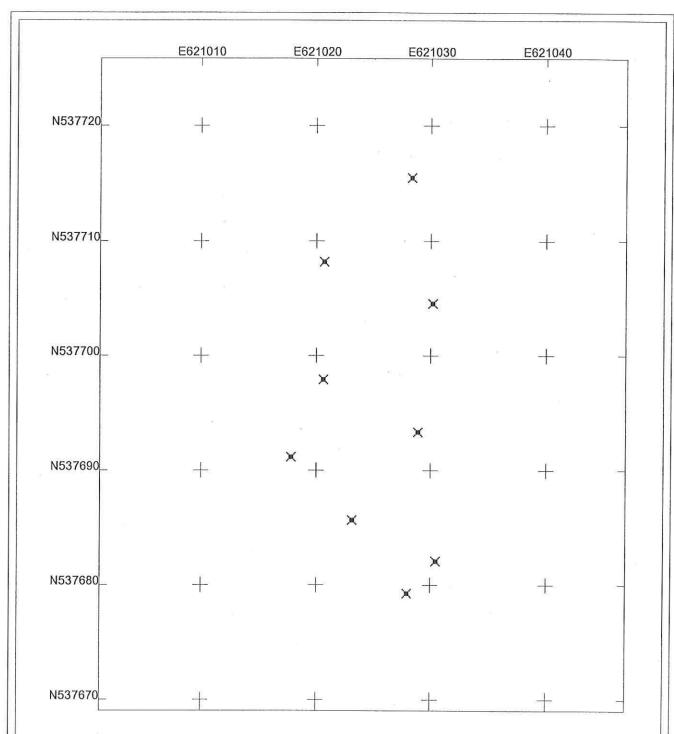
Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil
NJDEP Certification #13461

Chain of Custody Record

Customer: 1006 GUENTHER		Project No: 05 - 41615		Analysis Parameters							Comments:			
Phone: # X 209	Location: 8 L D G. 1076			米					7	少 (E	1			
()DERA ()OMA				1	+115				12	0/2	1			
Samplers Name / Co	mpany: FRANK ACC	WR5//TVS		Sample	#	1/1	16				20	DEPTH	A 7	725
LIMS/Work Order #	Sample Location	Date	Time	Туре	bottles	7	20			a E.J	18	DE	NOA	Remarks / Preservation Method
50000 01	1076A - NW WALL 1	1-12-05	1355	SOIL	2	X	X				0	5-55'	4141	(CE
	1076B-NW WALL 2	-	1410		2	X	x				0	5-5.5	4142	
03	1076C-NW WALL 3		1430		2	7	X				0	5-3.5	4143	
1 1 -	1076 D-SE WALL 1		1300		2	X	×			3	0	5-5.5	4114	
1 11	1076E-SE WALL 2		1313		2	X	×				0	5-5.5	+145	
100	1076F-SE WH4 3		1370		2	X	X				0	5-5.5	4146	
	1076G-NE WALL		1342		2	χ	X				0	5-5.5	\$147	
777	1076 H - SW WALL		i 444		2	X	X				0	5-5.5	4148	3.7
	1076 I - PIPING		1510		2	X	X	0			0	2-2.5	4149	
	1076 J - DUPLICATE		1910	7	2	X	X				0	5-5.5	4150	
d 11	TRIP BLANK	Ý	u=	AQ.			X				-	_	4151	
	, A													
Relinquished by (segnatur	Received by (signature): Relir			Relinq	elinquished by (signature):			Date/Time: Received by		ed by (signature):			
Relinquished by (signatur	Z C		Relinq	Relinquished by (signature):			Date/Time: Received by (sign							
Report Type: ()Full, ()	Reduced, ()Standard, ()Screen	n / non-certifie	i, ()EDD			Remar	ks: *	VOT	15	0~	25	70	> 1,0	OC PPM TPH, ON
Turnaround time: ()Stand	Curnaround time: ()Standard 3 wks, (X)Rush 2 Days, ()ASAP Verbal Hrs.													

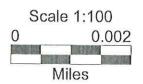
US ARMY - FT. MONMOUTH, NJ


BUILDING 1076 - UST #81533-209 SOIL SAMPLE GPS POSITIONS & COORDINATES

US STATE PLANE 1983, NJ (NY EAST) 2900, NAD 1983 (CONUS)

(IN US SURVEY FEET)

SAMPLE POINTS


1076A NW WALL1	537708.23	621020.637
1076B NW WALL 2	537697.966	621020.565
1076C NW WALL 3	537685.682	621023.09
1076D SE WALL 1	537704.588	621030.137
1076E SE WALL 2	537693.397	621028.868
1076F SE WALL 3	537682.113	621030.422
1076G NORTH WALL	537715.536	621028.295
1076H SOUTH WALL	537679.308	621027.897
1076I PIPING	537691.193	621017.779

U.S. Army - Ft. Monmouth Bldg 1076 UST # 81533-209 Soil Sample GPS Map

US State Plane 1983 New Jersey 2900 NAD 1983 (Conus)

B1076.cor 2/28/2005 GPS Pathfinder

METHOD SUMMARY

Method Summary

NJDEP Method OQA-QAM-025 10/97 Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g) of soil is added to a 125-ml acid cleaned and solvent rinsed capped Erlenmeyer flask. 15g anhydrous Sodium Sulfate is added to dry the sample. Surrogate standard spiking solution is then added to the flask.

Twenty-five ml of Methylene Chloride is added to the flask and it is secured on an orbital shaker table. The agitation rate is set to 400 rpm and the sample is shaken for 30 minutes. The flask is removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25-ml of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1-ml auto-sampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for Petroleum Hydrocarbons covering a range of C8-C42, including Pristane and Phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak. The final concentration of Total Petroleum Hydrocarbons is calculated using percent moisture, sample weight and concentration.

LABORATORY CHRONICLE

Laboratory Chronicle

Lab ID: 50020

Site: Bldg. 1076

Date **Hold Time** Date Sampled 01/12/05 NA Receipt/Refrigeration 01/13/05 NA Extractions 1. TPHC 01/14/05 14 days Analyses 1. TPHC 01/19/05 40 days

CONFORMANCE/ NONCONFORMANCE SUMMARY

TPHC CONFORMANCE/NON-CONFORMANCE SUMMARY REPORT

	(5)		Indicate Yes, No, N/A
1.	Method Detection Limits Provided		yes_
2.	Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank		120
3.	Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range)		<u>yes</u>
4.	Duplicate Results Summary Meet Criteria		<u>yes</u>
5.	IR Spectra submitted for standards, blanks and samples		<u>Na</u>
5.	Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted		-yes
7.	Analysis holding time met (If not met, list number of days exceeded for each sample)		-yes
Additio	onal comments:		
Labora	tory Manager: Date: 3	3-4-05	

TPHC

Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

DPW. SELFM-PW-EV

Project #:

50020

Location:

Bldg.1076

Bldg. 173

Ft. Monmouth, NJ 07703

UST Reg. #:

Analysis:

OQA-QAM-025

Date Received:

13-Jan-05

Matrix:

Soil

Date Extracted:

14-Jan-05

Inst. ID.:

GC TPHC INST. #1

Extraction Method: Analysis Complete :

Shake 19-Jan-05

Column Type:

RTX-5, 0.32mm ID, 30M

Analyst:

B.Patel

Injection Volume:

1uL

Lab ID	Field ID	Dilution Factor	Weight (g)	% Solid	MDL (mg/kg)	RL	TPHC Result (mg/kg)
5002001	1076A-NW	1.00	15.07	85.23	107	389	ND
5002002	1076B-NW	1.00	15.02	82.20	111	405	ND
5002003	1076C-NW	1.00	15.03	82.16	111	405	ND
5002004	1076D-SE	1.00	15.01	82.35	111	404	ND
5002005	1076E-SE	1.00	15.05	81.23	112	409	ND
5002006	1076F-SE	1.00	15.03	81.17	113	410	ND
5002007	1076G-NE	1.00	15.08	78.69	116	. 421	ND
5002008	1076H-SW	1.00	15.03	79.04	116	421	ND
5002009	1076I-Piping	1.00	15.00	89.37	103	373	ND
5002010	1076J-Duplicate	1.00	15.07	80.61	113	412	ND
		(4)					
					Tan Tan		
						a	
IETHOD BLANK	MB-011405-01	1.00	15.00	100.00	92	333	ND

ND = Not Detected

MDL = Method Detection Limit

RL = Reporting Limits

Note: The TPHC result between the MDL and RL are considered an estimated value

Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)
Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004

Calibration Files

CULL	DIGCIOII LIICD				
5	=T017596.D	10	=T017598.D	20	=T017599.D
50	$-\pi017597$ D	100	=T017595 D		

			53655							
		Compound	5	10		50				%RSD
1)		C8	2.385	2.323		2.409		2.364	E4	3.24
2)	\mathbf{T}	C10	2.291	2.339	2.364	2.510	2.578	2.416	E4	5.04
3)	\mathbf{T}	C12	2.221	2.291	2.328	2.496	2.590	2.385	E4	6.41
4)	\mathbf{T}	C14	2.262	2.338	2.372	2.558	2.658	2.438	E4	6.74
5)	\mathbf{T}	C16	2.330	2.412	2.448	2.633	2.744	2.514	E4	6.77
6)	\mathbf{T}	C18	2.229	2.312	2.350	2.544	2.671	2.421	E4	7.48
7)	\mathbf{T}	C20	2.301	2.390	2.423	2.614	2.731	2.492	E4	7.06
8)	\mathbf{T}	C22	2.375	2.459	2.489	2.686	2.804	2.562	E4	6.90
9)	\mathbf{T}	C24	2.408	2.485	2.519	2.716	2.832	2.592	E4	6.79
10)	\mathbf{T}	C26						2.661		5.39
11)	\mathbf{T}	C28	2.460					2.644		6.77
12)	\mathbf{T}	C30	2.460					2.669	0.14.00.000	7.65
13)	\mathbf{T}	C32	2.419					2.638		8.01
14)	\mathbf{T}	C34						2.693		5.74
15)	\mathbf{T}	C36						2.731		6.43
16)	\mathbf{T}	C38						2.641		7.05
17)	${f T}$	C40						2.589		7.47
18)	\mathbf{T}	C42	2.223	2.306	2.385	2.614	2.598	2.425	E4	7.22
19)	\mathbf{T}	Pristane	2.363	2.428	2.445	2.618	2.708	2.512	E4	5.73
20)	\mathbf{T}	Phytane								6.34
21)	T	TPHC (Manual Integrat								5.41
22)	H	TPHC (Total)								4.50
23)	S	Chlorobenzene (SURR.)								7.73
24)	S	O-Terphenyl (SURR.)	2.610	2.701	2.729	2.941	3.068	2.810	E4	6.71

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\050118\T017679.D

Acq On : 18 Jan 2005 7:58 am

Operator: PSkelton

Sample : Tstd050 Misc : TP011805.01

Inst : GC/MS Ins

IntFile

Multiplr: 1.00

Method

: EVENTSBP.E

: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

: GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF		%Dev	Area%	Dev(min)
1	T	C8	23.639	22.373	E3	5.4	93	-0.01
1 2	\mathbf{T}	C10	24.161	23.083		4.5	92	0.00
3	\mathbf{T}	C12	23.852	22.704		4.8	91	0.00
4	\mathbf{T}	C14	24.378	23.048		5.5	90	0.00
5	\mathbf{T}	C16	25.135	23.553	E3	6.3	89	0.00
6	\mathbf{T}	C18	24.211	22.772	E3	5.9	90	0.00
7	\mathbf{T}	C20	24.918	23.349		6.3	89	0.00
8	\mathbf{T}	C22	25.625	23.821	E3	7.0	89	0.00
9	\mathbf{T}	C24	25.921	24.069	E3	7.1	89	0.00
10	\mathbf{T}	C26	26.608	24.257	E3	8.8	88	0.00
11	\mathbf{T}	C28	26.443	24.257	E3	8.3	88	0.00
12	\mathbf{T}	C30	26.688	24.762	E3	7.2	88	-0.01
13	\mathbf{T}	C32	26.384	24.286 1	E3	8.0	87	-0.01
14	\mathbf{T}	C34	26.926	23.912 1	E3	11.2	86	-0.02
15	\mathbf{T}	C36	27.308	24.254 1	E3	11.2	85	-0.02
16	\mathbf{T}	C38	26.411	23.644 1	E3	10.5	85	-0.03
17	\mathbf{T}	C40	25.890	23.253 1	E3	10.2	84	-0.04
18	\mathbf{T}	C42	24.252	22.252 1	E3	8.2	85	-0.06
19	T	Pristane	25.124	23.541 I	E3	6.3	90	0.00
20	\mathbf{T}	Phytane	25.625	24.024 H	E3	6.2	90	0.00
21	T	TPHC (Manual Integration)		26.695 I	E3	13.4	88	0.96#
22	H	TPHC (Total)	26.281	23.860 I	E3	9.2	88	0.00
23	S	Chlorobenzene (SURR.)	17.349	17.227 H	E3	0.7	93	-0.01
24	S	O-Terphenyl (SURR.)	28.097	26.220 H	E3	6.7	89	0.00

Data File : C:\HPCHEM\1\DATA\050118\T017679.D

Vial: 76 Acq On : 18 Jan 2005 7:58 am Operator: PSkelton Sample : Tstd050 Inst : GC/MS Ins Multiplr: 1.00

: TP011805.01 Misc IntFile : EVENTSBP.E

Quant Time: Jan 18 8:38 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	К.Т.	Response	Conc Units	
System Monitoring Compounds 23) S Chlorobenzene (SURR.)	C 71	061250	46 201	
23) S Chlorobenzene (SURR.) Spiked Amount 10.000	5.71		46.381 mg/L	
	13.00	overy =		
24) S O-Terphenyl (SURR.) Spiked Amount 10.000			43.902 mg/L	
Spiked Amount 10.000	Rec	overy =	439.02%	
Target Compounds				
1) T C8	4.76	1118657	47.323 mg/L	
2) T C10	7.74	1154133	47.768 mg/L	
3) T C12	9.36	1135215	47.595 mg/L	
4) T C14	10.54	1152392	47.271 mg/L	
5) T C16	11.54	1177672	46.854 mg/L	
6) T C18	12.00	1138604	47.028 mg/L	
7) T C20	12.44	1167431	46.851 mg/L	
8) T C22	13.25	1191036	46.480 mg/L	
9) T C24	14.00	1203437	46.427 mg/L	
10) T C26	14.68	1212838	45.582 mg/L	
11) T C28	15.31	1212825	45.866 mg/L	
12) T C30	15.94	1238112	46.392 mg/L	
13) T C32	16.67	1214276	46.023 mg/L	
14) T C34	17.57	1195615	44.404 mg/L	
15) T C36	18.79	1212694	44.408 mg/L	
16) T C38	20.47	1182216	44.762 mg/L	
17) T C40	22.86	1162662	44.908 mg/L	
18) T C42	26.27	1112620	45.877 mg/L	
19) T Pristane	12.03	1177068	46.851 mg/L	
20) T Phytane	12.49	1201199	46.876 mg/L	
21) T TPHC (Manual Integration)	13.00	26695107	865.926 mg/L	m
22) H TPHC (Total)	12.00	23859561	907.857 mg/L	

Data File : C:\HPCHEM\1\DATA\050118\T017679.D

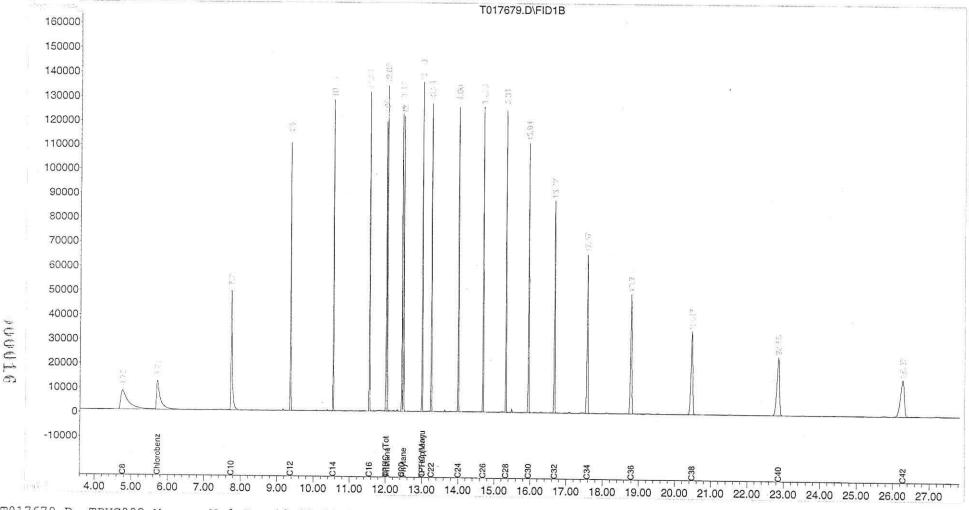
Acq On : 18 Jan 2005

7:58 am

Sample : Tstd050 Misc : TP011805.01 IntFile

Operator: PSkelton Inst : GC/MS Ins Multiplr: 1.00

Vial: 76


: EVENTSBP.E Quant Time: Jan 18 8:38 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\050118\T017690.D

Vial: 11

Acq On : 18 Jan 2005 2:34 pm Sample : Tstd050 Operator: PSkelton Inst : GC/MS Ins : TP011805.01 Multiplr: 1.00 Misc

IntFile : EVENTSBP.E

Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

:-		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1	\mathbf{T}	C8	23.639	26.342 E3	-11.4	109	-0.01
2	\mathbf{T}	C10	24.161	27.708 E3	-14.7	110	0.00
3 '	\mathbf{T}	C12	23.852	27.568 E3	-15.6	110	0.00
4	\mathbf{T}	C14	24.378	28.034 E3	-15.0	110	0.00
	\mathbf{T}	C16	25.135	28.720 E3	-14.3	109	0.00
	\mathbf{T}	C18	24.211	27.775 E3	-14.7	109	0.00
	\mathbf{T}	C20	24.918	28.504 E3	-14.4	109	0.00
8 '	\mathbf{T}	C22	25.625	29.290 E3	-14.3	109	0.00
9 '	\mathbf{T}	C24	25.921	29.690 E3	-14.5	109	0.00
10 '	\mathbf{T}	C26	26.608	29.993 E3	-12.7	109	0.00
11 '	\mathbf{T}	C28	26.443	29.950 E3	-13.3	108	0.00
12 '	\mathbf{T}	C30	26.688	30.407 E3	-13.9	108	0.00
13 '	\mathbf{T}	C32	26.384	30.039 E3	-13.9	108	0.00
14 '	\mathbf{T}	C34	26.926	29.829 E3	-10.8	107	-0.01
15	\mathbf{T}	C36	27.308	30.417 E3	-11.4	107	-0.01
16 '	\mathbf{T}	C38	26.411	29.864 E3	-13.1	107	-0.02
17 '	\mathbf{T}	C40	25.890	29.597 E3	-14.3	107	-0.02
	\mathbf{T}	C42	24.252	27.757 E3	-14.5	106	-0.03
19 '	\mathbf{T}	Pristane	25.124	28.576 E3	-13.7	109	0.00
0 - 0 - 0	\mathbf{T}	Phytane	25.625	29.240 E3	-14.1	109	0.00
21 7	\mathbf{T}	TPHC (Manual Integration)	30.828	32.578 E3	-5.7	108	0.00
22 I	H	TPHC (Total)	26.281	29.322 E3	-11.6	108	0.00
23 3	S	Chlorobenzene (SURR.)	17.349	20.502 E3	-18.2	111	0.00
24	S	O-Terphenyl (SURR.)	28.097	32.117 E3	-14.3	109	0.00

Data File : C:\HPCHEM\1\DATA\050118\T017690.D

Vial: 11 Acq On : 18 Jan 2005 2:34 pm Operator: PSkelton Sample : Tstd050 Misc : TP011805.01 IntFile : EVENTSBP.E Inst : GC/MS Ins Multiplr: 1.00 .

Quant Time: Jan 18 15:04 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method Last Update : Wed Dec 15 12:51:02 2004

Response via : Initial Calibration DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc 1	Jnits
	101			
System Monitoring Compounds				
23) S Chlorobenzene (SURR.)	5.72	1025092		mg/L
Spiked Amount 10.000	Reco	overy =		
Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	13.00	1605841		mg/L
Spiked Amount 10.000	Reco	overy =	534.09%	
Target Compounds				
1) T C8	4.76	1317121	55.719	mg/L
2) T C10	7.74	1385398	57.340	
3) T C12	9.36	1378391	57.790	
4) T C14	10.54	1401705	57.498	
5) T C16	11.55	1435987	57.131	
6) T C18	12.01	1388752	57.360	mg/L
7) T C20	12.44	1425198	57.196	mg/L
8) T C22	13.26	1464520	57.153	
9) T C24	14.00	1484503	57.270	
10) T C26	14.68	1499657		
11) T C28	15.32	1497506		
12) T C30	15.95	1520337		
13) T C32	16.67	1501929	56.926	
14) T C34	17.58	1491449	55.391	
15) T C36	18.80	1520836	55.692	mg/L
16) T C38	20.48	1493223		
17) T C40	22.88	1479828		mg/L
18) T C42	26.30		57.226	
19) T Pristane	12.04	1428824	56.872	mg/L
20) T Phytane	12.49	1462020	57.054	mg/L
21) T TPHC (Manual Integration)	12.04	32578410		
22) H TPHC (Total)	12.00	29322483	1115.721	mg/L

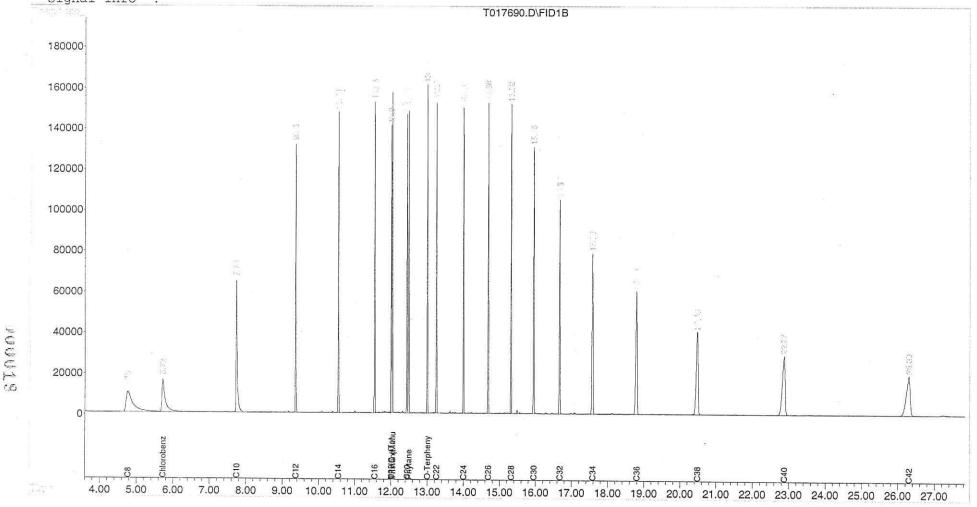
Vial: 11

Data File : C:\HPCHEM\1\DATA\050118\T017690.D

Acq On : 18 Jan 2005 2:34 pm Sample

Operator: PSkelton : Tstd050 Inst : GC/MS Ins Multiplr: 1.00

Misc : TP011805.01 IntFile : EVENTSBP.E


Quant Time: Jan 18 15:04 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\050118\T017695.D

Vial: 16

Acq On : 18 Jan 2005 5:35 pm Sample : Tstd050 Misc : TP011805.01

Operator: PSkelton

Inst : GC/MS Ins

Multiplr: 1.00

IntFile : EVENTSBP.E

: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Method

: GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area% Dev(min)
1	T	C8	23.639	23.166 E3	2.0	96 0.00
2	\mathbf{T}	C10	24.161	24.102 E3	0.2	96 0.00
3	\mathbf{T}	C12	23.852	23.860 E3	-0.0	96 0.00
4	\mathbf{T}	C14	24.378	24.208 E3	0.7	95 0.00
5	T	C16	25.135	24.783 E3	1.4	94 0.00
6	\mathbf{T}	C18	24.211	23.950 E3	1.1	94 0.00
7	\mathbf{T}	C20	24.918	24.593 E3	1.3	94 0.00
8	\mathbf{T}	C22	25.625	25.259 E3	1.4	94 0.00
9	\mathbf{T}	C24	25.921	25.566 E3	1.4	94 0.00
10	\mathbf{T}	C26	26.608	25.772 E3	3.1	93 0.00
11	${f T}$	C28	26.443	25.697 E3	2.8	93 0.00
12	\mathbf{T}	C30	26.688	26.055 E3	2.4	93 -0.01
13	\mathbf{T}	C32	26.384	25.704 E3	2.6	92 -0.01
14	\mathbf{T}	C34	26.926	25.465 E3	5.4	91 -0.02
15	\mathbf{T}	C36	27.308	25.906 E3	5.1	91 -0.02
16	\mathbf{T}	C38	26.411	25.449 E3	3.6	91 -0.03
17	\mathbf{T}	C40	25.890	25.296 E3	2.3	92 -0.04
18	\mathbf{T}	C42	24.252	23.832 E3	1.7	91 -0.07
19	\mathbf{T}	Pristane	25.124	24.677 E3	1.8	94 0.00
20	\mathbf{T}	Phytane	25.625	25.235 E3	1.5	94 0.00
21	\mathbf{T}	TPHC (Manual Integration)	30.828	28.337 E3	8.1	94 0.96#
22	H	TPHC (Total)	26.281	25.235 E3	4.0	93 0.00
23	S	Chlorobenzene (SURR.)	17.349	17.796 E3	-2.6	96 0.00
24	S	O-Terphenyl (SURR.)	28.097	27.613 E3	1.7	94 0.00

Multiplr: 1.00

Data File : C:\HPCHEM\1\DATA\050118\T017695.D

Vial: 16 Acq On : 18 Jan 2005 5:35 pm Sample : Tstd050 Operator: PSkelton Inst : GC/MS Ins

Misc : TP011805.01 IntFile : EVENTSBP.E

Quant Time: Jan 19 8:26 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Units	
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	Rec 13.00	overy =	478.61% 46.147 mg/L	
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14 5) T C16 6) T C18 7) T C20 8) T C22 9) T C24 10) T C26 11) T C28 12) T C30 13) T C32 14) T C34	4.76 7.74 9.36 10.54 11.54 12.00 12.44 13.25 14.00 14.68 15.31 15.94 16.67 17.57	1158292 1205125 1192982 1210395 1239138 1197521 1229643 1262974 1278303 1288588 1284826 1302738 1285195 1273270	49.879 mg/L 50.017 mg/L 49.651 mg/L 49.299 mg/L 49.348 mg/L 49.387 mg/L 49.315 mg/L 48.429 mg/L 48.589 mg/L 48.711 mg/L	
15) T C36 16) T C38 17) T C40 18) T C42 19) T Pristane 20) T Phytane 21) T TPHC (Manual Integration) 22) H TPHC (Total)	18.79 20.47 22.86 26.26 12.03 12.49	1295314 1272436 1264801 1191623 1233857	47.434 mg/L 48.178 mg/L 48.854 mg/L 49.135 mg/L 49.112 mg/L 49.239 mg/L	m

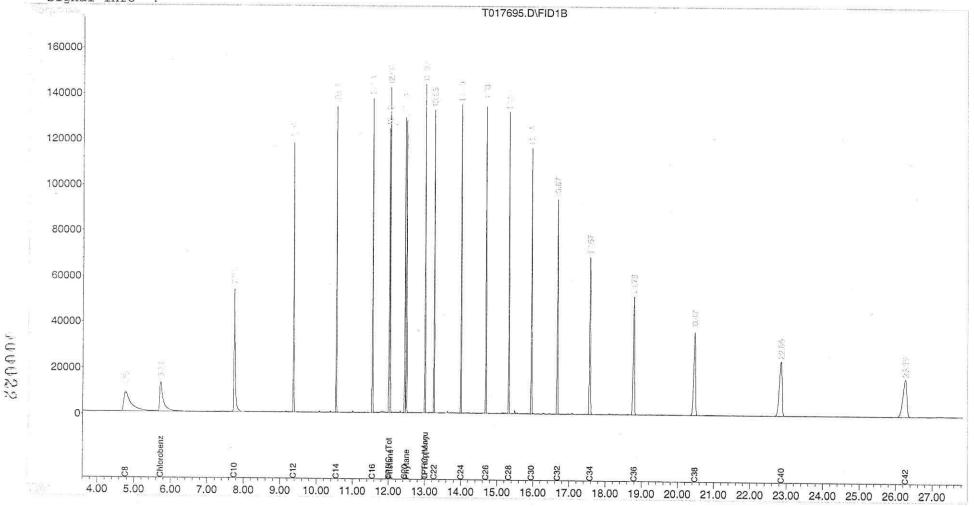
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\050118\T017695.D

Acq On : 18 Jan 2005 5:35 pm

Sample : Tstd050 Misc : TP011805.01 Vial: 16
Operator: PSkelton
Inst : GC/MS Ins
Multiplr: 1.00

IntFile : EVENTSBP.E


Quant Time: Jan 19 8:26 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Surrogate Recovery Report U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

50020

DPW. SELFM-PW-EV

Location:

Bldg.1076

Bldg. 173

UST Reg. #:

0

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

13-Jan-05

Matrix:

Soil

Date Extracted :

14-Jan-05

Inst. ID.

GC TPHC INST. #1

Extraction Method:

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

19-Jan-05

Injection Volume:

1uL

Analyst:

B.Patel

Lab ID	Surrogate Added (ppm)	Chlorobenzene Recovered (ppm)	Chlorobenzene % Recovery	O-Terphenyl Recovered (ppm)	O-Terphenyl % Recovery
5002001	10	10.59	105.9	11.35	113.5
5002002	10	11.17	111.7	11.68	116.8
5002003	10	11.49	114.9	11.65	116.5
5002004	10	10.94	109.4	11.34	113.4
5002005	10	10.94	109.4	11.69	116.9
5002006	10	10.93	109.3	11.73	117.3
5002007	10	10.35	103.5	11.15	111.5
5002008	10	9.35	93.5	10.16	101.6
5002009	10	9.62	96.2	9.97	99.7
5002010	10	9.83	98.3	10.39	103.9
	и				
					al Control of the Con
METHOD BLANK	10	10.90	109.0	10.89	108.9

SURROGATE STANDARDS		Lower Control Limits	Upper Control Limits
Chlorobenzene	QC Limits	60	130
O-Terphenyl	QC Limits	62	133

Matrix Spike/ Duplicate Recovery Report U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

50020

DPW. SELFM-PW-EV

Location:

Bldg.1076

Bldg. 173

UST Reg. #:

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received :

13-Jan-05

Matrix:

Soil

Date Extracted:

14-Jan-05

Inst. ID.

GC TPHC INST. #1

Date Extracted.

o. .

Column Type :

RTX-5, 0.32mm ID, 30M

Extraction Method : Analysis Complete :

Shake 19-Jan-05

Injection Volume:

1uL

Analyst:

B.Patel

Sample	Spike Amount Added (ppm)	Sample Amount (ppm)	Matrix Spike Amount (ppm)	Percent Recovery	QC Limits %
5002001MS	1000	5.42	883.43	87.80	55 - 129
5002001MSD	1000	5.42	1037.10	103.17	55 - 129

RPD	16.09	20.00
-----	-------	-------

NC = Not Calculated due to values are over the calibration range.

Quality Control Check Standard Summary U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

50020

DPW. SELFM-PW-EV

Location:

Bldg.1076

Bldg. 173

UST Reg. #:

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

13-Jan-05

Matrix:

Soil

Date Extracted:

14-Jan-05

Inst. ID.

GC TPHC INST. #1

Extraction Method:

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

19-Jan-05

Injection Volume:

1uL

Analyst:

B.Patel

Sample	Date Extracted	Spike Amount Added (ppm)	Matrix Spike Amount (ppm)	Percent Recovery	QC Limits %
LCS-011405-01	14-Jan-05	1000	1037.25	103.73	55 - 129

Misc : Soil IntFile : EVENTSBP.E

Quant Time: Jan 18 9:43 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004

Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Units	
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.)			10.899 mg/L 108.99% 10.891 mg/L	
Spiked Amount 10.000		very =		
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14	0.00 7.69 9.50 10.38	0 3803 661 160	N.D. mg/L 0.157 mg/L 0.028 mg/L 0.007 mg/L	
5) T C16 6) T C18 7) T C20 8) T C22	11.59 11.81 12.51 13.13	398 4018 3182 2866	0.016 mg/L 0.166 mg/L 0.128 mg/L 0.112 mg/L	
9) T C24 10) T C26 11) T C28	14.22 14.69 15.33	2553 2130 712	0.098 mg/L 0.080 mg/L 0.027 mg/L	
12) T C30 13) T C32 14) T C34	15.98 16.45 17.58	4148 3712 3531	0.155 mg/L 0.141 mg/L 0.131 mg/L	
15) T C36 16) T C38 17) T C40 18) T C42	18.64 20.34 22.96 0.00	13945 2771 11438 0	0.511 mg/L 0.105 mg/L 0.442 mg/L N.D. mg/L	
19) T Pristane 20) T Phytane 21) T TPHC (Manual Integration) 22) H TPHC (Total)	11.81 12.51	4018 3182 0		

Data File : C:\HPCHEM\1\DATA\050118\T017681.D

Acq On : 18 Jan 2005 9:10 am Sample : MB-011405-01

Operator: PSkelton Inst : GC/MS Ins

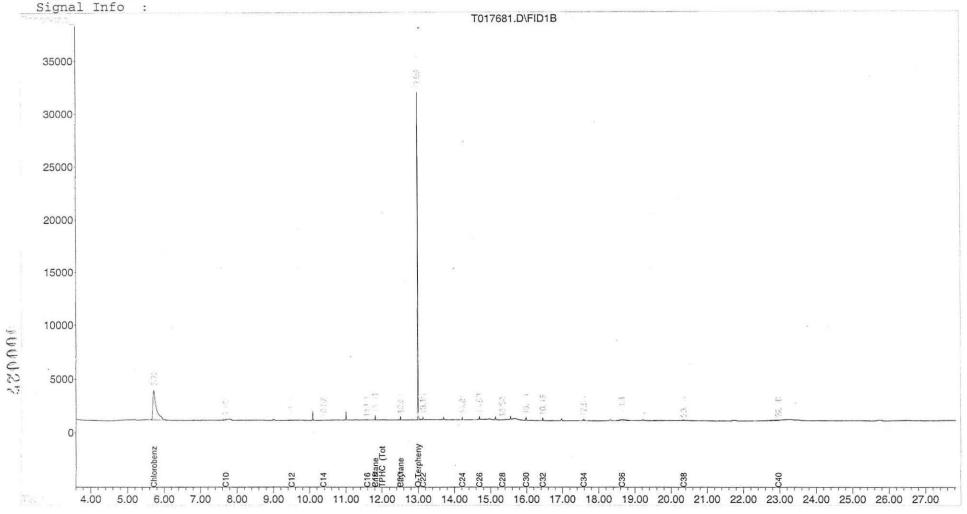
Sample : ME Misc : So

: Soil

Multiplr: 1.00

Vial: 2

IntFile : EVENTSBP.E


Ouant Time: Jan 18 9:43 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004
Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Data File : C:\HPCHEM\1\DATA\050118\T017682.D

Vial: 3 Acq On : 18 Jan 2005 9:46 am Sample : 5002001s Operator: PSkelton Inst : GC/MS Ins Multiplr: 1.00

Misc : IntFile : EVENTSBP.E

Quant Time: Jan 18 13:17 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Units	
System Monitoring Compounds				
23) S Chlorobenzene (SURR.)	5.72	173302	10.585 mg/L	
Spiked Amount 10.000	Rec	overy =		
24) S O-Terphenyl (SURR.)	12.99		11.350 mg/L	
Spiked Amount 10.000	Rec	overy =	113.50%	
Target Compounds				
1) T C8	0.00	0	N.D. mg/L	
2) T C10	7.69	3636	0.150 mg/L	
3) T C12	9.39	506	0.021 mg/L	
4) T C14	0.00	0	N.D. mg/L	
5) T C16	11.59	416	0.017 mg/L	
6) T C18	11.81	4433	0.183 mg/L	
7) T C20	12.51	3342	0.134 mg/L	
8) T C22	13.13	3002	0.117 mg/L	
9) T C24	14.21	2913	0.112 mg/L	
10) T C26	14.69	3975	0.149~mg/L	
11) T C28	15.33	329	0.012 mg/L	
12) T C30	15.98	4929	0.185 mg/L	
13) T C32	16.45	4901	0.186 mg/L	
14) T C34	17.58	4405	0.164 mg/L	
15) T C36	18.90	200	0.007 mg/L	
16) T C38	20.34	3554	0.135 mg/L	
17) T C40	22.92	7609	0.294 mg/L	
18) T C42	0.00	0	N.D. mg/L	
19) T Pristane	11.81	4433	0.176 mg/L	
20) T Phytane	12.51	3342	0.130 mg/L	_
21) T TPHC (Manual Integration)	0.00	0	N.D. mg/L	d
22) H TPHC (Total)	12.00	142424	5.419 mg/L	

Vial: 3

Data File : C:\HPCHEM\1\DATA\050118\T017682.D

: 18 Jan 2005 9:46 am Acq On

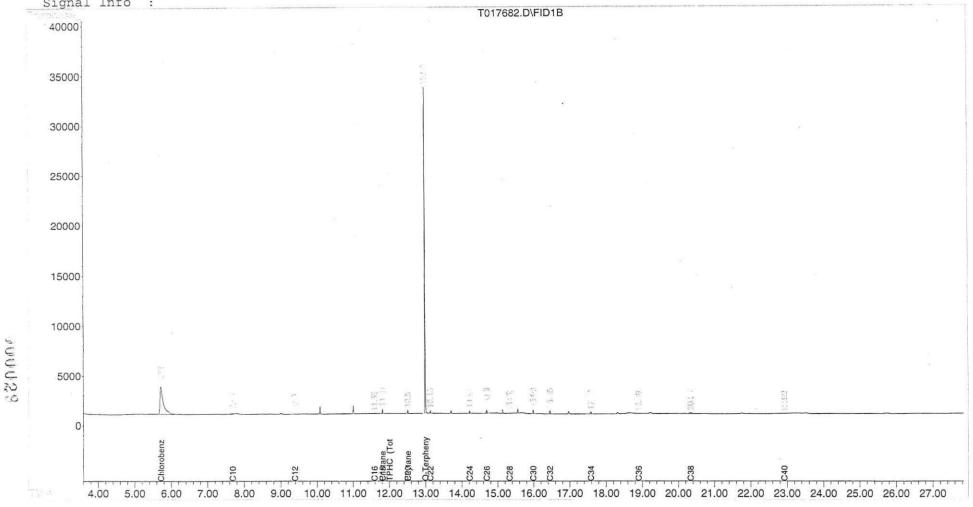
Operator: PSkelton : GC/MS Ins Inst

Sample Misc

: 5002001s

Multiplr: 1.00

IntFile : EVENTSBP.E


Quant Time: Jan 18 13:17 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

: GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcg Meth : TPHC002.M

Data File : $C:\HPCHEM\1\DATA\050118\T017685.D$

Vial: 6 Acq On : 18 Jan 2005 11:34 am Sample : 5002002s Misc : IntFile : EVENTSBP.E Operator: PSkelton Inst : GC/MS Ins Multiplr: 1.00

Quant Time: Jan 18 13:19 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration
DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Units
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	13.00	ery =	11.676 mg/L
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14 5) T C16 6) T C18 7) T C20 8) T C22 9) T C24 10) T C26 11) T C28 12) T C30 13) T C32 14) T C34 15) T C36 16) T C38 17) T C40 18) T C42 19) T Pristane 20) T Phytane 21) T TPHC (Manual Integration)	0.00 7.76 9.38 0.00 11.81f 11.81 12.51 13.13 14.22 14.69 15.13 15.99 16.45 17.59 18.67 20.35 23.34f 0.00 11.81 12.51 0.00	0 2873 716 0 1796 1796 1327 1324 1187 1388 1612 1952 1859 1614 5779 1405 5137 0 1796 1327	N.D. mg/L 0.119 mg/L 0.030 mg/L N.D. mg/L 0.071 mg/L 0.074 mg/L 0.053 mg/L 0.052 mg/L 0.052 mg/L 0.052 mg/L 0.061 mg/L 0.073 mg/L 0.070 mg/L 0.060 mg/L 0.212 mg/L 0.053 mg/L 0.198 mg/L 0.198 mg/L N.D. mg/L 0.052 mg/L

Data File : C:\HPCHEM\1\DATA\050118\T017685.D

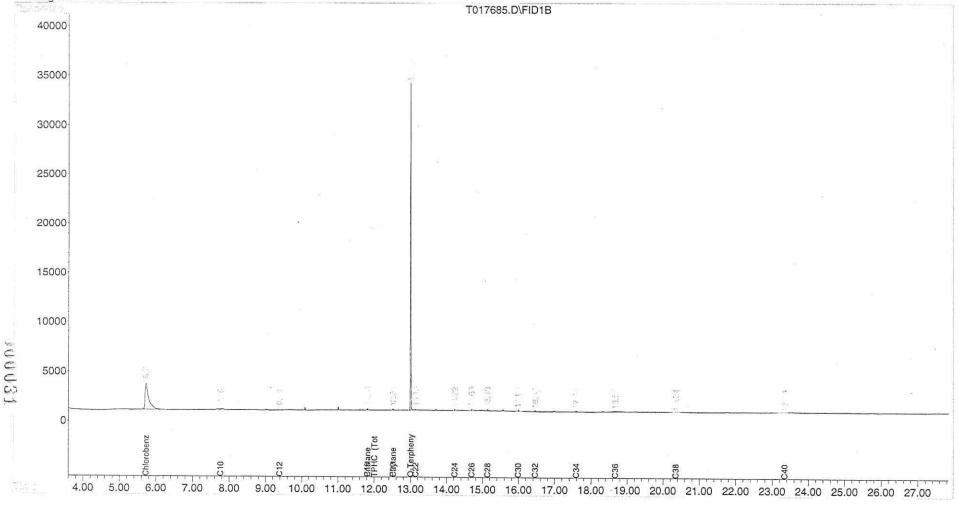
Acq On : 18 Jan 2005 11:34 am Vial: 6

Sample : 5002002s Operator: PSkelton : GC/MS Ins Inst

Misc

Multiplr: 1.00

IntFile : EVENTSBP.E


Quant Time: Jan 18 13:19 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth: TPHC002.M

Data File : C:\HPCHEM\1\DATA\050118\T017686.D

Vial: 7 Acq o.. Sample : Acq On : 18 Jan 2005 12:10 pm Operator: PSkelton : 5002003s Inst : GC/MS Ins Multiplr: 1.00

IntFile : EVENTSBP.E

Quant Time: Jan 18 13:19 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Unit	S
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	5.72 Reco 13.00	overy =	11.654 mg/	
Marget Compounds				
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14 5) T C16 6) T C18 7) T C20	4.85 7.69 0.00 0.00 11.81f 11.81 12.51	398 2962 0 0 1382 1382 1021	0.017 mg/ 0.123 mg/ N.D. mg/ N.D. mg/ 0.055 mg/	L L L
8) T C22	13.13	979	0.041 mg/ 0.038 mg/	L L
9) T C24 10) T C26 11) T C28 12) T C30 13) T C32 14) T C34	14.22 14.69 15.13 15.98 16.45	852 1041 1035 1255 1349 1119	0.033 mg/ 0.039 mg/ 0.039 mg/ 0.047 mg/ 0.051 mg/ 0.042 mg/	L ` L L L
15) T C36	18.79	353	0.042 mg/	
16) T C38 17) T C40 18) T C42 19) T Pristane 20) T Phytane 21) T TPHC (Manual Integration) 22) H TPHC (Total)	0.00 23.30f 0.00 11.81 12.51 0.00 12.00	0 2441 0 1382 1021 0 41017	N.D. mg/ 0.094 mg/ N.D. mg/ 0.055 mg/ 0.040 mg/ N.D. mg/ 1.561 mg/	L L L L L d

Data File : C:\HPCHEM\1\DATA\050118\T017686.D

: 18 Jan 2005 12:10 pm Sample

: 5002003s

Operator: PSkelton : GC/MS Ins Inst Multiplr: 1.00

Vial: 7

IntFile : EVENTSBP.E

Quant Time: Jan 18 13:19 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Volume Inj. : Signal Phase : Signal Info :

Misc

Data File : C:\HPCHEM\1\DATA\050118\T017687.D

Vial: 8 Acq On : 18 Jan 2005 12:46 pm Operator: PSkelton

Sample : 5002004s

Inst : GC/MS Ins

Misc : IntFile : EVENTSBP.E Multiplr: 1.00

Quant Time: Jan 18 13:20 2005 Quant Results File: TPHC002.RES Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method Last Update : Wed Dec 15 12:51:02 2004

Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	К.Т.	Response	Conc Units	
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	12.99	180109 overy = 301328 overy =	10.940 mg/L 109.40% 11.344 mg/L 113.44%	
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14 5) T C16 6) T C18 7) T C20 8) T C22 9) T C24 10) T C26 11) T C28 12) T C30 13) T C32 14) T C34	0.00 7.77 0.00 0.00 11.81f 11.81 12.51 13.13 14.22 14.69 15.13 15.98 16.45 0.00	0 2531 0 0 664 664 686 421 350 1584 472 592 615	N.D. mg/L 0.105 mg/L N.D. mg/L 0.026 mg/L 0.027 mg/L 0.028 mg/L 0.016 mg/L 0.014 mg/L 0.014 mg/L 0.018 mg/L 0.018 mg/L 0.022 mg/L 0.023 mg/L	an o
15) T C36 16) T C38 17) T C40 18) T C42 19) T Pristane	18.63 0.00 23.29f 0.00 11.81	3352 0 5396 0 664	0.123 mg/L N.D. mg/L 0.208 mg/L N.D. mg/L 0.026 mg/L	
20) T Phytane 21) T TPHC (Manual Integration) 22) H TPHC (Total)	12.51 0.00 12.00	686 0 31204	0.027 mg/L N.D. mg/L 1.187 mg/L	d

Operator: PSkelton

(OT Reviewed)

Data File : C:\HPCHEM\1\DATA\050118\T017687.D

Acq On : 18 Jan 2005 12:46 pm

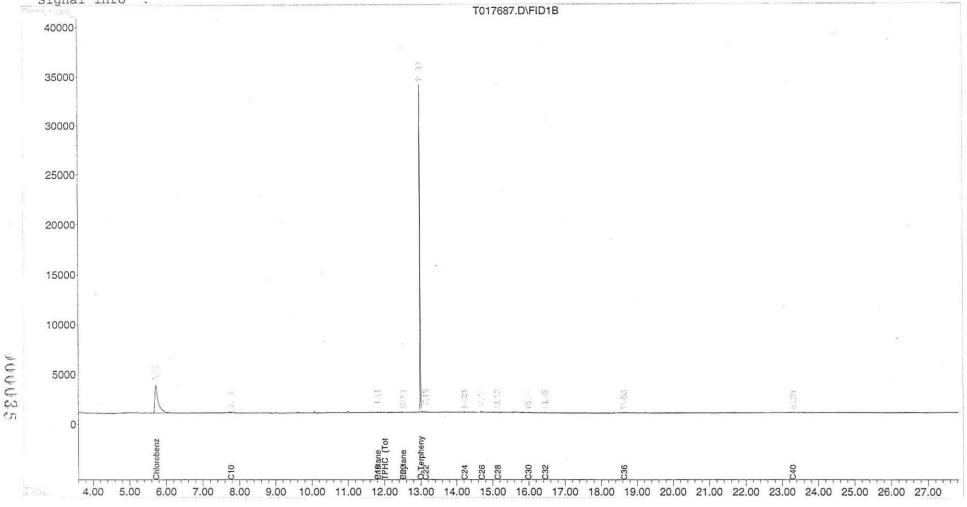
Sample : 5002004s

: GC/MS Ins Inst

Vial: 8

Misc Multiplr: 1.00

Intfile : EVENTSBP.E


Quant Time: Jan 18 13:20 2005 Quant Results File: TPHC002.RES

Ouant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

: GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcg Meth : TPHC002.M

Data File : C:\HPCHEM\1\DATA\050118\T017688.D

Vial: 9 Acq On : 18 Jan 2005 1:23 pm Operator: PSkelton : 5002005s Sample Inst : GC/MS Ins

Misc

Multiplr: 1.00

IntFile : EVENTSBP.E

Quant Time: Jan 18 13:51 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Units	
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	13.00	overy =	10.938 mg/L 109.38% 11.693 mg/L 116.93%	
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14 5) T C16 6) T C18 7) T C20 8) T C22 9) T C24 10) T C26 11) T C28 12) T C30 13) T C32	0.00 7.69 0.00 0.00 11.59 11.81 12.51 13.19 14.22 14.69 15.13 15.99 16.45	0 1188 0 0 343 3297 2463 414 1937 2386 2624 3152 3021	N.D. mg/L 0.049 mg/L N.D. mg/L N.D. mg/L 0.014 mg/L 0.136 mg/L 0.099 mg/L 0.075 mg/L 0.090 mg/L 0.099 mg/L 0.099 mg/L	
14) T C34 15) T C36 16) T C38 17) T C40 18) T C42 19) T Pristane 20) T Phytane 21) T TPHC (Manual Integration) 22) H TPHC (Total)	17.59 18.66 20.35 0.00 0.00 11.81 12.51 0.00 12.00	2712 1270 2191 0 0 3297 2463 0 57636	0.101 mg/L 0.046 mg/L 0.083 mg/L N.D. mg/L N.D. mg/L 0.131 mg/L 0.096 mg/L N.D. mg/L 2.193 mg/L	d

Data File : C:\HPCHEM\1\DATA\050118\T017688.D

: 18 Jan 2005 1:23 pm Acq On Sample : 5002005s

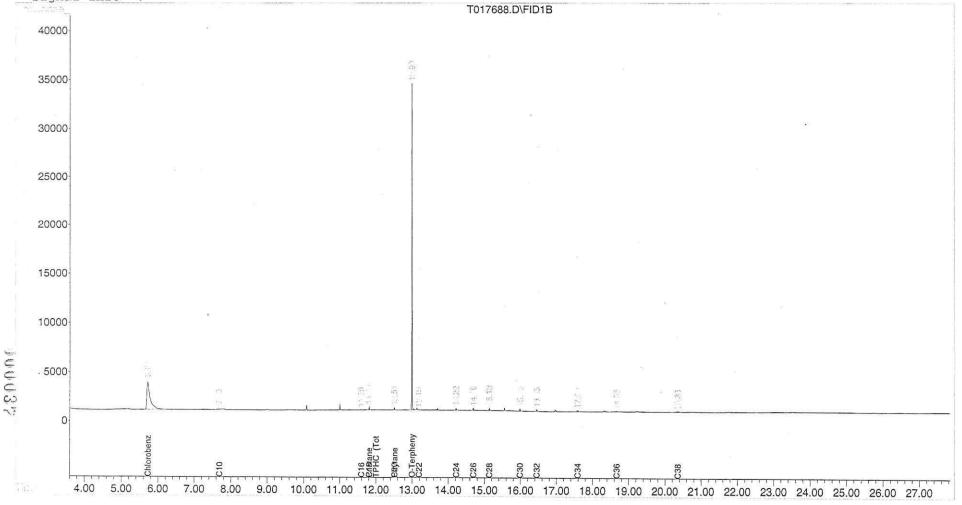
Operator: PSkelton : GC/MS Ins Inst Multiplr: 1.00

Vial: 9

IntFile : EVENTSBP.E

Quant Time: Jan 18 13:51 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)


Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Volume Inj. : Signal Phase : Signal Info :

Misc

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\050118\T017689.D

Acq On : 18 Jan 2005 1:59 pm

Vial: 10 Operator: PSkelton Inst : GC/MS Ins

: 5002006s Sample

Multiplr: 1.00

Misc

IntFile : EVENTSBP.E Quant Time: Jan 18 14:26 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc (Jnits
System Monitoring Compounds				
23) S Chlorobenzene (SURR.)	5.72	179921	10.930	mg/L
Spiked Amount 10.000	Reco	very =	109.30%	
24) S O-Terphenyl (SURR.)	12.99	313153	11.725	mg/L
Spiked Amount 10.000	Reco	overy =	117.25%	
Target Compounds				
1) T C8	0.00	0	N.D.	mg/L
2) T C10	7.69	3170	0.131	
3) T C12	0.00	0		mg/L
4) T C14	0.00	0	N.D.	
5) T C16	11.59	431	0.017	
6) T C18	11.81	3512	0.145	
7) T C20	12.51	2814	0.113	
8) T C22	13.19	329	0.013	
9) T C24	14.22	2244	0.087	
10) T C26	14.69	2674	0.100	
11) T C28	15.13	2976	0.113	
12) T C30	15.98	3431	0.129	
13) T C32	16.45	3152	0.119	
14) T C34	17.59	2852	0.106	
15) T C36	18.68	, 916	0.034	
16) T C38	20.34	2193	0.083	
17) T C40	0.00	0	N.D.	
18) T C42	0.00	0	N.D.	
19) T Pristane	11.81	3512	0.140	
20) T Phytane	12.51	2814	0.110	
21) T TPHC (Manual Integration)	11.81	3512	0.114	
22) H TPHC (Total)	12.00	75055	2.856	mg/L

Data File : C:\HPCHEM\1\DATA\050118\T017689.D

Acq On : 18 Jan 2005 1:59 pm

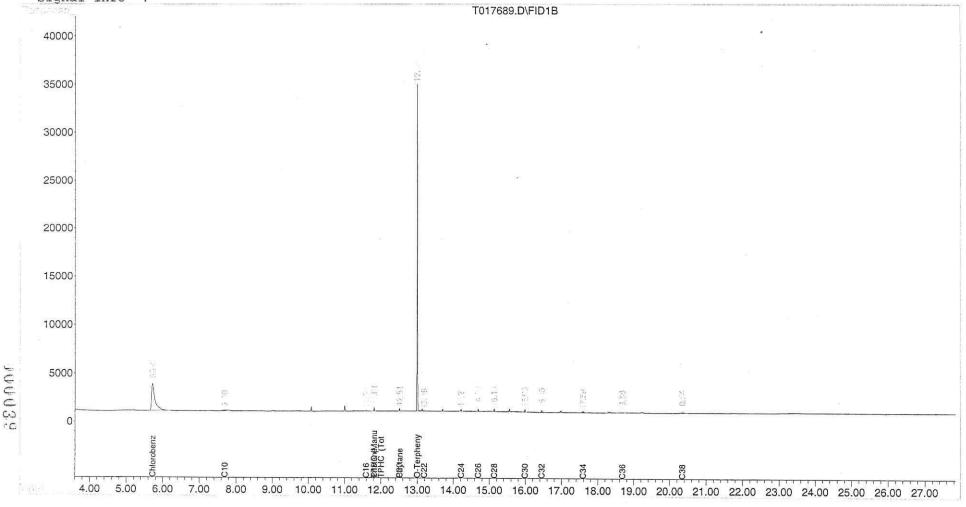
Vial: 10
Operator: PSkelton
Inst : GC/MS Ins

Sample Misc

: 5002006s

Multiplr: 1.00

IntFile : EVENTSBP.E


Quant Time: Jan 18 14:26 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Data File : C:\HPCHEM\1\DATA\050118\T017691.D

Vial: 12 Acq On : 18 Jan 2005 3:11 pm Operator: PSkelton : 5002007s Inst : GC/MS Ins Sample Misc Multiplr: 1.00

IntFile : EVENTSBP.E

Quant Time: Jan 19 8:25 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004
Response via : Initial Calibration

DataAcq Meth : TPHC002.M

System Monitoring Compounds 23) S Chlorobenzene (SURR.) 5.72 168690 10.345 mg Spiked Amount 10.000 Recovery = 103.45% 24) S O-Terphenyl (SURR.) 13.00 295166 11.145 mg Spiked Amount 10.000 Recovery = 111.45%	
2) T C10 7.77 4924 0.204 mg 3) T C12 9.38 269 0.011 mg 4) T C14 10.50 2252 0.092 mg 5) T C16 11.81f 1338 0.053 mg 6) T C18 11.81 1338 0.055 mg 7) T C20 12.51 1759 0.071 mg 8) T C22 13.13 615 0.024 mg 9) T C24 14.22 825 0.032 mg 10) T C26 14.69 659 0.025 mg 11) T C28 15.14 679 0.026 mg 12) T C30 15.99 1083 0.041 mg 13) T C32 16.45 874 0.033 mg 14) T C34 17.59 3712 0.138 mg	g/L g/L g/L g/L g/L g/L g/L g/L g/L
15) T C36 18.69 4323 0.158 mg 16) T C38 0.00 0 N.D. mg	
18) T C42 0.00 0 N.D. mg 19) T Pristane 11.81 1338 0.053 mg 20) T Phytane 12.51 1759 0.069 mg 21) T TPHC (Manual Integration) 0.00 0 N.D. mg 22) H TPHC (Total) 12.00 47953 1.825 mg	ng/L ng/L ng/L d

Data File : C:\HPCHEM\1\DATA\050118\T017691.D

Acq On : 18 Jan 2005 3:11 pm

Vial: 12 Operator: PSkelton

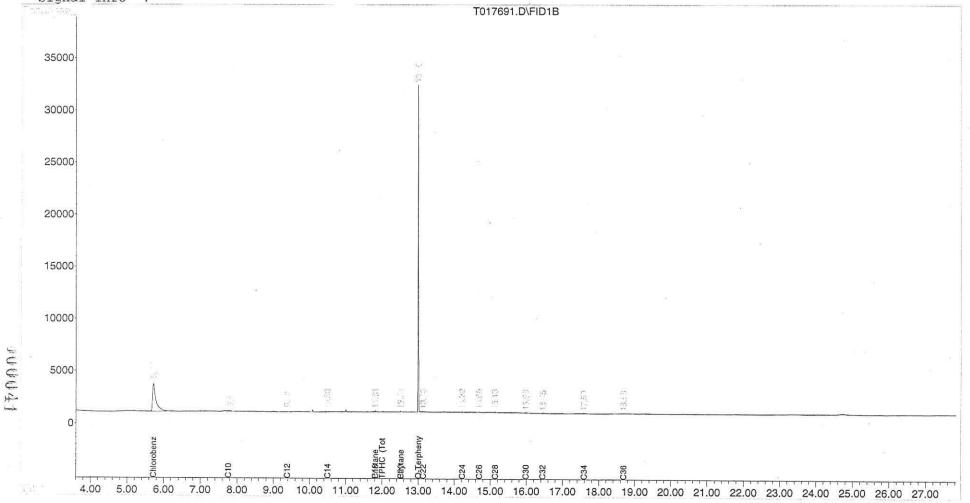
Sample : 5002007s

Inst : GC/MS Ins

Misc :

Multiplr: 1.00

Intfile : EVENTSBP.E


Quant Time: Jan 19 8:25 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004
Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Data File : C:\HPCHEM\1\DATA\050118\T017692.D

Vial: 13 Acq On : 18 Jan 2005 3:47 pm Operator: PSkelton Sample : 5002008s Inst : GC/MS Ins Multiplr: 1.00

Misc : Multiplr: IntFile : EVENTSBP.E
Quant Time: Jan 19 8:25 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Initial Calibration

DataAcq Meth : TPHC002.M

		oonse Conc	Units
Spiked Amount 10.000	Recovery	10.157	mg/L
2) T C10 7 3) T C12 0 4) T C14 10 5) T C16 11 6) T C18 11 7) T C20 12 8) T C22 13 9) T C24 14 10) T C26 14 11) T C28 15 12) T C30 15 13) T C32 16 14) T C34 17 15) T C36 0 16) T C38 0 17) T C40 0 18) T C42 0 19) T Pristane 11 20) T Phytane 12	.81 .51 .13 .22 .69 .13 .98 .45 .59 .00	0 N.D. 408 0.017 1060 0.042 1060 0.044 849 0.034 781 0.030 801 0.031 981 0.037 1096 0.041 1096 0.041 1257 0.048 1037 0.039 0 N.D. 0 N.D. 0 N.D. 1060 0.042	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

Data File : C:\HPCHEM\1\DATA\050118\T017692.D

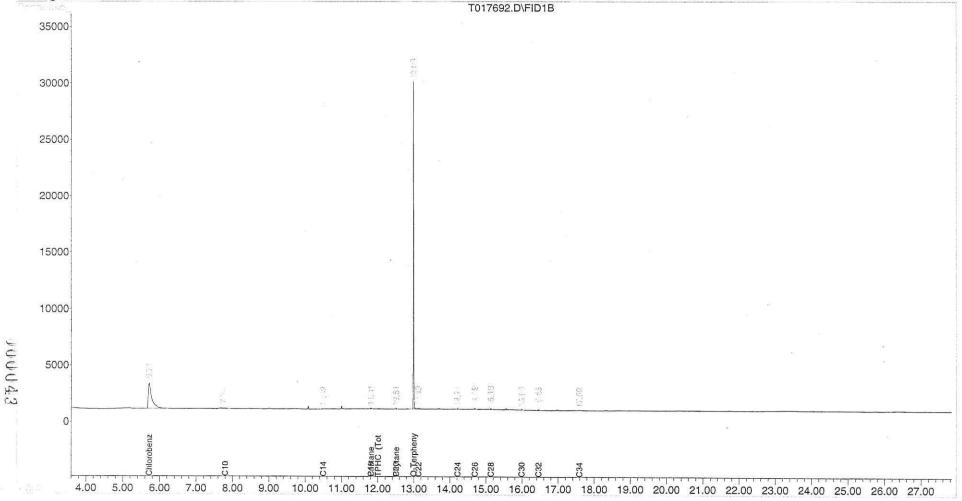
: 18 Jan 2005 3:47 pm Acq On

Vial: 13 Operator: PSkelton Inst : GC/MS Ins

Sample : 5002008s Misc

Multiplr: 1.00

IntFile : EVENTSBP.E


Quant Time: Jan 19 8:25 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004 Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Data File : C:\HPCHEM\1\DATA\050118\T017693.D

Vial: 14 Acq On : 18 Jan 2005 4:23 pm Sample : 5002009s Operator: PSkelton Inst : GC/MS Ins Multiplr: 1.00

Misc : IntFile : EVENTSBP.E

Quant Time: Jan 19 8:25 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004

Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound	R.T.	Response	Conc Units	
System Monitoring Compounds 23) S Chlorobenzene (SURR.) Spiked Amount 10.000 24) S O-Terphenyl (SURR.) Spiked Amount 10.000	12.99	154669 every = 258623 every =	9.616 mg/L 96.16% 9.967 mg/L 99.67%	58
Target Compounds 1) T C8 2) T C10 3) T C12 4) T C14 5) T C16 6) T C18 7) T C20 8) T C22 9) T C24 10) T C26 11) T C28 12) T C30 13) T C32 14) T C34 15) T C36 16) T C38 17) T C40 18) T C42 19) T Pristane 20) T Phytane 21) T TPHC (Manual Integration)	0.00 7.76 0.00 0.00 11.81f 11.81 12.51 13.13 14.22 14.69 15.13 15.98 16.45 17.58 19.22f 20.34 0.00 0.00 11.81 12.51 0.00	0 2295 0 0 2480 2480 1767 1436 1156 1376 1466 1870 1628 1520 1146 1410 0 0 2480 1767	N.D. mg/L 0.095 mg/L N.D. mg/L N.D. mg/L 0.099 mg/L 0.102 mg/L 0.071 mg/L 0.056 mg/L 0.055 mg/L 0.055 mg/L 0.062 mg/L 0.056 mg/L 0.056 mg/L 0.056 mg/L 0.056 mg/L 0.057 mg/L 0.059 mg/L N.D. mg/L N.D. mg/L N.D. mg/L	· #/

Data File : C:\HPCHEM\1\DATA\050118\T017693.D

Acq On : 18 Jan 2005 4:23 pm

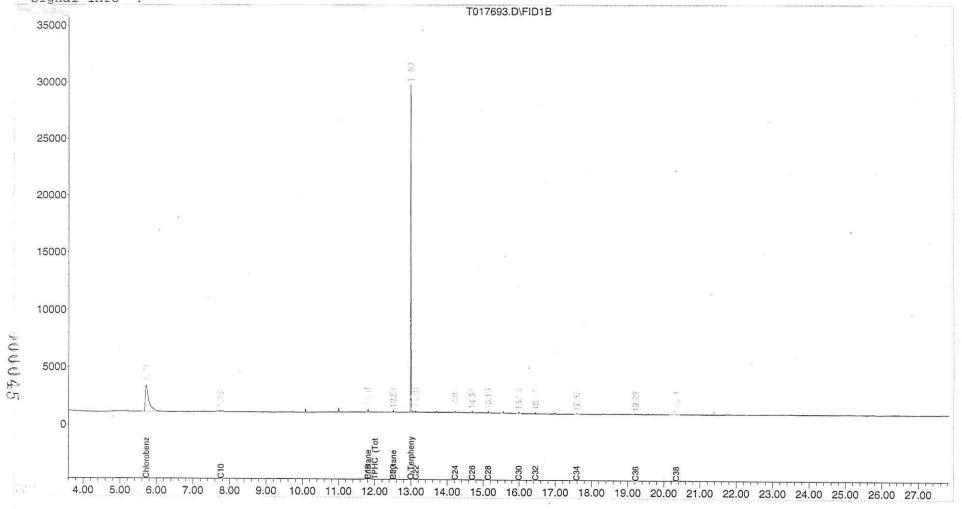
Operator: PSkelton Inst : GC/MS Ins

Vial: 14

Sample : 5002009s Misc :

Multiplr: 1.00

Intfile : EVENTSBP.E


Quant Time: Jan 19 8:25 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004
Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

Data File : $C:\HPCHEM\1\DATA\050118\T017694.D$

Vial: 15 Acq On : 18 Jan 2005 5:00 pm Operator: PSkelton : 5002010s Sample Inst : GC/MS Ins Multiplr: 1.00

Misc : IntFile : EVENTSBP.E

Quant Time: Jan 19 8:26 2005 Quant Results File: TPHC002.RES

Quant Method: C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method
Last Update : Wed Dec 15 12:51:02 2004

Response via : Initial Calibration

DataAcq Meth : TPHC002.M

Compound		Response	Conc Units	
System Monitoring Compounds				
23) S Chlorobenzene (SURR.)	5.72	158789	9.830 mg/L	
Spiked Amount 10.000 24) S O-Terphenyl (SURR.)	13.00	271733	10.390 mg/L	
Spiked Amount 10.000		very =		
Target Compounds				
1) T C8	0.00	0	N.D. mg/L	
2) T C10	7.76	307	0.013 mg/L	
3) T C12	0.00	0	N.D. mg/L	
4) T C14	0.00	0	N.D. mg/L	
5) T C16	11.59	294	0.012 mg/L	
6) T C18	11.81	2859	0.118 mg/L	
7) T C20	12.51	2244	0.090 mg/L	
8) T C22	13.25	522	0.020 mg/L	
9) T C24	13.99	285	$0.011~{ m mg/L}$	
10) T C26	14.69	2254	0.085 mg/L	
11) T C28	15.13	2532	0.096 mg/L	
12) T C30	15.99	2791	0.105 mg/L	
13) T C32	16.45	2716	0.103 mg/L	
14) T C34	17.59	2590	0.096 mg/L	
15) T C36	18.69	1477	0.054 mg/L	
16) T C38	20.35	1649	0.062 mg/L	
17) T C40	0.00	0	N.D. mg/L	
18) T C42	0.00	0	N.D. mg/L	
19) T Pristane	11.81	2859		
20) T Phytane	12.51	2244	0.088 mg/L	3
21) T TPHC (Manual Integration)		0 51740	N.D. mg/L	α
22) H TPHC (Total)	12.00	51/40	1.969 mg/L	

Data File : C:\HPCHEM\1\DATA\050118\T017694.D

Acq On : 18 Jan 2005 5:00 pm

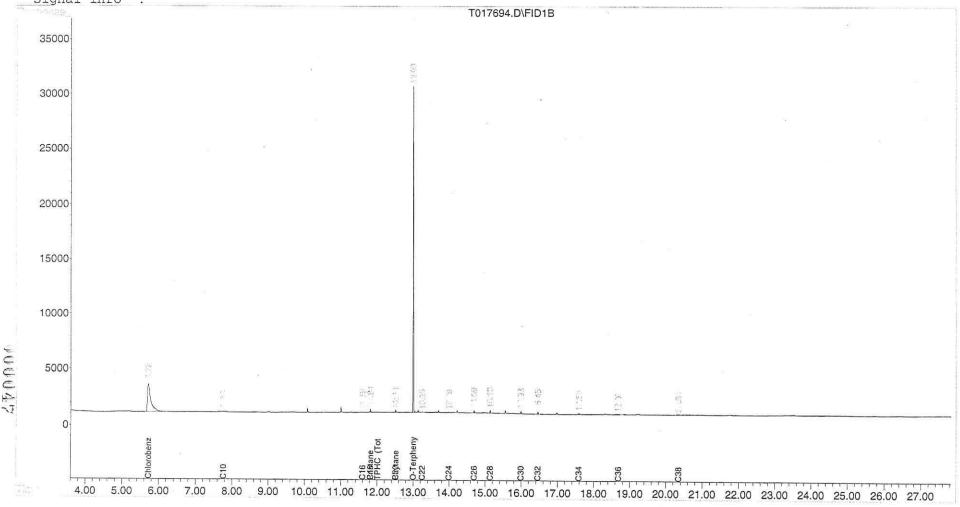
Operator: PSkelton Inst : GC/MS Ins

Vial: 15

Sample : 5002010s Misc :

Multiplr: 1.00

IntFile : EVENTSBP.E


Quant Time: Jan 19 8:26 2005 Quant Results File: TPHC002.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHC002.M (Chemstation Integrator)

Title : GC TPH Method

Last Update : Wed Dec 15 12:51:02 2004
Response via : Multiple Level Calibration

DataAcq Meth : TPHC002.M

LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables Checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete data packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package and in the main body of the report.

1.	Cover Page, Title Page listing Lab Certification #, facility name and address, & date of report submitted.
2.	Table of Contents submitted.
3.	Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted.
4.	Document paginated and legible.
5.	Chain of Custody submitted.
6.	Samples submitted to lab within 48 hours of sample collection.
7.	Methodology Summary submitted.
8.	Laboratory Chronicle and Holding Time Check submitted.
9.	Results submitted on a dry weight basis.
10.	Method Detection Limits submitted.
11.	Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP.
	Laboratory Manager or Environmental Consultant's Signature
	Laboratory Certification # 13461
	Production for the control of the c
	*Refer to NJAC 7:26E – Appendix A, Section IV – Reduced Data Deliverables – Non-USEPA/CLP Methods for further guidance.

Laboratory Authentication Statement

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager