#### **DEPARTMENT OF THE ARMY**



## OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

6 March 2018

Mr. Ashish Joshi New Jersey Department of Environmental Protection Division of Remediation Management & Response Bureau of Northern Field Operations 7 Ridgedale Avenue (2<sup>nd</sup> Floor) Cedar Knolls, NJ 07927-1112

**SUBJECT:** Site Investigation Report for Parcel 9 Underground Storage Tanks

Request for Unrestricted Use, No Further Action Approval

Fort Monmouth, New Jersey

PI G00000032

Dear Mr. Joshi:

The U.S. Army Fort Monmouth (FTMM) Team has prepared the subject report to provide documentation of the closure status of all underground storage tanks (USTs) identified within Parcel 9, also referred to as the Megill Housing Area; this information may be useful for future property transfers.

Parcel 9, located in the central portion of the Charles Wood Area, is completely surrounded by the FTMM Suneagles Golf Course. It is bordered by: Wampum Brook to the north; Lowther Drive to the east; Wigwag Road to the south; and Hope Road to the west. The locations of the USTs within the Parcel 9 Megill Housing Area are presented in Attachment A.

A summary table of the 21 USTs within Parcel 9 is provided in Attachment B; all of the USTs have been removed. At the time of removal, the FTMM Directorate of Public Works, Environmental Branch procedures for closure of unregulated residential heating oil tanks that exhibited no evidence of a discharge required: the collection and analysis of soil samples according to the NJDEP regulations; documentation of the results; and preparation of a closure report for the Army's files. Therefore, closure documentation was not previously submitted to NJDEP.

Each of the 21 USTs were removed in 2000. Closure Reports for each of the USTs are provided in the attachments listed below and include the sampling and analytical results performed at each UST site. As indicated in the individual Closure Reports, groundwater was not encountered during the removal operations, nor were there any indications of a release that would warrant evaluation of groundwater.

The information in this report supports the FTMM Team's conclusions that: 1) the USTs identified within Parcel 9 have been adequately addressed under the FTMM tank removal and assessment program; and 2) further action at these former UST locations is not warranted. Unrestricted Use, NFA determinations are requested for UST 2022 through UST 2042 based on the information provided in this report.

Ashish Joshi, NJDEP SI Report for Parcel 9 USTs 6 March 2018 Page 2 of 2

Thank you for reviewing this request; we look forward to your approval and/or comments. Our technical Point of Contact (POC) is Frank Accorsi at (732) 380-7523; <a href="mailto:frank.accorsi@parsons.com">frank.accorsi@parsons.com</a>. I can be reached at (732) 380-7064; william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator

cc: Ashish Joshi, NJDEP (e-mail and 2 hard copies)

William Colvin, FTMM (e-mail and 1 hard copy)

Joseph Pearson, Calibre (e-mail) James Moore, USACE (e-mail)

Joe Fallon, FMERA (e-mail) Jim Kelly, USACE (e-mail)

Cris Grill, Parsons (e-mail)

#### **Attachments:**

- A. Location and Site Layout Drawing of Parcel 9 Megill Housing
- B. Summary Table of Parcel 9 Megill Housing Underground Storage Tanks
- C. UST 2022 Closure Report
- D. UST 2023 Closure Report
- E. UST 2024 Closure Report
- F. UST 2025 Closure Report
- G. UST 2026 Closure Report
- H. UST 2027 Closure Report
- I. UST 2028 Closure Report
- J. UST 2029 Closure Report
- K. UST 2030 Closure Report
- L. UST 2031 Closure Report
- M. UST 2032 Closure Report
- N. UST 2033 Closure Report
- O. UST 2034 Closure Report
- P. UST 2035 Closure Report
- O. UST 2036 Closure Report
- R. UST 2037 Closure Report
- K. UST 2037 Closure Report
- S. UST 2038 Closure Report
- T. UST 2039 Closure ReportU. UST 2040 Closure Report
- V. UST 2041 Closure Report
- W. UST 2042 Closure Report



#### New Jersey Department of Environmental Protection Site Remediation Program

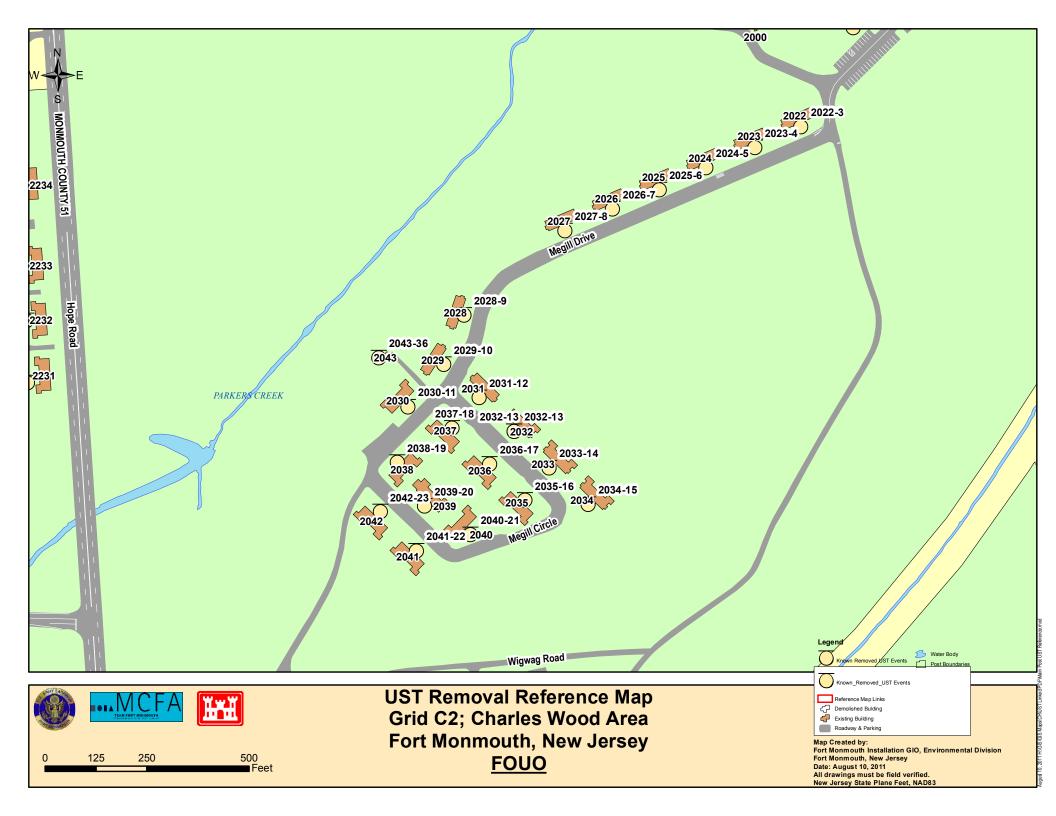
#### Report Certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites

These certifications are to be used for reports submitted for RCRA GPRA 2020, CERCLA, and Federal Facility Sites. The Department has developed guidance for report certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites under traditional oversight. The "Person Responsible for Conducting the Remediation Information and Certification" is required to be submitted with each report. For those sites that are required or opt to use a Licensed Site Remediation Professional (LSRP) the report must also be certified by the LSRP using the "Licensed Site Remediation Professional Information and Statement". For additional guidance regarding the requirement for LSRPs at RCRA GPRA 2020, CERCLA and Federal Facility Sites see <a href="http://www.nj.gov/dep/srp/srra/training/matrix/quick\_ref/rcra\_cercla\_fed\_facility\_sites.pdf">http://www.nj.gov/dep/srp/srra/training/matrix/quick\_ref/rcra\_cercla\_fed\_facility\_sites.pdf</a>.

#### Document:

 "Site Investigation Report for Parcel 9 Underground Storage Tanks, Request for Unrestricted Use, No Further Action Approval, Fort Monmouth, New Jersey" (06 March 2018)

| PERSON RESPONSIBLE FOR CONDUCTING THE RI                                                                                    | EMEDIAT      | ION INFOR        | MATION AND CERTI         | FICATION                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------------------|----------------------------|--|--|--|
| Full Legal Name of the Person Responsible for Conduct                                                                       |              |                  |                          |                            |  |  |  |
| Representative First Name: William                                                                                          | Rep          | presentative     | Last Name: Colvin        |                            |  |  |  |
| Title: Fort Monmouth BRAC Environmental Coordina                                                                            | tor (BEC)    |                  |                          |                            |  |  |  |
| Phone Number: (732) 380-7064                                                                                                | Ext:         |                  | Fax:                     |                            |  |  |  |
| Mailing Address: P.O. Box 148                                                                                               |              | #/               |                          |                            |  |  |  |
| City/Town: Oceanport                                                                                                        | State:       | NJ               | Zip Code:                | 07757                      |  |  |  |
| Email Address: william.r.colvin18.civ@mail.mil                                                                              |              |                  |                          |                            |  |  |  |
| This certification shall be signed by the person responsil                                                                  | ble for cor  | nducting the     | remediation who is su    | bmitting this notification |  |  |  |
| in accordance with Administrative Requirements for the                                                                      | Remediat     | ion of Conta     | minated Sites rule at    | N.J.A.C. 7:26C-1.5(a).     |  |  |  |
|                                                                                                                             |              |                  |                          |                            |  |  |  |
| I certify under penalty of law that I have personally exam                                                                  | nined and    | am familiar      | with the information so  | ubmitted herein,           |  |  |  |
| including all attached documents, and that based on my                                                                      |              |                  |                          |                            |  |  |  |
| the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am |              |                  |                          |                            |  |  |  |
| aware that there are significant civil penalties for knowin                                                                 | gly submi    | itting false, in | naccurate or incomple    | te information and that I  |  |  |  |
| am committing a crime of the fourth degree if I make a w                                                                    | vritten fals | e statement      | which I do not believe   | e to be true. I am also    |  |  |  |
| aware that if I knowingly direct or authorize the violation                                                                 | of any sta   | atute, I am p    | ersonally liable for the | penalties.                 |  |  |  |
| Signature:                                                                                                                  |              | Date:            | 06 March 2018            |                            |  |  |  |
| Signature: William R Colin                                                                                                  |              |                  |                          |                            |  |  |  |
| Name/Title: William R. Colvin, PMP, CHMM, PG                                                                                |              | <del></del>      |                          |                            |  |  |  |
| BRAC Environmental Coordinator                                                                                              |              |                  |                          | -                          |  |  |  |
| <u> </u>                                                                                                                    |              |                  |                          |                            |  |  |  |


Completed form should be sent to:

Mr. Ashish Joshi

New Jersey Department of Environmental Protection Division of Remediation Management & Response Bureau of Northern Field Operations 7 Ridgedale Avenue (2<sup>nd</sup> Floor)

Cedar Knolls, New Jersey 07927-1112

Attachment A Location and Site Layout Drawing of Parcel 9 Megill Housing



| Summa | ary Table of | Parcel 9 N | Attachme<br>⁄Iegill Hou | nt B<br>sing Under | rground Sto | age Tanks |
|-------|--------------|------------|-------------------------|--------------------|-------------|-----------|
|       |              |            |                         |                    |             |           |
|       |              |            |                         |                    |             |           |

## Summary Table of Parcel 9 Megill Housing Underground Storage Tanks (USTs)

| Site<br>Name | Residential ? | Registration ID    | DICAR | Tank Size and<br>Type* | Product     | Date Tank<br>Removed | No Further Action (NFA) Approved or<br>Requested Status                                             |
|--------------|---------------|--------------------|-------|------------------------|-------------|----------------------|-----------------------------------------------------------------------------------------------------|
| 2022         | YES           | 192486-3           | None  | 550 G FRP              | #2 FUEL OIL | 1/12/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment C report. |
| 2023         | YES           | 192486-4           | None  | 550 G FRP              | #2 FUEL OIL | 1/13/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment D report. |
| 2024         | YES           | 192486-5           | None  | 550 G FRP              | #2 FUEL OIL | 1/19/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment E report. |
| 2025         | YES           | 192486-6           | None  | 550 G FRP              | #2 FUEL OIL | 2/4/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment F report. |
| 2026         | YES           | 192486-7           | None  | 550 G FRP              | #2 FUEL OIL | 2/8/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment G report. |
| 2027         | YES           | 192486-8           | None  | 550 G FRP              | #2 FUEL OIL | 2/9/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment H report. |
| 2028         | YES           | 192486-9           | None  | 550 G FRP              | #2 FUEL OIL | 2/17/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment I report. |
| 2029         | YES           | 192486-10          | None  | 550 G FRP              | #2 FUEL OIL | 2/22/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment J report. |
| 2030         | YES           | 192486-11          | None  | 550 G FRP              | #2 FUEL OIL | 2/28/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment K report. |
| 2031         | YES           | 192486-12          | None  | 550 G FRP              | #2 FUEL OIL | 3/1/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment L report. |
| 2032         | YES           | 192486-13          | None  | 550 G FRP              | #2 FUEL OIL | 3/2/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment M report. |
| 2033         | YES           | 192486-14          | None  | 550 G FRP              | #2 FUEL OIL | 3/17/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment N report. |
| 2034         | YES           | 192486-15          | None  | 550 G FRP              | #2 FUEL OIL | 3/20/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment O report. |
| 2035         | YES           | 192486-16          | None  | 550 G FRP              | #2 FUEL OIL | 3/21/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment P report. |
| 2036         | YES           | 192486-17          | None  | 550 G FRP              | #2 FUEL OIL | 3/22/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment Q report. |
| 2037         | YES           | 192486-18          | None  | 550 G FRP              | #2 FUEL OIL | 3/23/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment R report. |
| 2038         | YES           | 192486-19          | None  | 550 G FRP              | #2 FUEL OIL | 4/11/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment S report. |
| 2039         | YES           | 192486-20          | None  | 550 G FRP              | #2 FUEL OIL | 4/12/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment T report. |
| 2040         | YES           | 192486-21          | None  | 550 G FRP              | #2 FUEL OIL | 4/13/2000            | NFA requested; Closure Report prepared, supporting information included in the Attachment U report. |
| 2041         | YES           | 192486-22          | None  | 550 G FRP              | #2 FUEL OIL | 4/6/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment V report. |
| 2042         | YES           | 192486-23          | None  | 550 G FRP              | #2 FUEL OIL | 4/7/2000             | NFA requested; Closure Report prepared, supporting information included in the Attachment W report. |
|              | *FRP-fibergla | ass reinforced pla | astic |                        |             |                      |                                                                                                     |

Attachment C UST 2022 Closure Report

### **U.S. Army Garrison**

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2022

NJDEP UST Registration No.: 192486-3

UST No.: 192486-3

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2022 NJDEP UST REGISTRATION NO.: 192486-3

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                           | E SUMMARY                                             | IV |  |  |
|-----|---------------------------------|-------------------------------------------------------|----|--|--|
| 1.0 | UND                             | ERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES      | 1  |  |  |
|     | 1.1                             | Overview                                              | 1  |  |  |
|     | 1.2                             | Site Description                                      | 1  |  |  |
|     |                                 | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |
|     | 1.3                             | Health and Safety                                     | 5  |  |  |
|     | 1.4                             | Removal of Underground Storage Tank                   | 5  |  |  |
|     |                                 | 1.4.1 General Procedures                              | 5  |  |  |
|     |                                 | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |
|     | 1.5                             | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |
| 2.0 | SITE                            | E INVESTIGATION ACTIVITIES                            | 7  |  |  |
|     | 2.1                             | Overview                                              | 7  |  |  |
|     | 2.2                             | Field Screening/Monitoring                            | 7  |  |  |
|     | 2.3                             | Soil Sampling                                         | 7  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS |                                                       |    |  |  |
|     | 3.1                             | Soil Sampling Results                                 | 8  |  |  |
|     | 3.2                             | Conclusions and Recommendations                       | 8  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map

Figure 2 Soil Sampling Location Site Map

#### **TABLES**

 Table 1
 Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On January 12, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2022 in Charles Wood area. UST No.: 192486-3 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2022-A and 2022-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-3. Closure sample 2022-C was collected from a location along the UST piping. A duplicate of sample 2022-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-3 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### **Conclusions and Recommendations**

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-3 at Building 2022.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-3 was closed at Building 2022 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on January 12, 2000.

Decommissioning activities for UST No.: 192486-3 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2022 (Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-3 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2022. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal document, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On January 12, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2022-A and 2022-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-3. Closure sample 2022-C was collected from a location along the UST piping. A duplicate of sample 2022-A was collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

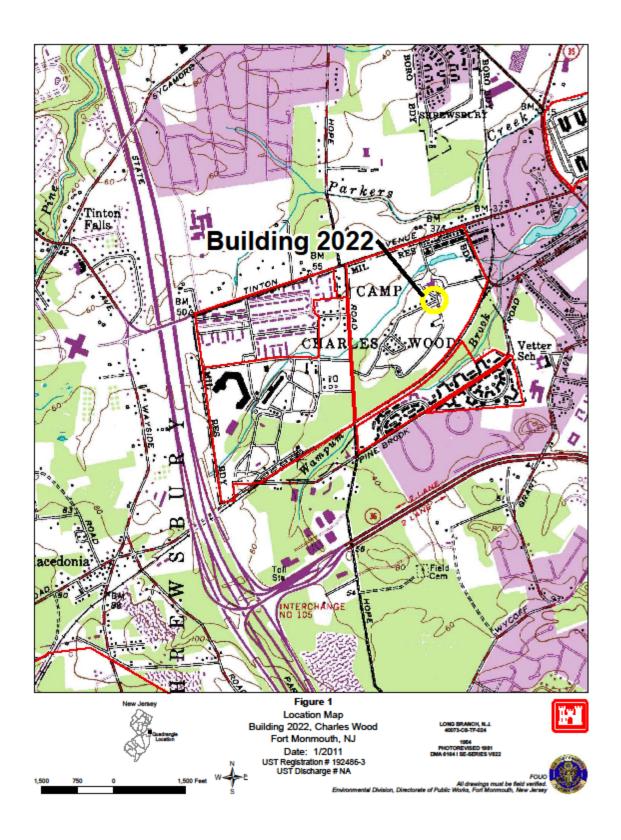
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

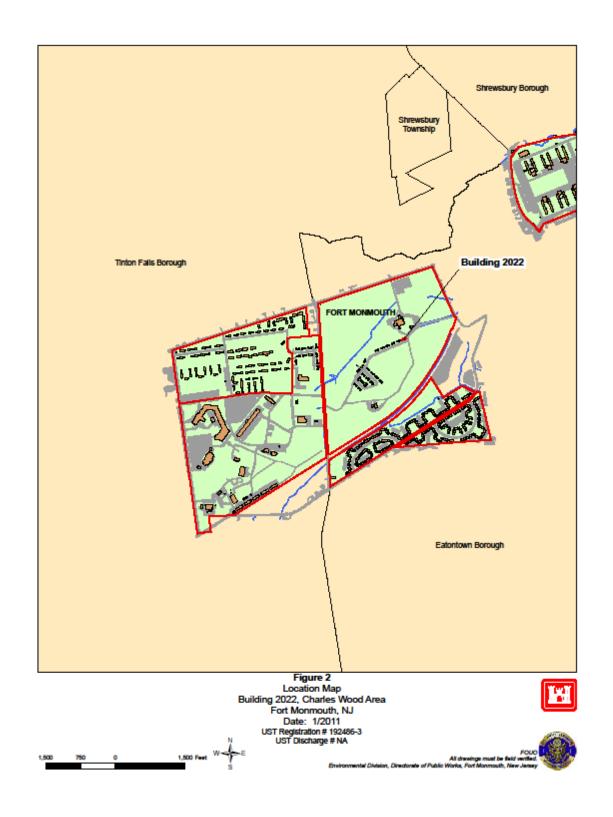
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

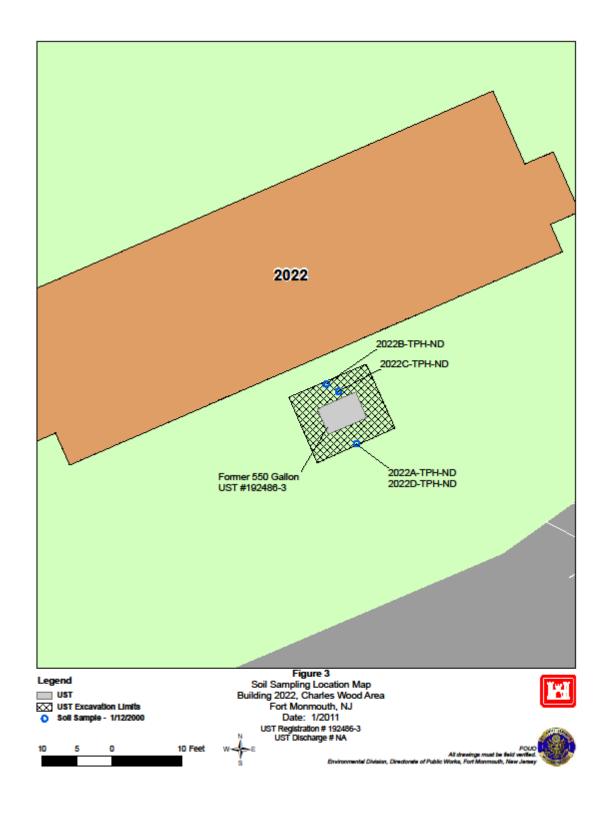
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on January 12, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on January 12, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-3 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-3.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-3 at Building 2022.

## **FIGURES**







## **TABLES**

## TABLE 1

#### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2022, UST No.: 192486-3 12 January 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         | -                    |
| 2022-A       | 5095.01                 | 12-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2022-В       | 5095.02                 | 12-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2022-С       | 5095.03                 | 12-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2022-D       | 5095.04                 | 12-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

#### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

### TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2022, UST No.: 192486-3 12 January 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION     | SAMPLE    | MATRIX | ТРН      |
|-----------|------------|---------------------|-----------|--------|----------|
|           | SAMPLE ID  |                     | DEPTH     |        | RESULT S |
|           |            |                     | (in feet) |        | mg/kg    |
| 2022-A    | 5095.01    | SOUTH END           | 6.5-7.0   | Soil   | ND       |
| 2022-В    | 5095.02    | NORTH END           | 6.5-7.0   | Soil   | ND       |
| 2022-С    | 5095.03    | PIPING              | 1.5-2.0   | Soil   | ND       |
| 2022-D    | 5095.04    | DUPLICATE-SOUTH END | 6.5-7.0   | Soil   | ND       |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

### **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

#### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

TAAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic vards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2022 (1+3 MEGILL OR.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

#### DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHÈM - METALS - ORGÀNICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2022

|    | Field Sample Location   | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|----|-------------------------|--------------------------|----------|-----------------------------|---------------|
| -4 |                         | Dairbic IDit             |          | OI CORCOROR                 |               |
| 1  | 2022-A South End 6.5-7' | 5095.01                  | Soil     | 12-Jan-00 13:50             | 01/12/00      |
|    | 2022-B North End 7-7.5' | 5095.02                  | Soil     | 12-Jan-00 14:10             | 01/12/00      |
| 1  | 2022-C Piping 1.5-2'    | 5095.03                  | Soil     | 12-Jan-00 14:30             | 01/12/00      |
| Ī  | 2022-D Duplicate        | 5095.04                  | Soil     | 12-Jan-00 13:50             | 01/12/00      |
|    | Trip Blank              | 5095.05                  | Methanol | 12-Jan-00                   | 01/12/00      |

#### ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

> Daniel Wright/Date Laboratory Director

1-28-00

### **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-8   |
| Surrogate Results Summary           | 9     |
| MS/MSD Results Summary              | 10    |
| Blank Spike Summary                 | 11    |
| Raw Sample Data                     | 12-21 |
| Laboratory Deliverable Checklist    | 22    |
| Laboratory Authentication Statement | 23    |

## **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                        |                      | Indicate Yes, No, N/A |
|------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| 2.         | Method Blank Contamination – If yes, licorresponding concentrations in each bla                                          |                      | NO                    |
| 3.         | Matrix Spike Results Summary Meet Cri (If not met, list the sample and correspondable outside the acceptable range).     |                      | yes                   |
| 4.         | Duplicate Results Summary Meet Criteri<br>(If not met, list the sample and correspondable outside the acceptable range). | nding recovery which | ¥e≤                   |
| <b>5</b> . | IR Spectra submitted for standards, blank                                                                                |                      | <u>N</u> A            |
| 6.         | Chromatograms submitted for standards, if GC fingerprinting was conducted.                                               | blanks and samples   | yes                   |
| 7.         | Analysis holding time met. (If not met, list number of days exceeded                                                     | for each sample).    | yes                   |
| Addi       | itional comments:                                                                                                        | •                    |                       |
|            |                                                                                                                          | 1-28-00              |                       |
| Labo       | oratory Manager                                                                                                          | Date                 |                       |



# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

Chain of Custody Record

| Customer: Dinker Desai                   |                                                                         |                                       | Project No: 100004                      |                 | Analysis Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |            |                 |            | Comments:                |         |                                         |
|------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|-----------------|------------|--------------------------|---------|-----------------------------------------|
| Phone #: X21475                          |                                                                         |                                       | Location: <i>BLOG, 2022</i>             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TPHC % SOLIDS |            | *               |            | * = Samples Kept < 4°C   |         |                                         |
| ()DERA (X)OMA                            | UST As                                                                  | sessment                              | UST#                                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | LE              | +10        |                          | Reading |                                         |
| Samplers Name /                          | Compar                                                                  | y: Frank Accorsi/TVS                  |                                         |                 | Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e #           | TPHC       | <del>\$</del> 0 | VOA+10     |                          | ) Re    |                                         |
| Lab Sample I.D.                          |                                                                         | Sample Location                       | Date                                    | Time            | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _             | Ħ          | 9/0             | ×          | VOA ID#                  | PID     | Remarks / Preservation Method           |
| 5095.01                                  | 2022                                                                    | -A SOUTH END 6.5-7 FT                 | 1-12-00                                 | 1350            | 3010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | X          | Х               | Х          | 473                      | 0       | ICE                                     |
| 1 02                                     | 2022                                                                    | B, NORTH END, 7-7.5 FI                | 1                                       | 1410            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | X          | Х               | X          | 474                      | 0       |                                         |
| 03                                       | 2022.                                                                   | C, PIPING, 1.5-2 FT                   | 1                                       | 1430            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | メ          | <u>*</u>        | Χ          | 475                      | 0       |                                         |
| 1/04                                     | 2022                                                                    | D. BUPLICATE<br>BLANK                 |                                         | 1350            | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2             | X          | <u> </u>        | Х          | 476                      | 0       |                                         |
| 05                                       | TRIP                                                                    | BLANK                                 | 7                                       |                 | AQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             |            |                 | X          | 477                      |         | <b>Y</b>                                |
|                                          |                                                                         |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
|                                          |                                                                         |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
|                                          |                                                                         |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
|                                          | <del></del>                                                             |                                       | 1                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | [          |                 |            |                          |         |                                         |
| ,                                        |                                                                         |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
|                                          |                                                                         |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
|                                          |                                                                         |                                       | 1                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
|                                          |                                                                         | · · · · · · · · · · · · · · · · · · · | † · · · · · · · · · · · · · · · · · · · | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |                 |            |                          |         |                                         |
| OV                                       | /M sn#58                                                                | 0U-64455.343 was calibrated v         | vith zero air                           | & w/ <i>243</i> | ppm Iso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | butylene      | read_      | 249             | ppm        | 1330 1-12-00 (           | time/d  | late & initial)                         |
| TN-11                                    |                                                                         | Date/Time:                            | 1 2 3 4                                 |                 | The state of the s |               |            | Date/Time:      |            |                          |         |                                         |
| 1 1 1 2 2                                |                                                                         |                                       |                                         |                 | Reunq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iisioa t      | y (Mgr     | action C).      |            |                          |         |                                         |
| 770000                                   |                                                                         | ίχ.                                   | V                                       |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | <u>.</u>   |                 | D. T.      |                          |         |                                         |
| Relinquished by (signature):  Date/Time: |                                                                         | Received by                           | (signature)                             | <b>:</b>        | Relinq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsned b       | y (sigi    | ature):         | Date/Time: |                          |         |                                         |
|                                          |                                                                         |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1.         | <del>,  </del>  | Ę.         | Dedicated Sa             | mpling  | Tools Used .                            |
|                                          | Report Type: ()Full, ()Reduced, (AStandard, ()Screen / non-certified, ( |                                       |                                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Rema<br>VO | rks: À          | WO.        | 25 % # > 1,000 PPM       | 77      | Tools Used H, ON HIGHEST, MIN. ) NA ONE |
| Turnaround time: (_)Stand                | dard 2 wks                                                              | , (X)Rush Days, (_)ASAP Verb          | al Hrs.                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | All sa     | mple r          | oints h    | ave been GPS? (x)YES ()1 | VO (    | ) NA ONE                                |

000000

#### Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5095

DPW. SELFM-PW-EV

Location:

Bldg.2022

Bldg. 173

UST Reg. #:

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

12-Jan-00

Matrix:

Soil

14-Jan-00

Inst. ID.:

Date Extracted:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

14-Jan-00

Injection Volume:

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5095.01      | 2022-A   | 1.00               | 15.02         | 91.09   | 172            | ND                        |
| 5095.02      | 2022-В   | 1.00               | 15.17         | 91.23   | 170            | ND                        |
| 5095.03      | 2022-C   | 1.00               | 15.14         | 85.93   | 181            | ND                        |
| 5095.04      | 2022-D   | 1.00               | 15.25         | 90.83   | 170            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK309  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright Laboratory Director

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

## THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package and in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted | - |
|------------|-----------------------------------------------------------------------------------------------------------|---|
| 2.         | Table of Contents submitted                                                                               |   |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted           |   |
| 4.         | Document paginated and legible                                                                            |   |
| 5.         | Chain of Custody submitted                                                                                |   |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                             |   |
| 7.         | Methodology Summary submitted                                                                             |   |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                     |   |
| 9.         | Results submitted on a dry weight basis                                                                   |   |
| 10.        | Method Detection Limits submitted                                                                         |   |
| 11.        | Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP  |   |
| Lab<br>Dat | oratory Manager or Environmental Consultant's Signature                                                   |   |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix  $\Lambda$ , Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

## **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright
Laboratory Manager

Attachment D UST 2023 Closure Report

## U.S. Army Garrison

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2023

NJDEP UST Registration No.: 192486-4

UST No.: 192486-4

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2023 NJDEP UST REGISTRATION NO.: 192486-4

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

## **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |

## **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On January 13, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2023 in the Charles Wood area. UST No.: 192486-4 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2023-A and 2023-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-4. Closure sample 2023-C was collected from a location along the UST piping. A duplicate of sample 2023-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-4 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-4 at Building 2023.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-4 was closed at Building 2023 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on January 13, 2000.

Decommissioning activities for UST No.: 192486-4 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2023 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-4 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2023. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On January 13, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2023-A and 2023-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-4. Closure sample 2023-C was collected from a location along the UST piping. A duplicate of sample 2023-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

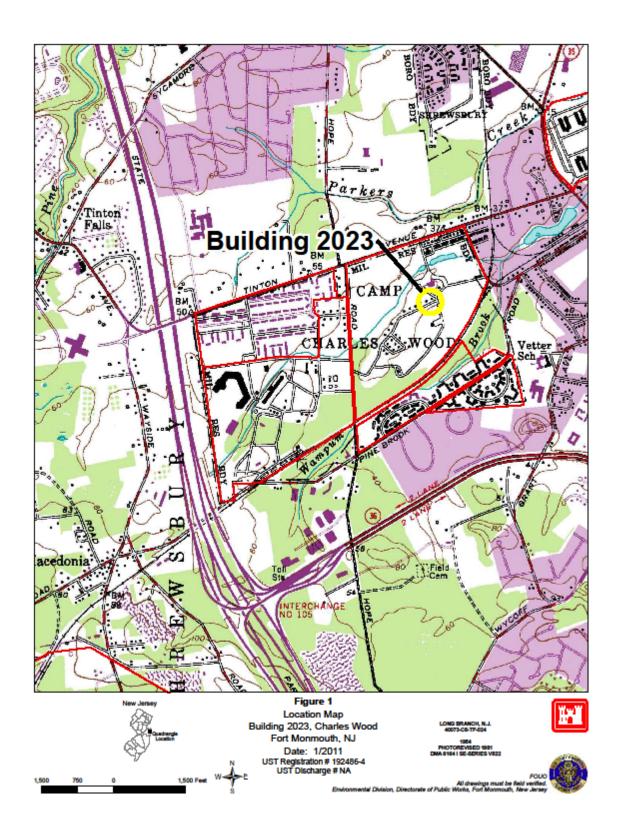
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

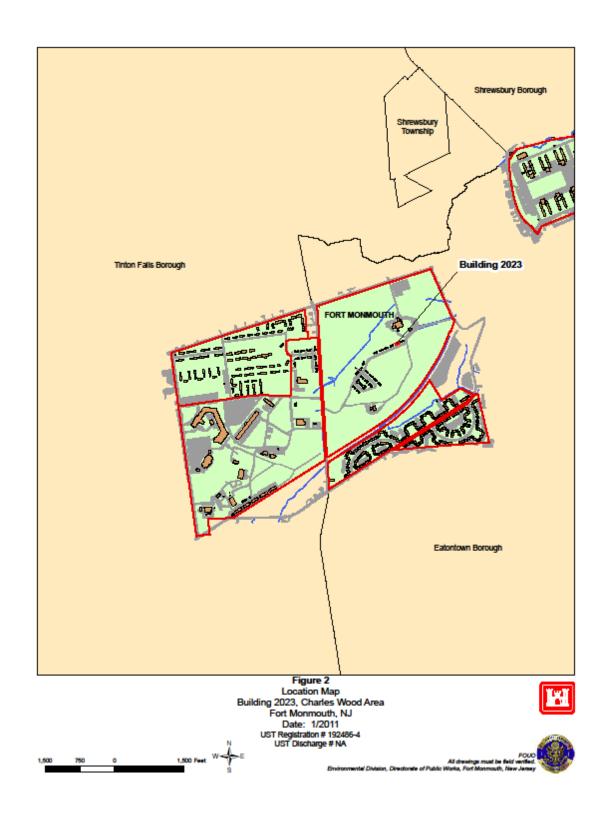
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

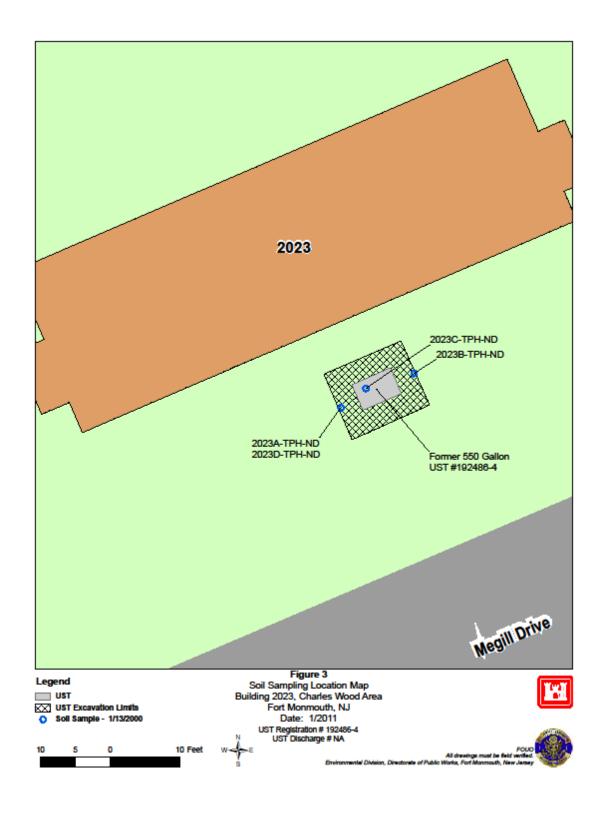
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on January 13, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on January 13, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-4 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-4.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-4 at Building 2023.

# **FIGURES**







# **TABLES**

# TABLE 1

## **SUMMARY OF LABORATORY ANALYSIS**

FT. MONMOUTH, BUILDING 2023, UST No.: 192486-4 13 January 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2023-A       | 5100.01                 | 13 Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2023-В       | 5100.02                 | 13-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2023-С       | 5100.03                 | 13-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2023-D       | 5100.04                 | 13-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

#### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

# TABLE 2

### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2023, UST No.: 192486-4 13 January 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | ТРН      |
|-----------|------------|--------------------|-----------|--------|----------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S |
|           |            |                    | (in feet) |        | mg/kg    |
| 2023-A    | 5100.01    | WEST END           | 6.0-6.5   | Soil   | ND       |
| 2023-В    | 5100.02    | EAST END           | 6.5-7.0   | Soil   | ND       |
| 2023-С    | 5100.03    | PIPING             | 2.0-2.5   | Soil   | ND       |
| 2023-D    | 5100.04    | DUPLICATE-WEST END | 6.0-6.5   | Soil   | ND       |
| Duplicate |            |                    |           |        |          |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

#### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

TAAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re: Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2023 (5+7 MEGILL OK.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL

## **TESTING LABORATORY**

## **DIRECTORATE OF PUBLIC WORKS**

PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2023

| Field Sample Location  | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|------------------------|--------------------------|----------|-----------------------------|---------------|
| 2023-A West End 6-6.5' | 5100.01                  | Soil     | 13-Jan-00 15:00             | 01/13/00      |
| 2023-B East End 6.5-7' | 5100.02                  | Soil     | 13-Jan-00 15:20             | 01/13/00      |
| 2023-C Piping 2-2.53   | 5100.03                  | Soil     | 13-Jan-00 15:40             | 01/13/00      |
| 2023-D Duplicate       | 5100.04                  | Soil     | 13-Jan-00 15:00             | 01/13/00      |
| Trip Blank             | 5100.05                  | Methanol | 13-Jan-00                   | 01/13/00      |

## ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

## **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-8   |
| Surrogate Results Summary           | 9     |
| MS/MSD Results Summary              | 10    |
| Blank Spike Summary                 | 11    |
| Raw Sample Data                     | 12-21 |
| Laboratory Deliverable Checklist    | 22    |
| Laboratory Authentication Statement | 23    |

### **Method Summary**

### NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

### TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                                                                   | Indicate<br>Yes, No, N/<br><u>Yes</u> |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 2.         | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                                            | No                                    |
| 3.         | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).                       | yes                                   |
| 4.         | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).  MSD 50%.04 Low at 72.7% | <u>, No</u>                           |
| (e         | TD Constructive d Construction bloods and assembles                                                                                                                 | k s k                                 |
| <b>5</b> . | IR Spectra submitted for standards, blanks and samples.                                                                                                             | <u>NA</u>                             |
| 6.         | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                                       | yes                                   |
| 7.         | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                                              | yes<br>yes                            |
| Addit      | ional comments:                                                                                                                                                     |                                       |
| Labor      | retory Manager Date                                                                                                                                                 |                                       |

print legibly

## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil
NJDEP Certification #13461

Chain of Custody Record

USTcoc.xls10/29/99

| Customer: Dinker Desai                                           |                                                                     |                     |             | Project No: 100004   |             |                 |          | Analysis Parameters |          |          |           |                           |              | Comments: |                                           |    |
|------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|-------------|----------------------|-------------|-----------------|----------|---------------------|----------|----------|-----------|---------------------------|--------------|-----------|-------------------------------------------|----|
| Phone #: X21475                                                  |                                                                     |                     |             | Location: ${\cal B}$ | LDG. S      | 7023            | · [      |                     | XS.      | *        |           |                           |              |           | * = Samples Kept <4 Celsius               | š  |
| ()DERA (X)OMA                                                    | UST As                                                              | sessmen             | ıt          | UST# /9              |             |                 | ~ \      | SOLIDS              | 10 +     |          |           |                           | Reading      | ·         | İ                                         |    |
| Samplers Name /                                                  | Compa                                                               | oy : Fra            | nk Acco     | rsi/TVS              |             | Sample #        |          | TPHC                | SO       | VOA+10   |           |                           |              | Z Reg     |                                           |    |
| Lab Sample LD.                                                   |                                                                     | nple Loca           |             | Date                 | Time        | Туре            | bottles  |                     | %        | >        | VOA       | ID N                      | mber         |           | Remarks / Preservation Metho              | od |
| 5100 d                                                           | 2023                                                                | 3-A, WE             | 6.5         | 1-13-00              |             | SOIL            | 2        | Х                   | X        | Х        | 478       | <del>)</del>              |              | 0         | ICE                                       |    |
| 5100 02                                                          | 2023                                                                | -B EA               | 57 END      |                      | 1520        |                 | 2        | X                   | X        | Χ        | 479       | ·                         |              | 0         |                                           |    |
| 5100 003                                                         | 2023                                                                | C, 21               | 2.5         |                      | 1540        |                 | 2        | X                   | X        | X        | 48(       | <i>)</i>                  |              | 0         |                                           |    |
| 5100 04                                                          |                                                                     | D. DV1              |             |                      | 1500        |                 | 2        | ×                   | X        | X        | 48        | <u> </u>                  |              | 0         |                                           |    |
| 5100 .05                                                         | TRIP                                                                | BLANK               | •           | <b>y</b>             |             | AQ.             | 1        |                     |          | χ        | 47        | <u> </u>                  |              |           |                                           |    |
|                                                                  |                                                                     |                     |             |                      |             | 5.43            |          |                     |          |          |           |                           |              |           |                                           |    |
|                                                                  |                                                                     |                     | 1           |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
|                                                                  |                                                                     |                     |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
|                                                                  |                                                                     |                     |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
| ,                                                                |                                                                     |                     | ,           |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
|                                                                  |                                                                     |                     |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
| ,                                                                |                                                                     | ~                   |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
|                                                                  |                                                                     | *                   |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
| OVM sn#                                                          | 580U-644                                                            | 155.343 v           | vas calibr  | ated with ze         | ro air & w/ | 2 <u>45</u> ppm | Isobu    | itylene             | read _   | 247      | _ppm      | 1350                      | 1-13         | -00       | _(time/date & initial)                    |    |
| Relinquished by (signature): Date/Time: Received by (signature): |                                                                     |                     | signature): |                      | Relino      | quished         | by (sign | ature):             |          | Date/Tim | e: Rece   | ived by                   | (signature): |           |                                           |    |
| Frank Ulus                                                       |                                                                     | 1-1300              | 1600        | Life.                |             |                 |          |                     |          |          |           |                           |              |           | <u> </u>                                  |    |
| Relinquished by (signature): Date/Time:                          |                                                                     | Received by         | signature): |                      | Relino      | puished         | by (sign | nature):            |          | Date/Tim | e: Rece   | ived by (signature):      |              |           |                                           |    |
|                                                                  |                                                                     |                     |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |
| CReport Type: ()Full, ()                                         | Report Type: ()Full, ()Reduced, (Standard, ()Screen / non-certified |                     |             |                      | <u> </u>    |                 |          | Rema                | rks: 🗡   | 250      | ~ > /     | Dedi                      | cated S      | amplin    | ng Tools Used<br>ON HIGHEST, MINIO<br>)NA | M  |
| Turnaround time: ()Stan                                          |                                                                     | <b>/</b> = <b>\</b> |             | ()ASAP Verl          |             |                 |          | VO+All sar          | nple poi | nts hav  | re been G | / ሀሀሀ /<br><u>PS? (X)</u> | YES (        | NO (      | )NA                                       |    |
| PO                                                               |                                                                     |                     |             |                      |             |                 |          |                     |          |          |           |                           |              |           |                                           |    |

# Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

UST Reg. #:

5100

DPW. SELFM-PW-EV

Location:

Bldg.2023

Bldg. 173

•

Ft. Monmouth, NJ 07703

13-Jan-00

Analysis : Matrix : OQA-QAM-025

Date Received:

14-Jan-00

maurix.

Soil

Date Extracted:

**...** 

Inst. ID. :

GC TPHC INST. #1

Extraction Method : Analysis Complete :

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analyst:

14-Jan-00 B.Patel

Injection Volume:

1uL

| Sample       | Field ID | Dilution<br>Factor | Weight (g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|------------|---------|----------------|---------------------------|
| 5100.01      | 2023-A   | 1.00               | 15.12      | 92.75   | 168            | ND                        |
| 5100.02      | 2023-B   | 1.00               | 15.09      | 88.01   | 177            | ND                        |
| 5100.03      | 2023-C   | 1.00               | 15.43      | 87.14   | 175            | ND                        |
| 5100.04      | 2023-D   | 1.00               | 15.16      | 89,85   | 173            | ND                        |
|              |          |                    |            |         |                |                           |
|              |          |                    |            | ·       |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
| METHOD BLANK | TBLK309  | 1.00               | 15.00      | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

Laboratory Director

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

### THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.  | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted |   |
|-----|-----------------------------------------------------------------------------------------------------------|---|
| 2.  | Table of Contents submitted                                                                               |   |
| 3.  | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted           |   |
| 4,  | Document paginated and legible                                                                            |   |
| 5.  | Chain of Custody submitted                                                                                |   |
| 6.  | Samples submitted to lab within 48 hours of sample collection                                             |   |
| 7.  | Methodology Summary submitted                                                                             |   |
| 8.  | Laboratory Chronicle and Holding Time Check submitted                                                     |   |
| 9.  | Results submitted on a dry weight basis                                                                   |   |
| 10. | Method Detection Limits submitted                                                                         |   |
| 11. | Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP  |   |
|     | oratory Manager or Environmental Consultant's Signature                                                   | 3 |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright

Laboratory Manager

Attachment E UST 2024 Closure Report

### U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2024

NJDEP UST Registration No.: 192486-5

UST No.: 192486-5

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2024 NJDEP UST REGISTRATION NO.: 192486-5

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |
| 3.0 | CON                                                 | ICLUSIONS AND RECOMMENDATIONS                         | 8  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Location Map-topographic

Figure 2 Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On January 19, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2024 in the Charles Wood area. UST No.: 192486-5 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2024-A and 2024-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-5. Closure sample 2024-C was collected from a location along the UST piping. A duplicate of sample 2024-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-5 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-5 at Building 2024.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-5 was closed at Building 2024 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on January 19, 2000.

Decommissioning activities for UST No.: 192486-5 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2024 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-5 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2024. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On January 19, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2024-A and 2024-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-5. Closure sample 2024-C was collected from a location along the UST piping. A duplicate of sample 2024-A was collected.

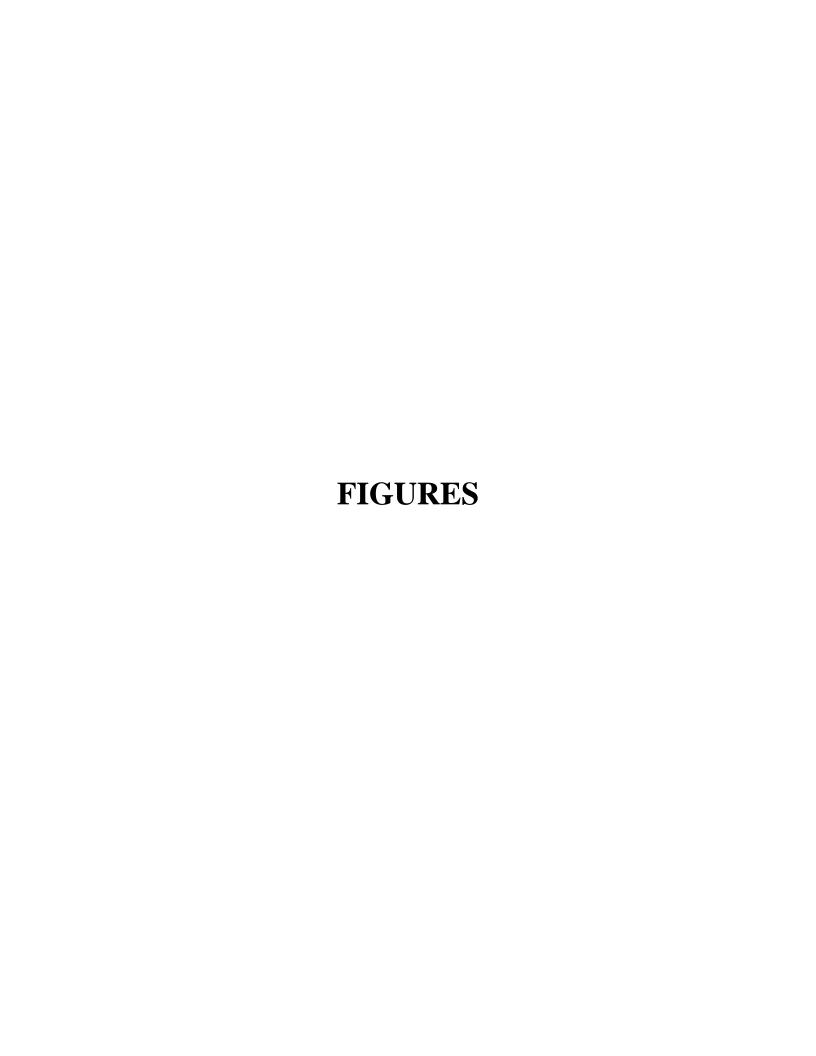
Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

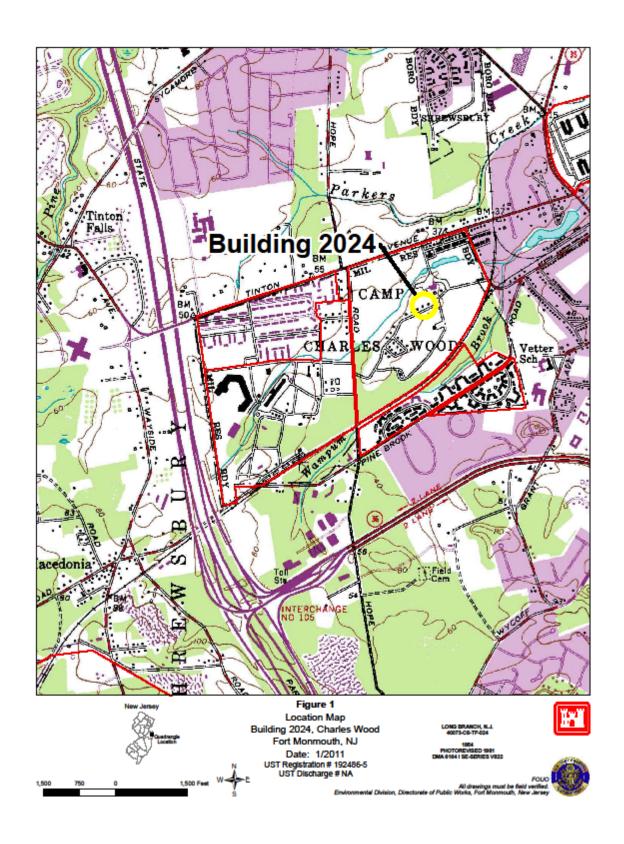
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on January 19, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.


Closure soil samples collected on January 19, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS

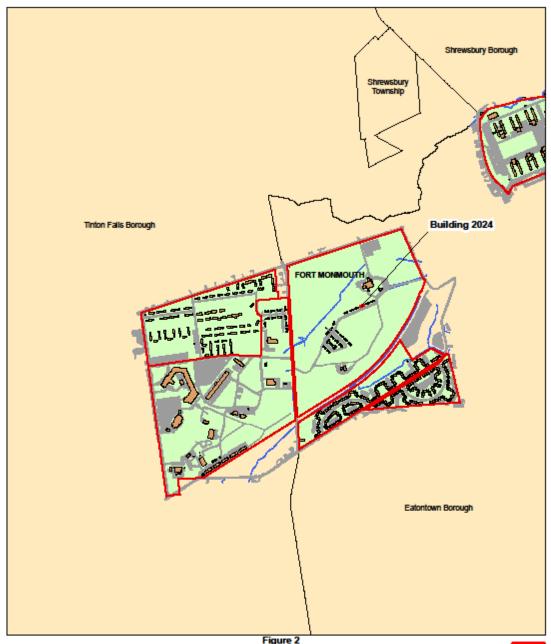
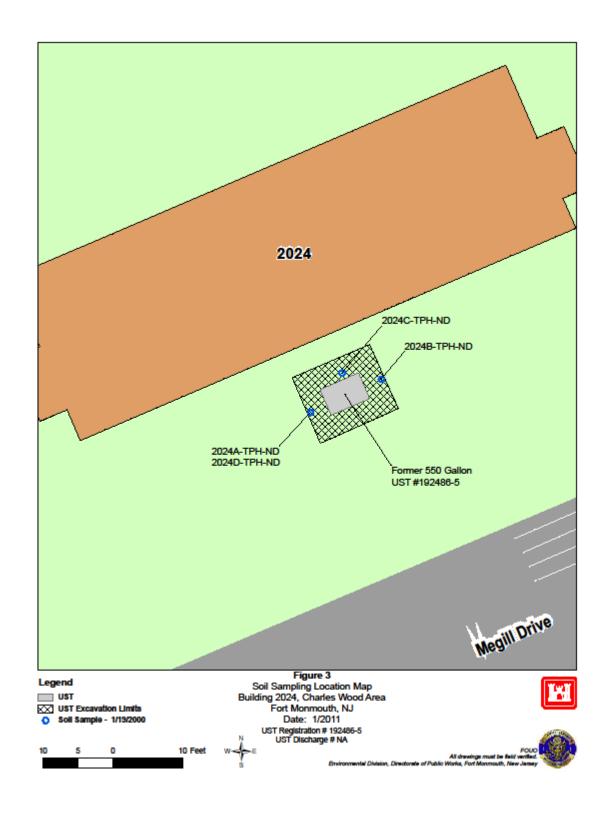
The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-5 were Not Detected for total petroleum hydrocarbons.

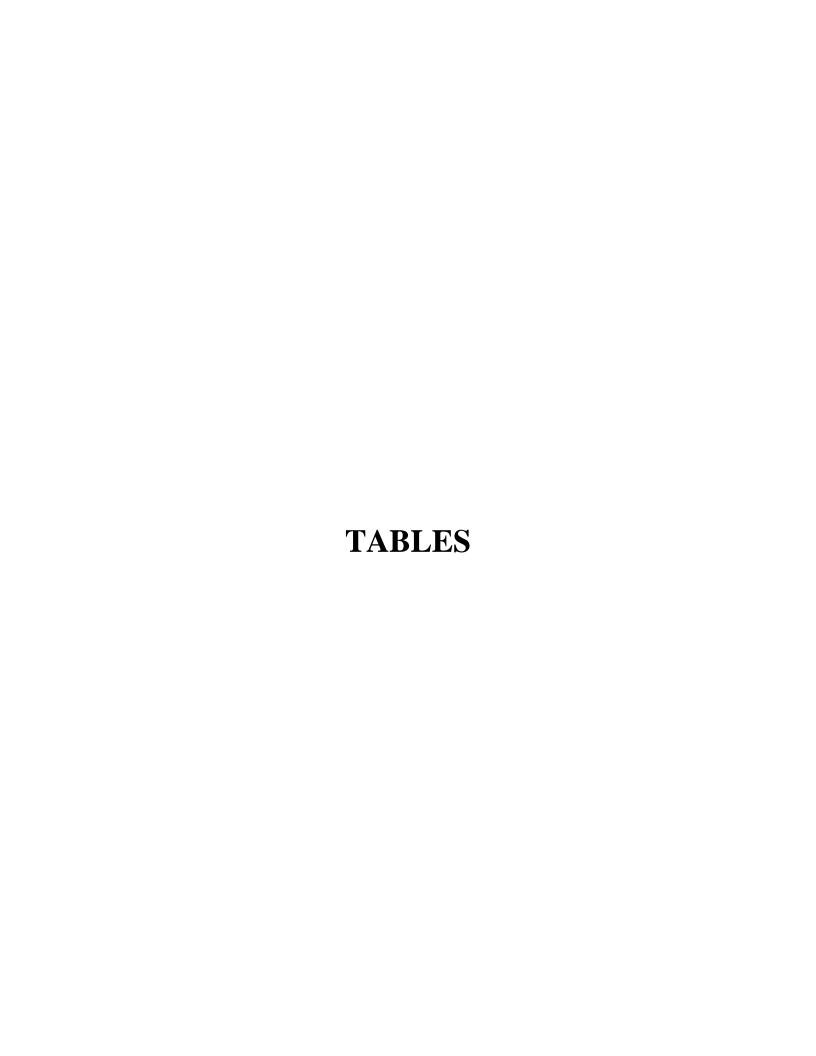
Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-5.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-5 at Building 2024.







Figure 2
Location Map
Building 2024, Charles Wood Area
Fort Monmouth, NJ
Date: 1/2011
UST Registration # 192486-5
UST Discharge # NA











## TABLE 1

#### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2024, UST No.: 192486-5 19 January 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2024-A       | 5107.01                 | 19 Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2024-В       | 5107.02                 | 19-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2024-C       | 5107.03                 | 19-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2024-D       | 5107.04                 | 19-Jan-00      | SOIL             | TPH                     | OQA-QAM-25           |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2024, UST No.: 192486-5 19 January 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | ТРН      |
|-----------|------------|--------------------|-----------|--------|----------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S |
|           |            |                    | (in feet) |        | mg/kg    |
| 2024-A    | 5107.01    | EAST END           | 6.5-7.0   | Soil   | ND       |
| 2024-В    | 5107.02    | WEST END           | 6.5-7.0   | Soil   | ND       |
| 2024-C    | 5107.03    | PIPING             | 1.5-2.0   | Soil   | ND       |
| 2024-D    | 5107.04    | DUPLICATE-EAST END | 6.5-7.0   | Soil   | ND       |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

## **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

#### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 200

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# U.S. ARMY FORT MONMOUTH UST DATABASE INPUT FORM

# CA

### SELEM-EH-EV

| DATE:                                                                                    |
|------------------------------------------------------------------------------------------|
| NJDEPE REG. #: 192486 UST #: 5                                                           |
| PRODUCT: #2, #6. DIESEL, GASOLINE, OTHER.                                                |
| STATUS: IN USE. NOT IN USE AS OF 1/1/5/94                                                |
| REASON NOT IN USE: GASIFICATION, LEAKER, DENO                                            |
| GENERAL COMMENTS:                                                                        |
|                                                                                          |
| UST PRODUCT REMOVED: DATE: ///3/94/                                                      |
| CONTRACTOR, SERVAIR POOL. T. Smythe                                                      |
| HANIFEST 4: NONS                                                                         |
| CONNENTS: 50 GALS WASTE IN TANK                                                          |
| 269 GALS TO BLOG 2700                                                                    |
| NJDEPE DISCHARGE TO ENVIRONMENT NOTIFICATION (609) 292-7172.  CALLER NAME:               |
| DATE:TIME:                                                                               |
| NJDEPE CASE NUMBER:                                                                      |
| COMMENTS                                                                                 |
| ATTACHMENTS (COPIES): HAZ-MAT MANIFEST, LAND DAN SERVICE ORDER PURCHASE REQ SPILL REPORT |
| SUBMITTED BY:                                                                            |
| ST CNATURE: DATE:                                                                        |

## **APPENDIX C**

## PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL

## TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2024

|                        | -                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                             |               |
|------------------------|--------------------------|-----------------------------------------|-----------------------------|---------------|
| Field Sample Location  | Laboratory<br>Sample ID# | Matrix                                  | Date and Time of Collection | Date Received |
| 2024-A East End 6.5-7' | 5107.01                  | Soil                                    | 19-Jan-00 10:00             | 01/19/00      |
| 2024-B West End 6.5-7' | 5107.02                  | Soil                                    | 19-Jan-00 10:10             | 01/19/00      |
| 2024-C Piping 1.5-2'   | 5107.03                  | Soil                                    | 19-Jan-00 10:20             | 01/19/00      |
| 2024-D Duplicate       | 5107.04                  | Soil                                    | 19-Jan-00 10:00             | 01/19/00      |
| Trip Blank             | 5107.05                  | Methanol                                | 19-Jan-00                   | 01/19/00      |

#### ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

1-27-00

## **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-7   |
| Surrogate Results Summary           | 8     |
| MS/MSD Results Summary              | 9     |
| Blank Spike Summary                 | 10    |
| Raw Sample Data                     | 11-20 |
| Laboratory Deliverable Checklist    | 21    |
| Laboratory Authentication Statement | 22    |

#### Method Summary

#### NJDEP Method OQA-QAM-025-10/97

#### Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.          | Method Detection Limits provided.                                                                                                             | Indicate<br>Yes, No, N/A |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2.          | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | <u>00</u>                |
| 3.          | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | Yes                      |
| 4.          | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | Yes<br>···               |
| <b>′</b> 5. | IR Spectra submitted for standards, blanks and samples.                                                                                       | <u>NA</u>                |
| 6.          | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | Yes                      |
| 7.          | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | yes                      |
| Add         | itional comments:                                                                                                                             |                          |
|             | 1-27.00                                                                                                                                       |                          |
| Lab         | oratory Manager Date                                                                                                                          |                          |



## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker Desai                                               |            |                            | Proje         | ect No:        | 10          | 0004    |                                                           |          |         | Anal         | lysis Paran  | neters         |                             | Comments:                     |
|----------------------------------------------------------------------|------------|----------------------------|---------------|----------------|-------------|---------|-----------------------------------------------------------|----------|---------|--------------|--------------|----------------|-----------------------------|-------------------------------|
| Phone #: X21475                                                      |            |                            | Loca          | tion: <i>E</i> | 3606. 2     | 024     |                                                           |          | S       | 2            |              |                | * = Samples Kept <4 Celsius |                               |
| ()DERA (X)OMA                                                        | UST Ass    | sessment                   | ust# 192486-5 |                |             | •       | 7.                                                        | SOLIDS   | +10     |              |              | Reading        |                             |                               |
| Samplers Name /                                                      | Compar     | y : Frank Acco             | rsi/T         | VS             |             | Sample  | #                                                         | TPHC     | SO      | VOA+10       |              |                | ) Re                        |                               |
| Lab Sample I.D.                                                      | San        | nple Location              |               | ate            | Time        | Туре    | bottle                                                    |          | %       | X            | VOA II       | D Number       | PID                         | Remarks / Preservation Method |
| 5107.01                                                              | 2024-4     | EAST END                   | 1-/           | 9-00           | 1000        | 5012    |                                                           | X        | X       | X            | 521          |                | 0                           | 10E                           |
| 102                                                                  | 2024-      | B. WEST END<br>B. 6.5-7 FT |               |                | 1010        | 1       | 2                                                         | X        | X       | ×            | 522          |                | 0                           |                               |
| 0.3                                                                  | 2024-(     | PIPING<br>1: 1.5-2FT       |               |                | 1020        |         | 2                                                         | X        | X       | X            | 523          |                | 0                           |                               |
| 04                                                                   | 2024-      | D. DUPLICATE               |               |                | 1000        | Y       | 2                                                         | 人        | メ       | メ            | 524          |                | 0                           |                               |
| 05                                                                   | TRIP E     | BLANK                      | V             |                |             | AQ      |                                                           |          |         | X            | 525          |                | Ţ                           |                               |
|                                                                      |            |                            |               |                |             |         |                                                           |          |         |              |              |                |                             |                               |
|                                                                      |            |                            |               |                |             |         |                                                           |          |         |              |              |                |                             |                               |
|                                                                      |            |                            |               |                |             |         |                                                           |          |         |              |              |                |                             | ,                             |
|                                                                      |            |                            |               |                |             |         |                                                           |          |         |              |              |                |                             |                               |
|                                                                      |            |                            |               |                |             |         |                                                           |          |         |              |              |                |                             |                               |
|                                                                      |            |                            |               |                |             |         |                                                           |          |         |              |              |                |                             |                               |
|                                                                      |            |                            |               |                | -           |         |                                                           |          | ·       |              |              |                |                             |                               |
|                                                                      |            |                            |               | -              |             |         |                                                           |          |         |              |              |                |                             |                               |
| OVM sn#                                                              | 580U-644   | 155.343 was calib          | rated v       | with ze        | ro air & w/ | 245 pp  | n Isob                                                    | utylene  | read    | 246          | _ppm <i></i> | 930 1-19       | 7-00                        | _(time/date & initial)        |
| Relinquished by (signature): Date/Time:                              |            |                            | 7 7 1         |                |             | quished | quished by (signature): Date/Time: Received by (signature |          |         | (signature): |              |                |                             |                               |
| Frank across 1-1900 1122                                             |            |                            | <b>A</b>      |                | لېداد).     | MA      |                                                           |          | ·       |              |              |                |                             |                               |
| Relinquished by (signature):  Date/Time:                             |            |                            | Recei         | ived by        | signature): |         | Reliz                                                     | ıquished | by (sig | nature)      | : Dat        | te/Time: Recei | ved by                      | (signature):                  |
| Report Type: ()Full, ()Reduced, ()Standard, ()Screen / non-certified |            |                            |               |                |             | Rema    | rks:                                                      |          | ]       | Dedicated Sa | mplin        | ig Tools Used  |                             |                               |
| Turnaround time: ()Stan                                              | dard 2 wks | , $\bigcirc$ Rush $2$ Days | , ()AS        | SAP Ver        | bal Hrs.    |         |                                                           | All sa   | mple po | ints ha      | ve been GPS  | ? ()YES ()     | NO (                        | ) NA                          |

Page \_\_\_\_\_ of \_\_\_\_

## Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5107

DPW. SELFM-PW-EV

Location:

Bldg.2024

Bldg. 173

UST Reg. #:

Ft. Monmouth, NJ 07703

 ${\bf Analysis:}$ 

OQA-QAM-025

Date Received:

19-Jan-00

Matrix:

Soil

Date Extracted:

\_, \_\_\_\_\_

Inst. ID. :

GC TPHC INST. #1

20-Jan-00 Shake

. .

RTX-5, 0.32mm ID, 30M

Extraction Method: Analysis Complete:

20-Jan-00

Column Type : Injection Volume :

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5107.01      | 2024-A   | 1.00               | 15.01         | 90.69   | 173            | ND                        |
| 5107.02      | 2024-B   | 1.00               | 15.29         | 91.03   | 169            | ND                        |
| 5107.03      | 2024-C   | 1.00               | 15.24         | 82.49   | 187            | ND                        |
| 5107.04      | 2024-D   | 1.00               | 15.38         | 87.63   | 174            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK313  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

Laboratory Director

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

## THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.  | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted  |         |
|-----|------------------------------------------------------------------------------------------------------------|---------|
| 2.  | Table of Contents submitted                                                                                |         |
| 3.  | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted            |         |
| 4.  | Document paginated and legible                                                                             |         |
| 5.  | Chain of Custody submitted                                                                                 |         |
| 6.  | Samples submitted to lab within 48 hours of sample collection                                              |         |
| 7.  | Methodology Summary submitted                                                                              |         |
| 8.  | Laboratory Chronicle and Holding Time Check submitted                                                      |         |
| 9.  | Results submitted on a dry weight basis                                                                    |         |
| 10. | Method Detection Limits submitted                                                                          | <u></u> |
| 11. | . Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP | _       |
|     | boratory Manager or Environmental Consultant's Signature  ate 1/27/ on                                     | 2       |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright
Laboratory Manager

Attachment F UST 2025 Closure Report

## U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2025

NJDEP UST Registration No.: 192486-6

UST No.: 192486-6

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2025 NJDEP UST REGISTRATION NO.: 192486-6

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1 Overview                                        |                                                       |    |  |  |  |  |  |
|     | 1.2 Site Description                                |                                                       |    |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE INVESTIGATION ACTIVITIES                       |                                                       |    |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |
|     | 3.1 Soil Sampling Results                           |                                                       |    |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Location Map-topographic

Figure 2 Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST** Closure

On February 4, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2025 in the Charles Wood area. UST No.: 192486-6 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2025-A and 2025-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-6. Closure sample 2025-C was collected from a location along the UST piping. A duplicate of sample 2025-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-6 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). Closure sample 2025-C contained a TPH concentration of 179.21 mg/kg. Closure samples 2025-A, 2025-B and duplicate sample contained TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-6 at Building 2025.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-6 was closed at Building 2025 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on February 4, 2000.

Decommissioning activities for UST No.: 192486-6 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2025 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-6 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2025. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### Local Geology

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### **Hydrogeology**

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On February 4, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2025-A and 2025-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-6. Closure sample 2025-C was collected from a location along the UST piping. A duplicate of sample 2025-A was collected. Refer to

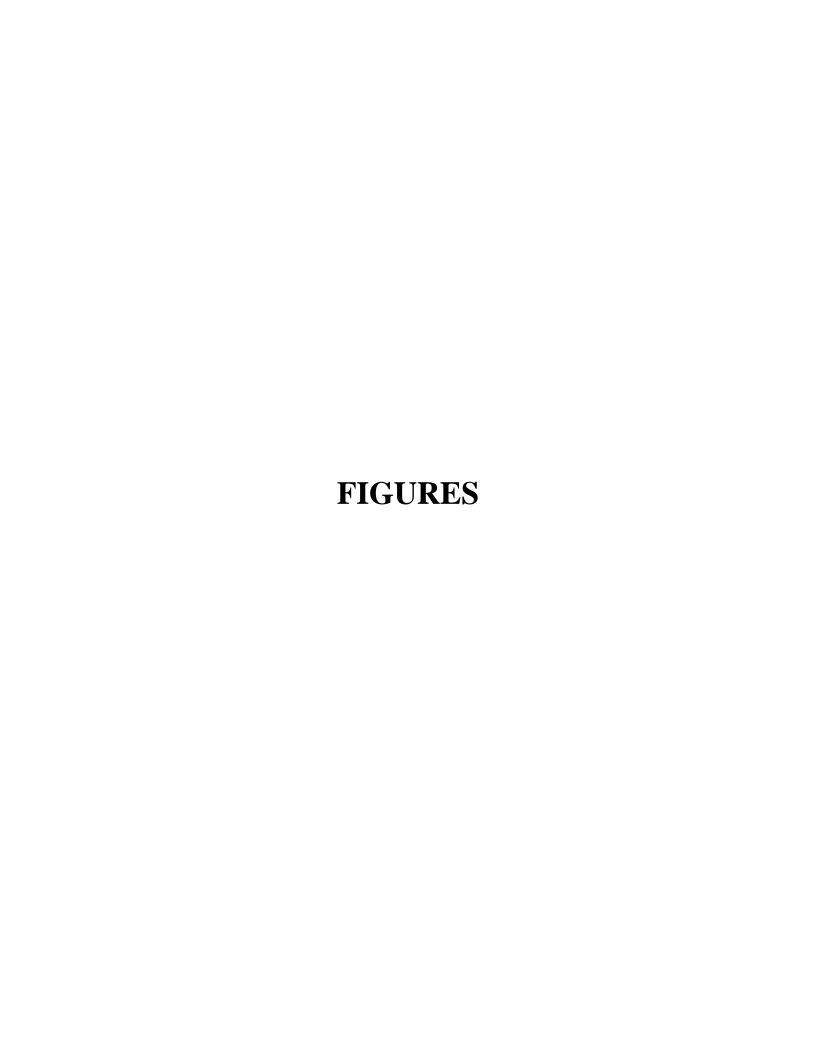
soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

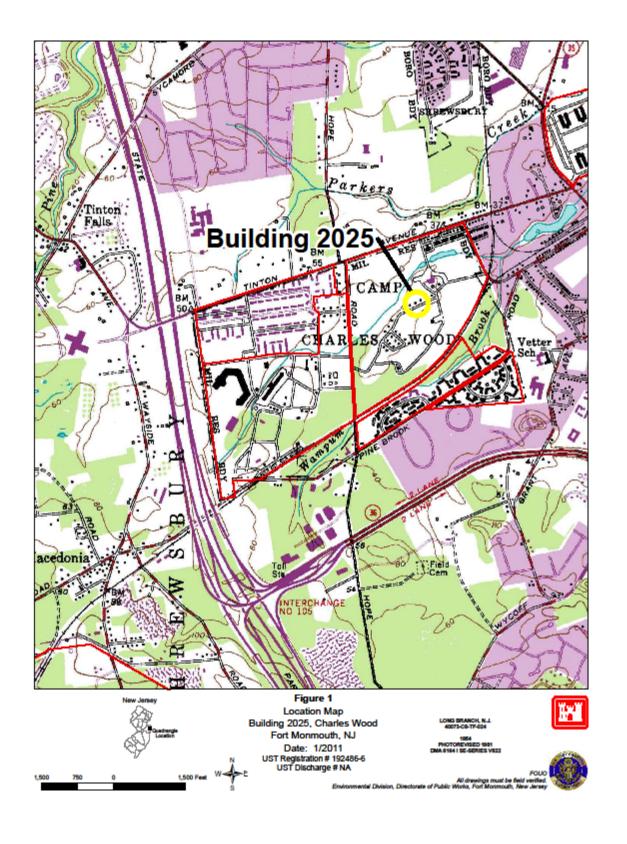
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on February 4, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.


Closure soil samples collected on February 4, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS

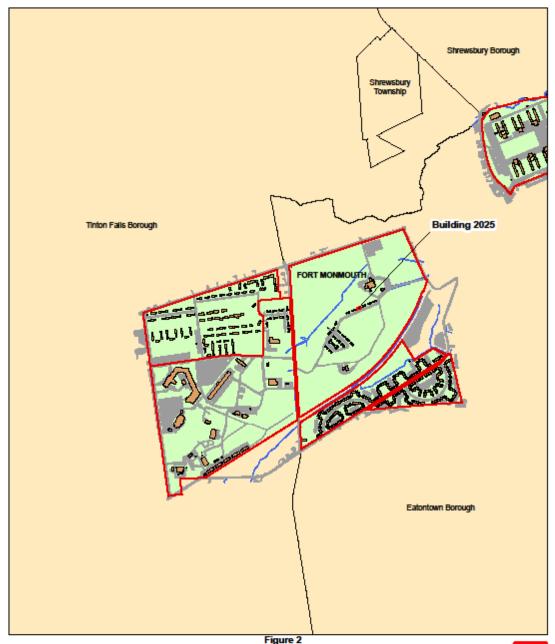
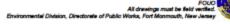
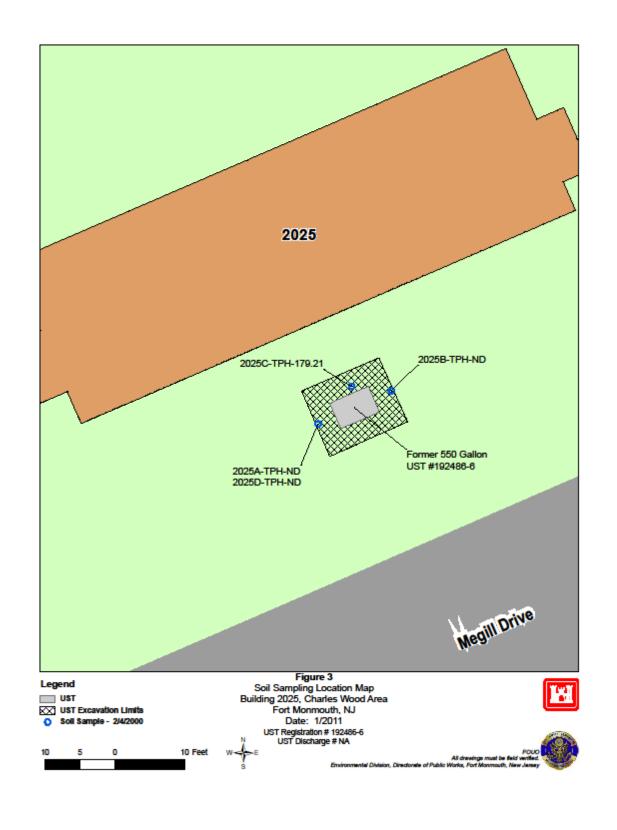
The analytical results for closure soil sample 2025-C contained a TPH concentration of 179.21 mg/kg. Closure samples 2025-A, 2025-B, and duplicate sample contained TPH concentration of Not Detected for the UST closure excavation at UST No.: 192486-6.

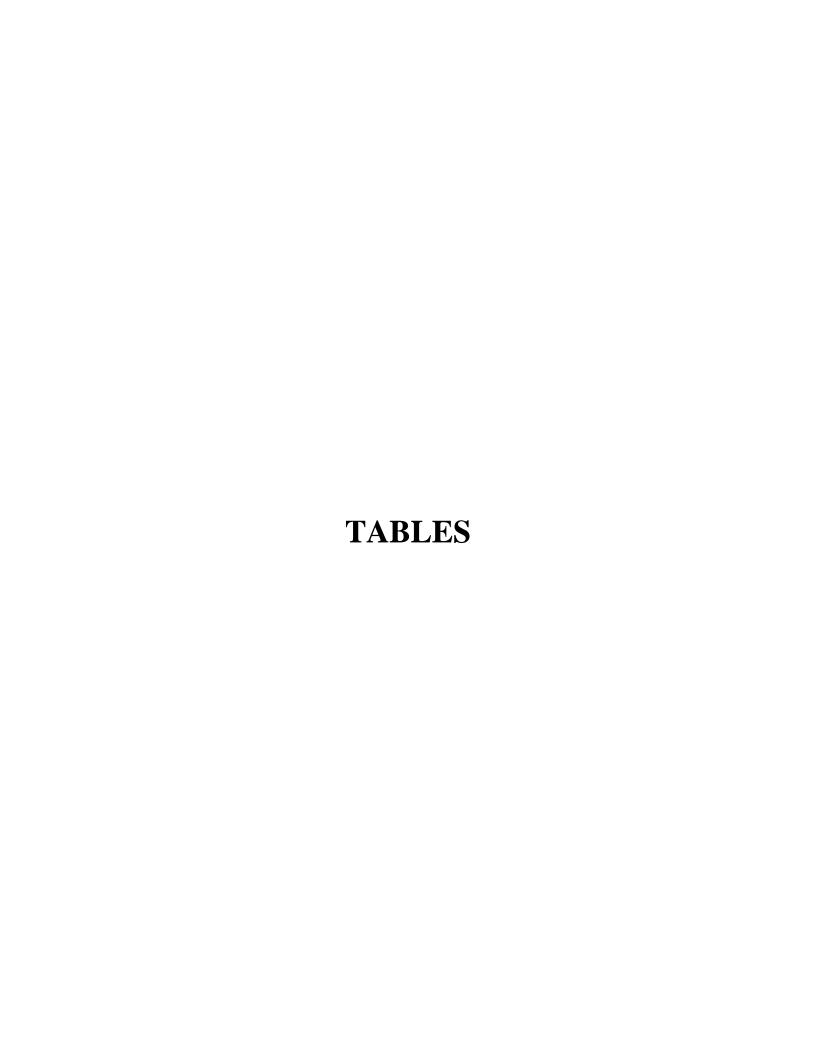
Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-6.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-6 at Building 2025.







Figure 2
Location Map
Building 2025, Charles Wood Area
Fort Monmouth, NJ
Date: 1/2011
UST Registration # 192486-6
UST Discharge # NA











## TABLE 1

### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2025, UST No.: 192486-6 **04 February 2000** 

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2025-A       | 5144.01                 | 04-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2025-В       | 5144.02                 | 04-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2025-С       | 5144.03                 | 04-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2025-D       | 5144.04                 | 04-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2025, UST No.: 192486-6 04 February 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | TPH<br>DECLUTE |
|-----------|------------|--------------------|-----------|--------|----------------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S       |
|           |            |                    | (in feet) |        | mg/kg          |
| 2025-A    | 5144.01    | WEST END           | 6.5-7.0   | Soil   | ND             |
| 2025-В    | 5144.02    | EAST END           | 6.5-7.0   | Soil   | ND             |
| 2025-С    | 5144.03    | PIPING             | 1.5-2.0   | Soil   | 179.21         |
| 2025-D    | 5144.04    | DUPLICATE-WEST END | 6.5-7.0   | Soil   | ND             |
| Duplicate |            |                    |           |        |                |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# APPENDIX A CERTIFICATIONS

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2025 (13+15 METILL DRIVE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scepe of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

#### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

FAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL

### **TESTING LABORATORY**

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2025

| Field Sample Location  | Laboratory Sample ID# | Matrix | Date and Time<br>of Collection | Date Received |  |
|------------------------|-----------------------|--------|--------------------------------|---------------|--|
| 2025-A West End 6,5-7' | 5144.01               | Soil   | 04-Feb-00 09:00                | 02/04/00      |  |
| 2025-B East End 6.5-7' | 5144.02               | Soil   | 04-Feb-00 09:10                | 02/04/00      |  |
| 2025-C Piping 1.5-2'   | 5144.03               | Soil   | 04-Feb-00 09:20                | 02/04/00      |  |
| 2025-D Duplicate       | 5144.04               | Soil   | 04-Feb-00 09:00                | 02/04/00      |  |
| Trip Blank             | 5144.05               | Soil   | 04-Feb-00                      | 02/04/00      |  |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

9

Daniel Wright/Date
Laboratory Director

### **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1 .   |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6     |
| Surrogate Results Summary           | 7     |
| MS/MSD Results Summary              | 8     |
| Blank Spike Summary                 | 9     |
| Raw Sample Data                     | 10-19 |
| Laboratory Deliverable Checklist    | . 20  |
| Laboratory Authentication Statement | 21    |

#### **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

#### Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                      |                         | Yes, No, N/A |
|------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|
| 2.         | Method Blank Contamination - If yes corresponding concentrations in each                                               | · •                     | NO_          |
| 3.         | Matrix Spike Results Summary Meet (If not met, list the sample and corres falls outside the acceptable range).         |                         | Yes.         |
| 4.         | Duplicate Results Summary Meet Cri<br>(If not met, list the sample and correst<br>falls outside the acceptable range). | ponding recovery which  | Yes<br>:     |
| <b>5</b> . | IR Spectra submitted for standards, bl                                                                                 | •                       | _NA          |
| 6.         | Chromatograms submitted for standar if GC fingerprinting was conducted.                                                | rds, blanks and samples | Yes          |
| <b>7</b> . | Analysis holding time met. (If not met, list number of days excee                                                      | ded for each sample).   | yes          |
| Addi       | itional comments:                                                                                                      |                         | •            |
|            |                                                                                                                        | 7-10-00                 |              |
| Labo       | oratory Manager                                                                                                        | Date                    |              |

## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1 monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker                         | Project No:                                         | 10                       | 0004           |              |                   |          | Ana                                                        | lysis Parameters |                                                | Comments:  |                                 |
|------------------------------------------|-----------------------------------------------------|--------------------------|----------------|--------------|-------------------|----------|------------------------------------------------------------|------------------|------------------------------------------------|------------|---------------------------------|
| Phone #: X21475                          |                                                     | Location: L              | 3LOG.          | 2025         | -                 |          | K0                                                         | *                |                                                |            | * = Samples Kept <4 Celsius     |
| ()DERA (X)OMA                            | UST Assessment                                      | UST# /                   | UST# / 92486-6 |              |                   |          | % SOLIDS                                                   | H10              |                                                | Reading    |                                 |
| Samplers Name /                          | Company : Frank Ac                                  | corsi/TVS                | orsi/TVS       |              |                   | TPHC     | SO                                                         | VOA+10           |                                                |            |                                 |
| Lab Sample I.D.                          | Sample Location                                     | Date                     | Time           | Туре         | bottles           | TI       | %                                                          | Λ                | VOA ID Numl                                    | ber 🖺      | Remarks / Preservation Method   |
| 5/44, 01                                 | 2025-A WEST END                                     | 2-4-00                   | 0900           | SOIL         | 2                 | X        | X                                                          | X                | 569                                            | 0          | 1CE                             |
| 69                                       | 2025-B EAST END                                     | 2                        | 0910           |              | 2                 | χ        | ×                                                          | X                | 570                                            | 0          |                                 |
| 03                                       | 2025-B 65-7 FN<br>2025-C PIPING<br>2025-C 15-2 F    |                          | 0920           |              | 7                 | X        | X                                                          | ×                | 571                                            | 0          |                                 |
| , 04                                     | 2025-D. DUPLICATE                                   | -                        | 0900           | Y            | 2                 | X        | χ                                                          | X                | 572                                            | 0          |                                 |
|                                          | TRIP BLANK                                          | Y                        |                | AQ.          | 1                 |          |                                                            | Х                | 573                                            |            |                                 |
| ./                                       |                                                     |                          |                |              |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                |              |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                |              |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                |              |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                |              |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                |              |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                | <del> </del> |                   |          |                                                            |                  |                                                |            |                                 |
|                                          |                                                     |                          |                | 1            |                   |          |                                                            | 1                |                                                |            |                                 |
| OVM sn#                                  | 580U-64455.343 was cal                              | ibrated with ze          | ero air & w/   | 245 ppm      | Isobu             | utylene  | read                                                       | 24               | 7 ppm. 0830 2                                  | 4-00       | (time/date & initial)           |
| Relinquished by (signatur                | Received by                                         | Received by/(signature): |                |              | equished by (sign |          |                                                            |                  | Received by                                    |            |                                 |
| Relinquished by (signature):  Date/Time: |                                                     |                          |                |              |                   | -        | uished by (signature):  Date/Time: Received by (signature) |                  |                                                |            |                                 |
|                                          | Reduced, ()Standard, ()Scr<br>dard 2 wks, ()Rush Da |                          |                |              |                   | 1 MZ 1/1 | rks:<br>7 HO o<br>mple poi                                 |                  | Dedicat<br>5-% 71,000 ff<br>ve been GPS? (X)YE | ed Samplin | ng Tools Used WHAHEST, MIN, ONE |

00000 10000

Page \_\_\_\_\_ of \_\_\_\_\_

## Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5144

DPW. SELFM-PW-EV

Location:

Bldg. 2025

Bldg. 173

UST Reg. #:

192486-6

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

04-Feb-00

Matrix:

Soil

Date Extracted:

07-Feb-00

Inst. ID.:

2011

Extraction Method:

Shake

Column Type:

GC TPHC INST. #1 RTX-5, 0.32mm ID, 30M

Analysis Complete:

07-Feb-00

Injection Volume:

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight (g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|------------|---------|----------------|---------------------------|
| 5144.01      | 2025-A   | 1.00               | 15.16      | 90.29   | 172            | ND                        |
| 5144.02      | 2025-B   | 1.00               | 15.01      | 88.90   | 176            | ND                        |
| 5144.03      | 2025-C   | 1.00               | 15.14      | 86.64   | 179            | 179.21                    |
| 5144.04      | 2025-D   | 1.00               | 15.30      | 88.45   | 174            | ND                        |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
| METHOD BLANK | TBLK323  | 1.00               | 15.00      | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright
Laboratory Director

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

### THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.  | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted |  |
|-----|-----------------------------------------------------------------------------------------------------------|--|
| 2.  | Table of Contents submitted                                                                               |  |
| 3.  | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted           |  |
| 4,  | Document paginated and legible                                                                            |  |
| 5.  | Chain of Custody submitted                                                                                |  |
| 6.  | Samples submitted to lab within 48 hours of sample collection                                             |  |
| 7.  | Methodology Summary submitted                                                                             |  |
| 8.  | Laboratory Chronicle and Holding Time Check submitted                                                     |  |
| 9.  | Results submitted on a dry weight basis                                                                   |  |
| 10. | Method Detection Limits submitted                                                                         |  |
| 11. | Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP  |  |
|     | oratory Manager or Environmental Consultant's Signature                                                   |  |

Laboratory Certification #13461

<sup>\*</sup>Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment G UST 2026 Closure Report

### U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2026

NJDEP UST Registration No.: 192486-7

UST No.: 192486-7

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2026 NJDEP UST REGISTRATION NO.: 192486-7

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On February 8, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2026 in the Charles Wood area. UST No.: 192486-7 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* (*N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual*. Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2026-A and 2026-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-7. Closure sample 2026-C was collected from a location along the UST piping. A duplicate sample was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-7 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-7 at Building 2026.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-7 was closed at Building 2026 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No.2 fuel oil for residential use. It was removed on February 8, 2000.

Decommissioning activities for UST No.: 192486-7 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2026 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-7 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2026. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On February 8, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2026-A and 2026-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-7. Closure sample 2026-C was collected from a location along the UST piping. A duplicate sample, D, was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

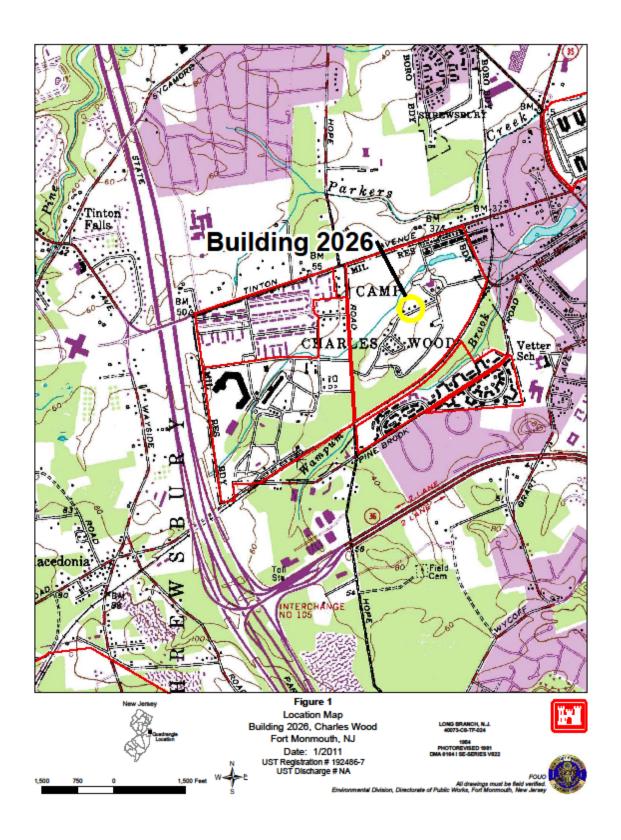
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

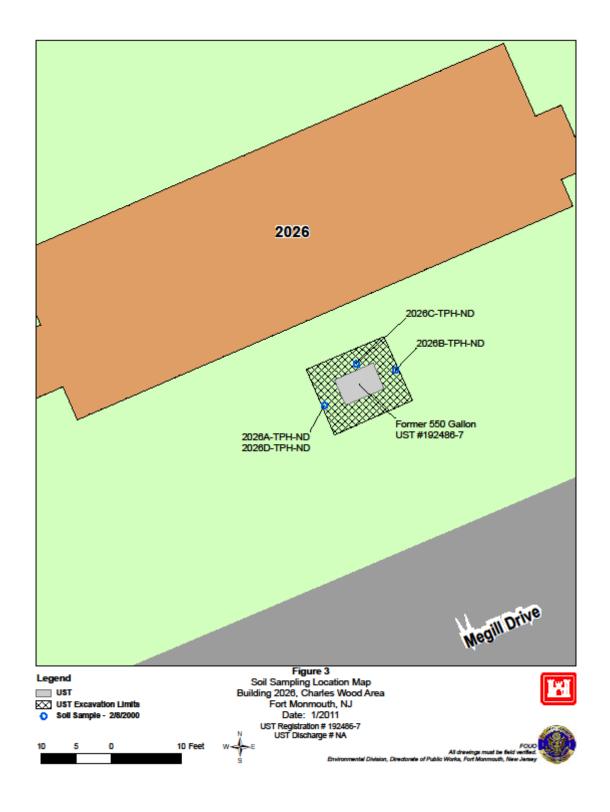
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on February 8, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on February 8, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-7 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-7.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-7 at Building 2026.

## **FIGURES**







## **TABLES**

## TABLE 1

#### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2026, UST No.: 192486-7 08 February 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2026-A       | 5157.01                 | 08-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2026-В       | 5157.02                 | 08-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2026-С       | 5157.03                 | 08-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2026-D       | 5157.04                 | 08-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

#### ABBREVIATIONS:

 $TPH = Total\ Petroleum\ Hydrocarbons,\ NJDEP\ Method\ OQA-QAM-025\ (10/97)$ 

### TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2026, UST No.: 192486-7 08 February 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION | SAMPLE    | MATRIX | TPH      |
|-----------|------------|-----------------|-----------|--------|----------|
|           | SAMPLE ID  |                 | DEPTH     |        | RESULT S |
|           |            |                 | (in feet) |        | mg/kg    |
| 2026-A    | 5157.01    | WEST END        | 6.5-7.0   | Soil   | ND       |
| 2026-В    | 5157.02    | EAST END        | 6.5-7.0   | Soil   | ND       |
| 2026-C    | 5157.03    | PIPING          | 2.0-2.5   | Soil   | ND       |
| 2026-D    | 5157.04    | DUPLICATE       | -         | Soil   | ND       |
| Duplicate |            |                 |           |        |          |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# APPENDIX A CERTIFICATIONS

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

#### DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2026

|                        | T .1              |          | Date and Time   | Date Received |
|------------------------|-------------------|----------|-----------------|---------------|
| Field Sample Location  | <u>Laboratory</u> | Matrix   | Date and Time   | Date Neceived |
|                        | Sample ID#        |          | of Collection   |               |
| 2026-A West End 6.5-7' | 5157,01           | Soil     | 08-Feb-00 10:00 | 02/08/00      |
| 2026-B East End 6.5-7' | 5157.02           | Soil     | 08-Feb-00 10:20 | 02/08/00      |
| 2026-C Piping 2-2.5'   | 5157.03           | Soil     | 08-Feb-00 10:30 | 02/08/00      |
| 2026-D Duplicate       | 5157.04           | Soil     | 08-Feb-00 10:00 | 02/08/00      |
| Trip Blank             | 5157,05           | Methanol | 08-Feb-00       | 02/08/00      |

#### ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date

Laboratory Director

### **Table of Contents**

| Section                             | Pages      |
|-------------------------------------|------------|
| Method Summary                      | 1          |
| Conformance/Non-Conformance         | 2          |
| Chain of Custody                    | 3          |
| Results Summary                     | 4          |
| Initial Calibration Summary         | 5          |
| Continuing Calibration Summary      | 6-7        |
| Surrogate Results Summary           | 8          |
| MS/MSD Results Summary              | · <b>9</b> |
| Blank Spike Summary                 | 10         |
| Raw Sample Data                     | 11-20      |
| Laboratory Deliverable Checklist    | 21         |
| Laboratory Authentication Statement | 22         |

#### **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                                             | Yes, No, N/A |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2.         | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | <u> </u>     |
| 3.         | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | Yes          |
| <b>4</b> . | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | Yes.         |
| 3.         | IR Spectra submitted for standards, blanks and samples.                                                                                       | <u>NA</u>    |
| 6.         | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | Yes          |
| 7.         | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | yes<br>yes   |
| Addi       | tional comments:                                                                                                                              |              |
|            | 2-16.00                                                                                                                                       |              |
| Labo       | oratory Manager Date                                                                                                                          |              |



## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker Desai                   |                              | Project No: 100004       |                            |         | Analysis Parameters |                     |         |                |                         | Comments:                                      |                             |                                    |  |
|------------------------------------------|------------------------------|--------------------------|----------------------------|---------|---------------------|---------------------|---------|----------------|-------------------------|------------------------------------------------|-----------------------------|------------------------------------|--|
| Phone #: X21475                          |                              | Location: BLO6, 2036     |                            |         | TPHC % SOLIDS       |                     |         |                |                         |                                                | * = Samples Kept <4 Celsius |                                    |  |
| ()DERA (X)OMA                            | UST Assessment               | UST# <i>19</i>           | UST# 192 <del>4</del> 86-7 |         |                     | - \                 |         | VOA+10         |                         |                                                | Reading                     |                                    |  |
| Samplers Name /                          | Company: Frank Acc           | orsi/TVS                 |                            | Sample  | #                   | TPHC                | SO      | OA:            | <u> </u>                |                                                | - Rec                       |                                    |  |
| Lab Sample LD.                           | Sample Location              | Date                     | Time                       | Туре    | bottles             | TE                  | %       | Š              | VO                      | A ID Numb                                      |                             | Remarks / Preservation Method      |  |
| 5/57. 01                                 | 2026-A 6,5-7 17              | 2-8-00                   | 1000                       | SOIL    | 2                   | X                   | X       | X              | 576                     | <i>?</i><br>2                                  | 0                           | ICE                                |  |
| 02                                       | 2026-BEASTEND                |                          | 1020                       |         | 2                   | Χ                   | χ       | ×              | 577                     | <u>,                                      </u> | 0                           | ١                                  |  |
| 03                                       | 2026-C, 2-25-FT              | † ]                      | 1030                       |         | 2                   | X                   | X       | X              | 578                     |                                                | 0                           |                                    |  |
| 04                                       | 2026-0, DUPLICATE            |                          | 1000                       | Y       | 2                   | X                   | X       | X              | 579                     |                                                | 0                           |                                    |  |
| 05                                       | TRIP BLANK                   | <u> </u>                 |                            | AQ.     |                     |                     |         | <u> </u>       | 580                     | · · · · · · · · · · · · · · · · · · ·          |                             | V                                  |  |
|                                          |                              | '                        |                            |         |                     |                     |         |                |                         |                                                |                             |                                    |  |
|                                          |                              |                          |                            |         |                     |                     |         |                |                         | ,                                              |                             |                                    |  |
|                                          |                              |                          |                            |         |                     |                     |         |                |                         |                                                |                             |                                    |  |
|                                          |                              |                          |                            |         |                     |                     |         |                | ļ                       |                                                |                             |                                    |  |
|                                          |                              |                          |                            |         | ,                   |                     |         |                | ļ                       |                                                |                             |                                    |  |
|                                          |                              |                          |                            |         |                     |                     |         |                |                         |                                                |                             | *                                  |  |
|                                          |                              |                          |                            |         |                     |                     |         |                |                         |                                                |                             |                                    |  |
|                                          |                              |                          |                            |         |                     |                     |         |                | <u> </u>                |                                                |                             |                                    |  |
| OVM sn#                                  | 580U-64455.343 was calib     | rated with ze            | ro air & w/                | 245 ppm | Isobu               | itylene             | read    | 299            | ppm.                    | 0930                                           | 2-8-001                     | time/date & initial)               |  |
| Relinquished by (signature): Date/Time:  |                              | Received by (signature): |                            |         | Relino              | quished             | by (sig | nature)        | :                       | Date/Time:                                     | Received by                 | (signature):                       |  |
| Frank ausrai 2-8-00/130                  |                              | Lr.Vl                    | WULL                       | W       |                     |                     |         |                |                         |                                                | <u> </u>                    |                                    |  |
| Relinquished by (signature):  Date/Time: |                              | Received by (signature): |                            |         | Relino              | inquished by (signa |         | nature)        | nure): Date/Time: Recei |                                                | Received by                 | ved by (signature):                |  |
| Report Type: ( )Full, ( )                | Reduced, (Standard, ()Screen | n / non-certifie         | d ,                        |         | L                   | Rema                | rks: *  | 1 2 6          | -02 \                   | Dedicate                                       | d Sampli                    | ng Tools Used MIN. ONE, ON HIGHEST |  |
| · ·                                      | dard 2 wks, (Jokush 2 Days   |                          |                            | •       |                     | VO7<br>All sa       | nple po | ンレン<br>ints ha | ve been                 | GPS? <b>≪</b> YES                              | ( ) NO                      | ()NA                               |  |

Page \_\_\_ of \_ l

## Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5157

DPW. SELFM-PW-EV

Location:

Bldg.2026

Bldg. 173

UST Reg. #:

192486-7

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

08-Feb-00

Matrix:

Soil

Date Extracted :

09-Feb-00

Inst. ID. :

GC TPHC INST. #1

Extraction Method:

Shake

Column Type :

RTX-5, 0.32mm ID, 30M

Analysis Complete:

10-Feb-00

Injection Volume:

1 uL

Analyst:

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5157.01      | 2026-A   | 1.00               | 15.41         | 89.49   | 170            | ND                        |
| 5157.02      | 2026-B   | 1.00               | 15.35         | 88.56   | 173            | ND                        |
| 5157.03      | 2026-C   | 1.00               | 15.20         | 87.96   | 176            | ND                        |
| 5157.04      | 2026-D   | 1.00               | 15.06         | 91.12   | 171            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| ·            |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK325  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

**Laboratory Director** 

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            | <u> </u> |
| 4.         | Document paginated and legible                                                                                                             |          |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |          |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |          |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment H UST 2027 Closure Report

## U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2027

NJDEP UST Registration No.: 192486-8

UST No.: 192486-8

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2027 NJDEP UST REGISTRATION NO.: 192486-8

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

## **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |
| 3.0 | CON                                                 | CONCLUSIONS AND RECOMMENDATIONS                       |    |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

## **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

## **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

## **EXECUTIVE SUMMARY**

## **UST** Closure

On February 9, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2027 in the Charles Wood area. UST No.: 192486-8 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2027-A and 2027-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-8. Closure sample 2027-C was collected from a location along the UST piping. A duplicate of sample 2027-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-8 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-8 at Building 2027.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-8 was closed at Building 2027 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No.2 fuel oil for residential use. It was removed on February 9, 2000.

Decommissioning activities for UST No.: 192486-8 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2027 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-8 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2027. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

## **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On February 9, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2027-A and 2027-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-8. Closure sample 2027-C was collected from a location along the UST piping. A duplicate of sample 2027-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

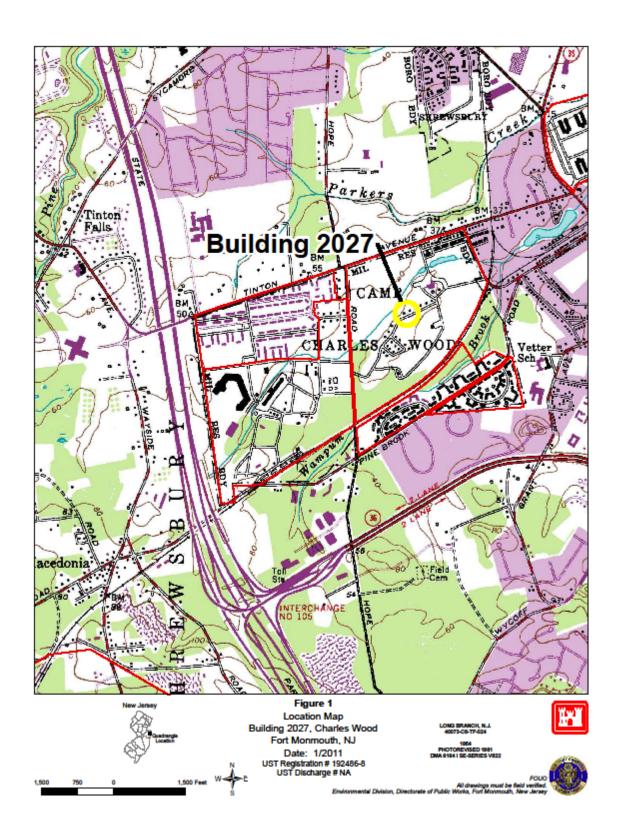
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

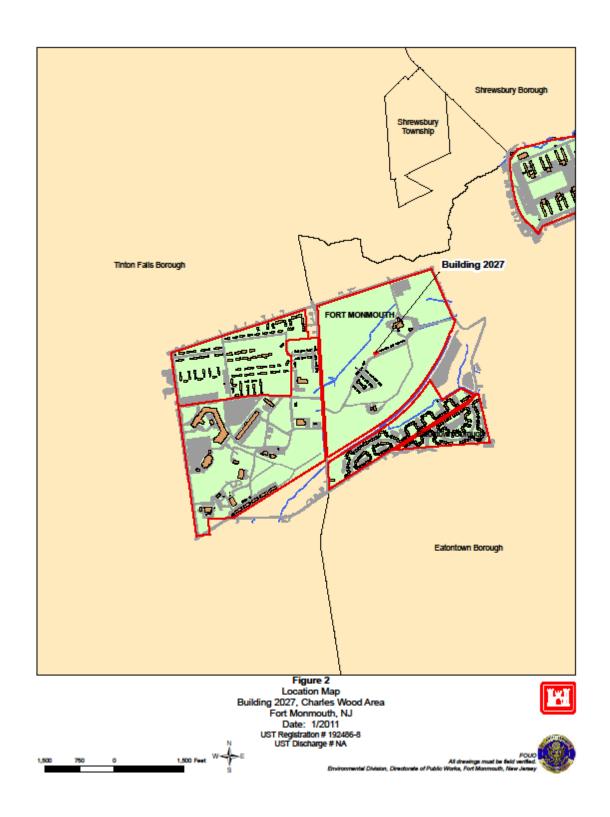
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

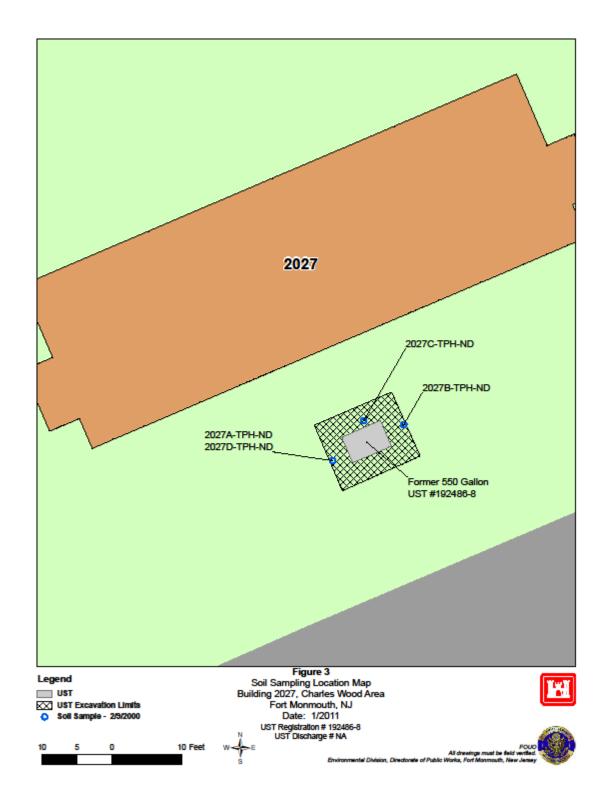
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on February 9, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on February 9, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-8 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-8.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-8 at Building 2027.

## **FIGURES**







## **TABLES**

## **TABLE 1**

## SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2027, UST No.: 192486-8 09 February 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2027-A       | 5161.01                 | 09-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2027-В       | 5161.02                 | 09-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2027-С       | 5161.03                 | 09-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2027-D       | 5161.04                 | 09-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

## ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

## SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2027, UST No.: 192486-8 09February 2000

## TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION    | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|--------------------|-----------------|--------|-----------------|
|           | SAMILE ID               |                    | (in feet)       |        | mg/kg           |
| 2027-A    | 5161.01                 | WEST END           | 6.5-7.0         | Soil   | ND              |
| 2027-В    | 5161.02                 | EAST END           | 6.5-7.0         | Soil   | ND              |
| 2027-С    | 5161.03                 | PIPING             | 2.02.5          | Soil   | ND              |
| 2028-D    | 5161.04                 | DUPLICATE-WEST END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                    |                 |        |                 |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

## **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

## DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO
ATTENTION OF
Directorate of Public Works

WAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2027 (21+23 METICL DR.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this centract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRO **TESTING LABORATORY**

## DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



## ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory **ENVIRONMENTAL DIVISION** Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2027

| Field Sample Location  | Laboratory         | Matrix   | Date and Time                    | Date Received |
|------------------------|--------------------|----------|----------------------------------|---------------|
| 2027-A West End 6.5-7' | Sample ID# 5161.01 | Soil     | of Collection<br>09-Feb-00 15:00 | 02/09/00      |
| 2027-B East End 6.5-7' | 5161.02            | Soil     | 09-Feb-00 15:10                  | 02/09/00      |
| 2027-C Piping 2-2.5'   | 5161.03            | Soil     | 09-Feb-00 15:30                  | 02/09/00      |
| 2027-D Duplicate       | 5161.04            | Soil     | 09-Feb-00 15:00                  | 02/09/00      |
| Trip Blank             | 5161.05            | Methanol | 09-Feb-00                        | 02/09/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

**ENCLOSURE:** CHAIN OF CUSTODY **RESULTS** 

Daniel Wright/Date

Laboratory Director

## **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-11  |
| Surrogate Results Summary           | 12    |
| MS/MSD Results Summary              | 13    |
| Blank Spike Summary                 | 14    |
| Raw Sample Data                     | 15-24 |
| Laboratory Deliverable Checklist    | 25    |
| Laboratory Authentication Statement | 26    |

## **Method Summary**

## NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                           |                       | Indicate Yes, No, N/A |
|------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| 2.         | Method Blank Contamination – If yes, leach black corresponding concentrations in each black.                                |                       | NO_                   |
| 3.         | Matrix Spike Results Summary Meet Cr<br>(If not met, list the sample and corresponding falls outside the acceptable range). |                       | Yes                   |
| 4.         | Duplicate Results Summary Meet Criter (If not met, list the sample and correspondable outside the acceptable range).        | nding recovery which  | Yes<br>·              |
| <b>3</b> . | IR Spectra submitted for standards, blan                                                                                    |                       | NA                    |
| 6.         | Chromatograms submitted for standards if GC fingerprinting was conducted.                                                   | s, blanks and samples | <u>yes</u>            |
| 7.         | Analysis holding time met. (If not met, list number of days exceede                                                         | d for each sample).   | yes                   |
| Addi       | tional comments:                                                                                                            |                       |                       |
| <          |                                                                                                                             | 2-16-00               |                       |
| Labo       | ratory Manager                                                                                                              | Date                  |                       |



## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker               | Project No: 100004             |                      |             |         | Analysis Parameters                        |                |                           |            |                               | Comments:     |         |                               |
|--------------------------------|--------------------------------|----------------------|-------------|---------|--------------------------------------------|----------------|---------------------------|------------|-------------------------------|---------------|---------|-------------------------------|
| Phone #: X21475                |                                | Location: BLD4. 2027 |             |         |                                            |                | Ks                        | X          |                               | ,             |         | * = Samples Kept <4 Celsius   |
| ()DERA (X)OMA                  | UST Assessment                 | UST# 192486-8        |             |         |                                            |                | SOLIDS                    | 110        |                               |               | Reading |                               |
| Samplers Name /                | Company: Frank Acco            | rsi/TVS              |             | Sample  | #                                          | TPHC           | SO                        | VOA+10     |                               |               | Reg     |                               |
| Lab Sample LD. Sample Location |                                | Date                 | Time        | Туре    | bottles                                    | L )(           | %                         | <b>)</b>   | VOA ID                        | Number        | E E     | Remarks / Preservation Method |
| 5161,01                        | 2027-A. 65-7 FT                | 2-9-00               | 1500        | 50/L    | 2                                          | Х              | χ                         | X          | 585                           |               | 0       | 1CE                           |
| Pa                             | 2027-B EASTEND                 |                      | 1510        |         | 2                                          | X              | X                         | Ý          | 586                           |               | 0       |                               |
| 02                             | 2027-C. 21-2,5 FT              |                      | 1530        |         | 2                                          | <sub>'</sub> χ | X                         | ×          | 587                           |               | 0       |                               |
| 04                             | 2027-D. DUPLICATE              |                      | 1500        | L Y     | 2                                          | ×              | X                         | X          | 588                           |               | 0       |                               |
| 05                             | TRIP BLANK                     | V                    |             | AQ.     | 1                                          |                |                           | <b>X</b>   | 589                           |               | _       | γ                             |
|                                |                                |                      |             |         |                                            |                |                           |            |                               |               |         |                               |
|                                |                                |                      |             |         | ,                                          |                |                           |            |                               |               |         |                               |
|                                |                                |                      |             |         |                                            |                |                           |            |                               |               |         |                               |
|                                |                                |                      |             |         |                                            |                |                           |            |                               |               |         |                               |
|                                |                                | ·                    |             |         |                                            |                |                           |            |                               |               |         |                               |
|                                |                                |                      |             |         |                                            |                |                           |            |                               |               |         |                               |
|                                |                                |                      |             |         |                                            |                |                           |            |                               |               |         |                               |
|                                |                                |                      |             |         |                                            |                |                           |            |                               |               |         |                               |
| OVM sn#                        | 580U-64455.343 was calibr      | ated with ze         | ro air & w/ | 245 ppm | Isobu                                      | ıtylene        | read                      | 244        | - ppm:30 2-                   | 8-00          | FA      | _(time/date & initial)        |
| Relinquished by (signatur      | Received by/(signature); Re    |                      |             |         | linquished by (signature): Date/Tir        |                |                           |            | ime: Received by (signature): |               |         |                               |
| Relinquished by (signatu       | Received by (signature): Relin |                      |             | Reline  | nquished by (signature): Date/Time: Receiv |                |                           | · .        | (signature):                  |               |         |                               |
| Report Type: ()Full, ()        |                                |                      |             | Rema    | rks:                                       | - 25           | 70 > 1,000 <sup>D</sup> , | edicated S | amplir                        | ng Tools Used |         |                               |
| Turnaround time: ()Stan        | dard 2 wks, Rush Days,         | ()ASAP Ver           | bal Hrs.    |         |                                            | All sar        | nple po                   | ints ha    | ve been GPS?                  | XYES ()       | NO (    | ) NA                          |

000003

## **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5161

DPW. SELFM-PW-EV

Location:

Bldg.2027

Bldg. 173

UST Reg. #:

192486-8

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

09-Feb-00

Matrix:

Soil

Date Extracted:

10-Feb-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

11-Feb-00

Injection Volume:

1uL

Analyst:

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight (g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|------------|---------|----------------|---------------------------|
| 5161.01      | 2027-A   | 1.00               | 15.14      | 90.57   | 171            | ND                        |
| 5161.02      | 2027-В   | 1.00               | 15.03      | 92.44   | 169            | ND                        |
| 5161.03      | 2027-C   | 1.00               | 15.37      | 90.77   | 168            | ND                        |
| 5161.04      | 2027-C   | 1.00               | 15.18      | 91.24   | 170            | ND                        |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
| METHOD BLANK | TBLK326  | 1.00               | 15.00      | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

**Laboratory Director** 

### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |          |
| 4.         | Document paginated and legible                                                                                                             | <u> </u> |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |          |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |          |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

## **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment I UST 2028 Closure Report

# **U.S. Army Garrison**

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2028

NJDEP UST Registration No.: 192486-9 UST No.: 192486-9

September 2010

# UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2028 NJDEP UST REGISTRATION NO.: 192486-9

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

# **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |

# **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

# **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

# **EXECUTIVE SUMMARY**

## **UST Closure**

On February 17, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2028 in the Charles Wood area. UST No.: 192486-9 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

## Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2028-A and 2028-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-9. Closure sample 2028-C was collected from a location along the UST piping. A duplicate sample, D, was also collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

## **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-9 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including duplicate, contained a TPH concentration of Not Detected.

## Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-9 at Building 2028.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-9 was closed at Building 2028 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No.2 fuel oil for residential use. It was removed on February 17, 2000.

Decommissioning activities for UST No.: 192486-9 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

## 1.2 SITE DESCRIPTION

Building 2028 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-9 and associated piping were located adjacent to the building, as shown on Figure 3.

# 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2028. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

# **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

## 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

## 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

## 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

## 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On February 17, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2028-A and 2028-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-9. Closure sample 2028-C was collected from a location along the UST piping. A duplicate sample, D, was also collected. Refer to soil sampling location map in Figure 3.

All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

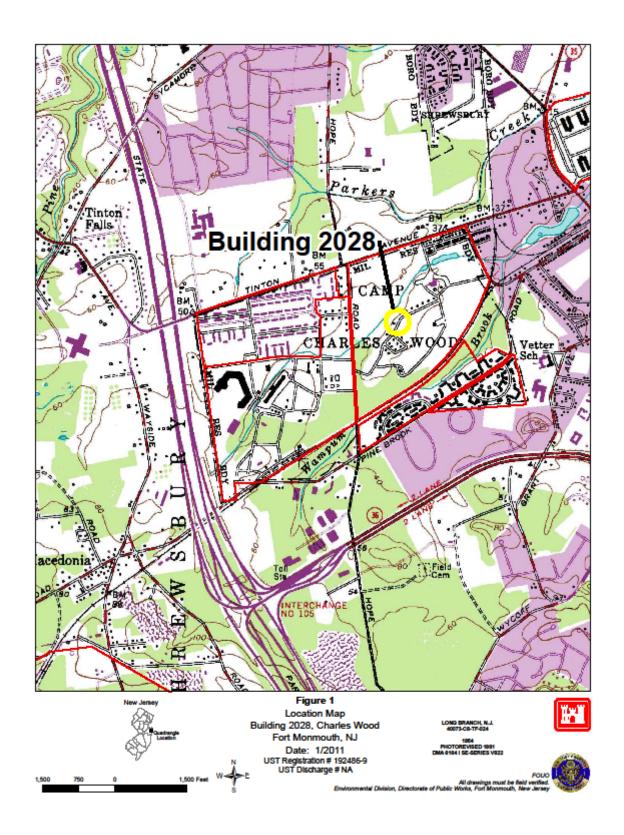
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

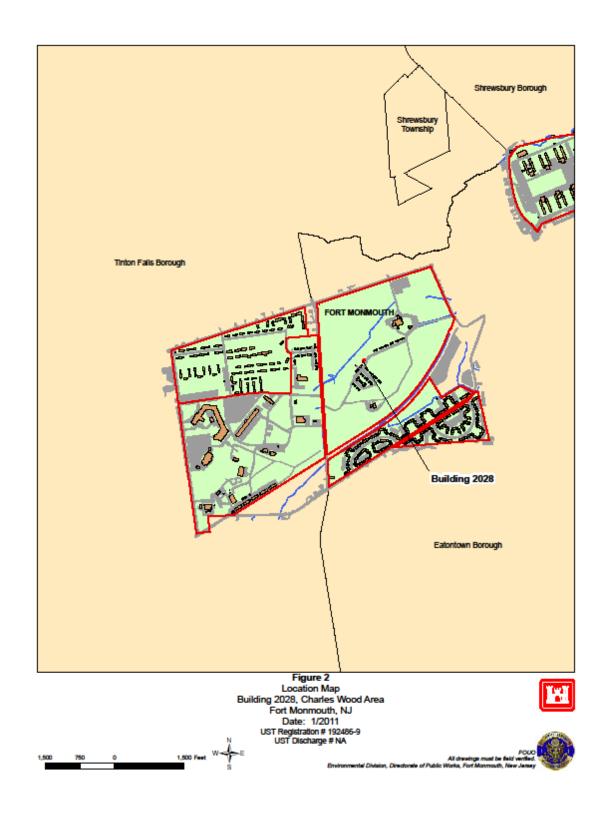
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

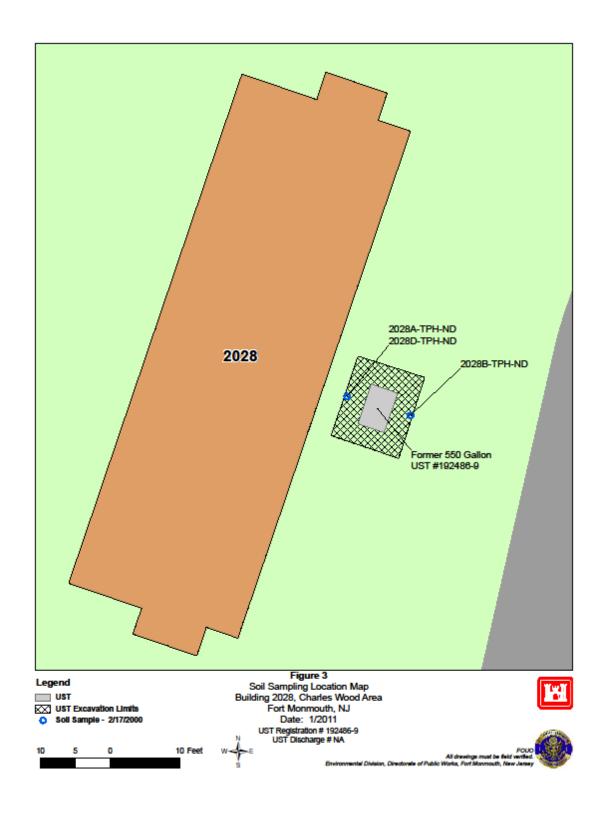
## 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on February 17, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on February 17, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


## 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-9 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-9.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-9 at Building 2028.

# **FIGURES**







# **TABLES**

# TABLE 1

# SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2028, UST No.: 192486-9 17 February 2000

| SAMPLE    | LABORATORY | SAMPLE    | SAMPLE | ANALYTICAL | ANALYTICAL |
|-----------|------------|-----------|--------|------------|------------|
| ID        | SAMPLE ID  | DATE      | MATRIX | PARAMETER  | METHOD     |
|           |            |           |        |            |            |
| 2028-A    | 5185.01    | 17-Feb-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2028-В    | 5185.02    | 17-Feb-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2028-C    | 5185.03    | 17-Feb-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2028-D    | 5185.04    | 17-Feb-00 | SOIL   | TPH        | OQA-QAM-25 |
| Duplicate |            |           |        |            |            |

# ABBREVIATIONS:

 $TPH = Total\ Petroleum\ Hydrocarbons,\ NJDEP\ Method\ OQA-QAM-025\ (10/97)$ 

# TABLE 2

# SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2028, UST No.: 192486-9 17 February 2000

# TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION | SAMPLE    | MATRIX | TPH      |
|-----------|------------|-----------------|-----------|--------|----------|
|           | SAMPLE ID  |                 | DEPTH     |        | RESULT S |
|           |            |                 | (in feet) |        | mg/kg    |
| 2028-A    | 5185.01    | WEST END        | 6.5-7.0   | Soil   | ND       |
| 2028-В    | 5185.02    | EAST END        | 6.5-7.0   | Soil   | ND       |
| 2028-C    | 5185.03    | PIPING          | 2.0-2.5   | Soil   | ND       |
| 2028-D    | 5185.04    | DUPLICATE       | N/A       | Soil   | ND       |
| Duplicate |            |                 |           |        |          |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2028 (25+27 MEGILL DR.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation sutside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

## DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 200

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL

# **TESTING LABORATORY**

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory **ENVIRONMENTAL DIVISION** Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2028

| Field Sample Location  | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|------------------------|--------------------------|----------|-----------------------------|---------------|
| 2028-A West End 6.5-7' | 5185.01                  | Soil     | 17-Feb-00 14:40             | 02/17/00      |
| 2028-B East End 6.5-7' | 5185.02                  | Soil     | 17-Feb-00 14:50             | 02/17/00      |
| 2028-C Piping 2-2.5'   | 5185.03                  | Soil     | 17-Feb-00 15:10             | 02/17/00      |
| 2028-D Duplicate       | 5185.04                  | Soil     | 17-Feb-00 14:40             | 02/17/00      |
| Trip Blank             | 5185,05                  | Methanol | 17-Feb-00                   | 02/17/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

**ENCLOSURE**: CHAIN OF CUSTODY **RESULTS** 

> Daniel Wright/Date Laboratory Director

# **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5-6          |
| Continuing Calibration Summary      | 7-8          |
| Surrogate Results Summary           | 9            |
| MS/MSD Results Summary              | 10           |
| Blank Spike Summary                 | 11           |
| Raw Sample Data                     | 12-21        |
| Laboratory Deliverable Checklist    | 22           |
| Laboratory Authentication Statement | 23           |

# **Method Summary**

## NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

# TPHC Conformance/Non-conformance Summary Report

| 1.    | Method Detection Limits provided.                                                                           |                        | Indicate<br>Yes, No, N/A |
|-------|-------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|
| 2.    | Method Blank Contamination – If ye corresponding concentrations in each                                     |                        | NO                       |
| 3.    | Matrix Spike Results Summary Mee (If not met, list the sample and correfalls outside the acceptable range). |                        | yes                      |
| 4.    | Duplicate Results Summary Meet C (If not met, list the sample and correfalls outside the acceptable range). |                        | yes<br>·                 |
| ´5.   | IR Spectra submitted for standards,                                                                         | planks and samples.    | NA                       |
| 6.    | Chromatograms submitted for stand if GC fingerprinting was conducted.                                       | _                      | yes                      |
| 7.    | Analysis holding time met. (If not met, list number of days exce                                            | eded for each sample). | yes                      |
| Addit | ional comments:                                                                                             |                        |                          |
|       |                                                                                                             | 2-29-00.               |                          |
| Labor | atory Manager                                                                                               | Date                   |                          |



# Fort Monmouth Environmental Testing Laboratory

Bidg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

**Chain of Custody Record** 

| NJDEP Certification #13461 25+21 MEGILL DR.                      |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|------------|-------------------------------------------------------------|--------------|------------------------|--------------|-------------------------------|
| Customer: Dinke                                                  | r Desai                                                                                                                                               | Project No: 100004           |                       |            |                                                             |              |                        |              | Comments:                     |
| Phone #: X21475                                                  |                                                                                                                                                       | Location: <i>BLDA</i> , 2028 |                       |            | *                                                           | *            |                        |              | * = Samples Kept <4 Celsius   |
| ()DERA (X)OMA                                                    | UST Assessment                                                                                                                                        | UST# 192486-9                |                       | l          | ſ A                                                         | 2            |                        | ing          |                               |
| Samplers Name /                                                  | Company : Frank Acco                                                                                                                                  |                              | Sample                | # P        | Ğ                                                           | VOA+10       |                        | Reading      |                               |
| Lab Sample I.D.                                                  | Sample Location                                                                                                                                       | Date Time                    | Type                  | # DHG.     | *SOIT 105 %                                                 | 9            | VOA ID Number          | PID          | Remarks / Preservation Method |
| 5/85.01                                                          | 2028-A WEST FRO                                                                                                                                       | 2-17-00 1440                 |                       | 2 x        | V                                                           | ×            | 597                    | 0            | ICE                           |
| 01                                                               | 20288 55-7 5                                                                                                                                          | 1450                         |                       | 1 X        | X                                                           | ۶            | 598                    | 0            | 1                             |
| 03                                                               | 2028-C. 3-25 FT                                                                                                                                       | 1510                         |                       | 1 X        | X                                                           | ×            | 599                    | 0            |                               |
| O.                                                               | 2028-D, DUPLICATE                                                                                                                                     |                              |                       | ix         | ×                                                           | ×            | 600                    | 0            |                               |
| -05                                                              | TRIP BLANK                                                                                                                                            | Y -                          | AQ                    | 1          |                                                             | X            | 601                    |              |                               |
|                                                                  |                                                                                                                                                       | <b> </b>                     | 1                     |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              |                       |            |                                                             |              |                        |              |                               |
|                                                                  |                                                                                                                                                       |                              | 1 .                   |            |                                                             | +            |                        |              |                               |
| OVM sn#                                                          | 580U-64455.343 was calibi                                                                                                                             | rated with zero air & w      | 1245 ppm              | Isobutylen | e read                                                      | 245          | ppm. 6800 2-16         | 00           | (time/date & initial)         |
| Relinquished by (signature): Date/Time: Received/by (signature): |                                                                                                                                                       |                              | Relinquished by (sign |            |                                                             | <del></del>  |                        | (signature): |                               |
| Relinquished by (signature): Date/Time:                          |                                                                                                                                                       | 1///                         |                       |            | uished by (signature):  Date/Time: Received by (signature): |              |                        |              |                               |
| Report Type: ()Full,                                             | Report Type: ()Full, ()Reduced, ()Standard, ()Screen/non-certified  Remorks: Dedicated Sampling Tools Used  Furnaround time: ()Standard 2 wks, ()Rush |                              |                       |            |                                                             | g Tools Used |                        |              |                               |
| Turnaround time: ()Stan                                          | dard 2 wks, X)Rush Days,                                                                                                                              | ASAP VerbalH                 | s.                    | An s       | mple p                                                      | oints hav    | ve been GPS? (X)YES () | VO (         | )NA ONE                       |

# **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory **NJDEP Certification # 13461**

Client:

U.S. Army

Project #:

5185

DPW. SELFM-PW-EV

Location:

Bldg.2028

Bldg. 173

UST Reg. #:

192486-9

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

17-Feb-00

Matrix:

Soil

Date Extracted:

18-Feb-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** Analysis Complete:

Shake 22-Feb-00

Column Type:

RTX-5, 0.32mm ID, 30M

Analyst:

Injection Volume:

1uL

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5185.01      | 2028-A   | 1.00               | 15.30         | 82.21   | 187            | ND                        |
| 5185.02      | 2028-B   | 1.00               | 15.13         | 84.50   | 184            | ND                        |
| 5185.03      | 2028-C   | 1.00               | 15.09         | 86.34   | 180            | ND                        |
| 5185.04      | 2028-D   | 1.00               | 15.28         | 82.52   | 186            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         | <u></u>        |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK329  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

**Laboratory Director** 

## LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  | <u> </u> |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |          |
| 4,         | Document paginated and legible                                                                                                             | _/_      |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |          |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |          |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

# **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment J UST 2029 Closure Report

# **U.S. Army Garrison**

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2029

NJDEP UST Registration No.: 192486-10 UST No.: 192486-10

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2029 NJDEP UST REGISTRATION NO.: 192486-10

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

## **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                                    | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|--------------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                              |    |  |  |  |  |  |
|     | 1.1 Overview                                        |                                                              |    |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                             | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting                     | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                            | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                          | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                                     | 6  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation                    | 6  |  |  |  |  |  |
|     | 1.5                                                 | <b>Underground Storage Tank Decommissioning and Disposal</b> | 6  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                                   | 7  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                                     | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                                   | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                                | 7  |  |  |  |  |  |
| 3.0 | CON                                                 | ICLUSIONS AND RECOMMENDATIONS                                | 8  |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                        | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                              | 8  |  |  |  |  |  |

## **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Site Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

## **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

## **EXECUTIVE SUMMARY**

## **UST Closure**

On February 22, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2029 in the Charles Wood area. UST No.: 192486-10 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2029-A and 2029-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-10. Closure sample 2029-C was collected from a location along the UST piping. A duplicate of sample 2029-B was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-10 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-10 at Building 2029.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-10 was closed at Building 2029 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's(DPW) UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on February 22, 2000.

Decommissioning activities for UST No.: 192486-10 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2029 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-10 and associated piping were located adjacent to the building, as shown on Figure 3.

## 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2029. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

## **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On February 22, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2029-A and 2029-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-10. Closure sample 2029-C was collected from a location along the UST piping. A duplicate of sample 2029-B was also collected. Refer to soil sampling location map in Figure 3.

All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

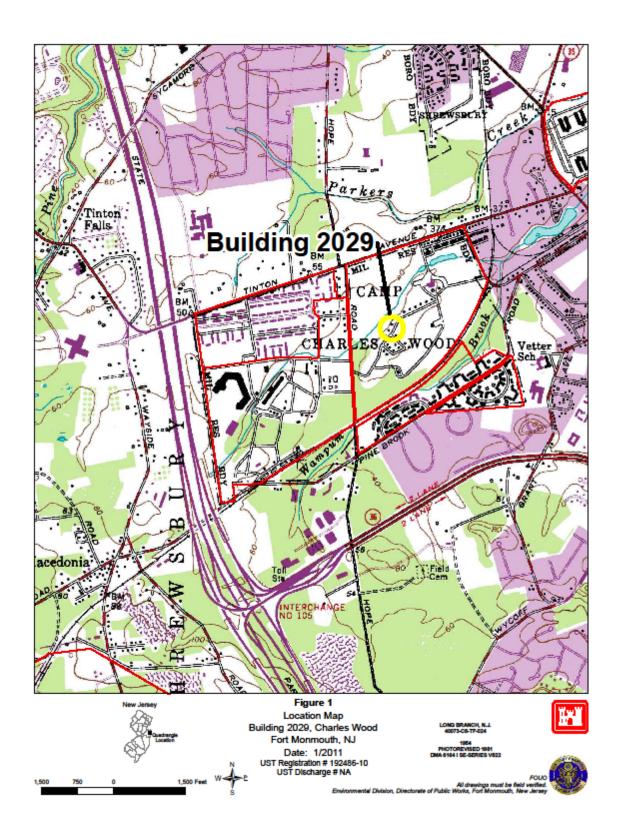
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

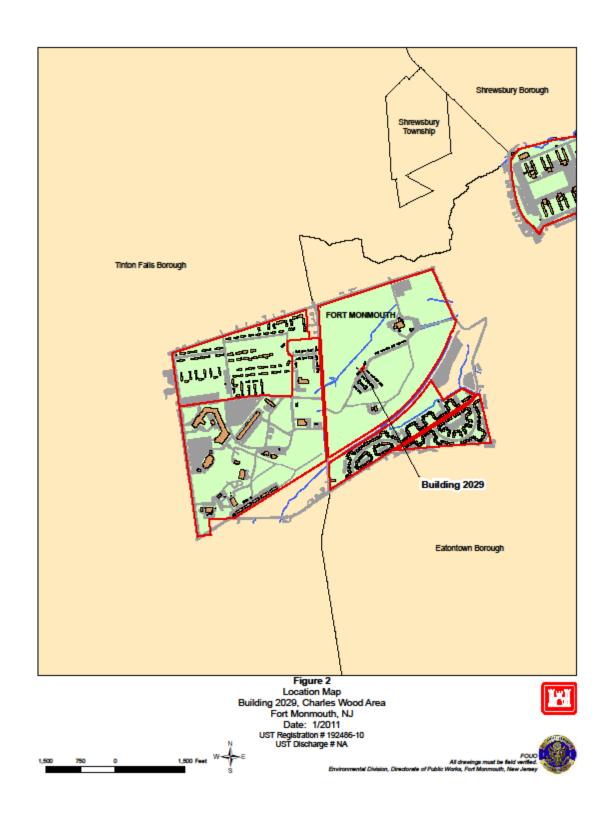
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

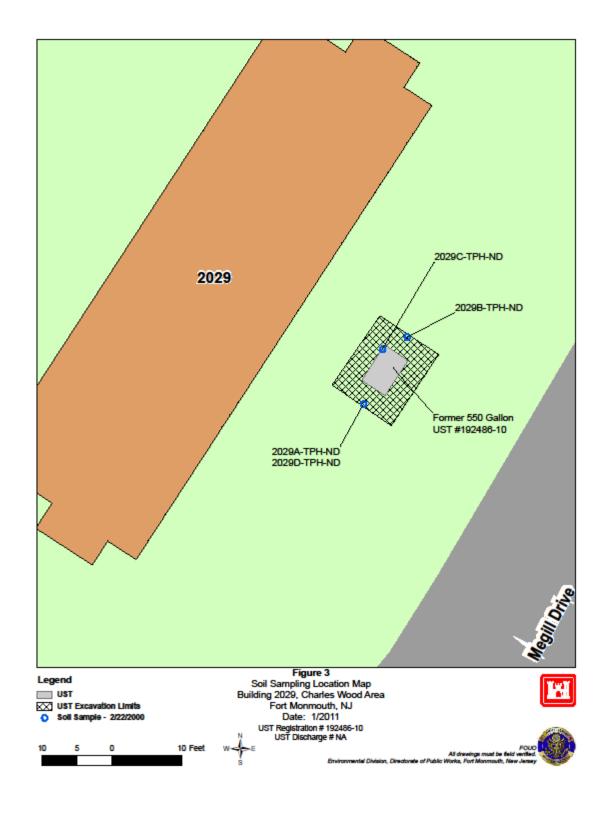
### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on February 22, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on February 22, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-10 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-10.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-10 at Building 2029.

## **FIGURES**







## **TABLES**

## TABLE 1

## SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2029, UST No.: 192486-10 22 February 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2029-A       | 5191.01                 | 22-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2029-В       | 5191.02                 | 22-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2029-С       | 5191.03                 | 22-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2029-D       | 5191.04                 | 22-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

## ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

## SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2029, UST No.: 192486-10 22 February 2000

## TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION    | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|--------------------|-----------------|--------|-----------------|
|           |                         |                    | (in feet)       |        | mg/kg           |
| 2029-A    | 5191.01                 | WEST END           | 6.5-7.0         | Soil   | ND              |
| 2029-В    | 5191.02                 | EAST END           | 6.5-7.0         | Soil   | ND              |
| 2029-С    | 5191.03                 | PIPING             | 1.5-2.0         | Soil   | ND              |
| 2029-D    | 5191.04                 | DUPLICATE-WEST END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                    |                 |        |                 |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# APPENDIX A CERTIFICATIONS

# APPENDIX B UST DISPOSAL CERTIFICATE

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2029 (29 +31 METILL DR.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

TART 3 1 2000

Marpai Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

## APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

## DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



## ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg, 2029

| Field Sample Location  | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|------------------------|--------------------------|----------|-----------------------------|---------------|
| 2029-A West End 6.5-7' | 5191.01                  | Soil     | 22-Feb-00 10:50             | 02/22/00      |
| 2029-B East End 6.5-7' | 5191.02                  | Soil     | 22-Feb-00 11:20             | 02/22/00      |
| 2029-C Piping 1.5-2'   | 5191.03                  | Soil     | 22-Feb-00 11:30             | 02/22/00      |
| 2029-D Duplicate       | 5191.04                  | Soil     | 22-Feb-00 11:20             | 02/22/00      |
| Trip Blank             | 5191.05                  | Methanol | 22-Feb-00                   | 02/22/00      |

## ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date-

Laboratory Director

## **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-7   |
| Surrogate Results Summary           | 8     |
| MS/MSD Results Summary              | 9     |
| Blank Spike Summary                 | 10    |
| Raw Sample Data                     | 11-20 |
| Laboratory Deliverable Checklist    | 21    |
| Laboratory Authentication Statement | 22    |

## **Method Summary**

## NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                                             | Yes, No, N/ |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.         | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | NO          |
| 3.         | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | Yes         |
| 4.         | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | yes<br>···  |
| <b>3</b> . | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA          |
| 6.         | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | yes         |
| 7.         | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | Yes         |
| Add        | itional comments:                                                                                                                             |             |
|            | 2-29-00                                                                                                                                       |             |
| Labo       | oratory Manager Date                                                                                                                          |             |



## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker Desai                                                                                                     |            |                                                                                                     | Project No: 100004               |             |             |                    |                                                            |           | Analysis Parameters |                     |              | Comments:                     |
|----------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------|--------------------|------------------------------------------------------------|-----------|---------------------|---------------------|--------------|-------------------------------|
| Phone #: X21475                                                                                                            |            |                                                                                                     | Location: <i>BLDG. 2029(29+3</i> |             |             | +31                |                                                            | SK        | X                   |                     |              | * = Samples Kept <4 Celsius   |
| ( )DERA ( X )OMA UST Assessment                                                                                            |            |                                                                                                     | UST# <i>1924</i>                 | MEBILL)     |             |                    | LIE                                                        | F10       |                     | Reading             | · ]          |                               |
| Samplers Name /                                                                                                            | Company    | : Frank Acco                                                                                        | orsi/TVS                         |             | Sample      | #                  | TPHC                                                       | % SOLIDS  | VOA+10              |                     | - Reg        |                               |
| Lab Sample I.D.                                                                                                            | Sampl      | e Location                                                                                          | Date                             | Time        | Туре        | bottles            | TI                                                         | %         | Š                   | VOA ID Numbe        |              | Remarks / Preservation Method |
| 5191 01                                                                                                                    | 2029-A     |                                                                                                     | 2-22-00                          | 1050        | 50/L        | 2                  | X                                                          | X         | X                   | 602                 | 0            | ICE                           |
| 9                                                                                                                          | 2029-B     | EAST END                                                                                            |                                  | 1120        |             | 2                  | X                                                          | χ         | X                   | 603                 | 0            |                               |
| 1 63,                                                                                                                      | 2029-C     | PIPING<br>1,5-2 PT                                                                                  |                                  | 1130        |             | 2                  | Χ                                                          | X         | ×                   | 604                 | 0            |                               |
| 104                                                                                                                        | 2029-0     | DUPLICATE                                                                                           |                                  | 1/20        | V           | 2                  | X                                                          | X         | X                   | 605                 | 0            |                               |
| -0                                                                                                                         | TRIP B     |                                                                                                     | <b>—</b>                         | <u></u>     | AQ.         |                    |                                                            |           | Х                   | 606                 |              | V .                           |
|                                                                                                                            |            |                                                                                                     |                                  |             |             |                    |                                                            |           |                     |                     |              |                               |
|                                                                                                                            |            |                                                                                                     |                                  |             |             |                    |                                                            |           |                     |                     |              |                               |
|                                                                                                                            |            |                                                                                                     |                                  |             |             |                    |                                                            |           |                     |                     |              |                               |
|                                                                                                                            |            |                                                                                                     |                                  |             |             |                    |                                                            |           |                     |                     |              |                               |
|                                                                                                                            |            | ر در دوست په پرونې د پ |                                  |             |             |                    |                                                            |           |                     |                     |              |                               |
|                                                                                                                            |            |                                                                                                     |                                  |             |             |                    |                                                            |           |                     |                     |              | <u> </u>                      |
|                                                                                                                            |            |                                                                                                     |                                  |             |             |                    |                                                            |           |                     |                     |              |                               |
|                                                                                                                            |            |                                                                                                     |                                  | :           |             |                    |                                                            |           |                     |                     |              |                               |
| OVM sn#                                                                                                                    | 580U-64455 | .343 was calibr                                                                                     | ated with ze                     | ro air & w/ | 245 ppm     | Isobu              | ıtylene                                                    | геас      | 215                 | ppm. <u>0900 2-</u> | 2200 1       | f(time/date & initial)        |
| Relinquished by (signature): Date/Time:                                                                                    |            |                                                                                                     |                                  |             | Relino      | linquished by (sig |                                                            | nature):  | Date/Time: F        | Received by         | (signature): |                               |
| Frank anowi 2-22-00 1200                                                                                                   |            |                                                                                                     | A Suffled                        |             |             |                    |                                                            |           |                     |                     |              |                               |
| Relinquished by (signature): Date/Time:                                                                                    |            | Received by (signature):                                                                            |                                  |             | Reline      | •                  | uished by (signature):  Date/Time: Received by (signature) |           |                     |                     |              |                               |
| Report Type: ()Full, ()                                                                                                    |            |                                                                                                     |                                  |             | Rema<br>VO+ | rks:               | N 2                                                        | Dedicated | 1 Samplin           | ng Tools Used       |              |                               |
| Turnaround time: ( )Standard 2 wks, ( Rush Days, ( )ASAP Verbal Hrs. All sample points have been GPS? (X)YES ( ) NO ( ) NA |            |                                                                                                     |                                  |             |             |                    |                                                            | JINA      |                     |                     |              |                               |

## **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5191

DPW. SELFM-PW-EV

Location:

Bldg.2029

Bldg. 173

UST Reg. #:

192486-10

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

22-Feb-00

Matrix:

Soil

Date Extracted:

24-Feb-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

24-Feb-00

Injection Volume:

1uL

Analyst:

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5191.01      | 2029-A   | 1.00               | 15.07         | 88.66   | 176            | ND                        |
| 5191.02      | 2029-B   | 1.00               | 15.24         | 89.23   | 173            | ND                        |
| 5191.03      | 2029-C   | 1.00               | 15.34         | 87.40   | 175            | ND                        |
| 5191.04      | 2029-D   | 1.00               | 15.06         | 88.34   | 177            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK332  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

**Laboratory Director** 

### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.         | Table of Contents submitted                                                                                                                |             |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |             |
| 4.         | Document paginated and legible                                                                                                             |             |
| 5.         | Chain of Custody submitted                                                                                                                 |             |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              | Leuropeters |
| 7.         | Methodology Summary submitted                                                                                                              | -           |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      | <u></u>     |
| 9.         | Results submitted on a dry weight basis                                                                                                    |             |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |             |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |             |

Laboratory Certification #13461

<sup>\*</sup>Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

## **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment K UST 2030 Closure Report

## **U.S. Army Garrison**

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2030

NJDEP UST Registration No.: 192486-11 UST No.: 192486-11

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2030 NJDEP UST REGISTRATION NO.: 192486-11

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CON                                                 | CONCLUSIONS AND RECOMMENDATIONS                       |    |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Site Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On February 28, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2030 in the Charles Wood area. UST No.: 192486-11 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2030-A and 2030-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-11. Closure sample 2030-C was collected from a location along the UST piping. A duplicate of sample 2030-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-11 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-11 at Building 2030.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-11 was closed at Building 2030 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps on Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on February 28, 2000.

Decommissioning activities for UST No.: 192486-11 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2030 (Megill Drive) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-11 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2030. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On February 28, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2030-A and 2030-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-11. Closure sample 2030-C was collected from a location along the UST piping. A duplicate of sample 2030-A was also collected. Refer

to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

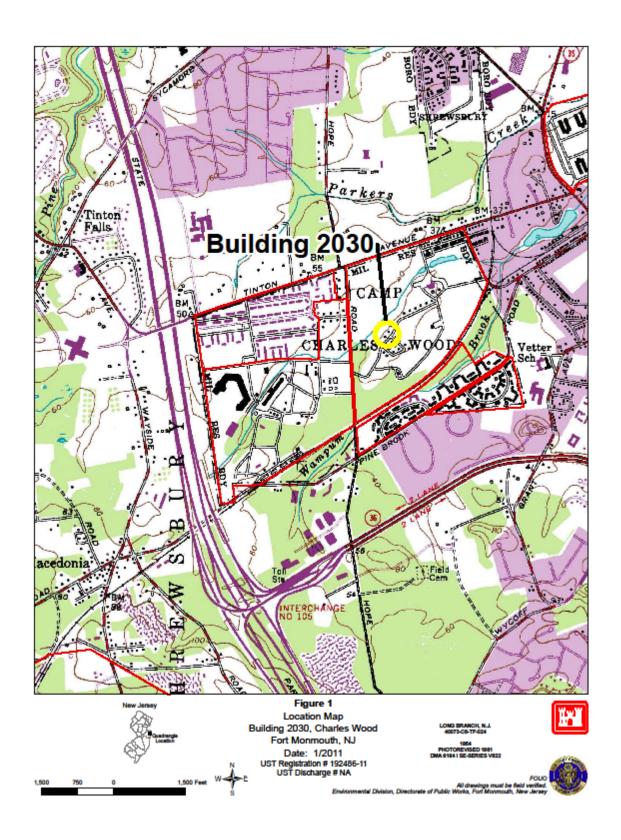
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

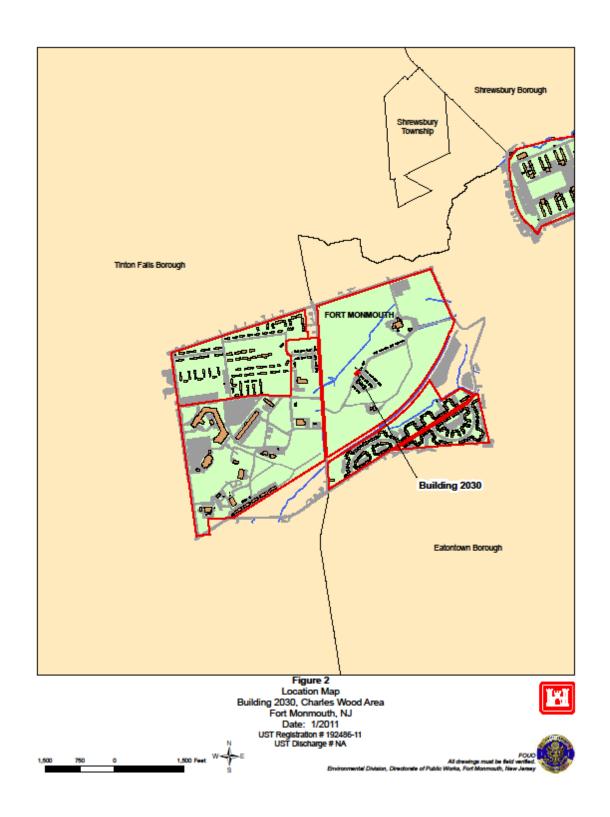
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

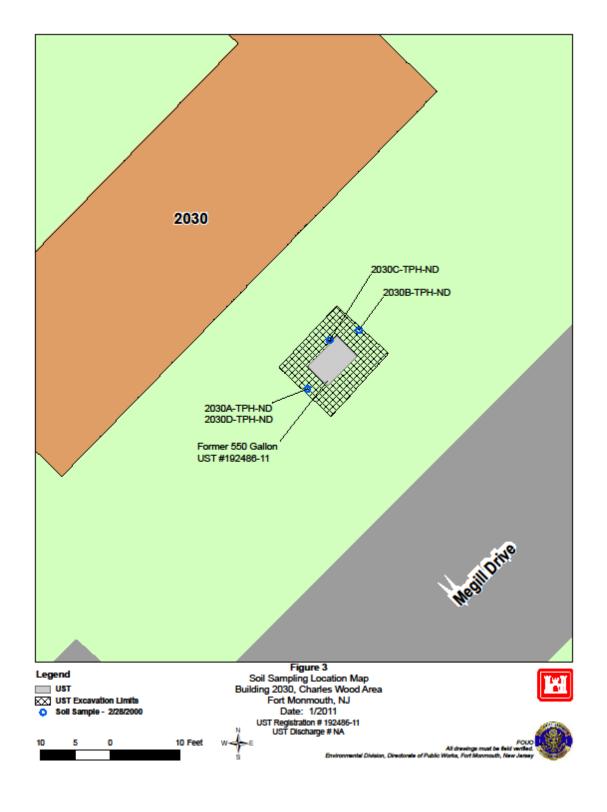
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on February 28, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on February 28, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-11 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-11.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-11 at Building 2030.

# **FIGURES**







# **TABLES**

# TABLE 1

#### **SUMMARY OF LABORATORY ANALYSIS**

FT. MONMOUTH, BUILDING 2030, UST No.: 192486-11 28 February 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2030-A       | 5203.01                 | 28-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2030-В       | 5203.02                 | 28-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2030-С       | 5203.03                 | 28-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2030-D       | 5203.04                 | 28-Feb-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

#### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2030, UST No.: 192486-11 28 February 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | ТРН      |
|-----------|------------|--------------------|-----------|--------|----------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S |
|           |            |                    | (in feet) |        | mg/kg    |
| 2030-A    | 5203.01    | WEST END           | 6.5-7.0   | Soil   | ND       |
| 2030-В    | 5203.02    | EAST END           | 6.5-7.0   | Soil   | ND       |
| 2030-С    | 5203.03    | PIPING             | 1.0-1.5   | Soil   | ND       |
| 2030-D    | 5203.04    | DUPLICATE-WEST END | 6.5-7.0   | Soil   | ND       |
| Duplicate |            |                    |           |        |          |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

#### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO
ATTENTION OF
Directorate of Public Works

TANK 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



ANALYTICAL DATA REPORT
Fort Monmouth Environmental Laboratory
ENVIRONMENTAL DIVISION
Fort Monmouth, New Jersey
PROJECT: IJO# 100004

Bldg. 2030

| AD A CO- 100 CO |                          |          |                             |               |  |  |  |  |
|-----------------------------------------------------|--------------------------|----------|-----------------------------|---------------|--|--|--|--|
| Field Sample Location                               | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |  |  |  |  |
| 2030-A West End 6.5-7'                              | 5203.01                  | Soil     | 28-Feb-00 10:00             | 02/28/00      |  |  |  |  |
| 2030-B West End 6.5-7'                              | 5203.02                  | Soil     | 28-Feb-00 10:30             | 02/28/00      |  |  |  |  |
| 2030-C Piping 1-1.5'                                | 5203.03                  | Soil     | 28-Feb-00 10:40             | 02/28/00      |  |  |  |  |
| 2030-D Duplicate                                    | 5203.04                  | Soil     | 28-Feb-00 10:00             | 02/28/00      |  |  |  |  |
| Trip Blank                                          | 5203.05                  | Methanol | 28-Feb-00                   | 02/28/00      |  |  |  |  |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date

Laboratory Director

### **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-7   |
| Surrogate Results Summary           | 8     |
| MS/MSD Results Summary              | 9     |
| Blank Spike Summary                 | 10    |
| Raw Sample Data                     | 11-20 |
| Laboratory Deliverable Checklist    | 21    |
| Laboratory Authentication Statement | 22    |

#### **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

### TPHC Conformance/Non-conformance Summary Report

| 1.       | Method Detection Limits provided.                                                                                                             | Indicate<br>Yes, No, N/A |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2.       | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | 20_                      |
| 3.       | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | <u>yes</u>               |
| 4.       | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | <u>YCS</u><br>:.         |
| ·<br>′5. | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA                       |
| 6.       | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | yes                      |
| 7.       | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | yes<br>yes               |
| Addi     | tional comments:                                                                                                                              |                          |
|          | ratory Manager Date                                                                                                                           |                          |



# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker           | Desai                                                    | Project No:                  | 10                  | 0004         | 004         |                               |                           | Analysis Parameters    |                                                   |                             | Comments:                             |
|----------------------------|----------------------------------------------------------|------------------------------|---------------------|--------------|-------------|-------------------------------|---------------------------|------------------------|---------------------------------------------------|-----------------------------|---------------------------------------|
| Phone #: X21475            |                                                          | Location: 84.06. 2030 (33+35 |                     |              |             | Xo                            | *                         |                        |                                                   | * = Samples Kept <4 Celsius |                                       |
| ()DERA (X)OMA              | UST# 192486-11 MEBILL                                    |                              |                     |              |             | "A                            | 10                        |                        | ling                                              | ·                           |                                       |
| Samplers Name /            | Company : Frank Acco                                     |                              |                     | Sample       |             | ЭН                            | SOLIDS                    | VOA+10                 |                                                   | Reading                     |                                       |
| Lab Sample I.D.            | Sample Location                                          | Date                         | Time                | Туре         | bottles     | TPHC                          | %                         | 0                      | VOA ID Numb                                       | _ ^ ^                       | Remarks / Preservation Method         |
| 5003.01                    | 2030-4 WEST END                                          | 2-28-0                       | 1000                |              | 2           | X                             | X                         | ×                      | 607                                               | 0                           | ICE                                   |
| 02                         | 2030-B EAST END                                          | 1                            | 1030                | 1            | 2           | X                             | X                         | ×                      | 608                                               | 0                           |                                       |
|                            | 2030-C PIPING                                            |                              | 1040                |              | 2           | X                             | χ                         | ×                      | 609                                               | 0                           |                                       |
| 04                         | 2030-D, DUPLICATE                                        |                              | 1000                | 1            | 2           | Х                             | ×                         | X                      | 610                                               | 0                           |                                       |
|                            | TRIP BLANK                                               | Y                            | -                   | AQ.          | 1           |                               |                           | X                      | 611                                               |                             | V                                     |
|                            |                                                          |                              |                     | •            |             |                               |                           |                        |                                                   |                             |                                       |
|                            |                                                          |                              |                     |              |             |                               |                           |                        |                                                   |                             | · · · · · · · · · · · · · · · · · · · |
|                            |                                                          | ·                            |                     |              |             |                               | ;                         |                        | — <del>— — — — — — — — — — — — — — — — — — </del> |                             |                                       |
|                            | ,                                                        |                              |                     |              |             |                               |                           |                        |                                                   |                             |                                       |
|                            | Í.                                                       |                              |                     |              |             |                               |                           |                        |                                                   |                             |                                       |
|                            |                                                          |                              |                     |              |             |                               |                           |                        |                                                   |                             |                                       |
|                            |                                                          |                              |                     | <del></del>  |             |                               |                           |                        |                                                   |                             |                                       |
|                            |                                                          |                              |                     |              |             |                               |                           |                        |                                                   |                             |                                       |
| OVM sn#5                   | 80U-64455.343 was calibr                                 | ated with zer                | o air & w/ <i>2</i> | <b>⋬</b> ppm | Isobu       | tylene                        | read_                     | 245                    | ppm. 0930 2-2                                     | 18-00 FA                    | (time/date & initial)                 |
| Relinquished by (signature | Received by (s                                           | ignature):                   |                     |              |             | by (sign                      | 1                         |                        | Received by (s                                    | ·                           |                                       |
|                            | //                                                       | yu                           |                     |              | <del></del> | <del></del>                   |                           |                        |                                                   |                             |                                       |
| Relinquished by (signature | Received by (s                                           | (signature): Relinqu         |                     |              | uished      | nished by (signature): Date/T |                           | Date/Time: I           | Received by (signature):                          |                             |                                       |
| , ,                        | leduced, ()Standard, ()Screen<br>ard 2 wks, (VRush Days, |                              | alHrs.              |              |             | Remar<br>VO+<br>All san       | VA.<br>10 oi<br>iple poii | ₩ <i>25</i><br>nts hav | Dedicated No. 2000 P                              | d Sampling                  | Tools Used Tools Used ONE             |

#### **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5203

DPW. SELFM-PW-EV

Location:

Bldg.2030

Bldg. 173

UST Reg. #:

192486-11

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

28-Feb-00

Matrix:

Soil

Date Extracted:

28-Feb-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** Analysis Complete:

Shake 28-Feb-00

Column Type:

RTX-5, 0.32mm ID, 30M

Analyst:

Injection Volume:

1uL

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight (g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|------------|---------|----------------|---------------------------|
| 5203.01      | 2030-A   | 1.00               | 15.01      | 86.14   | 182            | ND                        |
| 5203.02      | 2030-В   | 1.00               | 15.15      | 90.34   | 172            | ND                        |
| 5203.03      | 2030-C   | 1.00               | 15.16      | 90.12   | 172            | ND                        |
| 5203.04      | 2030-D   | 1.00               | 15.09      | 86.13   | 181            | ND                        |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
| METHOD BLANK | TBLK335  | 1.00               | 15.00      | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

Laboratory Director

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package and in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                        |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                      |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                                  | <u> </u> |
| 4.         | Document paginated and legible                                                                                                                   |          |
| 5.         | Chain of Custody submitted                                                                                                                       |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                                    |          |
| 7.         | Methodology Summary submitted                                                                                                                    |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                            |          |
| 9.         | Results submitted on a dry weight basis                                                                                                          |          |
| 10.<br>11. | Method Detection Limits submitted<br>Lab certified by NJDEP for parameters of appropriate category<br>of parameters or a member of the USEPA CLP |          |
| Da         | Laboratory Manager or Environmental Consultant's Signature                                                                                       |          |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright

Laboratory Manager

Attachment L UST 2031 Closure Report

### **U.S. Army Garrison**

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2031

NJDEP UST Registration No.: 192486-12 UST No.: 192486-12

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2031 NJDEP UST REGISTRATION NO.: 192486-12

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CON                                                 | CONCLUSIONS AND RECOMMENDATIONS                       |    |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

# **EXECUTIVE SUMMARY**

# **UST** Closure

On March 1, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2031 in the Charles Wood area. UST No.: 192486-12 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

## Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2031-A and 2031-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-12. Closure sample 2031-C was collected from a location along the UST piping. A duplicate of sample 2031-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

## **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-12 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

## Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-12 at Building 2031.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-12 was closed at Building 2031 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on March 1, 2000.

Decommissioning activities for UST No.: 192486-12 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

## 1.2 SITE DESCRIPTION

Building 2031 (Megill Circle) is located in the eastern portion of the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-12 and associated piping were located adjacent to the building, as shown on Figure 3.

## 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2031. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil. The Charles Wood Area has sandy loams of the Freehold, Shrewsbury,

and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

# Local Geology

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## Hydrogeology

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

## 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

# 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

## 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

# 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

# 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

# 2.0 SITE INVESTIGATION ACTIVITIES

## 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

## 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

## 2.3 SOIL SAMPLING

On March 1, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2031-A and 2031-B were collected from a total of two (2) locations along the UST

bottom of the excavation for the UST No.: 192486-12. Closure sample 2031-C was collected from a location along the UST piping. A duplicate of sample 2031-A was also collected. Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

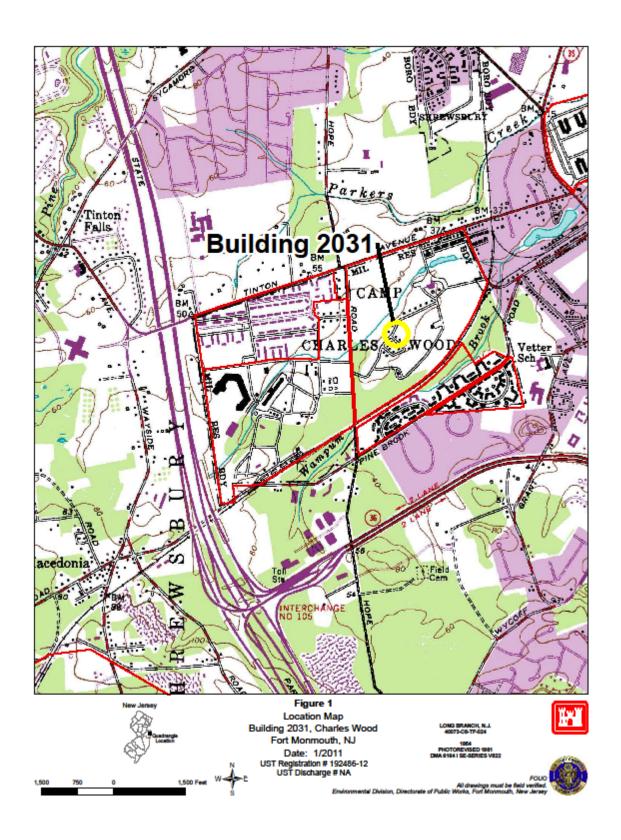
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

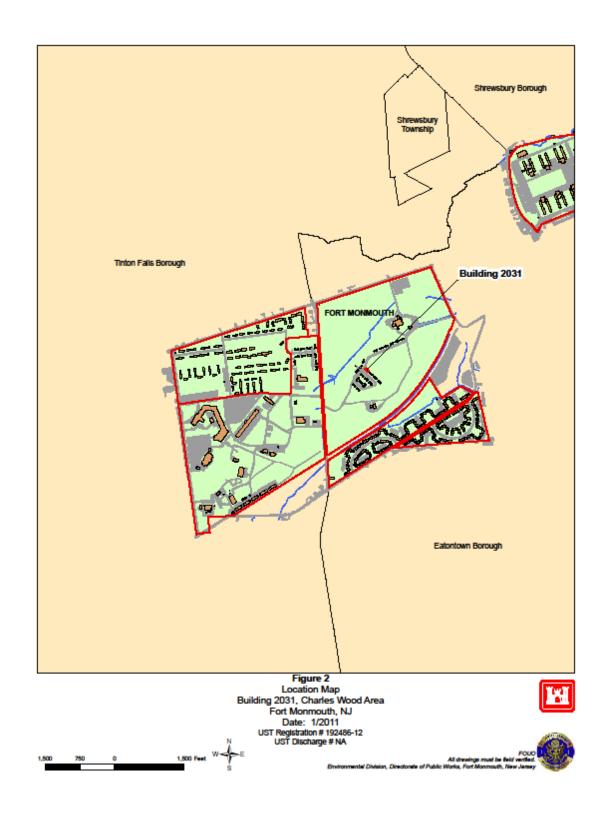
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

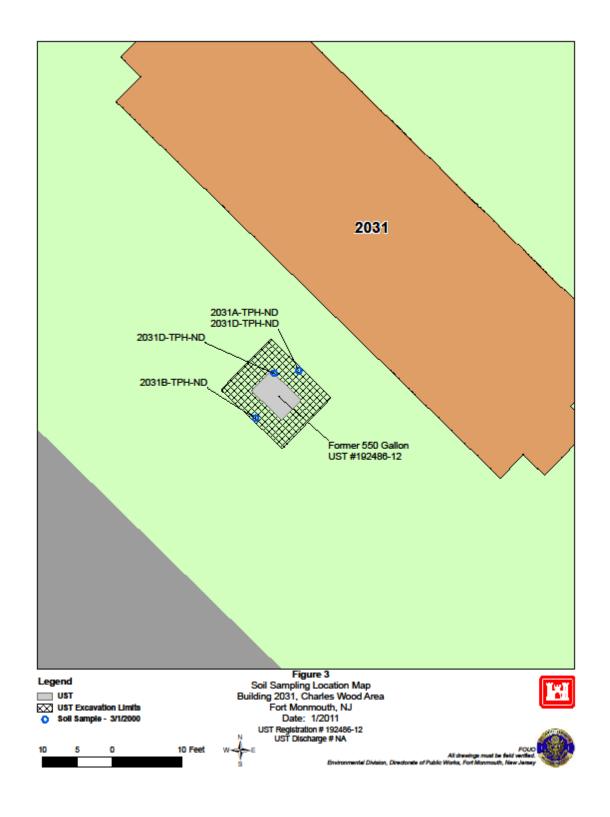
## 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on March 1, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 1, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


## 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-12 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-12.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-12 at Building 2031.

# **FIGURES**







# **TABLES**

# TABLE 1

# SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2031, UST No.: 192486-12 01 March 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2031-A       | 5215.01                 | 01-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2031-В       | 5215.02                 | 01- Mar-00     | SOIL             | TPH                     | OQA-QAM-25           |
| 2031-С       | 5215.03                 | 01-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2031-D       | 5215.04                 | 01-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

# TABLE 2

# SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2031, UST No.: 192486-12 01 March 2000

# TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION     | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|---------------------|-----------------|--------|-----------------|
|           |                         |                     | (in feet)       |        | mg/kg           |
| 2031-A    | 5215.01                 | NORTH END           | 6.5-7.0         | Soil   | ND              |
| 2031-В    | 5215.02                 | SOUTH END           | 6.5-7.0         | Soil   | ND              |
| 2031-С    | 5215.03                 | PIPING              | 1.5-2.0         | Soil   | ND              |
| 2031-D    | 5215.04                 | DUPLICATE-NORTH END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                     |                 |        |                 |

# ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2031 (49+51 MEGILL CIR.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO
ATTENTION OF
Directorate of Public Works

TANK 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

# Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL

# **TESTING LABORATORY**

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



ANALYTICAL DATA REPORT
Fort Monmouth Environmental Laboratory
ENVIRONMENTAL DIVISION
Fort Monmouth, New Jersey
PROJECT: IJO# 100004

Bldg. 2031

| Field Sample Location   | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|-------------------------|--------------------------|----------|-----------------------------|---------------|
| 2031-A North End 6.5-7' | 5215.01                  | Soil     | 01-Mar-00 15:00             | 03/01/00      |
| 2031-B South End 6.5-7' | 5215.01                  | Soil     | 01-Mar-00 15:20             | 03/01/00      |
| 2031-C Piping 1.5-2'    | 5215.01                  | Soil     | 01-Mar-00 15:30             | 03/01/00      |
| 2031-D Duplicate        | 5215.01                  | Soil     | 01-Mar-00 15:00             | 03/01/00      |
| Trip Blank              | 5215.01                  | Methanol | 01-Mar-00                   | 03/01/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

> Daniel Wright/Date Laboratory Director

# **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5            |
| Continuing Calibration Summary      | 6            |
| Surrogate Results Summary           | 7            |
| MS/MSD Results Summary              | <b>8</b>     |
| Blank Spike Summary                 | 9            |
| Raw Sample Data                     | 10-19        |
| Laboratory Deliverable Checklist    | 20           |
| Laboratory Authentication Statement | 21           |

# **Method Summary**

# NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

# TPHC Conformance/Non-conformance Summary Report

| 1.      | Method Detection Limits provided.                                                                                                             | Indicate Yes, No, N/A |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 2.      | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | <u>No</u>             |
| 3.      | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | Yes                   |
| 4.      | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | <del>ус</del> s<br>:, |
| ·<br>3. | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA                    |
| 6.      | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | yes                   |
| 7.      | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | tes .                 |
| Addi    | itional comments:                                                                                                                             |                       |
| Labo    | oratory Manager Date                                                                                                                          |                       |



# Fort Monmouth Environmental Testing Laboratory

Bidg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker Desai         |                                | Project No: 100004              |               |                 | Analysis Parameters                                          |                  |         |                         | Comments:          |                             |                               |
|--------------------------------|--------------------------------|---------------------------------|---------------|-----------------|--------------------------------------------------------------|------------------|---------|-------------------------|--------------------|-----------------------------|-------------------------------|
| Phone #: X21475                |                                | Location: BLDG, 2031 (5) MEDILL |               |                 |                                                              | *5               | *       |                         |                    | * = Samples Kept <4 Celsius |                               |
| ()DERA (X)OMA                  | UST# 192486-12 Ox)             |                                 |               | OK)             |                                                              |                  | -10     |                         | Reading            |                             |                               |
| Samplers Name /                | Company: Frank Acco            |                                 |               | Sample          | #                                                            | TPHC             | SOLIDS  | VOÄ+10                  |                    | Rea                         |                               |
| Lab Sample LD. Sample Location |                                | Date                            | Time          | Туре            | bottles                                                      | ittles 🗒         | 3 8     | % D                     | VOA ID Nun         | nber                        | Remarks / Preservation Method |
| 5215,01                        | 2031-A, 6.5-7 FT               | 3-1-00                          | 1500          | SOIL            | 2                                                            | X                | Х       | ×                       | 627                | 10                          | ICE                           |
| 1 07                           | 2031-B, 6.5-7 FT               |                                 | 1520          |                 | 2                                                            | ×                | ×       | ×                       | 628                | 0                           |                               |
| 03                             | 203/-C, 1522FT                 |                                 | 1530          |                 | 2                                                            | ×                | X       | ×                       | 629                | 0                           |                               |
| 104                            | 2032 D, DUPLICATE              |                                 | 1500          | Y               | 2                                                            | ×                | X       | X                       | 630                | 0                           |                               |
| 05                             | TRIP BLANK                     | Y                               |               | AQ.             |                                                              |                  |         | X                       | 631                |                             |                               |
| ;                              |                                |                                 |               |                 |                                                              |                  |         |                         |                    |                             |                               |
|                                |                                |                                 |               |                 |                                                              |                  |         |                         |                    |                             |                               |
| ·                              |                                |                                 |               |                 |                                                              |                  |         |                         |                    |                             |                               |
|                                |                                |                                 | :             |                 |                                                              |                  |         |                         |                    | 1                           |                               |
|                                |                                |                                 |               |                 |                                                              |                  |         |                         |                    |                             |                               |
|                                | :                              |                                 | <del></del>   |                 |                                                              |                  | :       |                         |                    |                             |                               |
|                                |                                |                                 |               |                 |                                                              |                  |         |                         |                    |                             |                               |
|                                |                                | · · · · · ·                     |               |                 |                                                              |                  |         |                         |                    |                             |                               |
| OVM sn#                        | 580U-64455.343 was calibr      | ated with ze                    | ro air & w/ = | 2 <u>45</u> ppm | Isobu                                                        | itylene          | read    | 244                     | ppm. <u>/3/d</u> 3 | 3-1-00 FA                   | (time/date & initial)         |
| Relinquished by (signatur      | re): Date/Time:                | Received by (                   | signature):   |                 | Relino                                                       | nuished          | by (sig | nature)                 | : Date/Time:       | Received by                 | (signature):                  |
| Frank Jewson 3/1/00/16/00      |                                |                                 | mo/           |                 |                                                              | 4                | -, (    |                         |                    |                             | (-3)                          |
| Relinquished by (signatur      | Received by (signature): Relin |                                 |               | Relino          | quished by (signature):  Date/Time: Received by (signature): |                  |         |                         |                    |                             |                               |
| Report Type: ()Full, ()        |                                |                                 | •             |                 | Remark                                                       | <br>iks:<br>/0 0 | N 25    | Dedica<br>5% > 1,000 PM | ted Samplin        | ng Tools Used               |                               |
| Turnaround time: ()Stan        | dard 2 wks, ( )Rush Days,      | ASAP Vert                       | oalHrs.       |                 |                                                              | All sar          | nple po | ints ha                 | ve been GPS? (x)YI | ES ()NO                     | ( ) NA                        |

00003

# **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5215

DPW. SELFM-PW-EV

Location:

Bldg.2031

Bldg. 173

UST Reg. #:

192486-12

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

01-Mar-00

Matrix:

Soil

Date Extracted:

03-Mar-00

Inst. ID.:

GC TPHC INST. #1 RTX-5, 0.32mm ID, 30M **Extraction Method:** Analysis Complete:

Shake 06-Mar-00

Column Type: Injection Volume:

1 uL

Analyst:

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5215.01      | 2031-A   | 1.00               | 15.34         | 87.30   | 175            | ND                        |
| 5215.02      | 2031-В   | 1.00               | 15.40         | 86.25   | 177            | ND                        |
| 5215.03      | 2031-C   | 1.00               | 15.10         | 89.65   | 174            | ND                        |
| 5215.04      | 2031-D   | 1,00               | 15.42         | 87.65   | 174            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               | ,       |                |                           |
| METHOD BLANK | TBLK336  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

**Laboratory Director** 

# LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                   | <u></u>  |             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 2.         | Table of Contents submitted                                                                                                                 |          |             |
| 3.         | Summary Sheets listing analytical results for all targeted and non-tar compounds submitted                                                  | geted    |             |
| 4.         | Document paginated and legible                                                                                                              | <u> </u> |             |
| 5.         | Chain of Custody submitted                                                                                                                  | <u> </u> |             |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                               | <u> </u> |             |
| 7.         | Methodology Summary submitted                                                                                                               |          |             |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                       | <u>~</u> | PLEASE SIGN |
| 9.         | Results submitted on a dry weight basis                                                                                                     | <u>~</u> | & DATE      |
| 10.<br>11. | Method Detection Limits submitted  Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |             |
| Da         | Laboratory Manager or Environmental Consultant's Signature<br>te _3_/_1                                                                     |          |             |
| l a        | boratory Certification #13461                                                                                                               | _        |             |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

# **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Whight
Laboratory Manager

Attachment M UST 2032 Closure Report

# U.S. Army Garrison

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2032

NJDEP UST Registration No.: 192486-13 UST No.: 192486-13

September 2010

# UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2032 NJDEP UST REGISTRATION NO.: 192486-13

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

# **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

# **TABLE OF CONTENTS (CONTINUED)**

# **FIGURES**

Figure 1 Site Location Map Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

# **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

# **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

# **EXECUTIVE SUMMARY**

# **UST** Closure

On March 2, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2032 in the Charles Wood area. UST No.: 192486-13 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

## Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2032-A and 2032-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-13. Closure sample 2032-C was collected from a location along the UST piping. A duplicate of sample 2032-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

## **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-13 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

## Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-13 at Building 2032.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-13 was closed at Building 2032 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on March 2, 2000.

Decommissioning activities for UST No.: 192486-13 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2032 (Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-13 and associated piping were located adjacent to the building, as shown on Figure 3.

### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2032. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On March 2, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2032-A and 2032-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-13. Closure sample 2032-C was collected from a location along the UST piping. A duplicate of sample 2032-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

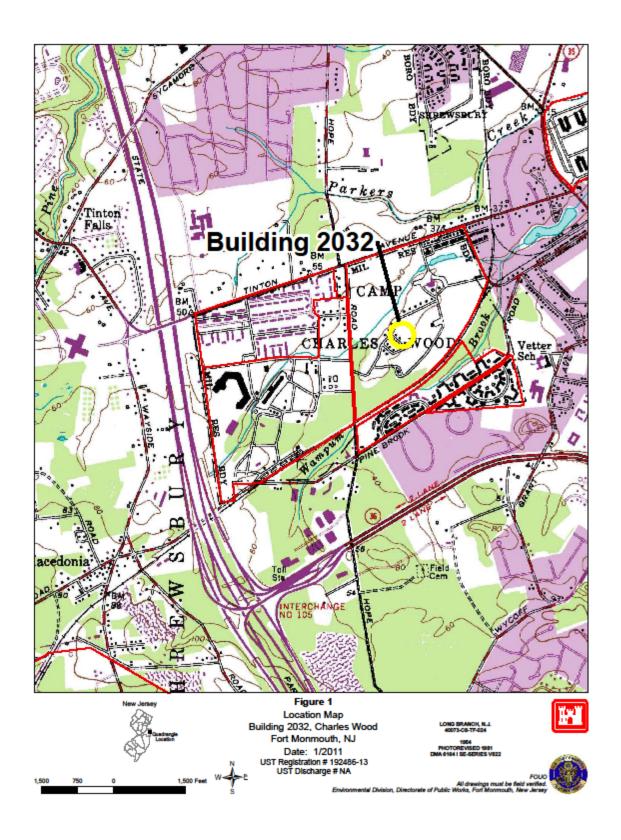
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

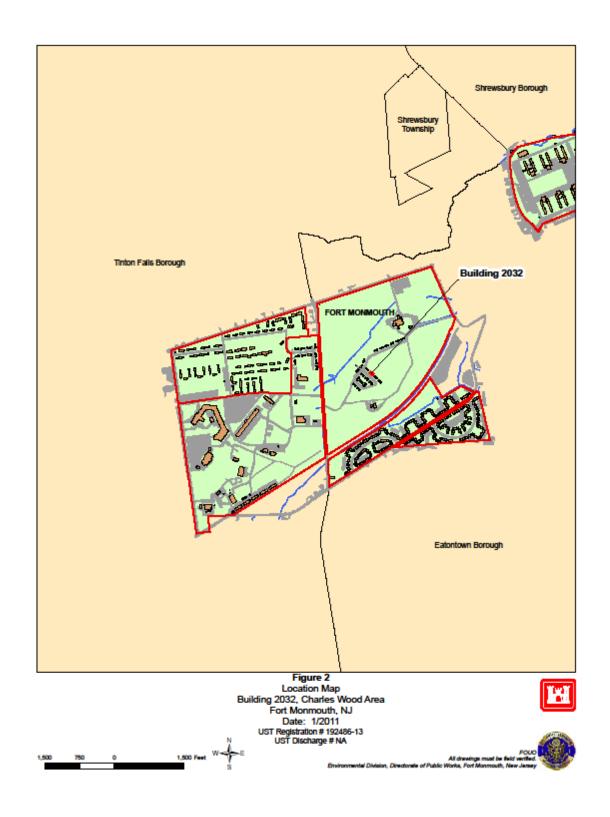
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

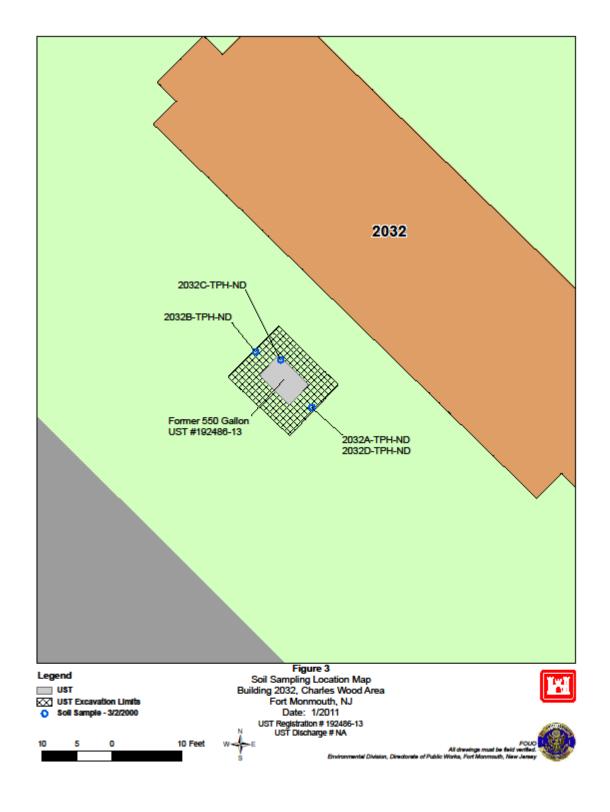
### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on March 2, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 2, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-13 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-13.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-13 at Building 2032.

# **FIGURES**







# **TABLES**

# TABLE 1

### **SUMMARY OF LABORATORY ANALYSIS**

FT. MONMOUTH, BUILDING 2032, UST No.: 192486-13 02 March 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2032-A       | 5216.01                 | 02-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2032-В       | 5216.02                 | 02-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2032-С       | 5216.03                 | 02-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2032-D       | 5216.04                 | 02-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

### TABLE 2

### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2032, UST No.: 192486-13 02 March 2000

### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | TPH      |
|-----------|------------|--------------------|-----------|--------|----------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S |
|           |            |                    | (in feet) |        | mg/kg    |
| 2032-A    | 5216.01    | EAST END           | 7.0-7.5   | Soil   | ND       |
| 2032-В    | 5216.02    | WEST END           | 7.0-7.5   | Soil   | ND       |
| 2032-С    | 5216.03    | PIPING             | 2.0-2.5   | Soil   | ND       |
| 2032-D    | 5216.04    | DUPLICATE-EAST END | 7.0-7.5   | Soil   | ND       |
| Duplicate |            |                    |           |        |          |

### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

### **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

in the second

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2032 (45 + 47 METILL CIR.)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2032

| Field Sample Location  | Laboratory Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|------------------------|-----------------------|----------|-----------------------------|---------------|
| 2032-A East End 7-7.5' | 5216.01               | Soil     | 02-Mar-00 09:30             | 03/02/00      |
| 2032-B West End 7-7.5' | 5216.01               | Soil     | 02-Mar-00 09:40             | 03/02/00      |
| 2032-C Piping 2-2.5'   | 5216.01               | Soil     | 02-Mar-00 09:50             | 03/02/00      |
| 2032-D Duplicate       | 5216.01               | Soil     | 02-Mar-00 09:30             | 03/02/00      |
| Trip Blank             | 5216.01               | Methanol | 02-Mar-00                   | 03/02/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

### **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5            |
| Continuing Calibration Summary      | 6            |
| Surrogate Results Summary           | . 7          |
| MS/MSD Results Summary              | 8            |
| Blank Spike Summary                 | 9            |
| Raw Sample Data                     | 10-19        |
| Laboratory Deliverable Checklist    | 20           |
| Laboratory Authentication Statement | 21           |

### **Method Summary**

### NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

### TPHC Conformance/Non-conformance Summary Report

| 1.      | Method Detection Limits provided.                                                                                                             | Yes, No, N/A |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2.      | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank                                       | <u>No</u> _  |
| 3.      | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | 1/12         |
| 4.      | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | yes.         |
| ·<br>3. | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA           |
| 6.      | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | <u>yes</u>   |
| 7.      | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | yes<br>yes   |
| Addi    | tional comments;                                                                                                                              |              |
| Labo    | oratory Manager Date                                                                                                                          |              |

# 000003



# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker Desai                                                                                             |                          | Project No: 1               |                       |                                                               | lysis Parameters                                            | Comments:                   |                               |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------------|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|-------------------------------|
| Phone #: X21475                                                                                                    |                          | Location: <i>BLDG. 2032</i> | * ***                 | *                                                             |                                                             | * = Samples Kept <4 Celsius |                               |
| ( )DERA (X)OMA UST Assessment                                                                                      |                          | UST# 192486-13              |                       | ]                                                             |                                                             |                             | Reading                       |
| Samplers Name /                                                                                                    | Company: Frank Acc       | orsi/TVS                    | Sample #              | TPHC % SOI ID                                                 | VOA+10                                                      |                             | Res                           |
| Lab Sample I.D.                                                                                                    | Sample Location          | Date Time                   | Type bottle           | s E %                                                         | <u> </u>                                                    | VOA ID Number               | Remarks / Preservation Method |
| 5216.01                                                                                                            | 2031-A EAST END          | 3-2-00 0930                 | 501L 2                | <u> </u>                                                      | X                                                           | 632                         | 0 1CE                         |
| 02                                                                                                                 | 2032-6 0057 500          | 0940                        | 2                     | XX                                                            | <i>F</i>                                                    | 633                         | 0                             |
| 03                                                                                                                 | 2032-C 2-2,5 FT          | 0950                        | 2                     | X X                                                           | ×                                                           | 634                         | Ó                             |
| 07                                                                                                                 | 2032-0 DUPLICATE         | 0930                        | 2                     | XX                                                            | ,   ×                                                       | 635                         | 0                             |
| 05                                                                                                                 | TRIP BLANK               | V -                         | AQ 1                  |                                                               | 入                                                           | 636                         | - V                           |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             |                               |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             |                               |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             |                               |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             |                               |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             |                               |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             |                               |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             |                             | :                             |
|                                                                                                                    |                          |                             |                       |                                                               |                                                             | ·                           |                               |
| OVM sn#                                                                                                            | 580U-64455.343 was calib | orated with zero air & w    | / <u>245</u> ppm Isot | outylene rea                                                  | d 244                                                       | ppm. 1310 3-1-00            | (time/date & initial)         |
|                                                                                                                    |                          |                             |                       | linquished by (signature): Date/Time: Received by (signature) |                                                             | ived by (signature):        |                               |
|                                                                                                                    |                          |                             |                       | nquished by (                                                 | quished by (signature): Date/Time: Received by (signature): |                             | ived by (signature):          |
| Report Type: ()Full, (                                                                                             |                          | Remarks:                    | on 2                  | Dedicated Sa                                                  | ampling Tools Used  H, Ow HIGHETT, MINNE                    |                             |                               |
| Turnaround time: ()Standard 2 wks, Rush Days, ()ASAP Verbal Hrs. All sample points have been GPS? (x)YES ()NO ()NA |                          |                             |                       |                                                               |                                                             | NO ()NA                     |                               |

### **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5216

DPW. SELFM-PW-EV

Location:

Bldg.2032

Bldg. 173

UST Reg. #:

192486-13

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

02-Mar-00

Matrix:

Soil

Date Extracted:

03-Mar-00

Inst. ID.:

GC TPHC INST. #1

 ${\bf Extraction\ Method:}$ 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

06-Mar-00

Injection Volume:

1uL

Analyst:

D. Costagliola

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5216.01      | 2032-A   | 1.00               | 15.18         | 91.78   | 169            | ND                        |
| 5216.02      | 2032-B   | 1.00               | 15.04         | 87.27   | 179            | ND                        |
| 5216.03      | 2032-C   | 1.00               | 15.12         | 88.41   | 176            | ND                        |
| 5216.04      | 2032-D   | 1.00               | 15.20         | 91.78   | 168            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                | ·                         |
|              |          |                    |               |         |                |                           |
|              |          |                    |               | -       |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK336  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

Daniel K. Wright

**Laboratory Director** 

### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2.         | Table of Contents submitted                                                                                                                |           |
| 3,         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |           |
| 4.         | Document paginated and legible                                                                                                             |           |
| 5.         | Chain of Custody submitted                                                                                                                 |           |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |           |
| 7.         | Methodology Summary submitted                                                                                                              |           |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |           |
| 9.         | Results submitted on a dry weight basis                                                                                                    | <u>/_</u> |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |           |
|            |                                                                                                                                            |           |
| Da         | Laboratory Manager or Environmental Consultant's Signature<br>te <u>공 년인</u>                                                               |           |
| Lal        | boratory Certification #13461                                                                                                              |           |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager

Attachment N UST 2033 Closure Report

### U.S. Army Garrison

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2033

NJDEP UST Registration No.: 192486-14 UST No.: 192486-14

September 2010

### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2033 NJDEP UST REGISTRATION NO.: 192486-14

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |

### **TABLE OF CONTENTS (CONTINUED)**

### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

### **EXECUTIVE SUMMARY**

### **UST Closure**

On March 17, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2033 in Charles Wood area. UST No.: 192486-14 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2033-A and 2033-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-14. Closure sample 2033-C was collected from a location along the UST piping. A duplicate of sample 2033-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-14 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-14 at Building 2033.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-14 was closed at Building 2033 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No.2 fuel oil for residential use. It was removed on March 17, 2000.

Decommissioning activities for UST No.: 192486-14 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2033 (Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-14 and associated piping were located adjacent to the building, as shown on Figure 3.

### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2033. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

# **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

## 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On March 17, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2033-A and 2033-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-14. Closure sample 2033-C was collected from a location along the UST piping. A duplicate of sample 2033-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

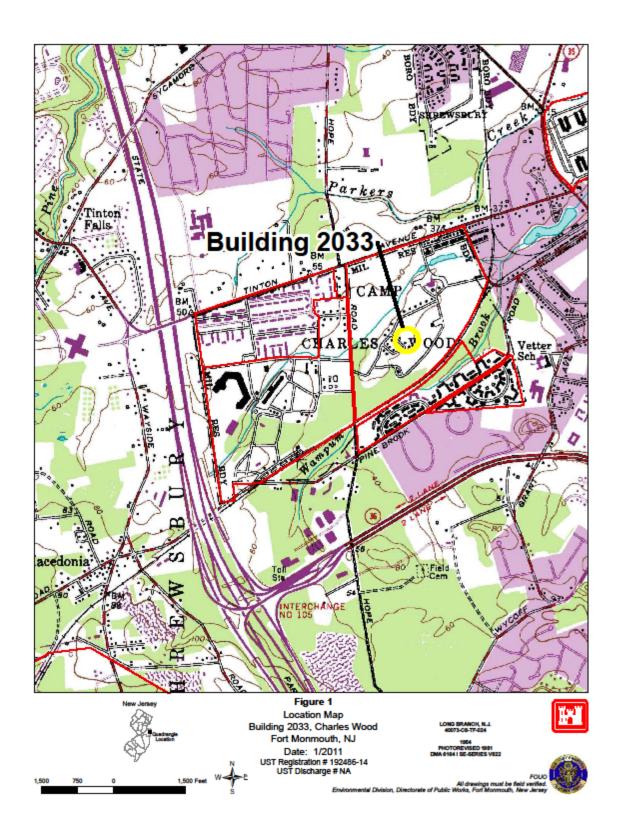
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

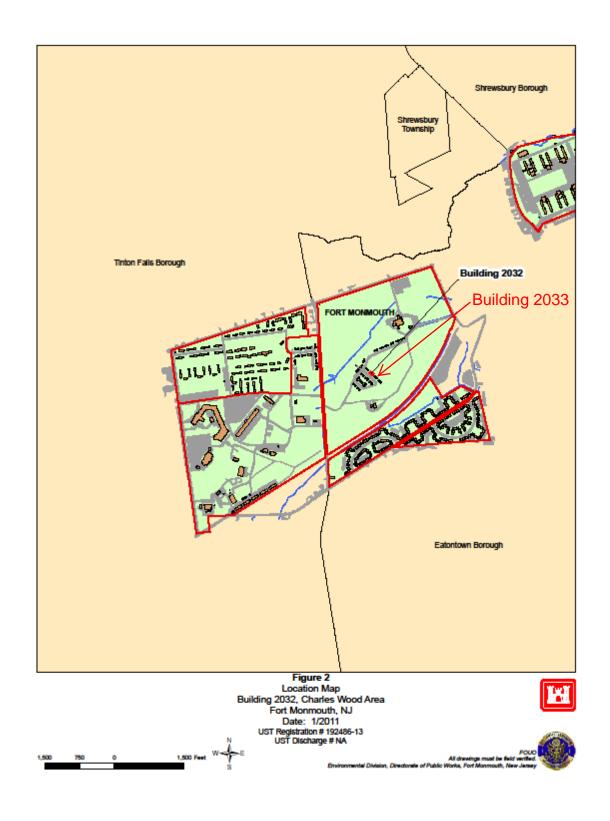
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

### 3.1 SOIL SAMPLING RESULTS

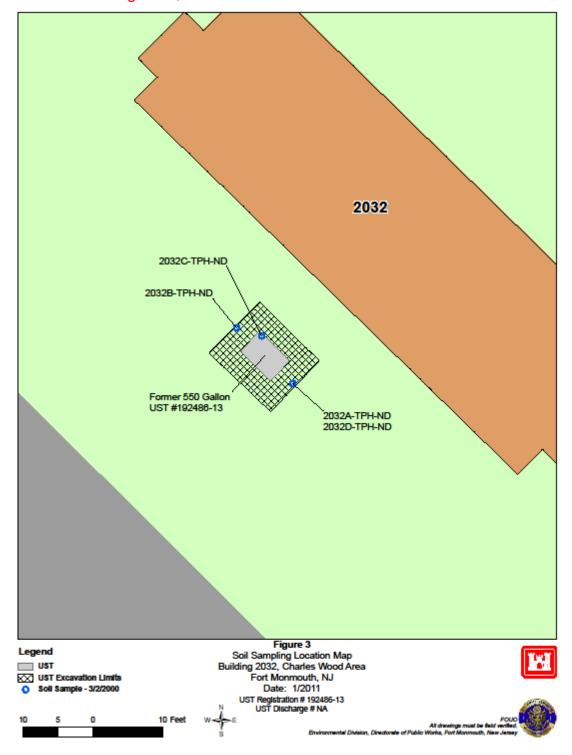
Closure soil samples were collected from a total of three locations (which included the duplicate) on March 17, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 17, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


## 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-14 were Not Detected for total petroleum hydrocarbons.

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-14.


**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-14 at Building 2033.

# **FIGURES**





A figure for Building 2033 was not found; however the tank and sample locations were likely similar to Building 2032, shown below.



# **TABLES**

# TABLE 1

# SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2033, UST No.: 192486-14 17 March 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2033-A       | 5258.01                 | 17-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2033-В       | 5258.02                 | 17-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2033-С       | 5258.03                 | 17-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2033-D       | 5258.04                 | 17-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |

# ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

# TABLE 2

# SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2033, UST No.: 192486-14 17March 2000

# TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION    | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|--------------------|-----------------|--------|-----------------|
|           |                         |                    | (in feet)       |        | mg/kg           |
| 2033-A    | 5258.01                 | EAST END           | 6.5-7.0         | Soil   | ND              |
| 2033-В    | 5258.02                 | WEST END           | 6.5-7.0         | Soil   | ND              |
| 2033-С    | 5258.03                 | PIPING             | 2.0-2.5         | Soil   | ND              |
| 2033-D    | 5258.04                 | DUPLICATE-EAST END | 6.5-7.0         | SOIL   | ND              |
| Duplicate |                         |                    |                 |        |                 |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2033 (41+43 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# DE DE LA COMPANIA DE

## DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

# Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL **TESTING LABORATORY**

# DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory **ENVIRONMENTAL DIVISION** Fort Monmouth, New Jersey PROJECT: IJO#100004

Bldg. 2033

|                        | _                        |          |                             |               |
|------------------------|--------------------------|----------|-----------------------------|---------------|
| Field Sample Location  | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
| 2033-A East End 6.5-7' | 5258.01                  | Soil     | 17-Mar-00 10:20             | 03/17/00      |
| 2033-B West End 6.5-7' | 5258,02                  | Soil     | 17-Mar-00 10:40             | 03/17/00      |
| 2033-C Piping 2-2.5"   | 5258.03                  | Soil     | 17-Mar-00 10:50             | 03/17/00      |
| 2033-D Duplicate       | 5258.04                  | Soil     | 17-Mar-00 10:20             | 03/17/00      |
| Trip Blank             | 5258,05                  | Methanol | 17-Mar-00                   | 03/17/00      |

# ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY **RESULTS** 

3-24-00

Daniel Wright/Date

**Laboratory Director** 

# **Table of Contents**

| Section                             | Pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method Summary                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conformance/Non-Conformance         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain of Custody                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Results Summary                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Initial Calibration Summary         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Continuing Calibration Summary      | 6-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Surrogate Results Summary           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MS/MSD Results Summary              | radioeronada escribilidade escribir radiotico escribir radiotico escribilizar escribilizar escribir escribilizar escribir escribi |
| Blank Spike Summary                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Raw Sample Data                     | 11-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Laboratory Deliverable Checklist    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Laboratory Authentication Statement | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# **Method Summary**

# NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

# TPHC Conformance/Non-conformance Summary Report

| 1.       | Method Detection Limits provided.                                                                                            |                   | Indicate Yes, No, N/A |
|----------|------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| 2.       | Method Blank Contamination – If yes, list corresponding concentrations in each blank                                         |                   | <u> </u>              |
| 3.       | Matrix Spike Results Summary Meet Criter (If not met, list the sample and corresponding falls outside the acceptable range). | ng recovery which | Jes                   |
| 4.       | Duplicate Results Summary Meet Criteria (If not met, list the sample and correspondifalls outside the acceptable range).     |                   | Yes<br>···            |
| ·<br>′5, | IR Spectra submitted for standards, blanks                                                                                   |                   | Ne                    |
| 6.       | Chromatograms submitted for standards, b if GC fingerprinting was conducted.                                                 | lanks and samples | yes                   |
| 7.       | Analysis holding time met. (If not met, list number of days exceeded f                                                       | or each sample).  | yes                   |
| Add      | itional comments:                                                                                                            |                   |                       |
|          |                                                                                                                              | 3-24-00           |                       |
| Labo     | oratory Manager                                                                                                              | Date              |                       |



print legibly

# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

USTcoc.xls10/29/99

| Customer: Dinker                        | Project No: 100004                                 |                          |             |                       | Analysis Parameters |                                                             |                      |             |                         | Comments:                    |                              |                                |
|-----------------------------------------|----------------------------------------------------|--------------------------|-------------|-----------------------|---------------------|-------------------------------------------------------------|----------------------|-------------|-------------------------|------------------------------|------------------------------|--------------------------------|
| Phone #: X21475                         | Location: Ba                                       | -06. 203.                | 3/4/+4      | 3                     |                     | * 5                                                         | *                    |             |                         |                              | * = Samples Kept <4 Celsius  |                                |
| ( )DERA (X)OMA UST Assessment           |                                                    | UST#/92                  | CIRCLE)     |                       | SOLIDS              |                                                             | +10                  |             |                         | Reading                      |                              |                                |
| Samplers Name /                         | Company: Frank Acco                                | orsi/TVS                 |             | Sample                | #                   | TPHC                                                        | SO                   | VOA+10      |                         |                              | N Rec                        |                                |
| Lab Sample LD.                          | Sample Location                                    | Date Time                |             | Туре                  | bottles             |                                                             | %                    | Λ           | VOA I                   | D Numbe                      | er A                         | Remarks / Preservation Method  |
| 5258. 01                                | 2033-A, 8.5-7 FF                                   | 3-17-00                  | 1020        | SOIL                  | 2                   | Х                                                           | X                    | Y           | 1059                    |                              | 0                            | ICE                            |
| 02                                      | 2033-B 6.5-7 FT.                                   |                          | 1040        |                       | 2                   | Х                                                           | X                    | X           | 1060                    |                              | 0                            |                                |
| 83                                      | 2033-B 6.5-7 FT.<br>2033-C, 2-2,5 FT               |                          | 1050        |                       | 2                   | χ                                                           | ×                    | X           | 1061                    |                              | Ø                            |                                |
| 04                                      | 2033-D, DUPLICATE                                  |                          | 1020        | 7                     | 2                   | Х                                                           | X                    | ×           | 1062                    |                              | 0                            |                                |
| 05                                      | TRIP BLANK                                         | Y                        |             | AQ.                   | 1                   |                                                             |                      | X           | 1063                    | ·                            |                              | V                              |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         | •                            |                              |                                |
|                                         |                                                    |                          |             |                       |                     |                                                             |                      |             |                         |                              |                              |                                |
| OVM sn#5                                | 580U-64455.343 was calib                           | rated with ze            | ro air & w/ | 245 ppr               | Isobu               | itylene                                                     | read                 | 246         | _ppm. <i>900</i>        | 3-17.                        | -00                          | _(time/date & initial)         |
| Relinquished by (signatur               | Received by (signature):                           |                          |             | Relinquished by (sign |                     |                                                             | nature):             | Da          | te/Time: F              | Received by                  | (signature):                 |                                |
| Relinquished by (signature): Date/Time: |                                                    | Received by (signature): |             |                       | Relino              | quished by (signature):  Date/Time: Received by (signature) |                      |             | ,                       |                              |                              |                                |
| í                                       | Reduced, (Standard, Screed dard 2 wks, Rush 3 Days |                          |             | -                     |                     | Rema<br>V0 h<br>All sar                                     | rks#<br>/0 0 mple po | 25 ints hav | 70 > 100<br>ve been GPS | Dedicated O / / / - ?   XYES | d Samplin<br>774, 00<br>()NO | ng Tools Used HIGHEST, MINIONS |

# Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5258

DPW. SELFM-PW-EV

Location:

Bldg.2033

Bldg. 173

UST Reg. #:

192486-14

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

17-Mar-00

Matrix:

Soil

Date Extracted:

21-Mar-00

Inst. ID.:

**Extraction Method:** 

GC TPHC INST. #1 RTX-5, 0.32mm ID, 30M

1uL

Analysis Complete:

Shake 21-Mar-00

Column Type: Injection Volume:

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5258.01      | 2033-A   | 1.00               | 15.25         | 91.62   | 168            | ND                        |
| 5258.02      | 2033-В   | 1.00               | 15.31         | 91.59   | 168            | ND                        |
| 5258.03      | 2033-C   | 1.00               | 15.35         | 87.84   | 174            | ND                        |
| 5258.04      | 2033-D   | 1.00               | 15.10         | 90.70   | 172            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              | <u></u>  |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK351  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

# LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | and address, & date of report submitted                                                                                                    |      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.         | Table of Contents submitted                                                                                                                |      |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |      |
| 4.         | Document paginated and legible                                                                                                             | _i/_ |
| 5.         | Chain of Custody submitted                                                                                                                 |      |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |      |
| 7.         | Methodology Summary submitted                                                                                                              |      |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |      |
| 9.         | Results submitted on a dry weight basis                                                                                                    |      |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |      |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |      |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

# **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment O UST 2034 Closure Report

# **U.S. Army Garrison**

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2034

NJDEP UST Registration No.: 192486-15 UST No.: 192486-15

September 2010

# UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2034 NJDEP UST REGISTRATION NO.: 192486-15

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

# **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

# **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

# **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

# **EXECUTIVE SUMMARY**

## **UST** Closure

On March 20, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2034 in Charles Wood area. UST No.: 192486-15 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2034-A and 2034-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-15. Closure sample 2034-C was collected from a location along the UST piping. A duplicate of sample 2034-A was also collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-15 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-15 at Building 2034.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-15 was closed at Building 2034 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on March 20, 2000.

Decommissioning activities for UST No.: 192486-15 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2034 (Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-15 and associated piping were located adjacent to the building, as shown on Figure 3.

### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2034. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

### 2.0 SITE INVESTIGATION ACTIVITIES

### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On March 20, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2034-A and 2034-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-15. Closure sample 2034-C was collected from a location along the UST piping. A duplicate of sample 2034-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

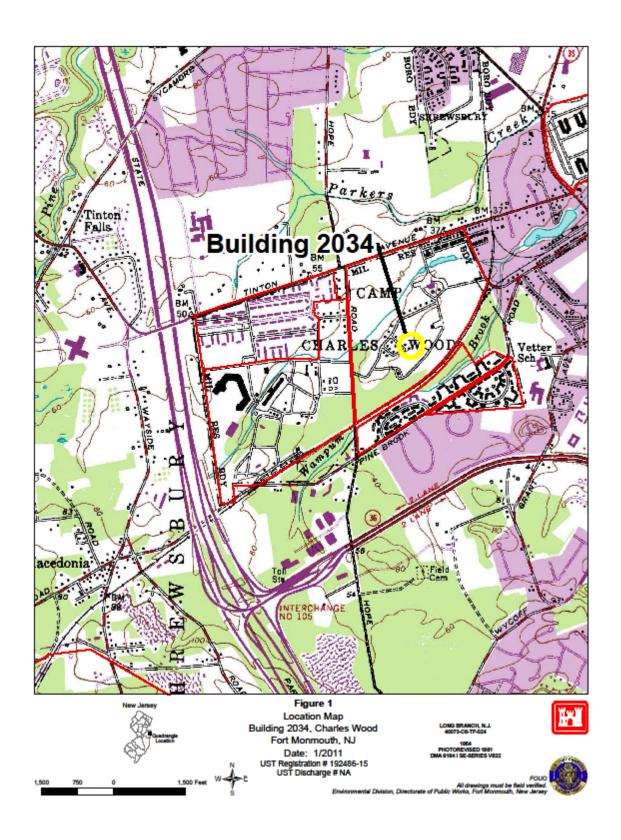
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

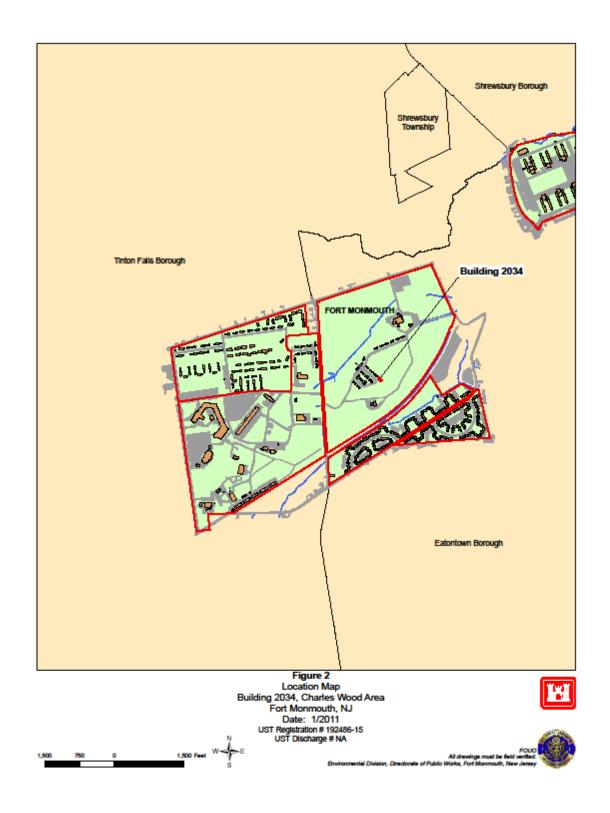
### 3.0 CONCLUSIONS AND RECOMMENDATIONS

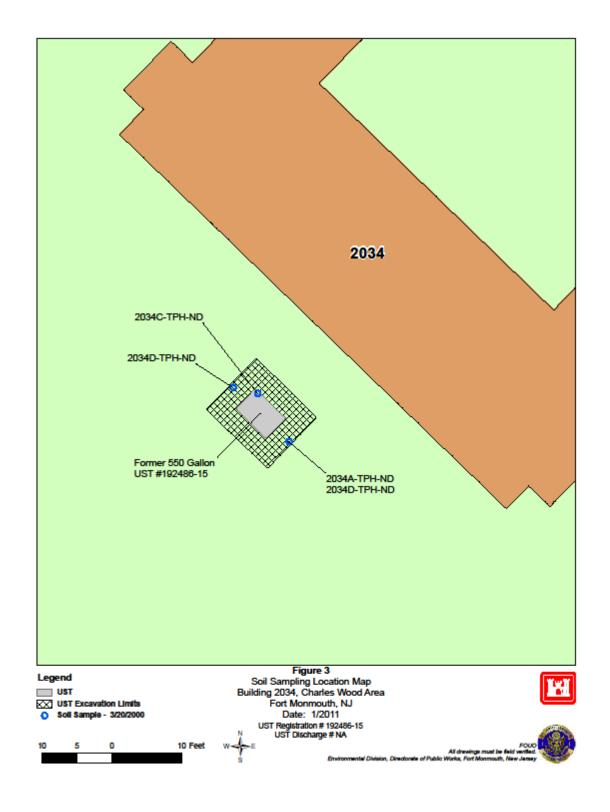
### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on March 20, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 20, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation of UST No.: 192486-15 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-15.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-15 at Building 2034.

# **FIGURES**







# **TABLES**

# TABLE 1

### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2034, UST No.: 192486-15 20 March 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2034-A       | 5266.01                 | 20-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2034-В       | 5266.02                 | 20-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2034-С       | 5266.03                 | 20-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2034-D       | 5266.04                 | 20-Mar-00      | SOIL             | TPH                     | OQA-QAM-25           |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

### TABLE 2

### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2034, UST No.: 192486-15 20 March 2000

### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|-----------------|-----------------|--------|-----------------|
|           |                         |                 | (in feet)       |        | mg/kg           |
| 2034-A    | 5266.01                 | SOUTH END       | 6.5-7.0         | Soil   | ND              |
| 2034-В    | 5266.02                 | NORTH END       | 6.5-7.0         | Soil   | ND              |
| 2034-C    | 5266.03                 | PIPING          | 2.0-2.5         | Soil   | ND              |
| 2034-D    | 5266.04                 | DUPLICATE-SOUTH | 6.5-7.0         | SOIL   | ND              |
| Duplicate |                         | END             |                 |        |                 |

### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

### **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

### DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2033 (41+43 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# DE DE LA COMPANIA DE

### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO#100004

Bldg. 2034

|                         | 244                      | 2        |                             |               |
|-------------------------|--------------------------|----------|-----------------------------|---------------|
| Field Sample Location   | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
| 2034-A South End 6.5-7' | 5266.01                  | Soil     | 20-Mar-00 13:40             | 03/20/00      |
| 2034-B North End 6.5-7' | 5266.02                  | Soil     | 20-Mar-00 13:50             | 03/20/00      |
| 2034-C Piping 2-2.5'    | 5266.03                  | Soil     | 20-Mar-00 14:10             | 03/20/00      |
| 2034-D Duplicate        | 5266.04                  | Soil     | 20-Mar-00 13:40             | 03/20/00      |
| Trip Blank              | 5266.05                  | Methanol | 20-Mar-00                   | 03/20/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

> Daniel Wright/Date Laboratory Director

3-28-00

### **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5            |
| Continuing Calibration Summary      | 6-9          |
| Surrogate Results Summary           | 10           |
| MS/MSD Results Summary              |              |
| Blank Spike Summary                 | 12           |
| Raw Sample Data                     | 13-22        |
| Laboratory Deliverable Checklist    | 23           |
| Laboratory Authentication Statement | 24           |

### **Method Summary**

### NJDEP Method OQA-QAM-025-10/97

### <u>Gas Chromatographic Determination of Total Petroleum Hydrocarbons in</u> Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

### TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                                             | Yes, No, N/A |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2.         | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | <u>N</u>     |
| 3.         | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | <u>γ</u>     |
| 4.         | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    |              |
| <b>3</b> . | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA           |
| 6.         | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | 4            |
| 7.         | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | <u> </u>     |
| Add        | itional comments:                                                                                                                             |              |
| Loh        | oratory Manager Date                                                                                                                          |              |
| Lab(       | Jate Date                                                                                                                                     |              |



# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

| Customer: Dinker Desai                                                          |          |                  |        | Project No: 100004   |               |                                                                |              | Analysis Parameters |         |            |           |            |                        | Comments:                     |
|---------------------------------------------------------------------------------|----------|------------------|--------|----------------------|---------------|----------------------------------------------------------------|--------------|---------------------|---------|------------|-----------|------------|------------------------|-------------------------------|
| Phone #: X21475 Loc                                                             |          |                  |        | Location: B404. 2034 |               |                                                                | :            |                     | *       | X          |           |            |                        | * = Samples Kept <4 Celsius   |
| ( )DERA ( X )OMA UST Assessment                                                 |          |                  | UST    | UST# 192486-15       |               |                                                                |              |                     |         | 01         |           |            | Reading                |                               |
| Samplers Name /                                                                 | Compar   | ıy : Frank Acc   | orsi/1 | orsi/TVS             |               |                                                                | - <b>#</b> - | TPHC                | SOLIDŠ  | VOA+10     |           |            | ) Reg                  |                               |
| Lab Sample LD.                                                                  |          | ple Location     | ]]     | Date                 | Time          | Туре                                                           | pe bottles   |                     | 8       | ) <u> </u> | VOA       | ID Number  |                        | Remarks / Preservation Method |
| 5246.61                                                                         | 2034-A   | 6.5-7 FT         |        | 20-00                | 1340          | 501-                                                           | 2            | X                   | 义       | X          | 1065      |            | 0                      | ICE                           |
| 07                                                                              | 2034-6   | NORTH EN         | ?      |                      | 1350          |                                                                | 2            | X                   | x       | <b>Y</b>   | 1066      |            | 0                      |                               |
| 03.                                                                             | 2034-6   | C, 2-2.5 FT      | -      |                      | 1410          |                                                                | 2            | 7                   | K       | X          | 1067      |            | 0                      |                               |
|                                                                                 | 1        | , DUPLICATE      |        |                      | 1340          | Y                                                              | 2            | ×                   | ×       | ×          | 1068      |            | 0                      |                               |
|                                                                                 |          | BLANK            |        |                      | _             | AQ.                                                            | 1            |                     |         | X          | 1069      |            |                        |                               |
|                                                                                 |          |                  |        |                      | i in          | مانا في سام المانات                                            |              |                     |         |            |           |            |                        |                               |
|                                                                                 |          |                  |        |                      |               |                                                                |              |                     |         |            |           |            |                        |                               |
|                                                                                 |          |                  |        |                      |               |                                                                |              |                     |         |            |           |            |                        |                               |
| **************************************                                          |          |                  |        |                      |               |                                                                |              |                     |         |            |           |            |                        |                               |
|                                                                                 |          |                  |        |                      |               | *                                                              |              |                     |         |            |           |            |                        |                               |
|                                                                                 |          |                  |        | · -                  |               |                                                                |              |                     |         |            |           |            |                        |                               |
|                                                                                 |          |                  |        |                      |               |                                                                |              |                     |         |            |           |            |                        |                               |
|                                                                                 | <u> </u> |                  |        |                      |               |                                                                |              |                     |         |            |           |            |                        |                               |
| OVM sn#                                                                         | 580U-644 | 155.343 was cali | orated | with ze              | ro air & w/   | 245 ppm                                                        | Isobi        | utylene             | read    | 245        | ppm/      | 1230 3-    | 20-00                  | (time/date & initial)         |
|                                                                                 |          | Date/Time:       |        | 7                    | (si/gnature): |                                                                | 1            | quished             |         |            | 1         |            | eceived by             | (signature):                  |
| Relinquished by (signature):  Date/Time: Received by (signature):  3-20-00 1350 |          |                  |        | N                    |               | 1.                                                             | , (- 0       |                     |         |            | •         |            |                        |                               |
| Relinquished by (signature):  Date/Time: Received by (signature):               |          |                  |        |                      | Relin         | inquished by (signature):  Date/Time: Received by (signature): |              |                     |         |            |           |            |                        |                               |
| Report Type: ()Full, (Standard, ()Screen / non-certified                        |          |                  |        |                      |               |                                                                | Rema         | uks:<br>HO (        | 0 M23   | 53>1       | Dedicated | Samplin    | ng Tools Used MIN. ONE |                               |
| Turnaround time: ()Standard 2 wks, (Rush 2 Days, ()ASAP Verbal Hrs              |          |                  |        |                      |               | ·                                                              |              | All sa              | mple po | ints ha    | ve been G | PS? (x)YES | ()NO                   | ( ) NA                        |

000003

#### **Report of Analysis** my, Fort Monmouth Environmental Lak U.S. itory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5266

DPW. SELFM-PW-EV

Location: UST Reg. #: Bldg.2034

Bldg. 173

Ft. Monmouth, NJ 07703

Date Received:

20-Mar-00

Analysis: Matrix:

OQA-QAM-025

Date Extracted:

21-Mar-00

Soil

Inst. ID. :

GC TPHC INST. #1 RTX-5, 0.32mm ID, 30M **Extraction Method:** Analysis Complete:

Shake 23-Mar-00

Column Type: Injection Volume:

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g)    | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|------------------|---------|----------------|---------------------------|
| 5266.01      | 2034-A   | 1.00               | 15.26            | 90.76   | 170            | ND                        |
| 5266.02      | 2034-B   | 1.00               | <del>15.45</del> | 87.22   | <del>174</del> | ND                        |
| 5266.03      | 2034-C   | 1.00               | 15.43            | 82.04   | 186            | ND                        |
| 5266.04      | 2034-D   | 1.00               | 15.20            | 88.60   | 175            | ND                        |
|              |          |                    |                  |         |                |                           |
| METHOD BLANK | TBLK352  | 1.00               | 15.00            | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.  | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2.  | Table of Contents submitted                                                                                                                |   |
| 3.  | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |   |
| 4.  | Document paginated and legible                                                                                                             |   |
| 5.  | Chain of Custody submitted                                                                                                                 |   |
| 6.  | Samples submitted to lab within 48 hours of sample collection                                                                              | V |
| 7.  | Methodology Summary submitted                                                                                                              |   |
| 8.  | Laboratory Chronicle and Holding Time Check submitted                                                                                      |   |
| 9.  | Results submitted on a dry weight basis                                                                                                    |   |
| ~   | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |   |
| Dat | Laboratory Manager or Environmental Consultant's Signature<br>e <u>3 / 2 4 /  </u> ロ                                                       | 5 |

Laboratory Certification #13461

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment P UST 2035 Closure Report

### U.S. Army Garrison

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2035

NJDEP UST Registration No.: 192486-16 UST No.: 192486-16

September 2010

### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2035 NJDEP UST REGISTRATION NO.: 192486-16

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |  |
|     | 1.2 Site Description                                |                                                       |    |  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |  |
| 2.0 | SITE INVESTIGATION ACTIVITIES                       |                                                       |    |  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |  |

### **TABLE OF CONTENTS (CONTINUED)**

### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

### **EXECUTIVE SUMMARY**

### **UST Closure**

On March 21, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2035 in Charles Wood area. UST No.: 192486-16 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2035-A and 2035-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-16. Closure sample 2035-C was collected from a location along the UST piping. A duplicate of sample 2035-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-16 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-16 at Building 2035.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-16 was closed at Building 2035 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on March 21, 2000.

Decommissioning activities for UST No.: 192486-16 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2035 (40 & 42 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-16 and associated piping were located adjacent to the building, as shown on Figure 3.

### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2035. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On March 21, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2035-A and 2035-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-16. Closure sample 2035-C was collected from a location along the UST piping. A duplicate of sample 2035-A was collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

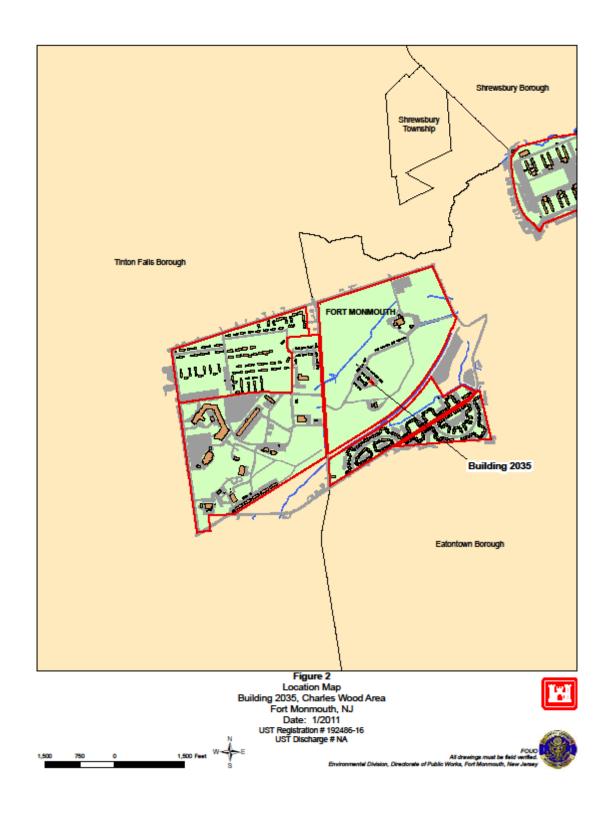
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

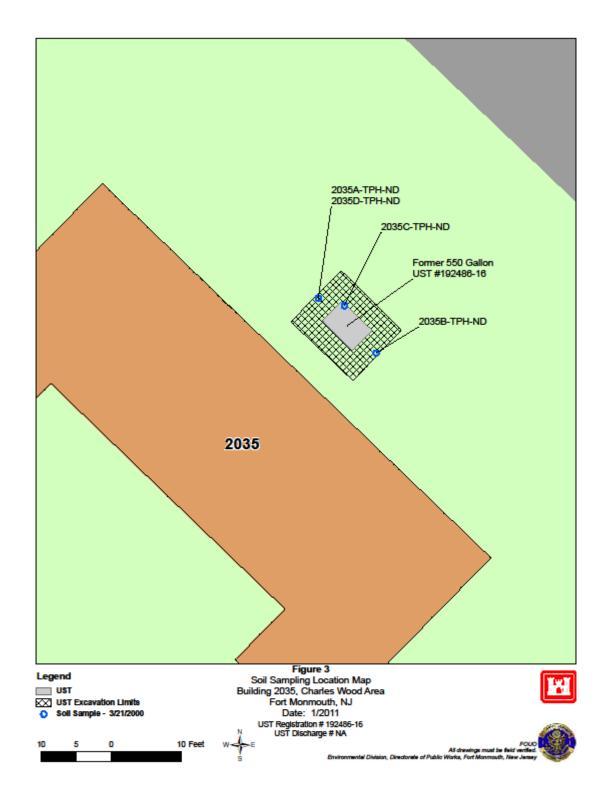
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on March 21, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 21, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-16 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-16.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-16 at Building 2035.

# **FIGURES**







# **TABLES**

### TABLE 1

#### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2035, UST No.: 192486-16 21 March 2000

| SAMPLE    | LABORATORY | SAMPLE    | SAMPLE | ANALYTICAL | ANALYTICAL |
|-----------|------------|-----------|--------|------------|------------|
| ID        | SAMPLE ID  | DATE      | MATRIX | PARAMETER  | METHOD     |
|           |            |           |        |            |            |
| 2035-A    | 5267.01    | 21-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2035-В    | 5267.02    | 21-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2035-С    | 5267.03    | 21-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2035-D    | 5267.04    | 21-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| Duplicate |            |           |        |            |            |

#### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

### TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2035, UST No.: 192486-16 21 March 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | TPH      |
|-----------|------------|--------------------|-----------|--------|----------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S |
|           |            |                    | (in feet) |        | mg/kg    |
| 2035-A    | 5267.01    | WEST END           | 6.5-7.0   | Soil   | ND       |
| 2035-В    | 5267.02    | EAST END           | 6.5-7.0   | Soil   | ND       |
| 2035-С    | 5267.03    | PIPING             | 2.0-2.5   | Soil   | ND       |
| 2035-D    | 5267.04    | DUPLICATE-WEST END | 6.5-7.0   | Soil   | ND       |
| Duplicate |            |                    |           |        |          |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

#### DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2033 (41+43 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# DE DE LA COMPANIA DE

#### DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO#100004

Bldg. 2035

| Field Sample Location  | Laboratory Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|------------------------|-----------------------|----------|-----------------------------|---------------|
| 2035-A West End 6.5-7' | 5267,01               | Soil     | 21-Mar-00 11:00             | 03/21/00      |
| 2035-B East End 6.5-7' | 5267.02               | Soil     | 21-Mar-00 11:40             | 03/21/00      |
| 2035-C Piping 2-2.5'   | 5267,03               | Soil     | 21-Mar-00 11:20             | 03/21/00      |
| 2035-D Duplicate       | 5267.04               | Soil     | 21-Mar-00 11:00             | 03/21/00      |
| Trip Blank             | 5267,05               | Methanol | 21-Mar-00                   | 03/21/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

### **Table of Contents**

| Section                             | Pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method Summary                      | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conformance/Non-Conformance         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain of Custody                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Results Summary                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Initial Calibration Summary         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Continuing Calibration Summary      | 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Surrogate Results Summary           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MS/MSD Results Summary              | territorios de territorios contentes contentes estados contentes estados contentes con |
| Blank Spike Summary                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Raw Sample Data                     | 13-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Laboratory Deliverable Checklist    | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Laboratory Authentication Statement | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erienmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters (25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

### TPHC Conformance/Non-conformance Summary Report

| 1.      | Method Detection Limits provided.                                                                                        |                    | Yes, No, N/A |
|---------|--------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 2.      | Method Blank Contamination – If yes, list corresponding concentrations in each blank                                     | k.                 | O            |
| 3.      | Matrix Spike Results Summary Meet Crite (If not met, list the sample and correspond falls outside the acceptable range). |                    | Yes          |
| . 4.    | Duplicate Results Summary Meet Criteria (If not met, list the sample and correspond falls outside the acceptable range). | ing recovery which | yes<br>      |
| ·<br>3. | IR Spectra submitted for standards, blanks                                                                               |                    | NA           |
| 6.      | Chromatograms submitted for standards, but if GC fingerprinting was conducted.                                           | planks and samples | Yes          |
| 7.      | Analysis holding time met. (If not met, list number of days exceeded to                                                  | • 1                | yes<br>yes   |
| Addi    | itional comments:                                                                                                        |                    |              |
| (       |                                                                                                                          | 3-24-00            |              |
| Labo    | oratory Manager                                                                                                          | Date               |              |

print legibly

# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:appleby@mail1.monmouth.army.mil

NJDEP Certification #13461

**Chain of Custody Record** 

USTcoc.xis8/18/99

| Customer: Charles Appleby                                                                                                           |      | Project No: /0000499=0008 |                  |                      |                |                                       |         |                           |                           |                     |                      | Comments:                      |                                        |                                        |                               |
|-------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------|------------------|----------------------|----------------|---------------------------------------|---------|---------------------------|---------------------------|---------------------|----------------------|--------------------------------|----------------------------------------|----------------------------------------|-------------------------------|
| Phone #: X2622                                                                                                                      | 24   |                           |                  | Location: BLDG. 2035 |                |                                       |         |                           | *50                       | *                   |                      |                                |                                        | * = Samples Kept <4 Celsius            |                               |
| ( )DERA ( X )OMA UST Assessment                                                                                                     |      |                           |                  | UST                  | UST# 192486-16 |                                       |         |                           |                           |                     | -10                  |                                |                                        | ding                                   |                               |
| Samplers Nar                                                                                                                        | me/( | Compai                    | ny : Frank Acco  | rsi/T                | rsi/TVS        |                                       |         | #                         | TPHC                      | SOLIDS <sup>*</sup> | 1A+                  |                                |                                        | Reading                                |                               |
| Lab Sample LI                                                                                                                       | D.   | San                       | aple Location    | Ι                    | Date           | Time                                  | Туре    | botties                   | TP                        | %                   | ΛC                   | VOA                            | ID Numb                                |                                        | Remarks / Preservation Method |
|                                                                                                                                     | 6/3  | 2035-                     | A WEST END       | 3-                   | 21-00          | 1100                                  | SOIL    | 3                         | X                         | ኢ                   | χ                    | 107                            | O                                      | 0                                      | 1CE                           |
|                                                                                                                                     | 02   | 2035-1                    | BEAST END        |                      |                | 1140                                  | 1 4 5   | 3                         | X                         | X                   | x                    | 107                            | <i>l</i> .                             | 0                                      |                               |
|                                                                                                                                     |      | 2035-0                    | 4 . 4            |                      |                | 1.120                                 |         | 3                         | ×                         | K                   | ×                    | 107                            | 2                                      | 0                                      |                               |
|                                                                                                                                     | 04   | 2035-1                    | DUPLICATE        |                      |                | 1100                                  |         | 3                         | ×                         | X                   | χ                    | 107                            | 3                                      | 0                                      |                               |
|                                                                                                                                     | 05   | TRIP                      | BLANK            |                      |                |                                       | AQ.     | İ                         |                           |                     | Х                    | 107                            | 4                                      | 7                                      |                               |
|                                                                                                                                     |      |                           |                  |                      |                |                                       | 1 1     |                           |                           |                     |                      |                                |                                        |                                        |                               |
|                                                                                                                                     |      |                           |                  |                      | -              |                                       |         |                           |                           |                     |                      |                                |                                        |                                        |                               |
|                                                                                                                                     |      |                           | -                |                      |                | . •                                   |         |                           |                           |                     |                      |                                |                                        |                                        |                               |
|                                                                                                                                     |      |                           |                  |                      |                |                                       |         |                           |                           |                     |                      |                                | ·                                      |                                        |                               |
|                                                                                                                                     |      |                           | •                |                      |                |                                       |         |                           |                           |                     |                      |                                |                                        |                                        |                               |
|                                                                                                                                     |      |                           |                  |                      |                |                                       |         |                           |                           |                     |                      |                                | ** * * * * * * * * * * * * * * * * * * |                                        |                               |
|                                                                                                                                     |      |                           |                  |                      |                |                                       |         |                           |                           |                     |                      |                                |                                        |                                        |                               |
| <del></del>                                                                                                                         |      |                           |                  |                      |                | · · · · · · · · · · · · · · · · · · · |         |                           |                           |                     |                      |                                |                                        |                                        |                               |
| OVM                                                                                                                                 | sn#5 | 80U-644                   | 55.343 was calib | ated v               | vith zer       | o air & w/ 2                          | 245 ppm | Isobu                     | itylene                   | read                | 245                  | ppm <i>_</i>                   | 1270 3                                 | -20-00                                 | (time/date & initial)         |
| Relinquished by (signature): Date/Time: Received by (signature):                                                                    |      |                           |                  |                      |                |                                       |         |                           | by (sig                   |                     |                      | ~~~ T                          | Received by                            | (signature):                           |                               |
| Relinquished by (signature):  Date/Time: Received by (sign                                                                          |      |                           | signature):      |                      | Relino         | puished                               | by (sig | nature):                  | Ι                         | Date/Time:          | Received by          | (signature):                   |                                        |                                        |                               |
| Report Type: ()Full, ()Reduced, (Standard, ()Screen / non-certified  Turnaround time: ()Standard 4 wks, (Rush Days, ()ASAP Verbal H |      |                           |                  |                      |                |                                       |         | Remar<br>1/0 1<br>All sar | rks:*<br>10 or<br>nple po | 25 ر<br>ints hav    | % > /,<br>ve been GF | Dedicate<br>000 PFM<br>S? XYES | d Samplin<br>TP#, 0<br>()NO            | ng Tools Used  HIGHETT, MINIONE  () NA |                               |

# Report of Analysis U.S., my, Fort Monmouth Environmental Lab tory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5267

DPW. SELFM-PW-EV

Location:

Bldg.2035

Bldg. 173

UST Reg. #:

192486-16

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

21-Mar-00

Matrix:

Soil

Date Extracted :

22-Mar-00

Inst. ID. :

2011

Dave Emiliated 1

. . .

Inst. ID. :

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

23-Mar-00

Injection Volume:

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID    |            | Weight (g) | % Solid     | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|-------------|------------|------------|-------------|----------------|---------------------------|
| 5267.01      | 2035-A      | 1.00       | 15.01      | 90.01       | 174            | ND                        |
| 5267.02      | 2035-В      | 1.00       | 15.07      | 90.12       | 173            | ND                        |
| 5267.03      | 2035-C      | 1.00       | 15.00      | 87.65       | 179            | ND                        |
| 5267.04      | 2035-D      | 1.00       | 15.27      | 90.57       | 170            | ND                        |
| iv.          |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
| 4            |             | \          | !          | <br>]       |                | <u>:</u>                  |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              | <del></del> | Ţ <u> </u> |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
|              |             |            |            | <del></del> |                |                           |
|              | *           | <u> </u>   |            |             |                | <u> </u>                  |
|              |             |            |            |             |                |                           |
|              |             |            |            |             |                |                           |
| METHOD BLANK | TBLK353     | 1.00       | 15.00      | 100.00      | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

3-28-00

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package and in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |          |
| 4.         | Document paginated and legible                                                                                                             | <u>~</u> |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |          |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Da         | Laboratory Manager or Environmental Consultant's Signaturete _3 /とが ○○                                                                     | 3        |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment Q UST 2036 Closure Report

### **U.S. Army Garrison**

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2036

NJDEP UST Registration No.: 192486-17 UST No.: 192486-17

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2036 NJDEP UST REGISTRATION NO.: 192486-17

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |  |
|     | 1.2 Site Description                                |                                                       |    |  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On March 22, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2036 in Charles Wood area. UST No.: 192486-17 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2036-A and 2036-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-17. Closure sample 2036-C was collected from a location along the UST piping. A duplicate of sample 2036-A was also collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-17 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-17 at Building 2036.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-17 was closed at Building 2036 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on March 22, 2000.

Decommissioning activities for UST No.: 192486-17 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2036 (44 & 46 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-17 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2036. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

## 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On March 22, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2036-A and 2036-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-17. Closure sample 2036-C was collected from a location along the UST piping. A duplicate of sample 2036-A was collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

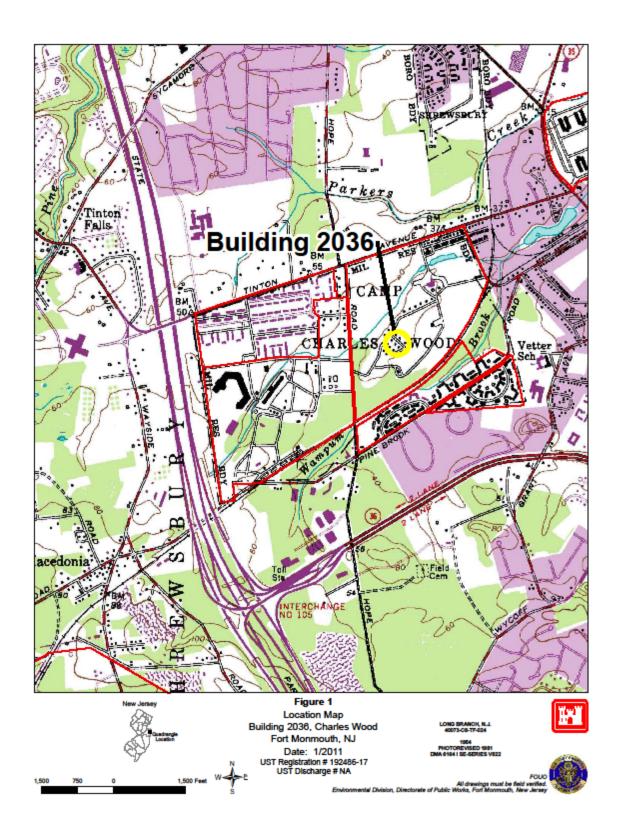
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

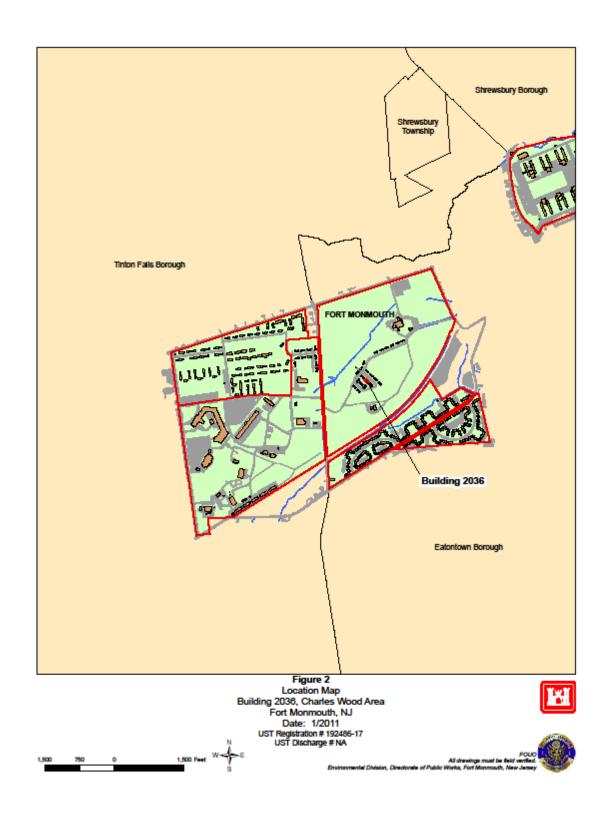
### 3.0 CONCLUSIONS AND RECOMMENDATIONS

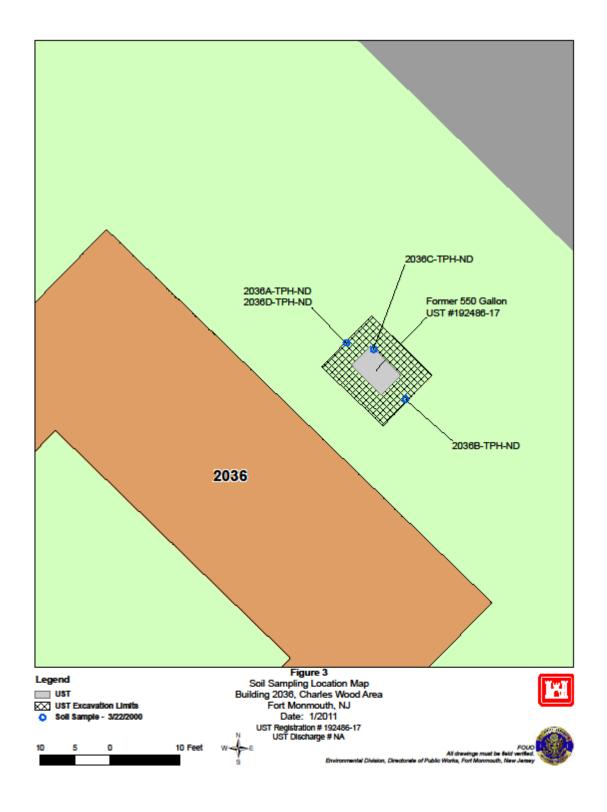
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on March 22, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 22, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-17 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-17.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-17 at Building 2036.

## **FIGURES**







## **TABLES**

## TABLE 1

## SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2036, UST No.: 192486-17 22 March 2000

| SAMPLE | LABORATORY | SAMPLE    | SAMPLE | ANALYTICAL | ANALYTICAL |
|--------|------------|-----------|--------|------------|------------|
| ID     | SAMPLE ID  | DATE      | MATRIX | PARAMETER  | METHOD     |
|        |            |           |        |            |            |
| 2036-A | 5271.01    | 22-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2036-В | 5271.02    | 22-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2036-С | 5271.03    | 22-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2036-D | 5217.04    | 22-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |

## ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

## SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2036, UST No.: 192486-17 22 March 2000

## TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION    | SAMPLE    | MATRIX | ТРН      |
|-----------|------------|--------------------|-----------|--------|----------|
|           | SAMPLE ID  |                    | DEPTH     |        | RESULT S |
|           |            |                    | (in feet) |        | mg/kg    |
| 2036-A    | 5271.01    | WEST END           | 6.5-7.0   | Soil   | ND       |
| 2036-В    | 5271.02    | EAST END           | 6.5-7.0   | Soil   | ND       |
| 2036-С    | 5271.03    | PIPING             | 1.5-2.0   | Soil   | ND       |
| 2036-D    | 5271.04    | DUPLICATE-WEST END | 6.5-7.0   | Soil   | ND       |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

## **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2033 (41+43 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

## DE DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CON

## DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

WAR 3 1 2000

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO#100004

Bldg. 2036

|                         | -                        | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                             |               |
|-------------------------|--------------------------|---------------------------------------|-----------------------------|---------------|
| Field Sample Location   | Laboratory<br>Sample ID# | Matrix                                | Date and Time of Collection | Date Received |
| 2036-A West End 6.5-7'  | 5271.01                  | Soil                                  | 22-Mar-00 11:00             | 03/22/00      |
| 2036-B East End 6.5-7'  | 5271,02                  | Soil                                  | 22-Mar-00 11:15             | 03/22/00      |
| 2036-C Piping 1.5-2'    | 5271.03                  | Soil                                  | 22-Mar-00 11:30             | 03/22/00      |
| 2036-D Duplicate 6.5-7' | 5271,04                  | Soil                                  | 22-Mar-00 11:00             | 03/22/00      |
| Trip Blank              | 5271,05                  | Methanol                              | 22-Mar-00                   | 03/22/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

> Daniel Wright/Date Laboratory Director

## **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5            |
| Continuing Calibration Summary      | 6-9          |
| Surrogate Results Summary           | 10           |
| MS/MSD Results Summary              | 11           |
| Blank Spike Summary                 | 12           |
| Raw Sample Data                     | 13-22        |
| Laboratory Deliverable Checklist    | 23           |
| Laboratory Authentication Statement | 24           |

## **Method Summary**

## NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                                             | Indicate Yes, No, N/A |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 2.         | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | <u>No</u>             |
| 3.         | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | <u>Yes</u>            |
| 4.         | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | <u> </u>              |
| <b>3</b> . | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA                    |
| 6.         | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | yes                   |
| 7.         | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | yes                   |
| Addi       | itional comments:                                                                                                                             |                       |
|            | 3-27-00                                                                                                                                       |                       |
| Labo       | oratory Manager Date                                                                                                                          |                       |

## Fort Monmouth Environmental Testing Laboratory

Bidg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

## **Chain of Custody Record**

NJDEP Certification #13461 / NYDOH Certification #11699

| Customer: Dinker Desai                                |                         |                | Project No:                                                                        | 100004              | -          |                                        |           |          | alysis   | Parameters    |                       |                        |
|-------------------------------------------------------|-------------------------|----------------|------------------------------------------------------------------------------------|---------------------|------------|----------------------------------------|-----------|----------|----------|---------------|-----------------------|------------------------|
| Phone #: X21475                                       |                         |                | Location: BLDG. 2036 (44+46 MERILL CIRCLE)                                         |                     |            |                                        | *SOLIDS % | *        |          | 20            | * = Samples Kept <4°C |                        |
| ()DERA (X)OMA                                         | UST# <i>i924</i>        | 86-17          |                                                                                    | - // ( )            |            | ITI                                    | VOA+10    |          | Reading  |               |                       |                        |
| Samplers Name /                                       | Company: Frank Acco     | rsi/TVS        | <del></del>                                                                        |                     | Sample     | #                                      | TPHC      | SO       | OA.      |               | ) Re                  | Remarks / Preservation |
| Lab Sample I.D.                                       | Sample Location         | Depth          | Date                                                                               | Time                | Туре       | Bottles                                | T.        | %        | Λ        | VOA ID#       | PID                   | Method                 |
| 5271.01                                               | 2036-A, WEST END        | 6.5-7 FT       | 3-22-00                                                                            |                     | 501L       | 3                                      | X         | λ        | X        | 1075          | 1                     | 1CE                    |
| 05                                                    | 2036-8, EAST END        |                |                                                                                    | 1115                |            | 3                                      | X         | Ķ        | ×        | 1076          | 0                     |                        |
| 93                                                    | 2036-C, PIPING          | 1.7.2.11       |                                                                                    | 1/30                |            | 3                                      | χ         | X        | X        | 1077          | 0                     |                        |
|                                                       | 2036 D. DUPLICATE       | 6.5-7FT        |                                                                                    | 1/00                |            | .3                                     | χ         | X        | χ        | 1078          | /_                    |                        |
| 05                                                    | TRIP BLANK              |                | Y                                                                                  | Ţ                   | AQ.        | )                                      |           |          | Х        | 1079          |                       | <u> </u>               |
|                                                       |                         |                |                                                                                    |                     |            |                                        |           |          |          |               | <u> </u>              |                        |
|                                                       |                         |                |                                                                                    |                     |            |                                        |           |          |          |               |                       |                        |
|                                                       |                         |                |                                                                                    | ` <u>*</u>          |            |                                        | <u> </u>  |          |          |               |                       |                        |
|                                                       |                         |                |                                                                                    |                     |            |                                        |           |          |          |               |                       |                        |
|                                                       |                         |                |                                                                                    |                     |            |                                        | <u> </u>  |          |          |               |                       |                        |
|                                                       |                         | :              |                                                                                    |                     |            |                                        |           |          |          |               |                       |                        |
| -                                                     |                         |                |                                                                                    |                     |            |                                        |           |          |          |               |                       |                        |
|                                                       |                         |                |                                                                                    |                     |            |                                        | <u> </u>  |          |          |               |                       |                        |
| OVM                                                   | sn#580U-64455.343 was c | alibrated with | zero air & v                                                                       | v/ <u>245</u> ppm l | sobutylene |                                        |           |          |          |               |                       |                        |
| Relinquished by (signature): Date/Time:  3-22-00 1/50 |                         |                | Received by (signature): Comments: VO+10 ON 25 % > 1,000 Plm  ON HIGHEST, MIN. ONE |                     |            | offm TPH,                              |           |          |          |               |                       |                        |
| Relinquished by (signature): Date/Time:               |                         | Rec            | eived by (sign                                                                     | ature):             | ure):      |                                        |           |          |          |               |                       |                        |
| Report Type: ( )Full, ( )                             | ()EDD                   | ,              |                                                                                    | -                   | Remar      | Remarks: Dedicated Sampling Tools Used |           |          |          |               |                       |                        |
| Ph.                                                   | dard 2 wks, Rush Days,  |                |                                                                                    |                     |            |                                        | All sar   | nple poi | nts have | been GPS? ()Y | ES (                  | )NO ()NA               |
|                                                       |                         |                |                                                                                    |                     |            |                                        |           |          |          |               |                       |                        |

Page \_\_\_\_ of \_\_\_

## **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5271

DPW. SELFM-PW-EV

Location:

Bldg.2036

Bldg. 173

UST Reg. #:

192486-17

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

22-Mar-00

Matrix:

Soil

Date Extracted:

23-Mar-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

**Analysis Complete:** 

25-Mar-00

Injection Volume:

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|---------|----------------|---------------------------|
| 5271.01      | 2036-A   | 1.00               | 15.05         | 89.65   | 174            | ND                        |
| 5271.02      | 2036-В   | 1.00               | 15.06         | 89.67   | 174            | ND                        |
| 5271.03      | 2036-C   | 1.00               | 15,40         | 83.91   | 182            | ND                        |
| 5271.04      | 2036-D   | 1.00               | 15.05         | 89.71   | 174            | ND                        |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
|              |          |                    |               |         |                |                           |
| METHOD BLANK | TBLK356  | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

## LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | and address, & date of report submitted                                                                                                    |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |          |
| 4.         | Document paginated and legible                                                                                                             |          |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              | <u> </u> |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Dat        | Laboratory Manager or Environmental Consultant's Signature<br>te <u>3 /2 7 / ②</u>                                                         |          |
| Lab        | poratory Certification #13461                                                                                                              |          |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP

Methods for further guidance.

0060g3

## **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright

Laboratory Manager

Attachment R UST 2037 Closure Report

## U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2037

NJDEP UST Registration No.: 192486-18 UST No.: 192486-18

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2037 NJDEP UST REGISTRATION NO.: 192486-18

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

## **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3 Soil Sampling                                   |                                                       |    |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

## **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Site Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

## **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

## **EXECUTIVE SUMMARY**

## **UST Closure**

On March 23, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2037 in Charles Wood area. UST No.: 192486-18 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2037-A and 2037-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-18. Closure sample 2037-C was collected from a location along the UST piping. A duplicate of sample 2037-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-18 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-18 at Building 2037.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-18 was closed at Building 2037 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on March 23, 2000.

Decommissioning activities for UST No.: 192486-18 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2037 (48 & 50 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-18 and associated piping were located adjacent to the building, as shown on Figure 3.

### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2037. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

## **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

## 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On March 23, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2037-A and 2037-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-18. Closure sample 2037-C was collected from a location along the UST piping. A duplicate of sample 2037-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

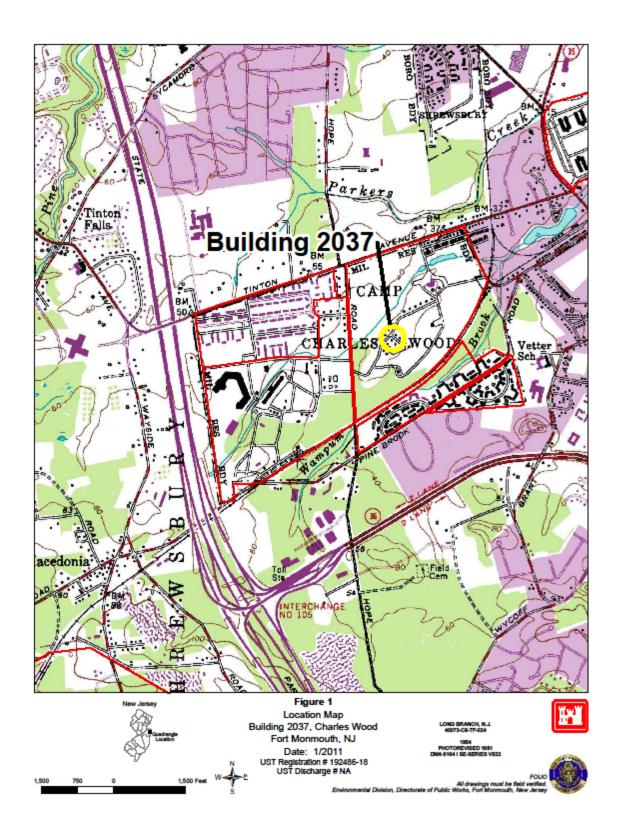
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

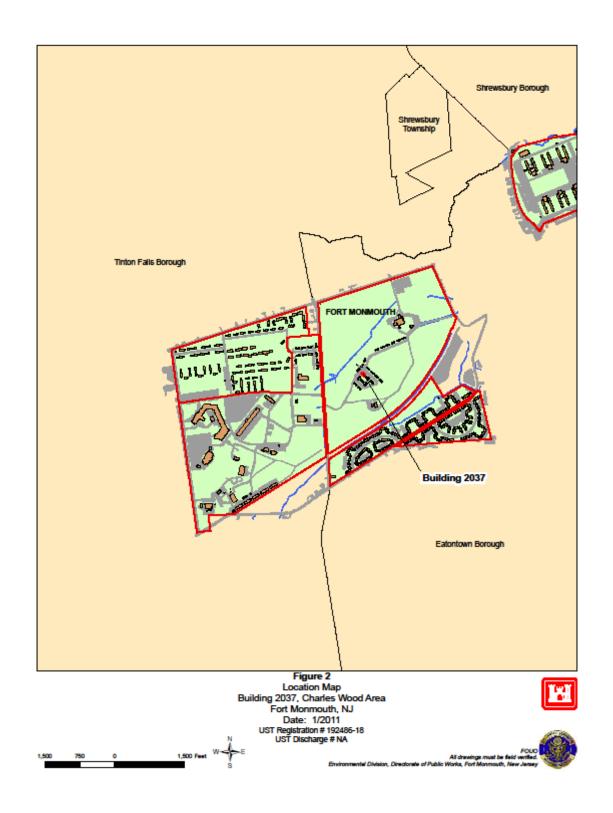
### 3.0 CONCLUSIONS AND RECOMMENDATIONS

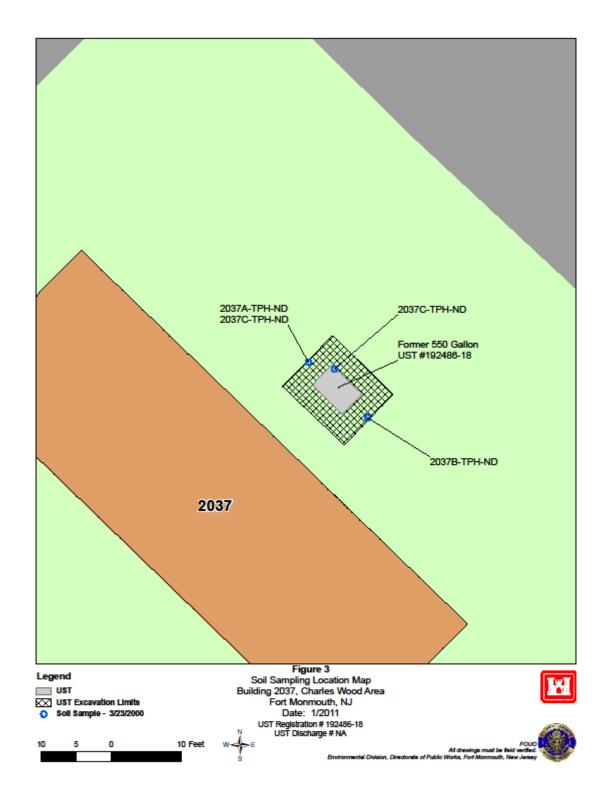
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on March 23, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on March 23, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-18 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-18.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-18 at Building 2037.

## **FIGURES**







## **TABLES**

## **TABLE 1**

## SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2037, UST No.: 192486-18 23 March 2000

| SAMPLE    | LABORATORY | SAMPLE    | SAMPLE | ANALYTICAL | ANALYTICAL |
|-----------|------------|-----------|--------|------------|------------|
| ID        | SAMPLE ID  | DATE      | MATRIX | PARAMETER  | METHOD     |
|           |            |           |        |            |            |
| 2037-A    | 5276.01    | 23-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2037-В    | 5276.02    | 23-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2037-С    | 5276.03    | 23-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2037-D    | 5276.04    | 23-Mar-00 | SOIL   | TPH        | OQA-QAM-25 |
| Duplicate |            |           |        |            |            |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

## SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2037, UST No.: 192486-18 23 March 2000

## TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION    | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|--------------------|-----------------|--------|-----------------|
|           |                         |                    | (in feet)       |        | mg/kg           |
| 2037-A    | 5276.01                 | WEST END           | 6.5-7.0         | Soil   | ND              |
| 2037-В    | 5276.02                 | EAST END           | 6.5-7.0         | Soil   | ND              |
| 2037-С    | 5276.03                 | PIPING             | 2.0-2.5         | Soil   | ND              |
| 2037-D    | 5276.04                 | DUPLICATE-WEST END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                    |                 |        |                 |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

## **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2037(48+50 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

## DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF Directorate of Public Works

TAR 3 1 200

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166

Roll-off container No. 2065

Size: 30 cubic yards

USTs from Bldgs: 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029,

2030, 2031, 2032, 2033, 2034, 2035, 2036, and 2037

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ. The tanks only held No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Engineer, at (732) 532-1475.

Sincerely,

James Ott,

Director, Public Works

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



## ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2037

| Field Sample Location     | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|---------------------------|--------------------------|----------|-----------------------------|---------------|
| 2037-A West End 6.5-7.0'  | 5276.01                  | Soil     | 23-Mar-00 10:40             | 03/23/00      |
| 2037-B East End 6.5-7.0'  | 5276.02                  | Soil     | 23-Mar-00 11:00             | 03/23/00      |
| 2037-C Piping 2-2.5'      | 5276,03                  | Soil     | 23-Mar-00 10:50             | 03/23/00      |
| 2037-D Duplicate 6.5-7.0' | 5276.04                  | Soil     | 23-Mar-00 10:40             | 03/23/00      |
| Trip Blank                | 5276.05                  | Methanol | 23-Mar-00                   | 03/23/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

## **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-11  |
| Surrogate Results Summary           | 12    |
| MS/MSD Results Summary              | 13    |
| Blank Spike Summary                 | 14    |
| Raw Sample Data                     | 15-24 |
| Laboratory Deliverable Checklist    | 25    |
| Laboratory Authentication Statement | 26    |

## **Method Summary**

## NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.      | Method Detection Limits provided.                                                                                                           | Yes, No, N/A     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2.      | Method Blank Contamination – If yes, list the sample and to corresponding concentrations in each blank.                                     | he <u>No</u>     |
| 3.      | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery whi falls outside the acceptable range). | ich Yes          |
| 4.      | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery who falls outside the acceptable range).    | ich Yes          |
| ·<br>3. | IR Spectra submitted for standards, blanks and samples.                                                                                     | <u>NA</u>        |
| 6.      | Chromatograms submitted for standards, blanks and sample if GC fingerprinting was conducted.                                                | es<br><u>Yes</u> |
| 7.      | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                      | yes              |
| Addi    | tional comments:                                                                                                                            |                  |
| (       | 4-6-00                                                                                                                                      |                  |
| Labo    | oratory Manager Date                                                                                                                        | <del></del>      |

## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

## **Chain of Custody Record**

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil NJDEP Certification #13461 / NYDOH Certification #11699 **Analysis Parameters** Customer: Dinker Desai Project No: 100004

| Phone #: X21475 Locatio                                                     |                                                                 |                |                  | 206.203             | 7 (48+50 l | MERILL                                  |                                                 | S        |                     |           |          | * = Samples Kept <4°C  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|------------------|---------------------|------------|-----------------------------------------|-------------------------------------------------|----------|---------------------|-----------|----------|------------------------|
| ( )DERA ( X )OMA UST Assessment UST                                         |                                                                 |                |                  | 486-18              | · ·        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                 | % SOLIDS | H10                 |           | Reading  |                        |
| Samplers Name / Company: Frank Accorsi/TVS                                  |                                                                 |                |                  |                     | Sample     | #                                       | TPHC                                            | SO       | VOA+10              |           | Rez      | Remarks / Preservation |
| Lab Sample I.D.                                                             | Sample Location                                                 | Depth          | Date             | Time                | Туре       | Bottles                                 | TF                                              | %        | χ                   | VOA ID#   | OF P     | Method                 |
| 527/e. 01                                                                   | 2037-4, WESTERD                                                 | 6.5-7.0        | 3-23-00          |                     | 50/L       | 2                                       | X                                               | X        | X                   | 1080      | 0        | ICE                    |
| 02                                                                          | 2037-B. EAST END                                                |                |                  | 1100                |            | 2                                       | X                                               | X        | $\boldsymbol{\chi}$ | 1081      | 0        |                        |
| 03                                                                          | 2037-C, PIPING                                                  | 2-2,5          |                  | 1050                |            | 2                                       | X                                               | Х        | ×                   | 1082      | 0        |                        |
| 1 04                                                                        | 2038-D, DOPLICAZ                                                | 6.5-7.0        |                  | 1040                | Y          | 2                                       | x                                               | X        | X                   | 1020      | 0        |                        |
| 200                                                                         | TRIP BLANK                                                      |                | y                |                     | AQ.        | ı                                       |                                                 |          | X                   | 1027      | -        |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
| 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0                                     |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          | ŕ                      |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     | 1         |          |                        |
| OVM s                                                                       | sn#580U-64455.343 was o                                         | alibrated with | zero air & v     | v/ <i>345</i> ppm ! |            |                                         | ř                                               |          |                     |           |          | •                      |
| Relinquished by (signatu                                                    | Relinquished by (signature): Date/Time: Received by (signature) |                |                  |                     | ature):    | Comme                                   | nts:#                                           | · vo     | 40                  | ON 2570   | 74       | 000 Pla TPH,           |
| Frankawai 3-23-00 1110 A. Alreall                                           |                                                                 |                |                  | rw                  |            | ON                                      | #160                                            | HET.     | T, Men. C           | INE       | <b>-</b> |                        |
| Relinquished by (signature): Date/Time: Received by (sign                   |                                                                 |                | ceived by (signa | ature):             | ] .        |                                         |                                                 |          |                     |           |          |                        |
|                                                                             |                                                                 |                |                  |                     |            |                                         |                                                 |          |                     |           |          |                        |
| Report Type: ()Full, ()Reduced, ()Standard, ()Screen / non-certified, ()EDD |                                                                 |                |                  |                     |            |                                         | Remar                                           | ks:      |                     | Dedicated | Sampli   | ing Tools Used         |
| ,                                                                           | dard 2 wks, WRush Days                                          |                |                  |                     |            | 1                                       | All sample points have been GPS? XYES ()NO ()NA |          |                     |           |          |                        |

## **Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461**

Client:

U.S. Army

Project #:

5276

DPW. SELFM-PW-EV

Location:

Bldg.2037

Bldg. 173

UST Reg. #:

192486-18

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

23-Mar-00

Matrix:

27-Mar-00

Soil

Date Extracted:

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

28-Mar-00

Injection Volume:

 $1 \mathrm{uL}$ 

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight (g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|------------|---------|----------------|---------------------------|
| 5276.01      | 2037-A   | 1.00               | 15.00      | 87.75   | 179            | ND                        |
| 5276.02      | 2037-В   | 1.00               | 15.03      | 89.31   | 175            | ND                        |
| 5276.03      | 2037-C   | 1.00               | 15.01      | 89.81   | 174            | ND                        |
| 5276.04      | 2037-D   | 1.00               | 15.03      | 87.60   | 178            | ND                        |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
|              |          |                    |            |         |                |                           |
| METHOD BLANK | TBLK358  | 1.00               | 15.00      | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

## LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  | <u> </u> |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3,         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |          |
| 4.         | Document paginated and legible                                                                                                             |          |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              | <u></u>  |
| 7.         | Methodology Summary submitted                                                                                                              | V        |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
|            | Laboratory Manager or Environmental Consultant's Signature                                                                                 |          |
| La         | boratory Certification #13461                                                                                                              |          |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

## **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

DånieKK, Wright Laboratory Manager Attachment S UST 2038 Closure Report

## **U.S. Army Garrison**

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2038

NJDEP UST Registration No.: 192486-19 UST No.: 192486-19

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2038 NJDEP UST REGISTRATION NO.: 192486-19

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

## **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3 Soil Sampling                                   |                                                       |    |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

## **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

## **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

## **EXECUTIVE SUMMARY**

## **UST Closure**

On April 11, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2038 in Charles Wood area. UST No.: 192486-19 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2038-A and 2038-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-19. Closure sample 2038-C was collected from a location along the UST piping. A duplicate of sample 2038-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-19 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-19 at Building 2038.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-19 was closed at Building 2038 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on April 11, 2000.

Decommissioning activities for UST No.: 192486-19 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

### 1.2 SITE DESCRIPTION

Building 2038 (36 & 38 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-19 and associated piping were located adjacent to the building, as shown on Figure 3.

## 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2038. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

## **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On April 11, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2038-A and 2038-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-19. Closure sample 2038-C was collected from a location along the UST piping. A duplicate of sample 2038-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

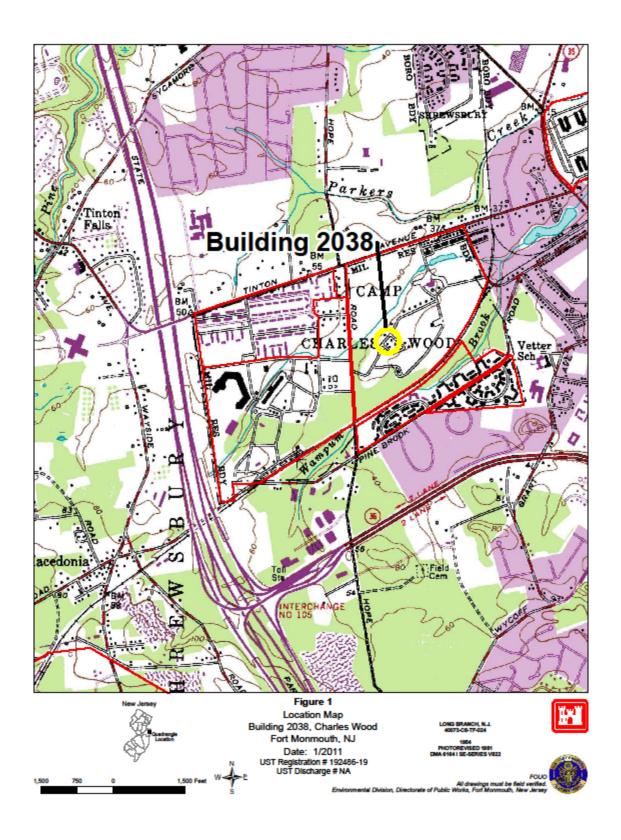
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

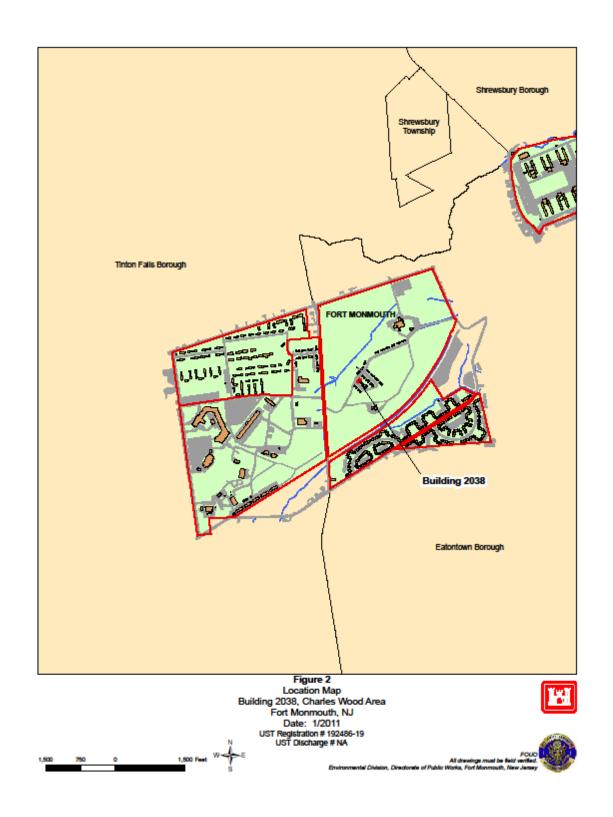
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

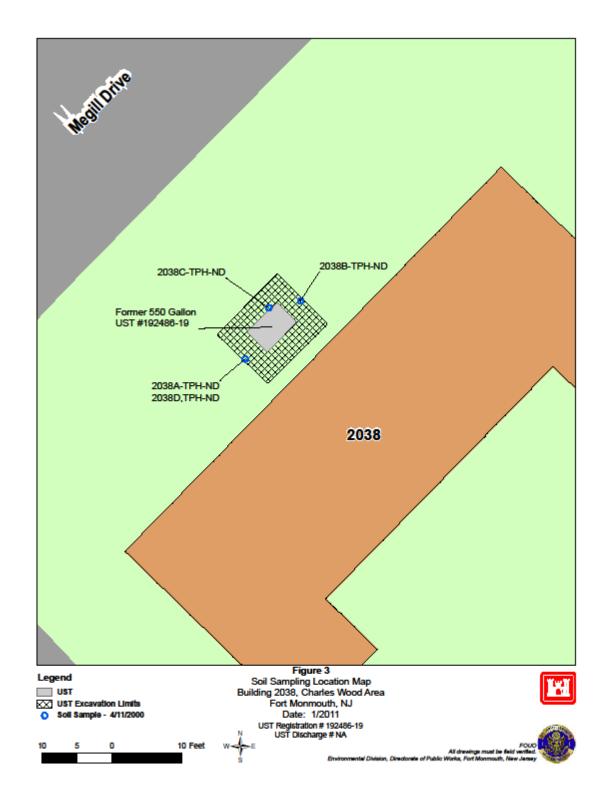
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on April 11, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on April 11, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-19 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-19.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-19 at Building 2038.

# **FIGURES**







# **TABLES**

# TABLE 1

#### **SUMMARY OF LABORATORY ANALYSIS**

FT. MONMOUTH, BUILDING 2038, UST No.: 192486-19 11 April 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2038-A       | 5332.01                 | 11-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2038-В       | 5332.02                 | 11-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2038-С       | 5332.03                 | 11-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2038-D       | 5332.04                 | 11-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

#### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2038, UST No.: 192486-19 11 April 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION    | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|--------------------|-----------------|--------|-----------------|
|           |                         |                    | (in feet)       |        | mg/kg           |
| 2038-A    | 5332.01                 | WEST END           | 6.5-7.0         | Soil   | ND              |
| 2038-В    | 5332.02                 | EAST END           | 6.5-7.0         | Soil   | ND              |
| 2038-С    | 5332.03                 | PIPING             | 1.5-2.0         | Soil   | ND              |
| 2038-D    | 5332.04                 | DUPLICATE-WEST END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                    |                 |        |                 |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2038 (36+38 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

#### DEPARTMENT OF THE ARMY



Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF

Directorate of Public Works

Date: 30 January, 2001

Marpal Disposal Company, Inc. P.O. Box 188
Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166, rear Roll-off container No. 2798

Size: 30 cubic yards

USTs from Bldgs: 226(2K), 227(2K), 228(2K), 2038(.5K), 2039(.5K), 2040(.5K),

2041(.5K), 2042(.5K), McGuire AFB 1507(2.5K)

#### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ, and one from McGuire Air Force Base. The tanks held only No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Protection Specialist. He can be reached at the following telephone number: (732) 532-1475.

Sincerely,

Dinker Desai

Environmental Protection Specialist

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL

### **TESTING LABORATORY**

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



#### ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory **ENVIRONMENTAL DIVISION** Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2038

| Field Sample Location     | Laboratory<br>Sample ID# | Matrix   | Date and Time<br>of Collection | Date Received |
|---------------------------|--------------------------|----------|--------------------------------|---------------|
| 2038-A West End 6.5-7.0'  | 5332.01                  | Soil     | 11-Apr-00 09:30                | 04/11/00      |
| 2038-B East End 6.5-7.0°  | 5332.02                  | Soil     | 11-Apr-00 10:00                | 04/11/00      |
| 2038-C Piping 1.5-2.0'    | 5332.03                  | Soil     | 11-Apr-00 09:45                | 04/11/00      |
| 2038-D Duplicate 6.5-7.0' | 5332.04                  | Soil     | 11-Apr-00 09:30                | 04/11/00      |
| Trip Blank                | 5332.05                  | Methanol | 11-Apr-00                      | 04/11/00      |

ANALYSIS:

FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

> Daniel Wright/Date Laboratory Director

4-20-00

### **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-9   |
| Surrogate Results Summary           | 10    |
| MS/MSD Results Summary              | 11    |
| Blank Spike Summary                 | 12    |
| Raw Sample Data                     | 13-22 |
| Laboratory Deliverable Checklist    | 23    |
| Laboratory Authentication Statement | 24    |

#### **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

# <u>Gas Chromatographic Determination of Total Petroleum Hydrocarbons in</u> Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

# TPHC Conformance/Non-conformance Summary Report

| 1.          | Method Detection Limits provided.                                                                                           |                        | Yes, No, N/A |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|
| 2.          | Method Blank Contamination – If yes, corresponding concentrations in each b                                                 |                        | Lud          |
| 3.          | Matrix Spike Results Summary Meet C (If not met, list the sample and corresponding outside the acceptable range).           |                        | 403          |
| 4.          | Duplicate Results Summary Meet Crite<br>(If not met, list the sample and corresponding falls outside the acceptable range). |                        | ¥65          |
| <b>′</b> 5. | IR Spectra submitted for standards, bla                                                                                     | nks and samples.       | AU           |
| 6.          | Chromatograms submitted for standard if GC fingerprinting was conducted.                                                    | is, blanks and samples | Yes          |
| 7.          | Analysis holding time met. (If not met, list number of days exceed                                                          | ed for each sample).   | yes          |
| Add:        | itional comments:                                                                                                           |                        |              |
|             |                                                                                                                             | 4-20-00                |              |
| Labo        | oratory Manager                                                                                                             | Date                   |              |

# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

NJDEP Certification #13461 / NYDOH Certification #11699

#### **Chain of Custody Record**

| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                     | <del>',</del>  |                |                     | <del> </del> |         |            |            |                       |              |         | ·                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|----------------|---------------------|--------------|---------|------------|------------|-----------------------|--------------|---------|------------------------|
| Customer: Dinker Desai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                |                | 100004              | ٠            | ٠       |            | An         | alysis                | Parameters   |         |                        |
| Phone #: X21475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: <b>BLOG, 2038</b>         |                |                |                     | S            | *       |            |            | * = Samples Kept <4°C |              |         |                        |
| ( )DERA ( X )OMA UST Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                | UST# 192486-19 |                     |              |         |            | -10        |                       | Reading      |         |                        |
| Samplers Name / Company : Frank Accorsi/TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                |                |                     | Sample       | #       | TPHC       | % SOLIDS   | VOA+10                |              | Rea     | Remarks / Preservation |
| Lab Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Location                     | Depth(H.       | Date           | Time                | Туре         | Bottles | TP         | %          | )/\                   | VOA ID#      | PID     | Method                 |
| 5332.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2038-A. END                         | 6,5-7,0        | 4-11-00        | 0930                | SOIL         | 2       | Х          | ×          | X                     | 1457         | 0       | 1CE                    |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2038-8 8256                         | 6.5-7.0        |                | 1000                |              | 2       | Χ          | ¥          | ×                     | 1458         | 0       |                        |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2038-C, PIPING                      | 1.5-2.0        |                | 0945                |              | 2       | Х          | ×          | ×                     | 1459         | 0       |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2038-D, OUPLOAK                     | 6.5-7.0        |                | 0930                | 7            | 2       | X          | ۲          | X                     | 1460         | 0       |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP BYANK                          |                | <b>A</b>       | -                   | AQ.          | ,       |            |            | X                     | 1961         |         | Y                      |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                |                |                     |              |         |            |            |                       | <u> </u>     |         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     |              |         |            | j.         | <i>₹</i> 9' ∵         |              |         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     |              |         |            |            |                       |              |         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     |              |         |            |            |                       |              |         | ·                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     |              |         |            |            |                       |              |         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | -              |                |                     |              |         |            |            |                       |              |         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     |              |         |            |            |                       |              |         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     | <u> </u>     |         |            | -          |                       | ,            |         |                        |
| OVM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>I</u><br>sn#580U-64455,343 was ∢ | alibrated with | zero air 8. v  | // <b>745</b> nom l | sohutviene   | read 2  | 47 nn      | m A        | 920                   | 4-11-00 FIX  | ime/d   | ate & initial\         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                | <u> </u>       | 1                   |              | reau _z | <u></u> PP | k /a       | 410                   | 01 25% >     | 1000    | PRATOLL                |
| Relinquished by (signatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | ime: (1/55     |                | gived by (signa     |              | Comme   | nts: . 7   |            | us c                  | ust, m       | i pro i | ONE ONE                |
| Frank are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                | 171-2          |                     |              | -       | ,          | <b>/</b> * | 77.0                  |              |         | •                      |
| Relinquished by (signatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | re): Date/T                         | ime:           | Rec            | eived by (signa     | ature):      |         |            |            |                       |              |         |                        |
| <u> -</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                |                | <u> </u>            |              | 1       | 1          |            |                       | To 11        | · ·     | m1. TY 2               |
| <b>•</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reduced, Standard, Scre             |                |                |                     |              |         | Remar      |            |                       |              | _       | ing Tools Used         |
| Turnaround time: ()Stan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dard 2 wks, ()Rush Days             | s, ()ASAP Verb | alHrs.         |                     |              |         | All san    | ple poi    | nts have              | been GPS? XY | ES (    | ) NO () NA             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                |                |                     |              |         |            |            |                       |              |         |                        |

#### **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5332

DPW. SELFM-PW-EV

Location:

Bldg.2038

Bldg. 173

UST Reg. #:

192486-19

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

11-Apr-00

Matrix:

Soil

Date Extracted:

12-Apr-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

13-Apr-00

Injection Volume:

1 uL

Analyst:

**B.Patel** 

| Sample       | Field ID       | Dilution<br>Factor | Weight<br>(g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------------|--------------------|---------------|---------|----------------|---------------------------|
| 5332.01      | 32.01 2038-A 1 |                    | 15.05         | 89.37   | 175            | ND                        |
| 5332.02      | 2038-B         | 1.00               | 15.18         | 89.96   | 172            | ND                        |
| 5332.03      | 2038-C         | 1.00               | 15.40         | 86.97   | 175            | ND                        |
| 5332.04      | 2038-D         | 1.00               | 15.38         | 89.01   | 172            | ND                        |
|              |                |                    |               |         |                |                           |
|              |                |                    |               |         |                |                           |
| METHOD BLANK | TBLK378        | 1.00               | 15.00         | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                   |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|--|
| 2.         | Table of Contents submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                   |  |
| 3.         | Summary Sheets listing analytical results for all targeted and n compounds submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on-targeted                           |                                   |  |
| 4.         | Document paginated and legible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                                   |  |
| 5          | Chain of Custody submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                   |  |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                   |  |
| 7.         | Methodology Summary submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                     |                                   |  |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | $\frac{\mathcal{V}}{\mathcal{A}}$ |  |
| 9.         | Results submitted on a dry weight basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | <del></del>                       |  |
| 10.<br>11. | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                       |                                   |  |
| Dal        | Laboratory Manager or Environmental Consultant's Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                   |  |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment T UST 2039 Closure Report

### U.S. Army Garrison

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2039

NJDEP UST Registration No.: 192486-20 UST No.: 192486-20

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2039 NJDEP UST REGISTRATION NO.: 192486-20

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On April 12, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2039 in Charles Wood area. UST No.: 192486-20 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2039-A and 2039-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-20. Closure sample 2039-C was collected from a location along the UST piping. A duplicate of sample 2039-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-20 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-20 at Building 2039.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 **OVERVIEW**

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-20 was closed at Building 2039 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on April 12, 2000.

Decommissioning activities for UST No.: 192486-20 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2039 (56 & 58 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-20 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2039. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On April 12, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2039-A and 2039-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-20. Closure sample 2039-C was collected from a location along the UST piping. A duplicate of sample 2039-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

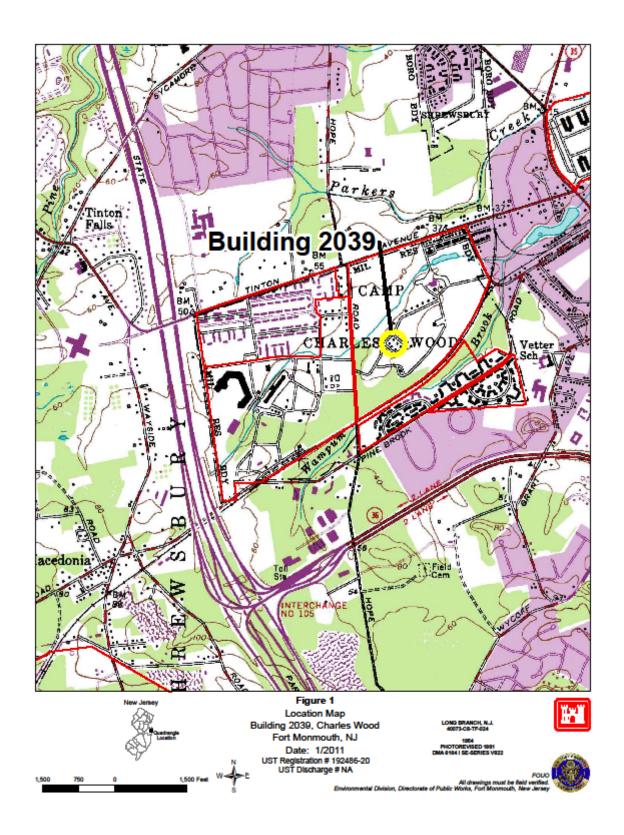
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

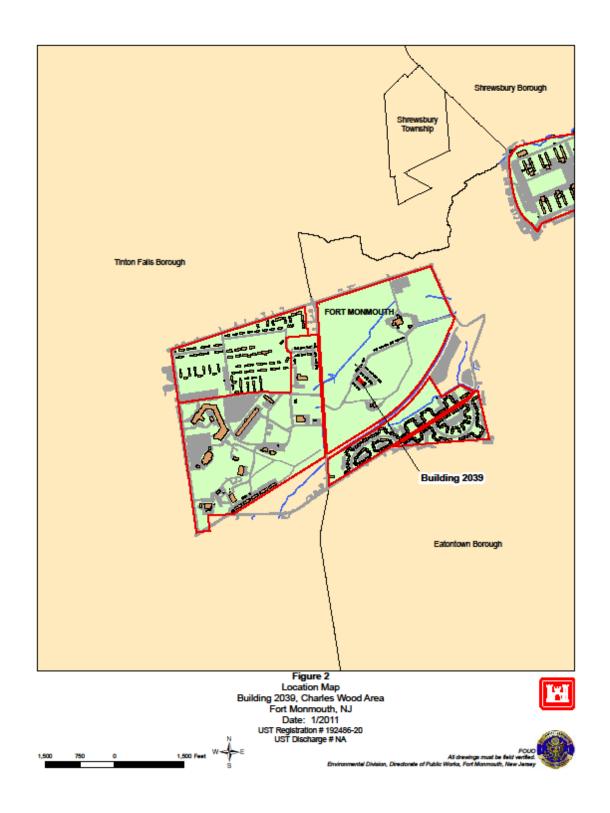
### 3.0 CONCLUSIONS AND RECOMMENDATIONS

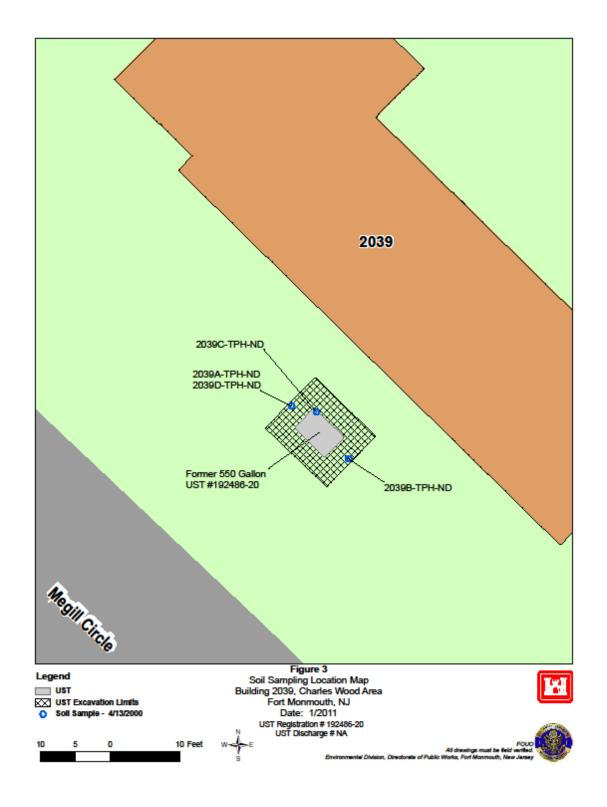
## 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on April 12, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on April 12, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


## 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-20 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-20.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-20 at Building 2039.

## **FIGURES**







## **TABLES**

## TABLE 1

## **SUMMARY OF LABORATORY ANALYSIS**

FT. MONMOUTH, BUILDING 2039, UST No.: 192486-20 12 April 2000

| SAMPLE    | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|-----------|-------------------------|----------------|------------------|-------------------------|----------------------|
| ID        | SAMPLE ID               | DATE           | MAIRIA PARAMETER |                         | METHOD               |
|           |                         |                |                  |                         |                      |
| 2039-A    | 5335.01                 | 12-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2039-В    | 5335.02                 | 12-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2039-С    | 5335.03                 | 12-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2039-D    | 5335.04                 | 12-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate |                         |                |                  |                         |                      |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

## SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2039, UST No.: 192486-20 13 April 2000

## TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION     | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|---------------------|-----------------|--------|-----------------|
|           |                         |                     | (in feet)       |        | mg/kg           |
| 2039-A    | 5335.01                 | NORTH END           | 6.5-7.0         | Soil   | ND              |
| 2039-В    | 5335.02                 | SOUTH END           | 6.5-7.0         | Soil   | ND              |
| 2039-С    | 5335.03                 | PIPING              | 1.5-2.0         | Soil   | ND              |
| 2039-D    | 5335.04                 | DUPLICATE-NORTH END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                     |                 |        |                 |

## ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

## **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

## DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2039 (56+58 MEGILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

## NT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROP

## DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF

Directorate of Public Works

Date: 30 January, 2001

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal Contract No. DAAB07-96-C-8252

Location: Bldg. 166, rear Roll-off container No. 2798

Size: 30 cubic yards

USTs from Bldgs: 226(2K), 227(2K), 228(2K), 2038(.5K), 2039(.5K), 2040(.5K),

2041(.5K), 2042(.5K), McGuire AFB 1507(2.5K)

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ, and one from McGuire Air Force Base. The tanks held only No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Protection Specialist. He can be reached at the following telephone number: (732) 532-1475.

Sincerely,

Dinker Desai

**Environmental Protection Specialist** 

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

## FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

## DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHÈM - METALS - ORGÀNICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2039

| Field Sample Location     | Laboratory Sample ID# | Matrix   | Date and Time of Collection | Date Received |
|---------------------------|-----------------------|----------|-----------------------------|---------------|
| 2039-A North End 6.5-7.0' | 5335.01               | Soil     | 12-Apr-00 11:30             | 04/12/00      |
| 2039-B South End 6.5-7.0' | 5335.02               | Soil     | 12-Apr-00 11:50             | 04/12/00      |
| 2039-C Piping 1.5-2.0'    | 5335.03               | Soil     | 12-Apr-00 12:00             | 04/12/00      |
| 2039-D Duplicate 6.5-7.0' | 5335.04               | Soil     | 12-Apr-00 11:30             | 04/12/00      |
| Trip Blank                | 5335.05               | Methanol | 12-Apr-00                   | 04/12/00      |

## ANALYSIS:

FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date

4.20-00

Laboratory Director

## **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5            |
| Continuing Calibration Summary      | 6-13         |
| Surrogate Results Summary           | 14           |
| MS/MSD Results Summary              | 15           |
| Blank Spike Summary                 | 16           |
| Raw Sample Data                     | 17-26        |
| Laboratory Deliverable Checklist    | 27           |
| Laboratory Authentication Statement | 28           |

## **Method Summary**

## NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

## TPHC Conformance/Non-conformance Summary Report

| 1.      | Method Detection Limits provided.                                                                                     |                       | Yes, No, N/A |
|---------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|
| 2.      | Method Blank Contamination – If yes, li<br>corresponding concentrations in each bla                                   |                       | <u>bu</u>    |
| 3.      | Matrix Spike Results Summary Meet Cr<br>(If not met, list the sample and corresponding outside the acceptable range). |                       | <u>45</u>    |
| 4.      | Duplicate Results Summary Meet Criter (If not met, list the sample and corresponding outside the acceptable range).   |                       | yes          |
| ·<br>3. | IR Spectra submitted for standards, blan                                                                              | iks and samples.      | NA           |
| 6.      | Chromatograms submitted for standards if GC fingerprinting was conducted.                                             | s, blanks and samples | <u>yes</u>   |
| 7.      | Analysis holding time met. (If not met, list number of days exceede                                                   | d for each sample).   | Yes          |
| Add     | itional comments:                                                                                                     |                       |              |
|         |                                                                                                                       | 4-10-00               |              |
| Labo    | oratory Manager                                                                                                       | Date                  |              |



## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

NJDEP Certification #13461 / NYDOH Certification #11699

**Chain of Custody Record** 

| Customer: Dinker Desai                                                |                                                                             |                | Project No: 100004                       |                     |            |                                                    | An                                     | alysis        | Parameters |                       |                |                        |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|------------------------------------------|---------------------|------------|----------------------------------------------------|----------------------------------------|---------------|------------|-----------------------|----------------|------------------------|
| Phone #: X21475                                                       |                                                                             |                | Location: BLD 6. 2039 (90+42 MA) (18016) |                     |            | % SOLIDS                                           | *01+YOA                                |               | 50         | * = Samples Kept <4°C |                |                        |
| ()DERA (X)OMA                                                         | UST# 192486 - 20 CIRCLE)                                                    |                |                                          |                     | Reading    |                                                    |                                        |               |            |                       |                |                        |
| Samplers Name /                                                       | Company: Frank Acco                                                         | rsi/TVS        |                                          |                     | Sample     | #                                                  | TPHC                                   | SO            | -VC        |                       |                | Remarks / Preservation |
| Lab Sample I.D.                                                       | Sample Location                                                             | Depth(Ft)      | Date                                     | Time                | Туре       | Bottles                                            | ĪŢ                                     | %             | Λ          |                       | PID            | Method                 |
| 53B5.01                                                               | 2039-A NORTH                                                                | 6.5-7.0        | 4-12-00                                  | 1130                | 3012       | 2                                                  | X                                      | X             | X          | 1462                  | 0              | ICE                    |
| 1 Da                                                                  | 2039-6 50075                                                                | 6.5-7.0        |                                          | 1150                |            | 2                                                  | Х                                      | X             | Χ          | 1463                  | 0              |                        |
| 1 13                                                                  | 2039-C PIPING                                                               | 1.5-2.0        |                                          | 1200                |            | 2                                                  | X                                      | Χ             | Х          | 1464                  | 0              |                        |
| 04                                                                    | 2039-D, DUPLICATE                                                           | 6.5-700        |                                          | 1130                |            | 2                                                  | X                                      | X             | X          | 1465                  | 0              |                        |
|                                                                       | TRIP BLANK                                                                  | · <b>-</b> -   |                                          |                     | AQ.        |                                                    |                                        |               | Χ          | 1466                  | _              | Y                      |
| T                                                                     |                                                                             |                |                                          |                     | ·          |                                                    |                                        |               |            |                       |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            | ·                     |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            |                       |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            |                       |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            |                       |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            |                       |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            |                       |                |                        |
|                                                                       |                                                                             |                |                                          |                     |            |                                                    |                                        |               |            |                       |                |                        |
| OVM                                                                   | sn#580U-64455.3 <b>4</b> 3 was c                                            | alibrated with | zero air & v                             | v/ <u>245</u> ppm l | sobutylene | read 2                                             | <i>4</i> 7 pr                          | m. <i>[0]</i> | 0          | 9-12-00 F4 (          | time/da        | ate & initial)         |
| Relinquished by (signature)                                           |                                                                             | me:            | Red                                      | eived by (signa     | <i>(</i> ) | Comme                                              | ents:                                  | + VC          | ONE        | ) ON 25               | 70             | >1,000 PPM TPH         |
| Relinquished by (signature): Date/Time:                               |                                                                             |                | Received by (signature):                 |                     |            |                                                    |                                        |               |            | ·                     |                |                        |
| Report Type: ()Full, (_)                                              | eport Type: ()Full, ()Reduced, (4)Standard, ()Screen / non-certified, ()EDD |                |                                          |                     | ****       |                                                    | Remarks: Dedicated Sampling Tools Used |               |            |                       | ing Tools Used |                        |
| furnaround time; ( )Standard 2 wks, (ARush 2 Days, ( )ASAP VerbalHrs. |                                                                             |                |                                          |                     |            | All sample points have been GPS? (NYES () NO () NA |                                        |               |            |                       |                |                        |

Cons

## Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5335

DPW. SELFM-PW-EV

Location:

Bldg.2039

Bldg. 173

UST Reg. #:

192486-20

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

12-Apr-00

Matrix:

Soil

14-Apr-00

Date Extracted:

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** Analysis Complete:

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analyst:

15-Apr-00 **B.Patel** 

Injection Volume:

1 uL

TPHC Dilution Weight MDL Sample Result Field ID % Solid (mg/kg) Factor (g) (mg/kg) 92.87 167 ND 2039-A 1.00 15.11 5335.01 ND 1.00 15.05 87.12179 2039-B 5335.0215.08 83.71 186 ND 1.00 5335.03 2039-C 2039-D 1.00 15.08 91.31 171 ND 5335.04 ND METHOD BLANK TBLK379 1.00 15.00 100.00 157

ND = Not Detected

MDL = Method Detection Limit

## LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package and in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                | <u> </u> |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            | <u> </u> |
| 4.         | Document paginated and legible                                                                                                             |          |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |          |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Da         | Laboratory Manager or Environmental Consultant's Signature                                                                                 |          |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

## **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment U UST 2040 Closure Report

## U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2040

NJDEP UST Registration No.: 192486-21 UST No.: 192486-21

September 2010

## UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2040 NJDEP UST REGISTRATION NO.: 192486-21

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

## **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE INVESTIGATION ACTIVITIES                       |                                                       |    |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

## **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

## **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

## **EXECUTIVE SUMMARY**

## **UST** Closure

On April 13, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2040 in Charles Wood area. UST No.: 192486-21 was a 550-gallon FRP No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

## Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2040-A and 2040-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-21. Closure sample 2040-C was collected from a location along the UST piping. A duplicate of sample 2040-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

## **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-21 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

## Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-21 at Building 2040.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-21 was closed at Building 2040 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on April 13, 2000.

Decommissioning activities for UST No.: 192486-21 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

## 1.2 SITE DESCRIPTION

Building 2040 (52 & 54 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-21 and associated piping were located adjacent to the building, as shown on Figure 3.

## 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2040. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

## **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

## 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

## 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

## 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

## 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

### 2.3 SOIL SAMPLING

On April 13, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2040-A and 2040-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-21. Closure sample 2040-C was collected from a location along the UST piping. A duplicate of sample 2040-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

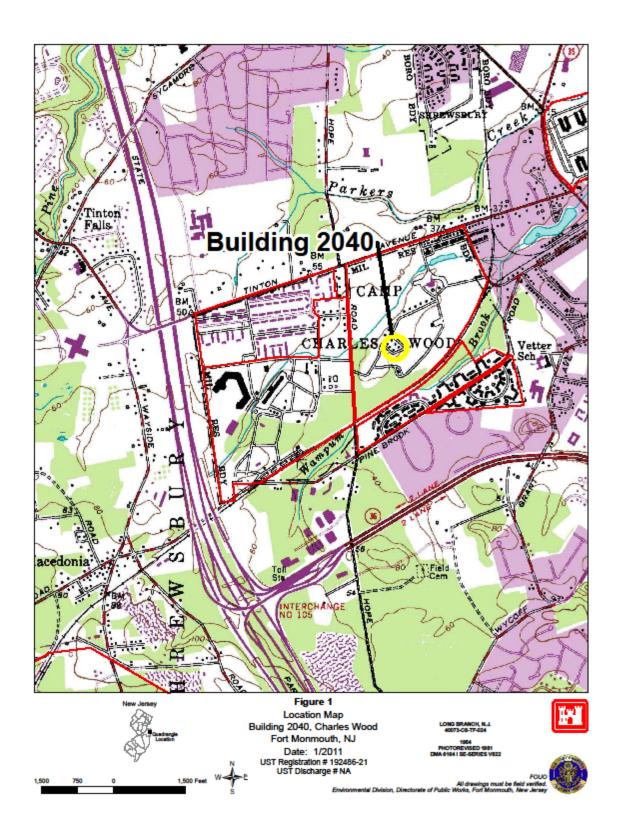
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

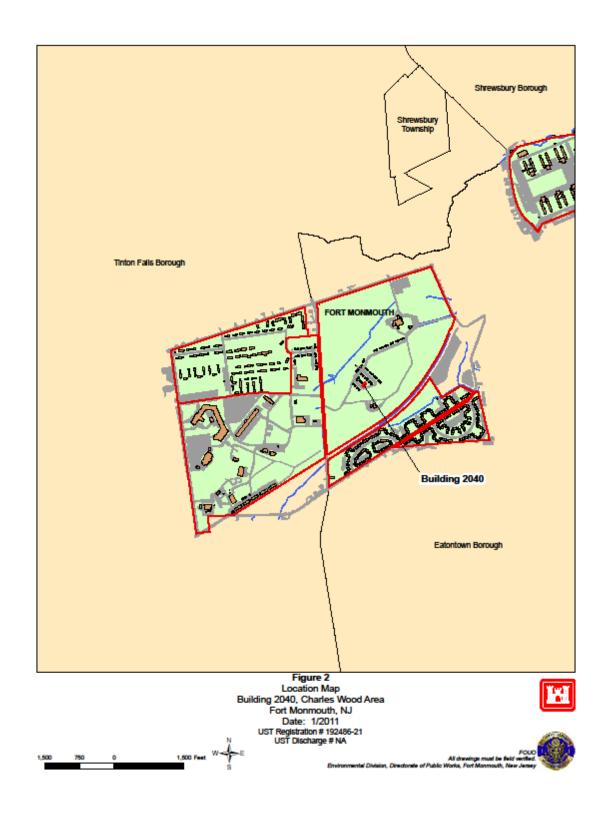
## 3.0 CONCLUSIONS AND RECOMMENDATIONS

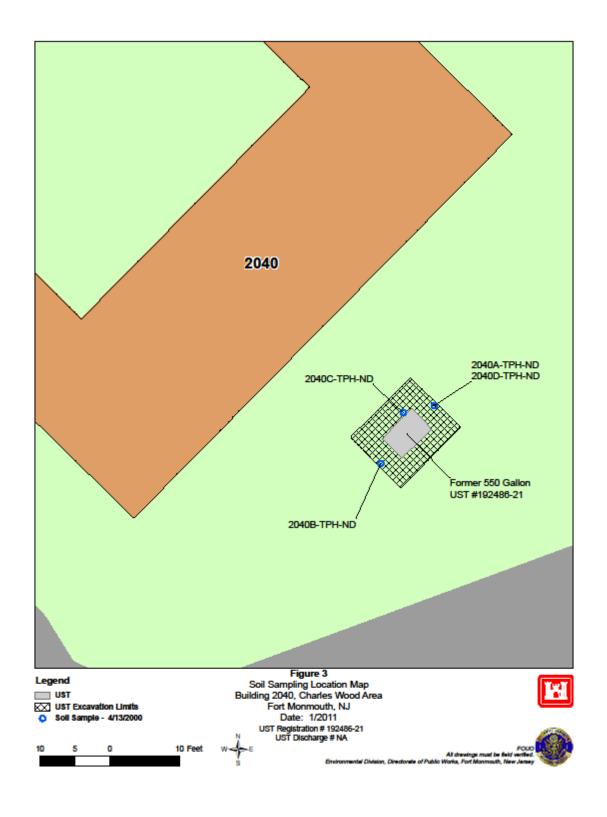
## 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on April 13, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on April 13, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


## 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-21 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-21.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-21 at Building 2040.

# **FIGURES**







# **TABLES**

# TABLE 1

# SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2040, UST No.: 192486-21 13 April 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2040-A       | 5341.01                 | 13-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2040-В       | 5341.02                 | 13-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2040-С       | 5341.03                 | 13-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2040-D       | 5341.04                 | 13-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |

<u>ABBREVIATIONS</u>:
TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

# TABLE 2

# SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2040, UST No.: 192486-21 13 April 2000

# TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY | SAMPLE LOCATION     | SAMPLE    | MATRIX | ТРН      |
|-----------|------------|---------------------|-----------|--------|----------|
|           | SAMPLE ID  |                     | DEPTH     |        | RESULT S |
|           |            |                     | (in feet) |        | mg/kg    |
| 2040-A    | 5341.01    | NORTH END           | 7.0-7.5   | Soil   | ND       |
| 2040-В    | 5341.02    | SOUTH END           | 7.0-7.5   | Soil   | ND       |
| 2040-С    | 5341.03    | PIPING              | 2.0-2.5   | Soil   | ND       |
| 2040-D    | 5341.04    | DUPLICATE-NORTH END | 7.0-7.5   | Soil   | ND       |

# ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2040(52+54 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this centract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

# **DEPARTMENT OF THE ARMY**

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703 - 5101



REPLY TO ATTENTION OF

Directorate of Public Works

Date: 30 January, 2001

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166, rear Roll-off container No. 2798

Size: 30 cubic yards

USTs from Bldgs: 226(2K), 227(2K), 228(2K), 2038(.5K), 2039(.5K), 2040(.5K),

2041(.5K), 2042(.5K), McGuire AFB 1507(2.5K)

## Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ, and one from McGuire Air Force Base. The tanks held only No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Protection Specialist. He can be reached at the following telephone number: (732) 532-1475.

Sincerely,

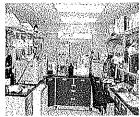
Dinker Desai

**Environmental Protection Specialist** 

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)


# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

# DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2040

|                           | -BANA                    |          |                             |               |
|---------------------------|--------------------------|----------|-----------------------------|---------------|
| Field Sample Location     | Laboratory<br>Sample ID# | Matrix   | Date and Time of Collection | Date Received |
| 2040-A North End 7.0-7.5' | 5341.01                  | Soil     | 13-Apr-00 14:40             | 04/13/00      |
| 2040-B South End 7.0-7.5' | 5341.02                  | Soil     | 13-Apr-00 15:00             | 04/13/00      |
| 2040-C Piping 2.0-2.5'    | 5341.03                  | Soil     | 13-Apr-00 14:50             | 04/13/00      |
| 2040-D Duplicate 7.0-7.5' | 5341.04                  | Soil     | 13-Apr-00 14:40             | 04/13/00      |
| Trip Blank                | 5341.05                  | Methanol | 13-Apr-00                   | 04/13/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date

Laboratory Director

# Table of Contents

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1 .   |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-13  |
| Surrogate Results Summary           | 14    |
| MS/MSD Results Summary              | 15    |
| Blank Spike Summary                 | 16    |
| Raw Sample Data                     | 17-26 |
| Laboratory Deliverable Checklist    | 27    |
| Laboratory Authentication Statement | 28    |

# **Method Summary**

# NJDEP Method OQA-QAM-025-10/97

# <u>Gas Chromatographic Determination of Total Petroleum Hydrocarbons in</u> Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

# TPHC Conformance/Non-conformance Summary Report

| 1.      | Method Detection Limits provided.                                                                                     |                       | Indicate Yes, No, N/ |
|---------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|
| 2.      | Method Blank Contamination – If yes, li corresponding concentrations in each blank                                    | <u> </u>              | NO                   |
| 3.      | Matrix Spike Results Summary Meet Cr<br>(If not met, list the sample and corresponding outside the acceptable range). |                       | yes                  |
| 4.      | Duplicate Results Summary Meet Criter (If not met, list the sample and correspondalls outside the acceptable range).  |                       | Yes                  |
| ·<br>3. | IR Spectra submitted for standards, blar                                                                              | nks and samples       | NA                   |
| 6.      | Chromatograms submitted for standards if GC fingerprinting was conducted.                                             | s, blanks and samples | Yes                  |
| 7.      | Analysis holding time met. (If not met, list number of days exceede                                                   | ed for each sample).  | Yes                  |
| Addi    | tional comments:                                                                                                      |                       |                      |
|         |                                                                                                                       | 4-20-00               |                      |
| Labo    | oratory Manager                                                                                                       | Date                  |                      |



# Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

NJDEP Certification #13461 / NYDOH Certification #11699

# **Chain of Custody Record**

| Customer: Dinker Desai                                                     |              |                                        |                                       | Project No: 100004                                                     |             |            | Analysis Parameters                     |                      |               |           |              |                       |                        |
|----------------------------------------------------------------------------|--------------|----------------------------------------|---------------------------------------|------------------------------------------------------------------------|-------------|------------|-----------------------------------------|----------------------|---------------|-----------|--------------|-----------------------|------------------------|
| Phone #: X21475  ( )DERA ( X )OMA UST Assessment                           |              |                                        |                                       | Location: <i>BLDA</i> , 2040 (52+54<br>UST#   92486-2) <i>MEBILL C</i> |             | e circus   | ,                                       | % SOLIDS             | ¥01+¥0∧       |           |              | * = Samples Kept <4°C |                        |
| Samplers Name /                                                            |              |                                        |                                       | 1 / 6-                                                                 | 700 2       | Sample     | #                                       | 2                    | TO            | A+1       |              | Reading               | Remarks / Preservation |
| Lab Sample I.D.                                                            | 1            | ple Location                           | Depth                                 | Date                                                                   | Time        | Туре       | Bottles                                 | TPHC                 | S %           | ΛΟ.       | VOA ID#      | PID I                 | Method                 |
|                                                                            |              | A NORTH                                | 7.0-7.5                               | 4-13-00                                                                |             |            | 2                                       | ×                    | - <del></del> | ×         | 1516         |                       | ICE                    |
| 0.                                                                         |              | B SOUTH                                | 7.0 -7.5                              | 7 /3-00                                                                | 1500        | 7072       | 2                                       | Y                    | <u>,</u>      | <u>/</u>  | 1517         |                       | 1                      |
| 82                                                                         | 2010         | C PIPING                               | 2,0-2,5                               |                                                                        | 1450        | -          | 2                                       | <u>×</u><br>Σ        | 8             | <i>X</i>  | 1510         |                       |                        |
| 1 DU                                                                       |              | D DOFLICATE                            |                                       |                                                                        | 1440        | <b>-</b>   | 2                                       | ×                    | X             | ×         | 1579         |                       |                        |
| 05                                                                         | TRIP         | BLANK                                  |                                       | •                                                                      | -           | AQ         |                                         |                      | _~_           | λ         | 1520         | <u> </u>              | Y                      |
| 4 63                                                                       | 1077         | DEMINIC                                |                                       | <b>Y</b>                                                               |             | //1        |                                         |                      |               | _^        | 70           | <u> </u>              |                        |
|                                                                            |              |                                        |                                       |                                                                        |             |            |                                         |                      |               |           |              |                       |                        |
|                                                                            | <b></b>      |                                        |                                       | <b> </b>                                                               |             |            |                                         |                      |               |           |              |                       |                        |
|                                                                            |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | · · · · · · · · · · · · · · · · · · · |                                                                        |             |            | ::::::::::::::::::::::::::::::::::::::: |                      |               | -         |              |                       |                        |
|                                                                            |              |                                        |                                       |                                                                        |             |            |                                         |                      |               |           |              |                       |                        |
|                                                                            | <del> </del> |                                        |                                       |                                                                        |             |            |                                         |                      |               |           |              |                       |                        |
|                                                                            |              |                                        |                                       |                                                                        |             |            |                                         |                      |               |           |              |                       |                        |
| ,                                                                          | <u> </u>     |                                        |                                       |                                                                        |             |            | -                                       |                      |               |           |              |                       |                        |
| OVM s                                                                      | sn#580U-6    | 64455.343 was c                        | alibrated with                        | zero air & w                                                           | 11245 ppm 1 | sobutylene | read 2                                  | <i>4</i> 7 pp        | m. <u>70</u>  | 10        | 4-12-00 PA(t | ime/da                | ate & initial)         |
| Relinquished by (signature): Date/Time:                                    |              |                                        |                                       | Received by (signature): Comm                                          |             |            | Comme                                   | on HIGHEST, MIN. ONE |               |           |              | 1,000 PPM TYH,        |                        |
| Frank augus 4-13-00 1535                                                   |              |                                        |                                       |                                                                        |             |            |                                         |                      | 0,0           | 11197     |              |                       |                        |
| Relinquished by (signature): Date/Time:                                    |              |                                        |                                       | Received by (signature):                                               |             |            |                                         |                      |               |           |              |                       |                        |
| Report Type: ()Full, (Reduced, ()Standard, ()Screen / non-certified, ()EDD |              |                                        |                                       |                                                                        |             |            | Remar                                   | ks:                  |               | Dedicated | Sampl        | ing Tools Used        |                        |
| Turnaround time: ()Stan                                                    | dard 2 wks,  | Nush Days,                             | ()ASAP Verb                           | al Hrs.                                                                |             |            |                                         | All san              | nole pou      | nts have  | been GPS?    | ES (                  | )NO ()NA               |

# **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5341

DPW. SELFM-PW-EV

Location:

Bldg.2040

Bldg. 173

UST Reg. #:

192486-21

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

13-Apr-00

Matrix:

Soil

Date Extracted:

14-Apr-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

15-Apr-00

Injection Volume:

1uL

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g) | % Solid  | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|---------------|----------|----------------|---------------------------|
| 5341.01      | 2041-A   | 1.00               | 15.07         | 81.91    | 190            | ND                        |
| 5341.02      | 2041-B   | 1.00               | 15.04         | 84.90    | 184            | ND                        |
| 5341.03      | 2041-C   | 1.00               | 15.12         | 86.64    | 179            | ND                        |
| 5341.04      | 2041-D   | 1.00               | 15.42         | 80.69    | 189            | ND                        |
|              |          |                    |               |          |                |                           |
|              |          |                    |               |          |                |                           |
|              |          |                    |               | <u>,</u> |                |                           |
|              |          |                    |               |          |                |                           |
|              |          |                    |               |          |                |                           |
|              |          |                    |               | ·        |                |                           |
| ·            |          |                    |               |          |                |                           |
|              |          |                    |               |          |                |                           |
|              |          |                    |               |          | -              |                           |
|              |          |                    |               |          |                |                           |
| METHOD BLANK | TBLK379  | 1.00               | 15.00         | 100.00   | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

# LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |              |       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| 2.         | Table of Contents submitted                                                                                                                |              |       |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            |              |       |
| 4.         | Document paginated and legible                                                                                                             | <del></del>  | ···## |
| 5.         | Chain of Custody submitted                                                                                                                 | <del>/</del> |       |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |              | ÷     |
| 7.         | Methodology Summary submitted                                                                                                              |              |       |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |              |       |
| 9.         | Results submitted on a dry weight basis                                                                                                    |              | م     |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |              |       |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |              |       |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

# **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment V UST 2041 Closure Report

# U.S. Army Garrison

Fort Monmouth, New Jersey

# **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2041

NJDEP UST Registration No.: 192486-22 UST No.: 192486-22

September 2010

# UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2041 NJDEP UST REGISTRATION NO.: 192486-22

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

# **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |  |

# **TABLE OF CONTENTS (CONTINUED)**

## **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

## **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

# **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

# **EXECUTIVE SUMMARY**

## **UST Closure**

On April 6, 2000, a single wall, fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2041 in Charles Wood area. UST No.: 192486-22 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2041-A and 2041-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-22. Closure sample 2041-C was collected from a location along the UST piping. A duplicate of sample 2041-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-22 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-22 at Building 2041.

# 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-22 was closed at Building 2041 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on April 6, 2000.

Decommissioning activities for UST No.: 192486-22 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

## 1.2 SITE DESCRIPTION

Building 2041, (63 & 65 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-22 and associated piping were located adjacent to the building, as shown on Figure 3.

### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2041. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

# **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

## <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

## 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

## 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

## 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

## 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

## 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

• Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On April 6, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2041-A and 2041-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-22. Closure sample 2041-C was collected from a location along the UST piping. A duplicate of sample 2041-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

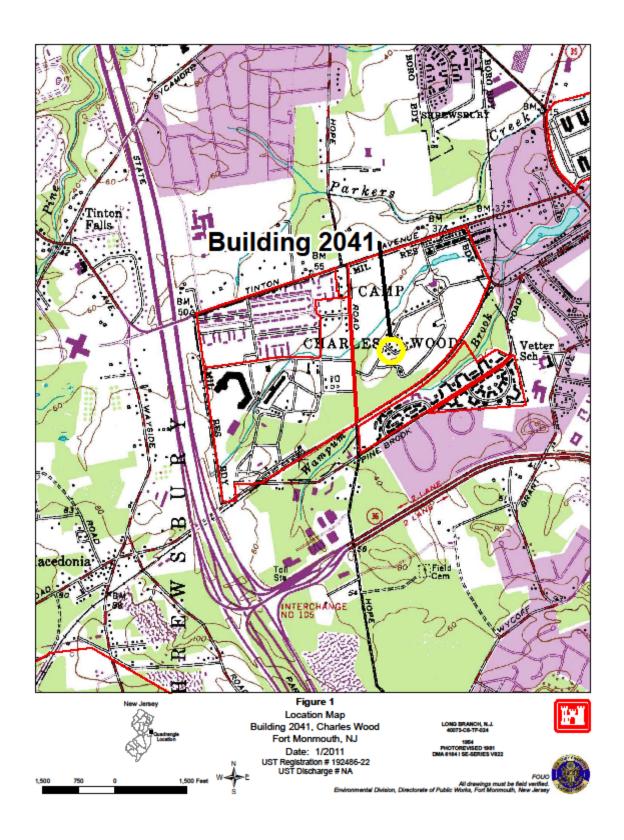
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

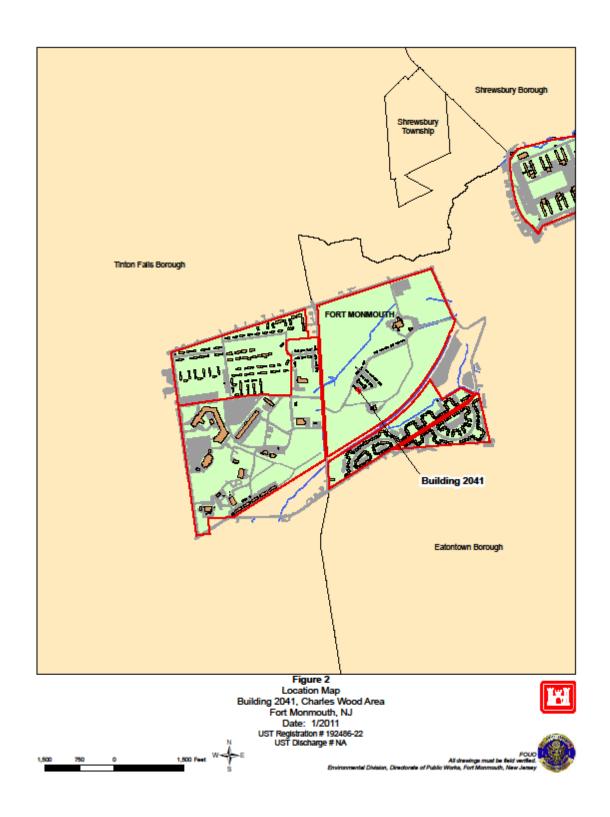
## 3.0 CONCLUSIONS AND RECOMMENDATIONS

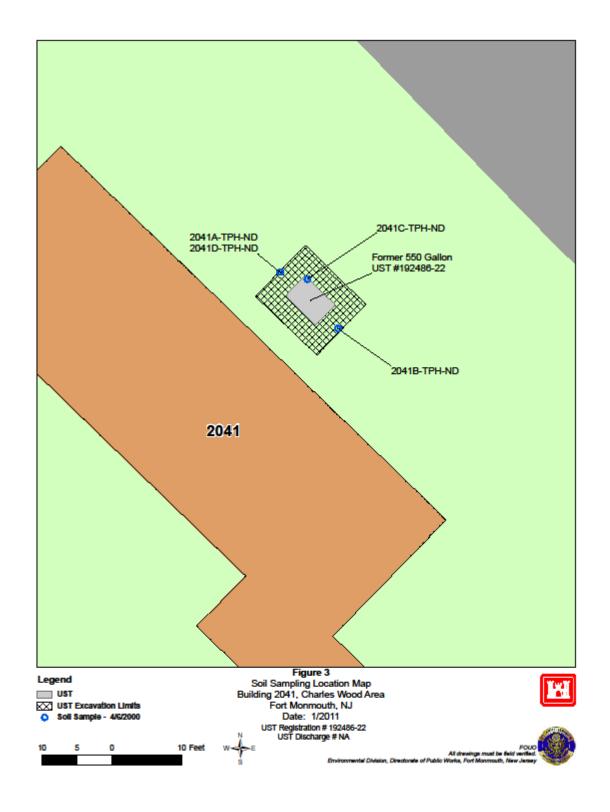
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on April 6, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on April 6, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-22 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-22.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-22 at Building 2041.

# **FIGURES**







## **TABLES**

## TABLE 1

#### SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 2041, UST No.: 192486-22 06 April 2000

| SAMPLE    | LABORATORY | SAMPLE    | SAMPLE | ANALYTICAL | ANALYTICAL |
|-----------|------------|-----------|--------|------------|------------|
| ID        | SAMPLE ID  | DATE      | MATRIX | PARAMETER  | METHOD     |
|           |            |           |        |            |            |
| 2041-A    | 5319.01    | 06-Apr-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2041-В    | 5319.02    | 06-Apr-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2041-C    | 5319.03    | 06-Apr-00 | SOIL   | TPH        | OQA-QAM-25 |
| 2041-D    | 5319.04    | 06-Apr-00 | SOIL   | TPH        | OQA-QAM-25 |
| Duplicate |            |           |        |            |            |

#### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

#### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2041, UST No.: 192486-22 06 April 2000

#### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION    | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|--------------------|-----------------|--------|-----------------|
|           |                         |                    | (in feet)       |        | mg/kg           |
| 2041-A    | 5319.01                 | WEST END           | 6.5-7.0         | Soil   | ND              |
| 2041-В    | 5319.02                 | EAST END           | 6.5-7.0         | Soil   | ND              |
| 2041-C    | 5319.03                 | PIPING             | 1.5-2.0         | Soil   | ND              |
| 2041-D    | 5319.04                 | DUPLICATE-WEST END | 6.5-7.0         | Soil   | ND              |
| Duplicate |                         |                    |                 |        |                 |

#### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

## **APPENDIX A**

## **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL

### TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2041 \_\_\_\_

| Field Sample Location     | Laboratory<br>Sample ID# | Matrix  | Date and Time of Collection | Date Received |
|---------------------------|--------------------------|---------|-----------------------------|---------------|
| 2041-A West End 6.5-7.0'  | 5319.01                  | Aqueous | 06-Apr-00 11:00             | 04/06/00      |
| 2041-B East End 6.5-7.0'  | 5319.02                  | Aqueous | 06-Apr-00 11:30             | 04/06/00      |
| 2041-C Piping 1.5-2.0'    | 5319.03                  | Aqueous | 06-Apr-00 11:10             | 04/06/00      |
| 2041-D Duplicate 6.5-7.0' | 5319.04                  | Aqueous | 06-Apr-00 11:00             | 04/06/00      |
| Trip Blank                | 5319,05                  | Aqueous | 06-Apr-00                   | 04/06/00      |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date
Laboratory Director

4-20-00

### **Table of Contents**

| Section                             | <u>Pages</u> |
|-------------------------------------|--------------|
| Method Summary                      | 1            |
| Conformance/Non-Conformance         | 2            |
| Chain of Custody                    | 3            |
| Results Summary                     | 4            |
| Initial Calibration Summary         | 5            |
| Continuing Calibration Summary      | 6            |
| Surrogate Results Summary           | 7            |
| MS/MSD Results Summary              | 8            |
| Blank Spike Summary                 | 9            |
| Raw Sample Data                     | 10-19        |
| Laboratory Deliverable Checklist    | 20           |
| Laboratory Authentication Statement | 21           |

#### **Method Summary**

#### NJDEP Method OQA-QAM-025-10/97

## Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

### TPHC Conformance/Non-conformance Summary Report

| 1.       | Method Detection Limits provided.                                                                                                             | Yes, No, N/ |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.       | Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank.                                      | <u> </u>    |
| 3.       | Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range). | Y55.        |
| 4.       | Duplicate Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range).    | yes<br>:.   |
| ·<br>′5. | IR Spectra submitted for standards, blanks and samples.                                                                                       | NA          |
| 6.       | Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted.                                                 | yes         |
| 7.       | Analysis holding time met. (If not met, list number of days exceeded for each sample).                                                        | <u>Yes</u>  |
| Add      | itional comments:                                                                                                                             |             |
|          |                                                                                                                                               |             |
| Labo     | oratory Manager Date                                                                                                                          |             |
| ೭೩೮೮     | ratory intariager Date                                                                                                                        |             |

## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

**Chain of Custody Record** 

#### NJDEP Certification #13461 / NYDOH Certification #11699

| Customer: Dinker Desai                                                    |            |                   | Project No: 100004             |                                  |              | Analysis Parameters                  |         |           |          |            |              |                       |                        |
|---------------------------------------------------------------------------|------------|-------------------|--------------------------------|----------------------------------|--------------|--------------------------------------|---------|-----------|----------|------------|--------------|-----------------------|------------------------|
| Phone #: X21475                                                           |            |                   |                                | Location: 2041, 63+65 METILL CR. |              |                                      |         | *S        | Ж.       |            |              | * = Samples Kept <4°C |                        |
| ( )DERA ( X )OMA_UST Assessment                                           |            |                   |                                | UST# 192486-22                   |              |                                      |         | % SOLIDS* | -10      |            | Reading      |                       |                        |
| Samplers Name /                                                           | Compa      | ny : Frank Acco   | rsi/TVS                        |                                  | -            | Sample                               | #       | TPHC      | SO]      | VOA+10     |              | Rea                   | Remarks / Preservation |
| Lab Sample I.D.                                                           | Sa         | mple Location     | Depth (A)                      | Date                             | Time         | Туре                                 | Bottles | TP        | %        | ΛC         | VOA ID#      | PID                   | Method                 |
| 5319. 01                                                                  | 204        | -A ENS            | 6.5-7.0                        | 4-6-00                           | 1100         | 50/L                                 | 2       | ×         | X        | X          | 1447         | 0                     | 1CE-                   |
| 92                                                                        | 2041       | ·B END            | 6,5-7,0                        |                                  | 1130         |                                      | 2       | Ж         | K        | ×          | 1448         | 0                     |                        |
| 03                                                                        | 2041       | -C. PIPING        | 1.5-2.0                        |                                  | 1110         |                                      | 2       | X         | K        | ×          | 1449         | 0                     |                        |
| 04                                                                        | 2041       | -D DUPLICHTE      | 6,5-7,0                        |                                  | 1100         |                                      | 2       | X         | χ        | x          | 1450         | 0                     |                        |
|                                                                           | TRIP       | BLANK             |                                | Y                                | . —          | AQ.                                  |         |           |          | χ          | 1451         | -                     |                        |
|                                                                           | <u> </u>   |                   |                                |                                  |              |                                      |         |           |          |            |              |                       | •                      |
|                                                                           |            |                   |                                |                                  |              |                                      |         |           |          |            |              |                       |                        |
|                                                                           |            |                   |                                |                                  |              |                                      |         |           |          |            |              |                       |                        |
|                                                                           |            |                   |                                |                                  |              |                                      |         |           |          |            |              |                       |                        |
|                                                                           |            |                   |                                |                                  |              |                                      |         |           | ,        |            |              |                       |                        |
|                                                                           | <u> </u>   |                   |                                |                                  |              |                                      |         |           |          |            |              |                       |                        |
|                                                                           | <u></u>    |                   |                                |                                  |              | <u> </u>                             | ,       |           | ,        |            |              |                       |                        |
|                                                                           | <u> </u>   |                   |                                |                                  |              |                                      |         |           |          |            |              |                       |                        |
| OVM s                                                                     | sn#580U    | -64455,343 was ca | alibrated with                 | zero air & w                     | // 245 ppm I | sobutylene i                         |         |           |          |            |              |                       |                        |
| Relinquished by (signature): Date/Time:                                   |            |                   | Received by (signature): Comme |                                  |              | ents: * V0+10 or 25% > 1000 Ppm -PH, |         |           |          | ppm TPH,   |              |                       |                        |
| Transclusion 46-00 1150                                                   |            |                   |                                | yu                               | d            | +                                    | Č       | )/~ /,    | 1147     | es/, pares | ي در         | •                     |                        |
| Relinquished by (signature): Date/Time:                                   |            |                   | Received by (signature):       |                                  |              |                                      |         |           |          |            |              |                       |                        |
|                                                                           |            |                   |                                | V                                | V            |                                      |         |           |          |            |              |                       |                        |
| Report Type: ()Full, Reduced, ()Standard, ()Screen / non-certified, ()EDD |            |                   |                                |                                  |              | *                                    | Remarl  | ks:       |          | Dedicated  | Sampli       | ng Tools Used         |                        |
| Turnaround time: ()Stan                                                   | dard 2 wks | Rush Days,        | ASAP Verba                     | alHrs.                           | ,            |                                      |         | All sam   | ple poir | its have   | been GPS? YY | ES (                  | )NO ()NA               |

00005

#### **Report of Analysis** U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5319

DPW. SELFM-PW-EV

Location:

2041

Bldg. 173

UST Reg. #:

192486-22

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

06-Apr-00

Matrix:

Date Extracted:

Soil

07-Apr-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

10-Apr-00

Injection Volume:

1uL

Analyst:

D. Costagliola

| Sample       | Field ID          | Dilution<br>Factor | Weight (g) | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|-------------------|--------------------|------------|---------|----------------|---------------------------|
| 5319.01      | 2041-A, West End  | 1.00               | 15.18      | 91.11   | 170            | ND                        |
| 5319.02      | 2041-B, East End  | 1.00               | 15.06      | 88.96   | 175            | ND                        |
| 5319.03      | 2041-C, Piping    | 1.00               | 15.32      | 88.16   | 174            | ND                        |
| 5319.04      | 2041-D, Duplicate | 1.00               | 15.06      | 91.23   | 171            | ND                        |
|              |                   |                    |            |         |                |                           |
|              |                   |                    |            |         |                |                           |
|              |                   | L-181. A L         |            |         |                |                           |
|              |                   |                    |            | -       |                |                           |
|              |                   |                    |            |         |                |                           |
| METHOD BLANK | TBLK373           | 1.00               | 15.00      | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

#### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package <u>and</u> in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2.         | Table of Contents submitted                                                                                                                |          |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targe compounds submitted                                               | eted     |
| 4.         | Document paginated and legible                                                                                                             | <u> </u> |
| 5.         | Chain of Custody submitted                                                                                                                 |          |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |          |
| 7.         | Methodology Summary submitted                                                                                                              |          |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |          |
| 9.         | Results submitted on a dry weight basis                                                                                                    |          |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |          |
| Da         | Laboratory Manager or Environmental Consultant's Signature <u></u>                                                                         |          |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

#### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager Attachment W UST 2042 Closure Report

### U.S. Army Garrison

Fort Monmouth, New Jersey

## **Underground Storage Tank Closure and Site Investigation Report**

Charles Wood – Building 2042

NJDEP UST Registration No.: 192486-23 UST No.: 192486-23

September 2010

#### UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

CHARLES WOOD – BUILDING 2042 NJDEP UST REGISTRATION NO.: 192486-23

**SEPTEMBER 2010** 

**PROJECT NO.: 10-24949** 

**PREPARED FOR:** 

U.S. ARMY GARRISON, FORT MONMOUTH, NJ
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

#### **TABLE OF CONTENTS**

| EXE | CUTIV                                               | E SUMMARY                                             | IV |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
| 1.0 | UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES |                                                       |    |  |  |  |  |
|     | 1.1                                                 | Overview                                              | 1  |  |  |  |  |
|     | 1.2                                                 | Site Description                                      | 1  |  |  |  |  |
|     |                                                     | 1.2.1 Geological/Hydrogeological Setting              | 1  |  |  |  |  |
|     | 1.3                                                 | Health and Safety                                     | 5  |  |  |  |  |
|     | 1.4                                                 | Removal of Underground Storage Tank                   | 5  |  |  |  |  |
|     |                                                     | 1.4.1 General Procedures                              | 5  |  |  |  |  |
|     |                                                     | 1.4.2 Underground Storage Tank Excavation             | 6  |  |  |  |  |
|     | 1.5                                                 | Underground Storage Tank Decommissioning and Disposal | 6  |  |  |  |  |
| 2.0 | SITE                                                | E INVESTIGATION ACTIVITIES                            | 7  |  |  |  |  |
|     | 2.1                                                 | Overview                                              | 7  |  |  |  |  |
|     | 2.2                                                 | Field Screening/Monitoring                            | 7  |  |  |  |  |
|     | 2.3                                                 | Soil Sampling                                         | 7  |  |  |  |  |
| 3.0 | CONCLUSIONS AND RECOMMENDATIONS                     |                                                       |    |  |  |  |  |
|     | 3.1                                                 | Soil Sampling Results                                 | 8  |  |  |  |  |
|     | 3.2                                                 | Conclusions and Recommendations                       | 8  |  |  |  |  |

#### **TABLE OF CONTENTS (CONTINUED)**

#### **FIGURES**

Figure 1 Site Location Map-topographic

Figure 2 Site Location Map

Figure 3 Soil Sampling Location Map

#### **TABLES**

**Table 1** Summary of Laboratory Analysis

 Table 2
 Summary of Laboratory Analytical Results-TPH

#### **APPENDICES**

**Appendix A** Certifications

Appendix B UST Disposal Certificate
Appendix C Photo Documentation

Appendix D Soil Analytical Data Package

#### **EXECUTIVE SUMMARY**

#### **UST Closure**

On April 7, 2000, a fiberglass wrapped plastic underground storage tank (UST) was closed by removal in accordance with the Directorate of Public Works (DPW) UST Management Plan for the U.S. Army Garrison, Fort Monmouth, New Jersey. Installed in 1985, the tank was located adjacent to Building 2042 in Charles Wood area. UST No.: 192486-23 was a 550-gallon, FRP, No. 2 fuel oil tank. The tank with all associated piping was present at the time of removal. The tank closure was performed by TECOM-Vinnell Services, Inc. (TVS).

#### Site Assessment

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) and the NJDEP *Field Sampling Procedures Manual.* Soils surrounding the tank were screened visually and with air monitoring instruments for evidence of contamination. Following removal, the UST was inspected for holes, of which none were found. No petroleum odors or stained soils were observed in the soils surrounding the tanks.

Closure soil samples were collected after the removal of the UST. Closure samples 2042-A and 2042-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-23. Closure sample 2042-C was collected from a location along the UST piping. A duplicate sample of 2042-A was collected. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the bottom of the excavation.

#### **Findings**

The closure soil samples collected from the UST excavation associated UST No.: 192486-23 contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994). All soil samples, including the duplicate, contained a TPH concentration of Not Detected.

#### Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26E and revisions dated February 3, 1994) are not present in the former location of the UST.

**No Further Action** is proposed in regard to the closure and site assessment of UST No.: 192486-23 at Building 2042.

## 1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

#### 1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No.: 192486-23 was closed at Building 2042 of the Charles Wood area at U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location maps Figure 1 & 2. This report presents the results of the implementation of the Directorate of the Public Work's UST Management Plan, March 1996. Installed in 1985, the UST was a 550-gallon, FRP, containing No. 2 fuel oil for residential use. It was removed on April 7, 2000.

Decommissioning activities for UST No.: 192486-23 complied with all applicable federal, state and local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: *N.J.A.C.* 7:14B-1 et seq., *N.J.A.C.* 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. The closure and subsurface evaluation of the UST was conducted by a NJDEP licensed TVS employee.

This UST Closure and Site Investigation Report has been prepared by TVS to assist the U.S. Army Garrison-DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (*N.J.A.C.* 7:14B-9 et seq. December, 1987).

This report was prepared using information required by the *Technical Requirements for Site Remediation (N.J.A.C.* 7:26E) (*Technical Requirements*). Section 1 provides a summary of the UST decommissioning activities. Section 2 describes the site investigation activities. Conclusions and recommendations are presented in Section 3 of this report.

#### 1.2 SITE DESCRIPTION

Building 2042, (59 & 61 Megill Circle) is located in the Charles Wood area of Fort Monmouth, as shown on Figure 1 & 2. UST No.: 192486-23 and associated piping were located adjacent to the building, as shown on Figure 3.

#### 1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of Bldg. 2042. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.

Fort Monmouth lies within the Outer Coastal Plain subprovince of the New Jersey section of the Atlantic Coastal Plain physiographic province, which generally consists of a seaward-dipping wedge of unconsolidated sediments including interbedded clay, silt, sand, and gravel.

To the northwest is the boundary between the Outer and Inner Coastal Plains, marked by a line of hills extending southwest, from the Atlantic Highlands overlooking Sandy Hook Bay, to a point southeast of Freehold, New Jersey, and then across the state to the Delaware Bay. These formations of clay, silt, sand, and gravel formations were deposited on Precambrian and lower Paleozoic rocks and typically strike northeast-southwest, with a dip that ranges from 10-60 feet per mile. Coastal Plain sediments date from the Cretaceous through the Quaternary Periods and are predominantly derived from deltaic, shallow marine, and continental shelf environments.

The property is located within the outer fringe of the Atlantic Coastal Plain Physiographic Province, of New Jersey, approximately 20 miles south of Raritan Bay. This province is characterized by a wedge-shaped mass of unconsolidated to semi-consolidated marine, marginal marine and non-marine deposits of clay, silt, sand, and gravel. These sediments range in age from Cretaceous to Holocene and lie unconformably on pre-Cretaceous bedrock consisting of metamorphic schists and gneiss, with local occurrences of basalts, sandstone, and shale (Zapecza, 1984). These sediments trend northeast-southwest and dip southeast toward the Atlantic Ocean. These sediments thicken southeastward from the Piedmont-Coastal Plain Province boundary to approximately 4,500 feet near Atlantic City, New Jersey. During the Cretaceous and Tertiary time period, sediments were deposited alternately in flood plains and in marine environments during sea transgression and sea regression periods. The formations record several major transgressive/regressive cycles and contain units that are generally thicker to the southeast and reflect a deeper water environment.

Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations).

Regressive upward coarsening deposits, such as Englishtown and Kirkwood Formations and the Cohansey Sand are usually aquifers, while transgressive deposits, such as the Merchantville, Marshalltown, and Navesink Formations, act as confining units. The thicknesses of these units vary greatly, ranging from several feet to several hundred feet, and thicken to the southeast.

The eastern half of the Main Post is underlain by the Red Bank Formation, ranging in thickness from 20-30 feet, while the western half is underlain by the Hornerstown Formation, ranging in thickness from 20-30 feet. The predominant formation underlying the Charles Wood Area is also the Hornerstown, with small areas of Vincentown Formation intruding in the southwest corner. Sand and gravel deposited in recent geologic times lie above these formations. Interbedded sequences of clay serve as semi-confining units for groundwater. The mineralogy ranges from quartz to glauconite.

Udorthents-Urban land is the primary classification of soils on Fort Monmouth, which have been modified by excavating or filling. Soils at the Main Post include Freehold sandy loam, Downer sandy loam, and Kresson loam. Freehold and Downer are somewhat well drained, while Kresson is a poorly drained soil.

The Charles Wood Area has sandy loams of the Freehold, Shrewsbury, and Holmdel types. Shrewsbury is a hydric soil; Kresson and Holmdel are hydric due to inclusions of Shrewsbury. Downer is not generally hydric, but can be.

#### **Local Geology**

Fort Monmouth lies in the Atlantic and Eastern Gulf Coastal Plain groundwater region and is underlain by underformed, unconsolidated to semi-consolidated sedimentary deposits. The chemistry of the water near the surface is variable with generally low dissolved solids and high iron concentrations. In areas underlain by glauconitic sediments, the water chemistry is dominated by calcium, magnesium, and iron (*e.g.* Red Bank and Tinton sands). The sediments in the vicinity of Fort Monmouth were deposited in fluvial-deltaic to nearshore environments. The water table is generally shallow at the installation; water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs) and in certain areas fluctuates with the tidal action in Parkers and Oceanport creeks at the Main Post.

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile.

The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium- to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse-grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

"Arsenic and lead are naturally occurring in soil and can vary widely. All soils contain naturally-occurring arsenic and lead in some amount (Kabata-Pendias and Pendias, 1984). In general, the concentrations of arsenic in any particular soil are dependent upon the parent material and the soil forming processes. Because the soil forming processes are relatively consistent in New Jersey, differences in arsenic concentrations depend primarily on the soil parent material and past and present land use (Motto, Personal comm., 1997).

Because the underlying geologic materials vary widely throughout New Jersey, naturally occurring concentrations of metals in New Jersey soils also vary widely. Even though soils within a specific soil series can be similar in texture and color, the mineral and organic matter composition of soil tend to be heterogeneous. As a result, concentrations of metals in adjacent soil samples can vary substantially over distances of a few feet.

Based on a Department survey of background concentrations of metals in soil in rural and suburban areas of the state, non-agricultural soils contained 0.02 - 22.7 ppm of arsenic with an average 3.25 ppm and less than 1.2-150 ppm of lead with an average of 19.2 ppm (Fields, et al., 1993). A statistical test was conducted to determine the correlation between sand, silt and clay content of the samples and metal concentrations. Samples containing higher clay content tended to have higher concentrations of most metals, including arsenic and lead (Fields, et al., 1993).

While naturally-occurring lead concentrations have not been detected above the Department's residential soil cleanup criteria in New Jersey, elevated arsenic concentrations have been found. Higher concentrations of naturally-occurring arsenic have been specifically associated with soils containing glauconite. The US Geological Survey found arsenic concentrations generally lower than 10 ppm in sandy soils from undeveloped areas, but concentrations were as large as 40 ppm in samples containing higher clay content (Barringer, et al., 1998). Soil sampling conducted as part of site remediation activities have shown glauconite soils to commonly contain arsenic concentrations of 20-40 ppm and range as high as 260 ppm (Schick, Personal comm., 1998). The Department is currently involved in a research project with the New Jersey Geological Survey investigating metal levels in glauconite soils." *Findings and Recommendations for Remediation of Historic Pesticide Contamination, Historic Pesticide Contamination Task Force, Final Report March 1999* 

Fort Monmouth has been an operational military facility for in excess of ninety (90) years; and in many areas of Charles Wood, human activities have completely transformed the topography. Currently, Fort Monmouth is conducting a correlation study to determine the relative impact of the ubiquitous glauconitic silty sands and clays and the concentrations of dissolved arsenic observed in a number of monitoring wells on the post. Upon the completion of the study, the results will be provided to NJDEP for review and comment. It is the intent of the US Army to demonstrate that the preponderance of the dissolved arsenic is a function of soil type and chemistry and is not anthropogenic in nature.

#### <u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation. The Hornerstown Formation acts as an upper boundary of the Red Bank aquifer, but it might yield enough water within its outcrop to supply individual household needs. The Red Bank outcrops along the northern edges of the Installation, and contains two members, an upper sand member and a lower clayey sand member. The upper sand member functions as the aquifer and is probably present on some of the surface of the Main Post and at a shallow depth below the Charles Wood Area. The Hornerstown and Red Bank formations overlay the larger Wenonah-Mount Laurel aquifer.

Based on records of wells drilled in the Charles Wood area, water is typically encountered at depths ranging from 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may yield 2 to 25 gallons per minute (gpm). Some local well owners have reported acidic water that requires treatment to remove iron. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. Soil and sediment materials rich in iron sulfide tend to be very dark and soft. Iron sulfides can react rapidly when they are disturbed (i.e. exposed to oxygen). Pyrite will tend to occur as more discrete crystals in soil and organic matter matrices and will react more slowly when disturbed. The oxidation of iron sulfide in the potential acid sulfate soil materials (sulfidic material) may result in the formation of actual acid sulfate soil material or sulfuric material.

These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. Soil horizons that contain sulfides are called 'sulfidic materials' (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite.

#### 1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all decommissioning activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) – Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

#### 1.4 REMOVAL OF UNDERGROUND STORAGE TANK

#### 1.4.1 General Procedures

- All underground utilities were marked out by the respective trade shops or utility contractor prior to excavation activities.
- All activities were carried out with great regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVM for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.

- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- An NJDEP certified Subsurface Evaluator was present during all closure and remediation activities.

#### 1.4.2 Underground Storage Tank Excavation

During decommissioning activities, surficial soil was carefully removed to expose the UST. The tank was completely empty and contained no liquids prior to removal from the ground.

After the UST was removed from the excavation, it was staged on an impervious surface, labeled and examined for holes. The Subsurface Evaluator observed no holes in the tank during the inspection. Soils surrounding the UST were screened visually and with an OVM for evidence of contamination. Soil staining or petroleum hydrocarbons were not observed.

#### 1.5 UNDERGROUND STORAGE TANK DECOMMISSIONING AND DISPOSAL

Subsequent to disposal, the UST was purged with air to remove vapors prior to cutting. A 4 feet by 3 feet access hole was made in the UST using a pneumatic ripper gun with a non-sparking bit. The UST was cleaned first with rubber squeeges and adsorbent material broomed on the sidewalls and bottom. The adsorbent material was then drummed and subsequently put into Ft. Monmouth's 'Oil Spill Debris' roll-off container for proper disposal. The atmosphere in and around the tank was monitored using an OVM and an Oxygen/Lower Explosive Level (LEL) meter to ensure safe working conditions during cutting and cleaning activities.

The tank was then transported by TVS for disposal in compliance with all applicable regulations and laws. The UST disposal certification, along with backfilling authorization, is included in Appendix B.

The Subsurface Evaluator labeled the UST with the following information:

- site of origin
- NJDEP UST Facility ID number
- date of removal
- size of tank
- previous contents of tank

If available, photographic documentation of the UST is included in Appendix C.

#### 2.0 SITE INVESTIGATION ACTIVITIES

#### 2.1 OVERVIEW

The Site Investigation was managed by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (June 7, 1993) which was the applicable regulation at the date of the closure. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Investigation Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

(TVS)NJDEP License No.: US252302

• Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Dan Wright Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

#### 2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material, of which none were found.

#### 2.3 SOIL SAMPLING

On April 7, 2000, closure soil samples were collected after the removal of the UST. Closure samples 2042-A and 2042-B were collected from a total of two (2) locations along the UST bottom of the excavation for the UST No.: 192486-23. Closure sample 2042-C was collected from a location along the UST piping. A duplicate of sample 2042-A was also collected.

Refer to soil sampling location map in Figure 3. All samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was not encountered in the excavation.

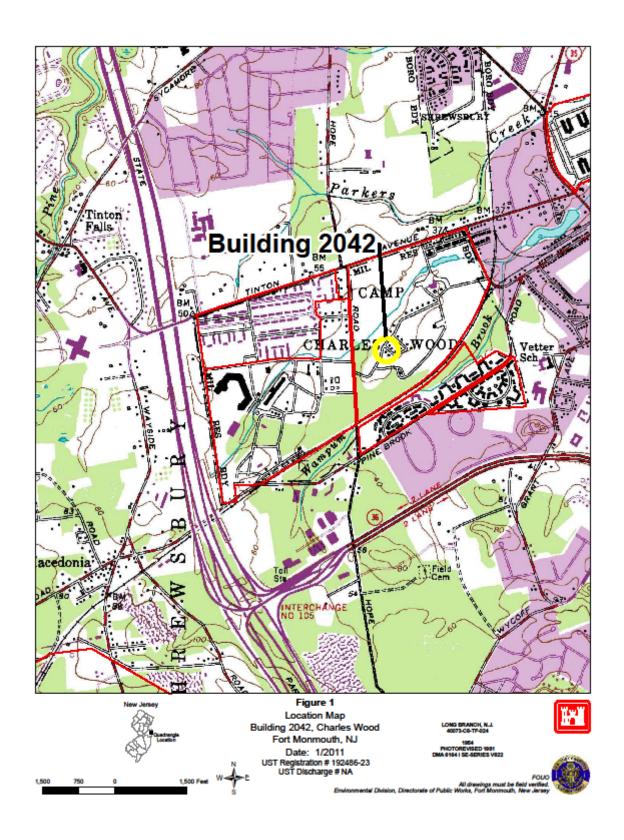
The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The closure soil samples were collected. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

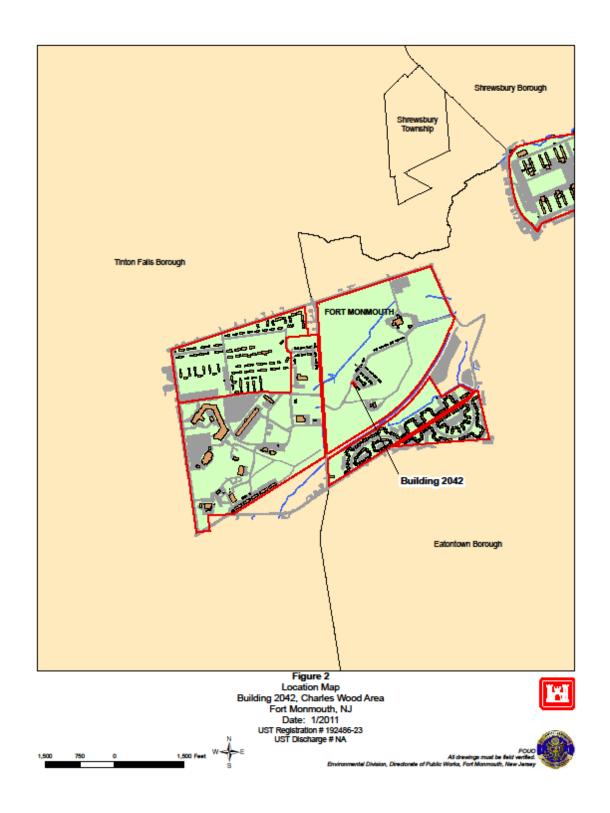
#### 3.0 CONCLUSIONS AND RECOMMENDATIONS

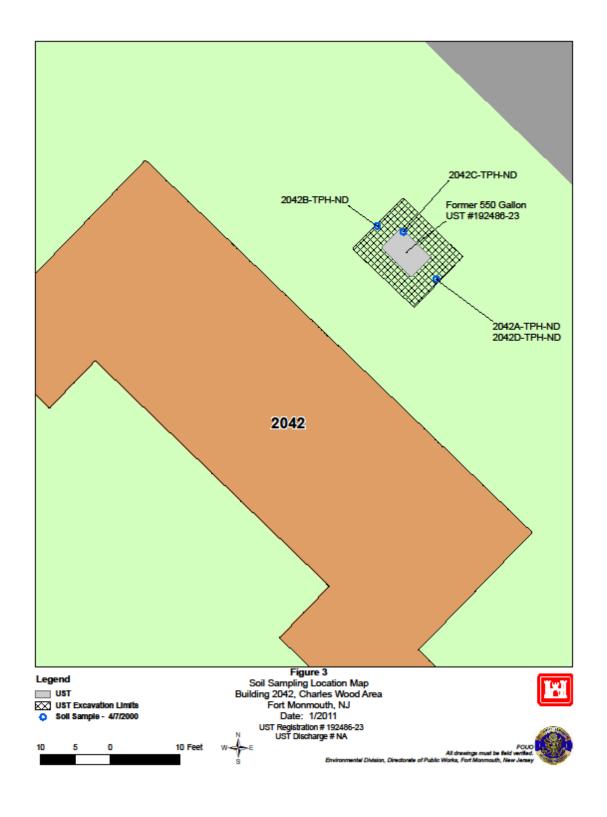
#### 3.1 SOIL SAMPLING RESULTS

Closure soil samples were collected from a total of three locations (which included the duplicate) on April 7, 2000 to evaluate soil conditions following removal of the UST and piping. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (*N.J.A.C.* 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix D.

Closure soil samples collected on April 7, 2000 from the UST site excavation contained concentrations of TPH below the NJDEP soil cleanup criteria.


#### 3.2 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all of closure soil samples collected from the UST closure excavation at UST No.: 192486-23 were Not Detected for total petroleum hydrocarbons.


Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP soil cleanup criterion for total organic contaminants of 10,000 mg/kg are not present in the location of former UST No.: 192486-23.

**No Further Action** is proposed in regard to the closure and site investigation of UST No.: 192486-23 at Building 2042.

## **FIGURES**







# **TABLES**

## TABLE 1

### **SUMMARY OF LABORATORY ANALYSIS**

FT. MONMOUTH, BUILDING 2042, UST No.: 192486-23 07 April 2000

| SAMPLE<br>ID | LABORATORY<br>SAMPLE ID | SAMPLE<br>DATE | SAMPLE<br>MATRIX | ANALYTICAL<br>PARAMETER | ANALYTICAL<br>METHOD |
|--------------|-------------------------|----------------|------------------|-------------------------|----------------------|
|              |                         |                |                  |                         |                      |
| 2042-A       | 5322.01                 | 07-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2042-В       | 5322.02                 | 07-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2042-С       | 5322.03                 | 07-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| 2042-D       | 5322.04                 | 07-Apr-00      | SOIL             | TPH                     | OQA-QAM-25           |
| Duplicate    |                         |                |                  |                         |                      |

### ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, NJDEP Method OQA-QAM-025 (10/97)

## TABLE 2

### SUMMARY OF LABORATORY ANALYTICAL RESULTS

FT. MONMOUTH, BUILDING 2042, UST No.: 192486-23 07 April 2000

### TOTAL PETROLEUM HYDROCARBONS

| SAMPLE ID | LABORATORY<br>SAMPLE ID | SAMPLE LOCATION     | SAMPLE<br>DEPTH | MATRIX | TPH<br>RESULT S |
|-----------|-------------------------|---------------------|-----------------|--------|-----------------|
|           |                         |                     | (in feet)       |        | mg/kg           |
| 2042-A    | 5322.01                 | SOUTH END           | 7.0-7.5         | Soil   | ND              |
| 2042-В    | 5322.02                 | NORTH END           | 7.0-7.5         | Soil   | ND              |
| 2042-С    | 5322.03                 | PIPING              | 2.0-2.5         | Soil   | ND              |
| 2042-D    | 5322.04                 | DUPLICATE-SOUTH END | 7.0-7.5         | Soil   | ND              |
| Duplicate |                         |                     |                 |        |                 |

### ABBREVIATIONS:

mg/kg = Milligrams Per Kilogram = parts per million

ND = Compound Not Detected

Gray shading indicates exceedance of NJDEP health based criterion of 10,000 ppm total organic contaminants

# **APPENDIX A**

# **CERTIFICATIONS**

(NOT AVAILABLE)

# APPENDIX B UST DISPOSAL CERTIFICATE

### DIRECTORATE OF PUBLIC WORKS FORT MONMOUTH, NEW JERSEY 07703

Contract Management Division

SUBJECT: PWS-007, Residential UST Removal

Contractor: TVS Inc.

RE: Backfilling of excavation,

BUILDING #: 2042 (59+61 METILL CIRCLE)

TVS Inc.

Field Supervisor, PWS-007

ATTN: Brian Finch

Building 166

Fort Monmouth, New Jersey 07703-5000

Dear Mr. Finch:

The above referenced area has been sampled and analyzed as described in the NJDEP Regulations. The results indicate levels of petroleum contamination below the NJDEP allowable limits or that the site requires further investigation outside the scope of this contract. The contractor may proceed with the backfilling of the excavation with stone to groundwater and clean fill to grade as required in the above referenced contract specification.

Regards,

Mr. Dinker Desai

Environmental Engineer

Directorate of Public Works

CC: UST file copy

Directorate of Public Works

Date: 30 January, 2001

Marpal Disposal Company, Inc. P.O. Box 188 Lincroft, New Jersey 07738

Re:

Non-Hazardous Waste Disposal

Contract No. DAAB07-96-C-8252

Location: Bldg. 166, rear Roll-off container No. 2798

Size: 30 cubic yards

USTs from Bldgs: 226(2K), 227(2K), 228(2K), 2038(.5K), 2039(.5K), 2040(.5K),

2041(.5K), 2042(.5K), McGuire AFB 1507(2.5K)

### Dear Sirs:

I certify that the above referenced 30 cubic yard roll-off container provided by Marpal, Inc. contains only crushed fiberglass underground storage tanks removed from residential buildings at Fort Monmouth, NJ, and one from McGuire Air Force Base. The tanks held only No. 2 heating oil. The tanks were cleaned in accordance with acceptable industry standards and NJDEP protocol and then crushed. No free liquids are present in the container.

If you should require any additional information or help at this time, please contact Mr. Dinker Desai, Environmental Protection Specialist. He can be reached at the following telephone number: (732) 532-1475.

Sincerely,

Dinker Desai

**Environmental Protection Specialist** 

Attachments: None

# APPENDIX C PHOTO DOCUMENTATION

(NOT AVAILABLE)

# APPENDIX D SOIL ANALYTICAL DATA PACKAGE

# FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

### DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699



# ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: IJO# 100004

Bldg. 2042

| Field Sample Location     | Laboratory | Matrix   | Date and Time   | Date Received |  |
|---------------------------|------------|----------|-----------------|---------------|--|
|                           | Sample ID# |          | of Collection   |               |  |
| 2042-A South End 7.0-7.5' | 5322.01    | Soil     | 07-Apr-00 13:40 | 04/07/00      |  |
| 2042-B North End 7.0-7.5' | 5322.02    | Soil     | 07-Apr-00 14:10 | 04/07/00      |  |
| 2042-C Piping 2-2.5'      | 5322.03    | Soil     | 07-Apr-00 13:55 | 04/07/00      |  |
| 2042-D Duplicate 7.0-7.5' | 5322.04    | Soil     | 07-Apr-00 13:40 | 04/07/00      |  |
| Trip Blank                | 5322,05    | Methanol | 07-Apr-00       | 04/07/00      |  |

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB TPHC, %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date

4-20-00

Laboratory Director

### **Table of Contents**

| Section                             | Pages |
|-------------------------------------|-------|
| Method Summary                      | 1     |
| Conformance/Non-Conformance         | 2     |
| Chain of Custody                    | 3     |
| Results Summary                     | 4     |
| Initial Calibration Summary         | 5     |
| Continuing Calibration Summary      | 6-13  |
| Surrogate Results Summary           | 14    |
| MS/MSD Results Summary              | 15    |
| Blank Spike Summary                 | 16    |
| Raw Sample Data                     | 17-26 |
| Laboratory Deliverable Checklist    | 27    |
| Laboratory Authentication Statement | 28    |

### **Method Summary**

### NJDEP Method OQA-QAM-025-10/97

# Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g)(wet weight) of a soil sample is added to a 125 mL acid cleaned, solvent rinsed, capped Erlenmeyer flask. 15g anhydrous sodium sulfate is added to dry sample. Surrogate standard spiking solution is then added to the flask.

Twenty five milliliters(25mL) Methylene Chloride is added to the flask and it is secured on a orbital shaker table. The agitation rate is set to 400rpm and the sample is shaken for 30 minutes. The flask is the removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25mL of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1mL autosampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for petroleum hydrocarbons covering a range of C8-C42 including pristane and phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak.

The final concentration of Total Petroleum Hydrocarbons is calculated using percent solid, sample weight and concentration.

# TPHC Conformance/Non-conformance Summary Report

| 1.         | Method Detection Limits provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Yes, No, N/A |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|
| 2.         | Method Blank Contamination – If yes corresponding concentrations in each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · • • • • • • • • • • • • • • • • • • • | No           |
| 3.         | Matrix Spike Results Summary Meet (If not met, list the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and correspond of the sample and corresp |                                         | Yes          |
| 4.         | Duplicate Results Summary Meet Crit (If not met, list the sample and corresp falls outside the acceptable range).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ¥2           |
| <b>3</b> . | IR Spectra submitted for standards, bl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anks and samples.                       | NA           |
| 6.         | Chromatograms submitted for standar if GC fingerprinting was conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ds, blanks and samples                  | Yes          |
| 7.         | Analysis holding time met. (If not met, list number of days exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ded for each sample).                   | yes          |
| Add        | itional comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-20-00                                 |              |
| Labo       | oratory Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                    |              |

## Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

### NJDEP Certification #13461 / NYDOH Certification #11699

**Chain of Custody Record** 

| Customer: Dinker Desai                                                                                                                          |               |                                       |                          | Project No: 100004                                        |                |            | Analysis Parameters |                      |                                        |               |                        |                       |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|--------------------------|-----------------------------------------------------------|----------------|------------|---------------------|----------------------|----------------------------------------|---------------|------------------------|-----------------------|------------------------------|
| Phone #: X21475                                                                                                                                 |               |                                       |                          | Location: BLD6. 2042 (59+61                               |                |            |                     | SOLIDS               | ₩01-                                   |               | Reading *              | * = Samples Kept <4°C |                              |
| ( )DERA ( X )OMA UST Assessment                                                                                                                 |               |                                       |                          | Location: BLDG. 2042 (59+61<br>UST# 192486-23 METILL CIR) |                |            |                     |                      |                                        |               |                        |                       |                              |
| Samplers Name / Company : Frank Accorsi/TVS                                                                                                     |               |                                       | Sample #                 |                                                           |                | TPHC       | VOA+10              |                      |                                        | Reg           | Remarks / Preservation |                       |                              |
| Lab Sample I.D.                                                                                                                                 |               | nple Location                         | Depth(f)                 | Date                                                      | Time           | Туре       | Bottles             | TP                   | %                                      | Σ             | VOA ID#                | PID                   | Method                       |
| 5322 01                                                                                                                                         | 2042-         | A 50074                               | 7,0-7.5                  | 4-7-00                                                    | 1340           | 501L       | 2                   | メ                    | χ_                                     | ×             | 1452                   | 0                     | ICE                          |
| 02                                                                                                                                              | 2042-         | B. END                                | 7.0-7.5                  |                                                           | 1410           |            | 2                   | Х                    | _X_                                    | ×             | 1453                   | 0                     |                              |
| 23                                                                                                                                              | 2042-         | C, PIPING                             | 2-25                     |                                                           | 1355           | .          | 2                   | ×                    | X                                      | ×             | 1454                   | 0                     |                              |
| 04                                                                                                                                              | 2042-         | D. DUPLICATE                          | 7.0-7.5                  |                                                           | 1340           | 7          | 2                   | ×                    | X                                      | X             | 1455                   | 0                     |                              |
| 05                                                                                                                                              |               | LANK                                  |                          | A                                                         | _              | AQ         | ı                   |                      |                                        | λ             | 1456                   |                       |                              |
|                                                                                                                                                 |               |                                       |                          |                                                           |                |            |                     |                      |                                        | 7             |                        |                       |                              |
|                                                                                                                                                 |               |                                       | ,                        |                                                           |                |            |                     |                      |                                        |               |                        |                       | ,                            |
|                                                                                                                                                 |               | ,                                     |                          |                                                           |                |            |                     |                      |                                        |               |                        |                       |                              |
|                                                                                                                                                 |               |                                       |                          |                                                           |                |            |                     |                      |                                        | ************* |                        |                       |                              |
|                                                                                                                                                 |               |                                       |                          |                                                           |                |            |                     |                      |                                        |               |                        |                       |                              |
| ,                                                                                                                                               |               |                                       |                          |                                                           |                |            |                     |                      |                                        |               |                        |                       |                              |
|                                                                                                                                                 |               | · · · · · · · · · · · · · · · · · · · |                          |                                                           |                |            |                     |                      |                                        |               |                        |                       |                              |
|                                                                                                                                                 |               |                                       |                          |                                                           |                |            |                     |                      |                                        |               |                        | <del> </del>          |                              |
| OVM s                                                                                                                                           | sn#580U-      | 64455.343 was c                       | alibrated with           | zero air & \                                              | w/ 245 ppm i   | sobutylene | read <u>24</u>      | рр                   | m. <u>/</u> 0                          | 10            | 9-6-00 F4(t            | ime/d                 | ate & initial)               |
| . ,                                                                                                                                             |               | Date/Tir                              |                          |                                                           |                |            | Comme               | nts: *               | - 110                                  | +10           | ON 259                 | 6 >                   | LOOD PPM TPH,                |
| Relinquished by (signatu                                                                                                                        | أندين         | 4-7-00                                | 500                      | Received by (signature): Comments: *                      |                |            |                     | on Holtest, min. one |                                        |               | ONE                    |                       |                              |
| Relinquished by (signature): Date/Time:                                                                                                         |               |                                       | Received by (signature): |                                                           |                |            |                     |                      |                                        |               |                        |                       |                              |
| Reiniquished by (signatu                                                                                                                        | шс <i>)</i> . | Date/III                              | ne.                      | 1 0 100                                                   | cived by (sign | attic).    |                     |                      |                                        |               |                        |                       | ·                            |
| Description (No. 1) (No. 1) (No. 1) (No. 1) (No. 1) (No. 1) (No. 1)                                                                             |               |                                       |                          | - Carpa                                                   |                |            | :                   | Remar                | Remarks: Dedicated Sampling Tools Used |               |                        |                       | ling Tools Used              |
| Report Type: ()Full, ()Reduced, ()Standard, ()Screen / non-certified, ()E<br>Turnaround time: ()Standard 2 wks, ()Rush () Days, ()ASAP Verbal _ |               |                                       |                          |                                                           |                |            |                     | . NO () NA           |                                        |               |                        |                       |                              |
| i miaioma ume. Osian                                                                                                                            | iuaiu 2 WKS   | , y jixusu [ ] Days,                  | CAMAR VOID               | <u> </u>                                                  |                | •          | <u></u>             | التعاد بست           | upie pol                               |               |                        |                       | Δ 4                          |
| 9                                                                                                                                               |               |                                       |                          |                                                           |                |            |                     |                      |                                        | ,             | Dante Co               | sto                   | State 4.10.2000<br>Extracted |
|                                                                                                                                                 |               |                                       |                          |                                                           |                | 1 1        |                     |                      | O EXTO                                 |               |                        |                       | J Extracted                  |
| usint logible                                                                                                                                   |               |                                       |                          |                                                           | Page           | /of /      |                     |                      |                                        |               |                        |                       | USTcoc.xis3/21/00            |

### **Report of Analysis** U.S.Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client:

U.S. Army

Project #:

5322

DPW. SELFM-PW-EV

Location:

Bldg.2042

Bldg. 173

UST Reg. #:

192486-23

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

07-Apr-00

Matrix:

Soil

Date Extracted:

10-Apr-00

Inst. ID.:

GC TPHC INST. #1

**Extraction Method:** 

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analysis Complete:

12-Apr-00

Injection Volume:

1 u L

Analyst:

**B.Patel** 

| Sample       | Field ID | Dilution<br>Factor | Weight<br>(g)     | % Solid | MDL<br>(mg/kg) | TPHC<br>Result<br>(mg/kg) |
|--------------|----------|--------------------|-------------------|---------|----------------|---------------------------|
| 5322.01      | 2042-A   | 1.00               | 15.07             | 90.39   | 173            | ND                        |
| 5322.02      | 2042-B   | 1.00               | 15.08             | 91.14   | 171            | ND                        |
| 5322.03      | 2042-C   | 1.00               | 15.24             | 85.70   | 180            | ND                        |
| 5322.04      | 2042-D   | 1.00               | 15.0 <del>4</del> | 90.71   | 172            | ND                        |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
|              |          |                    |                   |         |                |                           |
| METHOD BLANK | TBLK375  | 1.00               | 15.00             | 100.00  | 157            | ND                        |

ND = Not Detected

MDL = Method Detection Limit

### LABORATORY DELIVERABLES CHECKLIST AND NON-CONFORMANCE SUMMARY

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following Laboratory Deliverables checklist and Non-Conformance Summary shall be included in the data submission. All deviations from the accepted methodology and procedures, of performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The Technical Requirements for Site Remediation, effective June 7, 1993, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits, practical quantitation limits, and the laboratory and/or sample numbers be included in one section of the data package and in the main body of the report.

| 1.         | Cover page, Title Page listing Lab Certification #, facility name and address, & date of report submitted                                  |         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2.         | Table of Contents submitted                                                                                                                |         |
| 3.         | Summary Sheets listing analytical results for all targeted and non-targeted compounds submitted                                            | <u></u> |
| 4.         | Document paginated and legible                                                                                                             |         |
| 5.         | Chain of Custody submitted                                                                                                                 |         |
| 6.         | Samples submitted to lab within 48 hours of sample collection                                                                              |         |
| 7.         | Methodology Summary submitted                                                                                                              |         |
| 8.         | Laboratory Chronicle and Holding Time Check submitted                                                                                      |         |
| 9.         | Results submitted on a dry weight basis                                                                                                    |         |
| 10.<br>11. | Method Detection Limits submitted Lab certified by NJDEP for parameters of appropriate category of parameters or a member of the USEPA CLP |         |
| Dat        | Laboratory Manager or Environmental Consultant's Signature                                                                                 |         |

\*Refer to NJAC 7:26E - Appendix A, Section IV - Reduced Data Deliverables - Non-USEPA/CLP Methods for further guidance.

Laboratory Certification #13461

### **Laboratory Authentication Statement**

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW-846 for Solid Waste Analysis. I have personally examined the information contained in this report and to the best of my knowledge, I believe that the submitted information is true, accurate, complete and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Daniel K. Wright Laboratory Manager