DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

29 May 2018

Mr. Ashish Joshi
New Jersey Department of Environmental Protection
Division of Remediation Management & Response
Northern Bureau of Field Operations
7 Ridgedale Avenue (2nd Floor)
Cedar Knolls, NJ 07927-1112

SUBJECT: Request for Unrestricted Use, No Further Action Approval

UST 482 Site Investigation Report

Fort Monmouth, Monmouth County, Oceanport, New Jersey

PI G00000032

Dear Mr. Joshi:

The U.S. Army Fort Monmouth (FTMM) Team has reviewed and summarized previous investigations conducted at the former Underground Storage Tank (UST) 482 within Parcel 83. This site investigation (SI) report provides an overview of historical information, and the results of recent field investigations between November 2017 and January 2018.

1.0 OBJECTIVES

Groundwater and soil sampling was conducted in 2017 and 2018 to investigate the field observations of possible fuel oil contamination at the UST 482 area (**Attachment A, Reference 2**). Proposed field investigation activities were documented in the *Letter Work Plan Addendum for UST 482 Area* approved by the NJDEP in August 2017 (**Attachment A, Reference 1**).

2.0 SITE DESCRIPTION

UST 482 was a 1,000-gallon steel No. 2 fuel oil UST (Registration ID No. 90010-54) that was removed in August 1994. The former location of UST 482 is shown on **Figure 1**. Staining was observed in soil surrounding the UST and sheen was observed on groundwater in the excavation. NJDEP was contacted and Spill Case No. 94-08-11-1354-43 was assigned. Approximately 80 cubic yards of visually contaminated soil were removed between August and September 1994 and soil sampling was completed after each excavation. Samples were analyzed for Total Petroleum Hydrocarbons (TPH). The limit of excavation is shown on **Figure 2**.

Groundwater sampling was conducted in August 1995 at two monitoring wells and samples were analyzed for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). All analytical results were below the NJDEP Ground Water Quality Criteria (GWQC). Seven additional soil locations were sampled and analyzed for TPH and VOCs in 2002. All samples were below the NJDEP soil standards in effect at the time. An NFA determination was approved by the NJDEP for UST 482 in January 2003 (**Attachment A, Reference 5**).

Ashish Joshi, NJDEP UST 482 Site Investigation Report 29 May 2018 Page 2 of 6

2.1 Site Land Use

Former UST 482 was located near Building 482 within Parcel 83 of the Main Post (MP). UST 482 is surrounded by Building 482 to the west and south, the installation boundary to the north, and grassy areas to the east. Train tracks are located to the north of the UST off the installation. Future land use is designated as open space according to the FTMM Reuse and Redevelopment Plan (EDAW, 2008).

2.2 Site Geology and Hydrogeology

The Hornerstown Formation underlies much of the MP including the UST 482 area and is approximately 25 to 30 feet thick based on other MP soil borings. This formation is distinguished by varying proportions of glauconitic clay, silty clay, and minor sand. The Tinton Formation underlies the Hornerstown Formation and consists of dense fine sand and trace silt, glauconite, and clay.

Soil encountered in borings at UST 482 were primarily dense, moist, green-brown sand with some silt and traces of clayey silt. Deeper soils below approximately six feet (ft) typically consisted of looser, dark gray-green-olive silty sand and clays as well as reddish-brown sandy silt. Nearly all borings had petroleum odors and a few had visibly stained soil. Soil borings logs are provided in **Attachment B**. The depth to groundwater at UST 482 is approximately 3 ft below ground surface (bgs) (**Table 1**). Groundwater is typically encountered in the gray and green sandy silty clay and flows northeast (**Figure 2**).

3.0 PREVIOUS INVESTIGATIONS

UST 482 was removed on 11 August 1994. Although no pitting or holes were observed, staining was noted in the soil surrounding the UST and a sheen was observed on groundwater as reported in the *Underground Storage Tank Closure and Removal Investigation Report* (Attachment A, Reference 6). Approximately 50 cubic yards of visually contaminated soil was removed on 11 and 12 August 1994. During the UST removal and soil excavation, remnants of a septic/wastewater system (concrete pit) was discovered. Several rounds of soil excavation and sampling were conducted:

- Post-excavation soil samples A through I were collected on 12 August 1994 from within the excavation and analyzed for TPH (Figure 4 of **Attachment A, Reference 4**). The soil TPH results ranged from 41 milligrams/kilogram (mg/kg) to 1,910 mg/kg.
- On 26 August 1994, an additional 10 cubic yards of soil was removed at three soil sample locations (C, H, and I) that had elevated concentrations of TPH. Post-excavation samples were collected from the new extent of excavation at the three locations, and results ranged from 710 mg/kg to 29,400 mg/kg.
- On 6 September 1994, an additional 20 cubic yards of soil was removed at sample location C. Another post-excavation sample was collected at location C and the TPH concentration was 14,100 mg/kg.
- An additional seven locations were sampled and analyzed for TPH and VOCs on 2 February 2002. VOCs were not detected and TPH concentrations for all post-excavation soil samples ranged from not detected (ND) to 2,689 mg/kg which was below the then current clean-up criteria of 10,000 mg/kg.

Because sheen was observed on groundwater during the UST removal, two monitoring wells 482MW01 and 482MW02) were installed in 1995 downgradient of the tank excavation. Samples were collected in November and December 1995 and analyzed for VOCs and SVOCs. All results were less

Ashish Joshi, NJDEP UST 482 Site Investigation Report 29 May 2018 Page 3 of 6

than the NJDEP GWQC. Based on the groundwater sampling results and the post-excavation soil results, the UST 482 site was approved for NFA by the NJDEP in a letter dated January 2003 and both monitoring wells were removed and properly abandoned.

Additional soil and groundwater sampling was completed in August 2010 to determine if the former septic/wastewater system impacted soil and groundwater in the vicinity of UST 482. One soil boring (482SB-1) was advanced to approximately 5 feet below grade and soil was sampled within six inches of the groundwater. Boring 482SB-1 was then converted into a temporary well point and a groundwater sample was collected. All samples were analyzed for VOCs plus tentatively identified compounds (TICs), SVOCs plus TICs, metals, pesticides, PCBs, and cyanide. The analytical results as previously reported are provided in **Attachment A, Reference 4** and were generally consistent with the fuel oil investigation results reported below.

NJDEP requested clarification on former UST 482 in 2015 (see **Attachment A, Reference 3**) and commented that the NFA designation in January 2003 was not appropriate for soil TPH concentrations of 29,400 mg/kg as reported in the second bullet above and in **Attachment A, Reference 4**.

4.0 SITE INVESTIGATION RESULTS

During field sampling in April 2016, observations of elevated photoionization detector (PID) readings were noted on the field log for soil boring FTMM-83-SS-12 (also designated as FTMM-83-SB-12). Field personnel also noted a sheen on groundwater and odors consistent with fuel oil. These observations and NJDEP's 2015 comments led to additional soil and groundwater sampling in 2017 and 2018 (Attachment A, Reference 2). Boring logs and field notes are provided in Attachments B and C. Analytical results were compared to applicable NJDEP criteria in accordance with guidance for No. 2 fuel oil petroleum hydrocarbon mixtures (NJDEP, 2010 and Table 2-1 of NJDEP, 2012).

4.1 Groundwater Results

Two permanent monitor wells were installed to a depth of 13 ft bgs based on the analytical data from two temporary wells. Groundwater samples were analyzed for VOCs plus TICs and SVOCs plus TICs in accordance with NJDEP requirements for No. 2 fuel oil. Recent groundwater analytical results for temporary monitoring wells are shown on **Table 2** and **Figure 3** and for permanent monitoring wells on **Table 3** and **Figure 4** for the following wells:

- Temporary well PAR-83-482-TMW-01 sampled November 2017,
- Temporary well PAR-83-482-TMW-03 sampled November 2017,
- New permanent well PAR-83-482-MW-01 sampled January 2018, and
- New permanent well PAR-83-482-MW-02 sampled January 2018.

4.1.1 Exceedances of NJDEP Comparison Criteria

Exceedances of the NJDEP GWQC occurred at both temporary wells during the 2017 sampling (see **Figure 3** and **Table 2**).

- Temporary well PAR-83-482-TMW-01, located at soil boring PAR-83-482-SB-01:
 - o 2-methylnapthalene concentration of 715 μ g/L exceeded the NJDEP GWQC of 30 μ g/L
 - o phenanthrene concentration of 111 μg/L exceeded the NJDEP GWQC of 100 μg/L

Ashish Joshi, NJDEP UST 482 Site Investigation Report 29 May 2018 Page 4 of 6

- o total SVOC TICs concentration of 1,175.3 μg/L exceeded the NJDEP GWQC of 500 μg/L
- Temporary well PAR-68-TMW-03, located at soil boring PAR-83-482-SB-03:
 - o benzo(a)anthracene concentration of 24.7 μ g/L exceeded the NJDEP GWQC of 0.1 μ g/L
 - o benzo(a)pyrene concentration of 27.5 μ g/L exceeded the NJDEP GWQC of 0.1 μ g/L
 - o benzo(b)fluoranthene concentration of 40.9 μ g/L exceeded the NJDEP GWQC of 0.2 μ g/L
 - benzo(k)fluoranthene concentration of 15.7 μg/L exceeded the NJDEP GWQC of 0.5 μg/L
 - o chrysene concentration of 29.2 μg/L exceeded the NJDEP GWQC of 5 μg/L.
 - o dibenz(a,h)anthracene concentration of 5.3 μg/L exceeded the NJDEP GWQC of 0.3 μg/L.
 - o indeno(1,2,3-cd)pyrene concentration of 21.5 μ g/L exceeded the NJDEP GWQC of 0.2 μ g/L.
 - total SVOC TICs concentration of 1,700.5 μg/L exceeded the NJDEP GWQC of 500 μg/L.

There were no exceedances of the NJDEP GWQC at either of the two permanent wells during the 2018 sampling (see **Figure 4 and Table 3**).

4.1.2 Significance of Groundwater Results

Multiple SVOCs were detected at concentrations above their GWQC within two temporary wells (PAR-83-482-TMW-01 and PAR-83-482-TMW-03) in November 2017. However, there were no exceedances of the GWQC in the two permanent wells (PAR-83-482-MW-01 and PAR-83-482-MW-02) that were installed at the temporary well locations and subsequently sampled in 2018. In comparison to temporary well results, the results from the permanent wells are much more representative of groundwater conditions because the permanent wells are developed and purged prior to low flow groundwater sampling. Based on this information, additional monitoring or remediation of groundwater is not warranted at former UST 482.

4.2 Soil Results

Four soil borings (PAR-83-482-SB-01 to PAR-83-482-SB-04) were advanced on 13 November 2017 and three soil samples per boring were collected from the former UST 482 tank area. The locations of the soil samples are shown on **Figure 5**. Soil samples were analyzed for total extractable petroleum hydrocarbons (EPH). One sample from PAR-83-482-SB-04 (soil boring) had the highest EPH concentration and so contingency analyses were performed for 2-methylnapthalene and naphthalene (**Table 4**); 2-methylnaphthalene was detected as discussed in Section 4.2.1 below.

4.2.1 Exceedances of NJDEP Comparison Criteria

There were no exceedances of the EPH remedial goal of 5,100 mg/kg or the NJDEP residential direct contact soil remediation standard (RDCSRS) for 2-methylnapthalene and naphthalene. Exceedance of the NJDEP Impact to Groundwater Soil Screening Level (IGW SSL) was identified in one sample collected from one soil boring (PAR-83-482-SB-04) during the 2017 sampling (see **Figure 5** and **Table**

Ashish Joshi, NJDEP UST 482 Site Investigation Report 29 May 2018 Page 5 of 6

4). The sample was collected from the 3 to 3.5 ft interval and had a 2-methylnaphthalene concentration of 32.2 mg/kg which exceeded the NJDEP IGW SSL of 8 mg/kg. This was the only sample analyzed for the contingency SVOC 2-methylnaphthalene based on the highest associated EPH concentration from all 12 soil samples collected from the UST 482 area.

4.2.2 Significance of Soil Results

There were no exceedances of the EPH remedial goal or RDCSRSs. Concentrations of 2-methylnapthalene exceeded the NJDEP IGW SSL in soil boring PAR-83-482-SB-04. However, there were no 2-methylnapthalene exceedances in the groundwater samples collected from either of the two permanent monitor wells indicating that 2-methylnaphthalene in soil is not impacting groundwater. Based on this information, additional characterization or remediation of soil is not warranted at former UST 482.

5.0 SUMMARY AND RECOMMENDATIONS

The field and analytical results indicate constituents of fuel oil are/were detected in soil and groundwater. However, there were no exceedances of the EPH remedial goal or RDCSRS in soil and no GWQC exceedances in samples collected from the permanent wells. Given the results of the investigation, an Unrestricted Use, NFA determination is requested for former UST 482.

Thank you for reviewing this request; we look forward to your approval and/or comments. Our technical Point of Contact is Kent Friesen at (732) 383-7201; kent.friesen@parsons.com. I can be reached at (732) 380-7064; william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator

cc: Ashish Joshi (e-mail and 2 hard copies)
William Colvin, BEC (e-mail and 1 hard copy)

Joseph Pearson, Calibre (e-mail) James Moore, USACE (e-mail) Jim Kelly, USACE (e-mail) Joseph Fallon, FMERA (e-mail) Cris Grill, Parsons (e-mail) Ashish Joshi, NJDEP UST 482 Site Investigation Report 29 May 2018 Page 6 of 6

Attachments:

Figure 1 – UST 482 Site Location

Figure 2 – UST 482 Groundwater Contours – January 15, 2018

Figure 3 – UST 482 Site Layout, Temporary Monitoring Well Groundwater Sampling Locations, and Results

Figure 4 – UST 482 Site Layout, Permanent Monitoring Well Groundwater Sampling Locations, and Results

Figure 5 – UST 482 Soil Sampling Locations and Results

Table 1 - Groundwater Gauging Data and Elevations (January 15, 2018)

Table 2 – Temporary Monitoring Well Ground Water Sampling Results – Comparison to NJDEP Ground Water Quality Criteria

Table 3 – Permanent Monitoring Well Ground Water Sampling Results – Comparison to NJDEP Ground Water Quality Criteria

Table 4 – Soil Sampling Results – Comparison to NJDEP Soil Remediation Standards

Attachment A – Correspondence and Historical Information

Attachment B – Soil Boring Logs and Well Construction Details

Attachment C – Field Notes

REFERENCES CITED:

EDAW, Inc., 2008. Fort Monmouth Reuse and Redevelopment Plan, Final Plan. Prepared for Fort Monmouth Economic Revitalization Planning Authority. August 22.

NJDEP. 2010. Protocol for Addressing Extractable Petroleum Hydrocarbons. Site Remediation Program. Version 5.0, August 9.

NJDEP. 2012. New Jersey Administrative Code (NJAC) 7:26E, Technical Requirements for Site Remediation. Last amended May 7, 2012.

New Jersey Department of Environmental Protection Site Remediation Program

Report Certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites

These certifications are to be used for reports submitted for RCRA GPRA 2020, CERCLA, and Federal Facility Sites. The Department has developed guidance for report certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites under traditional oversight. The "Person Responsible for Conducting the Remediation Information and Certification" is required to be submitted with each report. For those sites that are required or opt to use a Licensed Site Remediation Professional (LSRP) the report must also be certified by the LSRP using the "Licensed Site Remediation Professional Information and Statement". For additional guidance regarding the requirement for LSRPs at RCRA GPRA 2020, CERCLA and Federal Facility Sites see http://www.nj.gov/dep/srp/srra/training/matrix/quick_ref/rcra_cercla_fed_facility_sites.pdf.

Document:

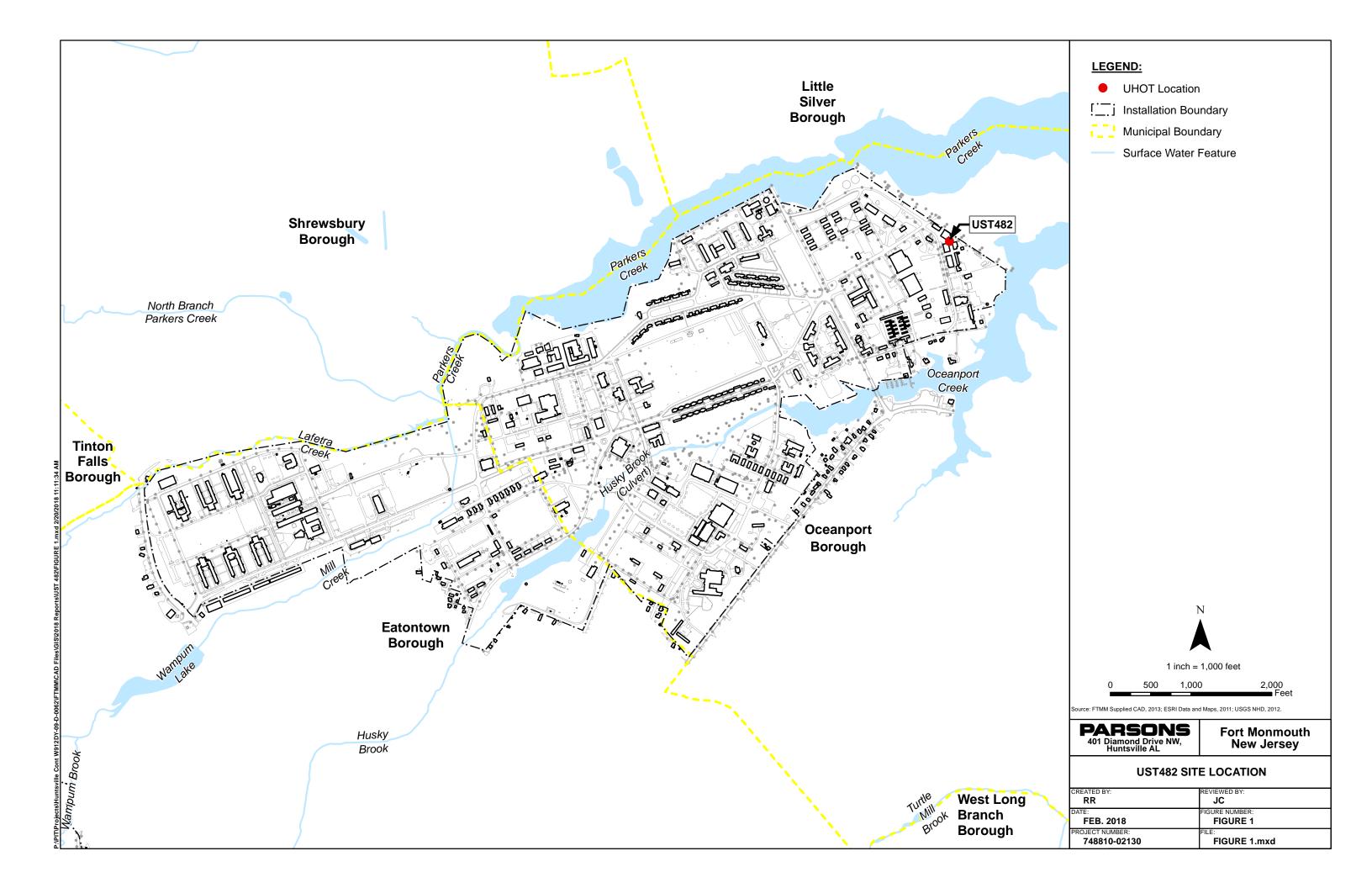
• "Request for Unrestricted Use, No Further Action Approval, UST 482 Site Investigation Report, Fort Monmouth, Monmouth County, Oceanport, New Jersey" (29 May 2018)

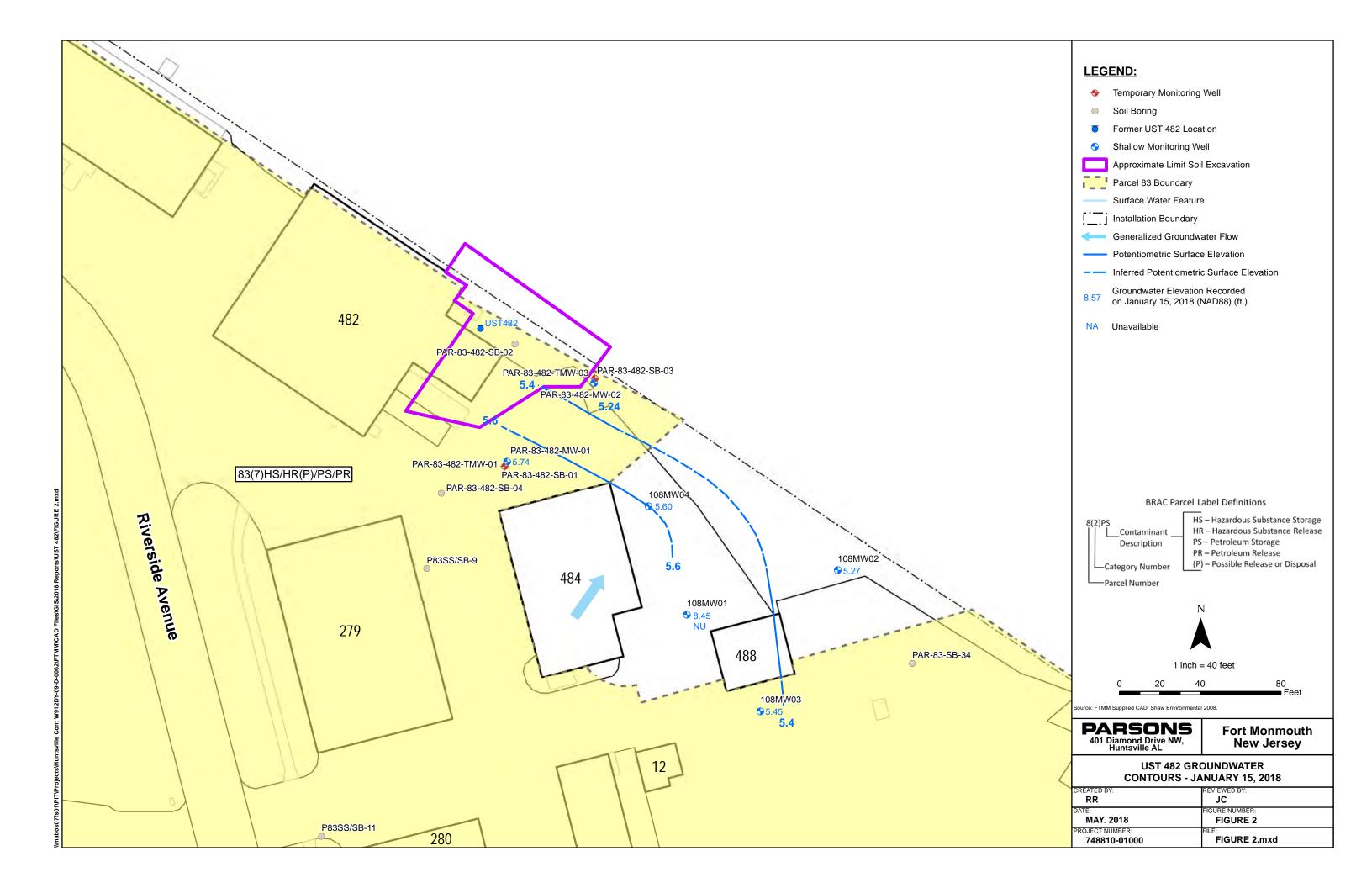
Annual Control of the				
PERSON RESPONSIBLE FOR CONDUCTING THE RE	MEDIAT	ION INFOR	RMATION AND CERTIF	FICATION
Full Legal Name of the Person Responsible for Conduction Representative First Name: William			William R. Colvin	
Title: Fort Monmouth BRAC Environmental Coordinate				
Phone Number: (732) 380-7064	Ext:		Fax:	
Mailing Address: P.O. Box 148				
City/Town: Oceanport	State:	NJ	Zip Code:	07757
Email Address: william.r.colvin18.civ@mail.mil				
This certification shall be signed by the person responsible in accordance with Administrative Requirements for the Fourtify under penalty of law that I have personally examiniculating all attached documents, and that based on my the information, to the best of my knowledge, I believe the aware that there are significant civil penalties for knowing am committing a crime of the fourth degree if I make a we aware that if I knowingly direct or authorize the violation of	Remedia ined and inquiry o at the su gly subm ritten fals	am familiar f those indiv bmitted info itting false, i se statemen	aminated Sites rule at No with the information suriduals immediately responsation is true, accurationaccurate or incomplet t which I do not believe	N.J.A.C. 7:26C-1.5(a). Submitted herein, Submitted for obtaining Submitted herein,
Signature: W. Mann & Cola-		Date:	29 May 2018	
Name/Title: William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator				

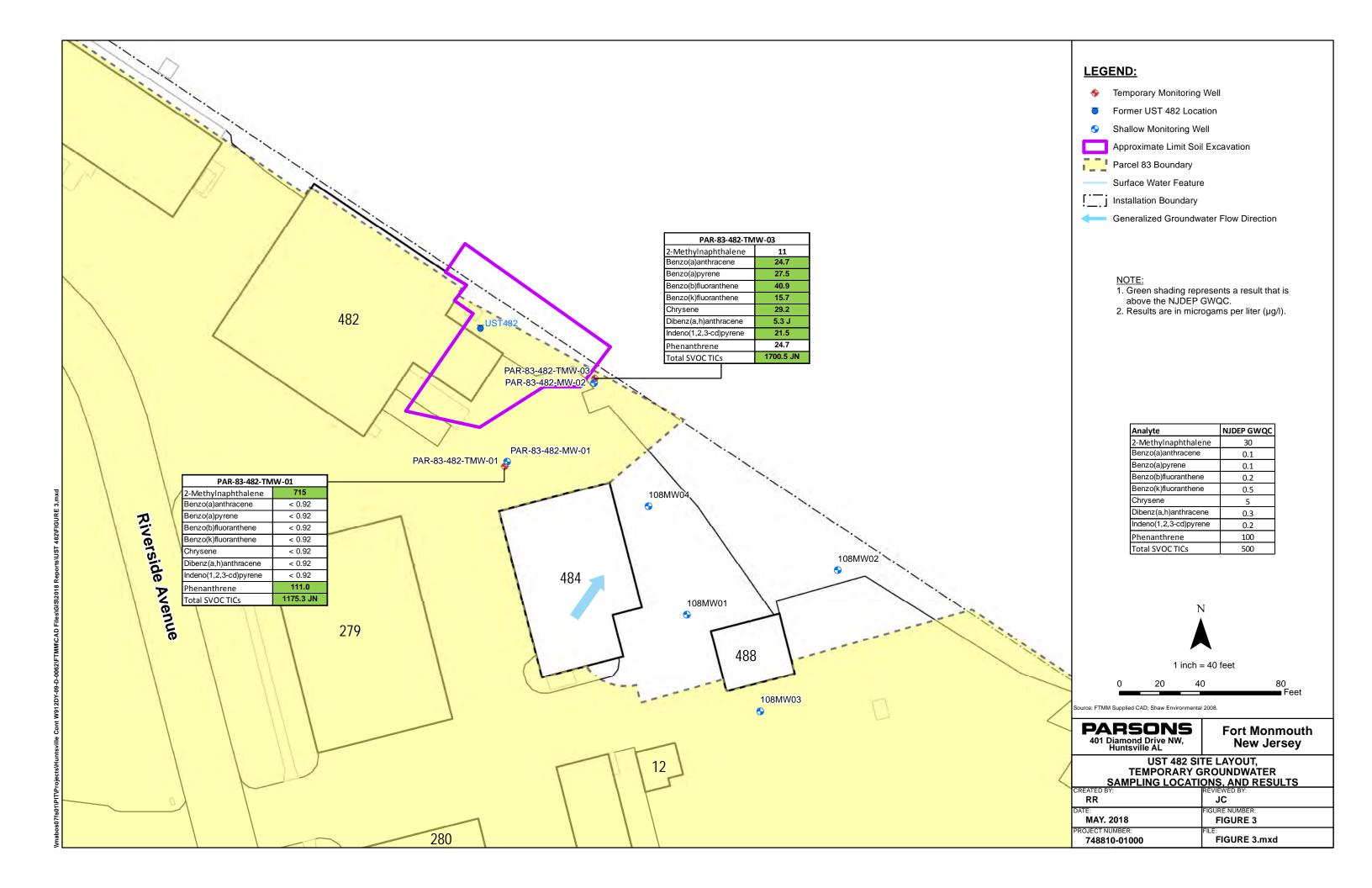
Completed form should be sent to:

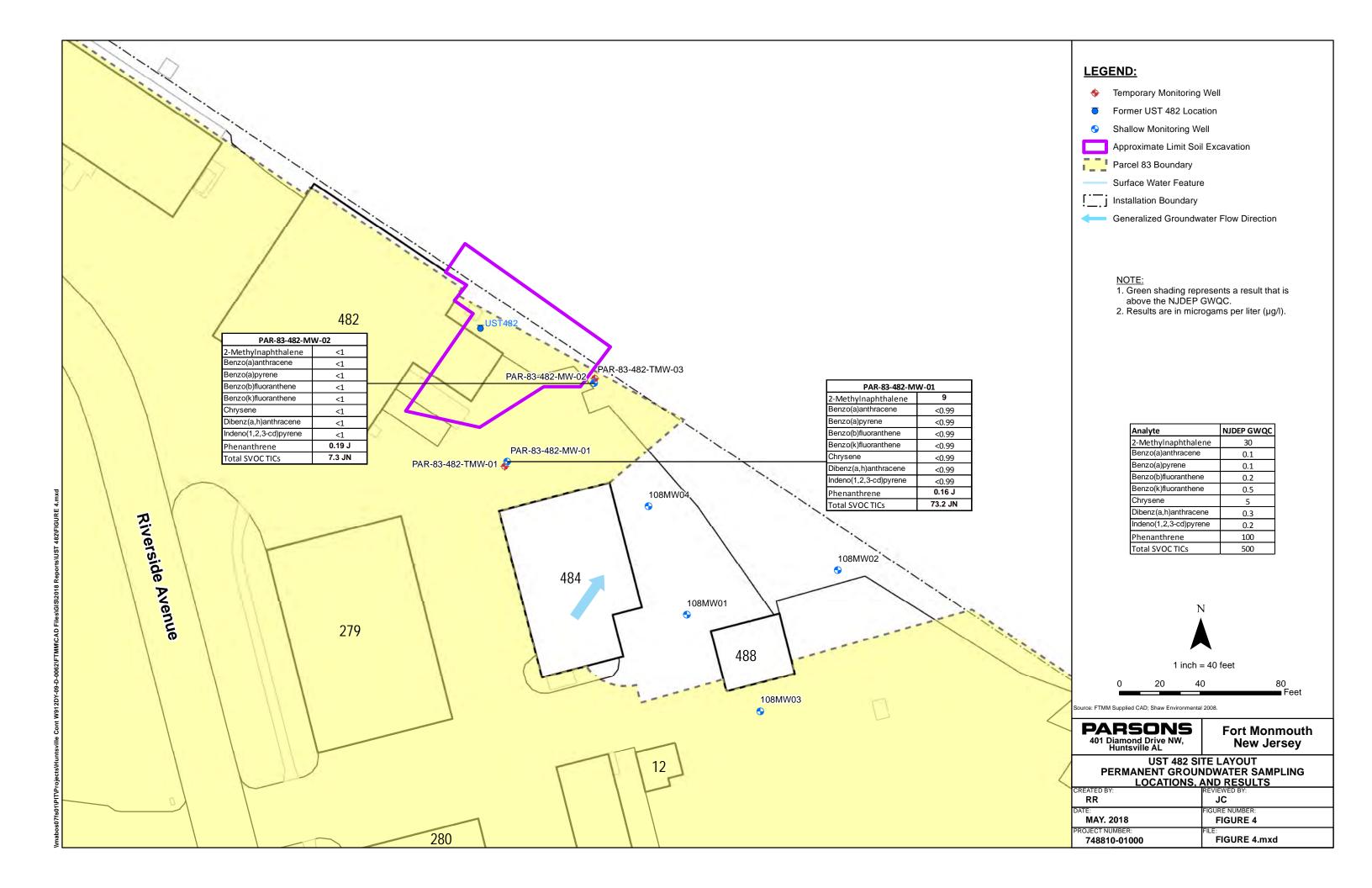
Mr. Ashish Joshi

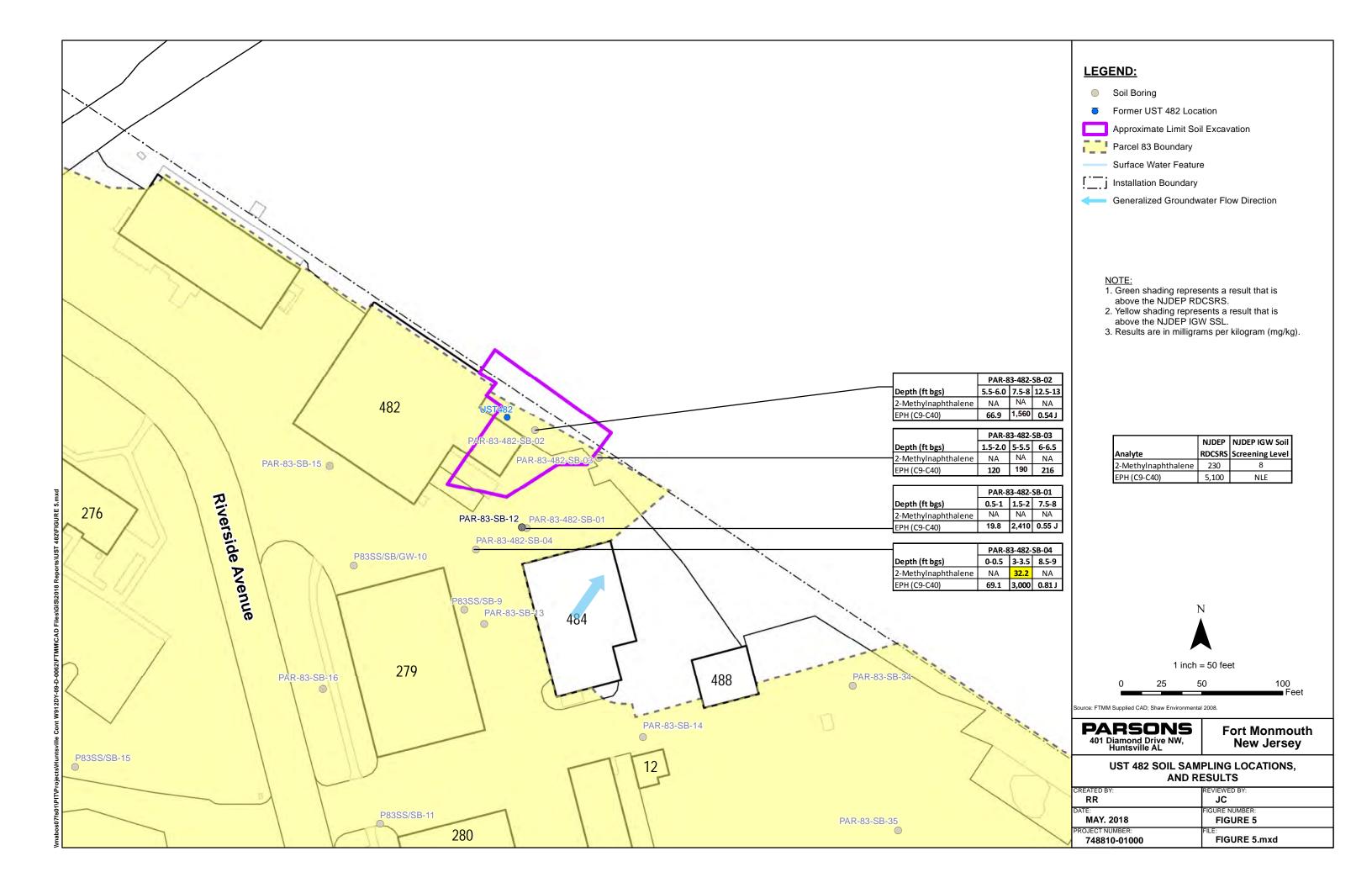
New Jersey Department of Environmental Protection Division of Remediation Management & Response


Bureau of Northern Field Operations 7 Ridgedale Avenue (2nd Floor) Cedar Knolls, New Jersey 07927-1112


Figures


Figure 1 – UST 482 Site Location


Figure 2 – UST 482 Groundwater Contours – January 15, 2018


Figure 3 – UST 482 Site Layout, Temporary Monitoring Well Groundwater Sampling Locations, and Results Figure 4 – UST 482 Site Layout, Permanent Monitoring Well Groundwater Sampling Locations, and Results Figure 5 – UST 482 Soil Sampling Locations and Results

Tables

Table 1 - Groundwater Gauging Data and Elevations (January 15, 2018)

Table 2 – Temporary Monitoring Well Ground Water Sampling Results – Comparison to NJDEP Ground Water Quality Criteria

Table 3 – Permanent Monitoring Well Ground Water Sampling Results – Comparison to NJDEP Ground Water Quality Criteria

Table 4 - Soil Sampling Results - Comparison to NJDEP Soil Remediation Standards

Table 1 Groundwater Gauging Data and Elevations (January 15, 2018) Parcel 83 UST 482 Fort Monmouth, New Jersey

Site	Well Permit #	Y Coord. (North)	X Coord. (East)	Installation Date	Depth	Depth Pipe Screen Casing Length		Screen Length PVC Well Casing (elevation)		Flush Mount or Stick-Up Protective Casing (FM or SU)	Protective Casing Elevation	Surface		Gauged Depth to Water	Bottom	Calculated Groundwater Elevation (ft.)	Sampling Date
PAR-83-482-MW-01	E201713797	541760	623636.9	12/18/2017	12.00	2.00	10.00	8.23	0.01	FM	8.57	8.54	9:37	2.49	11.67	5.74	1/19/2018
PAR-83-482-MW-02	E201713807	541799	623680	12/18/2017	12.00	2.00	10.00	11.45	0.01	SU	12.18	8.50	9:39	6.18	15.28	5.27	1/19/2018
108MW01	29-29739	541684.193	623725.940	6/13/1993	13.00	3.00	10.00	10.76	0.01	FM	N/A	N/A	9:54	2.31	9.9	8.45	NS
108MW02	29-29740	541706.213	623800.791	6/14/1993	13.00	3.00	10.00	9.80	0.01	SU	N/A	N/A	9:47	4.80	5.4	5.00	NS
108MW03	29-29741	541636.381	623762.373	6/13/1993	13.00	3.00	10.00	7.07	0.01	FM	N/A	N/A	9:48	1.62	10.7	5.45	NS
108MW04	29-33762	541737.886	623706.931	8/16/1995	12.00	2.00	10.00	8.40	0.02	FM	N/A	N/A	9:45	2.80	12.15	5.60	NS

Notes:

- The synoptic round of water levels in the wells was collected on January 15, 2018.
- Well information were provided by FTMM for all wells installed before June 2013.
- ft = feet
- TOC = Top of Casing
- Elevation = feet above mean sea level
- N/A = information not available
- NS = Not Sampled
- Bolded top of casing elevations represent a mathematical adjustment between earlier NAD systems and the NAD 88 spatial system: the wells were reduced 1.09 feet to reflect the changes in the NAD systems.

TABLE 2 TEMPORARY MONITORING WELL GROUND WATER SAMPLING RESULTS - COMPARISON TO NJDEP GWQC SITE UST 482 FORT MONMOUTH, NEW JERSEY

NJ Ground Water Quality PAR-83-482-TMW-01-6 PAR-83-482-TMW-03-6 Sample Round Total	Loc ID		PAR-83-482-TMW-01	PAR-83-482-TMW-03
Sample Date	Sample ID		PAR-83-482-TMW-01-6	PAR-83-482-TMW-03-6
Total Tota				
Total Total Total		Ontona		
Volatile Organic Compounds (µgf)			Total	Total
1,1,1,2-Tichloroethane		ua/l)	rotai	10101
1.1.1-Trichloroethane			< 3.8	< 3.8
1.1.2-Trichloroethane		30		
1.1-Dichloroethene			< 3.8	< 3.8
1.1-Dichloropenen				
1.1-Dichloropropene	,			
1.2.3-Trichlorobenzene				
1,2,3-frichloropropane				
1,2.4-Trinchlybenzene				
12-Dibriormog-chloropropane			< 3.8	
1.2-Dichloromethane	1,2,4-Trimethylbenzene	100	< 3.8	< 3.8
12-Dichlorobenzene 600 < 3.8 < 3.8 < 3.8 < 3.8 1,2-Dichloropthane 2 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8				
12-Dichloropthane	,			
12-Dichloropropane				
1,3-Dirchlorobenzene				
13-Dichlorobenzene 600 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 < 3.8 <				
1.3-Dichloropropane				
2,2-Dichloropropane 100 < 3.8		100		
2-Chlorotoluene				
Acetone				
Benzene				
Bromobenzene				
Bromochloromethane				
Bromodichloromethane				
Carbon tetrachloride 1 < 3.8				
Chlorodibromomethane 1 < 3.8			< 3.8	< 3.8
Chlorodibromomethane 1 < 3.8				
Chloroethane 5 <3.8 <3.8 Chloroform 70 <3.8				
Chloroform 70 < 3.8 < 3.8 Cis-1,2-Dichloroethene 70 < 3.8				
Cis-1,2-Dichloroethene 70 < 3.8				
Cymene 100 < 3.8 < 3.8 Dichlorodifluoromethane 1,000 < 3.8				
Dichlorodifluoromethane 1,000 < 3.8	Cis-1,3-Dichloropropene	1	< 3.8	< 3.8
Ethyl benzene 700 < 3.8				
Hexachlorobutadiene				
Stopropylbenzene 700 21.7 < 3.8 Meta/Para Xylene 1,000 < 7.5 < 7.5 Methyl bromide 10 2.2 J < 3.8 Methyl butyl ketone 300 < 18.8 < 18.8 Methyl chloride 100 < 3.8 < 3.8 Methyl ethyl ketone 300 < 18.8 < 18.8 Methyl sobutyl ketone 300 < 18.8 < 18.8 Methyl isobutyl ketone 100 < 18.8 < 18.8 Methyl isobutyl ketone 100 < 18.8 < 18.8 Methyl Tertbutyl Ether 70 < 3.8 < 3.8 Methylene chloride 3 < 3.8 < 3.8 Naphthalene 300 < 3.8 < 3.8 N-Butylbenzene 100 10.4 < 3.8 Ortho Xylene 1,000 < 3.8 < 3.8 Propylbenzene 100 36.2 < 3.8 Propylbenzene 100 36.2 < 3.8 Styrene 100 33.4 < 3.8 Styrene 100 < 3.8 < 3.8 Styrene 100 < 3.8 < 3.8 Tert Butyl Alcohol 100 < 62.5 < 62.5 tert-Butylbenzene 100 < 3.8 < 3.8 Tetrachloroethene 1 < 3.8 < 3.8 Total Xylenes 1,000 < 11.3 < 11.3 Trans-1,2-Dichloroethene 1 < 3.8 < 3.8 Trichloroftuoromethane 2,000 < 3.8 < 3.8 Trichloroftuoromethane 2,000 < 3.8 < 3.8 Tick VOCs (µg/l) Tickloroethene 1 < 3.8 < 3.8 TIC VOCs (µg/l)	,			
Meta/Para Xylene 1,000 < 7.5 < 7.5 Methyl bromide 10 2.2 J < 3.8 Methyl butyl ketone 300 < 18.8 < 18.8 Methyl chloride 100 < 3.8 < 3.8 Methyl ethyl ketone 300 < 18.8 < 18.8 Methyl isobutyl ketone 100 < 18.8 < 18.8 Methyl Terrbutyl Ether 70 < 3.8 < 3.8 Methylene chloride 3 < 3.8 < 3.8 Naphthalene 300 < 3.8 < 3.8 Naphthalene 300 < 3.8 < 3.8 Naphthalene 100 10.4 < 3.8 Polytipenzene 100 10.4 < 3.8 Propylbenzene 100 36.2 < 3.8 Styrene <td></td> <td></td> <td></td> <td></td>				
Methyl bromide 10 2.2 J < 3.8 Methyl butyl ketone 300 < 18.8				
Methyl butyl ketone 300 < 18.8				
Methyl ethyl ketone 300 < 18.8	Methyl butyl ketone			
Methyl isobutyl ketone 100 <18.8				
Methyl Tertbutyl Ether 70 < 3.8				
Methylene chloride 3 < 3.8				
Naphthalene 300 < 3.8 < 3.8 n-Butylbenzene 100 10.4 < 3.8				
n-Butylbenzene 100 10.4 < 3.8 Ortho Xylene 1,000 < 3.8				
Ortho Xylene 1,000 < 3.8				
Propylbenzene 100 36.2 < 3.8				
sec-Butylbenzene 100 13.4 < 3.8				
Styrene 100 < 3.8 < 3.8 Tert Butyl Alcohol 100 < 62.5				
Tert Butyl Alcohol 100 < 62.5				
tert-Burylbenzene 100 < 3.8	- ,			
Tetrachloroethene 1 < 3.8				
Toluene 600 < 3.8				
Trans-1,2-Dichloroethene 100 < 3.8	Toluene		< 3.8	
Trans-1,3-Dichloropropene 1 < 3.8				
Trichloroethene 1 < 3.8				
Trichlorofluoromethane 2,000 < 3.8				
Vinyl chloride 1 < 3.8 < 3.8 TIC VOCs (μg/l)				
TIC VOCs (µg/I)				
			7 0.0	3 0.0
		500	373.6 JN	NA

TABLE 2 TEMPORARY MONITORING WELL GROUND WATER SAMPLING RESULTS - COMPARISON TO NJDEP GWQC SITE UST 482 FORT MONMOUTH, NEW JERSEY

Loc ID		DAD 92 492 TMM 04	PAR-83-482-TMW-03		
LOC ID	NJ Ground	PAR-83-482-TMW-01			
Sample ID	Water Quality	PAR-83-482-TMW-01-6	PAR-83-482-TMW-03-6		
Sample Date	Criteria	11/13/2017	11/13/2017		
Sample Round					
Filtered		Total	Total		
Semivolatile Organic Compour	nds (µg/l)				
1,2,4-Trichlorobenzene	9	< 0.92	< 5		
1,2-Dichlorobenzene	600	< 0.92	< 5		
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	20 600	< 0.92 < 0.92	< 5 < 5		
1,4-Dichlorobenzene	75	< 0.92	< 5		
2,4,5-Trichlorophenol	700	< 2.8	< 15		
2,4,6-Trichlorophenol	20	< 0.92	< 5		
2,4-Dichlorophenol	20	< 0.92	< 5		
2,4-Dimethylphenol 2,4-Dinitrophenol	100 40	< 4.6 < 7.3	< 25 < 40		
2,4-Dinitrophenoi	10	< 0.92	< 5		
2,6-Dinitrotoluene	10	< 0.92	< 5		
2-Chloronaphthalene	600	< 0.92	< 5		
2-Chlorophenol	40	< 1.8	< 10		
2-Methylnaphthalene	30	715	11		
2-Methylphenol 2-Nitroaniline	100 100	< 0.92 < 0.92	< 5 < 5		
2-Nitrophenol	100	< 1.8	< 10		
3,3'-Dichlorobenzidine	30	< 2.8	< 15		
3-Nitroaniline	100	< 1.8	< 10		
4,6-Dinitro-2-methylphenol	1	< 4.6	< 25		
4-Bromophenyl phenyl ether	100 100	< 0.92 < 0.92	< 5		
4-Chloro-3-methylphenol 4-Chloroaniline	30	< 0.92	< 5 < 5		
4-Chlorophenyl phenyl ether	100	< 0.92	< 5		
4-Nitroaniline	5	< 0.92	< 5		
4-Nitrophenol	100	< 4.6	< 25		
Acenaphthele	400 100	40.3	5.5 J		
Acenaphthylene Anthracene	2,000	< 0.92 < 0.92	< 5 6.9 J		
Benzidine	20	< 27.5	< 150		
Benzo(a)anthracene	0.1	< 0.92	24.7		
Benzo(a)pyrene	0.1	< 0.92	27.5		
Benzo(b)fluoranthene	0.2 100	< 0.92	40.9		
Benzo(ghi)perylene Benzo(k)fluoranthene	0.5	< 0.92 < 0.92	21 15.7		
Benzyl alcohol	2,000	< 1.8	< 10		
Bis(2-Chloroethoxy)methane	100	< 0.92	< 5		
Bis(2-Chloroethyl)ether	7	< 0.92	< 5		
Bis(2-Chloroisopropyl)ether	300	< 0.92	< 5		
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	100	2.1 J < 0.92	< 5 < 5		
Carbazole	100	< 0.92	2.7 J		
Chrysene	5	< 0.92	29.2		
Cresol	NLE	< 0.92	< 5		
Dibenz(a,h)anthracene	0.3 100	< 0.92	5.3 J		
Dibenzofuran Diethyl phthalate	6,000	18 < 0.92	4.8 J < 5		
Dimethyl phthalate	100	< 0.92	< 5 < 5		
Di-n-butylphthalate	700	< 0.92	1 J		
Di-n-octylphthalate	100	< 0.92	< 5		
Fluoranthene	300	< 0.92	45.6		
Fluorene Hexachlorobenzene	300 0.02	53.6 < 0.92	5.8 J < 5		
Hexachlorobutadiene	1	< 0.92	< 5		
Hexachlorocyclopentadiene	40	< 1.8	< 10		
Hexachloroethane	7	< 0.92	< 5		
Indeno(1,2,3-cd)pyrene	0.2	< 0.92	21.5		
Isophorone Naphthalene	40 300	< 0.92 < 0.92	< 5 4.1 J		
Nitrobenzene	6	< 0.92	< 10		
N-Nitrosodimethylamine	0.8	< 1.8	< 10		
N-Nitroso-di-n-propylamine	10	< 0.92	< 5		
N-Nitrosodiphenylamine	10	< 1.8	< 10		
Pentachlorophenol Phenanthrene	0.3 100	< 7.3	< 40		
Phenanthrene	2,000	111 < 0.92	24.7 < 5		
Phenol					
Phenol Pyrene	200	9.9	41.6		
			41.6 1700.5 JN		

Footnote:

- 1) All historical data collected prior to 2013 are reported as provided by others.
- 2) Number of Analyses is the number of detected and non-detected results excluding rejected results. Sample duplicate pairs have not been averaged.
- 3) NLE = no limit established.
- 4) ND = not detected in any background sample, no background concentration available.
- 5) Bold chemical dectection
- 6) SS = Site Specific action level, see "Specific Chemical Class (or Parameter)" footnote for details.
- 7) Chemical result qualifiers are assigned by the laboratory and are evaluated and modified (if necessary) during the data validation.

[blank] = detect, i.e. detected chemical result value. E (or ER) = Estimated result.

B = Compound detected in the sample at a concentration less than or equal to 5 times (10 times for common lab D = Results from dilution of sample. contaminants) the blank concentration.

 $\label{eq:Rejected} R = Rejected, data \ validation \ rejected \ the \ results.$ J-DL = Elevated sample detection limit due to difficult sample matrix.

U = non-detect, i.e. not detected at or above this value. JN = Tentatively identified compound, estimated concentration.

U-DL = Elevated sample detection limit due to difficult sample matrix. UJ=The compound was not detected: however, the results is estimated because of discrepancies in

meeting certain analyte-specific QC criteria.

U-ND = Analyte not detected in sample, but no detection or reporting limit provided.

J = estimated detected value due to a concetration below the reporting limit or due to discrepancies in meeting J- = The result is an estimated quantity, but the result may be biased low. certain analyte-specific quality control.

J+ = The result is an estimated quantity, but the result may be biased high.

- 8) Specific Chemical Classes (or Parameters) comments or notes regarding how data is displayed, compared to Action Levels, or represented in this table.
- 9) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.
- Cell Shade values represent a result that is above the NJ Ground Water Quality Criteria

####

NJDEP Interim Specific GWQC values are presented for the NJ GWQS where there is not a Specific Ground Water Quality Criteria. A full list of compounds is available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

NJDEP Interim Generic GWQC values are presented for the NJ GWQS where there is not a XXXXX or a NJDEP Interim Specific GWQC. Available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

- 10) Criteria action level source document and web address.
- The NJ Ground Water Quality Criteria refers to the NJDEP Groundwater Quality Standards Adopted July 22, 2010 http://www.state.nj.us/dep/wms/bwqsa/docs/njac79C.pdf

TABLE 3 PERMANENT MONITORING WELL GROUND WATER SAMPLING RESULTS - COMPARISON TO NJDEP GWQC SITE UST 482 FORT MONMOUTH, NEW JERSEY

Loc ID	NJ Ground	PAR-83-482-MW-01	PAR-83-482-MW-02
Sample ID	Water Quality	PAR-83-482-GW-MW-01-7	PAR-83-482-GW-MW-02-10.6
Sample Date	Criteria	1/19/2018	1/19/2018
Filtered	1 1	Total	Total
Volatile Organic Compounds	(μg/l)		
1,1,1,2-Tetrachloroethane	1	< 0.75	< 0.75
1,1,1-Trichloroethane	30	< 0.75	< 0.75
1,1,2,2-Tetrachloroethane	1	< 0.75	< 0.75
1,1,2-Trichloroethane	3	< 0.75	< 0.75
1,1-Dichloroethane	50	< 0.75	< 0.75
1,1-Dichloroethene 1,1-Dichloropropene	1 100	< 0.75 < 0.75	< 0.75 < 0.75
1,2,3-Trichlorobenzene	100	< 0.75	< 0.75
1,2,3-Trichloropropane	0.03	< 2.5	< 2.5
1,2,4-Trichlorobenzene	9	< 0.75	< 0.75
1,2,4-Trimethylbenzene	100	< 0.75	< 0.75
1,2-Dibromo-3-chloropropane	0.02	< 2.5	< 2.5
1,2-Dibromoethane	0.03	< 0.75	< 0.75
1,2-Dichlorobenzene	600	< 0.75	< 0.75
1,2-Dichloroethane	2	< 0.75	< 0.75
1,2-Dichloropropane	1 100	< 0.75 < 0.75	< 0.75 < 0.75
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	600	< 0.75	< 0.75 < 0.75
1,3-Dichloropropane	100	< 0.75	< 0.75
1,4-Dichlorobenzene	75	< 0.75	< 0.75
2,2-Dichloropropane	100	< 0.75	< 0.75
2-Chlorotoluene	100	< 0.75	< 0.75
Acetone	6,000	5.6	< 3.8
Benzene	1	< 0.75	< 0.75
Bromobenzene	100	< 0.75	< 0.75
Bromochloromethane	100	< 0.75	< 0.75
Bromodichloromethane	1 4	< 0.75	< 0.75
Bromoform Carbon tetrachloride	1	< 0.75 < 0.75	< 0.75 < 0.75
Chlorobenzene	50	2.2	< 0.75
Chlorodibromomethane	1	< 0.75	< 0.75
Chloroethane	5	< 0.75	< 0.75
Chloroform	70	< 0.75	< 0.75
Cis-1,2-Dichloroethene	70	< 0.75	< 0.75
Cis-1,3-Dichloropropene	1	< 0.75	< 0.75
Cymene Dichlorodifluoromethane	1,000	< 0.75 < 0.75	< 0.75 < 0.75
Ethyl benzene	700	< 0.75	< 0.75
Hexachlorobutadiene	1	< 3.8	< 3.8
Isopropylbenzene	700	3.4	< 0.75
Meta/Para Xylene	1,000	< 1.5	< 1.5
Methyl bromide	10	< 0.75	< 0.75
Methyl butyl ketone	300	< 3.8	< 3.8
Methyl chloride	100	< 0.75	< 0.75
Methyl ethyl ketone	300 100	< 3.8 < 3.8	< 3.8 < 3.8
Methyl isobutyl ketone Methyl Tertbutyl Ether	70	< 3.8 < 0.75	< 3.8 < 0.75
Methylene chloride	3	< 0.75	< 0.75
Naphthalene	300	0.65 J	< 0.75
n-Butylbenzene	100	1.4	< 0.75
Ortho Xylene	1,000	< 0.75	< 0.75
p-Chlorotoluene	100	< 0.75	< 0.75
Propylbenzene	100	4.5	< 0.75
sec-Butylbenzene	100 100	2.4	< 0.75
Styrene Tert Butyl Alcohol	100	< 0.75 < 12.5	< 0.75 < 12.5
tert-Butylbenzene	100	< 0.75	< 0.75
Tetrachloroethene	1	< 0.75	< 0.75
Toluene	600	< 0.75	< 0.75
Total Xylenes	1,000	< 2.3	< 2.3
Trans-1,2-Dichloroethene	100	< 0.75	< 0.75
Trans-1,3-Dichloropropene	1	< 0.75	< 0.75
Trichloroethene	1	< 0.75	< 0.75
Trichlorofluoromethane Vinyl chloride	2,000	< 0.75 < 0.75	< 0.75 < 0.75
TIC VOCs (µg/I)	'	< 0.75	< 0.75
Total TICs	500	60.4 JN	NA

TABLE 3 PERMANENT MONITORING WELL GROUND WATER SAMPLING RESULTS - COMPARISON TO NJDEP $$\sf GWQC$$ SITE UST 482 FORT MONMOUTH, NEW JERSEY

Loc ID	NJ Ground	PAR-83-482-MW-0	1	PAR-83-482-MW-02			
Sample ID	Water Quality	PAR-83-482-GW-MW-0	01-7	PAR-83-482-GW-MW-02-10.6 1/19/2018			
Sample Date	Criteria	1/19/2018					
Filtered		Total		Total			
Semivolatile Organic Compoun	ds (µg/l)						
1,2,4-Trichlorobenzene	9	< 0.99		<1			
1,2-Dichlorobenzene	600	< 0.99		<1			
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	20 600	< 0.99 < 0.99		<1			
1,4-Dichlorobenzene	75	0.19	J	<1			
2,4,5-Trichlorophenol	700	< 3	_	< 3.1			
2,4,6-Trichlorophenol	20	< 0.99		< 1			
2,4-Dichlorophenol	20	< 0.99		< 1			
2,4-Dimethylphenol	100	< 4.9		< 5.2			
2,4-Dinitrophenol 2,4-Dinitrotoluene	40 10	< 7.9 < 0.99		< 8.3 < 1			
2,6-Dinitrotoluene	10	< 0.99		<1			
2-Chloronaphthalene	600	< 0.99		< 1			
2-Chlorophenol	40	< 2		< 2.1			
2-Methylnaphthalene	30	9		< 1			
2-Methylphenol	100	< 0.99		<1	<u> </u>		
2-Nitroaniline 2-Nitrophenol	100 100	< 0.99 < 2		< 1 < 2.1			
3,3'-Dichlorobenzidine	30	< 3		< 3.1			
3-Nitroaniline	100	< 2		< 2.1			
4,6-Dinitro-2-methylphenol	1	< 4.9		< 5.2			
4-Bromophenyl phenyl ether	100	< 0.99		< 1			
4-Chloro-3-methylphenol	100	< 0.99		< 1			
4-Chloroaniline 4-Chlorophenyl phenyl ether	30 100	< 0.99 < 0.99		< 1 < 1			
4-Oliotophenyl phenyl ether 4-Nitroaniline	5	< 0.99		<1			
4-Nitrophenol	100	< 4.9		< 5.2			
Acenaphthene	400	0.95	J	<1			
Acenaphthylene	100	< 0.99		< 1			
Anthracene	2,000 20	< 0.99		<1			
Benzidine Benzo(a)anthracene	0.1	< 29.6 < 0.99		< 31.1 < 1			
Benzo(a)pyrene	0.1	< 0.99		<1			
Benzo(b)fluoranthene	0.2	< 0.99		< 1			
Benzo(ghi)perylene	100	< 0.99		< 1			
Benzo(k)fluoranthene	0.5	< 0.99		< 1			
Benzyl alcohol Bis(2-Chloroethoxy)methane	2,000 100	< 2 < 0.99		< 2.1			
Bis(2-Chloroethyl)ether	7	< 0.99		<1			
Bis(2-Chloroisopropyl)ether	300	< 0.99		<1			
Bis(2-Ethylhexyl)phthalate	3	< 0.99		0.28	J		
Butyl benzyl phthalate	100	< 0.99		0.18	J		
Carbazole	100	< 0.99		< 1			
Chrysene Cresol	5 NLE	< 0.99 < 0.99		<1 <1			
Dibenz(a,h)anthracene	0.3	< 0.99		<1			
Dibenzofuran	100	0.47	J	<1			
Diethyl phthalate	6,000	< 0.99		<1			
Dimethyl phthalate	100	< 0.99		<1			
Di-n-butylphthalate Di-n-octylphthalate	700 100	< 0.99		< 1 < 1			
DI-n-octylphthalate Fluoranthene	300	< 0.99 < 0.99		0.19	J		
Fluorene	300	1	J	< 1	Ť		
Hexachlorobenzene	0.02	< 0.99		<1			
Hexachlorobutadiene	1	< 0.99		<1			
Hexachlorocyclopentadiene	40	< 2		< 2.1			
Hexachloroethane	7 0.2	< 0.99 < 0.99		<1 <1			
Indeno(1,2,3-cd)pyrene Isophorone	40	< 0.99 < 0.99		<1	-		
Naphthalene	300	< 0.99		<1			
Nitrobenzene	6	< 2		< 2.1			
N-Nitrosodimethylamine	0.8	< 2		< 2.1			
N-Nitroso-di-n-propylamine	10	< 0.99		<1			
N-Nitrosodiphenylamine	10 0.3	< 2		< 2.1			
Pentachlorophenol Phenanthrene	100	< 7.9 0.16	J	< 8.3 0.19	J		
Phenol	2,000	< 0.99		<1			
Pyrene	200	< 0.99		0.21	J		
TIC SVOCs (µg/I)							
Total TICs	500	73.2	JN	7.3	JN		

Footnote:

- 1) All historical data collected prior to 2013 are reported as provided by others.
- 2) Number of Analyses is the number of detected and non-detected results excluding rejected results. Sample duplicate pairs have not been averaged.
- 3) NLE = no limit established.
- 4) ND = not detected in any background sample, no background concentration available.
- 5) Bold chemical dectection
- 6) SS = Site Specific action level, see "Specific Chemical Class (or Parameter)" footnote for details.
- 7) Chemical result qualifiers are assigned by the laboratory and are evaluated and modified (if necessary) during the data validation.

[blank] = detect, i.e. detected chemical result value. E (or ER) = Estimated result.

B = Compound detected in the sample at a concentration less than or equal to 5 times (10 times for common lab D = Results from dilution of sample. contaminants) the blank concentration.

 $\label{eq:Rejected} R = Rejected, data \ validation \ rejected \ the \ results.$ J-DL = Elevated sample detection limit due to difficult sample matrix.

U = non-detect, i.e. not detected at or above this value. JN = Tentatively identified compound, estimated concentration.

U-DL = Elevated sample detection limit due to difficult sample matrix. UJ=The compound was not detected: however, the results is estimated because of discrepancies in

meeting certain analyte-specific QC criteria.

U-ND = Analyte not detected in sample, but no detection or reporting limit provided.

J = estimated detected value due to a concetration below the reporting limit or due to discrepancies in meeting J- = The result is an estimated quantity, but the result may be biased low. certain analyte-specific quality control.

J+ = The result is an estimated quantity, but the result may be biased high.

- 8) Specific Chemical Classes (or Parameters) comments or notes regarding how data is displayed, compared to Action Levels, or represented in this table.
- 9) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.
- Cell Shade values represent a result that is above the NJ Ground Water Quality Criteria

####

NJDEP Interim Specific GWQC values are presented for the NJ GWQS where there is not a Specific Ground Water Quality Criteria. A full list of compounds is available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

NJDEP Interim Generic GWQC values are presented for the NJ GWQS where there is not a XXXXX or a NJDEP Interim Specific GWQC. Available at (http://www.nj.gov/dep/wms/bwqsa/gwqs_interim_criteria_table.htm).

- 10) Criteria action level source document and web address.
- The NJ Ground Water Quality Criteria refers to the NJDEP Groundwater Quality Standards Adopted July 22, 2010 http://www.state.nj.us/dep/wms/bwqsa/docs/njac79C.pdf

TABLE 4 SOIL SAMPLING RESULTS - COMPARISON TO NJDEP SOIL REMEDIATION STANDARDS SITE PARCEL 83 482 UST FORT MOMMOUTH, NEW JERSEY

Loc ID	NJ Residential	Residential	NJ Impact to GW Soil	PAR-83-482-SB-01			PAR-83-482-SB-02				PAR-83-482-SB-03		PAR-83-482-SB-04		
Sample ID	Contact SRS	Direct	Screening	PAR-83-482-SB-01-0.5-1	PAR-83-482-SB-01-1.5-2	PAR-83-482-SB-01-7.5-8	PAR-83-482-SB-02-5.5-6	PAR-83-482-SB-02-7.5-8	PAR-83-482-SB-02-12.5-13	PAR-83-482-SB-03-1.5-2	PAR-83-482-SB-03-5-5.5	PAR-83-482-SB-03-6-6.5	PAR-83-482-SB-04-0-0.5	PAR-83-482-SB-04-3-3.5	PAR-83-482-SB-04-8.5-9
Sample Date	Contact SNS	Contact SKS	Level	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017	11/13/2017
Semivolatile Organic Compounds (mg/kg)															
2-Methylnaphthalene	230	2,400	8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	32.2	NA
Naphthalene	6	17	25	< 0.073	0.092 J	< 0.082	0.087 J	< 0.087	< 0.094	0.13	0.069 J	0.024 J	< 0.08	< 0.079	< 0.081
Extractable/Volatile Petroleum Hydrocarbons (m	ng/kg)														
EPH (C9-C40)	NLE	NLE	NLE	19.8	2,410	0.55 J	66.9	1,560	0.54 J	120	190	216	69.1	3,000	0.81 J

Footnote:

- 1) All historical data collected prior to 2013 are reported as provided by others.
- 2) Number of Analyses is the number of detected and non-detected results excluding rejected results. Sample duplicate pairs have not been averaged.
- 3) NLE = no limit established.
- 4) ND = not detected in any background sample, no background concentration available.
- 5) Bold chemical dectection
- 6) SS = Site Specific action level, see "Specific Chemical Class (or Parameter)" footnote for details.
- 7) Chemical result qualifiers are assigned by the laboratory and are evaluated and modified (if necessary) during the data validation.

[blank] = detect, i.e. detected chemical result value.

E (or ER) = Estimated result.

B = Compound detected in the sample at a concentration less than or equal to 5 times (10 times for common lab D = Results from dilution of sample. contaminants) the blank concentration.

R = Rejected, data validation rejected the results.

U = non-detect, i.e. not detected at or above this value.

JN = Tentatively identified compound, estimated concentration.

J-DL = Elevated sample detection limit due to difficult sample matrix.

U-DL = Elevated sample detection limit due to difficult sample matrix.

UJ=The compound was not detected: however, the results is estimated because of discrepancies in

meeting certain analyte-specific QC criteria.

U-ND = Analyte not detected in sample, but no detection or reporting limit provided.

J+ = The result is an estimated quantity, but the result may be biased high.

J = estimated detected value due to a concetration below the reporting limit or due to discrepancies in meeting certain analyte-specific quality control.

J- = The result is an estimated quantity, but the result may be biased low.

8) Specific Chemical Classes (or Parameters) comments or notes regarding how data is displayed, compared to Action Levels, or represented in this table.

a) DELETE THIS NOTE BEFORE GOING FINAL: Refer to the NJDEP Protocol for Addressing Extractable Petroleum Hydrocarbons (Version 5.0, August 9, 2010) and the NJDEP Health Based end Ecological Screening Criteria for Petroleum Hydrocarbons (Version 4.0, August 9, 2010) to determine the category of tank being investigated and the appropriate cleanup standards or screening levels for that category of tank.

9) Chemical results greater than or equal to the action level (depending on criteria) are highlighted based on the Criteria that are present.

- Cell Shade values represent a result that is above the NJ Residential Direct Contact Soil Remediation Standard.
- There are no NJDEP soil standards for individual PCB Aroclors, therefore the total PCB NJDEP standards were used for individual Aroclors.
- Cell Shade values represent a result that is above the NJ Non-Residential Direct Contact Soil Remediation Standard.
- Cell Shade values represent a result that is above the NJ Impact to GW Soil Screening Level
- Cell Shade values represent a result that is above both the NJ Residential, Non-Residential, AND NJ Impact to GW Soil Screening Level Direct Contact Soil Remediation Standard.
- Cell Shade values represent a result that is above both the NJ Residential and Non-Residential Direct Contact Soil Remediation Standard.

10) Criteria action level source document and web address.

- The NJ Residential Direct Contact Soil Remediation Standard refers to the NJDEP's Sept 18, 2017 Remediation Standards http://www.nj.gov/dep/rules/rules/njac7_26d.pdf
- The NJ Non-Residential Direct Contact Soil Remediation Standard refers to the NJDEP's Sept 18, 2017 Remediation Standards http://www.nj.gov/dep/rules/rules/njac7_26d.pdf
- The NJ Impact to GW Soil Screening Level criteria refers to the Development of Site Specific Impact to Ground Water Soil Remediation Standards Nov 2013 revised http://www.nj.gov/dep/srp/guidance/rs/partition_equation.pdf

Attachment A

Correspondence and Historical Information

- 1. New Jersey Department of Environmental Protection (NJDEP). 2017. Email to the Army, RE: *UST 482 Area*. August 29.
- 2. Department of the Army. 2017. Letter Work Plan Addendum for UST 482 Area, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. August 4.
- 3. Department of the Army. 2016. Response to NJDEP's October 13, 2015 Comments on the July 30, 2015 No Further Action Request, Site Investigation Report, Addendum for the ECP Parcel 83 Underground Storage Tanks, Fort Monmouth, New Jersey. Prepared by the Office of Assistant Chief of Staff for Installation Management, U.S. Army Fort Monmouth. July 12.
- 4. Attachment O from the July 2015 Army Document, No Further Action Request, Site Investigation Report Addendum for the ECP Parcel 83 Underground Storage Tanks.
- 5. New Jersey Department of Environmental Protection (NJDEP). 2003. Letter to the Army, RE: *UST Closure Approval/NFA Fort Monmouth Main Post Monmouth County*. January10.
- 6. Excerpts from the Underground Storage Tank Closure and Site Investigation Report Building 482, March 2002.

Friesen, Kent

From: Joshi, Ashish <Ashish.Joshi@dep.nj.gov>
Sent: Tuesday, August 29, 2017 3:51 PM

To: Colvin, William R Jr CIV (US); Grill, Cris; Friesen, Kent; Pearson, Joe; Moore, James T CIV

USARMY CENAN (US)

Cc: Zervas, Gwen Subject: UST 482 Area

Mr. Colvin,

The submitted workplan addendum for UST 482 area is acceptable. Further delineation of soil and groundwater in the area adjacent to and south of former UST 482 is acceptable and approved. Please indicate if further soil excavation will be performed in those area where contamination exceeds criteria and if excavation is going to be completed then please indicate if post excavation soil sampling will be conducted. Please provide a table of all soil and ground water data past and present.

Please feel free to contact me if you have any questions. Thank you.

A.J. Joshi

Cedar Knolls, NJ 07927

NJ Department of Environmental Protection Site Remediation Program Bureau of Field Operations – Northern Office 7 Ridgedale Avenue

DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT, NEW JERSEY 07757

4 August 2017

Mr. Ashish Joshi New Jersey Department of Environmental Protection Division of Remediation Management and Response Bureau of Northern Field Operations 7 Ridgedale Avenue (2nd Floor) Cedar Knolls, NJ 07927

SUBJECT: Letter Work Plan Addendum for UST 482 Area

Fort Monmouth, New Jersey

PI G00000032

Dear Mr. Joshi:

The purpose of this Work Plan Addendum is to supplement the environmental investigation of the UST 482 area within Parcel 83. This proposed work was referred to in the response to Comment D1 of the 12 July 2016 Army letter to NJDEP (**Attachment A**).

Historical activities from 1994 through 2011 included removal of: 1) UST 482 (a steel 1000-gallon fuel oil tank; 2) remnants of a "concrete pit" thought to be a septic tank; and 3) at least 80 cubic yards of petroleum-contaminated soil. Elevated concentrations of Total Petroleum Hydrocarbons (TPH) were reported in two of the 14 samples collected from the 1994 excavation at concentrations of 14,100 mg/kg and 29,400 mg/kg. As shown on Figure 4 of **Attachment A**, the soil represented by these 1994 soil sample results was removed by multiple excavation events between 1994 and 2002, and subsequent sample results from 2002 were 368 to 458 mg/kg TPH. The Army's No Further Action (NFA) request was approved by NJDEP in 2003.

Additional sampling of soil and groundwater and analyses for volatile organic compounds (VOCs) plus tentatively identified compound (TICs), semivolatile organic compounds (SVOCs) plus TICs, metals, pesticides, PCBs, and cyanide were performed in 2010 and 2011 to determine if there were impacts to soil or groundwater from the former septic. A summary of the UST removal, septic tank removal, and 2010 and 2011 sampling and analyses are included in the Underground Storage Tank File Review (Attachment A).

During the Parcel 83 field sampling activities in April 2016, elevated photoionization detector (PID) readings were noted on the field log for soil boring FTMM-83-SS-12 (also designated as FTMM-83-SB-12; see **Attachment B**). Field personnel also verbally reported sheen on groundwater and odors consistent with fuel oil in this boring; however, the associated soil sample was analyzed for polynuclear aromatic hydrocarbons (PAHs) rather than petroleum constituents in accordance with the Parcel 83 work plan approved by NJDEP on 22 December 2015. Boring

Mr. Ashish Joshi, NJDEP Letter Work Plan Addendum for UST 482 Area 4 August 2017 Page 2 of 3

FTMM-83-SB-13 located towards the southwest (and upgradient) of FTMM-83-SB-12 had no field observations of petroleum contamination.

As described in this Work Plan Addendum, additional soil and groundwater sampling are proposed to investigate the field observations of possible fuel oil contamination that were reported during the April 2016 field sampling activities at Parcel 83. Proposed sampling locations are presented in **Figure 1** and a summary of the proposed soil and groundwater sampling and analyses is presented in **Table 1**.

A minimum of four Geoprobe borings (482-SB-01 through 482-SB-04) will be installed as shown on **Figure 1** to assess the field observations encountered in April 2016. Three soil samples will be collected from each boring. An additional four Geoprobe borings will be installed at discretionary locations, if warranted, based on the preliminary data results or field observations of contamination. Boring 482-SB-01 is proposed to be installed immediately adjacent to previous boring FTMM-83-SS-12, where the field observations of petroleum were noted. Groundwater will be sampled by installing temporary wells with the Geoprobe within two of the four initial borings, anticipated to be 482-SB-01 and 482-SB-03, to determine if groundwater concentrations exceed NJDEP Ground Water Quality Criteria (GWQC). If preliminary data results suggest the need for permanent wells, then two to four permanent wells will be added to the field program in a subsequent mobilization.

Each soil sample will be analyzed for extractable petroleum hydrocarbons (EPH). A minimum of 25 percent of the samples with EPH concentrations greater than 1000 mg/kg will also be analyzed for 2-methylnaphthalene and naphthalene. Groundwater will be analyzed for VOCs+TICs and SVOCs+TICs. These soil and groundwater analyses are consistent with the requirements for No. 2 fuel oil in Table 2-1 of the NJAC 7:26E Technical Requirements for Site Remediation. A summary of the soil and groundwater sampling and analyses is presented in **Table 1**.

We look forward to your review of this proposed sampling plan, and approval or additional comments. The technical Point of Contact (POC) for this matter is Kent Friesen at (732) 383-7201 or kent.friesen@parsons.com. Should you have any questions or require additional information, please contact me by phone at (732) 380-7064 or by email at william.r.colvin18.civ@mail.mil.

Sincerely,

William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator

Attachments:

Figure 1: Proposed Sampling Locations

Table 1: Summary of Proposed Sampling for UST 482 Area

A. Correspondence and Historical Information

B. 2016 Soil Boring Log for FTMM-83-SS-12 (also designated as FTMM-83-SB-12)

Mr. Ashish Joshi, NJDEP Letter Work Plan Addendum for UST 482 Area 4 August 2017 Page 3 of 3

cc: Ashish Joshi (2 hard copies)

William R. Colvin, FTMM (1 hard copy and email)

Joseph Pearson, Calibre (e-mail) James Moore, USACE (e-mail) Jim Kelly, USACE (e-mail) Cris Grill, Parsons (e-mail)

DEPARTMENT OF THE ARMY

OFFICE OF ASSISTANT CHIEF OF STAFF FOR INSTALLATION MANAGEMENT U.S. ARMY FORT MONMOUTH P.O. 148 OCEANPORT. NEW JERSEY 07757

July 12, 2016

Ms. Linda Range New Jersey Department of Environmental Protection Bureau of Case Management 401 East State Street PO Box 420/Mail Code 401-05F Trenton, NJ 08625-0028

Re: Response to NJDEP's October 13, 2015 Comments on the July 30, 2015 No Further Action Request, Site Investigation Report Addendum for the ECP Parcel 83 Underground Storage Tanks, Fort Monmouth, NJ PI G000000032

Dear Ms. Range:

The Fort Monmouth team has reviewed the New Jersey Department of Environmental Protection (NJDEP) comments on the subject submittal for underground storage tanks (USTs) at ECP Parcel 83, as documented in your letter dated October 13, 2015. We appreciate this opportunity to work with you on Parcel 83 USTs. Responses to your comments are provided below, for your review and concurrence or further comments.

A. General Comments

- A1. COMMENT: Page 2 of 4 of the submittal indicates certain USTs specifically mentioned in previous NJDEP comments are not included in this submittal as there are no USTs associated with the particular buildings, specifically Buildings 66, 281 or 479. In reviewing this submittal, the UST referenced as near Building 281 appears to have been addressed via remedial activities at UST 108-7; see below for comment regarding same. USTs at (former) Buildings 66 and 479 (and 478) are shown in the 1956 Fuel Storage map, Appendix O, of the '07 ECP, as well as indicated as "high potential UHOTs" in Figure 2 of the July 2014 UHOT Investigation Report. Unless all tanks, former and/or current, have been evaluated in accordance with the applicable regulations and guidance documents, the NJDEP cannot comment as to the potential absence or presence of a petroleum discharge associated with those tanks.
- **A1. RESPONSE:** As discussed in the Parcel 83 USTs submittal, the Army has conducted a detailed review of available information to assess the presence of USTs within Parcel 83. Since there were no additional indications of USTs at Buildings 66, 478, and 479, the Army is not proposing additional assessment work at these locations. We concur that the UST near Building 281 is UST 108-7 (aka UST 108A) for which a NFA determination was received (NJDEP letter dated October 13, 2015).
- **A2: COMMENT:** As indicated in the submittal, numerous underground storage tanks (USTs) have previously received a designation of No Further Action (NFA) required. Based upon a review of the referenced submittal, it is also agreed NFA is necessary for the following USTs:

Linda S. Range, NJDEP Response to Comments SI Report Addendum for ECP Parcel 83 Underground Storage Tanks July 12, 2016 Page 2 of 3

- *UST* 49-76 & *UST*-49-77; #01-05-24-1004-1; each 5000 g gasoline (Attachment E)
- *UST 63B aka UST 63-2; 1000 g #2 fuel (Attachment F)*
- *UST 108A aka 108-7; 1000 g #2 fuel (Attachment I)*
- UST 116B aka UST 116-9; #97-04-10-1409-35; 1000 g #2 fuel; NFAed 10/23/00; ECP Parcel 85; additional sampling performed in May 2010 indicates NFA remains appropriate (Attachment J)
- UST 117C aka UST 117-72; #84-04-28-1944-21; 1000 g #2 fuel; ECP Parcel 86 (Attachment K)
- *USTs* 161 Parcel 87 (Attachment L)
 - o UST 161-68; 550 g waste oil
 - o UST 161-14; 1000 g #2 fuel; #93-03-12-2158-30
- UST 167-18; 1000 g #2 diesel (Attachment M)
- *USTs 273 aka 009001-65,66 & 67 (Attachment N)*
 - o UST 273-65; 6000 g diesel
 - o UST 273-66; 10,000 gasoline
 - o UST 273-67; 10,000 g gasoline
 - Note the NFA is applicable to the USTs only, not the dispenser/s, which were reported as used with the AST fuel storage system which replaced USTs 273 until subsequent AST closure in 2011
- UST 483-55; #97-03-19-1359-16; previously NFAed 10/23/00; additional sampling performed in May 2010 indicates NFA remains appropriate (Attachment P)
- **A2: RESPONSE:** Agreed. UST 273 had newer (1991) fiberglass tanks and piping with secondary containment, and was fully compliant with the release detection requirements for tanks (N.J.A.C 7:14B-6.5) and piping (7:14B-6.6). Further, the dispenser islands were less than 10 ft from the UST excavation, so any leakage from the dispenser area would likely have been detected in closure soil samples (which were clean). The Army is not proposing additional assessment work at the dispensers.

B. <u>UST 80 aka 80-6 aka FTMM-56 – Parcel 84 (Attachment G)</u>

- **B1. COMMENT**: UST 80-6 was a #2 fuel tank which was granted an NFA by the Department on August 29, 2000. Ground water contamination at FTMM-56 unrelated to #2 fuel was monitored on a quarterly basis for many years. Submittal of analytical results from the additional round of ground water sampling as per the DEP's July 3, 2014 comment letter are pending.
- **B1. RESPONSE:** We anticipate a future Army submittal concerning IRP site FTMM-56 (Building 80 Petroleum Release) that will summarize the soil and groundwater results.

C. <u>USTs 108-60 through 64 aka FTMM-57 – Parcel 90</u>

C1. COMMENT: Attachment H references five USTs which were removed in April of 1993, and lists just over a page with descriptive bullets of documents reported to include remedial activities relative to these USTs, concluding that reported results support site characterization work is complete. The submittal, however, includes no results; comments regarding adequacy of characterization and recommendations as to additional action are therefore not possible at this time.

Linda S. Range, NJDEP Response to Comments SI Report Addendum for ECP Parcel 83 Underground Storage Tanks July 12, 2016 Page 3 of 3

C1. RESPONSE: We anticipate a future Army submittal concerning IRP site FTMM-57 (Building 108 UST Gasoline Release) that will summarize the soil and groundwater analytical results.

D. UST 482-54 - Parcel 93 (located within Parcel 83)

- **D1. COMMENT:** As regarding UST 482-54 (#94-08-11-1345-43), which was NFAed in January of 2003, Attachment O appears to indicate TPH contaminated soils remain at levels of 14,100 ppm and 29,400 ppm. As indicated in the email of October 9, 2015, clarification is requested, as a designation of NFA is not appropriate for contamination at this level.
- **D1. RESPONSE:** Historical information and recent (April 2016) field observations of elevated photoionization detector (PID) readings in a boring near UST 482-54 indicate that additional characterization of the former UST 482 area is warranted. Field sampling at the UST 482 area will be performed at the same time that additional sampling at Parcel 83 is performed (which will be described under separate cover).

We request your review of these responses regarding USTs at ECP Parcel 83. Additional submittals for FTMM-56 (Building 80), FTMM-57 (Building 108), and UST 482 are forthcoming, as indicated above. Other specific issues concerning known or suspected non-UST contamination of soil or groundwater at Parcel 83 will also be addressed under separate cover as described in the November 2015 (Revision 1) *Environmental Condition of Property Phase II Site Investigation Work Plan Addendum* (the ECP Work Plan Addendum).

The technical Point of Contact (POC) for this matter is Kent Friesen at (732) 383-7201 or by email at kent.friesen@parsons.com. Should you have any questions or require additional information, please contact me by phone at (732) 380-7064 or by e-mail at william.r.colvin18.civ@mail.mi.

Sincerely,

William R. Colvin, PMP, PG, CHMM BRAC Environmental Coordinator

cc: Linda Range, NJDEP (e-mail and 3 hard copies)
Delight Balducci, HQDA ACSIM (e-mail)
Joseph Pearson, Calibre (e-mail)
James Moore, USACE (e-mail)
Jim Kelly, USACE (e-mail)
Cris Grill, Parsons (e-mail)

Attachment O from the July 2015 Army document entitled No Further Action Request, Site Investigation Report Addendum for the ECP Parcel 83 Underground Storage Tanks (the "Parcel 83 UST submittal").

ATTACHMENT O

UST 482 File Review and Analyses

Contents:

- Bldg. 482 Underground Storage Tank File Review
- Enclosure 1 Fort Monmouth 2010 Work Order Report
- Enclosure 2 –Analytical Data Reports (10372, 10373, and 11264)

UNDERGROUND STORAGE TANK FILE REVIEW FORT MONMOUTH BRAC 05 FACILITY OCEANPORT, NEW JERSEY

Date: July 21, 2015	Review Performed By: Kent Friesen, Parsons
Site ID: Bldg. 482	Registration ID: 90010-54
Recommended Status of Site: Case Close	d (no change)
UST Probability (from May 2014 "Addendur	n 1 ECP UHOT Report"): <i>None</i>
Based on the file review, were there indicat	ions of a contaminant release? [X]Yes []No
NJDEP Release No. or DICAR (If applicable):	94-8-11-1345-43
Did NJDEP approve No Further Action (NFA)	for this site? [X] Yes [] No [] Not Applicable
Tank Description: [X] Steel [] Fiberglass	Size: 1000 gals. Contents: #2 Fuel Oil
[] Residential [X] Commercial/Ind	ustrial
Tank Removed? [X] Yes [] No If "yes,	," removal date: <u>8/11/1994</u>
Were closure soil samples taken? [X] Yes	[] No Analyses: <u>TPH</u>
Comparison criteria: 5,100 mg/kg	
Were closure soil sample results less than c	omparison criteria?? [] Yes [X] No

Brief Narrative

This steel No. 2 fuel oil UST was located adjacent to Building 482. Following tank removal in April 1994, soil samples were collected from the tank excavation and analyzed by the Fort Monmouth Environmental Laboratory for total petroleum hydrocarbons (TPH). The initial soil sample results indicated some residual contamination, and a total of 80 cubic yards of petroleum-contaminated soil was excavated for offsite disposal. The final soil sample results ranged from 41 mg/kg to 2689 mg/kg for TPH, except for two locations that were sampled after soil excavation that contained 14,100 mg/kg to 29,400 mg/kg. Due to these elevated concentrations, additional soil samples were collected from seven additional locations and analyzed for TPH and volatile organic compounds (VOCs). VOCs were not detected in the additional samples, and TPH results from these later samples were less than the then-current remediation criteria of 10,000 mg/kg. Since sheen was observed on groundwater, two monitoring wells were installed downgradient of the tank excavation, and two rounds of groundwater were sampled and analyzed for VOCs and SVOCs. Groundwater results were less than the then-current Ground Water Quality Criteria (GWQC). A UST closure report for tank 482 was prepared in 2002 by Versar (Underground Storage Tank Closure and Site Investigation Report, Building 482, Main Post-East Area) and submitted to NJDEP. The site was approved for No Further Action (NFA) by NJDEP in their letter dated January 10, 2003.

Additional sampling of soil and groundwater was completed by FTMM in August 2010 at the former UST 482 site. A Scope of Work and additional field notes describing the sampling activities is presented in Enclosure 1, and the resulting analytical data is presented in Enclosure 2. The concentration of 2-methylnaphthalene in soil sample 482/SB-1 (5.0 to 5.5 ft bgs; collected on August 31, 2010) was 11.35 mg/kg, which exceeded NJDEP's impact to groundwater pathway screening level of 5 mg/kg. There were also multiple Tentatively Identified Compounds (TICs) in this soil sample that were consistent with petroleum hydrocarbon contamination. A temporary well groundwater sample 482/TMP-1 was also

PARSONS

collected on August 31, 2010 that contained no detected VOC target analytes, but multiple VOC TICs (sum estimated concentration of 512 $\mu g/L$) that were consistent with petroleum hydrocarbon contamination. The target SVOC analyte 2-methylnaphthalene was detected in this groundwater sample at a concentration of 8 $\mu g/L$, which is less than the NJDEP interim ground water quality criterion of 30 $\mu g/L$. Multiple SVOC TICs (sum estimated concentration of 184 $\mu g/L$) were also detected in this sample that were consistent with petroleum hydrocarbon contamination.

An additional temporary well groundwater sample 482-GW2 was collected on June 25, 2011 for VOCs and total lead analysis; detected constituents included benzene (0.17 μ g/L, which is less than the NJDEP GWQS of 1 μ g/L), VOC TICs (sum estimated concentration of 602 μ g/L), and lead (80.6 μ g/L, which exceeds the NJDEP GWQS of 5 μ g/L).

Further discussion is warranted regarding the 2010 and 2011 groundwater results. Lead exceeded the NJDEP GWQS, but is not likely a constituent of fuel oil; however, lead is a potential analyte of concern at the adjacent Site 108 gasoline USTs (also known as IRP Site FTMM-57). Further, lead could be attributed to sample turbidity in the temporary well. Therefore, the lead results are not likely attributed to the 482 UST site. 2-Methylnaphthalene is a likely fuel oil constituent that was detected in Site 482 groundwater, but the most recent (2010) data indicates that the concentration of this analyte is less than the interim GWQS of 30 $\mu g/L$.

In summary, NFA is warranted for soil and groundwater at Site 482.

Recommendations (if any): Submit for review; however, NFA already approved from NJDEP

Signed:

Kent A. Friesen, Parsons

ATTACHMENT O, Enclosure 1 UST 482 - Fort Monmouth 2010 Work Order Report

Date Prepared: August 12, 2010

Prepared by: Robert Youhas

Scope of Work for Building 482

Background

On August 11, 1994, one, 1,000-gallon, steel heating oil underground storage tank (UST) was removed from an area approximately 10 feet east of building 482. No pitting or holes were observed on the surface of the UST (#0090010-54). However, staining was observed in soil surrounding the UST and a sheen was observed on groundwater present in the excavation. Approximately 80 cubic yards of visually contaminated soil was removed. Based on the staining observed, the New Jersey Department of Environmental Protection (NJDEP) was notified and case #94-8-11-1345-43 was assigned. During removal of the UST and excavation of visually contaminated soil, remnants of a septic /wastewater system (concrete pit) were discovered. Post-excavation soil samples were collected in the concrete pit area and analyzed for total petroleum hydrocarbons (TPHC) only. The soil samples collected in the concrete pit area were not analyzed for the full, required list of analytical parameters [Priority Pollutants (PP+40) list required for unknown wastewater systems].

Between August 12, 1994 and February 20, 2002, additional excavation events were conducted. TPHC concentrations for all post-excavation soil samples collected on February 20, 2002 were determined to be in compliance with NJDEP soil standards that were in effect at the time.

On August 11, 1995, monitoring wells 482MW01 and 482MW02 were installed in the vicinity of the UST excavation area. Between 1995 and 1998, groundwater samples were collected from monitoring wells 482MW1 and 482MW02 and analyzed for volatile organic compounds (VOCs)+15 and semi-volatile organic compounds (SVOCs)+15. All groundwater analytical results were determined to be in compliance with the NJDEP Ground Water Quality Standards (GWQS).

In March 2002, no further action (NFA) for NJDEP case #94-8-11-1345-43 was requested in a *UST Closure and Site Investigation Report*. On January 10, 2003, NFA was approved by the NJDEP.

Purpose

To determine if the former septic/wastewater system discovered during UST excavation activities impacted soil and groundwater in the vicinity of building 482.

Scope of Work

Advance three soil borings (482SB-1, 482SB-2, 483SB-3) to the groundwater table (approximately 5 feet below grade). Scan the soil column collected in each acetate sleeve with a photoionzation detector (PID). Collect a single soil sample within six inches of the groundwater table (soil-water interface) from each soil boring. If elevated PID readings are encountered at a shallower depth, collect a soil sample at that location, in addition to the soil sample collected within six inches of the groundwater table. Submit soil samples to Fort Monmouth laboratory for PP+40 analysis.

Convert soil boring 482SB-1 into a temporary well point and collect a groundwater sample. Submit groundwater sample to Fort Monmouth laboratory for PP+40 analysis.

Results BN + 15

TAL Metals

Recommendations

Acid extractable +10

1- Liter

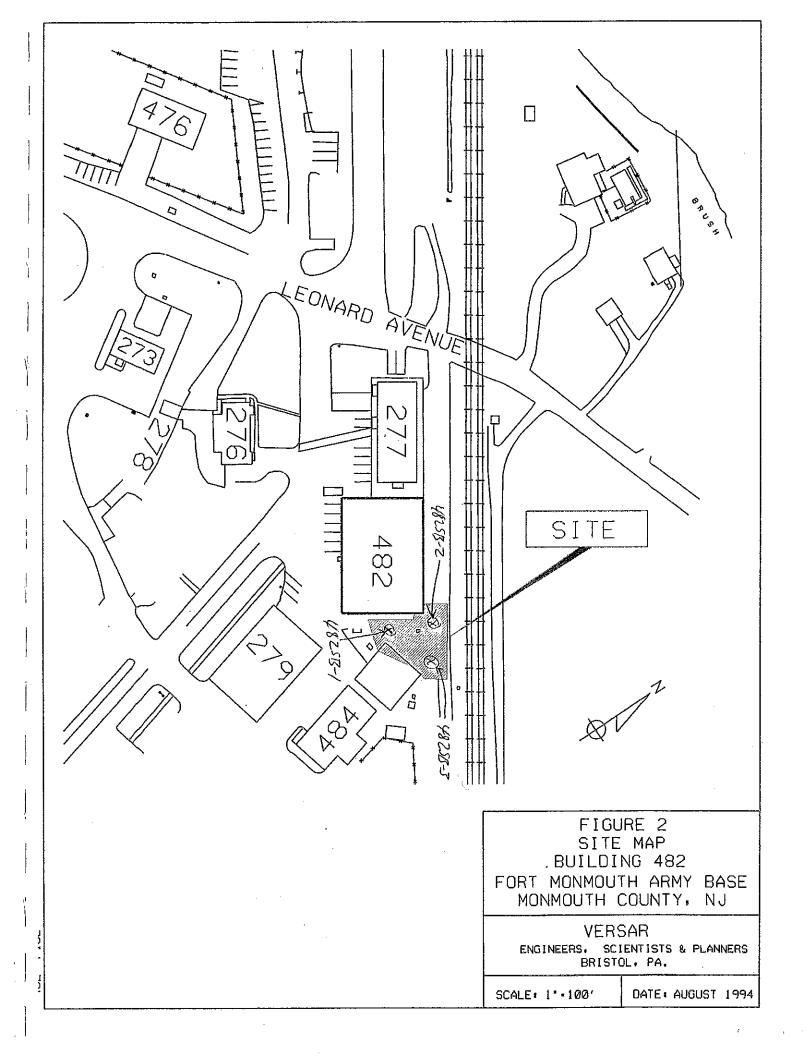
1- Liter

18

48

4-1; ter amber

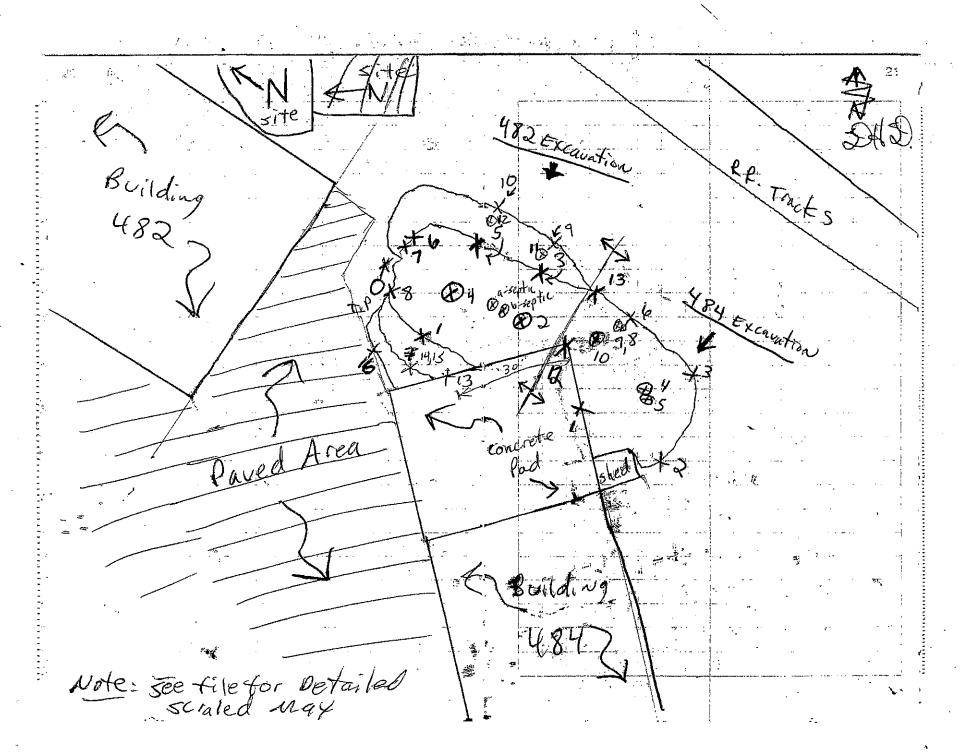
Methonal

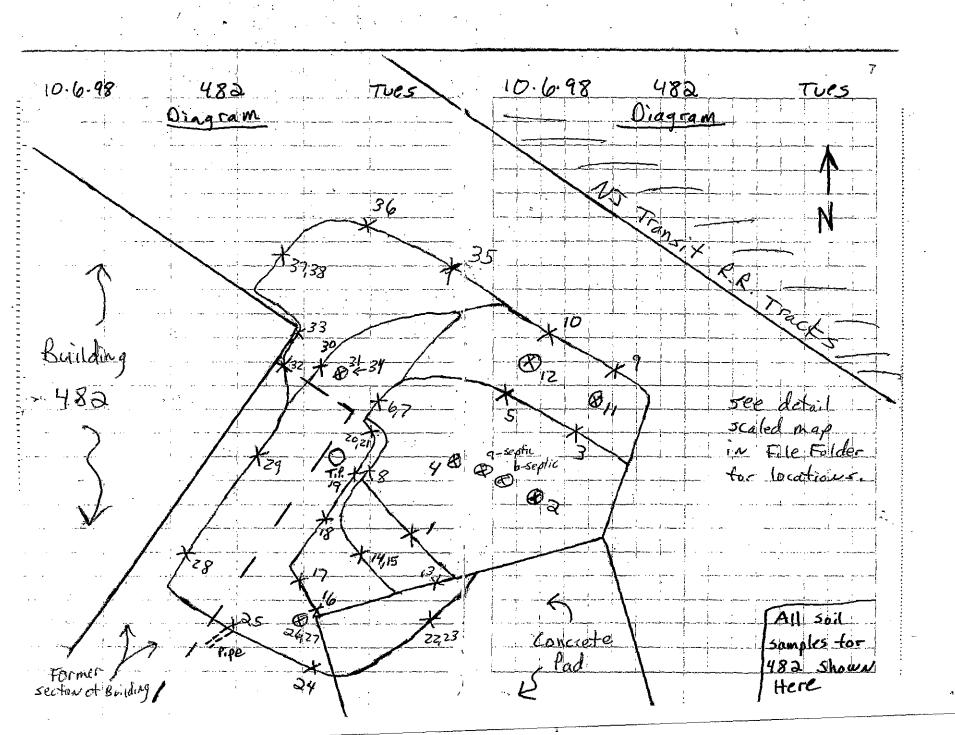

Trip

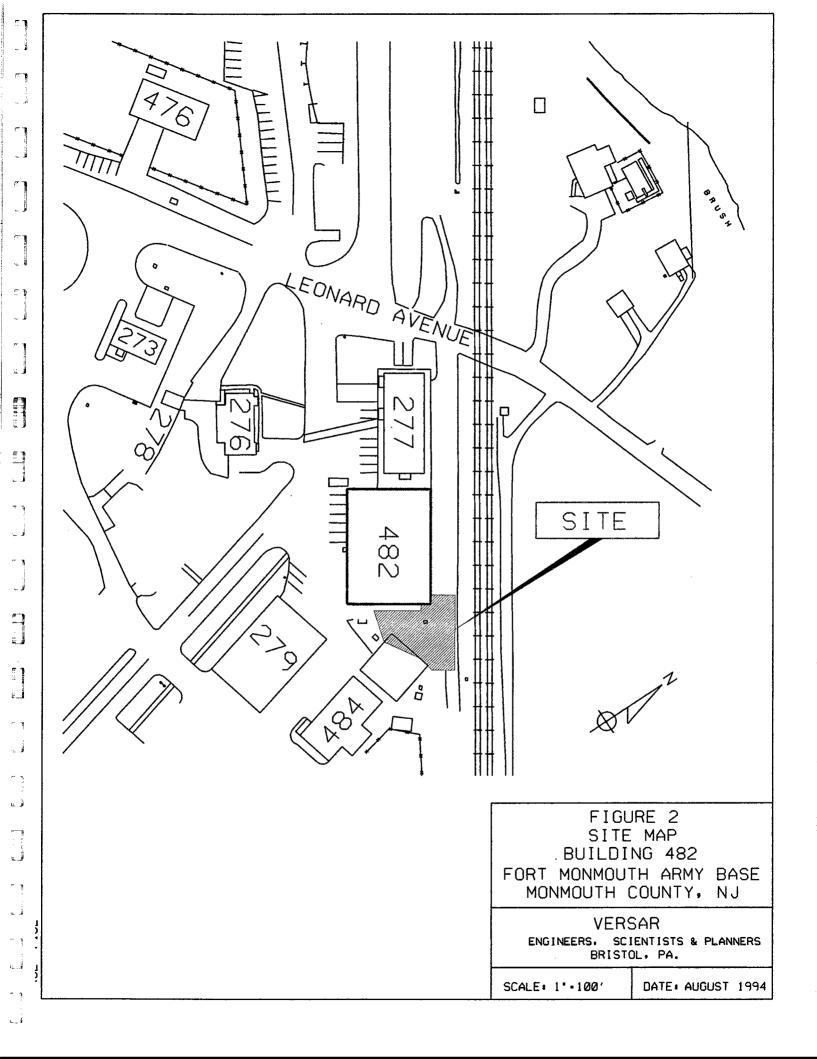
3 you

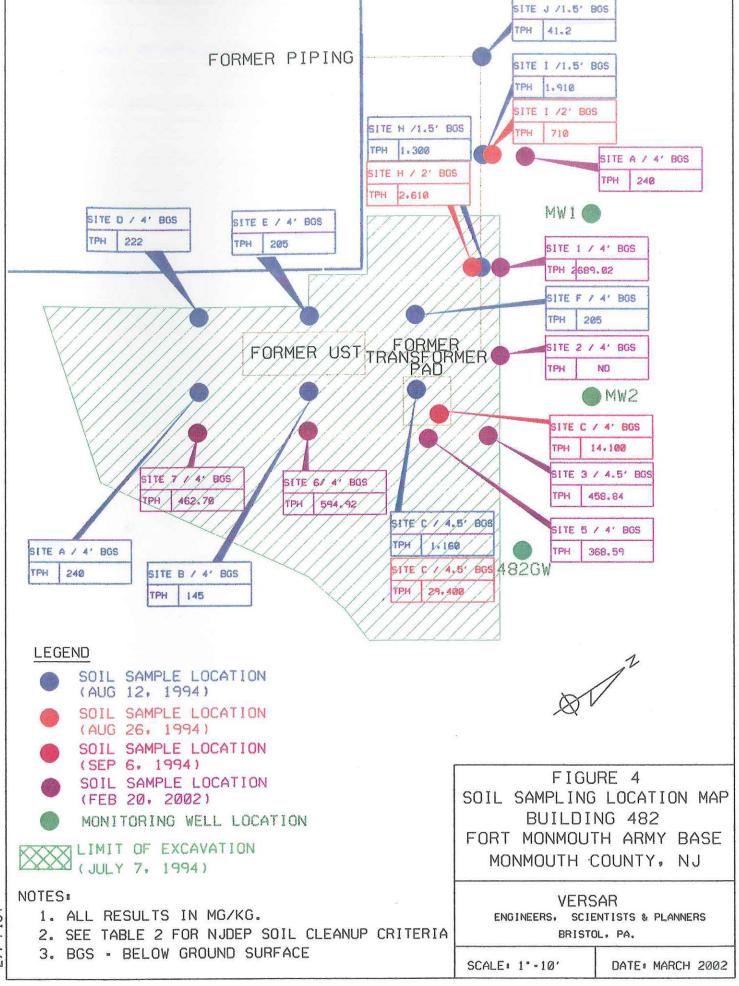
Trip

3 you

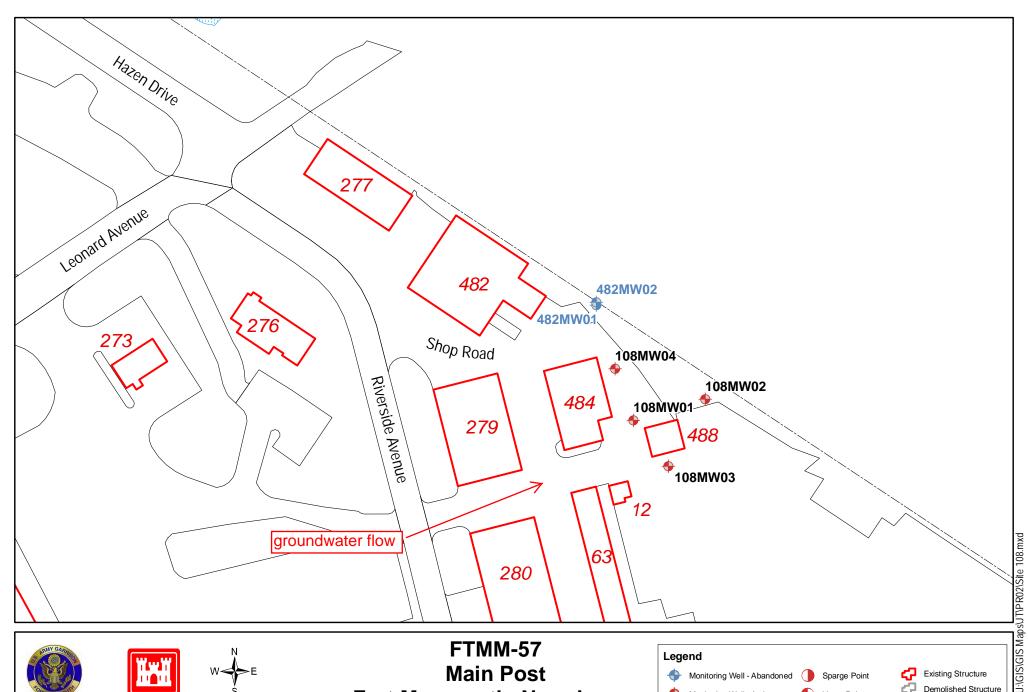

Field Blank

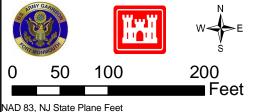



918.98 484/482 9-18-98 484/482 Friday COC WFO Collect post excustion soil samples TIME word #Jacs H-MU 484-12 (6) 075 3 trom the edge of 484 Excavation (484-12 and 484-13) see 1484- (3 (6) > Highest TPH results gets full scon diagram ou pages 20-21, Collect post excavation, soil (482a-septe(1) 077 3 samples from the bottom of 0.78 3 482b-Septic(7) Till Kcan on everything the tormer septictant (convide) (482a-septic and 482b-septic) See diagram on pgs 20-21 482-9 (6) 482-10(6) Collect post excavation soil samples from within the 482 11 (7) 482-12(71) 482 Extaution (482-9 through 482+15) see 482 [13(6) 482 - 14 (6) 080 3 diagram on pgs 20-21. ¥482-15 (b) 081 2 See nect page for all COC Note: 482-15 is a deplicate INTO for these sampling POINTS, etc. ot sample 482-14 200 leave site for Bristol toH results over 1,000 ppm


9.25.98 482 Friday 482-22 (6') 12:30 40 482-23 (6') 12:35 40 * 482-23 is a diplicate
of 482-22, See pages 29 for location of this sample.

9.28.78 277 Objective: Remediation of so at Building 277 associated a Hormer leating No. 2 #1 oil UST. (ust pulled by i Weather: Party Scray, 65-7 Statt: DD, TK + MS Remediation activities along the building and the parki The clean overburden spil houled to our clean pile st area behind the trailers. T l'la" stones in the former hole is excavated and harled our clear staging area All contaminated soil is hauled -490 Staging acea. After a few truck loads o? Contaminted soil is hauled I prepair to collect soil samples from the west side o see Next fage for locations of 277-7 and 277-9.





277 FIG4

Fort Monmouth, New Jersey

Map Created by: Fort Monmouth Installation GIO, Environmental Division Fort Monmouth, New Jersey Date: March 22, 2010

ATTACHMENT O, Enclosure 2

UST 482 – Analytical Data Reports (10372, 10373, and 11264)

FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

D'IRECTORATE OF PUBLIC WORKS PHONE: (732) 532-6224 FAX: (732) 532-6263 WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461

ANALYTICAL DATA REPORT
Fort Monmouth Environmental Laboratory
ENVIRONMENTAL DIVISION
Fort Monmouth, New Jersey
PROJECT: UST Program

Bldg. 482

Field Sample Location	Laboratory	Matrix	Date and Time	Date Received
	Sample ID#		of Collection	
Trip Blank	1037201	Methanol	31-Aug-10 10:35	08/31/10
482/SB-1 (5.0-5.5)	1037202	Soil	31-Aug-10 10:35	08/31/10

ANALYSIS:

FORT MONMOUTH ENVIRONMENTAL LAB VOA+15, ABN+25, PESTICIDES, PCB's PP METALS, %SOLIDS

> ACCUTEST LABORATORIES TOTAL CYANIDE

> > Dean Tardiff/Date: 10/24/16

Laboratory Manager

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-6352 Fax (732)532-6263 EMail:dean.tardiff@us.army.mil

Chain of Custody Record

NJDEP Certification #13461

Customer: Fort Mon much C. AMRW Project No:							Analysis Parameters Comments:							
Phone #: 1220		Location: 4	182							24	ن دين			
	()DERA ()OMA ()Other:									promod	X211.14	3		
Samplers Name / Co	mpany: Robert Youha,	TUS		Sample	#	7.	70.0	37.	DOL	2/2	121	£.		
Work Order#	Sample Location	Date Time		Type	bottles	2	سرتر	J.	Ì	1	1	12		Remarks / Preservation Method
1037201	TRIP	08/31/10	10:30	501	1		/					_		-6883 Megh.
- 92	48253-1(5-5.51)	08/31/10	10:35	501	5	<u>;</u>		1/	۷			٦		6884 Meth.
			,											
			•											
		•		ļ	ļ	<u> </u>								
						<u> </u>								
												<u> </u>		
W-10-10-10-10-10-10-10-10-10-10-10-10-10-								ļ.						
2		 				<u> </u>		• ·						
Relinquished by (signatu	nre): Date/Time:	Received by (W	Relin	quished	l by (sig	gnature)):	Date/	Time:	Recei	ved by	(signature):
Relinquished by (signatu	Received by (signature):		Relin	quished	l by (sig	gnature):	Date	Time:	Recei	ved by	(signature):	
	Reduced, Standard, Screendard 3 wks, Rush Wk.		· —			Rema	rks:			· · · · · · · · · · · · · · · · · · ·		-	ï	

000002

Page ____ of _____

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:dean.tardiff@us.army.mil

NJDEP Certification #13461

Chain of Custody Record

Customer: Dean 1	arditt	Project No:					Analysis Parameters							Comments:
Phone #: (732)532-435	59	Location: Blo	dg. 482			့								
()DERA ()OMA ()Other:] ·	_			anid								
Samplers Name / Cor	npany;			Sample	#	Total Cyanide								
LIMS/Work Order#	Sample Location	Date	Time	Туре		Tota								Remarks / Preservation Method
1037202	482/SB-5.0-5.5'	8/31/2010	10:35	Soil	1	Х						-		
								·						
			i											
				<u> </u>										
													<u> </u>	
		-			<u> </u>				<u> </u>	<u></u>				
	,													
					<u> </u>								ļ <u>.</u>	·
						ļ			ļ	ļ				
		-			<u> </u>	ļ			ļ					
						<u> </u>								
						<u> </u>								
							<u> </u>							
Relinquished by (signati	re): Date/Time; 8-31-1/1 1245	Received by	(signature):		Relin	quishe	l by (si	gnature	e):	Date	/Time:	Recei	ved by	(signature):
Relinquished by (signati		Received by			Relin	quishe	l by (si	gnature	e):	Date	/Time:	Recei	ived by	(signature):
Report Type: ()Full (X)Reduced, ()Standard, ()Screen / non-certified, ()EDD)		Com	ments:	PO (C09-:	2065	0			
	ndard 3 wks, ()Rush Wk.,_													

00004

print legibly

Page ____ of ___

10372 SUBOUT FORT.Cyanide B.483.xls8/31/2010

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

Data File Operator

Date Acquired

VA7364.D ROBERTS

2 Scp 2010 10:36 pm

Sample Name Field ID

1037201 TRIP BLANK

Sample Weight Percent Solids

10.00 g 100.0 %

Sample Multiplier 0.100

Methanol extract volume Methanol aliquot volume

25 ml 1.25 ml

CAS#	Compound Name	R.T.	Response	Result		Regulatory Level (mg/kg)*	MDL		RL		Qualifiers
107028	Acrolein				detected	0.5	0.436	ng/kg	0.500	mg/kg	
107131	Acrylonitrile			not	detected	0.9	0.215	mg/kg	0.500	mg/kg	
75650	tert-Butyl alcohol			not	detected	1400	0.411	mg/kg	0.500	mg/kg	
1634044	Methyl-tert-Butyl ether			not	detected	110	0.032 1	mg/kg	0.050	mg/kg	
108203	Di-isopropyl ether			not	detected	. NLB	0.038	mg/kg	0.050	mg/kg	
75718	Dichlorodifluoromethane			not	detected	490	0.104	mg/kg_	0.050	mg/kg	
74-87-3	Chloromethane			not	detected	4	0.043	mg/kg	0.050	mg/kg	
75-01-4	Vinyl Chloride			not	detected	0.7	0.050	mg/kg	0.050	mg/kg	
74-83-9	Bromomethane			not	detected	25	0.052	mg/kg		mg/kg	
75-00-3	Chloroethane			not	detected	220	0.044	mg/kg	0.050	mg/kg	
75-69-4	Trichlorofluoromethane			not	detected	23000	0.085	mg/kg	0.050	mg/kg	
75-35-4	1.1-Dichloroethene			not	detected	11	0.077		0.050	mg/kg	
67-64-1	Acetone			not	detected	70000	0.082	mg/kg	0.050	mg/kg	
75-15-0	Carbon Disulfide			not	detected	7800	0.068	mg/kg	0.050	mg/kg	
75-09-2	Methylene Chloride				detected	34	0.065	mg/kg	0.050	mg/kg	
156-60-5	trans-1,2-Dichloroethene				detected	300	0.059		0.050	mg/kg	
75-35-3	1,1-Dichloroethane			not	detected	8	0.058	mg/kg	0.050	mg/kg	
108-05-4	Vinyl Acetate				detected	NLE	0.033	mg/kg	0.100	mg/kg	
78 - 93-3	2-Butanone				detected	3100	0.071	mg/kg	0.050	mg/kg	
156-59-2	cis-1,2-Dichloroethene				detected	230	0.058	mg/kg	0.050	mg/kg	
67-66-3	Chloroform			not	detected	0,6	0.074	mg/kg	0.050	mg/kg	<u> </u>
75-55-6	1.1.1-Trichloroethane				detected	290	0.063	mg/kg	0.050	mg/kg	
56-23-5	Carbon Tetrachloride				detected	0.6	0.062	mg/kg	0.050	mg/kg	
71-43-2	Benzene			not	detected	2	0,057	mg/kg	0.050	mg/kg	<u> </u>
107-06-2	1.2-Dichloroethane				detected	0.9	0.045	mg/kg	0.050	mg/kg	<u> </u>
79-01-6	Trichloroethene				detected	7	0.054	mg/kg	0.050	mg/kg	
78-87-5	1.2-Dichloropropane		i	not	detected	2	0.058	mg/kg	0.050	mg/kg	<u> </u>
75-27-4	Bromodichloromethane			not	detected	1	0.048	mg/kg	0.050	mg/kg	
110-75-8	2-Chloroethyl vinyl ether				detected	- NLE	0.061	mg/kg		mg/kg	
10061-01-5	cis-1,3-Dichloropropene			not	detected	2	0.038	mg/kg	0.050	mg/kg	
108-10-1	4-Methyl-2-Pentanone				detected	NLE	0.054	mg/kg	0.100	mg/kg	
108-88-3	Toluene				detected	6300	0.071	mg/kg	0.050	mg/kg	
10061-02-6	trans-1,3-Dichloropropene				detected	2	0.045		0.050	mg/kg	
79-00-5	1,1,2-Trichloroethane				detected	2	0.051	mg/kg	0.050	mg/kg	
127-18-4	Tetrachloroethene				detected	2	0.066	mg/kg	0.050	mg/kg	
591-78-6	2-Hexanone	-			detected	NLB	0,047	mg/kg	0.100	mg/kg	
126-48-1	Dibromochloromethane			not	detected	3,0	0.046	mg/kg	0.050	mg/kg	
108-90-7	Chlorobenzene				detected	510	0.065	mg/kg	0.050	mg/kg	
100-41-4	Ethylbenzene	ļ			detected	7800	0.069	mg/kg	0.050	mg/kg	
630-20-6	1.1.1.2-tetrachloroethane				detected	NLE	0.070			mg/kg	
1330-20-7	m+p-Xylenes				detected	1200	0.131	mg/kg	0.100	mg/kg	
1330-20-7	o-Xylene				detected	1200	0,062		_	mg/kg	
100-42-5	Styrene				detected	90	0.054	mg/kg	0.050	mg/kg	
75-25-2	Bromoform		<u> </u>	not		81		mg/kg		mg/kg	
79-34-5	1,1,2,2-Tetrachloroethane		 	nót		1	0.054	mg/kg	0.050	mg/kg	
541-73-1	1.3-Dichlorobenzene				detected	5300		mg/kg		mg/kg	
106-46-7	1.4-Dichlorobenzene	 	<u> </u>	not		5		mg/kg	0.050	mg/kg	
95-50-1	1.2-Dichlorobenzene		 		detected	5300		mg/kg		mg/kg	

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

J= Estimated value, concentration lies between R.L. and M.D.L.

MDL = Method Detection Limit

NLE = No Limit Established

R,T, = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	·		TOID DI ANIK
Lab Name: FME	ΓL	NJDEP# 13461	TRIP BLANK
Project:	Case No.: MW	Location: S	DG No.: 10372
Matrix: (soil/water)	SOIL	Lab Sample ID:	1037201
Sample wt/vol:	10.0 (g/ml) G	Lab File ID:	VA7364,D
Level: (low/med)	MED	Date Received:	8/31/2010
% Moisture: not ded	c. <u>0</u>	Date Analyzed:	9/2/2010
GC Column: Rtx-	-VMS ID: <u>0.25</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume	e: <u>25000</u> (uL)	Soil Aliquot Volu	me: <u>125</u> (uL)
		CONCENTRATION UNITS:	
Number TICs found	i: <u>0</u>	(ug/L or ug/Kg) UG/KG	
CAS NO.	COMPOUND NAME	RT ES	ST. CONC. Q

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

Data File Operator Date Acquired VA7365.D

ROBERTS

2 Sep 2010 11:07 pm

Sample Name

1037202 482 SB-1 (5-5.5') Sample Weight Percent Solids

9.39 g 83.1 %

Field ID Sample Multiplier 0.128

Methanol extract volume Methanol aliquot volume

25 ml 1,25 ml

Regulatory

CAS#	Compound Name	R.T.	Response	Result		Regulatory Level (mg/kg)*	MDL	RL		Qualifiers
107028	Acrolein	11,1,	Response		detected	0.5	0.559 mg/l		mg/kg	
107028	Acrolem		 		detected	0,9	0.276 mg/l	<u> </u>	mg/kg	
75650	tert-Butyl alcohol				detected	1400	0.527 mg/l		mg/kg	
1634044	Methyl-tert-Butyl ether		 		detected	110	0.041 mg/l		mg/kg	
108203					detected	NLE	0.049 mg/l		mg/kg	
75718	Di-isopropyl ether		 		detected	490	0.133 mg/		mg/kg	
	Dichlorodifluoromethane		-	not	detected	490	0,055 mg/s		mg/kg	
74-87-3	Chloromethane		 		detected	0,7	0.064 mg/	1/	mg/kg	
75-01-4	Vinyl Chloride				detected	 	0,067 mg/		mg/kg	
74-83-9	Bromomethane		 			25	0.056 mg/l		mg/kg	
75-00-3	Chloroethane		 		detected	220	0.036 mg/		mg/kg	
75-69-4	Trichlorofluoromethane		 		detected .	23000	0.109 mg/	- ' 	mg/kg	
75-35-4	1,1-Dichloroethene		 		detected	11			mg/kg	<u> </u>
67-64-1	Acetone		 		detected	70000	0.105 mg/		mg/kg	
75-15-0	Carbon Disulfide				detected	7800	0.087 mg/		 	
75-09-2	Methylene Chloride		 -		detected	34	0.083 mg/		mg/kg	
156-60-5	trans-1,2-Dichloroethene		ļ		detected	300	0.076 mg/	-6	mg/kg	
75-35-3	1,1-Dichloroethane				detected	8	0.074 mg/.		mg/kg	
108-05-4	Vinyl Acetate				detected	NLE	0.042 mg/		mg/kg	
78-93-3	2-Butanone		ļ		detected	3100	0,091 mg/		mg/kg	
156-59-2	cis-1,2-Dichloroethene		ļ		detected	230	0.074 mg/		mg/kg	
67-66-3	Chloroform			not	detected	0.6	0,095 mg/	<u> </u>	mg/kg	
75-55-6	1,1,1-Trichloroethane		<u></u>	not	detected	290	0,081 mg/	~	mg/kg	
56-23-5	Carbon Tetrachloride			not	detected	0.6	0.079 mg/		mg/kg	
71-43-2	Benzene			not	detected	2 .	0.073 mg/		mg/kg	
107-06-2	1,2-Dichloroethane			not	detected	0.9	0.058 mg/		mg/kg	
79-01-6	Trichloroethene			not	detected	7	0.069 mg/	kg 0.064	mg/kg	
78-87-5	1.2-Dichloropropane			not	detected	2	0.074 mg/	kg 0.064	mg/kg	
75-27-4	Bromodichloromethane			not	detected	1	0.062 mg/	kg 0.064	mg/kg	
110-75-8	2-Chloroethyl vinyl ether			not	detected	NLE	0.078 mg/	kg 0.128	mg/kg	
10061-01-5	cis-1.3-Dichloropropene			not	detected	2	0.049 mg/	kg 0.064	mg/kg	
108-10-1	4-Methyl-2-Pentanone			not	detected	NLE	0.069 mg/	kg 0.128	mg/kg	
108-88-3	Toluene			not	detected	6300	0.091 mg/	kg 0.064	mg/kg	
10061-02-6	trans-1,3-Dichloropropene				detected	2	0.058 mg/	kg 0.064	mg/kg	
79-00-5	1,1,2-Trichloroethane				detected	2	0.065 mg/	kg 0.064	mg/kg	
127-18-4	Tetrachloroethene		<u> </u>	not	detected	2	0.085 mg/	kg 0.064	mg/kg	
591-78-6	2-Hexanone		 		detected	NLE	0.060 mg/	kg 0.128	mg/kg	
126-48-1	Dibromochloromethane				detected	3,0	0.059 mg/		mg/kg	
108-90-7	Chlorobenzene				detected	510	0.083 mg/		mg/kg	
100-41-4	Ethylbenzene		 		detected	7800	0.088 mg/		mg/kg	
630-20-6	1,1,1,2-tetrachloroethane		 		detected	NLE	0.090 mg/		mg/kg	
1330-20-7			 		detected	1200	0.168 mg/	-	mg/kg	
	m+p-Xylenes		 		detected	1200	0.079 mg/		mg/kg	
1330-20-7	o-Xylene		 		detected	90	0.069 mg/		mg/kg	-
100-42-5	Styrene		 		detected	81	0,009 mg/	0	mg/kg	
75-25-2	Bromoform		 		detected	1 1	0.051 mg/		mg/kg	
79-34-5	1,1,2,2-Tetrachloroethane		 		detected	 	0.009 mg/		mg/kg	·
541-73-1	1,3-Dichlorobenzene		-		detected	5300 5	0.074 mg/	~	mg/kg	
106-46-7	1,4-Dichlorobenzene		 			-	0.072 mg/		mg/kg	
95-50-1	1,2-Dichlorobenzene		1	not	detected	5300	0.076 mg/	kg 0.004	Ting\ vg	<u></u>

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

J= Estimated value, concentration lies between R.L. and M.D.L.

MDL = Method Detection Limit

NLE = No Limit Established

R.T. = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD	ID.
-------	-----

		ILNIA	HVEL IDENI	II ILD COMI O	JINDO	•	400 CD	4 /5 5 50
Lab Name:	FMETL			NJDEP#	1340	31	482 58-	1 (5-5.5')
Project:		с	ase No.: <u>MW</u>	Locatio	n:	SI	DG No.: 10	0372
Matrix: (soil/w	ater)	SOIL		. La	b San	nple ID:	1037202	
Sample wt/vo	l:	9.4	(g/ml) <u>G</u>	La	b File	ID:	VA7365.D	
Level: (low/m	ned)	MED	<u></u>	Da	ite Re	ceived:	8/31/2010	
% Moisture: n	ot dec.	16.9		Da	ate An	alyzed:	9/2/2010	
GC Column:	Rtx-VI	MS ID: C).25 (mm)	Dil	lution	Factor:	1.0	
Soil Extract V	olume:	25000	(uL)	So	il Aliq	uot Volu	me: <u>125</u>	(uL)
				CONCENTRA		UNITS: UG/KG		
Number TICs	found:	0		(ug/L or ug/Kg)		UGING		
CAS NO.		COMPC	UND NAME		RT	ES	ST. CONC.	Q

Semi-Volatile Analysis Report

U.S. Army, Fort Monmouth Environmental Laboratory

NJDEP Certification #13461

Data File Name E497.D

Misc Info

Sample Weight

10.10 g

Operator

ROBERTS

Dilution factor

Percent Solids

83.1 %

Date Acquired . 5-Oct-10

Sample Multiplier 0.119

Sample Name

10372 02

 $Sample\ multiplier = (0.001*Dilution\ factor)/(fsample\ weight(kg)]*[percent\ solids/100])$

482 SB-1 (5-5.5')

Multiplied by 0.001 to convert ug/kg to mg/kg.

CAS#	Name	R.T.	Response	Result		MDL	RL		Qualifiers
110-86-1	ругidine			not	detected	0.118	0,60	mg/kg	
62-75-9	N-nitroso-dimethylamine			not	detected	0.200	0.60	mg/kg	
62-53-3	Aniline			not	detected	0.318	0.60	mg/kg	
108-95-2	Phenol			лот	detected	0.295	0.60	mg/kg	
111-44-4	bis-2-chloroethyl ether			not	detected	0.230	0.60	mg/kg	
95-57-8	2-chlorophenol			not	detected	0.278	0.60	mg/kg	
541-73-1	1,3-dichlorobenzene			not	detected	0.199	0.60	mg/kg	
106-46-7	1,4-dichlorobenzene			not	detected	0.207	0.60	mg/kg	
100-51-6	Benzyl alcohol		·	not	detected	0.307	0.60	mg/kg	
95-50-1	1,2-dichlorobenzene			not	detected	0.231	0.60	mg/kg	
95-48-7	2-methylphenol			not	detected	0.328	0.60	mg/kg	
39638-32-9	bis(2-chloroisopropyl)ether			not	detected	0.267	0,60	mg/kg	
106-44-5	4-methylphenol	<u> </u>		not	detected	0.367	0.60	mg/kg	
621-64-7	N-nitroso-di-n-propylamine			not	detected	0.301	0.60	mg/kg	
67-72-1	Hexachloroethane			not	detected	0.225	0.60	mg/kg	
98-95-3	Nitrobenzene			not	detected	0.269	0.60	mg/kg	
78-59-1	Isophorone			not	detected	0.286	0.60	mg/kg	
88-75-5	2-nitrophenol			not	detected	0.267	0.60	mg/kg	
105-67-9	2,4-dimethylphenol			not	detected	0.304	0.60	mg/kg	
111-91-1	bis(2-chloroethoxy)methane			not	detected	0,236	0.60	mg/kg	
120-83-2	2,4-dichlorophenol			not	detected	0.300	0.60	mg/kg	
65-85-0	Benzoic acid			not	detected	0.247	0.60	mg/kg	
120-82-1	1,2,4-trichlorobenzene			not	detected	0.261	0.60	mg/kg	
91-20-3	Naphthalene			not	detected	0.288	0.60	mg/kg	
106-47-8	4-chloroaniline			not	detected	0.441	0.60	mg/kg	
87-68-3	Hexachlorobutadiene			not	detected	0,257	0.60	mg/kg	
59-50-7	4-chloro-3-methylphenol			not	detected	0.324	0.60	mg/kg	
91-57-6	2-methylnaphthalene	11.82	15671565	11.35	detected	0.310	0.60	mg/kg	
77-47-4	Hexachlorocyclopentadiene			not	detected	0.174	0.60	mg/kg	
88-06-2	2,4,6-trichlorophenol			not	detected	0.331	0,60	mg/kg	
95-95-4	2,4,5-trichlorophenol			not	detected	0.344	0.60	mg/kg	
91-58-7	2-chloronaphthalene			not	detected	0.299	0.60	mg/kg	
88-74-4	2-nitroaniline			not	detected	0,366	0.60	mg/kg	
131-11-3	Dimethylphthalate			not	detected	0.315	0.60	mg/kg	
208-96-8	Acenaphthylene			not	detected	0.324	0.60	mg/kg	
606-20-2	2,6-dinitrotoluene			not	detected	0.311	0.60	mg/kg	
99-09-2	3-nitroaniline]		not	detected	0.263	0.60	mg/kg	_
83-32-9	Acenaphthene			not	detected	0.323	0.60	mg/kg	
51-28-5	2,4-dinitrophenol			not	detected	0.207	0.60	mg/kg	
132-64-9	Dibenzofuran			not	detected	0.380	0.60	mg/kg	
100-02-07	4-nitrophenol	<u> </u>		not	detected	0.293	0.60	mg/kg	

Semi-Volatile Analysis Report Page 2

Data File Name E497.D

Operator

ROBERTS

5-Oct-10

Date Acquired Sample Name

10372 02

Misc Info

482 SB-1 (5-5.5')

Sample Weight

10.10 g

Dilution factor

Percent Solids

83.1 %

Sample Multiplier 0.119

Sample multiplier = (0.001*Dilution factor)/([sample weight(kg)]*[percent solic

Multiplied by 0.001 to convert ug/kg to mg/kg.

CAS#	Name	R.T.	Response	Result		·	RL		Qualifiers
121-14-2	2,4-dinitrotoluene			not	detected	0.311	0.60	mg/kg	
84-66-2	Diethylphthalate			not	detected	0.298	0.60	mg/kg	
86-73-7	Fluorene			not	detected	0.337	0.60	mg/kg	
7005-72-3	4-chlorophenyl-phenylether			not	detected	0.331	0.60	mg/kg	
100-01-6	4-nitroaniline			not	detected	0.325	0,60	mg/kg	
534-52-1	4,6-dinitro-2-methylphenol			not	detected	0.287	1.19	mg/kg	
86-30-6	N-nitrosodiphenylamine			not	detected	0.323	0.60	mg/kg	
103-33-3	Azobenzene			not	detected	0.342	0,60	mg/kg	
101-55-3	4-bromophenyl-phenylether			not	detected	0.343	0.60	mg/kg	
118-74-1	Hexachlorobenzene			not	detected	0.357	0.60	mg/kg	
87-86-5	Pentachlorophenol			not	detected	0.343	0.60	mg/kg	
85-01-8	Phenanthrene			not	detected	0.354	0,60	mg/kg	,
120-12-7	Anthracene			not	detected	0.356	0.60	mg/kg	
84-74-2	Di-n-butylphthalate			not	detected	0.341	0.60	mg/kg	
206-44-0	Fluoranthene			not	detected	0.354	0.60	mg/kg	
92-87-5	Benzidine			not	detected	0.321	0.60	mg/kg	
129-00-0	Pyrene			not	detected	0,378	0.60	mg/kg	
85-68-7	Butylbenzylphthalate			not	detected	0.313	0,60	mg/kg	
56-55-3	Benzo[a]anthracene			not	detected	0.355	0.60	mg/kg	
91-94-1	3,3'-dichlorobenzidine			not	detected	0.324	0.60	mg/kg	
218-01-9	Chrysene			not	detected	0,335	0.60	mg/kg	
117-81-7	bis(2-ethylhexyl)phthalate			not	detected	0.376	0.60	mg/kg	
117-84-0	Di-n-octylphthalate			not	detected	0.316	0.60	mg/kg	
205-99-2	Benzo[b]fluoranthene			not	detected	0.255	0.60	mg/kg	
207-08-9	Benzo[k]fluoranthene			not	detected	0.306	0.60	mg/kg	
50-32-8	Benzo[a]pyrene			not	detected	0,274	0.60	mg/kg	
193-39-5	Indeno[1,2,3-cd]pyrene			not	detected	0.232	0.60	mg/kg	
53-70-3	Dibenz[a,h]anthracene			not	detected	0.217	0.60	mg/kg	
191-24-2	Benzo[g,h,i]perylene			not	detected	0.220	0.60	mg/kg	

^{*} Higher of PQL's and Interim Criteria as per NJAC 7:9-6.9(c).

Qualifiers

E= Value Exceeds Linear Range

D= Value from dilution

B= Compound in Related Blank

MDL= Method Detection Limit

NLE= No Limit Established

R.T.=Retention Time

RL= Reporting Limit. The values between the MDL and RL are considered estimated.

J= Estimated concentration, value lies between RL and MDL

Page 2 of 2

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Id:	

Lab Name: FMETL		Lab Code 13461	482 SB-1 (5-5.5')
Project:	Case No.;	Location: SI	DG No.: 10372
Matrix: (soil/water)	SOIL	Lab Sample ID:	1037202
Sample wt/vol:	10.1 (g/ml) G	Lab File ID:	E497.D
Level: (low/med)	LOW	Date Received:	8/31/2010
% Moisture:16.9	decanted: (Y/N)	N Date Extracted:	9/10/2010
Concentrated Extract	Volume: <u>1000</u> (uL)	Date Analyzed:	10/5/2010
Injection Volume: 1.0) (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	NpH:		
		CONCENTRATION LINE	Τς.

UG/KG Number TICs found: (ug/L or ug/Kg) 25

		- · · · · · · · · · · · · · · · · · · ·		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	extraction by-product	6.77	29000	J
2. 000091-17-8	Naphthalene, decahydro-	9.53	4100	JN
3.	Alkane: Cyclic	9.86	4000	j
4,	Alkane: Cyclic	11.20	- 4100	J
5. 000090-12-0	Naphthalene, 1-methyl-	11.96	4400	JN
6.	Alkane: Cyclic	12.09	4000	J
7.	Alkane: Branched	12.26	5900	J.
8.	unknown hydrocarbon	12.47	4700	J
9.	1H-Indene-dihydro-trimethyl	12.57	4500	j
10.	Naphthalene, ethyl-	12.63	4300	J
11.	Naphthalene, dimethyl-	12.74	6900	J
12.	Naphthalene, dimethyl-	12.85	6500	J
13.	Alkane: Straight-Chain	12.93	6900	· J
14.	Naphthalene, dimethyl-	13.02	4600	J
15.	Alkane: Branched	13.16	4100	J
16.	unknown hydrocarbon	13.23	4900	J
17.	Naphthalene, trimethyl-	13.63	4600	J -
18.	Naphthalene, trimethyl-	13.69	6000	j
19.	Naphthalene, trimethyl-	13.85	4000	J
20.	Naphthalene, trimethyl-	13.95	5200	J
21.	Alkane: Branched	14.03	5100	J
22.	unknown hydrocarbon	14.14	6000	J
23.	Alkane: Straight-Chain	14.28	7700	J
24.	Alkane: Branched	14.68	5800	J
25.	Alkane: Branched	17.92	4200	j

Ft. Monmouth Environmental Laboratory

173 Riverside Ave. Ft. Monmouth, NJ 07703

Client:

US Army

Project Name:

Bldg 482

Field ID:

482SB-1 (5-5.5')

Lab ID:

10372-02 09131023.D

Filename: Lab Project:

10372

Location:

Bldg 482

MATRIX:

Soil

Ext. Batch: Date Extracted: PP09101001 9/10/2010

Date Analyzed:

Initial Mass (g)

Final Vol.(ml)

9/13/2010

Dilution:

1

Analyst:

CR

10.13

10

CAS#	COMPOUNDS	RESULTS	Reporting Limit	Soil Remediation	Qualifier	MDL
		(mg/kg)	(mg/kg)	Standard (mg/kg)**		(mg/kg)
319-84-6	alpha-BHC	ND 15		0.1		0.0008
319-85-7	beta-BHC	AN NORMA		0.4		0.0011
58-89-9	gamma-BHC	A WINDSON	0.0241 .	0.4		0.0007
319-86-8	delta-BHC	WAL NOW	0.0241	NLE		0.0006
76-44-8	Heptachlor	WANDAY	0.0241	0.1		0.0102
309-00-2	Aldrin	HA NDYA		0.04		0.0024
1024-57-3	Heptachlor epoxide	ND ND		0.07		0.0010
5103-74-2	gamma-Chlordane	CAN ND WAR		NLE		0.0017
5103-71-9	alpha-Chlordane	NDS	0.0241	NLE		0.0016
959-98-8	Endosulfan I	WE'ND IN	0.0241	470		0.0019
72-55-9	4,4'-DDE	NDA	0.0241	2		0.0020
60-57-1	Dieldrin	PER ND	0.0241	0.04		0.0020
72-20-8	Endrin	MOND A	0,0241	23		0.0007
33213-65-9	Endosulfan II	IN ND W	0.0241	470		0,0006
72-54-8	4,4'-DDD	WINDS.	0.0241	3		0.0007
7421-93-4	Endrin aldehyde	ND ND	0.0241	NLE		0.0007
50-29-3	4,4'-DDT	ile ND	0.0241	. 2		0.0012
1031-07-8	Endosulfan sulfate	ME NOVE	0.0241	470		0.0006
53494-70-5	Endrin ketone	WENDISK	0.0241	NLE		0.0007
72-43-5	Methoxychlor	SWIND WE	0.0241	390		0.0008
8001-35-2	Toxaphene	ENE NOTES	0.0602	0.6		0.0285
57-74-9	Total Chlordane	SEE NO.	0,0602	0.2		0.0144
MDL = Method	Detection Limit.				% Solids	83.1

ND =Not Detected / Below MDL.

B = Present in the associated Blank.

E = Exceeded Calibration Range, Dilution to follow.

D = Dilution.

NLE = No Limit Established.

RL = Reporting Limit.

*Results between MDL and RL are estimated.

Column-Primary: Rtx-CLPesticides 30/.32mm ID/.25um.

Column-Confirmation: Rtx-CLPesticides2 30m/.32mm ID/.5um.

^{**}Residential Direct Contact Soil Remediation Standard as per N.J.A.C. 7:26D

Ft. Monmouth Environmental Laboratory

173 Riverside Ave. Ft. Monmouth, NJ 07703

Client:

US Army

Project Name:

Bldg 482

Field ID:

482SB-1 (5-5.5')

Lab ID: Filename: 10372-02 10051018.D

Lab Project:

10372

Location:

Bldg 482

MATRIX:

Soil

Ext. Batch:

PP09101001

Date Extracted: Date Analyzed:

10.13

10

9/10/2010 10/25/2010

Dilution:

1

Analyst:

ÇR

CAS#	COMPOUNDS	RESULTS F	Reporting Limit		Qualifier	MDL
		(mg/kg)	(mg/kg)			(mg/kg)
12674-11-2	Arochlor 1016	AP ND 224	0.060			0,0265
11104-28-2	Arochlor 1221	SE ND S	0.060			0,0168
11141-16-5	Arochlor 1232	SS ND #	0.060			0,0132
53469-21-9	Arochlor 1242	I ND I	0.060			0.0072
12672-29-6	Arochlor 1248	Was ND Was	0.060			0.0349
11097-69-1	Arochlor 1254	AND A	0.060			0,0193
11096-82-5	Arochlor 1260	AND ME	0.060			0.0301
VIDL = Method	Detection Limit.			% Solids	83.1	

ND =Not Detected / Below MDL.

B = Present in the associated Blank.

E = Exceeded Calibration Range, Dilution to follow.

D = Dilution.

NLE = No Limit Established.

RL = Reporting Limit.

PQL = Practical Quantitation Limit.

*Results between MDL and RL are estimated.

Column-Primary: Rtx-CLPesticides 30/.32mm ID/.25um,

Column-Confirmation: Rtx-CLPesticides2 30m/.32mm ID/.5um.

Initial Mass (g)

Final Vol.(ml)

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client: U.S. Army

DPW, SELFM-PW-EV

Bldg. 173

Bldg. 482

Ft. Monmouth, NJ 07703

Field ID: 482/SB-1 (5.0-5.5)

Sample Received: 08/31/10

Sample Matrix: Soil

Lab ID #: 1037202

Method of Digestion:

Site:

E.P.A SW-846, Method 3051A

Method of Analysis: EPA SW-846 Method 6010B, 7471A

PP-METALS RESULTS SUMMARY (mg/kg)

FF-WETALS RESULTS SUMMARY (III2/R2)									
Element	Date of	Result	Soil Cleanup	R.L.	MDL				
	Analysis	(mg/kg)	Criteria (mg/kg)*	(mg/kg)	(mg/kg)				
Antimony	09/02/10	2.45	31	4.28	1.413				
Arsenic	09/02/10	12.3	19	2.14	2.141				
Beryllium	09/02/10	1.82	16	0.21	0.128				
Cadmium	09/02/10	1.97	78	0.86	0.300				
Chromium	09/02/10	149	NLE	2.14	0.557				
Copper	09/02/10	8.27	3100	6.42	5.567				
Lead	09/02/10	10.8	400	2.14	1.113				
Mercury	09/09/10	ND	23	0.21	0.017				
Nickel	09/02/10	7.94	1600	2.14	0.942				
Selenium	09/02/10	ND	390	8.56	2.997				
Silver	09/02/10	10.2	390	2.14	0.428				
Thallium	09/02/10	ND	5	4.28	2.141				
Zinc	09/02/10	49.9	23000	10.70	9.420				

ND = Not Detected, NLE = No Limit Established, NA = Standard Not Available

R.L. = Reporting limit, MDL = Method Detection Limit Estimated results between MDL & R.L.

^{*} Residential Direct Contact Soil Remediation Standard as per N.J.A.C. 7:26D June 2, 2008

Client Sample ID: 1037202 482/SB-5.0-5.5'

Lab Sample ID: Matrix:

JA55188-1 SO - Soil

Date Sampled: 08/31/10

Date Received: 08/31/10

Project:

Building 482

Percent Solids: 83.6

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide	< 0.26	0.26	mg/kg	1	09/04/10 14:32	NR	SW846 9012 M/LACHAT
Solids, Percent	83.6		%	1	09/08/10	AL	SM18 2540G

FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461

ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: UST Program

Bldg. 482

Field Sample Location	Laboratory	Matrix	Date and Time	Date Received
	Sample ID#		of Collection	
Trip Blank	1037301	Aqueous	31-Aug-10 08:45	08/31/10
Field Blank	1037302	Aqueous	31-Aug-10 13:30	08/31/10
482/TMP-1	1037303	Aqueous	31-Aug-10 13:45	08/31/10

ANALYSIS:

FORT MONMOUTH ENVIRONMENTAL LAB VOA+15, ABN+25, PESTICIDES, PCB's PP METALS,

> ACCUTEST LABORATORIES TOTAL CYANIDE

Laboratory Manager

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-6352 Fax (732)532-6263 EMail:dean.tardiff@us.army.mil
NJDEP Certification #13461

Chain of Custody Record

Customer: Fart	Manmouth	Project No:				Analysis Parameters						Comments:		
Phone #: XQQL	e 40 /C! Above by	ر Location: ۷	197								¥.			-
()DERA ()OMA	()Other:	7	-o <u> </u>		l	\mathbb{V}	\downarrow	J.		1/4/	Ž.,			
Samplers Name / Co	mpany: Rubert Youh	ai ITO	75	Sample	#	041	C+1	A 21.21.88	PCES	Pres	3/4/6			
Work Order#	Sample Location	Date	Time	Туре		$\langle \rangle$	Ž	Q.	7	PP	707			Remarks / Preservation Method
1037361	TRIP	08/31/10	08:45	6	2	V				,		2		HU NOOH
102	Field Blank	08/31/1D	13:30	GW	7									1+C1. N=0H
- 43	482-TMP-1	08(31/10	13:45	6W	7						اسا			HCI, NOUH
		,			-	٠.		·						
										:				
	, , , , , , , , , , , , , , , , , , , ,													
				<u> </u>			<u> </u>							
									·					
				<u> </u>			<u> </u>							
Relinquished by (signatu	nre): Date/Time:	Received by	(signature):	W	Relin	quished	l by (sig	gnature));	Date/	Time:	Recei	ved by	(signature):
Relinquished by (signatu	ure): Date/Time:			Relin	equished by (signature): Date/Time:				Time:	Recei	ved by	(signature):		
	Report Type: ()Full, ()Reduced, ()Standard, ()Screen / non-certified, ()EDD Remarks: Turnaround time: (()Standard 3 wks, ()RushWk., ()ASAP VerbalHrs.													
y , C into														

20000

print legibly

Page ____ of ____

CO€ Copy.xls8/16/2010

print legibly

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-4359 Fax (732)532-6263 EMail:dean.tardiff@us.army.mil
NJDEP Certification #13461

Chain of Custody Record

10372 SUBOUT FORT. Cyanide B.482.xls9/1/2010

Customer: Dean Tardiff	Project No:			-	Analysis Parameters				Comments:				
Phone #: (732)532-4359	Location: Blo	dg. 482			ge								
()DERA ()OMA ()Other:					Total Cyanide								
Samplers Name / Company:			Sample	#	် [
LIMS/Work Order # Sample Location	Date	Time	Туре	bottles	Tof								Remarks / Preservation Method
1037 3 02 Field Blank	8/31/2010	13:30	AQ	1	Χ								
103 73 03 TMP-1	8/31/2010	13:45	AQ ·	1	Х								
	'												
		····											
										,			
												•	
													·
					<u> </u>								
										-			
													,
										<u> </u>		<u> </u>	
Relinguished by (signature): Date/Time:		ed by (Signature): Reli		Relino	quished	by (sig	gnature)):	Date	Time:	Recei	ved by	(signature):
Relinquished by (signature): Date/Time:	Received by	(signature):	e): Relino		elinquished by (signature):):	Date	tte/Time: Received by (signature):		(signature):	
Report Type: ()Full, ()Reduced, (X)Standard, ()Sc. 3 Turnaround time: (X)Standard 3 wks, ()Rush Wk., _(. –			Com	nents:	PO (C09-2	2065()			

Page ____ of __/

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

Data File

VA7376.D

ROBERTS

Sample Name

1037301

Operator Date Acquired

3 Sep 2010 5:02 pm

Field ID 482 TRIP BLANK
Sample Multiplier 1

CAS#	Compound Name	R.T.	Response	Result	ł	Regulatory Level (ug/l)*	MDL	RL	Qualifiers
107028	Acrolein			not	detected	5	3.21 ug/L	5.00 ug/L	
107131	Acrylonitrile				detected	2	0.98 ug/L	5,00 ug/L	· ···
75650	tert-Butyl alcohol				detected	100	1.64 ug/L	5,00 ug/L	
1634044	Methyl-tert-Butyl ether				detected	70	0.11 ug/L	0.50 ug/L	
108203	Di-isopropyl ether				detected	20000	0.17 ug/L	0.50 ug/L	
75718	Dichlorodifluoromethane				detected	1000	0.17 ug/L	0,50 ug/L	
74-87-3	Chloromethane				detected	nie	0.27 ug/L	0,50 ug/L	
75-01-4	Vinyl Chloride				detected	ı	0.22 ug/L	0.50 ug/L	
74-83-9	Bromomethane				detected	10	0.37 ug/L	0.50 ug/L	
75-00-3	Chloroethane				detected	nle	0.32 ug/L	0.50 ug/L	
75-69-4	Trichlorofluoromethane				detected	2000	0.15 ug/L	0.50 ug/L	
75-35-4	1, 1-Dichloroethene				detected	1	0.15 ug/L	0.50 ug/L	
67-64-1	Acetone				detected	6000	0.32 ug/L	0.50 ug/L	
75-15-0	Carbon Disulfide				detected	700	0.12 ug/L	0.50 ug/L	
75-09-2	Methylene Chloride				detected	3	0,26 ug/L	0.50 ug/L	
156-60-5	trans-1,2-Dichloroethene	j			detected	100	0.14 ug/L	0.50 ug/L	
75-35-3	1,1-Dichloroethane				detected	50	0.12 ug/L	0,50 ug/L	
108-05-4	Vinyl Acetate				detected	7000	0.20 ug/L	1.00 ug/L	
78-93-3	2-Butanone				detected	300	0.22 ug/L	0.50 ug/L	
156-59-2	cis-1,2-Dichloroethene				detected	70	0.12 ug/L	0.50 ug/L	
67-66-3	Chloroform				detected	70	0.35 ug/L	0.50 ug/L	
75-55-6	1,1,1-Trichloroethane		·		detected	30	0.12 ug/L	0.50 ug/L	
56-23-5	Carbon Tetrachloride				detected	1 30	0.12 ug/L	0,50 ug/L	
71-43-2	Benzene				detected	1	0.12 ug/L	0.50 ug/L	
107-06-2	1,2-Dichloroethane				detected	2	0.12 ug/L	0.50 ug/L	
79-01-6	Trichloroethene				detected	1	0.11 ug/L	0.50 ug/L	
78-87-5	1,2-Dichloropropane				detected	1	0,12 ug/L	0.50 ug/L	· ·
75-27-4	Bromodichloromethane				detected	1 1	0.12 ug/L	0.50 ug/L	
110-75-8	2-Chloroethyl vinyl ether				detected	nle	0.12 ug/L	1,00 ug/L	
10061-01-5	cis-1,3-Dichloropropene				detected	i ii	0,13 ug/L	0.50 ug/L	
108-10-1		—— —			detected		0.15 ug/L	0.50 ug/L	
108-88-3	4-Methyl-2-Pentanone Toluene				detected		0.13 ug/L	0.50 ug/L	
10061-02-6					detected	1000	0.12 ug/L	0.50 ug/L	 -
79-00-5	trans-1,3-Dichloropropene 1,1,2-Trichloroethane				detected		0.14 ug/L	0.50 ug/L	
127-18-4			· <u>-</u>			3	0.14 ug/L	0.50 ug/L	
591-78-6	Tetrachloroethene				detected	1 1	0.14 ug/L	1,00 ug/L	
126-48-1	2-Hexanone				detected	nlė			
	Dibromochloromethane				detected	1 1	0.12 ug/L	0.50 ug/L	
108-90-7	Chlorobenzene	·			detected	50	0.12 ug/L	0.50 ug/L	
100-41-4	Ethylbenzene				detected	700	0.12 ug/L	0.50 ug/L	
630-20-6	1,1,1,2-tetrachloroethane				detected		0.13 ug/L	0.50 ug/L	
1330-20-7	m+p-Xylenes				detected	nle	0.30 ug/L	1.00 ug/L	
1330-20-7	o-Xylene				detected	n <u>le</u>	0.14 ug/L	0.50 ug/L	
100-42-5	Styrene				detected	100	0.14 ug/L	0,50 ug/L	
75-25-2	Bromoform				detected	4	0.14 ug/L	0.50 ug/L	
79-34-5	1,1,2,2-Tetrachloroethane				detected	1	0.14 ug/L	0.50 ug/L	
541-73-1	1,3-Dichlorobenzene				detected	600	0.16 ug/L	0,50 ug/L	
106-46-7	1,4-Dichlorobenzene				detected	75	0.15 ug/L	0,50 ug/L	
95-50-1	1,2-Dichlorobenzene			not	detected	600_	0.13 ug/L	0,50 ug/L	

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

J= Estimated concentration, value falls between R.L. and M.D.L.

MDL = Method Detection Limit

NLE = No Limit Established

R.T. = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

F	ΙFΙ	חו	ID	
г		Lυ	ID	٠.

Lab Name: FME	ΓL	NJDEP # 13461	I RIF BLAIN
Project:	Case No.: MW	Location: S	DG No.: 10373
Matrix: (soil/water)	WATER	Lab Sample ID:	1037301
Sample wt/vol:	5.0 (g/ml) ML	Lab File ID:	VA7376.D
Level: (low/med)	LOW	Date Received:	8/31/2010
% Moisture: not dec	O	Date Analyzed:	9/3/2010
GC Column: Rtx	<u>-VMS</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume	e: (uL)	Soil Aliquot Volu	ime: (uL)
		CONCENTRATION UNITS:	
Number TICs found	d:	ug/L or ug/Kg) UG/L	
CAS NO.	COMPOUND NAME	RT ES	ST. CONC. Q

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory **NJDEP Certification #13461**

Data File

VA7377.D

ROBERTS

Sample Name

1037302

1

482 FIELD BLANK

Operator Date Acquired

3 Sep 2010 5:33 pm

Field ID Sample Multiplier

Regulatory Level (ug/l)* Qualifiers MDL Compound Name R.T. Response Result CAS# 5.00 ug/L not detected 3.21 ug/L 107028 Acrolein 5.00 ug/L 0.98 ug/L not detected 107131 Acrylonitrile 1.64 ug/L 5.00 ug/L not detected 75650 tert-Butyl alcohol 100 0.11 ug/L 0.50 ug/L 1634044 not detected 70 Methyl-tert-Butyl ether not detected 0.17 ug/L 0.50 ug/L 108203 20000 Di-isopropyl ether 0.17 ug/L 0.50 ug/L 75718 Dichlorodifluoromethane not detected 1000 0.27 ug/L 0.50 ug/L not detected nle 74-87-3 Chloromethane 0.50 ug/L 0.22 ug/L not detected 1 75-01-4 Vinyl Chloride 0.37 ug/L 0.50 ug/L not detected 10 74-83-9 Bromomethane 0.32 ug/L detected 0.50 ug/L 75-00-3 Chloroethane not nle 0,50 ug/L not detected 2000 0.15 ug/L 75-69-4 Trichlorofluoromethane 0.50 ug/L 0.15 ug/L not detected 75-35-4 1,1-Dichloroethene 0.50 ug/L 0.32 ug/L detected 6000 67-64-1 not Acetone 0.50 ug/L 0.12 ug/L not detected 700 Carbon Disulfide 75-15-0 0.26 ug/L 0.50 ug/L not detected 75-09-2 Methylene Chloride 0.14 ug/L 0.50 ug/L detected 100 156-60-5 trans-1,2-Dichloroethene not 0.50 ug/L 0.12 ug/L not detected 50 75-35-3 1,1-Dichloroethane 0.20 ug/L 1.00 ug/L 108-05-4 not detected 7000 Vinyl Acetate 0.22 ug/L 0.50 ug/L not detected 300 78-93-3 2-Butanone 0.50 ug/L 0.12 ug/L not detected 70 cis-1,2-Dichloroethene 156-59-2 0.35 ug/L 0.50 ug/L not detected 70 67-66-3 Chloroform 0.12 ug/L 0.50 ug/L not detected 30 75-55-6 1,1,1-Trichloroethane 0.12 ug/L 0.50 ug/L not detected ı 56-23-5 Carbon Tetrachloride 0.12 ug/L 0.50 ug/L not detected 71-43-2 Benzene 0.11 0.50 ug/L not detected ug/L 107-06-2 1,2-Dichloroethane 0.50 ug/L 0.11 ug/L not detected 79-01-6 Trichloroethene 0.12 ug/L 0,50 ug/L not detected 78-87-5 1,2-Dichloropropane 0.50 ug/L not detected 0.12 ug/L 75-27-4 Bromodichloromethane 0.24 ug/L 1.00 ug/L not detected 110-75-8 2-Chloroethyl vinyl ether nle 0.50 ug/L 0.13 ug/L not detected 10061-01-5 cis-1,3-Dichloropropene 0.15 ug/L 0.50 ug/L not detected nle 108-10-1 4-Methyl-2-Pentanone 0.12 ug/L 0.50 ug/L not detected 1000 108-88-3 Toluene 0.50 ug/L 0.13 ug/L not detected 10061-02-6 trans-1,3-Dichloropropene 0.50 ug/L 0.14 ug/L_ not detected 79-00-5 1,1,2-Trichloroethane 1 0.14 ug/L 0.50 ug/L not detected 127-18-4 Tetrachloroethene 1.00 ug/L not detected 0.17 ug/L 591-78-6 nle 2-Hexanone 0.50 ug/L 0.12 ug/L 126-48-1 Dibromochloromethane not detected 0.50 ug/L 0.12 ug/L not detected 50 108-90-7 Chlorobenzene 0.50 ug/L 0.12 ug/L detected not 700 100-41-4 Ethylbenzene 0.50 ug/L 0.13 ug/L 630-20-6 1,1,1,2-tetrachloroethane not detected 0.30 ug/L 1.00 ug/L not detected nle 1330-20-7 m+p-Xylenes 0.50 ug/L 0.14 ug/L not detected nie 1330-20-7 o-Xylene 0.14 ug/L 0.50 ug/L not detected 100 100-42-5 Styrene not detected 4 0.14 ug/L 0.50 ug/L 75-25-2 Bromoform 0.50 ug/L 0.14 ug/L not detected 79-34-5 1,1,2,2-Tetrachioroethane 0.16 ug/L 0.50 ug/L not detected 600 541-73-1 1,3-Dichlorobenzene

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

1,4-Dichlorobenzene

1,2-Dichlorobenzene

PQL = Practical Quantitation Limit

J= Estimated concentration, value falls between R.L. and M.D.L.

MDL = Method Detection Limit

75

600

0.15 ug/L

0.13 ug/L

0.50 ug/L

0.50 ug/L

NLE = No Limit Established

R.T. = Reteution Time

not detected

not detected

R.L. = Reporting Limit

106-46-7

95-50-1

^{*}Results between MDL and RL are estimated values

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FI	EL	.D	ID.

Lab Name:	FMETL			NJDEP#	13461			
Project:		Cas	se No.: <u>MW</u>	Location	n:	_ SI	DG No.: 1037	'3
Matrix: (soil/w	/ater)	WATER	_	Lab	Sample	ID:	1037302	
Sample wt/vo	.l :	5.0	(g/ml) ML	Lab	File ID:		VA7377.D	
Level: (low/m	ied)	LOW	,	Dat	te Receiv	ed:	8/31/2010	
% Moisture: n	iot dec.			Dat	te Analyz	ed:	9/3/2010	
GC Column:	Rtx-VI	MS ID: 0.2	25_ (mm)	Dilu	ution Fact	tor:	1.0	
Soil Extract V	olume:		_ (uL)	Soi	ا Aliquot ا	Volu	me:	(u L)
				CONCENTRAT	ION UNI	TS:		-
Number TICs	found:	0		(ug/L or ug/Kg)	UG/	L		
CAS NO.		COMPOU	ND NAME		RT	ES	ST. CONC.	Q

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory **NJDEP Certification #13461**

Data File Operator VA7378.D

ROBERTS

Sample Name Field ID

1037303 482 TMP-1

Date Acquired

3 Sep 2010 6:04 pm

Sample Multiplier 1

CAS#	Compound Name	R.T.	Response	Result		Regulatory Level (ug/l)*	MDL_	RL	Qualifiers
107028	Acrolein				detected	5	3.21 ug	g/L 5.00 ug/L	
107131	Acrylonitrile				detected	. 2	0.98 ug	z/L 5,00 ug/L	
75650	tert-Butyl alcohol			not	detected	100	1.64 ug	z/L 5.00 ug/L	
1634044	Methyl-tert-Butyl ether			not	detected	70	0.11 us	g/L 0.50 ug/L	
108203	Di-isopropyl ether		·		detected	20000	0.17 ug		
75718	Dichlorodiffuoromethane				detected	1000	0.17 us		
74-87-3	Chloromethane				detected	nle	0.27 us	2/L 0.50 ug/L	
75-01-4	Vinyl Chloride				detected ·	1	0.22 us	g/L 0.50 ug/L	
74-83-9	Bromomethane				detected	10	0.37 us		
75-00-3	Chloroethane				detected	nle	0.32 ug		
75-69-4	Trichlorofluoromethane	, -			detected	2000	0.15 us		
75-35-4	1,1-Dichloroethene				detected	1	0.15 ug		***************************************
67-64-1	Acetone				detected	6000	0.32 ug		
75-15-0	Carbon Disulfide				detected	700	0.12 ug		
75-09-2	Methylene Chloride	-		-	detected	3	0.26 us		
					detected	100	0.14 us		
156-60-5 75-35-3	trans-1,2-Dichloroethene				detected	50	0.12 u		
	1,1-Dichloroethane				detected	7000	0.20 us		
108-05-4	Vinyl Acetate				detected	300	0.22 u		
78-93-3	2-Butanone				detected	70	0.12 u		
156-59-2	cis-1,2-Dichloroethene				detected	70	0.12 us		
67-66-3	Chloroform				detected	30	0.12 u		
75-55-6	1,1,1-Trichloroethane		·				0.12 u		
56-23-5	Carbon Tetrachloride				detected	1 1	0.12 u		
71-43-2	Benzene				detected	1 1	0.12 uj		
107-06-2	1,2-Dichloroethane				detected	2			
79-01-6	Trichloroethene	••••			detected	1 - 1	0.11 u		
78-87-5	1,2-Dichloropropane				detected	1			
75-27-4	Bromodichloromethane				detected	1	0.12 u		
110-75-8	2-Chloroethyl vinyl ether				detected	nle	0.24 u		
10061-01-5	cis-1,3-Dichloropropene			*******	detected	1	0.13 u		
108-10-1	4-Methyl-2-Pentanone				detected	nle	0.15 u		
108-88-3	Toluene				detected	1000	0.12 u		ļ <u></u>
10061-02-6	trans-1,3-Dichloropropene				detected	1	0.13 u	·	
79-00-5	1,1,2-Trichloroethane	•			detected	3	0.14 u		
127-18-4	Tetrachloroethene				detected	11	0.14 u		
591-78-6	2-Hexanone			not	detected	nle	. 0.17 u		
126-48-1	Dibromochloromethane				detected	11	0,12 u		
108-90-7	Chlorobenzene			not	detected	50	0.12 u		
100-41-4	Ethylbenzene			not	detected	700	0.12 u		
630-20-6	1,1,1,2-tetrachloroethane			not	detected	1	0.13 պ		
1330-20-7	m+p-Xylenes			not	detected	nle	0 <u>.30</u> u		
1330-20-7	o-Xylene			not	detected	nle	0.14 u		
100-42-5	Styrene			not	detected	100	0.14 u	· · · · · · · · · · · · · · · · · · ·	
75-25-2	Bromoform			not	detected	4	0.14 u	g/L 0.50 ug/L	
79-34-5	1,1,2,2-Tetrachloroethane			not	detected	1	0.14 u	g/L 0.50 ug/L	
541-73-1	1,3-Dichlorobenzene				detected	600	0.16 u	g/L 0.50 ug/L	
106-46-7	1,4-Dichlorobenzene				detected	75	0.15 u	g/L 0.50 ug/L	
95-50-1	1,2-Dichlorobenzene				detected	600	0.13 u	g/L 0.50 ug/L	

^{*}Results between MDL and RL are estimated values

Qualifiers

 $\mathbf{B} = \mathbf{Compound}$ found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

J= Estimated concentration, value falls between R.L. and M.D.L.

MDL = Method Detection Limit

NLE = No Limit Established

R.T. = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FI	EL	D.	ID.
----	----	----	-----

						-	482 TMP-	4
Lab Name: [FMETL				NJDEP# 13	461	402 11011-	<u>.</u>
Project:			Case No.: MV	N	Location:	SI	DG No.: 10373	
Matrix: (soil/wa	ater)	WATER	₹		Lab Sa	mple 1D:	1037303	
Sample wt/vol:		5.0	(g/ml) <u>M</u>	L	Lab Fil	e ID:	VA7378.D	
Level: (low/me	ed)	LOW			Date R	eceived:	8/31/2010	-
% Moisture: no	ot dec.				Date A	nalyzed:	9/3/2010	_
GC Column:	Rtx-VM	S ID:	0.25 (mm))	Dilution	n Factor:	1.0	_
Soil Extract Vo	olume: _		(uL)		Soil Ali	quot Volu	me:	(uL)
·	·			CON	NCENTRATION	UNITS:		
Number TICe t	found	15		(ug/	L or ug/Kg)	UG/L		

-		(ug/L or ug/Kg)	UG/L
Number TICs found:	15	(3 3,	

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1.	Alkane: Cyclic	10.16	19	J
2,	Alkane: Cyclic	11.72	15	J
3.	C4 alkyl benzene	20,56	15	J
4. 000496-11-7	Indane	20.71	71	JN
5.	C4 alkyl benzene	21.45	44	J
6.	1H-Indene-dihydro-methyl-	21.64	18	J
7.	1H-Indene-dihydro-methyl-	21.77	51	J
8.	C4 alkyl benzene	22.27	37	J
9.	1H-Indene-dihydro-methyl-	23,01	24	J
10.	C4 alkyl benzene	23.28	70	J
11.	1H-Indene-dihydro-methyl-	23.35	67	J
12.	1H-Indene-dihydro-dimethyl-	23.89	22	J
13.	1H-Indene-dihydro-dimethyl-	24.00	14	J
14.	1H-Indene-dihydro-dimethyl-	24.16	29	J
15.	unknown hydrocarbon	25.46	16	J

Semi-Volatile Analysis Report

U.S. Army, Fort Monmouth Environmental Laboratory

NJDEP Certification #13461

Data File Name E502.D

Misc Info

FIELD BLANK

Operator

ROBERTS

Sample Multiplier 1

Date Acquired 5-Oct-10

Sample Name 1037302

CAS#	Name	R.T.	Response	Result		MDL	. RL	Qualifiers	
110-86-1	pyridine			not	detected	1.56	5.00		
62-75-9	N-nitroso-dimethylamine	ļ <u>.</u>		not	detected	3.57	5.00		
62-53-3	Aniline			not	detected	2.75	5.00		
108-95-2	Phenol			not	detected	0.81	5.00		
111-44-4	bis-2-chloroethyl ether			not	detected	3.23	5.00		
95-57-8	2-chlorophenol			not	detected	1,80	5.00		
541-73-1	1,3-dichlorobenzene			not	detected	2.97	5.00		
106-46-7	1,4-dichlorobenzene			not	detected	3.05	5.00		
100-51-6	Benzyl alcohol			not	detected	1.49	5.00		
95-50-1	1,2-dichlorobenzene			not	detected	2.92	5.00		
95-48-7	2-methylphenol			not	detected	1.55	5.00		
39638-32-9	bis(2-chloroisopropyl)ether	ļ <u> </u>	-	not	detected	2.67	5.00		
106-44-5	4-methylphenol			not	detected	1.64	5.00		
621-64-7	N-nitroso-di-n-propylamine		· · · · · · · · · · · · · · · · · · ·	not	detected	2.61	5.00		
67-72-1	Hexachloroethane	ļ		not	detected	2.75	5.00		
98-95-3	Nitrobenzene	<u> </u>		not	detected	2.91	5.00		··
78-59-1	Isophorone			not	detected	2.93	5.00		
88-75-5	2-nitrophenol			not	detected	2.06	5.00		
105-67-9	2,4-dimethylphenol			not	detected	1.97	5.00		
111 - 91-1	bis(2-chloroethoxy)methane			not	detected	2,74	5,00		
120-83-2	2,4-dichlorophenol			not	detected	2,11	5.00		
65-85-0	Benzoic acid	<u> </u>		not	detected	5.27	10.00		
120-82-1	1,2,4-trichlorobenzene	<u> </u>		not	detected	2.99	5.00		
91-20-3	Naphthalene	<u> </u>		not	detected	3.06	5.00		
106-47-8	4-chloroaniline			not	detected	3.72	5.00		
87-68-3	Hexachlorobutadiene			not	detected	3.07	5.00		
59-50-7	4-chloro-3-methylphenol	ļ		not	detected	2.36	5.00		
91-57-6	2-methylnaphthalene			not	detected	3.35	5.00		
77-47-4	Hexachlorocyclopentadiene			not	detected	2.07	5.00		
88-06-2	2,4,6-trichlorophenol			not	detected	2.95	5.00		
95-95-4	2,4,5-trichlorophenol			not	detected	3.36	5.00		
91-58-7	2-chloronaphthalene	<u> </u>		not	detected	3.99	5.00		
88-74-4	2-nitroaniline	<u></u>		not	detected	3,46	5.00		
131-11-3	Dimethylphthalate			not	detected	3.26	5.00		
208-96-8	Acenaphthylene			not	detected	3.46	5.00		
606-20-2	2,6-dinitrotoluene			not	detected	3.47	5.00		
99-09-2	3-nitroaniline			not	detected	4.12	5.00		
83-32-9	Acenaphthene			not	detected	3.58	5.00		
51-28-5	2,4-dinitrophenol			not	detected	4.02	10.00		
132-64-9	Dibenzofuran	ļ <u> </u>		not	detected	2.94	5.00		
100-02-07	4-nitrophenol			not	detected	1.14	5.00	ug/L .	

Semi-Volatile Analysis Report Page 2

Data File Name E502.D

Misc Info

FIELD BLANK

Operator

ROBERTS

Date Acquired Sample Name

1037302

5-Oct-10

Sample Mutliplier

CAS#	Name	R.T.	Response	Result		MDL	RL		Qualifiers
121-14-2	2,4-dinitrotoluene			not	detected	3.47	5.00		
84-66-2	Diethylphthalate			not	detected	3.54	5.00	ug/L	
86-73-7	Fluorene			not	detected	3.64	5.00	ug/L	
7005-72-3	4-chlorophenyl-phenylether			not	detected	3.74	5.00	ug/L	
100-01-6	4-nitroaniline			not	detected	2.92	5.00	ug/L	
534-52-1	4,6-dinitro-2-methylphenol			not	detected	2.22	10.00	ug/L	
86-30-6	N-nitrosodiphenylamine			not	detected	3.49	5.00	ug/L	
103-33-3	Azobenzene			not	detected	3.43	5.00	ug/L	
101-55-3	4-bromophenyl-phenylether			not	detected	3.98	5.00	ug/L	
118-74-1	Hexachlorobenzene			not	detected	3.73	5.00	ug/L	
87-86-5	Pentachlorophenol			not	detected	2.70	5.00	ug/L	
85-01-8	Phenanthrene			not	detected	3.42	5.00	ug/L	
120-12-7	Anthracene			not	detected	3.27	5.00	ug/L	
84-74-2	Di-n-butylphthalate			not	detected	2.83	5.00	ug/L	
206-44-0	Fluoranthene			not	detected	3.08	5.00	ug/L	
92-87-5	Benzidine			not	detected	16.11	16.11	ug/L	
129-00-0	Pyrene			not	detected	2.59	5.00	ug/L	
85-68-7	Butylbenzylphthalate		-	not	detected	2.57	5.00	ug/L	
56-55-3	Benzofalanthracene			not	detected	2.71	5.00	ug/L	
91-94-1	3.3'-dichlorobenzidine			not	detected	11.62	11.62	ug/L	
218-01-9	Chrysene			not	detected	2.47	5.00	ug/L	
117-81-7	bis(2-ethylhexyl)phthalate			not	detected	3.74	5.00	ug/L	
117-84-0	Di-n-octylphthalate			not	detected	2.41	5.00	ug/L	
205-99-2	Benzo[b]fluoranthene			not	detected	2.28	5.00	ug/L	
207-08-9	Benzo[k]fluoranthene			not	detected	2.56	5.00	ug/L	
50-32-8	Benzo[a]pyrene			not	detected	2.60	5.00		
193-39-5	Indeno[1,2,3-cd]pyrene				detected	2,67	5.00		
53-70-3	Dibenz[a,h]anthracene				detected	2.68	5.00		
191-24-2	Benzo[g,h,i]perylene				detected	3.16	5.00		

^{*} Higher of PQL's and Interim Criteria as per NJAC 7:9-6.9(c).

Qualifiers

E= Value Exceeds Linear Range

MDL= Method Detection Limit NLE= No Limit Established

D= Value from dilution

B= Compound in Related Blank

R.T.=Retention Time

RL= Reporting Limit. The values between the MDL and RL are considered estimated.

J= Estimated concentration, value lies between RL and MDL

Page 2 of 2

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field lo	:t
----------	----

Lab Name: FMETL		Lab Code 13461	FIELD BLANK
Project:	Case No.:	Location: SI	DG No.: 10373
Matrix: (soil/water)	WATER	Lab Sample ID:	1037302
Sample wt/vol:	1000 (g/ml) ML	Lab File ID:	E502.D
Level: (low/med)	LOW	Date Received:	8/31/2010
% Moisture:	decanted: (Y/N)	N Date Extracted:	9/3/2010
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	10/5/2010
Injection Volume: 1	0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	NpH:	•	
		CONCENTRATION UNIT	ΓS:
Number TICs found:	1	(ug/L or ug/Kg) UG/L	<u>-</u>
CAS NUMBER	COMPOUND NAME	RT ES	T. CONC. Q
1.	extraction by-product	6.70	6 J

Semi-Volatile Analysis Report

U.S. Army, Fort Monmouth Environmental Laboratory

NJDEP Certification #13461

Data File Name E503.D

Misc Info

482 TMP-1

Operator

ROBERTS

Sample Multiplier 1

Date Acquired

Sample Name

5-Oct-10

1037303

CAS#	Name	R.T.	Response	Result		MDL	RL		Qualifiers
110-86-1	pyridine			not	detected	1.56	5.00		
62-75-9	N-nitroso-dimethylamine			not	detected	3.57	5,00		
62-53-3	Aniline			not	detected	2.75	5.00		
108-95-2	Phenol			not	detected	0.81	5.00	ug/L	
111-44-4	bis-2-chloroethyl ether			not	detected	3,23	5.00	ug/L	
95-57-8	2-chlorophenol	<u> </u>		not	detected	1.80	5.00	ug/L	
541-73-1	1,3-dichlorobenzene			not	detected	2.97	5.00		
106-46-7	1,4-dichlorobenzene			not	detected	3.05	5.00	ug/L	
100-51-6	Benzyl alcohol			not	detected	1.49	5.00		
95-50-1	1,2-dichlorobenzene			not	detected	2.92	5.00		
95-48-7	2-methylphenol			not	detected	1.55	5.00		-
39638-32-9	bis(2-chloroisopropyl)ether			not	detected	2.67	5.00		
106-44-5	4-methylphenol			not	detected	1.64	5,00		
621-64-7	N-nitroso-di-n-propylamine			not	detected	2.61	5.00		
67-72-1	Hexachloroethane			not	detected	2.75	5.00	ug/L	
98-95-3	Nitrobenzene			not	detected	2.91	5.00		
78-59-1	Isophorone			not	detected	2.93	5.00	ug/L	
88-75-5	2-nitrophenol			not	detected	2.06	5.00	ug/L	
105-67-9	2,4-dimethylphenol			not	detected	1.97	5.00	ug/L	
111-91-1	bis(2-chloroethoxy)methane			not	detected	2.74	5.00		
120-83-2	2,4-dichlorophenol			not	detected	2.11	5.00	ug/L	
65-85-0	Benzoic acid			not	detected	5.27	10.00	ug/L	
120-82-1	1,2,4-trichlorobenzene			not	detected	2.99	5.00	ug/L	
91-20-3	Naphthalene			not	detected	3.06	5.00	ug/L	
106-47-8	4-chloroaniline			not	detected	3.72	5.00	ug/L	
87-68-3	Hexachlorobutadiene			not	detected	3.07	5.00	ug/L	
59-50-7	4-chloro-3-methylphenol			not	detected	2.36	5.00	ug/L	
91-57-6	2-methylnaphthalene	11.80	1305852	8,00	detected	3.35	5.00	ug/L	<u></u>
77-47-4	Hexachlorocyclopentadiene			not	detected	2.07	5.00	ug/L	
88-06-2	2,4,6-trichlorophenol			not	detected	2.95	5.00	ug/L	
95-95-4	2,4,5-trichlorophenol			not	detected	3.36	5.00	ug/L	
91-58-7	2-chloronaphthalene			not	detected	3.99	5.00	ug/L	
88-74-4	2-nitroaniline			not	detected	3.46	5.00		
131-11-3	Dimethylphthalate			not	detected	3,26	5.00		
208-96-8	Acenaphthylene			not	detected	3.46	5.00	ug/L	
606-20-2	2,6-dinitrotoluene			not	detected	3.47	5.00		
99-09-2	3-nitroaniline			not	detected	4.12	5.00		
83-32-9	Acenaphthene			not	detected	3.58	5.00		
51-28-5	2,4-dinitrophenol			not	detected	4.02	10.00		
132-64-9	Dibenzofuran			not	detected	2.94	5.00		'
100-02-07	4-nitrophenol	<u> </u>		not	detected	1.14	5.00	ug/L	

Semi-Volatile Analysis Report Page 2

· Data File Name E503.D

Misc Info

482 TMP-1

Operator

Date Acquired

Sample Name

ROBERTS

5-Oct-10

1037303

Sample Mutliplier 1

CAS#	Name	R.T.	Response	Result		MDL	RL		Qualifiers
121-14-2	2,4-dinitrotoluene			not o	detected	3.47	5.00		
84-66-2	Diethylphthalate			not o	detected	3.54	5.00		
86-73-7	Fluorene			not c	detected	3.64	5.00		
7005-72-3	4-chlorophenyl-phenylether			not c	detected	3.74	5.00	ug/L	
100-01-6	4-nitroaniline			not o	detected	2.92	5.00	ug/L	
534-52-1	4,6-dinitro-2-methylphenol			not o	detected	2.22	10.00		
86-30-6	N-nitrosodiphenylamine			not o	detected	3.49	5.00		
103-33-3	Azobenzene			not o	detected	3,43	5.00		
101-55-3	4-bromophenyl-phenylether			not c	detected	3.98	5.00		
118-74-1	Hexachlorobenzene			not c	detected	3.73	5.00		
87-86-5	Pentachlorophenol			not o	detected	2.70	5.00		
85-01-8	Phenanthrene			not o	detected	3.42	5.00	ug/L	
120-12-7	Anthracene			not o	detected	3.27	5.00	ug/L	
84-74-2	Di-n-butylphthalate			not o	detected	2.83	5.00	ug/L	
206-44-0	Fluoranthene			not o	detected	3.08	5.00	ug/L	
92-87-5	Benzidine			not e	detected	16.11	16.11	ug/L	
129-00-0	Pyrene			not o	detected	2.59	5.00	ug/L	
85-68-7	Butylbenzylphthalate			not e	detected	2.57	5,00	ug/L	
56-55-3	Benzo[a]anthracene			not o	detected	2.71	5.00	ug/L	
91-94-1	3,3'-dichlorobenzidine			not o	detected	11.62	11.62	ug/L	
218-01-9	Chrysene			not o	detected	2.47	5.00	ug/L	
117-81-7	bis(2-ethylhexyl)phthalate			not	detected	3.74	5.00	ug/L	
117-84-0	Di-n-octylphthalate			not c	detected	2.41	5.00	ug/L	
205-99-2	Benzo[b]fluoranthene			not q	detected	2.28	5.00		
207-08-9	Benzo[k]fluoranthene			not o	detected	2.56	5.00	ug/L	
50-32-8	Benzo[a]pyrene			not o	detected	2.60	5.00		
193-39-5	Indeno[1,2,3-cd]pyrene			not o	detected	2.67	5.00	ug/L	
53-70-3	Dibenz[a,h]anthracene			not o	detected	2.68	5.00	ug/L	
191-24-2	Benzo[g,h,i]perylene			not o	detected	3.16	5.00	ug/L	

^{*} Higher of PQL's and Interim Criteria as per NJAC 7:9-6.9(c).

Qualifiers

E= Value Exceeds Linear Range

MDL= Method Detection Limit

D= Value from dilution

NLE= No Limit Established

B= Compound in Related Blank

R.T.=Retention Time

RL= Reporting Limit. The values between the MDL and RL are considered estimated.

J= Estimated concentration, value lies between RL and MDL

Page 2 of 2

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Fiel	М	М	•
1 10	u	·	•

Lab Name: FMET	L	Lab Code 13461	462 11917-1
Project:	Case No.:	Location: SI	DG No.: 10373
Matrix: (soil/water)	WATER	Lab Sample ID:	1037303
Sample wt/vol:	1000 (g/ml) ML	Lab File ID:	E503.D
Level: (low/med)	LOW	Date Received:	8/31/2010
% Moisture:	decanted: (Y/N)	N Date Extracted:	9/3/2010
Concentrated Extra	ct Volume: 1000 (uL)	Date Analyzed:	10/5/2010
Injection Volume:	1.0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)) N pH:	-	

CONCENTRATION UNITS:

Number TICs found:	25	(ug/L or ug/Kg)	UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	extraction by-product	6.70	7	J
2.	C4 alkyl benzene	10.40	5	J
3, 000090-12-0	Naphthalene, 1-methyl-	11.94	10	JN
4.	Naphthalene, ethyl-	12.61	5	J
5.	Naphthalene, dimethyl-	12.71	7	J
6.	Naphthalene, dimethyl-	12.81	8	J
7.	Naphthalene, dimethyl-	12.85	4	J
8.	Alkane: Branched	12.90	7	J
9.	Naphthalene, dimethyl-	12.99	5	J
10.	Naphthalene, dimethyl-	13.11	5	J
11.	Naphthalene, trimethyl-	13,61	5	J
12.	Naphthalene, trimethyl-	13.90	7	J _.
13.	unknown hydrocarbon	14.03	4	J
14.	unknown hydrocarbon	14.11	6	J
15.	Alkane: Branched	14.25	8	J
16.	Alkane: Branched	14.64	13	J
17.	9H-Fluorene, methyl-	14.96	5	J
18.	Alkane: Branched	15.32	9	J
19.	Alkane: Branched	15.83	7	J
20.	unknown carboxylic acid	16.24	23	J
21.	Alkane: Branched	16.36	5	J
22.	unknown hydrocarbon	16.59	4	J
23.	unknown carboxylic acid	17.38	14	J
24.	unknown hydrocarbon	18.48	4	J
25.	unknown hydrocarbon	20.56	7	J

U.S. Army, Ft. Monmouth **Environmental Laboratory**

173 Riverside Ave., NJ 07703

Client:

U.S. ARMY

Project Name:

Bldg 482 Field Blank

Field ID: Lab ID:

10373-02 09131006.D

Filename: Lab Project :

10373

Location:

Bldg 482

MATRIX:

Aqueous

Ext. Batch:

PP09011001

Date Extracted: 9/1/2010 Date Analyzed: 9/13/2010

Dilution:

1

Analyst:

CR

CAS#	COMPOUNDS	RESULTS	Reporting Limit	Regulatory Level	Qualifier	MDL
		(ug/L)	(ug/L)	(ug/L)		(ug/L)
319-84-6	alpha-BHC	ND	0.02	0.02		0.003
319-85-7	beta-BHC	ND	0.02	0.04		0.008
58-89-9	gamma-BHC	ND	0.02	0.03		0.004
319-86-8	delta-BHC	ND	0.02	NLE		0.006
76-44-8	Heptachlor	ND	0.02	0.05		0.005
309-00-2	Aldrin	ND	0.02	0.04		0.005
1024-57-3	Heptachlor epoxide	ND	0.02	0.2		0,005
5103-71-9	gamma-Chlordane	ND	0.02	NLE		0.007
5103-74-2	alpha-Chlordane	ND	0.02	NLE		0.006
959-98-8	Endosulfan I	ND	0.02	40		0.006
72-55-9	4,4'-DDE	ND	0.02	0.1		0.008
60-57-1	Dieldrin	ND	0.02	0.03		0,006
72-20-8	Endrin	ND	0.02	2		0.008
33213-65-9	Endosulfan II	ND	0.02	40		0.007
72-54-8	4,4'-DDD	ND	0.02	0.1		0.008
7421-93-4	Endrin aldehyde	ND	0.02	NLE		0.007
50-29-3	4,4'-DDT	ND	0.02	0.1		0.009
1031-07-8	Endosulfan sulfate	ND	0.02	40		0.007
53494-70-5	Endrin ketone	ND	0.02	NLE		0.007
72-43-5	Methoxychlor	ND	0.02	40		0.008
8001-35-2	Toxaphene	ND	0.5	2		0.090
57-74-9	Chlordane	ND	0.5	0.5		0.071

MDL = Method Detection Limit.

ND =Not Detected / Below MDL.

B = Present in the associated Blank.

E = Exceeded Calibration Range, Dilution to follow.

D = Dilution.

NLE = No Limit Established.

RL = Reporting Limit.

Initial Vol.(ml) Final Vol.(ml) 1000 10

*Higher of PQLs and ground water criteria as per NJAC 7:9-6

*Results between MDL and RL are estimated.

Column-Primary: Rtx-CLPesticides 30m/.32mm ID/.25um. Column-Confirmation: Rtx-CLPesticides2 30m/.32mm ID/.5um.

U.S. Army, Ft. Monmouth

Environmental Laboratory

173 Riverside Ave., NJ 07703

Client:

U.S. ARMY

Project Name:

Bldg 482

Field ID:

482-TMP-1

Lab ID:

10373-03

Filename:

09131007,D

Lab Project:

10373

Location:

Bldg 482

MATRIX:

Aqueous

Ext. Batch:

PP09011001

Date Extracted: 9/1/2010

Date Analyzed: 9/13/2010

Dilution: Analyst:

CR

CAS#	COMPOUNDS	RESULTS	Reporting Limit	Regulatory Level	Qualifier	MDL
		(ug/L)	(ug/L)	(ug/L)		(ug/L)
319-84-6	alpha-BHC	ND	0.02	0.02		0.003
319-85-7	beta-BHC	ND	0.02	0.04		0.008
58-89-9	gamma-BHC	ND	0.02	0.03		0.004
319-86-8	delta-BHC	ND	0.02	NLE		0.006
76-44-8	Heptachlor	ND	0.02	0.05		0.005
309-00-2	Aldrin	ND	0.02	0.04		0.005
1024-57-3	Heptachlor epoxide	ND	0.02	0.2		0.005
5103-71-9	gamma-Chlordane	ND	0.02	NLE		0.007
5103-74-2	alpha-Chlordane	ND	0.02	NLE		0.006
959-98-8	Endosulfan I	ND	0.02	40		0.006
72-55-9	4,4'-DDE	ND	0.02	0.1		0.008
60-57-1	Dieldrin	ND	0.02	0.03		0.006
72-20-8	Endrin	ND	0.02	2		0.008
33213-65-9	Endosulfan II	ND	0.02	40		0.007
72-54-8	4,4'-DDD	ND	0.02	0.1		0.008
7421-93-4	Endrin aldehyde	ND	0.02	NLE		0.007
50-29-3	4,4'-DDT	ND	0.02	0.1		0.009
1031-07-8	Endosulfan sulfate	ND	0.02	40		0.007
53494-70-5	Endrin ketone	ND	0.02	NLE		0.007
72-43-5	Methoxychlor	ND	0.02	40		0.008
8001-35-2	Toxaphene	ND	0.5	2		0.090
57-74-9	Chlordane	ND	0.5	0.5		0.071

MDL = Method Detection Limit.

ND =Not Detected / Below MDL.

B = Present in the associated Blank.

E = Exceeded Calibration Range, Dilution to follow.

D = Dilution.

NLE = No Limit Established.

RL = Reporting Limit.

Initial Vol.(ml)

1000

Final Vol.(ml)

10

Column-Primary: Rtx-CLPesticides 30m/.32mm ID/.25um.

Column-Confirmation: Rtx-CLPesticides2 30m/.32mm ID/.5um.

^{*}Higher of PQLs and ground water criteria as per NJAC 7:9-6

^{*}Results between MDL and RL are estimated.

U.S. Army, Ft. Monmouth Environmental Laboratory

Report of Analysis NJDEP Certification # 13461 Method 8082

Client:

US Army

Location:

Bldg 482 Field Blank

Client ID: Lab ID:

10373-02

Filename: Lab Project No: 10373

10051014,D

MATRIX: Aqueous

Date Extracted: 9/1/2010

Ext. Batch: PP09011001

Date Analyzed: 10/25/2010

DILUTION: 1

Analyst: CR

CAS#	COMPOUNDS	RESULTS (ug/L)	QUALIFIER	MDL (ug/L)
12674-11-2	AROCLOR 1016	ND		0.060
11104-28-2	AROCLOR 1221	ND		0.290
11141-16-5	AROCLOR 1232	ND		0.110
53469-21-9	AROCLOR 1242	ND		0.110
12672-29-6	AROCLOR 1248	ND		0.050
11097-69-1	AROCLOR 1254	ND		0.040
11096-82-5	AROCLOR 1260	ND		0.160

^{*}RESULTS BETWEEN MDL AND RL ARE ESTIMATED.

MDL = METHOD DETECTION LIMIT

ND =UNDETECTED BELOW THE MDL

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

Initial Vol (ml) 1000.00 Final Vol.(ml) 10.00

U.S. Army, Ft. Monmouth Environmental Laboratory

Report of Analysis NJDEP Certification # 13461 Method 8082

Client:

US Army

Location:

Bldg 482 482-TMP-1

Client ID: Lab ID;

10373-03 10051015.D

Filename: Lab Project No: 10373

MATRIX: Aqueous

Date Extracted: 9/1/2010

Ext. Batch: PP09011001

Date Analyzed: 10/25/2010

DILUTION: 1

Analyst: CR

CAS#	COMPOUNDS	RESULTS	QUALIFIER	MDL
		(ug/L)		(ug/L)
12674-11-2	AROCLOR 1016	ND		0.060
11104-28-2	AROCLOR 1221	ND		0.290
11141-16-5	AROCLOR 1232	ND		0.110
53469-21-9	AROCLOR 1242	ND		0.110
12672-29-6	AROCLOR 1248	ND		0.050
11097-69-1	AROCLOR 1254	ND		0.040
11096-82-5	AROCLOR 1260	ND		0.160

^{*}RESULTS BETWEEN MDL AND RL ARE ESTIMATED.

MDL = METHOD DETECTION LIMIT

ND =UNDETECTED BELOW THE MDL

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

Initial Vol (ml) 1000.00 Final Vol.(ml) 10.00

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification # 13461

Client: U.S. Army

DPW, SELFM-PW-EV

Bldg. 173

Ft. Monmouth, NJ 07703

Lab ID #: 1037302

Sample Received: 08/31/10

Sample Matrix: Aqueous

Site:

Bldg. 482

Field ID#: Field Blank

Method of Analysis: Std. Methods 18th, Method 3120B, 3113B & 3112B

EPA Method 279.2

PP-METALS RESULTS SUMMARY (ug/L)

Element	lement Date of Result Regulatory		Regulatory	R.L.	MDL
	Analysis	(ug/L)	Level (ug/L)*	(ug/L)	(ug/L)
Antimony	09/14/10	ND	6	10.00	4.80
Arsenic	09/13/10	ND	3	5.00	0.62
Beryllium	09/14/10	ND	1	0.500	0.04
Cadmium	09/14/10	ND	4	2.00	0.500
Chromium	09/14/10	ND	70	5.00	1.00
Copper	09/14/10	ND	1300	5.00	1.00
Lead	09/14/10	ND	5	5.00	2.40
Mercury	09/14/10	ND	2	0.500	0.050
Nickel	09/14/10	1.00	100	5.00	0.400
Selenium	10/22/10	ND	40	5.00	1.36
Silver	09/14/10	1.00	40	5.00	0.500
Thallium	09/15/10	ND	2	5.00	0.53
Zinc	09/14/10	3.00	2000	50.00	1.20

ND = Not Detected NLE = No Limit Established, MDL = Method Detection Limit

R.L. = Reporting limit, Estimated results between MDL and R.L.

^{*} Higher of PQL's and Interim Criteria as per N.J.A.C. 7:9C 11/07/05

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory **NJDEP Certification # 13461**

Client: U.S. Army

DPW, SELFM-PW-EV

Bldg. 173

Ft. Monmouth, NJ 07703

Lab ID #: 1037303

Sample Received: 08/31/10

Sample Matrix: Aqueous

Site:

Bldg. 482

Field ID#: 482/TMP-1

Method of Analysis: Std. Methods 18th, Method 3120B, 3113B & 3112B

EPA Method 279,2

PP-METALS RESULTS SUMMARY (ug/L)

Element	Date of Analysis	Result (ug/L)	Regulatory Level (ug/L)*	R.L. (ug/L)	MDL (ug/L)
Antimony	09/14/10	11.5	6	10.00	4.80
Arsenic	09/13/10	85.63	3	5.00	0.62
Beryllium	09/14/10	0.043	1	0.500	0.04
Cadmium	09/14/10	1.63	4	2.00	0.500
Chromium	09/14/10	3.52	. 70	5.00	1.00
Copper	09/14/10	2.71	1300	5.00	1.00
Lead	09/14/10	6.17	5	5.00	2.40
Mercury	09/14/10	ND	2	0.500	0.050
Nickel	09/14/10	2.79	100	5.00	0.400
Selenium	10/22/10	ND	40	5.00	1.36
Silver	09/14/10	7.48	40	5.00	0.500
Thallium	09/15/10	ND	2	5.00	0.53
Zinc	09/14/10	ND	2000	50.00	1.20

ND = Not Detected NLE = No Limit Established, MDL = Method Detection Limit

R.L. = Reporting limit, Estimated results between MDL and R.L.

^{*} Higher of PQL's and Interim Criteria as per N.J.A.C. 7:9C 11/07/05

Client Sample ID: 4037202 FIELD BLANK

Lab Sample ID:

JA55318-1

Matrix:

AQ - Equipment Blank

Date Sampled: 08/31/I0

Date Received: 09/01/10

Percent Solids: n/a

Project:

Building 482

General Chemistry

Analyte

Result

RL

Units

mg/l

DF

Analyzed

Ву Method

Cyanide

< 0.010

0.010

1

09/07/10 11:07 NP

EPA 335.4/LACHAT

Page 1 of 1

Page 1 of 1

Client Sample ID: 1037203 TMP-1 Lab Sample ID: JA55318-2 Matrix: AQ - Ground Wa

AQ - Ground Water

Date Sampled: 08/31/10 Date Received: 09/01/10

Percent Solids: n/a

Project:

Building 482

General Chemistry

Analyte

Result

RL

Units

DF

Analyzed

Method

Cyanide

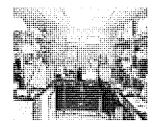
< 0.010

0.010 mg/l 1

09/07/10 11:08 NP

EPA 335.4/LACHAT

FORT MONMOUTH ENVIRONMENTAL


TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-6224 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING

CERTIFICATIONS: NJDEP #13461

ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: 11-124969

Bldg. 482/UST

Field Sample Location	Laboratory	Matrix	Date and Time	Date Received
	Sample ID#		of Collection	
482-GW-2	1126401	Aqueous	25-Jun-11 09:30	06/27/11
482-GW2-DUP.	1126402	Aqueous	25-Jun-11 09:30	06/27/11
482-GW2-Field Blank	1126403	Aqueous	25-Jun-11 09:00	06/27/11
Trip Blank	1126404	Aqueous	25-Jun-11	06/27/11

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB VOA+15

> ACCUTEST LABORATORIES TOTAL LEAD

> > Dean Tardiff/Date: 1/8/11

Laboratory Manager

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-4359 Fax (732)532-6263 EMail:dean.tardiff@us.army.mil
NJDEP Certification #13461

Chain of Custody Record

Customer: 10E p	Effici N	Pτoject No:	11-12	469		Analysis Parameters			Comments:					
Phone #: $\chi 267$	23	Location:	406.48	32										
()DERA ()OMA	(X)Other: <u><i>BRC</i></u>		, , , ,	,	,	3								
Samplers Name / Cor	mpany: FRHUK AO	CORSI		Sample	#	07	2							
Work Order#	Sample Location	Date	Time	Туре	bottles	7	1							Remarks / Preservation Method
11264.01	482-6W2	6-25-11	0930	10	3	Х	Χ							ICE
٥ 02	482 6W2-00PHEATE		0930		3	X	X							
<i>-0</i> 3	4826WJ- FIEZD		0900		31	W	X							
V .04	TRIP BLANK	V		*	2	lK								
,					_*									
											-			
			-											
					ļ									
					<u> </u>	<u> </u>								
				 	<u> </u>	<u> </u>								
											<u> </u>			
Relinquished by (signatu	ure): Date/Time:	Received by	(signature):	11 E:00	Relin	<u>l</u> quished	by (sig	I gnature)):	Date/	Time:	Recei	ved by	(signature):
Relinquished by (signatu	ıre): Date/Time:	Received by	(signature):		Relin	quished	by (sig	gnature)):	Date/	Time:	Recei	ved by	(signature):
	Report Type: ()Full, (*)Reduced, ()Standard, ()Screen / non-certified, ()EDD Turnaround time: ()Standard 3 wks, (*)Rush (Wk.,_()ASAP VerbalHrs. Comments: Teld Bank WA MANEW W // 2US													

print legibly

Page ____ of ____

COC .xls5/11/2011

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-4359 Fax (732)532-6263 EMail:dean.tardiff@us.army.mil
NJDEP Certification #13461

Chain of Custody Record

Customer: Dean Tardiff Project No: **Analysis Parameters** Comments: Phone #: (732)532-6352 Location: Bldg. 482)DERA ()OMA ()Other: Samplers Name / Company: Sample Work Order # Remarks / Preservation Method Sample Location Time Date Type bottles 1126401 482-GW-2 Х 06/25/411 9:30 AQ Х 1126402 482GW2-DUP. 06/25/411 9:30 AQ Х Х 1126403 AQ Χ 482GW2-Field Blank 06/25/411 9:00 Χ Received by (signature) Relinquished by (signature): Relinquished by (signature): Date/Time: Date/Time: Received by (signature): 17/0 Received by (signature): Relinquished by (signature): Date/Time: Relinquished by (signature): Date/Time: Received by (signature): Report Type: (_)Full, (X)Reduced, (_)Standard, (_)Screen / non-certified, (_)EDD Comments: PO C09-20650/(1 WK TAT) Turnaround time: (_)Standard 2 wks, (X)Rush Wk., _(_)ASAP Verbal ____Hrs.

000004

U.S. ARMY-FT. MONMOUTH, NJ

SITE 482

SOIL SAMPLING GPS POSITIONS & COORDINATES

US STATE PLANE 1983, NJ (NY EAST) 2900, NAD 1983 (CONUS)

POSITION/DESCRIPTION	Y COORDINATE (NORTHING)	X COORDINATE (EASTING)
482-GW-2	541786.083	623621.5368

Field Duplicate Identification

Lab ID: 11264

Site: Bldg. 482

The Field Duplicate was performed on 482-GW-2 (1126401).

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory

Sample Multiplier 1

1126401

482-GW2

NJDEP Certification #13461

VA10104.D Data File Sample Name ROBERTS Operator Field ID 27 Jun 2011 5:38 pm

Date Acquired

R.T. CAS# Compound Name Response Result MDL RL Qualifiers 3.21 ug/L 107028 Acrolein not detected 5.00 ug/L 107131 0.98 ug/L 5.00 ug/L Acrylonitrile not detected 5.00 ug/L 75650 tert-Butyl alcohol not detected 1.64 ug/L Methyl-tert-Butyl ether not detected 0.11 ug/L 0.50 ug/L 1634044 0.17 ug/L 108203 Di-isopropyl ether not detected 0.50 ug/L 75718 Dichlorodifluoromethane not detected 0.17 ug/L 0.50 ug/L 74-87-3 Chloromethane not detected 0.27 ug/L 0.50 ug/L 75-01-4 Vinyl Chloride not detected 0.22 ug/L 0.50 ug/L 74-83-9 Bromomethane not detected <u>0</u>.37 ug/L 0.50 ug/L 75-00-3 0.50 ug/L Chloroethane not detected 0.32 ug/L 75-69-4 0.50 ug/L Trichlorofluoromethane not detected $0.15 \, \mathrm{lug/L}$ 75-35-4 1,1-Dichloroethene not detected $0.15 \, \text{ug/L}$ 0.50 ug/L 67-64-1 Acetone not detected 0.32 ug/L 0.50 ug/L 75-15-0 Carbon Disulfide not detected 0.12 ug/L 0.50 ug/L 0.50 ug/L 75-09-2 Methylene Chloride not detected 0.26 ug/L 0.50 ug/L 156-60-5 trans-1,2-Dichloroethene not detected 0.14 ug/L 75-35-3 1,1-Dichloroethane not detected 0.12 ug/L 0.50 ug/L 108-05-4 0.20 0.50 ug/L Vinyl Acetate not detected ug/L 78-93-3 2-Butanone not detected 0.22 ug/L 0.50 ug/L 0.50 ug/L 156-59-2 cis-1,2-Dichloroethene not detected 0.12 ug/L 0.35 ug/L 0.50 ug/L 67-66-3 not detected Chloroform ug/L 0.50 ug/L 75-55-6 1,1,1-Trichloroethane not detected 0.12 ug/L 0.12 0.50 ug/L 56-23-5 not detected Carbon Tetrachloride ug/L 10.60 5423 0.17 ug/L 0.12 0.50 ug/L 71-43-2 Benzene 107-06-2 not detected 0.11 ug/L 0.50 ug/L 1,2-Dichloroethane 79-01-6 not detected 0.11 ug/L 0.50 ug/L Trichloroethene 78-87-5 not detected 0.12 ug/L 0.50 ug/L 1,2-Dichloropropane 75-27-4 Bromodichloromethane not detected 0.12 ug/L 0.50 ug/L 0.24 ug/L 0.50 ug/L 110-75-8 2-Chloroethyl vinyl ether not detected cis-1,3-Dichioropropene 0.13 0.50 ug/L 10061-01-5 not detected lug/L 108-10-1 4-Methyl-2-Pentanone not detected 0.15 ug/L 0.50 ug/L Toluene not detected 0.12 0.50 ug/L 108-88-3 ug/L 10061-02-6 0.130.50 ug/L trans-1,3-Dichloropropene not detected ug/L 0.50 ug/L 79-00-5 detected 0.14 ug/L 1,1,2-Trichloroethane not 127-18-4 not detected 0.14 ug/L 0.50 ug/L Tetrachloroethene 0.50 ug/L 0.17 591-78-6 2-Hexanone not detected ug/L 0.50 ug/L 0.12 126-48-1 Dibromochloromethane not detected ug/L 0.50 ug/L 0.12 ug/L 108-90-7 Chlorobenzene not detected 0.50 ug/L detected 0.12 100-41-4 Ethylbenzene not ug/L 630-20-6 detected 0.13 0.50 ug/L 1,1,1,2-tetrachloroethane not lug/L 1330-20-7 0.30 ug/L 1.00 ug/L m+p-Xylenes not detected 0.50 ug/L 1330-20-7 0.14 ug/L not detected o-Xylene 0.50 ug/L 100-42-5 not detected 0.14 ug/L Styrene 0.14 ug/L 75-25-2 not detected 0.50 ug/L Bromoform 79-34-5 not detected 0.14 ug/L 0.50 ug/L 1,1,2,2-Tetrachloroethane 541-73-1 not detected 0.16 ug/L 0.50 ug/L 1,3-Dichlorobenzene

Oualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

1,4-Dichlorobenzene

1,2-Dichlorobenzene

POL = Practical Quantitation Limit

J= Estimated concentration, value falls between R.L. and M.D.L.

MDL = Method Detection Limit NLE = No Limit Established

R.T. = Retention Time

not detected

not detected

R.L. = Reporting Limit

0.15 ug/L

0.13 ug/L

0.50 ug/L

0.50 ug/L

106-46-7

95-50-1

^{*}Results between MDL and RL are estimated values

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD I	D
---------	---

	,,,,,,,	102 (100)		482 GW2	
Lab Name: <u>FN</u>	IETL		NJDEP# <u>13461</u>		
Project:	Ca	se No:	Location: 482	SDG No.: 11264	
Matrix: (soil/wate	r) <u>WATER</u>		Lab Sample II	D: <u>1126401</u>	
Sample wt/vol:	5.0	(g/ml) ML	Lab File ID:	VA10104.D	
Level: (low/med)) LOW	-	Date Receive	d: <u>6/25/2011</u>	
% Moisture: not	dec.		Date Analyzed	d: <u>6/27/2011</u>	
GC Column: F	TX-VM ID: 0.	25 (mm)	Dilution Facto	r: <u>1.0</u>	
Soil Extract Volu	me:	(uL)	Soil Aliquot Vo	olume:	(uL)
			CONCENTRATION UNITS	S:	
Number TICs for	und: 15		(ug/L or ug/Kg) UG/L		

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1.	Alkane: Cyclic	10.16	36	J
2.	Alkane: Cyclic	11.71	29	J
3. 000103-65-1	Benzene, propyl-	18.36	17	JN
4.	C4 alkyl benzene	20.53	17	J
5. 000496-11-7	Indane	20.68	67	JN
6.	C4 alkyl benzene	21.34	49	J
7.	1H-Indene-dihydro-methyl-	21.49	19	J
8.	1H-Indene-dihydro-methyl-	21.59	46	J
9.	C4 alkyl benzene	21.96	39	J
10.	1H-Indene-dihydro-methyl-	22.49	34	J
11.	C4 alkyl benzene	22.69	80	J
12.	1H-Indene-dihydro-methyl-	22.74	74	J
13.	1H-Indene-dihydro-dimethyl-	23.18	28	J
14.	1H-Indene-dihydro-dimethyl-	23.27	21	J
	1H-Indene-dihydro-dimethyl-	23.42	46	J

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

Data File

VA10105.D

Sample Name

Operator ROBERTS Date Acquired 27 Jun 2011 6:18 pm

1126402 Field ID 482-GW2 DUPLICATE

Sample Multiplier 1

CAS#	Compound Name	R.T.	Response	Result		MDL		RL	Qualifiers
107028	Acrolein			not	detected	3.21	ug/L	5.00 ug/L	
107131	Acrylonitrile			not	detected	0.98	ug/L	5.00 ug/L	
75650	tert-Butyl alcohol			not	detected	1.64	ug/L	5.00 ug/L	
1634044	Methyl-tert-Butyl ether		L. <u>-</u>	not	detected	0.11	ug/L	0.50 ug/L	
108203	Di-isopropyl ether			not	detected	0.17	ug/L	0.50 ug/L	
75718	Dichlorodifluoromethane		l	not	detected	0.17	ug/L	0.50 ug/L	
74-87-3	Chloromethane			not	detected	0.27	ug/L	0.50 ug/L	
75-01-4	Vinyl Chloride			not	detected	0.22	ug/L	0.50 ug/L	
74-83-9	Bromomethane		1	not	detected	0.37		0.50 ug/L	
75-00-3	Chloroethane		1	not	detected	0.32	ug/L	0.50 ug/L	
75-69-4	Trichlorofluoromethane			not	detected	0.15		0.50 ug/L	
75-35-4	1,1-Dichloroethene			not	detected	0.15	ue/L	0.50 ug/L	
67-64-1	Acetone				detected	0.32		0.50 ug/L	
75-15-0	Carbon Disulfide				detected	0.12		0.50 ug/L	
75-09-2	Methylene Chloride				detected	0.26		0.50 ug/L	
156-60-5	trans-1,2-Dichloroethene				detected	0.14	_	0.50 ug/L	
75-35-3	1,1-Dichloroethane				detected	0.12		0.50 ug/L	
108-05-4	Vinyl Acetate				detected	0.20		0.50 ug/L	
78-93-3	2-Butanone		ļ		detected	0.22		0.50 ug/L	
156-59-2	cis-1,2-Dichloroethene		<u> </u>		detected	0.12		0.50 ug/L	
67-66-3	Chloroform				detected	0.35		0.50 ug/L	
75-55-6	1,1,1-Trichloroethane				detected	0.12		0.50 ug/L	
56-23-5	Carbon Tetrachloride		·		detected	0.12		0.50 ug/L	
71-43-2	Benzene	10.60	7805		ug/L	0.12		0.50 ug/L	J
107-06-2	1,2-Dichloroethane				detected	0.11		0.50 ug/L	
79-01-6	Trichloroethene				detected	0.11		0.50 ug/L	
78-87-5	1,2-Dichloropropane				detected	0.12		0.50 ug/L	
75-27-4	Bromodichloromethane				detected	0.12		0.50 ug/L	
110-75-8	2-Chloroethyl vinyl ether				detected	0.24		0.50 ug/L	
10061-01-5	cis-1,3-Dichloropropene				detected	0.13		0.50 ug/L	
108-10-1	4-Methyl-2-Pentanone				detected	0.15		0.50 ug/L	
108-88-3	Toluene		<u> </u>		detected	0.12		0.50 ug/L	
10061-02-6	trans-1,3-Dichloropropene				detected	0.13		0.50 ug/L	
79-00-5	1,1,2-Trichloroethane				detected	0.14	_	0.50 ug/L	
127-18-4	Tetrachioroethene		·		detected	0.14		0.50 ug/L	<u> </u>
591-78-6	2-Hexanone				detected	0.17		0.50 ug/L	
126-48-1	Dibromochloromethane		 		detected	0.12	_	0.50 ug/L	
108-90-7	Chlorobenzene		 		detected	0.12		0.50 ug/L	
100-41-4	Ethylbenzene		 		detected	0.12	_	0.50 ug/L	
630-20-6	1,1,1,2-tetrachloroethane	·····			detected	0.13		0.50 ug/L	
1330-20-7	m+p-Xvlenes				detected	0.30		1.00 ug/L	
1330-20-7	o-Xylene				detected	0.14		0.50 ug/L	
100-42-5	Styrene				detected	0.14		0.50 ug/L	<u> </u>
75-25-2	Bromoform		 		detected	0.14		0.50 ug/L 0.50 ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	<u> </u>	 		detected	0.14		0.50 ug/L	
541-73-1	1,3-Dichlorobenzene	···			detected	0.14		0.50 ug/L	- ,
106-46-7	1,4-Dichlorobenzene				detected	0.15		0.50 ug/L	
100-10-1	1,7-DICHIOLOGERZENE			1101	uciccica		ug/L ug/L	0.50 ug/L	

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

J= Estimated concentration, value falls between R.L. and M.D.L.

MDL = Method Detection Limit NLE = No Limit Established R.T. = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7;9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FI	EL	.D	ID
----	----	----	----

	ILIVIAI		LD CONTI CO	NDO	400 CMO DI	ıь I
Lab Name: FMI	ETL		NJDEP#	13461	482 GW2 DL)P
Project:	Ca	se No:	Location	: <u>482</u> S	DG No.: <u>11264</u>	
Matrix: (soil/water) <u>WATER</u>		Lab	Sample ID:	1126402	
Sample wt/vol:	5.0	(g/ml) ML	Lab	File ID:	VA10105.D	
Level: (low/med)	LOW		Date	e Received:	6/25/2011	
% Moisture: not d	ec		Date	e Analyzed:	6/27/2011	
GC Column: R	<u> </u>	25 (mm)	Dilu	tion Factor:	1.0	
Soil Extract Volun	ne:	(uL)	Soil	Aliquot Volu	ıme:	(uL)
		_	ONCENTRAT	ION UNITS:		

Number TICs found: 15

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1.	Alkane: Cyclic	10.16	46	J
2.	Alkane: Cyclic	11.72	35	J
3. 000103-65-1	Benzene, propyl-	18.36	18	JN
4.	C4 alkyl benzene	20.53	19	J
5, 000496-11-7	Indane	20.69	76	JN
6.	C4 alkyl benzene	21.33	56	J
7,	1H-Indene-dihydro-methyl-	21.48	21	J
8.	1H-Indene-dihydro-methyl-	21.59	58	J
9.	C4 alkyl benzene	21.96	48	J
10.	1H-Indene-dihydro-methyl-	22.49	36	J
11.	C4 alkyl benzene	22,69	95	J
12.	1H-Indene-dihydro-methyl-	22,75	78	J
13.	1H-Indene-dihydro-dimethyl-	23.18	33	J
14,	1H-Indene-dihydro-dimethyl-	23.28	23	J
15	1H-Indene-dihydro-dimethyl-	23,43	50	J

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory

1126404

NJDEP Certification #13461

Sample Name ROBERTS Operator TRIP BLANK Field ID Date Acquired 27 Jun 2011 4:40 pm Sample Multiplier 1

CAS#	Compound Name	R,T,	Response	Result		MDL	_	RL	Qualifiers
107028	Acrolein			not	detected	3.21	ug/L	5.00 ug/L	
107131	Acrylonitrile			not	detected	0.98	ug/L	5,00 ug/L	
75650	tert-Butyl alcohol			not	detected	1.64	ug/L	5.00 ug/L	
1634044	Methyl-tert-Butyl ether			not	detected	0.11	ug/L	0.50 ug/L	
108203	Di-isopropyl ether			not	detected	0.17	ug/L	0.50 ug/L	
75718	Dichlorodifluoromethane			not	detected	0.17	ug/L	0.50 ug/L	
74-87-3	Chloromethane			not	detected	0.27	ug/L	0.50 ng/L	
75-01-4	Vinyl Chloride			not	detected	0,22	ug/L	0.50 ug/L	
74-83-9	Bromomethane			not	detected	0.37	ug/L	0.50 ug/L	
75-00-3	Chloroethane			not	detected	0.32	ug/L	0.50 ug/L	
75-69-4	Trichlorofluoromethane			not	detected	0.15	ug/L	0.50 ug/L	
75-35-4	1,1-Dichloroethene			not	detected	0.15	ug/L	0.50 ug/L	
67-64-1	Acetone			not	detected	0.32	ug/L	0.50 ug/L	
75-15-0	Carbon Disulfide			not	detected	0.12	ug/L	0.50 ug/L	
75-09-2	Methylene Chloride			not	detected	0.26	ug/L	0.50 ug/L	
156 - 60-5	trans-1,2-Dichloroethene			not	detected	0.14	ug/L	0.50 ug/L	
75-35-3	1,1-Dichloroethane			not	detected	0.12	ug/L	0.50 ug/L	
108-05-4	Vinyl Acetate			not	detected	0.20	ug/L	0.50 ug/L	
78-93-3	2-Butanone			not	detected	0.22	ug/L	0.50 ug/L	
156-59-2	cis-1,2-Dichloroethene			not	detected	0.12	ug/L	0.50 ug/L	
67-66-3	Chloroform			not	detected	0.35	ug/L	0.50 ug/L	
75-55-6	1,1,1-Trichloroethane			not	detected	0.12	ug/L	0.50 ug/L	
56-23-5	Carbon Tetrachloride			not	detected	0.12	ug/L	0.50 ug/L	
71-43-2	Benzene			not	detected	0.12	ug/L	0.50 ug/L	
107-06-2	1,2-Dichloroethane			not	detected	0.11	ug/L	0.50 ug/L	
79-01-6	Trichloroethene			not	detected	0.11	ug/L	0.50 ug/L	
78-87-5	1,2-Dichloropropane			not	detected	0.12	ug/L	0.50 ug/L	
75-27-4	Bromodichloromethane			not	detected	0.12	ug/L	0.50 ug/L	
110 - 75-8	2-Chloroethyl vinyl ether			not	detected	0.24	ug/L	0.50 ug/L	
10061-01-5	cis-1,3-Dichloropropene			not	detected	0.13	ug/L	0.50 ug/L	
108-10-1	4-Methyl-2-Pentanone			not	detected	0.15	ug/L	0.50 ug/L	
108-88-3	Toluene			not	detected	0.12	ug/L	0.50 ug/L	
10061-02-6	trans-1,3-Dichloropropene			not	detected	0.13	ug/L	0.50 ug/L	
79-00-5	1,1,2-Trichloroethane			not	detected	0.14	ug/L	0.50 ug/L	
127-18-4	Tetrachloroethene			not	detected	0.14	ug/L	0.50 ug/L	
591-78-6	2-Hexanone			not	detected	0.17	ug/L	0.50 ug/L	
126-48-1	Dibromochloromethane			not	detected	0.12	ug/L	0.50 ug/L	
108-90-7	Chlorobenzene			not	detected	0.12	ug/L	0.50 ug/L	
100-41-4	Ethylbenzene			not	detected	0.12	ug/L	0.50 ug/L	
630-20-6	1,1,1,2-tetrachloroethane			not	detected	0.13	ug/L	0.50 ug/L	
1330-20-7	m+p-Xylenes			not	detected	0.30		1.00 ug/L	
1330-20-7	o-Xylene			not	detected	0.14	ug/L	0.50 ug/L	
100-42-5	Styrene			not	detected	0.14	ug/L	0.50 ug/L	
75 - 25-2	Bromoform			not	detected	0.14	ug/L	0.50 ug/L	
79-34-5	1,1,2,2-Tetrachloroethane			not	detected	0.14	ug/L	0.50 ug/L	
541-73-1	1,3-Dichlorobenzene			not	detected	0.16	ug/L	0.50 ug/L	
106-46-7	1,4-Dichlorobenzene			not	detected	0.15	ug/L	0.50 ug/L	
95-50-1	1,2-Dichlorobenzene		l	not	detected	0.13	ug/L	0.50 ug/L	

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

J= Estimated concentration, value falls between R.L. and M.D.L.

MDL = Method Detection Limit NLE = No Limit Established R.T. = Retention Time R.L. = Reporting Limit

Data File

VA10102.D

^{*}Higher of PQL's and Ground Water Quality Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD ID

Lab Name: FMET	L	NJDEP# 13461
Project:	Case No:	Location: 482 SDG No.: 11264
Matrix: (soil/water)	WATER	Lab Sample ID: 1126404
Sample wt/vol:	5.0 (g/ml) MI	Lab File ID: VA10102.D
Level: (low/med)	LOW	Date Received: 6/25/2011
% Moisture: not dec	•	Date Analyzed: 6/27/2011
GC Column: RTX	-VM ID: 0.25_ (mm)	Dilution Factor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volume: (uL
		CONCENTRATION UNITS:
Number TICs found	. 0	(ug/L or ug/Kg) UG/L
CAS NO.	COMPOUND NAME	RT EST. CONC. Q

Page 1 of 1

Client Sample ID: 1126401 482-GW-2

Lab Sample ID:

JA79588-1

Date Sampled: 06/25/11

Matrix:

AQ - Ground Water

Date Received: 06/28/11

Percent Solids: n/a

Project:

Fort Monmouth Env Testing Lab, Building 173, SELFM-PW-EV, Fort Monmouth, NJ

Total Metals Analysis

Analyte	Result	RL	Units	D F	Prep	Analyzed By	Method	Prep Method
Lead ^a	80.6	12	ug/l	2	06/30/11	07/02/11 VC	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA26653

(2) Prep QC Batch: MP58959

(a) Elevated detection limit due to dilution required for high interfering element.

Client Sample ID: 1126402 482GW2-DUP

Lab Sample ID: Matrix:

Project:

JA79588-2

AQ - Ground Water

Date Sampled: 06/25/11

Date Received: 06/28/11

Percent Solids: n/a

Fort Monmouth Env Testing Lab, Building 173, SELFM-PW-EV, Fort Monmouth, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead ^a	79,0	12	ug/l	2	06/30/11	07/02/11 vc	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA26653 (2) Prep QC Batch: MP58959

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 1

Client Sample ID: 1126403 482GW2-FIELD BLANK

Lab Sample ID:

Matrix:

Project:

JA79588-3

AQ - Field Blank Water

Date Sampled: 06/25/11

Date Received: 06/28/11

Percent Solids: n/a

Fort Monmouth Env Testing Lab, Building 173, SELFM-PW-EV, Fort Monmouth, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	≤3,0	3.0	ug/l	1	06/30/11	07/01/I1 vc	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA26643 (2) Prep QC Batch: MP58959

10 Remarks:

Sample Types	Consistency v	s. Blowcount / Foot	
3 - Split-Spoon	Granular (Sand & Gravel)	Fine Grained (Silt & Clay)	and - 35 -50%
U – Undisturbed Tube C – Rock Core A – Auger Cuttings	V. Loose: 0-4 Dense: 30-50 Loose: 4-10 V. Dense: >50 M. Dense: 10-30	V. Soft: <2 Stiff: 8-15 Soft: 2-4 V. Soff: 15-30 M. Stiff: 4-8 Hard: > 30	some - 20-35% little - 10-20% trace - <10% moisture, density, color, gradation

M. Dense: 10-30

M. Stiff: 4-8

Hard: > 30

moisture, density, color, gradation

A - Auger Cuttinos

James E. McGreevey
Governor

Department of Environmental Protection

Bradley M. Campbell Commissioner

Mr. Dinkerrai Desai DEPARTMENT OF THE ARMY HEADQUARTERS, U.S. ARMY COMMUNICATIONS-ELECTRONIC COMMAND FORT MONMOUTH, NJ 07703-5000

Re:

UST Closure Approval/NFA Fort Monmouth Main Post Monmouth County JAN 1 0 2003

Dear Mr. Desai:

The NJDEP is in receipt of sixty-eight (68) underground storage tank (UST) closure reports dated between July 17, 2001 and May 15, 2002. The Army has requested to receive No Further Action (NFA) approval letters for each of these reports. This letter approves the NFA requests for the following 68 UST that are located on the Main Post of the Fort Monmouth site:

Submittal Date	Building No.	NJDEP Reg. #	Residential
07/17/2001	104	90010-75	NO
07/17/2001	699A	81533-112	NO
07/17/2001	800A	81533-127	NO
07/17/2001	875	81533-234	NO
07/17/2001	949	81533-203	NO
07/17/2001	1220A	81533-184	NO
07/17/2001	2000B	192486-38	NO
01/02/2002	257	81533-200	NO
01/02/2002	283C	81533-229	NO
01/02/2002	290B	81533-224	NO
01/02/2002	290B	81533-225	NO
01/02/2002	491	90010-71	NO
01/02/2002	605	81533-85	NO
01/02/2002	678	81533-105	NO
01/02/2002	699	81533-236	NO
01/02/2002	699	81533-238	NO
01/02/2002	699	81533-237	NO
01/02/2002	699	81533-235	NO .
01/02/2002	801B	81533-129	NO
01/02/2002	804A	81533-130	NO
01/02/2002	2337	81515-65	NO
01/02/2002	2562A	81515-41	NO
01/02/2002	2707	81515-50	NO
01/02/2002	2707	81515-49	NO
01/02/2002	2707	81515-51	NO
01/02/2002	2707	81515-47	NO
01/02/2002	2707	81515-48	NO

Submittal Date	Building No.	NJDEP Reg. #	Residential
02/13/2002	2044	192486-24	NO
02/13/2002	2044	192486-32	NO
02/13/2002	2044	192486-33	NO
02/26/2002	208B	81533-210	YES
03/05/2002	246	N/A	YES
03/05/2002	261B	N/A	YES
05/15/2002	106	90010-74	NO
05/15/2002	164	90010-15	NO
05/15/2002	173	90010-19	NO
05/15/2002	200	81533-2	NO
05/15/2002	208A	81533-6	YES
05/15/2002	233	81533-21	YES
05/15/2002	237	81533-25	YES
05/15/2002	271	81533-55	YES
05/15/2002	277	90010-24	NO
05/15/2002	296B	81533-217	NO
05/15/2002	296B	81533-223	NO
05/15/2002	296B	81533-221	NO
05/15/2002	296B	81533-220	NO
05/15/2002	296B	81533-222	NO
05/15/2002	296B	81533-218	NO
05/15/2002	296B	81533-216	NO
05/15/2002	296B	81533-215	NONO
05/15/2002	296B	81533-214	NO
05/15/2002	296B	81533-213	<u> </u>
05/15/2002	296B	81533-219	NO
05/15/2002	426	90010-40	NO
05/15/2002	482	90010-54	NO
05/15/2002	600 A	81533-83	NO
05/15/2002	600 B	81533-212	NO
05/15/2002	611	81533-87	NO
05/15/2002	615	81533-89	NO
05/15/2002	618	81533-91	NO
05/15/2002	619	81533-92	NO
05/15/2002	621	81533-94	NO
05/15/2002	634	N/A	NO
05/15/2002	638	N/A	NO
05/15/2002	639-2	N/A	NO
05/15/2002	640	N/A	NO
05/15/2002	641	N/A	NO
05/15/2002	644	N/A	NO
05/15/2002	664	. N/A	NO
05/15/2002	666	N/A	NO
05/15/2002	686	81533-107	NO
05/15/2002	697	81533-194	NO
05/15/2002	697	81533-195	NO

:

Submittal Date	Building No.	NJDEP Reg. #	Residential
05/15/2002	697	81533-196	NO
05/15/2002	876B	81533-139	NO
05/15/2002	886	81533-140	NO
05/15/2002	905	81533-145	NO
05/15/2002	1102	81533-162	NO
05/15/2002	1104	81533-164	NO
05/15/2002	2067	192486-37	NO
05/15/2002	2534	81515-24	NO
05/15/2002	2603	81515-60	NO
05/15/2002	2700 2,6	81515-61	NO

The NJDEP has determined that the Army has performed the remedial actions in a manner consistent with the regulatory requirements, specifically the Technical Requirements For Site Remediation (N.J.A.C. 7:26E et seq.). Soils with contamination in excess of the NJDEP residential cleanup criteria have been excavated and the Army has taken great care to provide documentation that assures us that all sources of contamination have been remediated.

If you should have any questions or comments, please do not hesitate to contact me at (609) 633-7232 or via E-mail.

Sincerely,

Ian R. Curtis, Case Manager Bureau of Case Management ICURTIS@DEP.STATE.NJ.US

FTMMTH116IRC.DOC

UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT

BUILDING 482

MAIN POST-EAST AREA NJDEP UST REGISTRATION NO. 90010-55

MARCH 2002

PREPARED FOR:

UNITED STATES ARMY, FORT MONMOUTH, NEW JERSEY
DIRECTORATE OF PUBLIC WORKS
BUILDING 167
FORT MONMOUTH, NJ 07703

PREPARED BY:

VERSAR 1900 FROST ROAD SUITE 110 BRISTOL, PA 19007

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iv
1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES	1
1.1 OVERVIEW 1.2 SITE DESCRIPTION	1 2
1.2.1 Geological/Hydrogeological Setting	2
1.3 HEALTH AND SAFETY 1.4 REMOVAL OF UNDERGROUND STORAGE TANK	4 4
1.4.1 General Procedures 1.4.2 Underground Storage Tank Excavation and Cleaning	4 4
1.5 UNDERGROUND STORAGE TANK TRANSPORTATION AND DISPOSAL 1.6 MANAGEMENT OF EXCAVATED SOILS	5 5
2.0 SITE INVESTIGATION ACTIVITIES	6
2.1 OVERVIEW 2.2 FIELD SCREENING/MONITORING 2.3 SOIL SAMPLING 2.4 GROUNDWATER SAMPLING	6 6 7 7
3.0 CONCLUSIONS AND RECOMMENDATIONS	8
3.1 SOIL SAMPLING RESULTS 3.2 GROUNDWATER SAMPLING RESULTS	8
3.3 CONCLUSIONS AND RECOMMENDATIONS	9

TABLE OF CONTENTS (CONTINUED)

TABLES

Table 1	Summary of Post-Excavation Sampling Activities
Table 2	Post-Excavation Soil Sampling Results

Table 3 Groundwater Sampling Results

FIGURES

Figure 1 Site Location Map

Figure 2 Site Map

Figure 3 Sample Location Map

APPENDICES

Appendix A NJDEP UST Report Certification Form

Appendix B Waste Manifest

Appendix C UST Disposal Certificate

Appendix D Soil Analytical Data Package

Appendix E Groundwater Analytical Data Package

Appendix F Photographs

EXECUTIVE SUMMARY

UST Closure

On August 11, 1994, a steel underground storage tank (UST) was closed by removal in accordance with New Jersey Department of Environmental Protection (NJDEP) closure procedures at the Main Post-East area of the U.S. Army Fort Monmouth, Fort Monmouth, New Jersey. The UST, NJDEP Registration No. 0090010-55 (Fort Monmouth ID No. 482), was located east of Building 482. UST No. 0090010-55 was a 1,000 gallon #2 fuel oil UST.

Site Assessment

The site assessment was performed by U.S. Army personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E) and the NJDEP *Field Sampling Procedures Manual*. The sampling and laboratory analysis conducted during the site assessment were performed in accordance with Section 7:26E-2.1 of the *Technical Requirements for Site Remediation*. Soils surrounding the tank were screened visually and with air monitoring equipment for evidence of contamination. Following removal, the UST was inspected for corrosion holes. No holes or punctures were noted in the UST, although stained soil was observed. The NJDEP hotline was notified and the case was assigned DICAR No. 94-8-11-1345-43. Approximately 80 cubic yards of potentially contaminated soil were removed from the excavated area and stored at the Fort Monmouth petroleum contaminated soil staging area.

On August 12, 1994, nine post-excavation soil samples, A through I, were collected from the UST and piping excavations. On August 26, 1994, additional soil removal was conducted at three soil sample locations, C, H, and I, which exhibited elevated levels of TPH. Post-excavation samples were then collected from the new extent of the excavations at the three locations.

On September 6, 1994, additional soil was removed from the vicinity of sample location C due to the elevated concentration of TPH in the August 26 sample. Yet another post-excavation sample was collected from the new extent of the excavation.

All of the samples collected on August 12, 1994 contained TPH concentrations below the NJDEP residential direct contact total organic contaminants soil cleanup criteria of 10,000 mg/kg. However, subsequent samples collected at location C on August 26 and September 6, 1994 contained 29,400 mg/kg and 14,100 mg/kg, respectively. In order to address these results and determine current soil conditions, soil samples were collected at seven new locations on February 20, 2002. The soil samples were analyzed for TPH and VOCs. None of the results exceeded the NJDEP soil cleanup criteria for TPH. There were no VOCs detected in any of the seven samples.

Groundwater was encountered at 4.0 feet below ground surface and a sheen was observed on groundwater. In response to the observation of sheen on groundwater, two (2) monitoring wells, MW-1 and MW-2, were installed downgradient from the UST. Groundwater samples were collected from each of the wells on November 27 and

December 18, 1995. The samples were analyzed for volatile organic compounds calibrated for xylene plus 15 tentatively identified compounds (VOC's), and semivolatile organic compounds plus 15 tentatively identified compounds (SVOC's). All groundwater analytical results were either below the detection limit or in compliance with the New Jersey Ground Water Quality Criteria (GWQC).

No further action is proposed in regard to the closure and site assessment of UST No. 90010-55 at Building 482.

1.0 UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No. 90010-55, was closed at Building 482 at the Main Post-East area of U.S. Army Fort Monmouth, Fort Monmouth, New Jersey on August 11, 1994. Refer to the site location map on Figure 1. This report presents the results of the Department of Public Works' (DPW) implementation of the UST Decommissioning/Closure Plan approved by the NJDEP. The UST was a steel 1,000-gallon tank containing No. 2 fuel oil.

Decommissioning activities for UST No. 90010-55 complied with all applicable Federal, State, and Local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to N.J.A.C. 7:14B-1 et seq., N.J.A.C. 5:23-1 et seq., and Occupational Safety and Health Administration (OSHA) 1910.146 & 1910.120. All permits including but not limited to the NJDEP approved Decommissioning/Closure Plan were posted onsite for inspection. The decommissioning activities were conducted by DPW personnel who are registered and certified by the NJDEP for performing UST closure activities. Closure of UST No. 90010-55 proceeded under the approval of the NJDEP Bureau of Federal Case Management (NJDEP-BFCM).

Based on field screening of subsurface soils and a sheen on the groundwater within the UST excavation, the DPW concluded that an historical discharge had occurred. On August 11, 1994, a spill was reported to the NJDEP "Hotline" for UST No. 0090010-54 and was assigned Spill Case No. 94-8-11-1345-43.

This UST Closure and Site Investigation Report has been prepared by Versar, to assist the U.S. Army DPW in complying with the NJDEP regulations. The applicable NJDEP regulations at the date of closure were the *Interim Closure Requirements for Underground Storage Tank Systems* (N.J.A.C. 7:14B-1 et seq. October 1990 and revisions dated November 1, 1991).

This report was prepared using information collected at the time of closure. Section 1 of this UST Closure and Site Investigation Report provides a summary of the UST decommissioning activities. Section 2 of this report describes the site investigation activities. Conclusions and recommendations, including the results of the soil sampling and groundwater investigation, are presented in the final section of this report.

1.2 SITE DESCRIPTION

Building 482 is located in the Main Post-East area of the Fort Monmouth Army Base. UST No. 0090010-55 was located east of Building 482 and appurtenant copper piping ran approximately 6 feet northeast, 44 feet northwest, and 2 feet southwest from the UST excavation to Building 482. A site map is provided on Figure 2.

1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of the area surrounding Building 482. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Main Post area.

Regional Geology

Monmouth County lies within the New Jersey Section of the Atlantic Coastal Plain physiographic province. The Main Post, Charles Wood, and the Evans areas are located in what may be referred to as the Outer Coastal Plain subprovince, or the Outer Lowlands.

In general, New Jersey Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, and gravel. These formations typically strike northeast-southwest with a dip ranging from 10 to 60 feet per mile and were deposited on Precambrian and lower Paleozoic rocks (Zapecza, 1989). These sediments, predominantly derived from deltaic, shallow marine, and continental shelf environments, date from Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units which are generally thicker to the southeast and reflect a deeper water environment. More than 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations). The individual thicknesses for these units vary greatly (i.e., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from the Fall Line to greater than 6,500 feet in Cape May County (Brown and Zapecza, 1990).

Local Geology

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile. The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium-to-coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

<u>Hydrogeology</u>

The water table aquifer in the Main Post area is identified as part of the "composite confining units," or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation.

Based on records of wells drilled in the Main Post area, water is typically encountered at depths of 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may produce 2 to 25 gallons per minute (gpm). Some well owners have reported acidic water that requires treatment to remove iron.

Due to the proximity of the Atlantic Ocean to Fort Monmouth, shallow groundwater may be tidally influenced and may flow toward creeks and brooks as the tide goes out, and away from creeks and brooks as the tide comes in. However, an abundance of clay lenses and sand deposits were noted in borings installed throughout Fort Monmouth. Therefore, the direction of shallow groundwater should be determined on a case-by-case basis.

Shallow groundwater is locally influenced within the Main Post area by the following factors:

- tidal influence (based on proximity to the Atlantic Ocean, rivers, and tributaries)
- topography
- nature of the fill material within the Main Post area
- presence of clay and silt lenses in the natural overburden deposits
- local groundwater recharge areas (i.e., streams, lakes)

Due to the fluvial nature of the overburden deposits (i.e., sand and clay lenses), shallow groundwater flow direction is best determined on a case-by-case basis. This is consistent with lithologies observed in borings installed within the Main Post area, which primarily consisted of fine-to-medium grained sands, with occasional lenses or laminations of gravel silt and/or clay.

Building 482 is located approximately 800 feet southwest of Parkers Creek, the nearest water body. Based on the Main Post topography, the groundwater flow in the area of Building 482 is anticipated to be to the northeast.

1.3 HEALTH AND SAFETY

Before, during, and after all decommissioning activities, hazards at the work site which may have posed a threat to the Health and Safety of all personnel who were involved with, or were affected by, the decommissioning of the UST system were minimized. All areas, which posed, or may have been suspected to pose a vapor hazard were monitored by a qualified individual utilizing an organic vapor analyzer (OVA). The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA.

1.4 REMOVAL OF UNDERGROUND STORAGE TANK

1.4.1 General Procedures

- The contractor performing the closure prior to excavation activities identified all underground obstructions (utilities, etc.).
- All activities were carried out with the greatest regard to safety and health and the safeguarding of the environment.
- All excavated soils were visually examined and screened with an OVA for evidence of contamination. Potentially contaminated soils were identified and logged during closure activities.
- Surface materials (i.e., asphalt, concrete, etc.) were excavated and staged separately from all soil and recycled in accordance with all applicable regulations and laws.
- A Sub-Surface Evaluator from the DPW was present during all site assessment activities.

1.4.2 Underground Storage Tank Excavation and Cleaning

Prior to UST decommissioning activities, surficial soil was removed to expose the UST and associated piping. All free product present in the piping was drained into the UST, and the UST was purged to remove vapors prior to cutting and removal of the piping. After removal of the associated piping, a manway was made in the UST to allow for proper cleaning. The UST was completely emptied of all liquids prior to removal from the ground. Approximately 122 gallons of liquid from the UST and its associated piping were transported by Lionetti Oil Recovery Co. Inc. facility, a NJDEP-approved petroleum recycling and disposal company located in Old Bridge, New Jersey.

The UST was cleaned prior to removal from the excavation in accordance with the NJDEP regulations. After the UST was removed from the excavation, it was staged on polyethylene sheeting and examined for holes. No holes or punctures were noted in the UST during the inspection by the Sub-Surface Evaluator.

Soils surrounding the UST were screened visually and with an OVA for evidence of contamination. Soils were stained. Approximately 80 cubic yards of potentially contaminated soil were removed from the excavated area and transported to the Main Post

petroleum contaminated soil holding area. Soil screening was also performed along the piping associated with the UST. No contamination was noted anywhere along the piping length.

1.5 UNDERGROUND STORAGE TANK TRANSPORTATION AND DISPOSAL

The tank was transported in compliance with all applicable regulations and laws to Mazza and Sons, Inc.

The UST was labeled prior to transport with the following information:

- Site of origin
- Contact person
- NJDEP UST Facility ID number
- Former contents
- Destination site
- Date

1.6 MANAGEMENT OF EXCAVATED SOILS

Based on OVA air monitoring and TPH analysis results from the post-excavation soil samples, approximately 80 cubic yards of potentially contaminated soil were removed from the UST excavation. All potentially contaminated soils were stockpiled separately from other excavated material and were placed on and covered with polyethylene sheets. Potentially contaminated soils were transported to the soil staging area. Soils that did not exhibit signs of contamination were used as backfill following the removal of the UST. Groundwater was encountered at 4 feet below ground surface and sheen was observed on groundwater.

2.0 SITE INVESTIGATION ACTIVITIES

2.1 OVERVIEW

The Site Investigation was managed and carried out by U.S. Army DPW personnel. All analyses were performed and reported by U.S. Army Fort Monmouth Environmental Laboratory, a NJDEP-certified testing laboratory. All sampling was performed under the direct supervision of a NJDEP Certified Sub-Surface Evaluator according to the methods described in the NJDEP *Field Sampling Procedures Manual* (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Interim Closure Requirements for Underground Storage Tank Systems* (October 1990 and revisions dated November 1, 1991) which was the applicable regulation at the date of the closure. The Fort Monmouth DPW Environmental Office maintains all records of the Site Investigation activities.

2.2 FIELD SCREENING/MONITORING

Field screening was performed by a NJDEP Certified Sub-Surface Evaluator using an OVA and visual observations to identify potentially contaminated material. Approximately 80 cubic yards of potentially petroleum contaminated soil were removed from the excavated area and transported to the Fort Monmouth petroleum contaminated soil holding area. Soils were removed from the excavation until no evidence of contamination remained. Groundwater was encountered at 4 feet below ground surface and sheen was observed on groundwater.

2.3 SOIL SAMPLING

On August 11, 1994, following removal of the UST, approximately 20 cubic yards of soil were removed from the base and sidewalls of the excavation. The soil was removed due to high FID readings and a sheen observed on the groundwater.

On August 12, 1994, approximately 30 cubic yards of soil were removed from the excavation and from the piping trench due to visible contamination. Post-excavation soil samples A, B, C, D, E, F, and a duplicate of F were collected from the UST excavation. Samples H, I, and J were collected from the piping excavation. All samples were analyzed for total petroleum hydrocarbons (TPH) and total solids.

On August 26, 1994, due to high levels of TPH, approximately 10 cubic yards of soil were removed from the UST excavation in the vicinity of sample C, and samples H and I. Post-excavation samples were then collected from the expanded portions of the excavation at locations C, H, and I. Samples were analyzed for TPH.

On September 6, 1994, approximately 20 cubic yards of potientially contaminated soil were removed from the excavation in the vicinity of sample C due to elevated TPH levels detected in the August 26 sample. A post-excavation sample was then collected from the new extent of the excavation at sample location C. The sample was analyzed for TPH.

In response to recommendations made in the May 2000, Smith Technology Corporation Underground Storage Tank Closure and Site Investigation Report for Building 482, additional soil samples were collected at the site on February 20, 2002. Soil samples, 1 through 7, were collected along the downgradient perimeter of the former excavation and analyzed for TPH and VOCs.

DPW personnel in accordance with the NJDEP Technical Requirements and the NJDEP Field Sampling Procedures Manual performed the site assessment. A summary of sampling activities including parameters analyzed is provided in Table 1. The post-excavation soil samples were collected using NJDEP *Field Sampling Procedures Manual* (1992) standard sampling procedures. Following soil sampling activities, the samples were chilled and delivered to U.S. Army Fort Monmouth Environmental Laboratory located in Fort Monmouth, New Jersey, for analysis.

2.4 GROUNDWATER SAMPLING

In response to the observation of potentially contaminated soil near the shallow water table, two shallow monitoring wells (MW-1 and MW-2) were installed at the Building 482 area on August 11, 1995. Monitoring well MW-1 was installed 25 feet east of the UST excavation and MW-2 was installed 17 feet east of the UST excavation. Both wells were assumed to be downgradient of the excavation. The wells were screened from 2 to 12 feet BGS. The wells were constructed in accordance with the NJDEP's well construction protocols outlined in its May 1992 Field Sampling Procedures Manual.

On November 27,1995, and December 18, 1995, groundwater was collected from each well and analyzed for volatile organic compounds calibrated for xylene plus 15 tentatively identified compounds (VOC's), and semivolatile organic compounds plus 15 tentatively identified compounds (SVOC's). Sampling and analysis were performed in accordance with the NJDEP *Field Sampling Procedures Manual* and the *Technical Requirements For Site Remediation*. Refer to Appendix F for the field sampling documentation.

Based on evidence of the former presence of a septic tank in the vicinity of the former No. 2 fuel oil UST, one Geoprobe groundwater sample was collected at the site and analyzed for VOC, SVOC, and total and fecal coliform on February 20, 2002. The monitoring wells were not sampled on that day because they were apparently destroyed during the construction of a new garage at Building 482.

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory NJDEPE Certification # 13461

Client: U.S. Army

Lab. ID #: 1609.1-.10

DPW, SELFM-PW-EV

Sample Rec'd: 08/12/94

Bldg. 167

Analysis Start: 08/16/94

Ft. Monmouth, NJ 07703

Analysis Comp: 08/16/94

Analysis: 418.1 (TPH)

NJDEPE UST Reg.#: 0090010-54

Matrix: Soil Closure #: c93-3898

Analyst: S. Hubbard

DICAR #:

Ext. Meth: Sonc.

Location #: Bldg. 482

Lab ID.	Description		%Solid	Result (mg/I	
1609.1	Site A, SE	OVA= 3	87	240.	6.6
1609.2	Site B, S	OVA= <1	87	145.	6.6
1609.3	Site C, SE	OVA= <1	89	1160.	6.6
1609.4	Site D, NE	OVA= 3	90	222.	6.6
1609.5	Site E, N	OVA= 5	84	205.	6.6
1609.6	Site F, NE	OVA= 3	85	235.	6.6
1609.7	Site G (dup)	OVA= 3	87	134.	6.6
1609.8	Site H, PIPE	OVA= 9	79	1300.	6.6
1609.9	Site I	OVA= 10 *	80	1910.	46.
1609.10	Site J	OVA= 9	93	41.2	6.6
M. Bl.	Method Blank		100	ND	3.3

Notes: ND = Not Detected, MDL = Method Detection Limit

* = Silica Gel Added, NA = Not Applicable

1609.10dup= 112% 1609.10s= 87% 1609.10sd= 88% RPD= 1.0%

Brian K. McKee

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory

NJDEPE Certification # 13461

Client: U.S. Army

DPW, SELFM-PW-EV

Bldq. 167

Ft. Monmouth, NJ 07703

Lab. ID #: 1625.1-.3 Sample Rec'd: 08/26/94

Analysis Start: 08/31/94

Analysis Comp: 08/31/94

Analysis: 418.1 (TPH)

Soil Matrix:

Analyst: S. Hubbard

Ext. Meth: Sonc.

NJDEPE UST Reg.#: 90010-54

Closure #: C-93-3898

DICAR #:

Location #: Bldg. 482

Lab ID.	Description		%Solid	Result (mg/)	MDL Kg)
1625.1	Site C	OVA= 60.	75	29400.	158
1625.2	Site H, FEEDLINE *	OVA= 20.	86	2610.	46.
1625.3	Site I, FEEDLINE	OVA= 5.	85	710.	6.6
				·	
		•			
M. Bl.	Method Blank		100	ND	3.3

Notes: ND = Not Detected, MDL = Method Detection Limit * = Silica Gel Added, NA = Not Applicable BATHC dup= 115% BATCH s= 116% BATCH sd= 115% RPD= 0.8%

Brian K. McKee

Report of Analysis U.S. Army, Fort Monmouth Environmental Laboratory NJDEPE Certification # 13461

Client: U.S. Army

DPW, SELFM-PW-EV

Bldg. 167

Ft. Monmouth, NJ 07703

Lab. ID #: 1632.1

Sample Rec'd: 09/06/94

Analysis Start: 09/08/94

Analysis Comp: 09/08/94

Analysis: 418.1 (TPH)

Matrix:

Soil

Analyst: S. Hubbard Ext. Meth: Sonc.

NJDEPE UST Reg.#: 90010-54

Closure #:

DICAR #: 94-8-11-1345-43

Location #: Bldg. 482

Lab ID.	Description	%Solid	Result MDL (mg/Kg)
1632.1	Site C2 (sidewall) SE OVA= 100.	85	14100. 46.
	·		
M. Bl.	Method Blank	100	ND 3.3

Notes: ND = Not Detected, MDL = Method Detection Limit

* = Silica Gel Added, NA = Not Applicable

BATCH DUP= 105% BATCH S= 112% BATCH SD= 105% RPD= 6.3%

Brian K. McKee

FORT MONMOUTH ENVIRONMENTAL TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-4359 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699

ANALYTICAL DATA REPORT Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION Fort Monmouth, New Jersey PROJECT: UST Program

Bldg. 482

_				
Field Sample Location	Laboratory	Matrix	Date and Time	Date Received
	Sample ID#		Of Collection	
T. B.	2010601	Methanol	20-Feb-02	02/20/02
F. B.	2010602	Aqueous	20-Feb-02 09:30	02/20/02
482-1/9.6'	2010603	Soil	20-Feb-02 10:45	02/20/02
482-2/9.6'	2010604	Soil	20-Feb-02 11:00	02/20/02
482-3/9.6'	2010605	Soil	20-Feb-02 11:15	02/20/02
482-4/9.6	2010606	Soil	20-Feb-02 11:30	02/20/02
482-5/9.6	2010607	Soil	20-Feb-02 13:15	02/20/02
482-6/9.6'	2010608	Soil	20-Feb-02 13:25	02/20/02
482-7/9.6'	2010609	Soil	20-Feb-02 13:35	02/20/02
482 GW/9.8'	2010610	Aqueous	20-Feb-02 13:45	02/20/02
F. D.	2010611	Soil	20-Feb-02	02/20/02

ANALYSIS: FORT MONMOUTH ENVIRONMENTAL LAB VOA+15, BN+15, TPHC, COLIFORM %SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

, T

Daniel Wright/Loate

3-12-02

Fort wonmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703

Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil

NJDEP Certification #13461

Chain of Custody Record

Customer: D. DESAI Project No: 02-						Analysis Parameters Comments:						s:							
Phone #12 /4	75				Loca	tion: 'g	3LDG. 48	2_		7	B	7	%	TOTAL	FECAL		Ŧ		
()DERA ()OMA ()Other:			 					0 A	N	P	50	Ć O	C		N				
Samplers Name / Company: MARK CAURA-			MURA-	TVS	Pw:	507	Sample	#	+	+ -	H C	MA HE ON	o L H	Č		и			
LIMS/Work Orde	er#	San	iple Loca	tion	D	ate	Time	Туре	bottles	15	15	١	Ŋ		_		(ppm)	Remarks / F	reservation Method
2010Le		· - ī	· B .	·	2.20	- 02		METH.	1	X							-	3013	2400
	2		-, B				0930	AQ.	3	X	×						_	3014CD	
/	3	482-1	<u>-</u>	9.6.1		l	1045	SOIL	2	×	<u> </u>	×	×				300	3014	۷40 د
	4	" - 2) 	9.6			1100	SOIL	2	X		X	X				0	3015	LYOC
	5	0 = 3	3	9.6	,		1115	soic	2	X		X	X	<u> </u>			5	3016	خباهد
	6	11 - 1	<u> </u>	9.6'			1130	SOIL	2	X		X	X				0	3017	240(
	7	11 - 5	>	9.61	_		1315	Soil	2	\times		×	X				0	3018	2406
	8	4-6)	9.6'			1325	Soil	7			+	4				0	3019	2 40c
	9	11 ~ "	7	9.6'			1335	Soll	2	+		X	X	·			0	3020	~4°C
	10	482	GW	981			1345	AQ	5	X	X			X	X				HCL, LYOR
-	$^{\prime\prime}$	F.D		9.6'	\	/		soir	2	X		×	X					3021	< 40C
Relinquished by (signature): Date/Time: 2-20-02 1400			/	Recei	ved by	(signature):	W	Relino	uished	by (sig	nature):		Date/	Time:	Receiv	ved by ((signature):	,	
Relinquished by (signature): Date/Time:				Time:	Recei	ved by ((signature):		Relino	equished by (signature): Date/Time:				Time:	Received by (signature):				
Report Type: ()Full, ()Reduced, ()Standard, ()Screen / non-certified, ()EDD Remarks: Turnaround time: ()Standard 3 wks, ()Rush Days, ()ASAP Verbal Hrs.																			

Report of Analysis U.S.Army, Fort Monmouth Environmental Laboratory **NJDEP Certification # 13461**

Client:

U.S. Army

Project #:

20106

DPW. SELFM-PW-EV

Location:

Bldg.482

Bldg. 173

UST Reg. #:

Ft. Monmouth, NJ 07703

Analysis:

OQA-QAM-025

Date Received:

 $20 ext{-Feb-}02$

Matrix:

25-Feb-02

Soil

Date Extracted:

Inst. ID.:

GC TPHC INST. #1

Extraction Method: Analysis Complete:

Shake

Column Type:

RTX-5, 0.32mm ID, 30M

Analyst:

27-Feb-02 B.Patel

Injection Volume:

1uL

Sample	Field ID	Dilution Factor	Weight (g)	% Solid	MDL (mg/kg)	TPHC Result (mg/kg)
2010603	482-1	1.00	15.06	83.36	180	2689.02
2010604	482-2	1.00	15.23	81.48	183	ND
2010605	482-3	1.00	15.16	84.33	177	458.84
2010606	482-4	1.00	15.41	82.28	179	565.50
2010607	482-5	1.00	15.27	81.73	181	368.59
2010608	482-6	1.00	15.21	78.50	190	594.92
2010609	482-7	1.00	15.28	79.97	185	462.70
2010611	Field Dup.	1.00	15.16	83.67	179	1223.63
METHOD BLANK	MB-022502	1.00	15.00	100.00	151	ND

ND = Not Detected

MDL = Method Detection Limit

Attachment B Soil Boring Logs and Well Construction Details

Well Construction D	etail (Single Cased -	Road Box)
Client: USACE		
Well ID: PAR - 83-482-MW-01	NJBWA Permit No.	
Date Well Installed: 12-18-17	Location: FTMM-PARCE	L 83-UST 482
		Depth Below Ground Surface (ft)
Ground Surface		0.0
	Top of Well Casingft	
Cement		
Grout	Top of Grout	0,5
	Top of Fine Sand	1.0
Fine Sand →	'	
Type/Size: MORIE #O で		
Well Riser	Top of Sand Pack	2,0
Diameter: 2 / ∼ Material: PVC		, . s *
Material.		02.0
Sand Pack Type: MORIE 井 0	Top of Screen	<i>y</i> ₂ ,
	Well Screen	
	Diameter: 2 IN. Slot Size: .010 IN	
	Material: PVC	
	Bottom of Screen	12.0
Sump — J	Bottom of Sump	12,0 12,5 13,0
	Bottom of Borehole	13.0
₹ inches	Top of Confining Unit (if present):	

9 10 Remarks:

8

Sample Types	Consistency v	Consistency vs. Blowcount / Foot								
S - Split-Spoon	Granular (Sand & Gravel)	Fine Grained (Sift & Clay)	and - 35-50%							
U Undisturbed Tube	V. Loose: 0-4 Dense: 30-50	V. Soft: <2 Stiff: 8-15	some - 20-35%							
C Rock Core	Loose: 4-10 V. Dense: >50	Soft: 2-4 V. Stiff: 15-30	little - 10-20%							
A Auger Cuttings	M. Dense: 10-30	M. Stiff: 4-8 Hard: > 30	trace - <10%							
			moisture, density, color, gradation							

Well Construction De	tail (Single Cased	- Stickup)				
Client: USACE		. 1778				
Well ID: PAR-83-482-MW-02	NJBWA Permit No.					
Date Well Installed: 12-18-17	Location: FTMM, PARC	EZ 83,05T482				
	Top of Well Casing: + <u>≉3.7</u> ∫ft	Depth Below Ground Surface (ft)				
Ground Surface		0.0				
Cement	Top of Grout	0,5				
Grout	Top of Fine Sand	1,0				
Fine Sand	, sp of the same	· · ·				
Type/Size: MORIE #200	·	•				
Well Riser	Top of Sand Pack	2.0				
Diameter: 2 / Material: PVc. 1	} :	pt.				
	Top of Screen	2.0				
Sand Pack Type: MORIE #O						
	Bottom of Screen	12.0				
Sump ————————————————————————————————————	Bottom of Sump	12.5 13.0				
	Bottom of Borehole	13,0				
g inches	Top of Confining Unit (if present):					

					Soil Boring Log		
	CLIENT: USA	ÇE			INSPECTOR: P, ACCORS	484-	LLID: FAR-83- MW-02
PROJEC	CT NAME: FTM	M - ECP			DRILLER: K, ATWOOD, T. MCNAUY		
PROJECT LO	OCATION: FTM	M(Parcel)	83-48	12	WEATHER: 40°, LT, RAIN		
	NUMBER: 7488				CONTRACTOR: East Coast Drilling, Inc. (ECDI)	l	
	GROUNDWATE	R OBSERV	ATIONS		RIG TYPE: Geoprobe(R) 7822DT	LOCATION	PLAN
					DATE/TIME START: 12-18-17 0800	Oceanport, N	lew Jersey
WATER LEVE	L: 🐉	'O 108	MW	04_	DATE/TIME FINISH: 12-18-17 0940	1	•
DATE:		-18-17			WEIGHT OF HAMMER: N/A		
TIME:					DROP OF HAMMER: N/A		
MEAS. FROM	: BGS				TYPE OF HAMMER: N/A		
DEPTH (feet)	SAMPLE I.D.	BLOWS per 6"	ADV/ REC.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
0					HOCLOW STEM AUGEN TO 13F9		
					SET WELL SCREEN FROM 2'TO12'		
1					MOIST, GREEN BROWN SILTLY CLAY		
					AND MED TO FINE SAND		WOTE 1'
2					PIO READINGS FROM SOIL		
					CUTTINGS: 0 PPM		
3							
4					,		
			:				
5					END OF BORING @ 13 FT		
					SEE WELL CONSTRUCTION LOG		
6							
7							
8							
9							
10							
Remarks:							
Sample Types					Consistency vs. Blowcount / Foot		
S Spāt-Spoon U Undisturbed T	`ube				Granular (Sand & Gravel) Fine Grained (Sift & Clay) V. Loosa: 0-4 Dense: 30-50 V. Soft: <2		nd - 35-50% ne - 20-35%
C – Rock Core A – Auger Cuttings					Loose: 4-10 V. Dense; >50 Soft: 2-4 V. Stiff: 15-30	Īř	≝e - 10-20%
Auger Cuttings	J				M. Dense: 10-30 M. Stiff: 4-8 Hard; > 30		ce - <10% ensity, color, gradation

					Soil Boring Log			
	CLIENT: USA	re .			INSPECTOR: T. HORN	BORING/WE	LLID: . YBZ -S&O I	
BPO II	ECT NAME: FTM				DRILLER: FCD/ WELLS RELIVE		DESCRIPTION	
	LOCATION: FTM				WEATHER: LIGHT RAIN, 500	concrete		
	F NUMBER: 7488				CONTRACTOR: East Coast Drilling, Inc. (ECDI)			
FROJECI	·····		ATIONS		RIG TYPE: Geoprobe(R)-7622D7 6610 DT	LOCATION PLAN		
	GROUNDWATE	ER UBSER	MIIONS		DATE/TIME START: 11-13-17 / 1100	Oceanport, N		
	~	2,5 (Com.	2)		Oceanport, N	lew Jeisey	
WATER LEV			•	<u>'</u>	•			
DATE:		1-13-	<i>[+</i>		WEIGHT OF HAMMER: N/A			
TIME:		0900			DROP OF HAMMER: N/A			
MEAS, FRO	M: SAMPLE	TOIC	ADV/	PID	TYPE OF HAMMER; N/A			
(feet)	I.D.	per 6"	REC.	(ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS	
0			30/60	0,0	oen concrete entre Brick Rushif		1	
	PAR -83		-5B	0.2	MOI (F DAIR-GREEN) A GOOD SCIONAL		1145	
	91-0.5			0.8	MOIGF OPEK-GREENSH GAMY MOD SOFT FAMPY SILT PET COLLYM-LIKE ODER SLIGHT MOIST TAM GREATHISH GRAY WOO DAMSE SILTINGSTON ET DOOR			
1				0,0	1 1/10/21 0 FO CIVE 1000 1 1 CO 4 1101 3/101 1 1000		1150	
	PAR-83-9		18.	101.00	SOUT STEWNG PETER, ODGE		117	
	91-13							
2					V			
					No resover			
3					NO REGISTER			
					1, 2, 1, 2			
4							•	
			401	7	WET VERY LOUGE DACK GERN GELEN			
5	ļ	ļ	40/60	0.0	SINTY SAMP, TR F-M GRAVAL		•	
				0,0	peres vosa			
6	PAR-83	482-		1.0	,			
	TMW-01)** 6		0.0				
				1 .	Sign Assassan Clark Will Transa			
7				1.0	CAM-CABLEN			
•	PAR-83	-482	t	0.0	WET MOD SOFT CLAMEY SILT, TO, SONO GEM-GREEN SLIGHT PERCO ODER		1135	
8	135-01-	,, 0		00				
				0,0			<u></u>	
					No Recovery			
9			ļ					
			:					
10	,				end of boing @10'			
Remarks: • 1	MW-01	WAS	SCR	ESAN ELD	FROM 0-10 FT.			
Sample Type	s ·				Consistency vs. Blowcount / Foot			
S – Split-Spoon U – Undisturbed					Granufar (Sand & Gravel) Fine Grained (Sit & Clay)		nd - 35-50% me- 20-35%	
C - : Rock Core A - : Auger Cuttle					Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30 M. Dense: 10-30 M. Stiff: 4-8 Hard; > 30		ittle - 10-20% ace - <10%	
	*					mošsture, s	lensity, color, gradation	

×

×

X

Soil Boring Log									
						BORING/WI			
	CLIENT: USA	CE		,	INSPECTOR: por HORN	PAR -83	-482-58-02		
PROJE	CT NAME: <u>FTM</u>	M - ECP			DRILLER: ELD) WEMS REEWE	LOCATION	DESCRIPTION		
PROJECT LOCATION: FTMM Parcel					WEATHER: UKATRAN, 50°P .	CONE	£ 0.000		
PROJECT	NUMBER: 7488	10-			CONTRACTOR: East Coast Drilling, Inc. (ECDI)	CRAS	sy also		
	GROUNDWATE	ER OBSERV	/ATIONS		RIG TYPE: Geoprobe(R) 782287 6610 DT	LOCATION	PLAN		
			,	,	DATE/TIME START: 11-13-17 / 12/5	Oceanport, N	lew Jersey		
WATER LEVE	EL;	7.51	(108)	NW-04	DATE/TIME FINISH: 11-13-17 / 1225				
DATE:			3-17		WEIGHT OF HAMMER: N/A				
TIME:		09			DROP OF HAMMER: N/A				
MEAS, FROM		, _ `	010	1	TYPE OF HAMMER: N/A		A.S.		
DEPTH (feet)	SAMPLE I.D.	BLOWS per 6"	ADV/ REC.	(ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS		
0		,,,,,	48/60	0.0	DK CHM-SEOWN MOD BENSES, UTY SIND AND GRESS ROOTS				
		 	7.00		MOLEST MELLOW-THEN MOD LOOSE SOND	, , .			
		ļ	ļ	0.0	TR. VF GENTEL LOAD SOWOMSILT				
. 1				0.0	TR VF GLAVEL MUIST GENY BROWN-GRAY SAWMSILT, Some				
,				0.0	WET GREM - STATINED LT DEM -				
2				0.0	TAN F-M SAND				
				0,0		,			
3			:	0.0		•			
		· ·		0.0	-				
				0.0	1	_			
4				0,0	No recovery	!	-		
				0,0					
5			48/60	0.0	acm - Blum mas soft sovory 5/LT				
PA	2-83-4	82-5B	- / -	0.1			1245		
6				9.0	WET, NEM SORT DLIVE-GREY				
				280	SANON SILT PERPONEUM-LIKE ODER				
7				92.0	MUD STIFF STRIBETONS (BOTTLED) RIBISH-URANGE BREWN AND DARK GREENS 12- GRAM SANDY SILT. STRONG PETROLSUM ODER				
	R -83-		3-	100-	COLLARD COAMSANTM SILT		1255		
	2-7-5	-8		155,0	STRONG PETCOLLIM BORR				
В				60,0	1				
				12,0					
9					NO Recovery				
10	-				BURING CONTINUES				
Remarks:			•						
Sample Types					Consistency vs. Blowcount / Foot				
S Split-Spoon					Granufar (Sand & Gravei) Fine Grained (Sit & Clay)		nd - 35-50%		
U Undisturbed 1 C Rock Core					V. Loose: 0-4 Dense; 30-50 V. Soft: <2 Stiff: 8-15 Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	li li	me - 20-35% tile - 10-20%		
A – Auger Cutting	5				M, Dense; 10-30 M, Stiff: 4-8 Hard: > 30		ensity, color, gradation		

Soil Boring Log								
CLIENT: USACE					INSPECTOR: TOTAL MORN	BORING/WELL ID: PAR-83-482-5B-02		
PROJEC	T NAME: FTMI				DRILLER: FA OI WEMS REENE	LOCATION DESCRIPTION		
	OCATION: FTMI				WEATHER: GOOD WELLS FLEND WEATHER: GOOD ROOM, 5505	**************************************		
1	 NUMBER: 7488				CONTRACTOR: East Coast Drilling, Inc. (ECDI)	GRASSY AREA		
	GROUNDWATE	ROBSERV	ATIONS		RIG TYPE: Geoprobe(R) 7822DT 6610 DT	LOCATION	PLAN	
		ī /		١	DATE/TIME START: 11-13-17 / 17.15	Oceanport, New Jersey		
WATER LEVE	:L:	571	08 m	N-04)	DATE/TIME FINISH: 11-13-17 / 17 2.5	-		
DATE:		[1-13			WEIGHT OF HAMMER: N/A	-		
TIME:		090			DROP OF HAMMER: N/A			
MEAS. FROM	SAMPLE	TO /	ADV/	PID	TYPE OF HAMMER: N/A	1	· · · · · · · · · · · · · · · · · · ·	
(feet)	I.D.	per 6"	REC.	(ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS	
10			60/60		SAND, TR SI TO WEST			
			/		22001,10 31			
\ 1			<u> </u>		WET DACK OUVE GRAY MOD STIFF	 		
' '				7.0	1110 *	<u> </u>		
		,		2.0	MOTTUED READISH - OROW WA			
1 2				0.0	SING SARK GLEENSH GLAY			
	PAR- 83	- 482	-SB-		SUBE SAMON 31. CT		1305	
	02-121	5-13		0.0				
13		•		0.0				
			:	0.0			; ····	
. (4	7			0.0			-	
				0,0	SILT BLOWN BLACK MOD STIFF SANDY			
(5)			<u> </u>		end of be ring @ 15'			
1 3		-			30000			
							-	
ſβ			,					
			1					
, 7								
<u> </u>	·	, li	,					
-			-					
(8				_				
ر 9								
20	-							
Remarks:								
Sample Types					Consistency vs. Blowcount / Foot			
S Spit-Spoon U Undisturbed Tube					Granular (Sand & Grayei) Fine Grained (Sit & Clay) V. Loose: 0-4 Dense; 30-50 V. Soft: <2	so	and - 35-50% some - 20-35%	
C Rock Core A − Auger Cullings					Loose: 4-10 V. Dense: >50 Soft 2-4 V. Sliff: 16-30 M. Dense: 10-30 M. Sliff: 4-9 Hard: > 30	tra tra	ittle - 10-20% ace - <10% fensity, color, gradation	

					Soil Boring Log		
CLISAT: LISACE					INSPECTOR: T. HORN	BORINGWELL ID:	
CLIENT: USACE					DRILLER: IEC DI WELLS RELIVE	LOCATION DESCRIPTION	
PROJECT NAME: FTMM - ECP					WEATHER: CLOST RAIN, 50°F	43 TO THE TOTAL	
PROJECT LOCATION: FTMM Parcel PROJECT NUMBER: 748810-					CONTRACTOR: East Coast Drilling, Inc. (ECDI)	GRASSY ARRA	
1 KOOLO1			ATIONS	•,, •	RIG TYPE: Geoprobe(R) 7822D7- 66/0 DT	LOCATION	PI AN
GROUNDWATER OBSERVATIONS					DATE/TIME START: 11/13/17 / CHESTA 1/45		
WATER LEV	rgi - C	2.51	(108	o4)	DATE/TIME FINISH: 11/13/17 / 2000 1/55	Toccariport, 1	ion deledy
DATE:					WEIGHT OF HAMMER: N/A	1	
TIME:		0900	· L 1	***************************************	DROP OF HAMMER: N/A	1	
MEAS. FROM	—	7010			TYPE OF HAMMER: N/A	1	-
DEPTH	SAMPLE	BLOWS	ADV/	PID	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS
(feet)	I.D.	per 6"	REC.	(ppm)		SIRAIA	COMMENTS
0			24/60	0.0	Sout SUT, ETTLY GERS EXETS	-	1.00
				0.0	moist, LT PLAPISU BROWN MAD DENSE SILON SOND, SOME C		
			-	0.0	pense sivy somo, some c		
1				0,0	beam.		
	PAR-83-15	182-5	B -	0,0			17,5
	03-1.3	-2		1			1215
2					*		
		-			No prioren		
3				1 -			
	 						
4							
•			ļ .				:
			_ ,				
5			32/60	0.0	WET DE PEROISH Scenn moo offise		1230
			/ 00	 	SAWOY SILT, LITTLE F-marwin	-	
	04000	USO	60	0,0	WEX, DK BEOWN-GREY Man LOOSE		
6	PA283-	786-	SB ~	0,0	SILTY SAMP AMP C. BLYCK CRAVEL		1220
	PAR-83	-482	-	0.0	77 DI 1 9 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		
	TMW-0	2-6		0.0			
7				0.0	·		
					No recovery		
8							
]						
9					·		
<u>a</u>							
					,		
10	,				end of baring 10'		
Remarks:	MW-D	2:5	CREEN	J SE	FROM 0-10'		
,	,.,			-			
ample Types	3				, Consistency vs. Blowcount / Foot		L 05 512
5 – Sp≌t-Spoon J – Undisturbed	Tube				Granular (Sand & Gravel) Fine Grained (Sit & Clay) V. Loose: 0-4 Dense: <30-50	so	nd - 35-50% ma- 20-35%
C Rock Core A Auger Cuttings					Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30 M. Dense: 10-30 M. Stiff: 4-8 Hard: > 30		itie - 10-20% ace - <10%
J	-				♦ , '		lensity color gradation

¥

Χ

Page __1__ of __

						Soil Boring Log			
		CLIENT: USA	Œ			INSPECTOR: The HORN	BORING/WE	LL ID: 482-58-04	
	PROJECT NAME: FTMM - ECP					DRILLER: F(D) WEMS REEVE	LOCATION DESCRIPTION		
	PROJECT L	OCATION: FTMI	/ Parcel			WEATHER: UNECAST 55 F	ASPNANT		
	PROJECT	NUMBER: 7488	10-			CONTRÀCTOR: East Coast Drilling, Inc. (ECDI)			
	GROUNDWATER OBSERVATIONS					RIG TYPE: Geoprobe(R) 782207 66/007	LOCATION PLAN		
						DATE/TIME START: 11-13-13- /13-00	Oceanport, New Jersey		
	WATER LEVEL: 7,5 (108 mw-04)					DATE/TIME FINISH: (1-(3-/7-/13/0	***		
	DATE:					WEIGHT OF HAMMER: N/A]		
	TIME:		090	0		DROP OF HAMMER: N/A			
	MEAS. FROM	A:	, LO 10	<u> </u>		TYPE OF HAMMER: N/A	E OF HAMMER: N/A		
	DEPTH (feet)	SAMPLE I.D.	BLOWS per 6"	ADV/ REC.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS	
*	0 0	RAR-83- 5B-04-0	482-	40/60		DRY RESOIGH - THAN U DENSE SLAG.		1345	
					12.0	SANO.			
	1				(7.0	MOIST GARK-GEREN GRAY MOD SOFT GOVERN SILT,		`	
					38.0	301 5,0000 7	-	1	
	2				152.0	WET DARK-GRUNGEAN SOFT			
. V		PAR-83.	-U Ro	50.	200.0	SAWDY SIUT, TR CLAY.	et,	(3570)	
* 1.	3	04-3-	3.5	75	1800			())	
H	* *					No phonety			
	4					, ,		5.	
	5			48/,	450	INET, MOD SORT GLEENSH		***************************************	
				/60	60.0	OK-GEM SINT, LITTLE VESOND		• .	
	6				53,0	\			
		·			39.0	h			
	7				28.0	WENT DENSE MOTTLED REDOISH - GRANG	2-		
					22.0	BROWN AND DACK GEGENSH GRAM SITH SAND			
	8	0 4 0 0	·(Ma	-5B-	3,8			1355	
*		04-83	-982	36"	1,5	~		(500	
	9					MO Reinters		,	
	10					end of bound 10'			
	Remarks:	<u> </u>	<u>-</u> <u>1</u> .	4					
	<u> </u>								
	Sample Types S – Sp§t-Spoon					Consistency vs. Blowcount / Foot Granular (Sand & Gravei) Fine Grained (Sit & Clay)		nd - 35-50%	
	U → Undisturbed 1 C → Rock Core	Tuba				V. Loose: 0-4 Dense: 30-50 V. Soft: <2 Stiff: 8-15 Loose: 4-10 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30		me - 20-35% tile - 10-20%	
ŀ	A Auger Cuttings					M. Denset: 10-30 M. Stiff; 4-8 Hard; > 30	tra	ce - <10% ensity, color, gradation	

Attachment C Field Notes

ocation FTM 44	Date/ 1-13-17
roject / Client <u>Vaca</u>	
DAR-83-273-5B-0	1 (Qu
0900 Beens ev3+pre	recovere conceans

12 T 16 (2-83-27-3-58-0) 09 05 rouces 04000 pp THE CLAS AND Revoko descent consto trate soil special loc 100 35 BEGON PUSHING AT PAG-53-273-58-02 10954 Duenn 25 AT NE AT PAR 83-273-33-03 1100 RELOCATE TO PAR 83 - 487 11 20 Seemu presidence pt OAR-83-482-58-01 1130 in Jan Telinopersen well par-83-482typu - 01. opent das precentas sac BOD TOWAL BOTTEME BUT SIMILLE remen was 1145 BEEN BYDER - 1 PAR-63-487-58-03 1155 Without Pal-83-482-Huw-03 12 5 BERSIN DISHTNE AT PAR-83-482 -58-02 GARB AN 2001 DOWAL Some BEEN 10-15! 1300 3600 PS 187NE AD PAR -83 482 58-64 1330 BLEST RISHING AT RACE From 575 SB-107 1350 BLEIN NSHING AT FIMM-57-SB-01. 1400 COLLEGE APPITIONAL VOILING PERSON FTMM-57-58-02 FOR RATES Atmore Temporary well Feor PAR 834 82

C{~12-06