

UNDERGROUND STORAGE TANK CLOSURE AND SITE INVESTIGATION REPORT BUILDING 2700.4 TMS NO. C-93-2613 UST NO. 62 NJDEP FACILITY UST NO. 081515 SPILL CASE NO. 92-3-7-1047-43

January 1995

Work Order No.: 03886-088-001

Prepared For:

UNITED STATES ARMY
Directorate of Public Works
Building 167
Fort Monmouth, New Jersey 07703

Prepared by:

ROY F. WESTON, INC.
Raritan Plaza I
4th Floor
Raritan Center
Edison, New Jersey 08837

TABLE OF CONTENTS

Section	on <u>Title</u>	<u> </u>	<u>Page</u>
	EXE	ECUTIVE SUMMARY	ES-1
1.0	UNI	DERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES	5 . 1-1
	1.1	Overview	1-1
	1.2	Site Description and UST History	1-2
	1.3	Geological/Hydrogeological Setting	
		1.3.1 Geological Setting	
		1.3.2 Hydrogeological Setting	
		1.3.3 Offsite Groundwater Usage	
	1.4	-	
	1.5	Removal of Underground Storage Tank	
		1.5.1 General Procedures	
		1.5.2 Underground Storage Tank Excavation	
	1.6	<u> </u>	
	1.7	Management of Excavated Soils	
2.0	SITI	E INVESTIGATION ACTIVITIES	2-1
	2.1	Overview	2-1
	2.2	Field Screening/Monitoring	
	2.3	Soil Sampling	
3.0	CON	NCLUSIONS AND RECOMMENDATIONS	3-1
	3.1	Soil Sampling Results	
	3.2	Conclusions and Recommendations	3-1

TABLE OF CONTENTS (CONTINUED)

LIST OF APPENDICES

Appendix A	-	NJDEP-BUST Closure Approval Correspondence with NJDEP
Appendix B	-	NJDEP UST Site Assessment Summary Form
Appendix C	-	Monitor Well Information
Appendix D	-	Well Search Information
Appendix E	-	Waste Disposal Certificates
Appendix F	-	Analytical Data Package

LIST OF TABLES

<u>Title</u>	Page
Summary of Post-Excavation Sampling	2-3
Summary of Analytical Results	3-2
Analytical Methods/Quality Assurance Summary Table	3-3
	Title Summary of Post-Excavation Sampling

LIST OF FIGURES

Figure	<u>Title</u> Pag	<u>e</u>
1-1	Facility Location Map	-3
1-2	Site Plan	-4
2-1	Post-Excavation Sampling Locations	-4

EXECUTIVE SUMMARY

Due to inventory discrepancies, fuel loss with no recorded usage, a discharge was reported to the NJDEP by the Fort Monmouth Directorate of Public Works (DPW) on 7 March 1992 (Case # 92-3-7-1047-43). Underground storage tank (UST) No. 62 was located adjacent to Building 2700.4 in the Charles Wood area of Fort Monmouth. Tank No. 62, was a single walled steel, 550-gallon capacity, diesel fuel tank.

On 3 June 1993, an UST Decommissioning/Closure Plan was submitted to the New Jersey Department of Environmental Protection and Energy (NJDEP) by the DPW. Closure Approval No. TMS C-93-2613 was issued with an effective date of 12 July 1993. The UST Closure Plan Approval application, UST Decommissioning/Closure Plan and Closure Approval are provided in Appendix A.

On 10 September 1993, one UST was closed at U.S. Army Fort Monmouth, in Fort Monmouth, New Jersey. All Service Environmental (ASE) began the tank closure on 8 September 1993. On 10 September 1993 ASE was replaced by Serv-Air, Inc. Serv-Air, Inc. completed the tank closure.

Soils surrounding the tank were visually inspected and screened with air monitoring instruments for evidence of contamination. The tank was inspected following removal for cracks, corrosion holes and puncture holes as indications of historical leakage from the tank. Several corrosion holes of approximately 1/16-inch diameter were noted. Following removal of the tank, approximately 35 tons of potentially contaminated soil was excavated and transported to the Charles Wood area hazardous waste accumulation site at Fort Monmouth, for storage prior to ultimate disposal at Soil Remediation of Philadelphia. No groundwater was encountered in the tank excavation.

On 10 September 1993, five post-excavation soil samples were collected and analyzed by U.S. Army Fort Monmouth Environmental Laboratory (FMEL) for total petroleum hydrocarbons (TPHC). In accordance with NJDEP requirements, samples which exhibited a concentration of TPHC exceeding 1,000 milligrams per kilogram (mg/kg) were analyzed for volatile organic compounds plus 15 tentatively identified compounds (VO+15). The results indicated a concentration of TPHC (7,520 mg/kg) which exceeded the NJDEP requirement of 1,000 mg/kg.

On 13 September 1993, Sample Site E was analyzed by 21st Century Environmental Laboratories, Inc. for VO+15 and base neutral compounds plus 15 tentatively identified compounds (BN+15). Analytical results were compared to NJDEP Impact to Ground Water (ITGW) and Residential Direct Contact (RDC) Soil Cleanup Criteria. The results were below both sets of criteria.

Based on the analytical testing results indicating that all potentially contaminated soils have been removed, no further action is recommended for soils.

On 19 July 1994, in accordance with N.J.A.C. 7:26E-1 et seq., one monitoring well was installed in the excavation. The well will be sampled in accordance with NJDEP requirements outlined in the <u>Field Sampling Procedures Manual</u>, dated May 1992. Groundwater samples will be analyzed for volatile organics with a library search, and base neutral compounds with library search. Results of the testing and recommendations for groundwater will be provided in an addendum to this report.

ES-2

SECTION 1.0

UNDERGROUND STORAGE TANK DECOMMISSIONING ACTIVITIES

1.1 OVERVIEW

On 10 September 1993, one UST identified as Tank No. 62, was closed by removal at Building 2700.4, at U.S. Army Fort Monmouth, New Jersey. UST No. 62 was a single wall steel, 550-gallon capacity, diesel fuel tank. The tank was located immediately adjacent to Building 2700.4. This report presents the results of the DPW's implementation of the UST Decommissioning/Closure Plan submitted to the NJDEP-DHWM on 3 June 1993 and approved 12 July 1993 (Closure approval No. C-93-2613).

All activities associated with the decommissioning of UST No. 62 complied with all applicable Federal, State and Local laws and ordinances in effect at the date of decommissioning. These laws included but were not limited to: N.J.A.C. 7:14B-1 et seq., N.J.A.C. 5:23-1 et seq., N.J.A.C. 7:26E-1 et seq. and Occupational Safety and Health Administration (OSHA) 29 CFR 1910.146 & 29 CFR 1910.120. All permits including but not limited to the NJDEP-approved Decommissioning/Closure Plan were posted onsite for inspection. The UST Closure was initiated by ASE. ASE was registered and certified by NJDEP, to perform UST closures at the time of the tank decommissioning. Prior to completion of the UST closure, ASE resigned from the project. Serv-Air, Inc., under the supervision of Mr. Charles Appleby, U.S. Army, Fort Monmouth, completed the UST closure. Mr. Appleby is certified by NJDEP to perform UST closures.

The NJDEP Closure Approval and correspondence with the NJDEP have been included in Appendix A. The UST Site Assessment Summary Form for UST No. 62 has been included in Appendix B. The UST Site Assessment Summary Form has been signed by Mr. James Ott, Acting Director of DPW, U.S. Army Fort Monmouth.

This UST Closure and Site Investigation Report was prepared by Roy F. Weston Inc. (WESTON®), to assist the United State Army Directorate of Public Works (DPW) in complying with the NJDEP Bureau of Underground Storage Tanks (NJDEP-BUST) regulations. The applicable NJDEP-BUST regulations at the date of closure were the "Technical Requirements for Site Remediation" (N.J.A.C. 7:26E-1 et seq. dated June 1993).

Section 1 of this UST Closure and Site Investigation Report provides a summary of the tank decommissioning activities. Section 2 of this report describes the site investigation activities. Conclusions and recommendations, including the results of the soil sampling investigation, are presented in the final section of this report.

1.2 SITE DESCRIPTION AND UST HISTORY

Building 2700.4 is located in the Charles Wood area of U.S. Army, Fort Monmouth. A site location map is provided in Figure 1-1. The building is elevated above the area surrounding it with a concrete pad located approximately 40 feet to the southwest. Building 2700.4 is used as a research and development facility, also known as the Myer Center. UST No. 62 was located immediately adjacent to Building 2700.4. A site plan is provided in Figure 1-2.

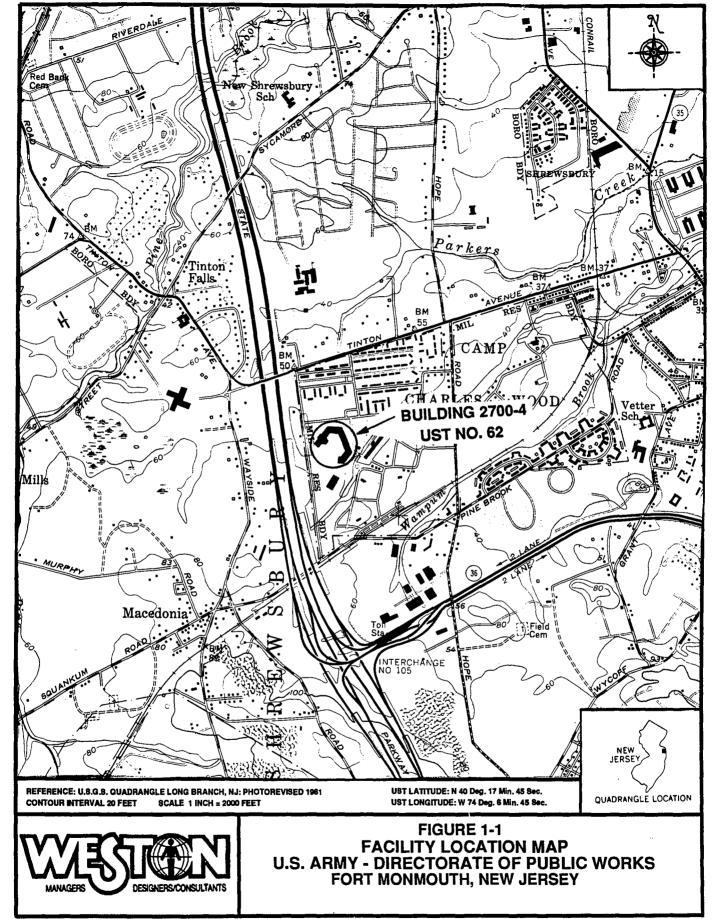
Due to inventory discrepancies, fuel loss with no recorded usage, a discharge was reported to the NJDEP by the DPW on 7 March 1992 (Case # 92-3-7-1047-43). UST No. 62 was located adjacent to Building 2700.4 in the Charles Wood area of Fort Monmouth. Tank No. 62, was a single walled steel, 550-gallon capacity, diesel fuel tank.

On 3 June 1993, an UST Decommissioning/Closure Plan was submitted to the NJDEP by the DPW. Closure Approval No. TMS C-93-2613 was issued with an effective date of 12 July 1993. The UST Closure Plan Approval application, UST Decommissioning/Closure Plan and Closure Approval are provided in Appendix A.

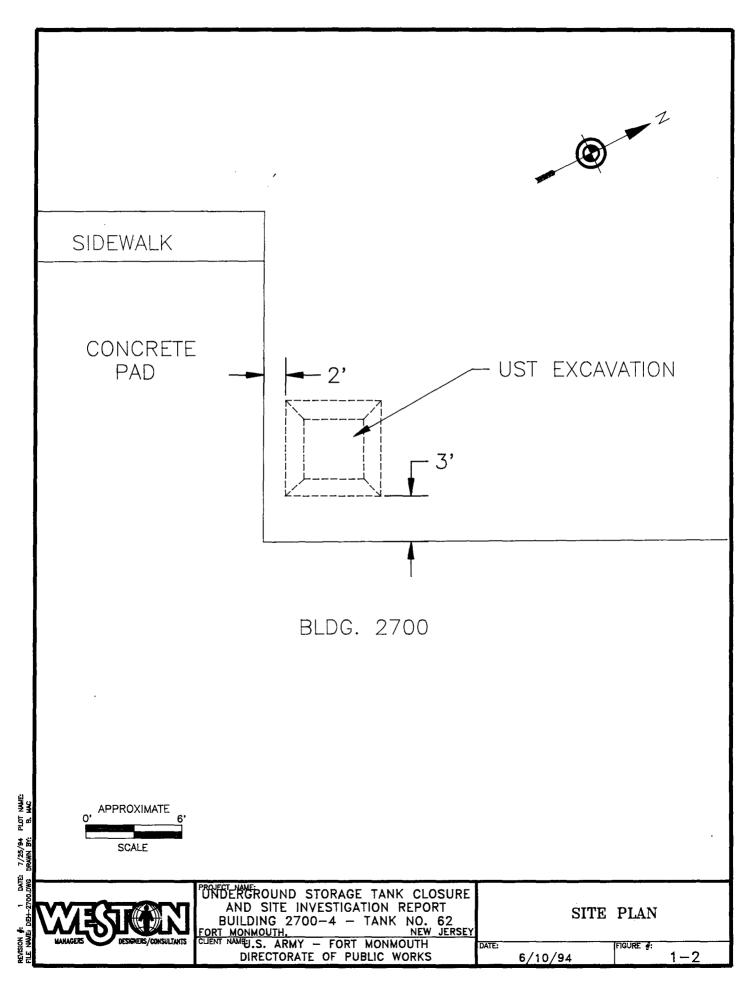
On 10 September 1993, one UST was closed at U.S. Army Fort Monmouth, in Fort Monmouth, New Jersey. ASE began the tank closure on 8 September 1993. On 10 September 1993 ASE was replaced by Serv-Air, Inc. Serv-Air, Inc., under the supervision of Mr. Charles Appleby, U.S. Army, Fort Monmouth, performed the tank closure.

1.3 GEOLOGICAL/HYDROGEOLOGICAL SETTING

The following is a description of the geological/hydrogeological setting of the area surrounding Building 2700.4. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Charles Wood area.


1.3.1 Geological Setting

Regional Geology


Monmouth County lies within the New Jersey Section of the Atlantic Coastal Plain physiographic province. The Main Post, Charles Wood, and the Evans areas are located in what may be referred to as the Outer Coastal Plain subprovince, or the Outer Lowlands.

In general, New Jersey, Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, sand, and gravel. These formations typically strike northeast-southwest with a dip ranging from 10 to 60 feet per mile and were deposited on

1-2

COS-83PC.DRW

CHAST TREETING

Precambrian and lower Paleozoic rocks (Zapecza, 1989). These sediments, predominantly derived from deltaic, shallow marine, and continental shelf environments, date from Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units which are generally thicker to the southeast and reflect a deeper water environment. Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward-coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations). The individual thicknesses for these units vary greatly (i.e., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from the Fall Line to greater than 6,500 feet in Cape May County (Brown and Zapecza, 1990).

Local Geology

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Charles Wood area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile. The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish-brown clayey, medium-to-course-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark grey to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey, medium-to-very coarse grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish-orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron-oxide encrusted (Minard).

Over the last 80 years, the natural topography of Fort Monmouth has been altered by excavation and filling activities by the military. Topographic elevations for the Charles Wood area range from five feet above mean sea level (MSL) to 31 feet above MSL.

1.3.2 Hydrogeological Setting

Hydrogeology

The water table aquifer at the Charles Wood area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red

Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation.

Based on records from wells drilled at the Charles Wood area, ground water is typically encountered at depths of two to nine feet below ground surface (BGS). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may produce from 2 to 25 gallons per minute (gpm). Some well owners have reported acidic water that requires treatment to remove iron.

Shallow groundwater is locally influenced within the Charles Wood area by the following factors:

- tidal influence (based on proximity to the Atlantic Ocean, rivers and tributaries),
- topography,
- nature of the fill material within the Charles Wood area,
- presence of clay and silt lenses in the natural overburden deposits, and
- local groundwater recharge areas (i.e. stream, lakes).

Due to the fluvial nature of the overburden deposits (i.e. sand and clay lenses), shallow groundwater flow direction is best determined on a case-by-case basis. This is consistent with lithologies observed in borings installed within the Charles Wood area, which primarily consisted of fine-to-medium grained sands, with occasional lenses or laminations of silt and/or clay.

Based on information obtained from the Building 2567 monitoring wells, groundwater flows in a southeasterly direction. Building No. 2567 is located approximately 2,000 feet east of Building 2700.4. Building 2700.4 lies directly southeast of the former UST No. 62 location. On 19 July 1994, one well was installed to assess groundwater conditions. Groundwater sampling had not been performed at the time this report was completed. Monitor well permit, log and well records are provided in Appendix C.

Building 2700.4 is less than 1 mile north of Wampum Brook, the nearest water body. The Atlantic Ocean is located approximately 6 miles east of the site.

1.3.3 Offsite Groundwater Usage

In compliance with the NJDEP regulations, WESTON conducted a well search to identify all irrigation, monitoring, domestic, industrial and public supply wells within one half mile of U.S. Army Fort Monmouth, Charles Wood area. The file search produced records for 68 wells. The well search summary table includes the following information on surrounding wells: well identification number; well owner; well address; total depth (feet BGS); casing length (feet); static water level elevation (feet BGS); use code; and NJDEP permit number. In addition, a summary table of all U.S. Army wells located at Fort Monmouth, which includes the following information: well number; NJDEP permit number; New Jersey State Plane Coordinates; casing

nk\FortMonm\Bldg-2700.Rpt 1-6

elevation; elevation of ground surface; and, well records for the nearest identified offsite well have been included, if available. This information is included in Appendix D.

A review of the well records indicated that the majority of the wells within the area of concern are used for irrigation purposes. A domestic well (Permit Number 29-19540), owned by Wolf Press/Redacted - Privacy Act is the closest to the site in the downgradient direction. The well is located at 1138 Pinebrook Road, approximately 2,700 feet southeast of the site. A production well, owned by U.S. Army Fort Monmouth is the closest well, located approximately 1,000 feet east of the site.

1.4 HEALTH AND SAFETY

Before, during, and after all activities, hazards at the work site which may have posed a threat to the health and safety of all personnel who were involved with, or were affected by, the decommissioning of the UST system were minimized. All areas which posed, or may have been suspected to pose a vapor hazard were monitored by a qualified individual utilizing approved equipment. The trained individual ascertained if the area was properly vented to render the area safe, as defined by OSHA.

1.5 <u>REMOVAL OF UNDERGROUND STORAGE TANK</u>

1.5.1 General Procedures

On 10 September 1993, UST No. 62 was closed by removal at Building 2700.4 in the Charles Wood area of Fort Monmouth. Tank closure activities were conducted as follows:

- All underground obstructions (utilities,... etc.) were marked out by the contractor performing the closure prior to excavation activities.
- Surface materials (i.e, asphalt, concrete, etc...) were excavated and staged separate from all soils. These materials were later recycled in accordance with all applicable laws and regulations.
- The tank atmosphere was inerted.
- Access ways on top of the tank were opened.
- Licensed tank closure contractor personnel entered the tank to visually inspect and manually clean the insides of the tank.
- All wastes (tank bottom sludge and tank rinsate) generated during cleaning were collected and disposed.

- Post closure soil samples were collected for laboratory analysis.
- The tank was removed from the excavation and staged on plastic sheeting.
- Approximately 35 tons of potentially contaminated soil was excavated during the tank closure, and transported to the Charles Wood area hazardous waste accumulation site for storage prior to ultimate disposal/reuse at Soil Remediation of Philadelphia.
- The excavation was backfilled with clean fill material to the original surface grade.
- A Sub-Surface Evaluator from the DPW was present during all closure activities.

1.5.2 Underground Storage Tank Excavation

Soil was excavated to expose the UST and the associated piping. The piping was not removed/disturbed until all free product was drained into the UST. The UST was rendered vapor free by purging prior to any cutting or access. After removal of the associated piping, a manway from the UST was made to allow for proper cleaning. The UST was completely emptied of all liquids prior to removal. All of the openings in the tank were plugged except for one hole (manway).

After the UST was removed from the excavation, it was staged on polyethylene sheeting and examined for cracks, corrosion or puncture holes. The presence or absence of holes was documented by the Sub-Surface Evaluator. Several corrosion holes of approximately 1/16-inch diameter were noted. A discharge was reported to the NJDEP by the DPW on 7 March 1992 (Case No. 92-3-7-1047-43). No groundwater was present in the tank excavation.

Soils surrounding the UST were screened visually and with a Photoionization Detector (PID) for evidence of contamination. Approximately 35 tons of potentially contaminated soil were removed from the area surrounding UST No. 62. The potentially contaminated soil was transported to the Charles Wood area hazardous waste accumulation site for storage prior to ultimate disposal/reuse at Soil Remediation of Philadelphia.

1.6 UNDERGROUND STORAGE TANK TRANSPORTATION AND DISPOSAL

The tank was transported by Serv-Air, Inc. to Mazza and Sons, Inc., for recycling in compliance with all applicable regulations and laws. A copy of the weighmaster certificate is enclosed in Appendix E.

The contractor labelled the UST prior to transport with the following information:

- Site of origin,
- Contact person,
- NJDEP UST Facility ID number,
- Name of transporter/contact person, and
- Destination site/contact person.

1.7 MANAGEMENT OF EXCAVATED SOIL

Approximately 35 tons of potentially contaminated soil were removed from the area surrounding UST No. 62 and placed on and covered with polyethylene sheets. Potentially contaminated soils were stockpiled separately from other excavated material. Potentially contaminated soils were transported to the Charles Wood area hazardous waste accumulation site for storage prior to ultimate disposal at Soil Remediation of Philadelphia. All soils free of evidence of contamination were backfilled into the excavation following removal of the UST.

SECTION 2.0

SITE INVESTIGATION ACTIVITIES

2.1 OVERVIEW

The Site Investigation was managed and carried out by U.S ARMY DPW personnel. All analyses were performed and reported by FMEL and 21st Century Environmental Laboratories, which are NJDEP-certified testing laboratories. All sampling was performed under the direct supervision of a NJDEP Certified Sub-Surface Evaluator according to the methods described in the NJDEP Field Sampling Procedures Manual (May 1992). Sampling frequency and parameters analyzed complied with the NJDEP-BUST document "Technical Requirements for Site Remediation" (June 1993) which was the applicable regulation at the date of closure. All records of the Site Investigation activities are maintained by Fort Monmouth DPW: Environmental Office.

The following Parties participated in Closure and Site Investigation activities:

• Closure Contractor #1: All Service Environmental, Inc.

Contact Person: Mark Turoff Phone Number: (914) 365-0800

NJDEP Company Certification No.: 3100194

• Closure Contractor #2: Serv-Air, Inc.

HazMat Response Team Contact Person: Tom Berger Phone Number: (908) 532-6147

• Subsurface Evaluator: Charles Appleby Employer: U.S. Army, Fort Monmouth

Phone Number: (908) 532-6224 NJDEP Certification No.: 2056

• Analytical Laboratory: 21st Century Environmental Laboratory

Contact Person: Richard W. Lynch Phone Number: (609) 467-9521

NJDEP Laboratory Certification No.: 08031

Analytical Laboratory: U.S. Army Fort Monmouth Environmental Testing Laboratory

Contact Person: Brian McKee Phone Number: (609) 532-4359

NJDEP Laboratory Certification No.: 13461

2.2 <u>FIELD SCREENING/MONITORING</u>

All soils that were excavated as part of the removal of the UST were screened using a PID, for evidence of contamination. Soils were also inspected visually for evidence of contamination (staining, free product, etc..). Soils on the sidewalls and base of the excavation were screened with a PID by an individual under the direct supervision of the NJDEP Certified Sub-Surface Evaluator. Evidence of contamination was noted during excavation of soils surrounding the UST and soils were subsequently removed.

2.3 SOIL SAMPLING

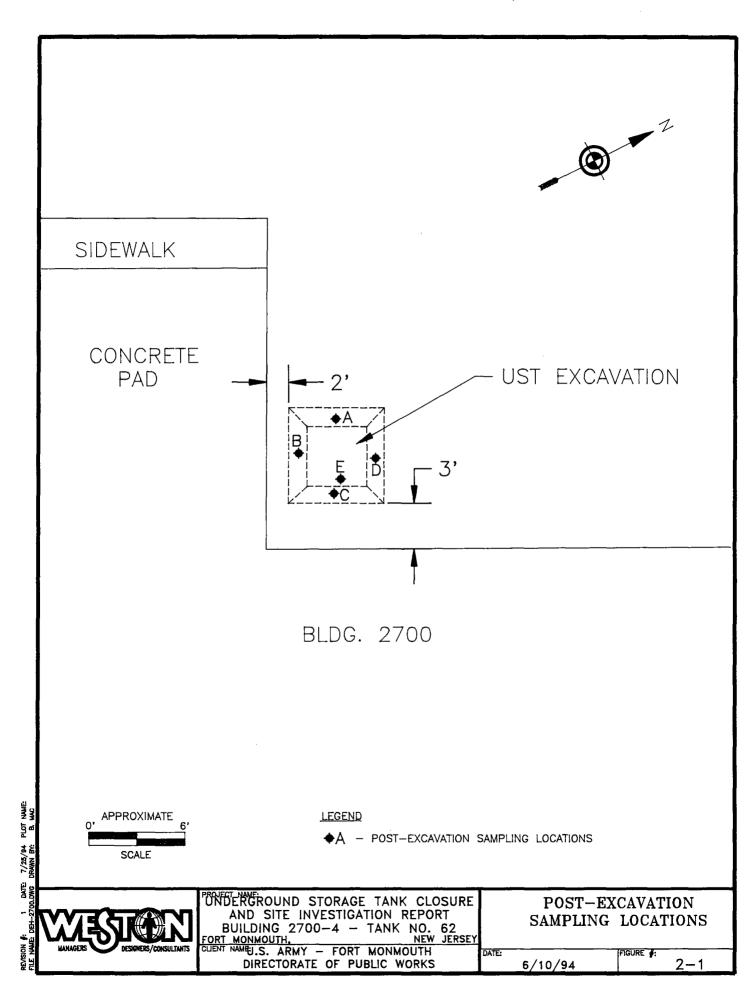
On 10 September 1993, following the removal of UST No. 62, five post-excavation samples were collected for analysis by FMEL for TPHC.

On 13 September 1993, one sample, Sample No. Site E, was collected for analysis by 21st Century Environmental Laboratory for VO+15 and BN+15. The sample, designated Site E, was analyzed because the TPHC result for the sample exceeded 1,000 mg/kg.

A summary of sampling activities including parameters analyzed is provided in Table 2-1. Figure 2-1 depicts the location of the post-excavation soil samples. The post-excavation soil samples were collected using decontaminated stainless steel scoops. Following soil sampling activities, the samples were chilled and delivered to the applicable testing laboratory.

The frequency of sampling and parameters analyzed were consistent with the applicable NJDEP regulations at the date of closure, which were the "Technical Requirements for Site Remediation" (N.J.A.C. 7:26E-1 et seq. dated June 1993).

TABLE 2-1


SUMMARY OF POST-EXCAVATION SAMPLING UST NO. 62 BUILDING NO. 2700.4 FORT MONMOUTH, NEW JERSEY

Sample ID No.	Date of Collection	Matrix	Sample Type	Analytical Parameters	Sampling Method
Site A	9/10/93	Soil	Post-Excavation	ТРНС	Stainless Steel Scoop
Site B	9/10/93	Soil	Post-Excavation	ТРНС	Stainless Steel Scoop
Site C	9/10/93	Soil	Post-Excavation	ТРНС	Stainless Steel Scoop
Site D	9/10/93	Soil	Post-Excavation	ТРНС	Stainless Steel Scoop
Site E	9/10/93	Soil	Post-Excavation	ТРНС	Stainless Steel Scoop
Site F (Duplicate of site E)	9/10/93	Soil	Post-Excavation	ТРНС	Stainless Steel Scoop
Site E (Pit Bottom)	9/13/93	Soil	Post-Excavation	BN+15, VO+15	Stainless Steel Scoop

Notes:

TPHC: - Total Petroleum Hydrocarbons

BN+15 - Base Neutral Analysis plus 15 Tentatively Identified Compounds
VO+15 - Volatile Organic Analysis plus 15 Tentatively Identified Compounds

SECTION 3.0

CONCLUSIONS AND RECOMMENDATIONS

3.1 SOIL SAMPLING RESULTS

To evaluate soil conditions following removal of the UST and associated soils, the post-excavation sample results were compared to NJDEP ITGW and RDC Soil Cleanup Criteria (N.J.A.C. 7:26D and revisions dated 3 February 1994). Summaries of analytical results for soils are presented in Table No. 3-1.

A summary of the analytical methods used and quality assurance information is provided in Table 3-2. The analytical data package summary is provided in Appendix F. The full data package, including associated quality control and chromatograph data is on file at U.S. Army Fort Monmouth, DPW.

In accordance with NJDEP requirements, those samples which exhibited a concentration of TPHC exceeding 1,000 milligrams per kilogram (mg/kg) shall be analyzed for volatile organic compounds plus 15 tentatively identified compounds (VO+15). The results of the 10 September 1993 soil analysis indicated a concentration of TPHC (7,520 mg/kg) in the sample designated Site E, which exceeded the NJDEP requirement of 1,000 mg/kg.

On 13 September 1993, a sample was collected from the same location as Site E and analyzed for VO+15 and BN+15. The results of the 13 September 1993 soil analysis indicated non-detectable concentrations of contaminants or concentrations of contaminants below NJDEP ITGW and RDC Soil Cleanup Criteria.

3.2 CONCLUSIONS AND RECOMMENDATIONS:

On 10 September 1993, DPW successfully closed UST No. 62 at Building 2700.4 in the Charles Wood area of U.S. Army Fort Monmouth.

Based on the analytical testing results indicating that all potentially contaminated soils have been removed, no further action is recommended for soils.

In accordance with N.J.A.C. 7:26E-1 et seq. a minimum of one monitoring well will be installed in the excavation. The well will be installed, developed and sampled in accordance with NJDEP requirements outlined in the <u>Field Sampling Procedures Manual</u>, May 1992. Groundwater samples will be analyzed for volatile organics with a library search, and base neutral extractable compounds with a library search.

Results of the testing and recommendations for groundwater will be provided in an addendum to this report.

TABLE 3-1

SUMMARY OF ANALYTICAL RESULTS UST NO. 62 BUILDING NO. 2700.4 FORT MONMOUTH, NEW JERSEY

Sample ID No.		Site A	Site B	Site C	Site D	Site E	Site F (Duplicate of Site E)	Site E (Pit Bottom)		
Lab ID No.		1268.1 1268.2 1268.3 126		1268.4	1268.4 1268.5 1268.6	1268.6	A4024	NJDEP	Residential Direct	
Matrix		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Impact to Groundwater	Contact Soil
Sample Type		PE	PE	PE	PE	PE	PE	PE	Soil Cleanup Criteria	Cleanup Criteria
Date of Collection		9/10/93	9/10/93	9/10/93	9/10/93	9/10/93	9/10/93	9/13/93		
Analytical Parameters	Units									
ТРНС	mg/kg	ND	11.7	ND	309	7,520	7,440	NR	NC	NC
Base Neutral Compounds										
Naphthalene	mg/kg	NR	NR	NR	NR	NR	NR	6.9 J	100	230
2-Methylnaphthalene	mg/kg	NR	NR	NR	NR	NR	NR	43	NC	NC
Dibenzofuran	mg/kg	NR	NR	NR	NR	NR	NR	2.1 J	NC	NC
Fluorene	mg/kg	NR	NR	NR	NR	NR	NR	5.4 J	100	2,300
Phenanthrene	mg/kg	NR	NR	NR	NR	NR	NR	11 Ј	NC	NC
Volatile Organic Compoun	ds .									
Methylene Chloride	mg/kg	NR	NR	NR	NR	NR	NR	0.93 B	10	49
Xylenes (Total)	mg/kg	NR	NR	NR	NR	NR	NR	5.3	10	410
Toluene	mg/kg	NR	NR	NR	NR	NR	NR	0.86	500	1,000
Ethylbenzene	mg/kg	NR	NR	NR	NR	NR	NR	1.0	100	1,000

Notes:

TPHC: - Total Petroleum hydrocarbons. mg/kg: - Milligrams per Kilograms.

PE: - Post Excavation.

NC: - No cleanup criterion has been proposed for TPHC by NJDEP.

J: Indicates an estimated amount.

NR: - Not requested.

NC: - No subsurface cleanup criterion has been proposed for this analyte by NJDEP.

B: - Indicates also present in blank.

TABLE 3-2

ANALYTICAL METHODS/QUALITY ASSURANCE SUMMARY TABLE UST NO. 62 BUILDING NO. 2700.4 FORT MONMOUTH, NEW JERSEY

Analytical Parameter	No. of Samples Collected	Matrix	Date Collected	Date Analysis Completed	Preservation Method	USEPA SW-846 Analytical Method
ТРНС	6	S	9/10/93	9/10/93	Cool to 4°C	418.1
BNA	1	S	9/10/93	9/14/93	Cool to 4°C	8270
voc	1	s	9/10/93	9/14/93	Cool to 4°C	USEPA-CLP-IFB
VOC	1	S	9/13/93	9/14/93	Cool to 4°C	USEPA-CLP-IFB
BNA	1	s	9/13/93	9/14/93	Cool to 4°C	8270

Notes:

TPHC - Total Petroleum Hydrocarbons.

C - Celsius.

BNA - Base Neutral Analysis.

VOC - Volatile Organic Compound Analysis.

APPENDIX A

NJDEP-BUST CLOSURE APPROVAL, CORRESPONDENCE WITH NJDEP

UST	r-01	1
0,00)	

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

FUKSIA	IE USE UNLI
UST#	
UST# Date Rec'd	
CA# Staff	

DIVISION OF WATER RESOURCES
BUREAU OF UNDERGROUND STORAGE TANKS
TANK MANAGEMENT SECTION

CN 029, 401 EAST STATE STREET TRENTON, N.J. 08625-0029

UNDERGROUND STORAGE TANK CLOSURE PLAN APPROVAL APPLICATION

Under the provisions of the Underground Storage of Hazardous Substances Act in accordance with N.J.A.C. 7:14B-9 et seq.

This application form shall be used by all applicants who plan to close Underground Storage Tank Systems pursuant to N.J.A.C. 7:148-9 et seg.

INSTRUCTIONS:

1.

- Before completing application form please refer to the attached Application Instruction Sheet.
- Please print legibly or type.
- Fill in all appropriate blanks. This application form requires that additional sheets be <u>attached</u> for some of the information requested. You may call the Bureau of Underground Storage Tanks/Tank Management Section (609/984-3156) for assistance.
- Return one original of this form (including all attachments required) and a copy of the complete Standard Reporting Form (SRF) to the address above. You must sign all forms as required and attach a check for the proper fee (see the fee schedule on Page 3), Make check payable to the <u>Treasurer</u>. State of New Jersey.
- If the subject facility is not registered the Closure Plan will not be approved.

•	Please Note: Make sure that all required information on the Standard		Form	(SRF)	is
	submitted. The SRF and this Closure Plan Application must be submitted together.	./	/		
	Date of Application	6/6/	95		

FACILITY REGISTRATION # \$1515 - 62

FACILITY NAME AND ADDRESS	
U.S. Army Fort Monmouth	
DEH Bldg. 167	
Fort Monmouth NJ 07703	
Telephone No. (908) 532-1475	

/90			
11.	ТН	IS CL	OSURE PLAN IS FOR:
	A.	Sub	stance stored in subject tank(s):
		1. P	Petroleum Products
			Indicate Type of Product 0 i.e.s.)
			. Gasoline, Jet Fuel, or Kerosene
			. Heating Oil (#2, 4, 6), or Diesel . Waste Oil (Please indicate total storage capacity of waste oil at the facility [including the tank(s) being closed]) 550 gals.
		2. H	azardous Substances other than Petroleum Products (Describe)
			dicate Type of Product
	В.	Туре	of Activity: (Circle one)
		1. Al	bandonment of Tank(s)
			ttach the closure plan for abandonment, as required by N.J.A.C. 7:148-9.2(b) or 9.3(b), which must ontain the following items:
			Implementation schedule (3 copies per N.J.A.C. 7:148-9.2(a)3)
		c.	Site assessment plan Tank decommissioning plan
			A site map Attach all <u>iustification</u> for abandonment-in-place as required by N.J.A.C. 7:14-9.1(d). Attach the <u>certification statement</u> (on the back page) for abandonment-in-place, if applicable.
	\langle	2. Re	emoval of Tank(s)
			tach the closure plan for removal as required by N.J.A.C. 7:148-9.2(b) or 9.3(b). The following items ust be included:
		ب a.	Implementation schedule (3 copies)
	, J	b.	Site assessment plan Tank decommissioning plan
			A site map
		3. Te	emporary Closure

Indicate which situation applies and attach appropriate documentation.

- a. ____ Temporary closure for 12 months or less is subject to requirements of N.J.A.C. 7:148-9.1(a).
- b. ____ Requesting an extension of temporary closure for more than 12 months per N.J.A.C 7:148-9.1(b) must perform site assessment and submit results.

4. Change in Service

Attach documentation that the tank system being changed from the storage of a regulated to a non-regulated substance has been emptied and cleaned and that a site assessment has been performed, as required by N.J.A.C. 7:14B-9.1(e).

III. FEE	SCH	EDULE
----------	-----	-------

Check the activities below that apply, calculate the Total Fee-and submit that amount with this application.
Make checks: payable-to Treasurer, State-of New-Jersey: Public: schools: and religious and charitable-
institutions are exempt form the fees. The owner or operator shall submit a separate fee-for each excavations
where an activity occurs:

where an activity occurs	·		
Activities Which Require a Site Assessm Removal or Abandonment without exa site assessment requirement.		120.00	\$ 120.00
Change in service from a regulated su to a non-regulated substance	ibstance		
3. Extension of period of Temporary Clo	sure		
Activities Not Requiring a Site Assessme Removal or abandonment with valid ex			\$ 80.00
Additional Activities Change in service from one regulated to another regulated substance	substance		NO FEE
APPLICATION REVIEW FEE (activities in A, B	. C) +	\$ 50.00	
TOTAL FEE DUE		s 170.00	
IV. THE BUREAU OF UNDERGROUND STOCOMPLETENESS AND APPROPRIATENESS PLAN APPROVAL WILL INDICATE THAT THE FINAL APPROVAL OF THE CLOSURE IS PERMITS, LICENSES AND CERTIFICATES LOCAL, STATE AND/OR FEDERAL AGE APPLICATION. THE SITE ASSESSMENT SAMPLING WITH THE APPROVAL TO PROCEED.	AS SPECIFIED IN OWNER OR OPE S NOT IMPLIED REQUIRED FOR ENCIES MUST E	SUBCHAPTER 9 C RATOR MAY PROVE ALL. APPROPE ANY OF THE ABO BE OBTAINED SI	OF THE UST REGULATIONS. CEED WITH THE CLOSURE RIATE AND APPLICABLE VE ACTIVITIES FROM ANY EPARATELY FROM THIS
NOTE: Notice of Approval to Proceed or Disappro other address is specified here.	oval will be mailed	to the facility addre	ss uniess some
			
SIGNATURE	OF CONTACT F	ERSON	
This application form must be signed by a contact p person should have overall knowledge of tank deca applicable to the tank closure which is the subject of	mmissioning proc	or or operator of the cedures and the sit	subject facility. The contact

NAME (Print or Type) CHARLES M. APPLEBY

TITLE ENVIRONMENTAL PROTECTION SPEC.

US ARMY FORT MONMOUTH NJ

DIRECTORATE OF ENGINEERING AND HOUSING ENVIRONMENTAL OFFICE

UNDERGROUND STORAGE TANK CLOSURE PLAN

BUILDING 2700 SUBSTATION #4

CHARLES M. APPLEBY

ENVIRONMENTAL PROTECTION SPECIALIST
NJDEPE UST SUBSURFACE CERTIFICATION # 002056

JUNE 6, 1993

Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

UNDERGROUND STORAGE TANK (UST) DECOMMISSIONING / CLOSURE PLAN

A. General Requirements:

All activities associated with the decommissioning of any underground storage tank (UST) shall comply with all applicable Federal, State and Local laws and ordinances. These laws include but are not limited to: NJAC 7:14B et seq., 5:23 et seq. and OSHA 1910.146, 1910.120. All permits including but not limited to this document, the NJDEP Closure Plan Approval Package, etc..., shall be posted on site for inspection. The Contractor conducting the decommissioning activities shall be registered and certified by the NJDEP for performing said activities.

B. Safety and Health:

Before, during, and after all activities, the work site shall be made free of all hazards which may pose a threat to the health and safety of all personnel who are involved with, or are affected by, the decommissioning of the UST. All areas which pose, or may be suspected of posing, a vapor hazard shall be monitored by a qualified individual utilizing approved equipment. This individual will ascertain if the area is properly vented to render the area safe, as defined by OSHA. THIS SITE IS AN NIDEPE REPORTED SPILL SITE AND ALL OSHA REQUIREMENTS WILL BE FOLLOWED. THIS INCLUDES A SITE SPECIFIC HEALTH AND SAFETY PLAN. ALL WORKERS WILL HAVE A MINIMUM OF 40 HOURS H&S TRAINING.

C. UST Excavation:

5 <u>4</u> _

- 1. All underground obstructions (utilities,... etc.) shall be marked out by the contractor performing the excavation.
- 2. All activities shall be carried out with the greatest regard to safety and health and the safeguarding of the environment.
- 3. All excavated soils will be evaluated as to the possibility of contamination. Soils suspected to be contaminated with product shall be staged on poly-sheeting separate from soils not suspected to be contaminated (see section E Excavated Soils management).
- 4. Surface materials (ie. asphalt, concrete, etc...) shall be excavated and staged separate from all soils.

Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

- 5. Soil will be excavated to expose the UST and associated piping. The piping shall not be removed/disturbed until all free product is drained into the UST. The UST will be rendered vapor free by purging or addition of dry ice prior to any cutting or access. After the removal of the associated piping, a manway will be made in the UST to allow for the proper cleaning of the UST. The UST will be completely emptied of all liquids prior to removal of the UST from the ground. All of the openings in the tank will be plugged except for one vent hole.
- 6. After the UST is removed from the ground, it will be staged on poly-sheeting and examined for corrosion holes. The presence or absence of corrosion holes will be documented by the Sub-Surface Evaluator. If corrosion holes are observed, or if upon inspection of the excavation site evidence of a discharge to the environment exists, the NJDEPE hotline shall be notified at (609)292-7172.
- 7. In the event of a discharge to the environment, additional soils will be excavated as needed. Site assessment activities under the direct supervision of the Sub-Surface Evaluator will determine to what extent the contractor will excavate.
- 8. After completion of the Site Assessment activities, the excavation will be backfilled to grade with noncontaminated soils form the site and additional certified clean fill provided by the contractor.
- D. UST Transport / Disposal:
 - 1. The tank will be transported and disposed / recycled in compliance with all applicable regulations and laws.
 - 2. The contractor shall label the tank with the following information:
 - a. site of origin
 - b. generator / contact person
 - c. NJDEPE UST ID number
 - d. product previously stored
 - e. name of transporter / contract person
 - f. destination site / contact person
 - g. other information as required

Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

3. The contractor shall provide Fort Monmouth with sufficient documentation certifying that transport / disposal (recycling) of the tank was completed according to all applicable Federal and State regulations.

E. Excavated Soils Management:

- 1. All excavated soils suspected to be contaminated will be transported, by the contractor, to a designated staging area within Fort Monmouth. The designated area will contain the soils and direct all stormwater runoff away from any contact with the soil.
- 2. All soils stored in the designated staging areas will be maintained in piles no larger than 100 cubic yards each. Each pile will be lined and covered with poly-sheeting and weighted to ensure proper containment.
- 3. Each soil pile will be sampled and analyzed for waste classification as outlined in the NJDEPE document titled "Management of Excavated Soils" dated August 17, 1990.
- 4. All soils categorized as Hazardous waste or nonhazardous waste will be managed as such, in accordance with N.J.A.C. 7:26-1 et seq..
- 5. All soils that contain levels of contaminants below the Category 3 soil limits will be used in accordance with Federal and State requirements.

F. Changes / Authorizations:

All deviations in activities related to the closure of a UST as outlined in this document shall require prior authorization from the NJDEPE-DWR-BUST.

Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

UNDERGROUND STORAGE TANK (UST) SITE ASSESSMENT PLAN

General:

This site specific assessment plan will be managed and carried out by U.S. Army DEH and Serv-Air Inc. personnel. All analyses will be performed and reported by NJDEPE certified testing laboratories. All monitoring wells will be installed by NJDEPE licensed well drillers. All sampling will be performed under the direct supervision of a NJDEPE Certified Sub-Surface Evaluator and according to the methods described in the 1992 NJDEP Field Sampling Procedures Manual. All records of the Site Assessment will be maintained by DEH and submitted to the NJDEPE-DWR-Bust in accordance with NJAC 7:14B-9.2 and 9.3.

PHASE I UST DECOMMISSIONING

A. Initial Soil Excavation:

- 1. Soil will be excavated from the UST site and screened utilizing a Photo Ionization Detector (PID) and/or a Flame Ionization Detector (FID).
- 2. All soils suspected to be contaminated will be treated in accordance with the UST Decommissioning Plan.

B. Continued Excavation:

~ j _

- 1. Excavation of suspect contaminated soil will continue until one of the following situations is encountered:
 - a. groundwater
 - b. excavated soils no longer exhibit characteristics of contamination determined in the field as determined by the Sub-Surface Evaluator
 - c. excavation equipment can no longer remove soils due to the depth of the excavation or other restrictive cause.

Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

PHASE II Site Survey

A. Vapor Screening:

11 _

- 1. An individual under the direct supervision of a NJDEPE Sub-Surface Evaluator and trained in the operation of a FID and/or PID shall evaluate the sides and pit bottom of the excavation.
- 2. All observed instrument readings will be documented and included in the Site Assessment Survey report. This documentation will include all factory and daily calibrations of the instrument.

PHASE III Site Sampling

A. Soil samples will be collected from the UST excavation and analyzed according to the following schedule:

PRODUCT	SIZE (gal.)	# TPHC SAMPLES	VOA +15 (if TPHC >10000)
HEATING OIL	550	6	6
FIELD BLANKS DUPLICATE SAMPLES		11	1
		1	1
TOTAL # SAMPLES		8	8

تر ے

Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

B. Soil samples will be collected from the Pipe excavation at the same time as UST pit sampling and analyzed according to the following schedule:

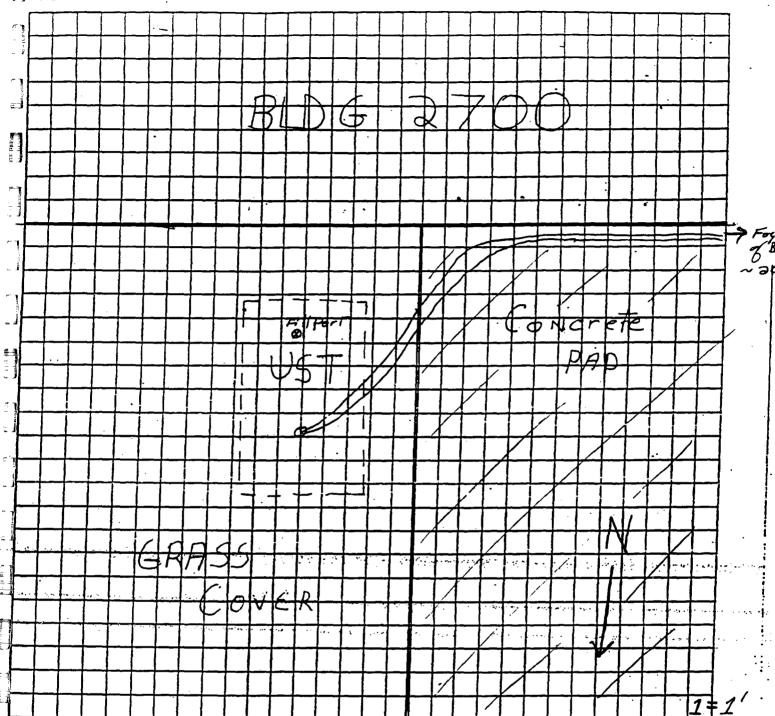
PRODUCT	· LENGTH OF PIPING	# TPHC SAMPLES	VOA +15 (if TPHC >10000)
HEATING OIL	20 FEET	2	2
FIELD BLANKS		0	0
DUPLICATE SAMPLES		0	0
TOTAL # SAMPLES		2	2

- C. All TPHC samples will be taken in the native soil below the bedding material. The sample locations should be along the mid-lines of the tank outline except for at least two of the samples which should be taken within one foot of each of the two highest field survey readings. All of the soil samples should be discrete samples taken within a 6" vertical interval. All samples will be collected by utilizing laboratory decontaminated stainless steel trowels dedicated to each sample location. All VOA+15 samples will be taken within 24 hours of UST excavation at a depth of 0-6" with the use of a laboratory decontaminated stainless steel core sampler. Each VOA+15 sample will be screened with an FID and\or PID and recorded immediately after collection.
- D. The excavations of USTs containing #2 Fuel Oil will remain open until laboratory results determine all TPHC samples are less than 1000 ppm. If levels greater than 1000 ppm are reported, further excavation and resampling may be requested by the Sub-Surface Evaluator for those contaminated areas. If further excavation is not possible, additional VOA+15 analyses on 25% of the TPHC samples with the highest results will be performed and the excavation will be filled to grade with certified clean fill. In the case of USTs containing gasoline, all samples will be sampled for TPHC and VOA+15. If TPHC results are greater than 100 ppm additional excavation and subsequent sampling may be requested by the Sub-Surface Evaluator.

<u>- الرائ</u> الرائد Date: 3, JUNE 1993
Building #: 2700 sub.4
NJDEPE UST Reg. #:0081515- 62
NJDEPE CASE # 92-3-7-1047

PHASE IV Groundwater Monitoring

- A. Monitoring wells will be installed within the UST field at all UST locations where the tanks(s) being closed stored gasoline, kerosene, jet fuel and/or site specific factors indicate a know or potential impact of soil contamination exists.
- B. Groundwater monitoring wells will be installed by a New Jersey licensed Well Driller in accordance with N.J.S.A 58:4A-4.1 et seq.. The well driller will obtain all required permits prior to well installation.
- C. All monitoring wells will be sampled as described in the NJDEP Field Sampling Procedures Manual, 1992.
- D. All monitoring wells will be analyzed in accordance with the following table:


PRODUCT	NUMBER OF MONITORING WELLS REQUIRED	EPA METHOD 624 (A)	EPA METHOD 625 (B)
HEATING OIL	1	1	1
FIELD BLANKS		1	1
DUPLICATE SAMPLES		1	1
TOTAL # SAMPLES		3	3

Note (A): Sample must be analyzed by EPA Method 624 + 15 (GC/MS plus identification of non-targeted compounds) modified to include calibration for xylene, methyl tertiary butyl ether (MTBE), tertiary butyl alcohol (TBA) and LEAD.

Note (B): Sample must be analyzed by EPA method 624 + 15 (GC/MS plus identification of non-targeted compounds) modified to include calibration for xylene; and EPA Method 625 + 15 (base/neutral extractable, extractable organics).

- C. All monitoring well sampling will be conducted according to methods described in the NJDEP Field Sampling Procedure Manual 1992.
- D. All laboratory analyses will be performed by NJDEP certified Laboratories using approved methods and follow all Quality Control/Assurance procedures as described for each method.

PROPOSED SITE PLAN

NOTE: Indicate scale and compass direction.

REMARKS

UST NOT IN USE -

Loss of Product Inventory Resulted in TANK # 51515 - 62 am investigation - determine dischare (confirmed) TANK SIZE 550 gik. Steel

-CASC # 92-3-7-1047-43

- Planned Removal FAII 1992

- Althorate Fuel Somme (Mongrood) installed

3/5/92 by Serv-Air Inc.

TANK LOCATION

BLDG# 2700 . EG Sun 4

TANK CONTENTS # 3 Diesel

Age. 1752

UST-0:	i	3
9/90		

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

FOR STA	TE USE	<u>ONLY</u>
UST#		
Date Rec'd		
CA# Staff		

DIVISION OF WATER RESOURCES BUREAU OF UNDERGROUND STORAGE TANKS TANK MANAGEMENT SECTION

> CN 029, 401 EAST STATE STREET TRENTON, N.J. 08625-0029

UNDERGROUND STORAGE TANK CLOSURE PLAN APPROVAL APPLICATION

Under the provisions of the Underground Storage of Hazardous Substances Act in accordance with N.J.A.C. 7:148-9 et seq.

This application form shall be used by all applicants who plan to close Underground Storage Tank Systems pursuant to N.J.A.C. 7:14B-9 et seq.

INSTRUCTIONS:

ı.

- Before completing application form please refer to the attached Application Instruction Sheet.
- · Please print legibly or type.
- Fill in all appropriate blanks. This application form requires that additional sheets be <u>attached</u> for some of the information requested. You may call the Bureau of Underground Storage Tanks/Tank Management Section (609/984-3156) for assistance.
- Return one original of this form (including all attachments required) and a copy of the complete Standard Reporting Form (SRF) to the address above. You must sign all forms as required and attach a check for the proper fee (see the fee schedule on Page 3). Make check payable to the <u>Treasurer</u>. State of New Jersey.
- If the subject facility is not registered the Closure Plan will not be approved.

Please Note: Make sure that all required information on the Standard		Form	(SRF)	is
submitted. The SRF and this Closure Plan Application must be submitted together.	.//			
Date of Application	6/6/9	2		

FACILITY REGISTRATION # 81515 - 62

øt

FACILITY NAME AND ADDRESS				
U.S. Army Fort Monmouth				
DEH Bldg. 167	·			
Fort Monmouth NJ 07703				
Telephone No. (908) 532-1475				

0		
ı.	ТН	IIS CLOSURE PLAN IS FOR:
	A.	Substance stored in subject tank(s):
		1. Petroleum Products
		Indicate Type of Product
		a. Gasoline, Jet Fuel, or Kerosene b. Heating Oil (#2, 4, 6), or Diesel c. Waste Oil (Please indicate total storage capacity of waste oil at the facility [including the tank(s) being closed])
		2. Hazardous Substances other than Petroleum Products (Describe)
		Indicate Type of Product(Write out product name; add sheet if necessary.)
	В.	Type of Activity: (Circle one)
		1. Abandonment of Tank(s)
		Attach the closure plan for abandonment, as required by N.J.A.C. 7:14B-9.2(b) or 9.3(b), which must contain the following items:
		 a. Implementation schedule (3 copies per N.J.A.C. 7:148-9.2(a)3) b. Site assessment plan c. Tank decommissioning plan
		 d. A site map e. Attach all <u>justification</u> for abandonment-in-place as required by N.J.A.C. 7:14-9.1(d). Attach the <u>certification statement</u> (on the back page) for abandonment-in-place, if applicable.
		2. Removal of Tank(s)
		Attach the closure plan for removal as required by N.J.A.C. 7:14B-9.2(b) or 9.3(b). The following items must be included:
	ļ	a. Implementation schedule (3 copies) b. Site assessment plan c. Tank decommissioning plan
		d. A site map
		3. Temporary Closure
	•	Indicate which situation applies and attach appropriate documentation.
		a Temporary closure for 12 months or less is subject to requirements of N.J.A.C. 7:14B-9.1(a).
		b Requesting an extension of temporary closure for more than 12 months per N.J.A.C

4. Change in Service

Attach documentation that the tank system being changed from the storage of a regulated to a non-regulated substance has been emptied and cleaned and that a site assessment has been performed, as required by N.J.A.C. 7:14B-9.1(e).

7:14B-9.1(b) must perform site assessment and submit results.

ı	11		_	-	~ :	-	-	•		-
-1	11	ᇆ	Ē	3	CH	-	U	u	ᆫ	_

Check the activities below that apply,	calculate the Total Fee	and submit that an	nount with this application:
Make checks payable to Treasurer,	State of New Jersey:	Public schools an	d religious and charitable
institutions are exempt form the fees.	The owner or operator's	hali submit a separa	ite fee for each excavation
where an activity occurs.			

	Activities Which Require a Site Assessment Removal or Abandonment without exemption to site assessment requirement		120.00	\$ 120.00	
	Change in service from a regulated substance to a non-regulated substance				
	3. Extension of period of Temporary Closure				
	Activities Not Requiring a Site Assessment Removal or abandonment with valid exemption	-		\$ 80.00	
	Additional Activities Change in service from one regulated substance to another regulated substance			NO FEE	
	APPLICATION REVIEW FEE (activities in A, B, C) +	\$	50.00		
	TOTAL FEE DUE	\$_	170.00		
IV.	THE BUREAU OF UNDERGROUND STORAGE TANKS COMPLETENESS AND APPROPRIATENESS AS SPECIFIED IN PLAN APPROVAL WILL INDICATE THAT THE OWNER OR OP FINAL APPROVAL OF THE CLOSURE IS NOT IMPLIED PERMITS, LICENSES AND CERTIFICATES REQUIRED FOR LOCAL, STATE AND/OR FEDERAL AGENCIES MUST APPLICATION.	N SUBO ERATO D. ALI R ANY (CHAPTER 9 (OR MAY PRO L. APPROP OF THE ABO	OF THE UST REGULATI OCEED WITH THE CLOS RIATE AND APPLICA OVE ACTIVITIES FROM	IONS. SURE ABLE I ANY
	THE SITE ASSESSMENT SAMPLING AND ANALY WITH THE APPROVAL TO PROCEED.	TICAL	. REQUIRE	MENTS WILL BE S	SENT
NOT	E: Notice of Approval to Proceed or Disapproval will be mailed other address is specified here.	d to the	facility addr	ess unless some	

SIGNATURE OF CONTACT PERSON

This application form must be signed by a contact person of the owner operson should have overall knowledge of tank decommissioning proced	or operator of the subject facility. The contact- dures and the site assessment requirements
applicable to the tank closure which is the subject of this application.	$N//\sqrt{\chi}$
•	

NAME ((Print or Type) CHARLES M. APPLEBY	SIGNATURE	1 80,0
	ENVIRONMENTAL PROTECTION SPEC.	DATE	1/195
_			

U.S. Army DEH Bldg. 167 SELFM-EH Fort Monmouth, NJ 07703

Date: 3, JUNE 1993 Building #: 2700 sub.4 NJDEPE UST Reg. #:0081515- 62 NJDEPE CASE # 92-3-7-1047

UNDERGROUND STORAGE TANK REMOVAL / ABANDONMENT IMPLEMENTATION SCHEDULE

Facility Name:

U.S. Army, Fort Monmouth

ट ब्रे

Facility Location: BLDG. 2700, SUB 4

Fort Monmouth, Monmouth County NJ 07703

Owners Mailing Address:

DEH Bldg. #167

Fort Monmouth, NJ 07703

Owners Name: U.S. Army

Contact Person: Charles Appleby Phone Number: (908) 532-6224

UST Regestration Number: 0081515

TANK ID	PRODUCT STORED (OIL, GAS)		 	SSESSME	MONITORI NT REQUIRE	WELL
	#2 H-OIL	- <u>.</u>	 YES		NONE	

SCHEDULE

ACTIVITY	START DATE	COMPLETION
Removal	7/20/92	7/20/93
Site	-/ /m	
Assessment	1/20/93	
Monitoring Well	0/ /-0	
Installation	8/20/93	
Site Assessment	01. 100	
Analytical Results	9120 193	
Monitoring Well	9/. 100	
Analytical Results	7/20/95	·
UST Site Assessment	10/ 101	
Summary	[1]06195	

U.S. ARMY, Fort Monmouth Directorate of Engineering and Housing Fort Monmouth, New Jersey 07703

June 10, 1993

New Jersey Department of
Environmental Protection and Energy
DIVISION OF WATER RESOURCES
BUREAU OF UNDERGROUND STORAGE TANKS
TANK MANAGEMENT SECTION
CN 029
401 EAST STATE STREET
Trenton, NJ 08625 - 0029
ATTN: Monmouth County UST Closure Specialist

Dear Sir:

Enclosed please find UST Closure Plan Approval Applications for the following Fort Monmouth Areas:

Total: \$ 1,700.00

To identify any specific UST location, correlate the corresponding building number located in the Closure Plan with the building number on the detailed area map which was issued with the initial UST Registrations. Due to the complexity of our facility's registrations, we have developed and are currently using this system for locating and managing our USTs.

With regard to the Emergency Closure of UST# 0081515-34, I contacted your department and I was informed to proceed but that all activities must be followed IAW applicable guidelines. The money for that removal activity is inclosed with the completed Site Assessment Summary Report. If the information provided in this enclosure is inadequate or you require further information with regard to any UST activities please contact me at (908) 532-6224.

Sixcerely,

Charles M. Appleby Engineering Technician

UNDERGROUND STORAGE TANK SYSTEM CLOSURE APPROVAL

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION AND ENERGY

DIVISION OF RESPONSIBLE PARTY SITE REMEDIATION BUREAU OF UNDERGROUND STORAGE TANKS CN-029. TRENTON, NJ 08625-0029

TMS #

ust 4

C-93-2613

0081515

DEH Bldg 205 2700. 4 CF

Monmouth

THE ABOVE LISTED FACILITY IS HEREBY GRANTED APPROVAL TO PERFORM THE FOLLOWING ACTIVITY IN ACCORDANCE WITH N.J.A.C. 7:14B-1 et. seq.:

Removal of: one 550 gallon \$2 diesel UST(s) and appurtenant piping.

SITE ASSESSMENT: Soil samples will be taken every five (5) feet along the center line of each tank and one (1) soil sample for every 15 feet along all associated piping. Two (2) additional samples will be taken from around the tank and biased to the areas of highest field screened readings. Samples will be analyzed for TPHC. If sample results are greater than 1,000ppm than samples will be analyzed for the areas of highest field screened readings.

C. Appleby

908-532-1475

ON-SITE MANAGER:

TELEPHONE:

OWNER:

TELEPHONE:

EFFECTIVE DATE: JUL 12 1993

THIS FORM MUST BE DISPLAYED AT THE SITE-DURING THE APPROVED ACTIVITY AND MUST BE MADE AVAILABLE FOR INSPECTION AT ALL TIMES.

KEVIN F. KRATINA, BUREAU CHIEF BUREAU OF UNDERGROUND STORÂGE TÂNKS

State of New Jersey Department of Environmental Protection and Energy

Division of Responsible Party Site Remediation

CN 029 Trenton, NJ 08625-0029 Tel. # 609-984-3156 Fax. # 609-292-5604

Scott A. Weiner Commissioner

Karl J De

JUL 29 1993

Dear Applicant:

The Department of Environmental Protection (the Department) received an "Underground Storage Tank Closure Plan Approval Application" for your facility. This application detailed the procedures to be implemented as required by the Underground Storage Tank Systems Technical Requirements and Procedures at N.J.A.C. 7:14B-1 et seg. Based upon our review of the information submitted, a Closure Approval is hereby granted.

A Standard Reporting Form (SRF) must be submitted to the Department within seven (7) days of removal or abandonment of the tank(s). The date of removal or abandonment must be included with the SRF. The SRF will be used to delist the tank(s) from the Bureau of Underground Storage Tanks (BUST) registration files. A copy of the SRF is attached.

Within ninety (90) days of completion of the tank(s) closure, a Site Assessment Summary pursuant to N.J.A.C. 7:14B-9.5 must be submitted to BUST (copy attached). If contamination is discovered during closure, you are required to initiate corrective action as per N.J.A.C. 7:14B-8 and outlined in the Department's Scope of Work document. All discharges must be reported to the Spill Hotline at (609) 292-7172.

Once you have obtained a Closure Approval, a demolition permit issued pursuant to N.J.A.C. 5:23 et seg. and authorized by the Department of Community Affairs (DCA), Construction Code Element must be procured from your local construction code official. For further information in obtaining a demolition permit, please contact the local construction code official directly, or DCA's Code Assistance Unit at (609) 530-8793.

If you require further information or assistance, please contact the Tank Management Section of BUST at (609) 984-3156.

Attachments: Closure Approval

SRF

New Jersey is an Equal Opportunity Employer
Recycled Paper

Juste: of New-Jersey: Department: of Environmental Protections and Energy:

Division of Responsible Party Site-Remediation-

CN 028

Trenton: NJ 08625-0029

ATTN: UST Program (609) 984-3156

For State Use Only				
Date Rec'd_				
Routing				
JST NO.				

		9) 804•0 I3B	
		NDARD REPORTI	
	General Facility Information Closure (Abandonment or Temporary Closure Change in Service	U = -	Sale or Transfer Substantial Modification- Financial Responsibility Address Change Only
	Check ONLY One Typ	e of Activity - Con	piete Form For That Activity
_	(More than	one tank can be i	sted per activity)
	facilities must submit a	NEW tank install: Registration Que	itions at existing registered stionnaire for the new tanks.
Αп	swer questions 1 through 5 and others as app	licable.	
1.	Company name and address (as it appears on registration questionnaire):	U.S. A DEH Fort M. ATTN:	RMY Fort Monmouth 3 kg. 167 mmouth NJ 07703 Charles APPRETY
2.	Facility name and location (If different from above):		
3.	Contact person for this activity:	Cha	-ks APPKby Der:(908) 532-6224
4 .	The identification number of the affected tank 8/4 2780.4	k as it appears in C	nuestion Number 12 on the Registration Questionnaire:
5.	Registration Number (if known):	UST	081515
6.	For GENERAL FACILITY INFORMATION changes. a. Facility name: b. Facility location: c. Owner's mailing address:		
			NJ
	d. Block: Lot: Lot: Contact person (facility operator):)	

	7.	For CLOSURE (abandonm	nent or removal - check all th	hat apply):	
77		a. Abandonment			
Hearten		abandonment per N.J.	- ·	copies) and all documentation needed for	
		b. Removal			
<u> </u>		Attach the necessary in	mplementation schedule (3 ca	copies).	
73	8.	For CHANGES IN HAZAR	DOUS SUBSTANCES STOF	RED (check all that apply):	
and the state of t			•	see N.J.A.C. 7:14B-9.1(b)). Remove all hazardous	
- -∌		substances; leave tank	•	to a new good lated substance. The law set has also and	
E.J			rrom a regulated substance to erformed per N.J.A.C. 7:14B-	to a non-regulated substance. Tank must be cleaned	
- #		•	•	bus substance to another regulated hazardous substance.	
1		Tank No.	•	-	
			Old		
- 4			Old	New	
-			(Attach additional sheet	ets if more space is needed)	
أأ	9.	For TRANSFER OF OWNE	ERSHIP:	•	
		a. New Owner (operator)			
E I I		b. New Facility Name			_
ال ت					_
- 1		_		NJ	_
			County		
		c. Closing Attorney		Tele: () –	
بر م ا	10.	. For SUBSTANTIAL MODII	FICATIONS (to include any	retrofitted activity - e.g. the addition of spill/overfill protection	าท
أفس		monitoring systems, cathod	,	Total activity of the accidence of opinio ordining protocols	,,
- 1		a. Type of Modification _			
أبنا		b. * NOTE * Substantial m	nodifications require a permit	t under N.J.A.C. 7:14B-10.	
	11.	. For changes in FINANCIAI	L RESPONSIBILITY to (chec	ck appropriate changes and attach copies of new information):
in the second		a. Policy	· ·	. Company/Carrier: □	•
- 1		b. Policy	Number: □ e.	. Expiration Date: □	
		c. Other:	: 🗆		
				···	
					
			(Specify)		
	_		(Opeony)		_
7 1	N			s and certificates required by the above activity(ies) from a	ıny
Management of the state of the		local, state and/or lec	derai agencies musi de obiai	lined separately from this notification.	
			CERT	TIFICATION	
The second	fac	This registration form shall libility (N.J.A.C. 7:14B-2.3 (a)	be signed by the highest rar 1).***	nking individual at the facility with overall responsibility for the	nat
in the second se	tha			d in this document is true, accurate and complete. I am awaubmitting false, inaccurate or incomplete information, including	
-	s	ignature:			
					_
- 3					
					_

APPENDIX B NJDEP UST SITE ASSESSMENT SUMMARY FORM

UST	.0	14
2/91		

STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

UST #	
Dam Racid	<u>_</u>
TMS #	
Seat	·

DIVISION OF WATER RESOURCES
BUREAU OF UNDERGROUND STORAGE TANKS
TANK MANAGEMENT SECTION

CN 029, 401 EAST STATE STREET TRENTON, N.J. 08625-0029

UNDERGROUND STORAGE TANK SITE ASSESSMENT SUMMARY

Under the provisions of the Underground Storage of Hazardous Substances Act in accordance with N.J.A.C. 7:148

This Summary form shall be used by all owners and operators of Underground Storage Tank Systems (USTS) who have either reported a release and are subject to the site assessment requirements of N.J.A.C. 7:148-8.2 or who have closed USTS pursuant to N.J.A.C. 7:148-9.1 et seq. and are subject to the site assessment requirements of N.J.A.C. 7:148-9.2 and 9.3.

INSTRUCTIONS:

- Please print legibly or type.
- Fill in all applicable blanks. This form will require various attachments in order to complete the Summary. The technical guidance document, Interim Closure Requirements for UST's, explains the regulatory (and technical) requirements for closure and the Scope of Work, Investigation and Corrective Action Requirements for Discharges from Underground Storage Tanks and Piping Systems explains the regulatory (and technical) requirements for corrective action.
- Return one original of the form and all required attachments to the above address.
- Attach a scaled site diagram of the subject facility which shows the information specified in Item IV B of this form.
- Explain any "No" or "N/A" response on a separate sheet.

FACILITY NAME AND ADDRESS

Date of Submission MP	Rch 14, 1995
081515	
FACILITY	REGISTRATION A

	·
	,

Н.	DI	SCHARGE REPORTING REQUIREMENTS
	A.	Was contamination found? \underline{X} Yes \underline{No} If Yes, Case No. $\underline{92-3-7-1047}$ (Note: All discharges must be reported to the Environmental Action Hotline (609) 292-7172)
	В.	The substance(s) discharged was(were) #2 Fuel Oil
	C.	Have any vapor hazards been mitigated? X Yes No N/A
ш.	DE	COMMISSIONING OF TANK SYSTEMS Closure Approval No. C-93-2613
	don der loc to a	e site assessment requirements associated with <u>tank decommissioning</u> are explained in the Technical sidence Document, Interim Closure Requirements for USTs, Section V. A-D. <u>Attach</u> complete cumentation of the methods used and the results obtained for each of the steps of <u>tank</u> commissioning used. Please include a <u>site</u> map which shows the locations of all samples and borings, the ation of all tanks and piping runs at the facility at the beginning of the tank closure operation and annotated differentiate the status of all tanks and piping (e.g., removed, abandoned, temporarily closed, etc.). The me site map can be used to document other parts of the site assessment requirements, if it is properly and obly annotated.
V.	sn	E ASSESSMENT REQUIREMENTS
	A.	Excavated Soil
		Any evidence of contamination in excavated soil will require that the soil be classified as either Hazardous Waste or Non-Hazardous Waste. Please include all required documentation of compliance with the requirements for handling contaminated excavated soil (if any was present) as explained in the technical guidance documents for closure and corrective action. Describe amount of soil removed, its classification, and disposal location.
	В.	Scaled Site Diagrams
		Scaled site diagrams must be attached which include the following information:
		a. North arrow and scale
		b. The locations of the ground water monitoring wells
		c. Location and depth of each soil sample and boring d. All major surface and sub-surface structures and utilities
		e. Approximate property boundaries
		All existing or closed underground storage tank systems, including appurtenant piping A cross-sectional view indicating depth of tank, stratigraphy and location of water table
		h. Locations of surface water bodies
	C.	Soil samples and borings (check appropriate answer)
		1. Were soil samples taken from the excavation as prescribed? X Yes No N/A
		2. Were soil borings taken at the tank system closure site as prescribed?YesX_NoN:A
		3. Attach the analytical results in tabular form and include the following information about each sample: a. Customer sample number (keyed to the site map) b. The depth of the soil sample c. Soll boring logs d. Method detection limit of the method used e. QA/QC Information as required

	U. Glouid Wast Montolling
	Number of ground water monitoring wells installed
	2. Attach the analytical results of the ground water samples in tabular form. Include the following information for each sample from each well:
	a. Site diagram number for each well installed
	b. Depth of ground water surface
	c. Depth of screened interval d. Method detection limit of the method used
	e. Well logs .
	f. Well permit numbers
	g. QA/QC Information as required
٧.	SOIL CONTAMINATION
	A. Was soil contamination found? X Yes No
	ff "Yes", please answer Question B-E
	If "No", please answer Question B
	B. The highest soil contemination still remaining in the ground has been determined to be:
	B. The highest soil contamination still remaining in the ground has been determined to be: 1. 7,160 ppb total BTEX, 160,700 ppb total non-targeted VOC 2. 68,400 ppb total B/N, 2,581,000 ppb total non-targeted B/N
	2. 68,400 ppb total B/N, 2,581,000 ppb total non-targeted B/N
	3
	4ppb(for non-petroleum substance)
	C. Remediation of free product contaminated soils
	1. All free product contaminated soil on the property boundaries and above the water table are believed to
	have been removed from the subsurface X Yes No
	Free product contaminated soils are suspected to exist below the water tableYesX NoX. Free product contaminated soils are suspected to exist off the property boundariesYesX NoX.
	3. Free product contaminated soils are suspected to exist on the property ocundanes.
	D. Was the vertical and horizontal extent of contamination determined? Yes X No N/A
	E. Does soil contamination intersect ground water? Yes X No N/A
VI.	GROUND WATER CONTAMINATION
	A. Was ground water contamination found? Yes X No
	If "Yes", please answer Questions B-G.
	If "No", please answer only Question B.
	B. The highest ground water contamination at any 1 sampling location and at any 1 sampling event to date has
	been determined to be:
	N/A N/A
	1ppb total 6 IEX,ppb total non-targeted VOC
	2. N/A ppb total B/N, N/A ppb total non-targeted B/N 3. N/A ppb total MTBE, N/A ppb total TBA
	4. N/A ppb (for non-petroleum substance)
	5. greatest thickness of separate phase product found N/A
	6. separate phase product has been delineatedYesNo _X N/A
	C. Besuit(s) of well search
	C. Result(s) of well search
	1. A well search (including a review of manual well records) indicates that private, municipal or commercial
	wells do exist within the distances specified in the Scope of WorkYesNoN/A
	2. The number of these wells identified is

	3. Proximity of we	ils and contaminant plume		
	potential pa for the effe	vest depth of any well noted in the th(s) of the contaminant plume(s) is cts of pumping, subsurface struct feet from the source and it	feet below grade (con ures, etc. on the direction(s) o	sideration has been given fontaminant migration).
		rest depth to the top of the well so D1 above) isfeet below		
	piume (as c	horizontal distance of a private, of stermined in D1) isfeet gins at a depth offeet.		
	E. A plan for sepa	rate phase product recovery has bee	on includedYesNo	N/A
	F. A ground water	contour map has been submitted w	hich includes the ground water (pievations for each well.
	G. Delineation of c	ontamination		
	1. The ground boundaries.	water contaminants have beenYesNo	delineated to MCLs or lower	values at the property
	2. The plume isYes	s suspected to continue off the prop No	perty at concentrations greater th	nan MCLs.
	3. Off property	access (circle one): is being so	ught has been approved	has been denied
VII.	The person signing the responsible for the de	CERTIFICATION (preparer of is certification as the "Qualified Grosign and implementation of the site the name of the certifying organization	ound Water Consultant" (as defin assessment plan as specified in	ned in N.J.A.C.7:148-1.6)
	and complete and am aware that the	nalty of law that the informat was obtained by procedures are are significant penalties j ding fines and/or imprisonmen	in compliance with N.J.A for submitting false, inacc	.C. 7:14B-8 and 9. I
	NAME (Print or Type)	Charles Appleby	SIGNATURE	la de la companya della companya del
	COMPANY NAME	U.S. Army Fort MOnmout		-21-44
	-	(Preparer of Site Assessment f		
	CERTIFYING ORGANIZATION	NJDEPE	CERTIFICATION NUMBER	2056

J. I. I. d. Olliffe Leaninghalfille

Managarian

VIII.	TANK DECOMMIS	SIGNING CERTIF! D. 7:148-9.5(a)4)	CATION (pers	en pedermini	; tank docor	nmissioning pontion of
	compliance with l	penaity of law th NJA.C. 7:14B-92 naccurate. or incom	(b)3. I am a	vare that the	ere are sign	were performed in ificant penalties for or imprisonment."
	NAME (Print or Type)	Charles Appleb	У	SIGNATURE	<u> </u>	1/2
	COMPANY NAME	U.S. Army Fort Performer of Tank Dec	Monmouth ommissioning)	_ DATE	12-21-	94
IX.	CERTIFICATIONS BY	y the responsible	PARTY(IES) OF	THE FACILIT	ĽΥ	
	"I certify unde accurate, and c	for that facility [irr penalty of law t	N.J.A.C. 7:14 hat the infor ire that there i	B-2.3(e)11]. mation prov are significa	vided in thi nt penalties	dividual with overall s document is true, for submitting false.
	·	pe) James Ott	ion, including	_signature	1	0201
	COMPANY NAME	77 G A T	ort Monmouth	1 (DATE	3/25/95
	N.J.A.C. 7:14B-2. 1. For a corporation 2. For a partnersh 3. For a municipal	tification shall be sign 3(C)2I]: on, by a principal execu- ip or sole proprietorshi ity, State, Federal or ot	ntive officer of at i	least the level (arther or the pi	of vice preside	nt. ectively; or
	required in A at	the highest ranking co love is the same perso le. In all other cases, th	n as the official r	equired to certi	fy in B, only th	
	information sub inquiry of those that the submit	mined in this appli individuals immed ted information is t ulties for submitting	cation and all iately respons true, accurate	l attached do ible for obta , and compl	ocuments, ar tining the injecte. I am a	m familiar with the nd that based on my formation, I believe ware that there are prmation, including
	MANE ID-int on Time					
	NAME (Print or Typ) 		SIGNATURE		

ATTACHMENT I

NO/NA RESPONSE EXPLANATION

SAS QUESTION #	<u>RESPONSE</u>	EXPLANATION
IV.C.2	No	No soil borings were collected at the tank system closure site. A minimum of one monitoring well will be installed in the excavation.
V.C.2,3	No	Since all free products has been removed, it is not suspected to exist below the water table or off the property boundary.
V.D	No	Same as above.
V.E	No	Same as above.
VI.A	No	The required groundwater monitoring well has not been installed at the site. Groundwater samples will be collected after well installation.

APPENDIX C MONITOR WELL INFORMATION

SERIAL # 37093 STATE OF NEW JERSEY DEPAR INT OF ENVIRONMENTAL PROTECTION AND EI TRENTON, NJ Water Allocation CN 029 Trenton, N.J. 08625 VALID ONLY AFTER APPROVAL BY THE D.E.I.	Permit No. <u>293096</u> S.E. COORD #: 29138/6
Owner US ARMY FORT Manager Driller TTREE Address Address / Sign Name of Facility General SITE (Charles and Diameter of Wells)	1
# of Wells Applied for (max. 10) Type of Well (see reverse) LOCATION OF WELL(S)	Will pumping equipment be installed? YES \(\text{NOS} \) If Yes, give pump capacity \(\text{GPM} \) S) nearest roads, buildings, etc. with
	feet. Each well MUST be labeled with divor number on the sketch.
7 8 9	N ↑
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: Spill Fund Case ECRA Case CERCLA (Superfund) Site	This Space for Approval Stamp WELL PERMIT APPROVED
□ RCRA Site Case I.D. Number Strinderground Storage Tank 92 - 3 - 7 - 1047 - 4 NJPDES Municipal Discharge Permit 10 NJPDES Industrial Discharge Permit 10 Water and Hazardous Waste Enforcement Case 10 Water Supply Aquifer Test Observation Well 11 Other (explain)	Dept. of Environmental Protection Water Resources/Water Allocation APR 5 1994
FOR Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be of uncased borehole. USE SEE REVERSE SIDE FOR IMPORTANT PROVISIONS AND REGULATIONS PERTAINING TO THIS PERMIT. compliance with N.J.S.A. 58:4A-14, application is made for a permit to drill a well as described above that 1994 Signature of Driller Signature of Owner Sig	License # 1421
COPIES: Water Allocation — White and Pink Health Dept. — Yellow Own	Blue Driller — White

									FIEL	כן כ	OG	0	F BORING SHI	EETOF
LOC	MOITA	OF E	ORIN	iG:			, 1	135	# 2		. 1		PROJECT: US Army BO	ORING NO:
F	-0x-t	- 1	lon	mou	ith	ۍ ر	שנוכ	i ng	#2	/0U·	4			OTAL DEPTH:
						Y	nu	<i>)</i> \					JOB NO: SELFM-PW-EVLOGGEDE	BY: V Swauser
										سن			PROJ. MGR.:) C EDITED BY	Y:
													DRILLING CONTRACTOR: Tyree	,
		1	\				1						DRILL RIG TYPE: Mobil B &C	
				27	00	.4							DRILLERS NAME: Mike Beck	
			7-	9		<u>. </u>		μ	lain				CAMBLING METHODS: - 1 / -	gan
				1			~	\leq	lain Eut	ranc	· C			3011
			n	iw	•			Dirio	/C				STARTED, TIME: 0000 DATE: -	Juglad
													COMPLETED, TIME: // 3 DATE: -7	2/10/04
													BORING DEPTH (ft): 20	7/7/7
		T		<u> </u>			T				Τ		CASING DEPTH (ft):	
				و ا	-	./ft.			NST				WATER DEPTH (ft): 17	
_			_	ËRE		Ē	m dd		8				TIME: //30	
PTI.	YPE	z	IVE	So	N N	ATE	9	5	ÆLL	EET	2	3	DATE: -/19/94	
E DE	ER 1	9/	HO :	H .	CO	15 H 25	Q Q	7	<u>2</u>	L Z			BACKFILLED, TIME: 1(3) DATE: 7/	19/984: Porce
SAMPLE DEPTH	SAMPLER TYPE	BLOWS / 6 IN.	INCHES DRIVEN	INCHES RECOVERED	SAMPLE CONDITION	DRILLING RATE (min./ft.)	PID READING (ppm)	ODOR (Y / N ?)	GRAPHIC WELL CONST.	DEPTH IN FEET	JIHOVOS		SURFACE ELEV: DATUM:	1944 1940
SAI	S	표	≥ ≥	ĭ	SAI	Н	문	8	GR	DEI	00	5	CONDITIONS:	
0-2	< S	5	6	24			1	M			T		SAND fine g	reen-beaux
	-1	10	6	2.1									trave till	
		12	6							1	1			
	}	17	6			ļ	1				1			
24	4	17	4	18			0	N		2	7		SAME	
/ 04		9	V		ļ		<u> </u>				7			
*********		10	(5				-			3	7			
		9	6											
4-60	SS	8	6	160			0			4	1		SAME	·
116		7	6	100							1			
		6	6							5	<u> </u> 51	М		
*******	*.	7	G								رد	11		
68		ラ	6	16	_		(1)	N		6	1			
<i>L2</i> v		7	6	1.1.342		·······		-			1			•
••••••		5	6			·	 	ļ		7	┪ .			
		10	6				(2)	h /			1			
86	-	6	6	24						8	1			
<u> </u>	·	6	6	7		-					1			
		10	4			1				9	1			
		12	6	}	 						1		10'RED RIZOUN	SAAA
	<u> </u>	ルタ	u	1	<u> </u>			1	I	140				

							FIE	LD L	OG O	F B	OR	IN	G (CONTINUED)	2700-4	SHEETOF <
													PROJECT:	NO:	BORING NO:
DEPTH	ய	BLOWS	DRIVEN	REC'V'D	ĝ	D. RATE		ж.	GR.WELL	Ħ	GRAPHIC	8			
DEP	TYPE	BLO	DRI	Æ	COND.	D. A	PID	ODOR	GB.	DEF	GR/	7			
10-10		フ	6	24			0	N		П	1				
705		10	6	-			<u> </u>			11	_		1/-/2/	1Jery f	-(UP
		17	8								1		aveen	hroun	-ine ISAND
		(1	Q.							12	┪.		Jana	111	
12-1		· <u>`</u>	<u> </u>		ļ		O	N			11	#	- VO B	NOTPE	7
let	<i>J.</i>						<u></u>			13	┪╏	_,	SAMI		
}											1				
	_	l								14					
14	110							N		1	- 5	11	SAME		
14	<i>w</i>		ļ	ļ			<u>U</u>	<u>/</u>		15	-	ł	30 1110	·	
	ļ		ļ	ļ. <u></u>	ļ	ļ		*******			1	ŀ			
11	16		<u> </u>					43		16	4		SAME		
10	18	ļ Ī	 				0	1			-	ŀ	SHOW		
	ļ	ļ	ļ		ļ	ļ	<u> </u>			17	4	ŀ			
10								1 4			\dashv	ŀ	SAMI		
(8-	100						U	1	(18	╄	-	SAMIL	···	
							-				4				
}	ļ	ļ	ļ <u>.</u>	ļ	ļ	ļ				9	-				
	ļ		ļ			ļ	ļ				4				
<u> </u>	_		ļ	<u> </u>				-		0	4				
	ļ		ļ	ļ	ļ	ļ. 	ļ	•			4				
		ļ <u>.</u>		ļ	 		ļ			1	4				
				ļ											
ļ										2			·		· · · · · · · · · · · · · · · · · · ·
							<u> </u>								
		ļ 		<u> </u>	<u> </u>		<u> </u>			3				·	
			<u></u>												
										4					
										•					
										اءِ ا					
	Ţ		Ţ				<u> </u>	***************************************		5		Ì			
														· · · · · · · · · · · · · · · · · · ·	-
										6					
		······	 		 	 	 			7	+				
		ļ	ļ	ļ	<u> </u>		ļ				+				
-					-	 	 			8	\dashv				
	ļ	ļ	ļ	 	 	 	 				\dashv				

		Atlas	Permit No Sheet Coord	linates	29 13	816
OWNER IDENTIFICATION - Owner	U S ARMY FORT I	ONNOUTH "				
Address					<u> </u>	
City	FORT HAMOUTH		State	NJ	Zip Code	
WELL LOCATION - If not the same as County		•				o. <u>14/</u> A
TYPE OF WELL (as per Well Permit Ca				-	d <u>7 / 19 / 9</u>	
Regulatory Program Requiring Well	HST		Case I	.D. #	92-3-7-1947-4	<u> </u>
CONSULTING FIRM/FIELD SUPERVI	SOR (if applicable)		400	: نَمِد	Tele. #	The state of the s
WELL CONSTRUCTION Total depth drilledft.		Depth to Top (ft.)	Depth to Bottom (ft.) d surface]	Diameter (inches)	Type and M	-26
Well finished to <u>30</u> ft. Borehole diameter:	Inner Casing	6"	100	4"	PUC	
Top <u> </u>	Outer Casing (Not Protective Casing)		2	77		
Bottomin. Well was finished:above grade	Screen (Note slot size)	100	20'	4"	20510T P	0C
flush mounted	Tail Piece					and the second
If finished above grade, casing	Gravel Pack	8'	20		#2	
height (stick up) above land surfaceft.	Annular Seal/Grout	6"	30		e-moulle !	e er
Was steel protective casing installed?	Method of Grouting	TREMA	ie	. · ·		
Yes No Static water level after drilling 15	ft.	GEO	LOGIC LO	(Copies	s of other geologic sical logs should b	logs and/or e attached.)
Water level was measured using			1001 5.			,
Well was developed forhou			6" Tol			,
Method of development PanP		6"	- 121			٠٠ -
Was permanent pumping equipment in	stalled? Yes No		10 /	renzw	Med To Co	arse
Pump capacitygpm						
Pump type:		14	200	ر سوس	own base	
Drilling Method Accept		10	- 10 ,	Lile of	own base	עז
Drilling Fluid Type Name of Driller E & & & & & & & & & & & & & & &	of Rig <u>R</u> -80	 j	(Saud		
Health and Safety Plan submitted?				_		
Level of Protection used on site (circle of				•		
N.J. License No. / 431						
Name of Drilling Company		10 - 2 Page				
I certify that I have drilled the above State rules and regulations.	TYBEE BY IN MICE -referenced well in acc			mit require	ments and all app	licable
	ature	E h.L		D	ate _ 7 - 25	-94

THIS FORM HUST BE COMPLETED BY THE PERMITTER AND/OR SURVEYOR

HONLIORING HELL LARTIFICATION-FORM B-LOCATIOL CERTIFICATION

Hame of Permittee: U.S. ARMY

Name of Facility: FORT MONIMOUTH

Location: Monimouth County, NJ

NJPDES HUMBET:

LAND SURVEYOR'S CERTIFICATION

Well Permit Number: This number must be permanently affixed to the well casing.

Longitude (to mearest second):

Latitude (to mearest second): Elevation of Top of Inner Casing (cap off) (one-hundredth of a foot):

Elevation of ground level (1/100th ft)
Source of elevation datum (benchmark, nail, etc.) and year. (If an alternate datum has been approved by the Dapartment, identify here, assume datum of 100°, and give approximated actual elevation.)

Owners Well Number (As shown on application or plans):

Most 74° 05' 19.93"

Morth 40° 17' 46.88"

69.93

70.31

Source: CW-205

BLOG 2700.4 MW-1

Elev.: 55-13

Elevations are to be determined by double run, three wire leveling methods using balanced sights, commencing from a well marked and described point. This beginning point shall either be derived from rederal or State benchmarks if not more than 1000 feet from the site or from an alternate datum approved by the Department. Tolerances should meet third order standards, which are 0.05 ft x (milw) $^{1/2}$. For sections less than 0.1 mile, let miles = 0.1.

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL JAND SURVEYOR'S SIGNATURE

PROFESSIONAL LAND SURVEYOR'S HAME
(Please print or type)

SEAL

31654
FROFFSSIONAL LAND EURVEYOR'S LICENSE

APPENDIX D WELL SEARCH INFORMATION

SECTION 2.0 CHARLES WOOD AREA - WELL SEARCH

WELL SEARCH SUMMARY TABLE CHARLES WOOD AREA U.S. ARMY FORT MONMOUTH

WELL			TOTAL	CASING	STATIC WATER		NJDEPE
ID	WELL	WELL	DEPTH	LENGTH	ELEV.	USE	PERMIT
NO	OWNER	ADDRESS	(FEET BGS)	(FEET)	(FEET BGS)	CODE	NO.
1	Wolf Press	1138 Pinebrook Rd, Tinton Falls	215	200	33	D	29-19540
2		7 Violate Court, Eatontown	40	30	8	G	29-28128
3	Redacted - Privacy Act	30 Victor Avenue, Eatontown	51	41	5	D	29-13163
4	Redacted - Privacy Act	144 Grant Avenue, Eatontown	117	111	12	D	29-16207
6		235 Hope Rd, Tinton Falls	14	4	8	М	29-27751
7		235 Hope Rd, Tinton Falls	14	4	6	M	29-27752
8	The Ranney School	235 Hope Rd, Tinton Falls	12	2	3.67	M	29-27600
9		235 Hope Rd, Tinton Falls	25	5	5	G	29-14431
	Redacted - Privacy Act	27 Devon Court, Tinton Falls	46	32	6	G	29-11142
13	Redacted - Privacy Act	463 Tinton Avenue, Tinton Falls	186	171	32	D	29-21698
18	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15	4	6.4	M	29-25316
	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15	5	6.7	M	29-25317
	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15	5	7	М	29-25318
21	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15	5	7	M	29-25319
22	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15	5	7	M	29-25320
23	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15			M	29-26053
24	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15			M	29-26054
25	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15		*	M	29-26055
26	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	15		7	M	29-26056
27		250 Pinebrook Rd, Eatontown	12	2	10	M_	29-26865
28		250 Pinebrook Rd, Eatontown	12			M	29-26866
29		250 Pinebrook Rd, Eatontown	12	2		M	29-26867
30	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	23	3		E	29-27770
31	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	18			E	29-27771
32	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	18			E	29-27772
33	Mobil Oil Corporation	Block 8 Lot 5, Eatontown	18	5		E	29-27773
45	Redacted - Privacy Act	539 Tinton Avenue, Tinton Falls	261	241	21	D	29-28140
	County of Monmouth	Hwy District 316 (B97;L21.01), Tinton Falls	17	7	11.08	M	29-28781
47	County of Monmouth	Hwy District 316 (B97;L21.01), Tinton Falls	17	7		M	29-28782
48	County of Monmouth	Hwy District 316 (B97;L21.01), Tinton Falls	17.5	7.5		M	29-29607
	County of Monmouth	Hwy District 316 (B97;L21.01), Tinton Falls	14	4	6.58	M	29-29623
50	NJDOT	Block 113, Lot 8A,9A, Tinton Falls	63	58		М	29-16775
51	NJDOT	Block 113, Lot 8A,9A, Tinton Falls	76.5	71.5	*	M	29-16776

ID -Identification

BGS - Below Ground Surface

Irrigation Well
Domestic Well G --

D -

Inactive Production Well

M — Monitoring Well
E — Recovery Well
S — Sealed Well
* — This Information was not available during the well search

WELL SEARCH SUMMARY TABLE CHARLES WOOD AREA U.S. ARMY FORT MONMOUTH

345			TOTAL	243442	STATIC		VIINENE.
WELL	WELL	: WELL	TOTAL DEPTH	CASING LENGTH	WATER ELEV:	USE	NJDEPE PERMIT
NO	OWNER	ADDRESS	(FEET BGS)		(FEET BGS)	CODE	NO.
	County of Monmouth	143A Wayside Road, Tinton Falls	17	7	11.33	M	29-27443
	County of Monmouth	143A Wayside Road, Tinton Falls	17	7	11.5	M	29-27444
54	County of Monmouth	143A Wayside Road, Tinton Falls	17.5	7.5	11.75	M	29-27453
55	Redacted - Privacy Aris Corp	Block 114.01, Lot 21.02, Tinton Falls	12	2	4	M	29-23921
55 56	Redacted - Privacy	Block 114.01, Lot 21.02, Tinton Falls	12		4	M	29-25775
57	Redacted - Privacy Act,	Block 114.01, Lot 21.02, Tinton Falls	8	0	4	M	29-26312
58	Redacted - Privacy F	46 Park Road, Tinton Falls	13	3		М	29-29421
59	Redacted - Privacy /Aris Corp	Block 114.01, Lot 21.02, Tinton Falls	12	2		M	29-23919
59 60	Redacted - Privacy /Aris Corp	Block 114.01, Lot 21.02, Tinton Falls	12	2		М	29-23290
61	Redacted - Privacy / Aris Corp	Block 114.01, Lot 21.02, Tinton Falls	9	2		М	29-23916
62	Redacted - Privac / Aris Corp	Block 114.01, Lot 21.02, Tinton Falls	13	2	3	М	29-23917
63	Redacted - Privac / Aris Corp	Block 114.01, Lot 21.02, Tinton Falls	12	2	3	М	29-23918
	Exxon Corporation	Block 2; Lot 7.01,8 Eatontown	15	3	5	М	29-26806
	Exxon Corporation	Block 2; Lot 7.01,8 Eatontown	16	3	5	М	29-26807
	Exxon Corporation	Block 2; Lot 7.01,8 Eatontown	17	3	6	М	29-26808
	Exxon Corporation	Block 2; Lot 7.01,8 Eatontown	17	3	5	М	29-26809
107	I ————————————————————————————————————	Route 35 South, Eatontown	16.5	1.5	12	M	29-14593
108	Amoco Oil Company	Route 35 South, Eatontown	16.5	1.5	12	М	29-14594
	Amoco Oil Company	Route 35 South, Eatontown	16.5	1.5		М	29-14595
110	Amoco Oil Company	Route 35 South, Eatontown	16.5	1.5		M	29-14596
111	Redacted - Privacy Act	11 West Street, Eatontown	150	150		D	29-2952
	Tinton Woods	301 Tinton Avenue., Eatontown	80	41	15	G	29-13187
		Charles Wood Bldg 2567, Ft Monmouth ***	13	3		М	29-26925
2567/2	U.S. Army, Fort Monmouth	Charles Wood Bldg 2567, Ft Monmouth ***	13	3		М	29-26926
2567/3	U.S. Army, Fort Monmouth	Charles Wood Bldg 2567, Ft Monmouth ***	13	3		M	29-26927
2567/4	U.S. Army, Fort Monmouth	Charles Wood Bldg 2567, Ft Monmouth ***	12	2		M	29-26928
3021/1	U.S. Army, Fort Monmouth	Charles Wood Bldg 3021, Ft Monmouth	12	2		M	29-26930
		Charles Wood Bldg 3021, Ft Monmouth	11	1	3	М	29-26931
		Charles Wood Bldg 3021, Ft Monmouth	12	2	2.5	M	29-26932
2500/1	U.S. Army, Fort Monmouth	Charles Wood Bldg 2500, Ft Monmouth	25	5	1	<u> </u>	29-29742
2500/2	U.S. Army, Fort Monmouth	Charles Wood Bldg 2500, Ft Monmouth	25	5	7	М	29-29743
2500/3	U.S. Army, Fort Monmouth	Charles Wood Bldg 2500, Ft Monmouth	25	5		M	29-29744
2500/4	U.S. Army, Fort Monmouth	Charles Wood Bldg 2500, Ft Monmouth	25	5	7	M	29-29745
P1	U.S. Army, Fort Monmouth	Charles Wood, Ft Monmouth	*	*	*	P	*
P2	U.S. Army, Fort Monmouth	Charles Wood, Ft Monmouth	*	*		P	*

Identification ID -

BGS - Below Ground Surface

G --Irrigation Well

Domestic Well D -

Inactive Production Well

M — Monitoring Well
E — Recovery Well
S — Sealed Well
* — This information was not available during the well search
*** — Form B has been completed for this well.

Well No.	Permit No.	NJ Planar Coord****		Elevation-TOC	Elevation-GRD
		Northing	Easting		
1	29-19540	530800	2163200	41.5	40
2	29-28128	537125	2167270	***	***
3	29-13163	532540	2169300	***	***
4	29-16207	530600	2167380	***	52
6	29-27751	538100	2163440	***	***
. 7	29-27752	538080	2163710	***	***
8	29-27800	537930	2163550	***	• • •
9	29-14431	537935	2163820	***	•••
10	29-11142	537200	2163140	***	90
13	29-21698	536750	2161900	56.5	55
18	29-25316	537000	2168170	***	***
19	29-25317	537000	2168170	***	***
20	29-25318	537000	2168170	***	***
21	29-25319	537000	2168170	***	***
22	29-25320	537000	2168170	***	***
23	29-26053	537000	2168170	***	***
24	29-26054	537000	2168170	***	***
25	29-26055	537000	2168170	***	***
26	29-26056	537000	2168170	***	***
27	29-26865	533000	2168320	***	***
28	29-26866	533000	2168320	***	•••
29	29-26867	533000	2168320	•••	•••
30	29-27770	537220	2168150	***	• • •
31	29-27771	537220	2168150	***	•••
32	29-27772	537220	2168150	***	***
33	29-27773	537220	2168150	***	***
45	29-28140	536165	2159995	***	***
46	29-28781	530650	2158720	***	***
. 47	29-28782	530650	2158720	***	•••
48	29-29607	530650	2158720	***	•••
49	29-29623	530650	2158720	***	***
50	29-16775	528720	2160450	•••	•••
51	29-16776	528720	2160450	•••	•••
52	29-27443	530480	2158725	***	•••
53	29-27444	530480	2158725	***	•••
54	29-27453	530480	2158725	***	***
55	29-23921	529100	2162200	***	•••
56	29-25775	529100	2162200	***	***

Well No.	Permit No.	NJ Planar Coord****		Elevation-TOC	Elevation-GRD
		Northing	Easting		
57	29-26312	529100	2162200	***	***
58	29-29421	529100	2162200	***	***
59	29-23919	529100	2162200	***	***
60	29-23290	529100	2162200	***	•••
61	29-23916	529100	2162200	***	***
62	29-23917	529100	2162200	***	•••
63	29-23918	529100	2162200	***	•••
102	29-26806	537380	2168125	***	***
103	29-26807	537380	2168125	***	•••
104	29-26808	537380	2168125	•••	•••
105	29-26809	537380	2168125	•••	•••
106	29-22900	496050	2166050	***	•••
107	29-14593	538700	2168050	***	•••
108	29-14594	538700	2168050	***	•••
109	29-14595	538700	2168050	***	•••
110	29-14596	538700	2168050	•••	***
111	29-2952	536625	2168160	•••	•••
126	29-13187	535985	2163975	•••	50
2500/1	29-29742	531340	2161910	•••	•••
2500/2	29-29743	531340	2161910	•••	***
2500/3	29-29744	531340	2161910	•••	•••
2500/4	29-29745	531340	2161910	•••	***
2567/1	29-26925	533250	2163740	33.93	33.72
2567/2	29-26926	533250	2163740	35.26	35.24
2567/3	29-26927	533250	2163740	33.88	33.82
2567/4	29-26928	533250	2163740	33.51	33.38
3021/1	29-26930	533265	2165780	***	***
3021/2	29-26931	533265	2165780	***	•••
3021/3	29-26932	533265	2165780	***	•••

Notes: * - This information was not available during the well search

- •• This well was not issued a permit by NJDEPE
- ••• No elevation data was found for this well location.
- •••• Except for wells 699/1-14, all coordinates shown are approximate. The information given does not represent surveyed coordinates.
- **TOC** Top of Casing
- **GRD** Ground Surface

PAGE 1 05 2

WELL RECORD

			Well Permit No	· — 29 19540 · — 29 — 13 — 829
		—	Atlas Sheet Cod	
OWNER IDENTIFICATIO	IN - Owner WOLF PRE	Redacted - Privacy A	ct	
Address	1138 PIN	KHROOK HOAD	NJ	
City	1 INION E	WR:4	State	Zip Code
WELL LOCATION - If not	t the same owner please of	ve address Owner	well No.	NJ
County Cty: MS				Lot No. 8 Block No. 114
[6]	ITHDRAWAL			IN USE
WELL USE	THENHAL		Status	7.14 002
WATER USE DEM	ESTIC ·	Average	. COC gais. da	sily Maximum <u>2.000</u> gats, dail
WELL CONSTRUCTION	Date well c	ompletedCOMP	LETED: 87/11	
BOREHOLE DIMEISION		otal <u>TD: 21</u> %.	Finished	
		Top <u> </u>		<u> </u>
Land Surface Elevation at			on was determined using	<u>Topographic map</u>
Casing Height (stick-up) an	ove land surface	<u>= ''</u> ft.		
	DEPTH TO TOP	LENGTH	DIAMETER	TYPE AND MATERIAL
	(FT.)	(FT.)	(IN.)	Screens: Note Slot Size(s)
Casina 1		L: 200	··• • • • • • • • • • • • • • • • • • •	Sched 40 PVC
Casing 1	-	-		
Casing 2	-			
Casing 3	Top: 200 -	- : -		- Sched - Flörlöß
Screen 1				
Screen 2		- 5- -		- Sched to FVB
Tail Piece	Top: 190 -	23 -	8.5"	.025 Blended
Gravel Pack	BULTACE			2 185 3500000
Grout		are thra tr		2 163 22200 1202
Grouting Method	1.635	7. 6.	emis hibs	
141 5 1 4 5 4 6 4 6 4 6				
WELL FLOWS NATURAL			ft. above the land :	surface.
Water rises to	ft, above the land sur	face. - Tast Data:	00711 05	
				157.
RECORD OF TEST		//	Level:	
Static water-level before a			Water level	ft, below land surface after? hrs, of pumping.
Water level was measured u		<u> १लहरूलचे</u>	Drawdown DD:	
Discharge rate measured us			Discharge Rate 😅 :	<u>4.1.</u> gals, per min.
Well was numped using		i f t	Specific Capacity :	gais, per min, per tt. of drawdown
Observed effects on nearby			··	
Water Quality (taste, odor,	color, etc.)	9365		
PERMANENT PUMPING E	FOUIPMENT (netallad by GTCL1	JICK MELL DO	1 S Pump Type Submersible
Mfrs. Name Gould/F				Model: 10F107422
CAPACITY: Pump deliver	S C C C C C C C C C C C C C C C C C C C	/₁△ PSI	pressure.	·
POWER: + 3/4 H	r Te Shu naa	DDM Proces	`_	
DEPTHS: Pumpset:	F=	ootpiece	Source <u>Elec</u> ft. Airline	ft.
FLOW METER: Model _	190 1		installed_on	in, diameter pipe.
		PICKNICK WO	L DRILLING	III. districter pipe.
CONTRACTOR . Name of	Deilling Contractor			
CONTRACTOR - Name of	Sidi CBCX E	Farmingda	ale, NJ 0772	7 (201 932 5300)
City	······································		04-4-	7:a Codo
Name of Driller	David Primos	e M		Zip Code
	Norman Primo:	st J	1040	Licensa No
	Alleh Frimes		1407	<u>.</u> .
Signature of Contractor _	11	√ ←		_ Date 8 102167
Minerale of Coursettol, —	- Con all	num		
	COPIES: White - I	EP Canary Dri	lier Bink - Cumer	Goldenad - Health Dept.

APPENDIX E WASTE DISPOSAL CERTIFICATES

CERTIFIED WEIGHTMASTER WEIGHT TICKET	Directorate for Installation Logistics, Sup Svcs Div. Fort Monmouth, New Jersey 07703								
	13040 12440 250	Libs. GROSS Libs. TARE Libs. NET							
HMC 259	BAL NUMBER	2110 area metal							
FT MANWOUTH		SXIV-AIK - BOUTON							
# UST 81515-6	2	DRIVER ON DRIVER OFF							
DATE 10 1 WM 44		WEIGHMASTER							
SBJ/F Porm 1871 August 1988		UBAGPM 87 16-46							

APPENDIX F ANALYTICAL DATA PACKAGE

Report of Analysis

U.S. Army, Fort Monmouth Environmental Laboratory NJDEPE Certification # 13461

Client: U.S. Army

DEH, SELFM-EH-EV

Bldg. 167

Ft. Monmouth, NJ 07703

Lab. ID #: 1268.1-.6

Sample Rec'd: 09/10/93

Analysis Start: 09/10/93

Analysis Comp: 09/10/93

Analysis: 418.1 (TPH)

Matrix:

Soil

Analyst: S. Hubbard

Extract: SONC.

Page 1

r - -

NJDEPE UST Reg.#:

TMS #:

NJDEPE Case #: XXXX

Location #: Bldg. # 2700

Lab ID.	Description	%Solid	Result (mg/k	
1268.1	Site A, West Side Wall	87	ND	3.3
1268.2	Site B, South Side Wall	86	11.7	3.3
1268.3	Site C, East Side Wall	. 88	ND	3.3
1268.4	Site D, North Side Wall	88	309.	100
1268.5	Site E,Pit Bottom(highest Conc.)	84	7520. *	100
1268.6	Site F, Duplicate of E	83	7440. *	100
i.	· · · · · · · · · · · · · · · · · · ·			
M. BL.	Method Blank	100	ND	3.3

Notes: ND = Not Detected, MDL = Method Detection Limit * = Silica Gel Added

1268.5 Dup = 99%; 1268.6 Spike =119%; 1268.6 Spike Dup. = 84%

Brian K. McKee

Laboratory Director

PHC Conformance/Non-conformance Summary Report	<u>No Yes</u>
1. Blank Contamination - If yes, list the sample and the corresponding concentrations in each blank	<u> </u>
2. Matrix Spike/Matrix Sp Dup. Recoveries Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range)	
3. IR Spectra submitted for standards, blanks, & samples	
4. Chromatograms submitted for standards, blanks, and samples if GC fingerprinting was conducted.	
5. Extraction holding time met. (If not met, list number of days exceeded for each sample	,
6. Analysis holding time met. (If not met, list number of days exceeded for each sample)	
Comments:	

Laboratory Authentication Statement

I certify under penalty of law, where applicable, that this laboratory meets the Laboratory Performance Standards and Quality Control requirements specified in N.J.A.C. 7:18 and 40 CFR Part 136 for Water and Wastewater Analyses and SW 846 for Solid Waste Analysis. I have personally examined the information contained in this report, and to the best of my knowledge, I believe that the submitted information is true, accurate, complete, and meets the above referenced standards where applicable. I am aware that there are significant penalties for purposefully submitting falsified information, including the possibility of a fine and imprisonment.

Brian K. McKee Laboratory Manager

				P.O.	#:											I	Chain c	of C	ustody	
Project #:			Samp	ler:	les Dee	le/m		Date .		i me	. F	Ana Para	alys	is ers	<u>_</u>	- 1/2-1-			Start	:
Customer: Dru-Airp	DNG	٠.	Site	Name:	Hrs APP Bldg, 2700	7,4	- M	100713	.!	/	/	/ / / / / /	/	1	/	//	//	_ • ,	Finis	h:
Phone: 532-1	224]				· · · · · · · · · · · · · · · · · · ·		1		\$\\\	y \/	/د					1	Freser	vatio Metho
Lab Sample ID Number	Date/	Time	Cu Loca	stomer tion/II	Sample D Mumbe	-	Sample Matrix	# of Bottles		$/\mathcal{K}$	X 1	"/ ×	} }		/	/ ,	/	Rem	arks	
1268.1	1/10/93	135	SITE	A West	Side well			2		X		ИD								
1.2			Site i	South	Side Wal			2		K		ND					·····			
.3	9/10/93	9:40	Site 1	1 EAH	Sidk wal			<u></u>		×		ND								
. 4	9/10/93	9:30	Sits.	D North	Sidk un			2		X		NP								· · · · · · · · · · · · · · · · · · ·
5	9/10/93	925	Site	E 7:4 80	Han Hyphet	Cont	,	<u> </u>		X		100					Von +15	·····	to	
V .6	9/10/93	927	Sitz	_	U			<u> </u>		X		100					be don!	1+	eH C	
					0	i.											> 1000 p	/)		 -
																_	·	· 		
			·													[,	HNU - SN	- 27	10136	
			· 														Spor 6 S	5 ppr	<u>-5.2</u>	
A			<u>, , , , , , , , , , , , , , , , , , , </u>			1=-			Ļ	Ļ		<u> </u>	!]					
Relinquished	975	ignatu	ire)	9/10/93		Red	$\frac{2}{3}$	y (signa		-e)	<u></u>	٠.	ped Po	Br): 					
Relinquished	By	dgnatu	re)	Date /	/ Time	Red	ceived f	or Lab b	oy ((sig	nat	ure	·):		D	ate	/ Time			
Note: A draw of cust	ing de cody.	pictir	ıg, şam	ple lo	cation :	sho	uld be a	ttached	or	dra	wri	Ori	the	re	·ver	se :	side of	t.la	is cha	in
SAI-ENV COC 1	orm O	1		· · · · · · · · · · · · · · · · · · ·	Page .		1 of		F	age	s		Re	٧.	H	Date	e: 02 A	фr. ,	93	

UST ANALYSIS RESULT CHECKLIST (one form for each site report)

Building No. 2700	Laboratory(SAVCent.) ID#s 1268.3	
	Q . 17 - 0 2	

IJO No. 93-0116 Date Sampled: 9-13-93

Date Analysis Submitted: ______ Date Reviewed: _______

ITEM	ITEM OF WORK	ITEM COMPLETE (YES/NO)	· COMMENTS
A	Labor and Equip. Supplied	N	
В	Work done by Cert. Lab	7	
С	Trip and Field Blanks, ect. Supplied by Contractor	\mathcal{N}	
D	Contractor picked up samples at Bldg. 490	# y	Fort
G	Aqueous samples analyzed for Xylene, MIBE, TBA.	y	
н	Chain of Custody correct (Hnu, Site Names, SAI #'s)	N	No LNU
н	MW sampling field data (DTW, Hnts/OVA, ect)	NA	
н	Laboratory Decon. Narrative	NA.	
J	Samples were not distributed to another Laboratory	у	
к	Appropriate NJDEPE checklists are completed	y	
J	Result headers are correct	7	
J	GA/GC data	y	
J	Non-TIC results reported within 48 hrs.	_	
J	Final Report complete within 3-Weeks (3 copies)		
J	Final Report complete within 4- weeks (3 copies) PP+40		
J	List Approved Contract Deviations	NA	

ANALYSIS / SERVICE	COST	QUANTITY	SUB-TOTAL
SOIL- B/N+15	\$190.00	1	
SOIL- VOA+15	140.00	1	
SOIL- VOA+15, XYLENE,Pb	150.00		
SOIL- B/N+15, VOA+15, XYLENE, Pb	340.00		
SOIL- PP+40	825.00		
AQUEOUS- ,824(XYLENE.TBA.MTBE) 625. Pb	340.00		
MONITORING WELL SAMPLING	65.00		
-7 -	/	TOTAL	s 330

618 HERON DRIVE P.O. BOX 489 • BRIDGEPORT, NJ 08014-0489 • 609-467-9521

E-SYSTEMS, INC

PROJECT: U.S. ARMY-FORT MONMOUTH, NJ BLDG 2700

ANALYSIS NO:

CLIENT ID:

A 4024

SITE E PIT BOTTOM

DATE RECEIVED: SEPTEMBER 13, 1993

TWENTY FIRST CENTURY ENVIRONMENTAL, INC.

RICHARD W. LYNCH

LABORATORY MANAGER

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

		No	Yes
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)		
2.	GC/MS Tune Specifications a. BFB Meet Criteria b. DFTPP Meet Criteria		<u></u>
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 series.		/
4.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of sample analysis for 600 series and 12 hours for 8000 series		
5.	GC/MS Calibration Requirements a. Calibration Check Compounds b. System Performance Check Compounds		1
6.	Blank Contamination - If yes, list compounds and concentrations in each blank:		
	a. VOA Fraction A-cTone + Methylene Chlorine: Below MD b. B/N Fraction Bos (2-EH) PhTholoTe: Below MOL c. Acid Fraction	2	
7.	Surrogate Recoveries Meet Criteria		_
	If not met, list those compounds and their recoveries which fall outside the acceptable range:		
	a. VOA Fraction b. B/N Praction C. Acid Fraction		
	If not met, were the calculations checked and the results qualified as "estimated"?		NA
8.	Matrix Spike/ Matrix Spike Duplicate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		
	a. VOA Fraction b. B/H Fraction c. Acid Fraction		
9.	Internal Standard Area/Retention Time Shift Meet Criteria		

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT (CONTINUED)

10.	Extraction Holding Time Met.	<u></u>	<u></u>
	If not met, list number of days exceeded for each sample:		
11.	Analysis Holding Time Met If not met, list number of days exceeded for each sample:		<u> </u>
Add.	itional Comments: This form Completas By Prime ConTra	etot	-
Labo	oratory Manager: 3. 7/14 Date:	-94	

TABLE OF CONTENTS

Narrative	00001
Chain of Custody Forms	00002
Methodology	00003
Laboratory Chronicle	00004
Result Summary	00005
Data Package	00010
Ouality Control Data	00019

NARRATIVE

There were no problems encountered during the analysis of this sample (A4024). All extractions and analysis were completed within proper hold times. Field blanks and trip blanks were not provided.

17402H

AITE	-STSTEMS CO	ompany	F.O. #: R3-0	/5/			_	Chain of	Custode	
			, 30 0	701						
roject #:			Sampler:			Time	Analysis Parameters		Start	
istomer:			Charles Ap	pleby	9/10/93	0925	- / / /	, , , , , , , , , , , , , , , , , , , 	-	·
Jeru-Air,	Unc	ノ・	Site Name: B. 2700			/10	/1///	[Finis	:n:
ione:						* \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ j / /	/ / /		vation
nb Sample) Number	Date/	Time	Customer Sample Location/ID Number	Sample Matrix	# of Bottles	1 1 1	3////	/ / / Re	marks	Method
268.5	9/10/12	0925	Site E, Pit Bostom	50 il	1			9/13/9	3	
									ke to	ablenn
					· · · · · · · · · · · · · · · · · · ·			on 9/3/		
								to arra		
					-,, -, -, -, -, -, -, -, -, -, -, -,				Juk F	
				-	···			pick-up		•
										<u> </u>
		}								
										
					. 1 - 1,					
linquished	1	_		eived Ru	1-1		Shipped By:	_L		
	Jubba		ر ١٤٥٥ 13/93 ر	Centre of		<u>a> </u>	<u> </u>	15 4		
linguistati Markut	w s	Ignatur	Date / Time Red	reived to	alli	y (signa	·	Date / Time		
te: A drawi of cust	ng dep	picking	g sample location show		tached :	or drawn	on the reve	rse side of th	is chai	i m
I-ENV COC F	்பாம் இ	i	bads	of		Pages	Rev. A	Date: 02 Apr	93	

F. MONMOUTH OFFICE SYSTEMS INC. • P. O. BOX.369 BUILDING 1209 • FT MONMOUTH NEW HIRSTY OF 0.3-5000 • (2011 \$11-0095)

Purgeables

Acid Extractables
Base Neutrals

U.S.E.P.A. Method 624 - This is a purge and trap Gas Chromatograph/Mass Spectrometer (GC/MS) method applicable to the determination of the compounds listed in the U.S.E.P.A. Manual entitled "Test Procedures for the Analysis of Organic Pollutants".

An HP5996 GC/MS was used with a capillary column.

Method detection limits are as stated.

Soil samples are prepared for analysis as prescribed in Method 8240/8260 from SW-846.

U.S.E.P.A. Method 625 - This method covers the determination of a number of organic compounds that are partitioned in an organic solvent and amenable to gas chromatography/mass spectrometer (GC/MS) method applicable to the determination of the compounds listed in the U.S.E.P.A. manual entitled "Test Procedures for the Analysis of Organic Pollutants".

A HP5970 was used with a DB-5 FSCC.

Method detection limits are as stated.

Soil samples were prepared for analysis as prescribed in Method and analyzed as prescribed in Method 8270 from SW-846.

LABORATORY CHRONICLE

	FRIGERATION	9/13/93
ANICS RACTION	<u>.</u>	
1.	Acids	NA
2.	Base/Neutrals	9/14/93
3.	Pesticides/PCB's/Herbicides	NA:
4.	Petroleum Hydrocarbons/Oil & Grease	NA
LYSIS		•
1.	Volatiles	9/14/93
2.	Acids	NA
3.	Base/Neutrals	9/14/93
4.	Pesticides/PCB's/Herbicides	NA
5.	Petroleum Hydrocarbons/Oil & Grease	NA
6.	Total Organic Carbon	NA
	Section Supervisor Review & Approval	actin
RGANIC		
1.	Metals	NA
2.	Cyanides	NA
3.	Phenols	NA.
ER AN	ALYTES	· · · · · · · · · · · · · · · · · · ·
	tion Supervisor iew & Approval	NA
Qua	lity Control Supervisor iew & Approval	alm Gar

~ 00004

RESULT SUMMARY

· + 000035

21st Century Environmental Inc. VOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER US ARMY FT. MONMOUTH NJ MATRIX Soil SAMPLE NUMBER A4024 125.00 DILUTION FACTOR BLDG 2700 SITE E PIT BOTTOM CLIENT ID COMMENTS HNU NA DATA FILE >81630 09/14/93 DATE ANALYZED

COMPOUND	UG/KG	MDL	COMPOUND	ug/kg	MDL
:=28321F1182328388933288803;		******		4828222888	******
Chloromethane	ND	1500	2-Chloroethylvinylether	ND	1500
Bromomethane	ND	1500	2-Hexanone	ND	1500
Vinyl Chloride	ND.	1500	trans-1,3-Dichloropropene	ND	760
Chloroethane	ND	1500	Toluene	860	760
Acrolein	ND	7600	cis-1,3-Dichloropropene	ND	760
Acetone	ND B	1500	1,1,2,2-Tetrachloroethane	ND	760
1,1-Dichloroethene	ND	760	1,1,2-Trichloroethane	ND	760
Carbon Disulfide	ND	1500	4-Methyl-2-pentanone	ND	1500
Acrylonitrile	ND	7600	Tetrachloroethene	ND	760
Methylene Chloride	930 B	<i>7</i> 60	Dibromochloromethane	ND	760
1,2-Dichloroethene(trans)	ND	760	Chlorobenzene	ND	760
1,1-Dichloroethane	ND	760	Ethylbenzene	1000	760
Vinyl Acetate	ND	760	m&p-Xylenes	3100	760
2-Butanone	ND	1500	o-Xylene	2200	760
Chloroform	ND	760	Styrene	ND	760
1,1,1-Trichloroethane	ND	<i>7</i> 60	Bromoform	ND	760
Carbon Tetrachloride	ND	768	m-Dichlorobenzene	ND	760
1,2-Dichloroethane	ND	760	p-Dichlorobenzene	ND	760
Benzene	ND	760	o-Dichlorobenzene	ND	760
Trichloroethene	NO	760	Bromodichloromethane	ND	<i>7</i> 60
1,2 Dichloropropane	ND	760			

SURROGATE COMPOUNDS	* RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	106	70 - 121	OK
To Luiene-dB	98.3	81 - 117	OK
Bromofluorobenzene	102	74 - 121	OK

Percent'Solid of 82.0 is used for all Target Compounds.

- (J) Indicates detected below MDL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected
- (D) Indicates calculated from dilution

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

I SITE E
I PIT BOTTOM

Name:21st Century Environmental Contract:N/A

ient Name: US Army Ft. Monmouth, NJ

Client ID: BLDG 2700

twix: (soil/water) SOIL

Lab Sample ID: A4024

m@le_wt/val: 0.04

04 (q/mL) q

Lab File ID: >B1630

vel: (low/med) LOW

Date Received: 09/13/93

Mc.sture: 18

Date Analyzed: 09/14/93

lumn: D8-624

Dilution Factor: 125

CONCENTRATION UNITS

Number TICs Found 20

I I CAS	S NUMBER !	COMPOUND NAME	I I RT	I I IEST CONCI
1	I	·	l 	;
13=:		;		
1 1	1678928	Cualabauana assaul (SCISCI)	114.01	, , , , , , , , , , , , , , , , , , ,
1 2			115.14	
1 3			115.30	
1 4			115.65	
15			115.96	
1 6	_	·	117.13	
17			117.24	
1 8		Undecame (8CI9CI)	117.47	
1 9		Benzene, (1-methylpropyl)- (9CI)	117.58	
110		Benzene, 1-methyl-3-(1-methylethyl)- (9CI)	117.80	
111		Benzene, 4-ethyl-1,2-dimethyl- (9CI)	117.94	
112		Benzene, (1-ethylpropyl)- (8CI9CI)	118.19	
113		Benzamide, 4-methyl- (9CI)	118.38	
114		Benzene, 1,2,4,5-tetramethyl- (8CI9CI)	118.77	
115		Benzene, (1,1-dimethylpropyl)- (9CI)	118.91	
116		1H-Indene, 2,3-dihydro-1-methyl- (9CI)	119.24	
117		1 1H-Indene, 2,3-dihydro-4-methyl- (9CI)	119.54	
118		Naphthalene, 1,2,3,4-tetrahydro- (8CI9CI)	119.85	
	17057828	1 1H-Indene, 2,3-dihydro-1,2-dimethyl- (9CI)	120.42	•
. 120	3877198	Naphthalene, 1,2,3,4-tetrahydro-2-methyl- (8	120.87	1 5200
ا		<u> </u>	_1	.1

21st Century Environmental Inc. SEMIUOLATILE ANALYSIS DATA

JOB NUMBER US ARMY FT. MONMOUTH, NJ MATRIX Soil
SAMPLE NUMBER A4024 DILUTION FACTOR 50,00

CLIENT ID BLDG 2700.SITE E,PIT BOTTOM QA BATCH
DATA FILE >C2236 DATE ANALYZED 09/14/93

		MC/ ESTESE		UG/KG	MOL
COMPOUND	ug/kg	MDL	COMPOUND	ط۸ <i>ا</i> ول 	1111
N-Nitrosodimethylamine	ND	20000	2,6-Dinitrotoluene	ND	20000
bis(-2-Chloroethyl)Ether	ND	20000	Diethylphthalate	ND	20000
1,3-Dichlorobenzene	ND	20000	4-Chlorophenyl-phenylether	ND	20000
1,4-Dichlorobenzene	ND	20000	Fluorene	5400 J	20000
Benzyl Alcohol	ИD	20800	4-Nitroaniline	ND	100000
1,2-Dichlorobenzene	HD	20000	N-Nitrosodiphenylamine	ИD	20000
bis(2-chloroisopropyl)Ether	ND	20000	4-Bromophenyi-phenylether	ND	20000
N-Nitroso-Di-n-Propylamine	ND	20000	Hexach lorobenzene	ND	20000
Hexach loroethane	ND	20000	Phenanthrene	11000 J	20000
Nitrobenzene	ND	20000	Anthracene	ND	20000
Isophorone	ND	20000	Di-n-Butylphthalate	ND	20000
Benzoic Acid	NED	100000	Fluoranthene	ND	20000
bis(-2-Chloroethoxy)Methane	ND	20000	Pyrene	ND	20000
1,2,4-Trichlorobenzene	ND	20000	Butylbenzylphthalate	МĐ	20000
Naphthalene	6900 J	20000	3,3'-Dichlorobenzidine	NĐ	40000
4-Chloroaniline	ND	20000	Benzo(a)Anthracene	ND	20000
Hexachlorobutadiene	ND	20000	Bis(2-Ethylhexyl)Phthalate	ND	20000
2-Methylnaphthalene	43000	20080	Chrysene	ND	20000
Hexachlorocyclopentadiene	ND	20000	Di-n-Octyl Phthalate	ND	20000
2-Chloronaphthalene	ND	20000	Benzo(b)Fluoranthene	ND	20000
2-Nitroaniline	NĐ	100000	Benzo(k)Fluoranthene	ND	20000
Dimethyl Phthalate	ND	20000	Benzo(a)Pyrene	ND	20000
Acenaphthylene	ND	20000	Indeno(1,2,3-cd)Pyrene	ND	20008
3-Nitroaniline	:ഇ	100000	Dibenzo(a,h)Anthracene	ND	20000
Acenaphthene	NO	20000	Benzo(g,h,i)Perylene	ND	20000
Dibenzofuran	2100 J	20000	Benzidine	MD	40000
2,4-Dinitrotoluene	ND	20000			

Percent Solid of 82.0 is used for all Target compounds.

- (J) Indicates detected below MOL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

F1

GM

EPA SAMPLE NUMBER

semi-VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

IBLOG 2700 | ISITE E | IPIT BOTTOM|

, Client: US Army, Ft. Monmouth, NJ

Comments: None

Matrix: (soil/water) SOIL

Lab Sample ID: A4024

Sample wt/vol: 30 (g/mL)

Lab File ID: >C2236

Level: LOW

Date Received: NA

% Moisture: 18

Date Analyzed 09/14/93

Extraction: (Sepf/Cont/Sonc) SONC

Date Extracted 09/14/93

SGPC (Y or N): N

Column: DB-5

Dilution Factor:

50

Number TICs Found 20

CONCENTRATION UNITE

But .**				
CAS NUMBER	I I COMPOUND NAME I	! RT ! RT	IEST CONCI	
r	La contraction of the contractio	1		
l l	I UNKNOWN	110.66		
1 2	I NKNOMN	112.35		
75 3	I UNKNOWN	114.10		
4	I NKNOMU	114.98		
5 .	I UNKŃOWN	115.32	l 250000 l	i
,i 4 6	Dimethyl Naphthalene Isomer	115.43	1 72000 I	
<i>7</i>	I Dimethyl Naphthalene Isomer	115.65	1 62000 1	i
x42.4 8	I Dimethyl Naphthalene Isomer	115.70	47000	i
19	I UNKNOWN	115.97	1 48000 1	l
· 10	I UNKNOWN	116.15	1 102000	i
, 11	I UNKNOWN	116.65	1 250000 I	ı
· `l'12	I Trimethyl Naphthalene Isomer	117.13	1 40000	ţ
. _c 1,13	I UNKNOWN	117.33		Ì
14	I UNKNOWN	117.91		ì
∿₊15	I UNKNOWN	119.09		İ
116	I UNKNOWN	119.17		l
「 `1 フ	I UNKNOWN	120.23		İ
18 119	I UNKNOWN	120.32		l
	I UNKNOWN	121.29		l
,1.2 <u>0</u>	I UNKNOWN	122.32	1 93000	1
	·	_!		ı

DATA PACKAGE

10010

21st Century Environmental Inc. VOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER
SAMPLE NUMBER
CLIENT ID
DATA FILE

US ARMY FT. HONMOUTH NJ

A4024

BLDG 2700 SITE E PIT BOTTOM

>81630

 MATRIX
 Soil

 DILUTION FACTOR
 125.00

 COMMENTS
 HNU NA

 DATE ANALYZED
 09/14/93

303322232332223322233223232	22222222222222222222222222222222222222	*****		********	222222
COMPOUND	ug/kg	MOL	COMPOUND	UG/KG	MDL
22882023378833888835328888		*****		26222222333	8=22272
Chloromethane	NO	1500	2-Chloroethylvinylether	ND	1500
Bromomethane	NO	1500	2-Hexanone	ND	1500
Vinyl Chloride	ND	1500	trans-1,3-Dichloropropene	ИD	760
Chloroethane	ND	1500	To luene	860	760
Acralein	ND	7600	cis-1,3-Dichloropropene	ND	760
Acetone	ND B	1500	1,1,2,2-Tetrachioroethane	ND	<i>7</i> 60
1,1-Dichloroethene	ND	760	1,1,2-Trichloroethane	NO	760
Carbon Disulfide	ND	1500	4-Methyl-2-pentanone	ND	1500
Acrylanitrile	ND	7600	Tetrachloroethene	ND	768
Methylene Chloride	930 B	760	Dibromochloromethane	ND	760
1,2-Dichloroethene(trans)	ND	760	Chloropenzene	ND	760
1,1-Dichloroethane	NO	<i>7</i> 60	Ethylbenzene	1000	<i>7</i> 60
Vinyl Acetate	ND	<i>7</i> 60	m4p-Xylenes	3180	760
2-Butanone	ND	1500	o-Xylene	2200	760
Chloroform	NO	760	Styrene	ND	760
1,1,1-Trichloroethane	ND	<i>7</i> 60	Sromoform	NED	760
Carbon Tetrachloride	NO	760	n-Dichlorobenzene	ND	760
1,2-Dichloroethane	ND	<i>7</i> 60	p-Dichlorobenzene	МD	<i>7</i> 60 .
Benzene	ND	760	o-Dichlorobenzene	NEO	760
Trichloroethene	NO	<i>7</i> 60	Bromodichloromethane	ND	760
1,2 Dichloropropane	NO	760			•

SURROGATE COMPOUNDS	* RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	106	70 - 121	OK.
Toluene-d8	98.3	81 - 117	OK
Bromofluorobenzene	102	74 - 121	OK

Percent Solid of 82.0 is used for all Target Compounds.

(J) Indicates detected below MDL

h.. ..

- (B) Indicates also present in blank
- (ND) Indicates compound not detected
- (D) Indicates calculated from dilution

21st Century Environmental Inc. VOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER
US ARMY FT. MONMOUTH NJ

SAMPLE NUMBER
A4024
DILUTION FACTOR
125.00

CLIENT ID
BLDG 2700 SITE E 1268.5

DATA FILE
>81630
DATE ANALYZED
09/14/93

COMPOUND	UG/KG		MOL	COMPOUND	UG/KG	MDL
Acrolein	ND	====	7600	Bromodichloromethane	ND	760
Acrylonitrile	ND		7600	2-Chloroethylvinylether	ND .	1500
Chloromethane	. ND		1500	2-Hexanone	ND	1500
Bromomethane	ND		1500	trans-1,3-Dichloropropene	ND	760
Vinyl Chloride	ND		1500	Toluene	860	760
Chloroethane	ND		1500	cis-1,3-Dichloropropene	КD	760
Acetone	ND	8	1500	1,1,2,2-Tetrachloroethane	NED	<i>7</i> 60
1,1-Dichloroethene	ND		760	1,1,2-Trichloroethane	ND	760
Carbon Disulfide	ND		1500	4-Methyl-2-pentanone	ND	1500
Methylene Chloride	930	В	760	Tetrachloroethene	· NO	760
1,2-Dichloroethene(trans)	ИD		760	Dibromochloromethane	ND	760
1,1-Dichloroethane	NED		760	Chlorobenzene	ND	760
Vinyl Acetate	ND		760	Ethylbenzene	1000	760
2-Butanone	ND		1500	n&p-Xylenes	3100	760
Chioroform	ND		768	o-Xylene	2200	760
1,1,1-Trichloroethane	ИD		760	Styrene	ND	760
Carbon Tetrachloride	НD		760	Bromoform	NED	760
1,2-Dichloroethane	NED		760	a-Dichlorobenzene	ND	760
Benzene	ND		760	p-Dichlorobenzene	Ю	760
Trichloroethene	HD		760	g-Dichlorobenzene	ND	760
1,2-Dichloropropane	ND		760			

SURROGATE COMPOUNDS	* RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	106	70 - 121	OK
To Luene-d8	98.3	81 - 117	OK
Brown fluorobenzene	102	74 - 121	OK

Percent Solid of 82.0 is used for all Target compounds.

- (J) Indicates detected below MOL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SITE E
PIT BOTTOM

af 'Name:21st Century Environmental Contract:N/A

lient Name: US Army Ft. Monmouth, NJ

Client ID: BLDG 2700

a vix: (soil/water) SOIL

Lab Sample ID: A4024

ample wt/vol: 0.04

(g∕mL) g

Lab File ID: >B1630

≥vil: (low/med) LOW

Date Received: 09/13/93

Maisture: 1

Date Analyzed: 09/14/93

olumn: D8-624

Dilution Factor: 125

Number TICs Found 28

CONCENTRATION UNITS

		_					
1005	NUMBER	[[COMPOUND NAME	1	RT I	l IEST CO	אר ו ו
1	11011011	1	COLII GOLIO TANIC	•	1 1		1
lawa:		= ==		- ·		, 1222422	i
1		1				1	i
1 1	1678928	I	Cyclohexane, propyl- (801901)	1	14.01	1 550	0 1
12	611143	1	Benzene, 1-ethyl-2-methyl- (9CI)	1	15.14	1 1200	0 1
13	124185	١	Decane (8CI9CI)	1	15.30	1 1100	0 1
14	622968	i	Benzene, 1-ethyl-4-methyl- (9CI)	1	15.65	520	0 1
15	620144	1	Benzene, 1-ethyl-3-methyl- (9CI)	1	15:96	1100	0 1
16.	1074437	1	Benzene, 1-methyl-3-propyl- (9CI)	ļ	17.13	1 1100	ו פנ
1 フ	105055	1	Benzene, 1,4-diethyl- (9CI)	ı	17.24	1 1500	10 1
18	1120214	ı	Undecane (8CI9CI)	ŀ	17.47	1 500	10
19	135988	1	Benzene, (1-methylpropyl)- (9CI)	i	17.58	1 490	ו פו
110	5 3 5773	1	Benzene, 1-methyl-3-(1-methylethyl)- (9CI)	Ţ	17.80	1 800	1 C
111	934805	Į	Benzene, 4-ethyl-1,2-dimethyl- (9CI)	ļ	17.94	1 430	10
112	1196583	Ť	Benzene, (1-ethylpropyl)- (8CI9CI)	1	18.19	1 1201	סנ
113	619556	l	Benzamide, 4-methyl- (9CI)	- 1	18.38	450	30
114	95932	1	Benzene, 1,2,4,5-tetramethyl- (8CI9CI)		18.77	1 661	30
115	2049958	1	Benzene, (1,1-dimethylpropyl)- (9CI)	1	18.91	1 461	00
116	767588	1	1H-Indene, 2,3-dihydro-1-methyl- (9CI)		19.24	1 65	00
117	824226	1	1H-Indene, 2,3-dihydro-4-methyl- (9CI)		19.54	130	00
118	119642	t	Naphthalene, 1,2,3,4-tetrahydro- (8CI9CI)		19.85	1 110	00
119	17057828	i	1H-Indene, 2,3-dihydro-1,2-dimethyl- (9CI)		20.42	1 44	0 0
120	3877198	I		(8	120.87	' 52	00
1		_1				.1	

E1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NUMBER

SITE E

Client Name: US ARMT FT. MONMOUTH, NJ

Client Name: BLDG 2780

Matrix: (soil/water) SOIL

Lab Sample ID: A4024

Sample wt/vol: .04 (g/mL) g

Lab File ID: >B1630

Level: MED

Date Received: 09/13/93

% Moisture: 18

Date Analyzed 09/14/93

Column: CAP

Dilution Factor: 125

Number TICs Found 20

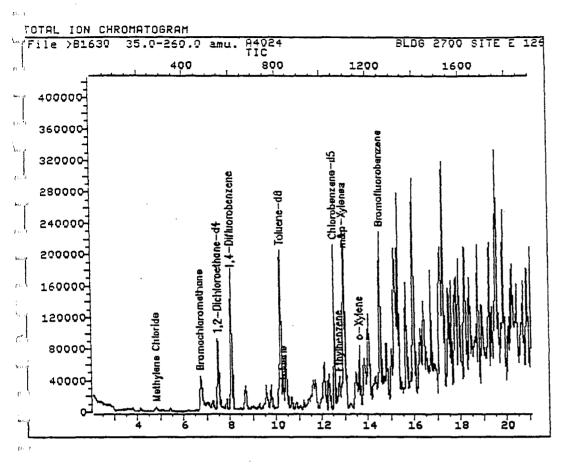
CONCENTRATION UNITS

				
ICAS	I NUMBER I	COMPOUND NAME	I RT I	 EST CONC
===	*******			
1			1	l ·
1 1	1678928	Cyclohexane, propyl- (8CI9CI)	114.01	
12	611143	Benzene, 1-ethyl-2-methyl- (9CI)	115.14	
1 3	124185	Decame (8CI9CI)	115.30	
1 4	622968	Benzene, 1-ethyl-4-methyl- (9CI)	115.65	
1 5	620144	Benzene, 1-ethyl-3-methyl- (9CI)	115.96	11000
16	1074437	Benzene, 1-methyl-3-propyl- (9CI)	117.13	1 11000
1 フ	105055	Benzene, 1,4-diethyl- (9CI)	117.24	15000
18	1120214		117.47	1 5000
1 9	135988	Benzene, (1-methylpropyl)- (9CI)	117.58	4900
110	535773		117.80	1 8000
111		Benzene, 4-ethyl-1,2-dimethyl- (9CI)	117.94	4300
112		Benzene, (1-ethylpropyl)- (8CI9CI)	118.19	1 12000
113	619556	Benzamide, 4-methyl- (9CI)	118.38	
114	95932	Benzene, 1,2,4,5-tetramethyl- (8CI9CI)	118.77	
115		Benzene, (1,1-dimethylpropyl)- (9CI)	118.91	
116	767588	I 1H-Indene, 2,3-dihydro-1-methyl- (9CI)	119.24	-
117		1 1H-Indene, 2,3-dihydro-4-methyl- (9CI)	119.54	
118		Naphthalene, 1,2,3,4-tetrahydro- (8CI9CI)	119.85	-
119		1 1H-Indene, 2,3-dihydro-1,2-dimethyl- (9CI)	120.42	
	3877198			
120	70//176	Naphthalene, 1,2,3,4-tetrahydro-2-methyl- (0120.0/	1 9200
1			!	. '

QUANT REPORT

Quant Time: 930914 04:48 ()erator ID: MANAGER Quant Rev: 6 (_tput File: ^B1630::D4 Injected at: 930914 04:02

Data File: >B1630::D6 Dilution Factor: 1.00000


₩ame: A4024

sc: BLDG 2700 SITE E 1268.5 .04g

ID File: ID0401::SC file: USEPA 624 VOLATILES Last Calibration: 930914 02:58

βî ⁿ 1	Compound	R.T.	Scan#	Area	Conc	Units	P
٦)	*Bromochloromethane	6.71	463	50195M	50.00	UG/L	100
15)	Methylene Chloride	4.80	271	7655	6.12	UG/L	74
(3)	1,2-Dichlorgethane-d4	7.47	540	124864	53.02	UG/L	100
2-4)	*1,4-Difluorobenzene	9.04	59フ	272799	50.00	UG/L	100
33)	Toluene-d8	10.18	813	274840	49.13	UG/L	100
(Toluene	10.28	823	339 O Z	5.62	UG/L	98
(زین	*Chlorobenzene-d5	12.52	1048	231166	50.00	UG/L	100
43)	Ethylbenzene	12.74	1070	50816	6.82	UG/L	80
(i)	m&p-Xylenes	12.94	1090	111858	20.66	UG/L	90
4 1)	o-Xylene	13.62	1158	<i>7</i> 9044	14.33	UG/L	87
48)	Bromofluorobenzene	14.53	1250	140522	51.18	UG/L	100

Compound is ISTD

Quant Output File: ^81630::D4

.04g

Data File: >B1630::D6

Name: A4024

Misc: BLDG 2700 SITE E 1268.5

Id File: ID0401::SC

Title: USEPA 624 VOLATILES Last Calibration: 930914 02:58

Operator ID: MANAGER

930914 04:48 Quant Time: Injected at: 930914 04:02

r:014

21st Century Environmental Inc. SEMIUDLATILE ANALYSIS DATA

JOB NUMBER	US ARMY FT. MONMOUTH, NJ	MATRIX	Soil
SAMPLE NUMBER	A4024	DILUTION FACTOR	50.00
CLIENT ID	BLDG 2700, SITE E.PIT BOTTOM	QA BATCH	
DATA FILE	>C2236	DATE ANALYZED	09/14/93

COMPOUND	UG∕KG	MOL		HG/KG	MOL
				:22222222	.~.
N-Nitrosodimethylamine	MD	20000	2,6-Dinitrotoluene	ND	20000
bis(-2-Chloroethyl)Ether	ND	20000	Diethylphthalate	ND	20000
1,3-Dichlorobenzene	ND	20000	4-Chlorophenyl-phenylether	ND	20000
1,4-Dichlorobenzene	ND	20000	Fluorene	5400 J	20000
Benzyl Alcohol	NÐ	20000	4-Nitroaniline	ND	100000
1,2-Dichlorobenzene	NEO	20000	N-Nitrosodiphenylamine	ИD	20000
bis(2-chloroisopropyl)Ether	ND	20000	4-Bromophenyl-phenylether	ND .	20000
N-Nitroso-Di-n-Propylamine	ND	20000	Hexach lorobenzene	ND	20000
Hexachloroethane	ND	20000	Phenanthrene	11800 J	20000
Nitrobenzene	ND	20000	Anthracene	ND	20000
Isophorane	ND	20000	Di-n-Butylphthalate	NĐ	20000
Benzoic Acid	ND	100000	Fluoranthene	ND.	20000
bis(-2-Chloroethoxy)Methane	NO	20000	Pyrene	NO	20000
1,2,4-Trichlorobenzene	NĐ	20000	Butylbenzylphthalate	ND	20000
Naphthalene	6900 J	20000	3,31-Dichlorobenzidine	ND	40000
4-Chloroaniline	ND	20000	Benzo (a) Anthracene	ND	20000
Hexachlorobutadiene	ИD	20000	Bis(2-Ethylhexyl)Phthalate	ND	20008
2-Methylnaphthalene	43000	20000	Chrysene	NED	20000
Hexachlorocyclopentadiene	ND	20000	Di-n-Octyl Phthalate	ND	20000
2-Chloronaphthalene	ND	20000	Benzo(b)Fluoranthene	ND	20000
2-Nitroaniline	ND	100000	Benzo(k)Fluoranthene	ND	20008
Dimethyl Phthalate	ND	20000	Benzo(a)Pyrene	ND	20000
Acenaphthylene	ND	20000	Indeno (1,2,3-cd)Pyrene	ND	20000
3-Nitroaniline	MD	100000	Dibenzo(a,h)Anthracene	ND	20008
Acenaphthene	MD	20000	Benzo(g,h,i)Perylene	OM	20000
Dibenzofuran 2,4-Dinitrotoluene	2100 J ND	20080 20000	Benzidine	ND	40000

Percent Solid of 82.0 is used for all Target compounds.

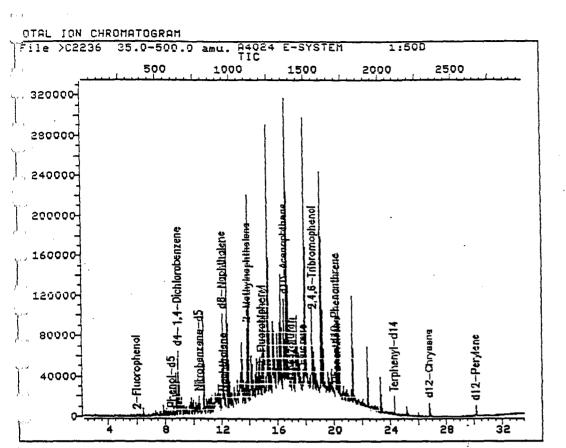
⁽J) Indicates detected below MDL

⁽B) Indicates also present in blank (NO) Indicates compound not detected

QUANT REPORT

perator ID: JEFF Quant Rev: 6 Quant Time: 930914 17:23

lame: A4024 E-SYSTEM


11²⁵5: 1:50D

D File: ID914C::SC

a: : Calibration: 930914 12:00

Compound	R.T.	Scan#	Area	Conc	Units	q
1. 4d4-1,4-Dichlorobenzene	8.87	632	30451	40.00	UG/L	98
4) 2-Fluorophenol	5.97	354	633	1.23	UG/L	78
5 ⁵ Phenol-d5	8.43	590	1008	1.53	UG/L	98
.8 *d8-Naphthalene	12.03	934	73914	40.ÜO	UG/L	94
9) Nitrobenzene-d5	10.38	<i>77</i> 6	10 <i>7</i> 5	1.32	UG/L	61
18A. Naphthalene	12.09	939	6917	3.41	UG/L	90
2 2-Methylnaphthalene	13.84	1106	29555	21.07	UG/L	99
『3>~ *d10-Acenaphthene	16.46	1354	37285	40.00	UG/L	93
18) 2-Fluorobiphenyl 46 Dibenzofuran	14.89	1205	1334	.98	UG/L	90
∔ó Dibenzofuran	16.95	1400	1595	1.01	UG/L	96
⁵ 1 ₈₄ Fluorene	17.79	1480	3035	2.64	UG/L	86
3) *d18-Phenanthrene	20.10	1698	33701	40.00	UG/L	97
³ 6 ≥ 2,4,6-Tribromophenol	18.48	1545	30M	.28	UG/L	
0 Phenanthrene	20.15	1703	5468	5.63	UG/L	96
₁4) *d12-Chrysene	26.74	2330	10807	40.00	UG/L	96
37), Terphenyl-d14	24.24	2091	288M	.88	UG/L	
'3 *d12-Perylene	30.07	2649	9518	40.00	UG/L	95

^{*} Compound is ISTD

Quant Output File: ^C2236::DA

Data File: >C2236 Name: A4024 E-SYSTEM

Name: H4024 E-51511

Misc: 1:50D

Id File: ID914C::SC Title: hSL BNA STD

Last Calibration: 930914 12:00

Operator ID: JEFF

Quant Time: 930914 17:23 Injected at: 930914 16:46

- 00018

BTL# 5

Q C RESULTS

00019

21st Century Environmental Inc SOIL VOLATILE SURROGATE RECOVERY

SAMPLE NO.	S1 (DCE)#	S2 (TOL)#	S3 (BFB)#	TOT OUT
BLANK	102	95	99	0
A4024	106	98	102	0
A3875MS	<i>97</i>	97	99	0
- A3875MSD	98	100	98	8

			QC LIMITS
(DCE)	=	1,2-Dichloroethane-d4	70-121
(TOL)	=	Toluene-d8	81-11 <i>7</i>
(BFB)	=	Bromofluorobenzene	74-121
	(TOL)	(TOL) =	(DCE) = 1,2-Dichloroethane-d4 (TOL) = Toluene-d8 (BFB) = Bromofluorobenzene

[#] Column used to flag surrogate recovery values

21st Century Environmental Inc. SOIL semi-VOLATILE SURROGATE RECOVERY

SAMPLE	S1	S2	S3	\$4	S5	S6	TOT
NO.	(NBZ)#	(FBP)#	(TPH)#	(PHL)#	(FPH)#	(TBP)#	OUT
NA BLNK A4024 1:5 A3589MS A3589MSD	92 0 132* 86 87	90 98 97 · 97	129 88 87 87	93 76 101 102	89 62 88 84	59 14* 78 78	0 .2 0

		•	QC LIMITS
S1	(NBZ) =	Nitrobenzene-d5	(23-120)
S2	(FBP) =	2-Fluorobiphenyl	(3.0-115)
S3	(TPH) 🚈	Terphenyl-d14	(18-137)
S 4	(PHL) =	Pheno 1-d5	(24-113)
S 5	(FPH) =	2-Fluorophenol	(25-121)
S 6	(TBP) =	2,4,6-Tribromophenol	(19-122)

[#] Column used to flag surrogate recovery values

SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

Contract:N/A

''Lab Code:

Case No.: N/A SAS No.: N/A SDG No.: N/A

Matrix Spike - EPA Sample No.: A3875 Level:(low/med) LOW

·	SPIKE	SAMPLE :	i ms i	MS I QC i
· [ADDED		CONCENTRATION	% ILIMITS!
COMPOUND	(ug/Kg)	l (ug/Kg)	! (ug/Kg) !=======!	REC #1 REC. !
1 1,1-Dichloroethene	•	•	53.2	106 59-172
Trichloroethene		I ND	1 40.7 1	
1 Benzene	50.0	I ND	1 49.0 1	
Toluene	50.0	I ND	44.5	89 59-139
Chlorobenzene	50.0	I ND	51.9	104 60-133
, I	l	[ii

. •		SPIKE I	MSD	MS	in .	<u></u>			·
- i			CONCENTRATION		-	· %	1	QC	LIMITS .
ı	COMPOUND	(ug/Kg)	l (ug/Kg)		EC #		I ‡ C		O I REC. !
ì.				===	===		===	====	
, 1	1,1-Dichloroethene	50.00	50.3	1 :	.01	1 9	5 1	22	159-1721
i	Trichloroethene	50.00	40.6	l	81	1 <	1	24	162-1371
-17	l Benzenel	50.00	48.7	l	97	i	1	l ²¹	166-1421
	Toluene	50.00	44.8	i	90	1	1	21	159-1391
	Chlorobenzene	50.00	50.4	1 :	101	1	3	21	160-1331
_ 1		l	l	11		.1	1		

^{* #} Column to be used to flag recovery and RPD values with an asterisk

5 outside limits 0 out of

Spike Recovery: 0 out of 10 outside limits

COMMENTS:	

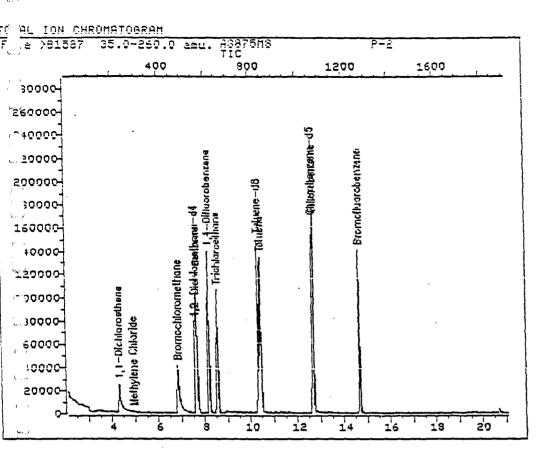
^{*} Values outside of qc limits

QUANT REPORT

Dilution Factor: 1.00000

Name: A3875MS 13°c: P-2 5g

D File: ID0401::SC


)a√a File: >81587::D2

Tixle: USEPA 624 VOLATILES

_a t Calibration: 930910 01:11

$e^{-i\epsilon}$	Compound	R.T.	Scan#	Area	Conc	Units q
1	*Bromochloromethane	6.82	475	38937M	5000	UG/L 100
10)	1,1-Dichloroethene	4.29	220	59937	53.17	UG/L 100
15	Méthylene Chloride	4.91	293	1126	1.30	UG/L 69
23	1,2-Dichloroethane-d4	7.58	552	93506	48.64	UG/L 100
24)	*1,4-Difluorobenzene	8.16	610	203744	50.00	UG/L 100
26,)	Benzene	7.64	558	180085	49.04	UG/L 100
2ブ	Trichloroethene	8.53	647	65731	40.72	UG/L 85
33~	Toluene-d8	10.38	826	198449	48.42	UG/L 100
34)	Toluene	10.41	837	189370	44.47	UG/L 95
3 5	*Chlorobenzene-d5	12.63	1061	159364	50.00	UG/L 100
42	Chlorobenzene	12.68	1066	147849	51.88	UG/L 95
48)	Bromofluorobenzene	14.64	1263	94922	49.34	UG/L 100

^{*} Compound is ISTD

Quant Output File: ^B1587::QT

59

Data File: >81587::D2

Name: A3875MS

Misc: P-2

Id File: ID0401::SC

Title: USEPA 624 UOLATILES Last Calibration: 930910 01:11

Operator ID: MANAGER

Quant Time: 930910 01:50 Injected at: 930910 01:23

00024

QUANT REPORT

Operator ID: MANAGER O'tput File: ^91588::QT D_ta File: >81588::D2

Quant Rev: 6 Quant Time: 930910 02:20 Injected at: 930910 01:53

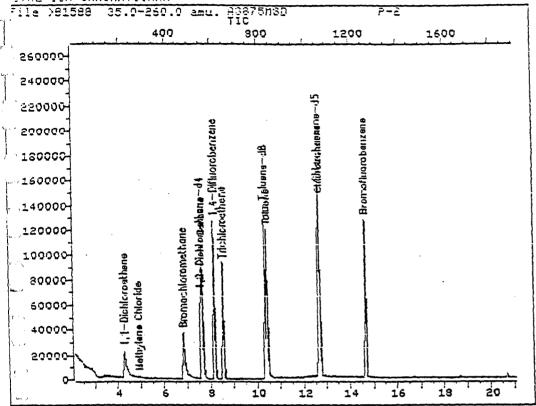
Name: A3875MSD

Dilution Factor:

1.00000

Maisc: P-2

5 g


To File: ID0401::SC

Title: USEPA 624 VOLATILES L st Calibration: 930910 01:11

<i>r</i> .	Compound	R.T.	Scan#	Area	Conc	Units	P
·)	*Bromochloromethane	6.83	469	 35875M	50.00	UG/L	100
100	1,1-Dichloroethene	4.29	213	52224	50.28	UG/L	100
15)	Méthylene Chloride	4.90	275	1313	1.65	UG/L	80
2)	1,2-Dichlornethane-d4	7.58	545	87174	49.22	UG/L	100
2=)	*1,4-Difluorobenzene	8.17	604	183341	50.00	UG/L	100
26)	Benzene	7.64	551	160962	48.71	UG/L	100
2*)	Trichlargethene	8.54	641	59032	40.64	UG/L	90
3()	Toluene-d8	10.31	820	183532	49.76	UG/L	100
34)	Toluene	10.42	831	171632	44.79	UG/L	97
3F)	*Chlorobenzene-d5	12.63	1054	144294	50.00	UG/L	100
4()	Chlorobenzene	12.68	1059	129942	50.36	IJG/L	95
48)	Bromofluorobenzene	14.64	1256	85061	48.83	IJG/L	100

Compound is ISTD

Data File: >81588::D2

Name: A3875MSD

Misc: P-2

Id File: ID0401::SC

Title: USEPA 624 VOLATILES
Last Calibration: 930910 01:11

Operator ID: MANAGER

Quant Time: 930910 02:20 Injected at: 930910 01:53

Quant Output File: ^81588::QT

5g

3D SOIL SEMIUOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: 21st Century Environmental

Lab Code: Case No:

SAS No.:

*Contract No.: SDG No.:

MATRIX SPIKE- EPA SAMPLE NO.: A3589

COMPOUND NAME	IA	PIKE DDED S/KG	! !	MS CONC UG/KG	 	SAMP CÜNC UG/KG	1	MS % REC#	F	C LIMITS ECOVERY	1
Prenol 2 Chlorophenol 1,-4-Dichlorobenzene N-Nitroso-di-n-prop. (1) 1 2,4-Trichlorobenzene 4 Chloro-3-methylphenol Acenapthene 4 Nitrophenol	! ! !	100 100 50 50 50 100	 	73.8 72.5 33.0 36.2 33.6 70.5 36.4 49.6		2222222	 	74 73 66 72 67 70 73		26-90 25-102 28-104 41-126 38-107 26-103 31-137	1 1 1 1 1 1 1 1 1 1
2_4-Dinitrotoluene Pentachlorophenol Purene	 	50 100 50	! !	27.9 73.1 38.6	!	7D 7D .	! !	56 73 77	1 :	28-89 17-109 35-142	1

OMPOUND , NAME	IA	PIKE DDED G/KG	[MSD CONC UG/KG	1	MSD % REC.	1	% RPD	1	QC I	11	1ITS RECOV	-
Pjanol		100	E.	71.2	1	71	!	4	1	35	 	26-90	- !
2-Cholrophenol	ı	100		70.7	1	71	-	3	. [50	1	25-102	1
1, -4-Dichlorobenzene	1	50	1	33.2	ı	66	ı	<1	l	27	1	28-104	1
n: Vitroso-di-n-prop.	1	50	ļ	36.2	i	72	I	0	Ŧ	38	1	41-126	i
1,2,4-Trichlorobenzene	1	50	- 1	33.1	1	66	1	1	1	23	1	38-107	1
4-Chloro-3-Methylphenol	1	100	1	67.0	ı	67	Ì	5	1	33	1	26-103	I
Alenaphthene	1	50	- 1	35.5	1	71	1	3	l	19	1	31-137	1
4 Nitrophenol	- 1	100	. 1	53.5	I	54	1	8	1	50	1	11-114	-1
2,4-Dinitrotoluene	I	50	- 1	30.6	I	71	į	9	1	47	1	28-89	- 1
Pritachlorophenol	ı	100	i	<i>7</i> 5.8	1	76	- 1	4	-1	47	i	17-109	1
Prene	1	50	I	35.5	1	71	1	8	l	36	1	32-142	_ l _ l

1 N-Nitroso-di-n-propylamine

: Column to be used to flag recovery and RPD values : Tilues outside of qc limits

PD: O out of outside limits
pike Recovery: O out of outside limits

QUANT REPORT

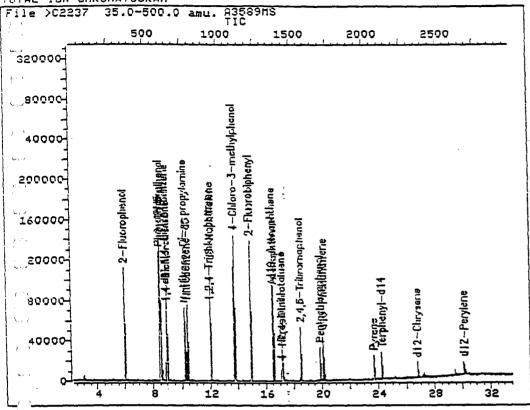
e ator ID: JEFF Quant Rev: 6 Quant Time: 930914 18:09

rtput File: ^C2237::D5
ata File: >C2237::D2 Injected at: 930914 17:33 Dilution Factor: 1.00000

an : A3589MS

BTL# 6

| Tile: ID914C::SC t a: hSL BNA STD


S. . . :

ast Calibration: 930914 12:00

Compound	R.T.	Scan#	Area	Conc	Units	9
1) *d4-1,4-Dichlorobenzene	8.88	632	42248	40.00	UG/L	97
4) [™] 2-Fluorophenol	5.90	347	63332	88.36	UG/L	89
う)。,Ph eno l -d5	8.42	588	9290 <i>7</i>	101.45	UG/L	92
á) Phenol	8.45	591	<i>7</i> 5280	73.84	UG/L	79
3)co 2+Chlorophenol	8.47	593	59172	72.49	UG/L	97
<pre>1) 1,4-Dichlorobenzene</pre>	8.92	636	30983	32.99	UG/L	96
]) 1,4-Dichlorobenzene 5) N-Nitroso-Di-n-propylamine	10.17	756	27289	36.19	UG/L	89
	12.04	935	92206	40.00	UG/L	93
3) *d8-Naphthalene 3) Nitrobenzene-d5	10.36	774	43673	43.04	UG/L	85
2)-/1,2,4-Trichlorobenzene	11.97	929	25713	33.59	UG/L	97
1) 4-Chloro-3-methylphenol	13.76	1100	58143	70.53	UG/L	92
ラン/ ≒d10-Acenaphthene	16.45	1358	42571	40.00	UG/L	95
3) 2-Fluorobiphenyl	14.89	1208	75400	48.70	UG/L	96
3) Acenaphthene	16.52	1365	49650	36.43	UG/L	97
5) 4-Nitrophenol	17.13	1423	8133	49.59	UG/L	59
7) 2,4-Dinitrotoluene	17.16	1426	10131	27.88	UG/L	60
3) *d10-Phenanthrene	20.09	1707	33395	40.00	UG/L	98
5) 2,4,6-Tribromophenol	18.45	1550	8371	78.06	UG/L	92
Pentachlorophenol	19.86	1685	6703	73.11	UG/L	93
4)*d12-Chrysene	26.74	2342	12572	40.00	UG/L	96
7) Pyrene	23.66		21800	38.59	UG/L	99
7)/: Terphenyl-d14	24.24	2104	16540	43.57	UG/L	91
5)、*d12-Perylene	30.07		11320	40.00	UG/L	95

^{*} Compound is ISTD

TOTAL ION CHROMATOGRAM

Quant Output File: ^C2237::D5

Data File: >C2237::D2

Name: A3589MS

Misc:

Id File: ID914C::SC Title: hSL BNA STD

Last Calibration: 930914 12:00

Operator ID: JEFF

Quant Time: 930914 18:09 Injected at: 930914 17:33

00029

BTL# 6

QUANT REPORT

p ator ID: JEFF Quant Rev: 6 utput File: ^C2238::D5 ata File: >C2238::D2

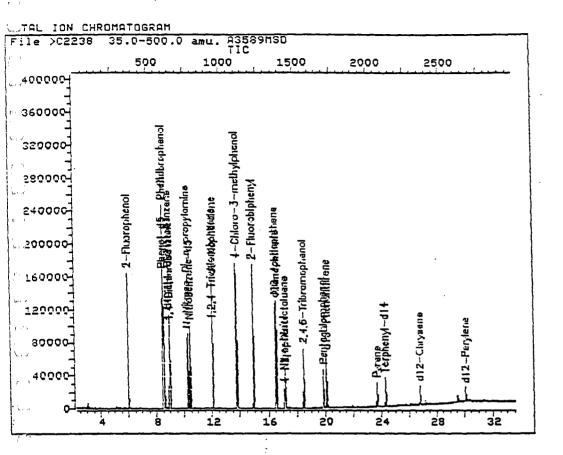
Quant Time: 930914 18:56 Injected at: 930914 18:19

BTL# 7

Dilution Factor: 1.00000

ala: A3589MSD

ica:


Darile: ID914C::SC i ke: hSL BNA STD

ast Calibration: 930914 12:00

Compound	R.T.	Scan#	Area	Conc	Units	P
1) *d4-1,4-Dichlorobenzene	8.89	632	57244	40.00	UG/L	98
4/ 2-Fluorophenol	5.92	348	81771	84.20	UG/L	92
5 Phenol-d5	8.44	589	126732	102.14	UG/L	93
6) Phenol	8.47	592	98287	71.15	UG/L	79
3≥ 2-Chlorophenol	8.48	5 9 3	78239	70.74	UG/L	98
0 1,4-Dichlorobenzene	9.93	636	42307	33.25	UG/L	97
فُ) N-Nitroso-Di-n-propylamine	10.19	フラフ	36939	36.16	UG/L	93
3),#d8-Naphthalene	12.85	935	126182	40.00	UG/L	93
9 Nitrobenzene-d5	10.37	<i>7</i> 74	60447	43.53	UG/L	85
:75- 1,2,4-Trichlorobenzene	11.99	929	34651	33.07	'UG/L	93
1) 4-Chloro-3-methylphenol	13.76	1099	<i>7</i> 5625	67.04	UG/L	96
3/ `*d10-Acenaphthene	16.47	1358	5640 <i>7</i>	40.00	UG/L	96
8 2-Fluorobiphenyl	14.89	1207	99789	48.65	_UG/L	96
3) Acenaphthene	16.54	1365	64184	35.54	UG/L	96
5> 4-Nitrophenol	17.14		11635	53.54	UG/L	50
-7 2,4-Dinitrotoluene	17.17	1425	14742	30.62	UG/L	70
3) *d10-Phenanthrene	20.10	1706	46683	40.00	UG/L	97
6) 2,4,6-Tribromophenol	18.46	1549	11717	78.16	UG/L	95
9 Pentachlorophenol	19.87	1684	9720	75.84	·UG/L	99
4 - *d12-Chrysene	26.75	2341	17189	40.00	UG/L	97
5) Pyrene	23.67	2047	27389	35.46	UG/L	97
7' Terphenyl-d14	24.26		22503	43.36	UG/L	90
'3 *d12-Perylene	30.08	2657	15143	40.00	UG/L	95

* Compound is ISTD

00000

Data File: >C2238::D2

Name: A3589MSD

Misc:

Quant Output File: ^C2238::D5

Id File: ID914C::SC. Title: hSL BNA STD

Last Calibration: 930914 12:00

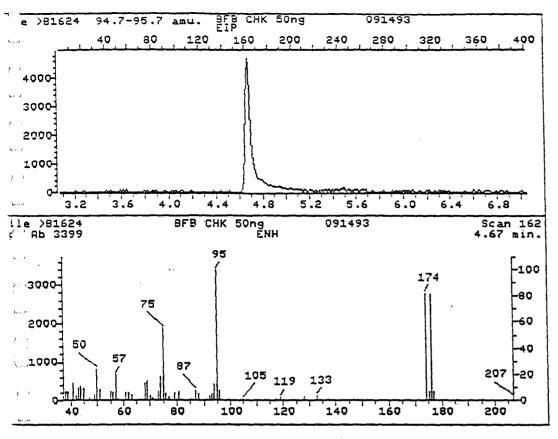
/ Operator ID: JEFF

Quant Time: 930914 18:56 Injected at: 930914 18:19 BTL# 7

21st Century Environmental Inc.

GC/MS STANDARD p-BROMOFLUOROBENZENE (BFB) TUNE CRITERIA FOR VOLATILES $50\,\mathrm{ng}$

DATE AND TIME OF INJECTION: 9/13/93 23:04


INSTRUMENT ID: 5995

DATA	RELEASE	AUTHORIZED	BY

		% Relative	Abungance	
	Ion Abundance	Base	Appropriate	
m/z	Criteria	Peak	Peak	Status
50	15-40% of mass 95	24.12	24.12	Cik
75	30-60% of mass 95	55.44	5 5. 44	0k
95	Base peak, 100% relative abundance	100.00	100.00	Ok
96	5-9% of mass 95	7 .2 7	7.27	Οk
173	Less than 2% of mass 174	0.08	0.80	0k
174	Greater than 50% of mass 95	82.14	82.14	Ωk
175	5-9% of mass 174	6.52	7.94	Ük
176	95-101% of mass 174	80.82	98.39	Ωk
177	5-9% of mass 176	6.31	7.80	Ok

THIS PERFORMANCE AFFECTS ALL SAMPLES STANDARDS AND BLANKS LISTED BELOW

ISAMPLE ID I	ILAB ID	I DATE TIME!
 >B1624::D6	18F8 CHK 50ng	11 9/13/93 23:041
1>81625::061	IHSL CAL CHK 50ppb	11 9/14/93 0:361
I>B1626::D61	IBLANK	11 9/14/93 1:581
1>81627::061	1MeOH BLK	11 9/14/93 2:331
1>81628::061	IA3936	11 9/14/93 3:021
1>81629::061	IA3847	11 9/14/93 3:321
1>81630::061	IA4024	11 9/14/93 4:021
1>81631::061	1A3309	11 9/14/93 4:321
1>B1632::D61	1A3313	11 9/14/93 5:021
1>81633::061	1A2990	11 9/14/93 5:321
1>81634::061	IA2997	11 9/14/93 6:031
1>81635::061	1A3000	11 9/14/93 6:331
1>81636::061	1A3922	11 9/14/93 9:511
1>81637::061	IA3922MS	11 9/14/93 10:191
1>B1638::D61	IA3922MSD	1 9/14/93 10:501

P1624 162 BFB CHK 50ng NRM ENH

091493

= le: >B1624 Scan #:

162 Retn. time: 4.67

No. o									
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
(
7.05	7.301	50.05	24.116	69.00	15.203	85.10	.682	117.10	.918
38.05	6.525	51.05	8.148	70.10	3.024	87.00	7.631	119.00	2.536
38.95	6.436	55.05	6.872	71.10	2.071	88.00	4.942	128.00	2.189
1.05	12.979	56.10/	5.801	<i>7</i> 3.10	6.942	92.10	3.436	133.00	3.471
42.05	3.124	57.10	19.603	<i>7</i> 4.00	18.592	93.10	5.189	1 <i>7</i> 3.95	82.144
42.95	9.260	58.10	.724	75.10	55.439	94.00	12.567	1 <i>7</i> 5.05	6.525
7.95	10.584	61.00	6.019	76.00	5.019	95.00	100.000	175.95	80.820
. 4.9 5	9.472	62.10	5.854	<i>7</i> 7.10	2.406	96.00	7.272	176.95	6.307
47.05	1.524	63.10	4.171	<i>7</i> 9.00	5.683	98.10	.318	207.05	1.806
49.0 5	4.195	68.00	13.238	81.00	6.348	105.00	. <i>7</i> 88		

21st Century Environmental Inc.

SC/MS STANDARD DECAFLUDROTRIPHENYLPHOSPHINE(DFTPP) TUNE CRITERIA FOR SEMIUDLATILES 50ng

DATE AND TIME OF INJECTION: 9/14/93 9:11

INSTRUMENT ID: 5970

I>C2231::051

1>C2232::041

1>C2233::041

1702234::041

1>02235::041

1>C2236::021

1>C2237::021

I>C2238::021

1>02239::021

1>C2240::021

1>C2241::D21

1113	IKUTENI 10: 77/U	_	\cap	1	•		
DAT	A RELEASE AUTHORIZED BY_	RU	when	1	لار (ر	ml.	•
			*	Relati	ve Abend	nce	_
	Ion Abundance			Base	Approp	riate	
₫/Z	Criteria			Peak	Pa	ak S	itatus
51	30-60% of mass 198			41.32	41	.32	Ok
68	Less than 2% of mass 69			0.00	0	.00	0k
69	(reference only)			57.74	57	.74	Ok
70	Less than 2% of mass 69			.54		.94	0k
127	40-60% of mass 198			53.19	53	.19	Ok .
197	Less than 1% of mass 198			0.00	(1.00	0k
198	Base peak, 100% relative	abunda	nce :	100.00	100	0.00	Ok
199	5-9% of mass 198			6.76	ŧ	.76	Ok
275	10-30% of mass 198			24.18	24	4.18	Ok
365	Greater than 1% of mass	198		3.00	3	7.00	Ck
441	0-100% of mass 443		_	8.77	61	6.90	Ok
442	Greater than 40% of mass	198		63.87	63	3.87	Ck
443	17-23% of mass 442		:	13.10	2	0.52	Ok
	lis performance affects a		ES	-			
57	Tandards and Blanks Listei	BETOM	-				
IS	AMPLE ID I	ILAB ID		ı	1	DATE	TIME I
ł_		i		!			
		150 NG (- 1,		9/14/93	
			BNA STO)		9/14/93	9:361
1>	C2230::031	1A3308	CYCLE	ı	!	9/14/93	11:081

INA BLANK 9/13

1A3669 BRINKERHOFF

1A3670 BRINKERHOFF

1A4024 E-SYSTEM

183649 ACCUCIUAL

INA BLK 8/25

IA3410 8/25

1A3282MS

1A3282MSD

1A3589MS .

1A3589MSD

1 9/14/93 11:591

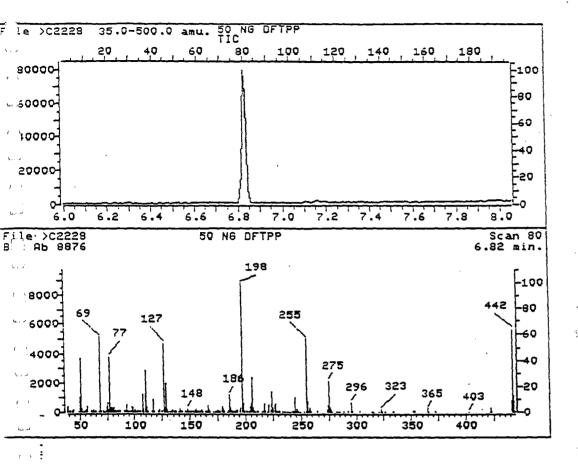
1 9/14/93 12:441

1 9/14/93 13:301

9/14/93 14:151

1 9/14/93 15:011

1 9/14/93 16:461


1 9/14/93 17:331

1 9/14/93 18:191

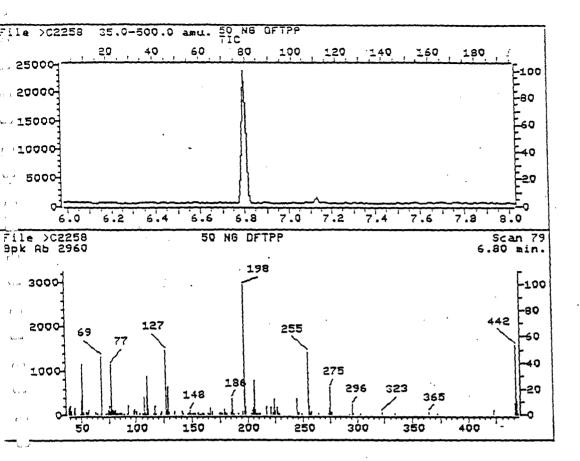
1 9/14/93 19:051

1 9/14/93 19:511

1 9/14/93 20:361

>C2228 50 NG DFTPP 80 NRM

,	_2228 5	can #•	80	Retn.	time:	6.82			
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
7.00	4.157	92.90	6.129	146.90	1.262	198.90	6.760	258.80	.608
9.90 وروس	1.374	93.90				199.90	. 699	264.75	1.115
41.10	1.059	94.40		148.90		201.40		272.95	1.915
7 2.90	.879	94.70	.372	149.80	237	203.00	.518	273.95	4.743
J.90	1.735	94.90			.620			274.95	24.178
49.05	.259	96.00	.361	152.80		204.90	6.433	275.80	3.571
<i>6</i> 9.95	11.830	97.00	.552	153.90	.642	205.90	26.577	276.90	2.028
1 3.95	41.325	98.00	3.954	154.90		206.90	3.481	277.80	.304
52.05	2.411	98.90	3.155	155.95	2.186	207.90	.958	281.80	.180
52.95	.180	99.90	.315	156.85	.699	208.75	.383	282.90	.248
(4.05	.270	101.00	2.062	157.95	.744	210.75	1.228	284.90	.451
1.25	.259	101.65	.169	158.85	. 473	214.75	.304	288.70	.124
54.95	1.037	102.95		159.85	.789	215.95	. 653	292.85	.507
55.95	1.577	103.95		160.95	1.667	216.85	6.861	295.95	7.875
53.95	3.932	104.95	1.296	161.85	.327	217.85	1.070	296.85	1.070
60.55	.180	105.85	.394	164.95	.901	219.95	.248	302.90	.699
61.00	.834	106.95		165.95		220.95	5.577	314.30	-1690003:
90	. 439	107.95		166.95		222.90		314.90	.642.000
00.نى	1.859	109.95	31.929	167.95		223.90	16.167	314.00	.451


				-				
							こ・マンシージエム・アプ	4・1マブ
[Q/. ±U		115.80	.890	1 <i>7</i> 3.00	.631	227.90	· .980 323.95	.586
[「] フ.30	.394	116.90	10.038	173.90	1.172	228.90	1.003 326.85	.372
U8.90	57.74 0	117.98	.834	175.00	2.129	231.00	.507 332.90	.192
70.00	.541	121.90	1.037	175.90	. 755	233.80	.451 333.20	.248
71.00	.597	122.90	1.712	176.90	.868	235.00	.406 333.90	1.037
2.90	.338	124.90	.766	177.50	.259	236.85	.372 351.95	.721
73.10	.338	125.10	.766	178.90	4.169	238.65	.225 352.95	.518
.74.00	4.045	127.00	53.188	179.90	2.445	238.85	.225 354.05	.642
4.95	7.391	128.00	3.695	180.90	.924	239.75	.214 364.90	2.997
96.05	2.005	128.85	22.048	183.85		241.75	.631 365.90	.372
76.95		129.85		184.15		243.05	1.048 371.85	.946
′ フ.95	3.188	130.95		184.95		243.95	11.469 372.95	.237
8.95	3.222	132.15	.338	185.85	14.139	244.85	1.160 401.95	.304
79,95	2.873	133.85	.800	186.95	3. <i>7</i> 97	245.95	2.174 402.95	. 439
r^0.95	3.549	134.95	1.836	187.95	.541	246.85	.653 421.10	.394
2.05	.913	136.05	.552	188.85	. <i>7</i> 32	248.85	.473 422.00	.462
82.95	1.262	137.05		190.15	_	252.70	.270 423.00	3.560
84.05		137.75		190.85		252.90	.293 423.95	.541
4.95		139.95		191.95		254.90	56.861 441.00	8.765
J5.85		140.95		192.95		255.90	7.977 442.00	63.869
86.95		141.90		195.90		256.70	.935 442.98	13.103
0.90		142.80		197.80		257.90	3.436 444.00	1.093
2.00		145.80	.687					
4			,	•				

21st Century Environmental Inc.

SC/MS STANDARD DECAFLUOROTRIPHENYLPHOSPHINE(DFTPP) TUNE CRITERIA FOR SEMIVOLATILES 50ng

DATE AND T	ine of	INJECTION:	•	9/16/93	8:41	
INSTRUMENT	ID: 5	778				

DATA RELEASE AUTHORIZED BY_	Rul	Jul	when	<u>J</u> .
		% Relativ	ve Abungiance	
Ion Abundance		Base	Appropriate	
m/z Criteria		Peak	Peak	Status
51 30-60% of mass 198		39.22		Ok :
68 Less than 2% of mass 69	• •	.37	.83	0k ·
69 (reference only)		44.83	44.83	Ük
70 Less than 2% of mass 69		0.00	0.00	Ok.
127 40-60% of mass 198	• •	49.97	49.97	0k
197. Less than 1% of mass 198	l .	0.00	0.00	. Ok
198 Base peak, 100% relative	abundance	100.00	100.00	Ûk -
199 5-9% of mass 198		5.64	5.64	Ck
275 10-30% of mass 198		21.52	21.52	Ok :
365 Greater than 1% of mass	198	2.03	2.03	0k
441 0-100% of mass 443		8.95	81.29	Ok ·
442 Greater than 40% of mass	53.68	53.48	0k	
443 17-23% of mass 442		11.01		Ok
THIS PERFORMANCE AFFECTS A			•	
STANDARDS AND BLANKS LISTE	D BELOW			
•				
ISAMPLE ID I	ILAB ID		1 DATE	TIME I
l	t	1	11	1
l>C2258::551		,	1 9/16/9	3 8:411
1>C2268::051	150 PPM BNA	STD I	1 9/16/9	3 9:571
1>C2261::051	ITCLP BLANK	9/14	1 9/16/9	3 11:171
	183159 CM	1	1 9/16/9	3 12:511
1>C2264::051	1A3165 CM		1 9/16/9	3 13:351
	ina blnk	9/14	1 9/16/9	3 14:201
	1A3157 CUM		1 9/16/9	73 15:051
	_1A3165 CLM		1 9/16/9	
	TITCLP BLNK		1 9/16/	73 16:361
	_1A4065 CLM		1 9/16/	73 17:541
1>C2270::051	_1A4071 CLM	052COMP	1 9/16/	93 18:391
1>C2271::051			1 9/16/	93 19:241
1>C2272::D51	-		1 9/16/	93 20:091
}	_1		1	1

>C2258 79 50 NG DFTPP NRM

File: >C2258 Scan #: 79 Retn. time: 6.80

k 2		•							
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
39.00	4.696	86.00	1.250	145.90	.980	186.95	3.446	248.80	.608
. 3.00	6.655	86.90	.845	147.00	1.622	188.05	.405	254.90	48.041
41.00	2.466	89.00	.338	147.90	3.108	191.90	1.149	256.00	6.959
44.10	4.899	91.90		148.90		195.90		257.00	.878
1.85	.405	93.00		151.00		197.90	100.000		2.736
43.95	10.608	98.00		152.95		198.90		264.95	1.115
51.05	39.223	99.00		155.95	•	203.10		272.80	1.149
53.05	1.588	100.95		157.75		204.00		273.80	4.696
5 . 85	1.655	103.85		159.45		204.95		274.98	21.520
55.85	.709	106.15		160.05	.1.047	205.95	26.250	275.90	2.973
57.05		106.95		160.95		206.95		276.98	1.689
€ .00		107.95	-	164.85		287.95	.743	292.85	. 405
6	.811	108.85	-	165.70		208.95		295.85	8.041
67.70		109.95		166.20		210.85		296.80	1.047
6°.0∙0	44.831	110.95		166.90	5.338	216.95	6.791	302.10	.372
7 .85		116.10	1.014	168.00	2.500	220.80	5.608	303.00	.912 (
73.95		117.00	6.858			222.30		323.00	2.095
75.05	6.453	117.78	.912	2 175.00		222.90		334.00	1.115
7 15	2 230	191 คก		174 40		מם בטנ		7	

0038

			· 0	エノフ・フフ	1.689	227.90	.743	422.95	3.277
79.95	2.432	128.95	21.655	180.85	1.182	229.00	1.149	441.00	8:953
0.95	5.142	130.05	1.689	181.05	1.115	243.95	12.365	441.95	53.682
g1.95	1.081	134.95	2.196	184.85	1.554	245.00	1.622	442.95	11.014
82.85	1.215	140.90	2.399	185.95	12.736	245.80	1.419	444.05	.811
5.05	1.014	141.80	.676						

Case No:		Calibration Date: 09/14/93					
Centractor: 21ST Century Env		Time: 0	0:36		*		
C/ tract No:		Laboratory ID: >B1625					
Instrument ID: Volatile Inst 8		Initial	l Calibr	atio	n Dat	e: 08/23/93	
Minimum RF for SPCC is .	300	Maxim	ım % Dif	f fo	ır CCI	is 25%	
Compound :	RF	RF .	XDiff	α	SPCC		
Sr Nomethane Vi il Chloride Chloroethane Accolein 1, 2-Trichlorotrifluoroethane Trichlorofluromethane Acetone 1, Dichloroethene Cacon Disulfide Methyl Tertiary Butyl Ether Tertiary Butyl Alcohol Accilonitrile Methylene Chloride 1,2-Dichloroethane Vinyl Acetate 2-Butanone Chloroethane Chloroethane Chloroethane Chloroform	.57263 .84800 .40088 .01462 2.13787 3.12501 .73842 1.66856 2.61211 3.48114 .93521 .50368 1.34147 1.64254 2.51826 .07659 1.62448 3.13117	3.38525 .74600 1.47681 1.42179 3.01821 1.86138 .39879 1.24583 1.60271 1.60370 .09801 1.29377	4.11 4.19 11.27 7.16 15.61 8.33 1.03 11.49 45.57 13.30 99.03 20.82 7.13 36.32 27.96 5.86	* * * * * * * * * * * * * * * * * * * *	**	(Conc=80.00)	
1,: 1-Trichloroethane Carbon Tetrachloride 1,2 Dichloroethane 3enzene Trichloroethene 1,2 Dichloropropane 3rd dichloromethane 2-Chloroethylvinylether 2-F lanone tra -1,3-Dichloropropene Toluene-d8 Toluene	2.33658 2.29334 .41285 .85561 .37847 .28633 .49613 .25250 .36752 .4752	3 .33161 3 .55493	2.32 2.22 18.52 9.8 12.53 15.8 11.8 6.5 14.1 12.8 4.6	7 9 1 1 9 1 5 3 5 18 7		(Conc=50.00)	

^{₹ -} Response Factor from daily standard file at 50.00 UG/L

 $[\]overline{F}_{_{\mathrm{Col}}}$ - Average Response Factor from Initial Calibration Form VI

 $[\]mathfrak{D}if^{\mathcal{E}_{n}}=-% \ \mathsf{Difference}$ from original average or curve

Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

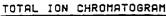
Calibration Date: 09/14/93

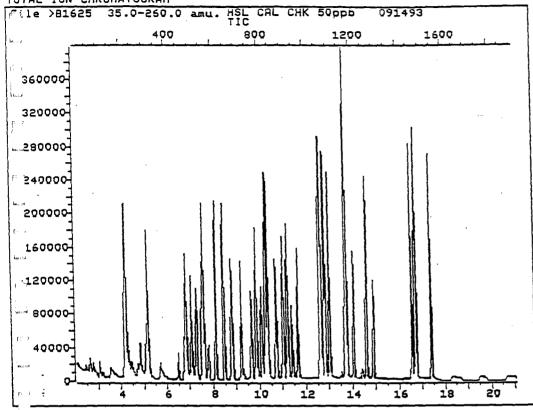
Contractor: 21ST Century Env Time: 00:36

C itract No: Laboratory ID: >81625

Instrument ID: Volatile Inst 8 Initial Calibration Date: 08/23/93

Minimum RF for SPCC is .300 Maximum % Diff for CCC is 25%


Compound	RF	RF	%Diff	CCC	SPCC
cis-1,3-Dichloropropene	. 48595	.51233	5.43		
1 ,2,2-Tetrachloroethane	. 45583	.46845	2.77		**
1,2-Trichloroethane	.37039	.39213	5.87		
4-Methyl-2-pentanone	. 45792	. 48823	6.62		
T 'rachloroethene	.39197	.44681	13.99		
0 romochloromethane	.54690	.59308	8.44		
Chlorobenzene	.89006	.90675	1.88		**
Ethylbenzene	1.50672	1.61199	6.99	*	
m -Xylenes	1.12152	1.17112	4.42		
o-Aylene	1.08518	1.19333	9.97	i	
Styrene	.87140	.85845	1.49	1	
8 moform	. 42174	. 49129	16.49	1	**
8mofluorobenzene	.56278	.59 390	5.53	;	
n-Dichlorobenzene	.70130	.8 <i>7</i> 595	24.90)	
prichlorobenzene	.72664	.90062	23.94	•	
o_ichlorobenzene	.67713	.83808	23.77	7	


CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

RF - Response Factor from daily standard file at 50.00 UG/L

R - Average Response Factor from Initial Calibration Form VI

[#] iff - * Difference from original average or curve

Quant Output File: ^81625::QT

/ Data File: >B1625::D6

Name: HSL CAL CHK 50ppb

Misc: 091493

Id File: ID0401::SC

Title: USEPA 624 VOLATILES

Last Calibration: 930913 05:50

Operator ID: MANAGER

Quant Time: 930914 01:06 Injected at: 930914 00:36

Case No:	Calibration Date: 89/14/93					
wantractor: 21st Century Envir	Time: 09:36					
intract No:	Laboratory ID: >C22229					
Instrument ID: 5970C	Initial Calibration Date: 09/08/93					

Minimum RF for SPCC is 0.050 Maximum % Diff for CCC is 25%

Tinimum kt for SPLL is	Maximum % Diff for ULL 15 25%					
Compound	RF	RF	%Diff	œ	SPCC	
Pyridine	.69881	.56248	19.51			
Mitrosodimethylamine	.56412	.41438	26.54			
Fluorophenol	.76502	.67859	11.30			(Conc=100.00)
Pheno I-d5	.98708	.96702	12.16			(Conc=100.00)
,Seno l	1.08913	.96532		ŧ		
s(-2-Chioroethyl)Ether	.94879	.81145	14.48			
z=Chlorophenoi	.84101	.77287	8.10			
1,3-Dichlorobenzene	.89851	.86616	3.60			
ି 4-0ich lorobenzene	.91567	.88914	2.90	•		
_nzyl Alcohol	.51984	.43194	16.91			
1,2-Dichlorobenzene	.88521	.84517	4.52			
Methylphenol	.76895	.65693	14.57			
s(2-Chloroisopropyl)ether	.86122	.73229	14.97			
4-Methylphenoi	.78643	.71866	8.62			(Conc=100.00)
%-Nitroso-Di-n-propylamine	.79029	.71385	9.67	,	**	•
xachloroethane	.45480	.40785	10.32			•
hatrobenzene-d5	.52545	.44016	16.23	;		(Conc=50.00)
Nitrobenzene	.50278	.42503	15.46	5		
Dophorone	1.00266	.83155	17.87	7		
Mitrophenol	.23796	.22860	3.94	*		
2,4-Dimethylphenol	.32962	.30743	6.7	5		
Penzoic Acid	.18039	.14413	20.1	3		
s(-2-Chloroethoxy)Methane	.49221	. 42368	13.9	2		
2,4-Dichlorophenol	.29425	.29309	.39	9 *		
1,2,4-Trichlorobenzene	.32052	.33212	3.6	2		
phthalene	1.12751	1.09867	2.5	6		
Chloroaniline	. 42195	. 43490	3.0	7		
Hexachlorobutadiene	.17924	.19591	9.3	0 *		
¹⁷ Chloro-3-methylphenol	.37500	.35761	4.6	4 1	ł	
: Methylnaphthalene	.71471	. <i>7</i> 5921	6.2	3		
Hexachlorocyclopentadiene	.29071	.20556	29.2	9	#1	•
2-4,6-Trichlorophenol	.39942	.39764	4	5 1	}	

RF - Response Factor from daily standard file at 50.00 ug/l

% iff - % Difference from original average or curve

- Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

⁻ Average Response Factor from Initial Calibration Form VI

Come No: Calibration Date: 09/14/93

Contractor: 21st Century Envir Time: 09:36

C itract No: Laboratory ID: >C2229

Instrument ID: 5970C Initial Calibration Date: 09/08/93

Minimum RF for SPCC is 0.050 Maximum % Diff for CCC is 25%

Compound	RF	RF ·	%Diff	Œ	SPCC	
2,4,5-Trichlorophenol	.40862	.39165	4.15			
2 hloronaphthalene	1.32190	1.31396	.60			
2 luorobiphenyl	1.48464	1.45464	2.02			(Conc=50.00)
2-Nitroaniline	.42046	.44670	6.24			
D [©] 'ethyl Phthalate	1.47621	1.68084	13.86			•
A naphthylene	1.91606	1.87066	2.37			
3-Mitroaniline	.22138	.26725	20.72			
Agenaphthene	1.33563	1.28063	4.12	•		
2 -Dinitrophenol	.09355	.10167	8.48		**	
4म्ता tropheno l	.15308	.15409	.66		**	
Dibenzofuran	1.83366	1.68629	8.04			
2[-Dinitrataluene	.31730	.34137	7.59			
2 Dinitrotoluene	.29443	.33338	13.23			
Diethylphthalate	1.51900	1.59033	4.70		•	
4 hlorophenyl-phenylether	.59972	.59506	. <i>7</i> 8			
F ¹ prene	1.30652	1.23108	5.77	,		
4-Nitroaniline	.16322	.18329	12.30)		
4,6-Dinitro-2-methylphenol	.11359	.11542	1.61			
N itrosodiphenylamine	. <i>7</i> 5711	.74713	1.32			·
2 -,6-Tribromophenoi	.11174	.12845	14.95	;		(Conc=100.00)
4-Bromophenyl-phenylether	.27913	.29750	6.5	3		
He ach lorobenzene	.26569	.28148	5.99	, *		
Pe tachlorophenol	.11202	2 .10982	1.9	7	**	
Phenanthrene	1.19656	1.15278	3.6	5		
Anthracene	1.1248	9 1.09232	2.9	0		
D 1-Butylphthalate	1.4495	1 1.47720	1.9	1		
Fluoranthene	.7065	4 .70251	5	7 *		
Pyrene	2.1231	3 1.79741	15.3	4		
Bé ridine	.0364	9 .02681	26.5	4		
Te_phenyl-d14	1.2820	4 1.20774	5.8	8		(Conc=50.00)
Butylbenzylphthalate	1.0735	1 .96950	9.6	9		
3 - Dichlorobenzidine	.2640	6 .31744	28.2	2		

RF. - Response Factor from daily standard file at 50.00 ug/l

RF... - Average Response Factor from Initial Calibration Form VI

如 f_- % Difference from original average or curve

⁻ Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

" se No:

Calibration Date: 09/14/93

Contractor: 21st Century Envir

Time: 09:36

Laboratory ID: >C2229

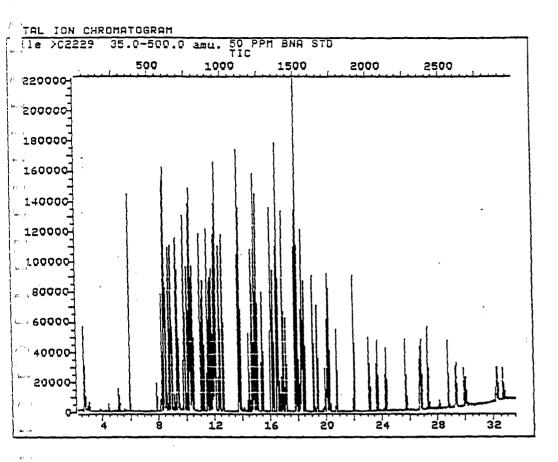
ntract No:

Instrument ID: 5970C

Initial Calibration Date: 09/08/93

Minimum RF for SPCC is 0.050

Maximum % Diff for CCC is 25%


Compound	RF	RF	Wiff	CCC SPCC
Benzo (a) Anthracene	1.19240	1.18333	.76	
s(2-Ethylhexyl)Phthalate	1.32621	1.28479	3.12	
`wafrysene	1.11734	1.07609	3.69	
Di-n-octyl phthalate	2.44477	2.18802	10.50	•
nzo(b)fluoranthene	1.26008	1.13842	9.65	
nzo(k)Fluoranthene	1.32074	1.17670	10.91	
Benzo(a)Pyrene	1.15901	1.06819	7.84	
Indeno(1,2,3-cd)Pyrene	1.16808	1.13321	2.99	
benzo(a,h)Anthracene	.92520	.91829	.75	i
benzo(g,h,i)Parylene	1.02656	1.01676	. 95	
r. :			•	

SPCC - System Performance Check Compounds (**) - Calibration Check Compounds (*)

Response Factor from daily standard file at 50.00 ug/l

⁻ Average Response Factor from Initial Calibration Form VI

f iff - % Difference from original average or curve

Data File: >C2229::D3

Name: 50 PPM BNA STD

. Misc:

Quant Output File: ^C2229::DA

BTL# 2

Id File: ID908C::D3
Title: hSL BNA STD

Last Calibration: 930908 14:10

Operator ID: JEFF

Quant Time: 930914 10:12 Injected at: 930914 09:36

Calibration Date: 09/16/93

Contractor: 21st Century Envir Time: 09:57

Calibration Date: 09/16/93

Laboratory ID: >C2268

Instrument ID: 5970C Initial Calibration Data: 09/08/93

Minimum RF for SPCC is 0.050 Maximum % Oiff for CCC is 25% :

Compound	RF :	RF	XDiff	$\overline{\mathbf{m}}$	300	•
Py∷dine	.69881	.49891	28.61	_		•
n- trosodimethylamine	.56412	.35620	36.86		?	•
2-Fluorophenol	.76502	.64116	16.19			(Conc=100.00)
Phenol-d5	.98708	.86444	12.42			(Conc=180.80)
Pisol	1.08913	.82451	24.30	*		
bist-2-Chloroethyl)Ether	.94879	.75011	20.94			
2-Chlorophenol	.84101	.70735	15.89			
1, Dichlorobenzene	.89851	.84154	6.34			
1, Dichlorobenzene	.91567	.86607	5.42	+		
Benzyl Alcohol	.51984	.47329	8.95			
1,0 Dichlorobenzene	.88521	.82159	7.19			
2- thylphenol	.76895	.65420	14.92			
bis(2-Chloroisopropyl)ether	.86122	.73737	14.38	:		
4-Methylphenol	.78643	.69606	11.49			(Conc=100.00)
N- troso-Di-n-propylamine	.79029	.69033	12.65		**	
Hexachloroethane	.45480	.37479	17.59			•
Ni trobenzene-d5	.52545	. 41976	20.12			(Conc=50.00)
Ni([™] obenzene	.50278	. 40689	19.07	•		
Is_horone	1.00266		17.47	, -		
2-Hitrophenol	.23796	.26558	11.61			
2, -Oimethylphenol		.32027	2.84	•	•	•
Be nic Acid	.18039			5	:	4
bist-2-Chloroethoxy)Methane	.49221	. 42939	12.76	5		
2,4-Dichlorophenol	.29425	.32454	10.3	} *	+	•
1, 4-Trichlorobenzene	, .32052			•		
Na _{pos} thalene	1.12751	1.10037	2.4	1		
4-Chloroaniline	. 42195		4.1	5		
Het chlorobutadiene	.17924	.21359	19.1	7 1	ŧ	
4- loro-3-sethylphenol		" . 34954	6.7	9 1	• •	
2-Nethylnaphthalene	.71471			8		4
Hexachlorocyclopentadiene	.29071			0	Ħ	:
2, 6-Trichlorophenol	.39942	.42748	7.0	2 1	ŀ	

RF" - Response Factor from daily standard file at 50.00 ug/1

RF - Average Response Factor from Initial Calibration Form VI

知 F- X Difference from original average or curve

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Contractor: 21st Century Envir

Time: 09:57

Laboratory ID: >C2260

Instrument ID: 5970C

Initial Calibration Date: 09/08/93

Minimum RF for SPCC is 0.050 Maximum % Diff for CCC is 25%

Compound	RF	RF	#Diff	α	SPC	
7 4,5-Trichlorophenol	.40862	.43302	5. 9 7	_		
: Inloronaphthalene	1.32190	1.31934	.19			
Z-Fluorobiphenyl	1.48464	1.47787	. 46			(Conc=50.00)
2-Nitroaniline	. 42046	. 44793	6.53			
methyl Phthalate	1.47621	1.53576	4.83			
& anaphthylene	1.91606	1.81816	5.11		·!	
3-Nitroaniline	.22138	.23986	7.98			
€ Inaphthene	1.33563	1.24102	7.08	•		
2 1-Dinitrophenal	. 19355	.11898	27.19		**	•
4-Nitrophenol	.15308	.10801	29.44		**	•
Dihenzofuran	1.83366	1.68974	7.85			•
2 1-Dinitrotoluene	.31730	.31041	2.17	!	Ē	
2,3-Dinitrotoluene	.29443	.32006	8.71	•		
Diethylphthalate	1.51900	1.31154	13.66	5		
Alorophenyl-phenylether	.5997	2 .58920	1.7	;		•
£_iorene	1.3065	2 1.17859		}		
4-Nitroaniline	.1632			4		
← Dinitro-2-methylphenol	.1135		34.7	5		
F Hitrosodiphenylamine	. <i>7</i> 571	1 .77328	2.1	4 *		•
2,4,6-Tribromaphenol	.1117	4 .13198	18.1	1		(Conc=100.00)
≨-Bromo phenyl-phenylether	.2791		10.8	2 .	•	
F :achlorobenzene	,2656	9 .28951	. 8.9	7 *		
Fentachlorophenol	.1120	2 .10909			**	•
Phenanthrene	1.1965	8 1.12150	6.2	7		
f ihracene	1.1248	9 1.06853	5.0	1		
_n-Butylphthalate -	1.4495	1 1.33637			7	
Fluoranthene	.7065			9 1	•	
Romene	2.1231	3 1.7032	5 19.7	8		
£ mzidine	. 0364					
Terphenyl-d14		14 1.1549				(Conc=50,00)
Butylbenzylphthalate	1.073					
? -Dichlorobenzidine	.264	06 .2531	9 4.	12		

R - Response Factor from daily standard file at 50.00 ug/1

RF - Average Response Factor from Initial Calibration Form VI

[🛪] ff - % Difference from original average or curve

CCC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

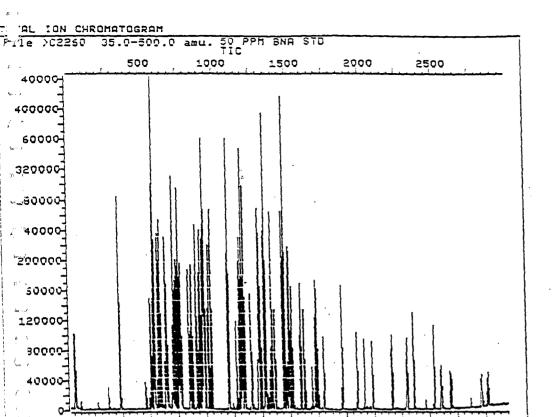
Care No: Calibration Date: 09/16/93

Contractor: 21st Century Envir Time: 89:57

CC tract No: Laboratory ID: >C2260

Instrument ID: 5970C Initial Calibration Date: 09/08/93

Minimum RF for SPCC is 0.050 Maximum % Diff for CCC is 25%


Compound	RF {	RF	%Diff	æ	SPCC
Benzo(a)Anthracene		1.13832	4.54		
Bi 2-Ethylhexyl)Phthalate		1.31437	.89		
Cisene	1.11734	1.05914	5.21		
Di-n-octyl phthalata	2.44477	2.52908	3 .45		
Borno(b)fluoranthene	1.26008	1.20294	4.53		
Be o(k)Fluoranthene	1.32074	1.20459	8.79		
Beñzo (a) Pyrene	1.15901	1.04243	10.06		-
Indeno(1,2,3-cd)Pyrene	1.16808	1.08744	6.90		
Di nzo(a,h)Anthracene	.92520	.89148	3.45	;	
Benzo(g,h,i)Perylene	1.02656	.95241	7.22	!	

Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

[&]amp; . - Response Factor from daily standard file at 50.00 ug/l

F --- Average Response Factor from Initial Calibration Form VI

Diff - % Difference from original average or curve

**Data File: >C2260::D5

Name: 50 PPM BNA STD

(Misc:

Id File: ID916C::05

Last Calibration: 930916 11:28

, Operator ID: JEFF

Quant Time: 930916 11:30 - Injected at: 930916 09:57

Quant Output File: ^C2260::E3

BTL# 2

21st Century Environmental Inc.

GC/MS STANDARD p-BROMOFLUOROBENZENE (BFB) TUNE CRITERIA FOR VOLATILES 50ng

DATE AND TIME OF INJECTION: 8/23/93 10:21

INSTRUMENT ID: 5995

m/z

	Ion Abundance	% Relative Base	Alundance Appropriate	
	Criteria	Peak	Peak	Status
•	15-40% of mass 95	22.07	22.07	Ok
	30-60% of mass 95	51 <i>.7</i> 3	51. <i>7</i> 3	Ok
	Base peak, 100% relative abundance	100.00	100.00	0k
	5-9% of mass 95	8.06	8.06	Ok
	Less than 2% of mass 174	0.00	0.00	Ok
	Greater than 50% of mass 95	77.05	<i>7</i> 7.05	0k
	5-9% of mass 174	4.84	6.28	Ωk
	95-101% of mass 174	77.43	100.50	Ok
	5-9% of mass 176	5 04	6 51	በራ

THIS PERFORMANCE AFFECTS ALL SAMPLES STANDARDS AND BLANKS LISTED BELOW

ISAMPLE ID I	ILAB ID	1 10	ATE	TIME !
1>81242::061	IBFB CHK 50ng	.' !1	3/23/93	10:211
1>81243::061	IHSL CAL STD 50ppb	11	3/23/93	11:001
1>81244::061			3/23/93	11:301
1>81245::061		11	3/23/93	12:011
1>81246::061				
1>81247::061	IHSL CAL CHK 200ppb			
1>81248::061	IBLANK	1	8/23/93	15:141
1>81250::061	IA3641		8/23/93	16:431
1>81251::061	1A3642	11	8/23/93	17:131
1>81252::061		11	B/23/93	17:421
1>81253::061	IA3644	11	8/23/93	18:11!
1>81254::061	1A3645	11	8/23/93	18:41!
1>81255::061	1A3646	11	B /2 3/93	19:111
1>81256::061	1A3647		8/23/93	19:411
1>81257::061	IA3521		8/23/93	20:11!
1>81258::061	1A3640	II	8/23/93	20:411
1>B1259::061	IA3674	11	8/23/93	21:111
1>81260::061	1A3675	II	8/23/93	21:411
1>81261::061	1A3676	11	8/23/93	22:121

File: >B1242 Scan #: 147 Retn. time: - 4.54

/ VZ	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
36.05	3.038	51.05	8.776	69.05	15.842	81.00	5.8 <i>7</i> 3	96.00	8.056
37.05	5.851	52.05	1.485	70.05	1.868	81.90	2.115	100.00	1.845
3 .05	5.401	55.15	4.860	71.05	2.543	83.00	1.170	116.90	1.193
39.05	5.423	56.05	5.153	72.05	1.688	85.00	·1.575	127.90	1.013
41.15	6.143	5 7.05	10.374	<i>7</i> 3.05	5.806	87.00	7.336	134.90	2.228
4 .05	7.223	60.05	1.935	74.05	1 <i>フ・フフフ</i>	88.00	4.725	173.90	<i>77</i> .048
44.05	7.988	61.05	5.828	<i>7</i> 5.05	51. <i>7</i> 33	91.00	3.870	175.00	4.838
45.05	4.365	62.05	6.391	76.00	6.053	92.00	2.768	175.90	<i>7</i> 7.430
4 .95	1. <i>37</i> 3	63.15	4.230	<i>77</i> .00	4.163	93.00	4.140	176.90	5.041
405	5.153	66.95	1.485	<i>7</i> 8.00	2.168	94.00	12.534	206.90	3.510
50.05	22.075	68.05	12.219	79.00	5.513	95.00	100.000		·

Contractor: 21ST Century Env Calibration Date: 08/23/93

Minimum RF for SPCC is .300

Maximum % RSD for CCC is 30%

Laboratory ID:	>81244 RF	>81243 RF	>81245 RF	>B1246 RF	>81247 RF						
Compound	20.00		100.00	150.00	200.00	RRT	RF	% RSD	α	SPCC	•
Ch toromethane	. 48208	.54838	. 48535	.54463	.54751	.366	.52159	6.638		**	
9 momethane	.59343	.57826	.52482	.58455		. 454	.57263	4.768			
Unnyl Chloride	<i>.7</i> 9552	.88669	.76965	.89349	.89466	.390	.84900	7.133	ŧ	•	
Chloroethane	.41727	. 40960	.38578	. 40838	.38337	.473	.40088	3.815			
A siein	.01211	.01503	.01256	.01644		.608	.01462	15.118			(Conc=32.0,80.0,160.0,240
2-Trichlorotrifluoroethane,	1.93850	2.33178	1.84998	2.26329	2.30579		2.13787	10.567			
Trichlorofluromethane	2.98643	3.38895	2.74106	3.25994	3.24866	. 625	3.12501	8.310			
A(Ptone	.71175	.72246	.67275	.75809	.82707	.640		7 .87 4			
1 -Dichloraethene	1.65461	1.81609	1.55371	1.71269	1.60570	.623	1.66856	6.971			
Carbon Disulfide	1.90386	2.03133	2.74257	3.03669	3.34611	.664	2.61211	24.022			•
Methyl Tertiary Butyl Ether	-	2.76540	3.56742	4.11060	-	. <i>7</i> 70	3.48114	19.440	}		
Ti :iary Butyl Alcohol	-	.71453	.97942	1.11168	-	.751		21.624	i		(Conc=40.0,100.0,200.0,30
Acrylonitrile	. 45208	. 48449	. 47728	.54325	.56128	.761	.50368	9.212			
Methylene Chloride	1.28176	1.25183	1.28436	1.44028	1.44913	.715	1.34147	7.093	5		
1; Dichloroethene(trans)	1.57367	1.71611	1.49937	1.70233	1.72124	.764	1.64254	6.120	1		•
Dichloroethane عسر	2.26832	2.73405	2.29680	2.71460	2.57754	.842	2.51826	8.883	5	**	
Vinyl Acetate	.08620	.09168	.06681	.07816	.06011	.854	.07659	17.145	;		
2-€ itanone	1.97393	1.74326	1.34433	1.5200	1.54085	.959	1.62448	14.844	4		
ा ्roform	2.89732	3.19572	2.86376	3.3599	2 3.33911		3.13117	7.59) *		
1,1,1-Trichloroethane	2.55563	2.89720	2.50350	2.9590	2 3.00392	1.052	2.78385	8.47			•
Carhon Tetrachloride	2.07078	2.47113	2.09184	4 2.4932	6 2.55589	1.089	2.33658	10.06			
1, Dichloroethane-d4	2.19121	. 2.23328	2.3751	2.3580	6-2.30899	1.113	2.29334	3.45	9		(Conc=50.0,50.0,50.0,50.0
1,z=Dichloroethane	.41469				5 .40851	.939		6.71	8		
Benzene	.85490					.937					•
Tr hioroethene	.3857					1.04					•
1, Bichloropropane	.2895	.3107	.2581	7 .2890	2 .28420	1.08	.28633	6.55	9 *		
3romodichloromethane	. 4854	.5293			5 .50940	1.13	3 .49613				
2-75-loroethylvinylether	.2284										
2- xanone	4.4109										•
:rams-1,3-Dichleropropene	. 4585	2 .5117	2 .4288	8 .4936	6 .48327	1.21	5 .47521	6.78	9		
		-									-

FL - Response Factor (Subscript is amount in US/L)

R - Average Relative Retention Time (RT Std/RT Istd)

^{😇 –} Average Response Factor

R - Percent Relative Standard Deviation

⁻ Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Contract No:

Instrument ID: Volatile Inst B

Contractor: 21ST Century Env

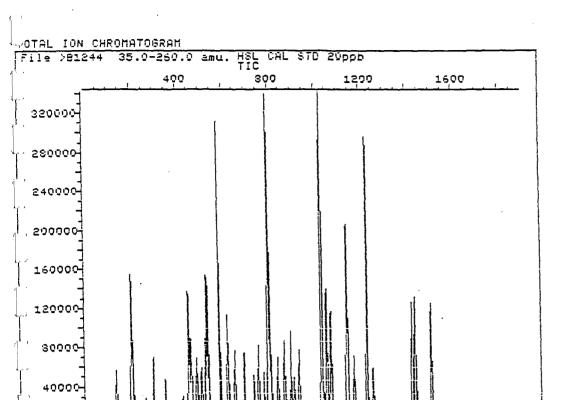
Contract No:

- x - t

Minimum RF for SPCC is .300

Maximum % RSD for CCC is 30%

	Laboratory	ID:			>81245		>81247						
Rice V	Compound		RF 20.00	RF 50.00	RF 100.00	RF 150.00	RF 200.00	RRT	RF	% RSD	ccc	SPCC	•
To ene-d8			.97388	.99022	.97640	.97622	.98131	1.267	.97960	.666			(Conc=50.0,50.0,50.0,50.0
Tordene			.97214	1.05217	.87019	1.00823	.98648	1.280	.97784	6.887	*		
	ch laropropene		. 47568	.51485	. 43148	.51030	. 49743	.850	. 48595	7.003			•
•:	trachloroethane		. 44739	. 48762	.39982	.47197	.47233	1.180	.45583	7.561		**	
	hloroethane		.36458	.39136	.32556	.38592	.38451	.873	.37039	7.299			
4-Methyl-2	-pentanone		.51873	. 41352	.40524	.46756	. 48455	.906	.45792	10.499			•
Tq*⊃achlor	oethene		.38111	.41310	.33375	.41013	.42175	.893	.39197	9.173			
Di omochl	oromethane		.52801	.57307	. 48329	.57612	.57400	.923	.54690	7.470			
Chlorobenz	ene		.88328	.93517	. <i>77</i> 509	.93191	.92485	1.004	.89006	7.591		**	
Ethylbenze	ne		1.51388	1.60863	1.32259	1.57014	1.51837	1.019	1.50672	7.308	*		
må Xylene	\$		1.05143	1.10999	1.00195	1.28696	1.23728	1.035	1.12152	8.921			•
oylene			1.11042	1.15701	.94920	1.12835	1.08092	1.089	1.08518	7.453			
Styrene			.80227	.83858	.80388	.95869	.95359	1.091	.87140	9.034			
Br oform			.39837	.43247	.37186	.44502	. 46096	1.114	.42174	8.573		**	
Brof luor	obenzene		.57356	.55727	.55390	.56587	.56331	1.160	.562 <i>7</i> 8	1.363			(Conc=50.0,50.0,50.0,50.0
m-Dichloro	benzene		.71854	.74817	.57613	.72050	.74313	1.316	.70130	10.153			
p-nichloro	benzene		. <i>7</i> 3911	.76741	.60340	. <i>7</i> 5539	.76789	1.329	.72664	9.617	;		
• '	benzene		.69758		.55651			1.382	.67713	10.103	;		


RF - Response Factor (Subscript is amount in UG/L)

⁻ Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

^{💭 -} Percent Relative Standard Deviation

⁻ Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

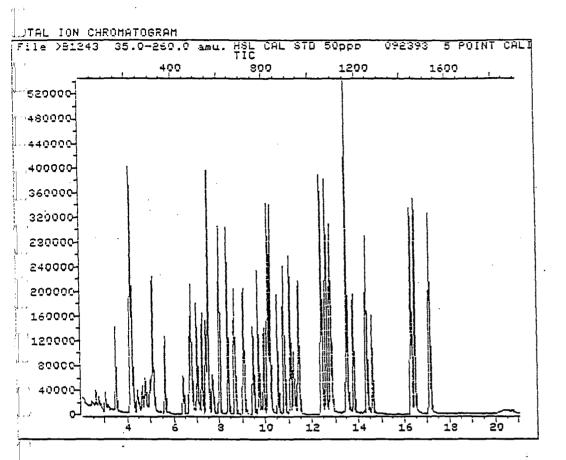
13

50

Quant Output File: ^B1244::D4

Data File: >B1244::D6 Name: HSL CAL STD 20ppb

Misc:


Id File: ID0401::SC

Title: USEPA 624 VOLATILES
Last Calibration: 930823 12:02

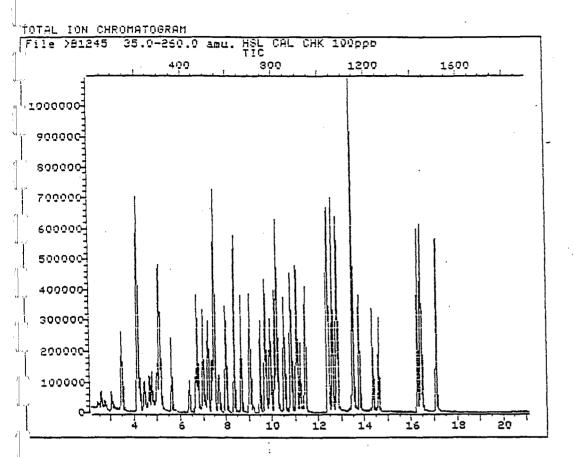
Operator ID: MANAGER

Quant Time: 930823 12:03 Injected at: 930823 11:30

· (0055

Data File: >B1243::D6 Quant Output File: ^B1243::D4

Name: HSL CAL STD 50ppb


Misc: 092393 5 POINT CALIBRATION CURVE

Id File: ID0401::SC

Title: USEPA 624 VOLATILES Last Calibration: 930821 13:24

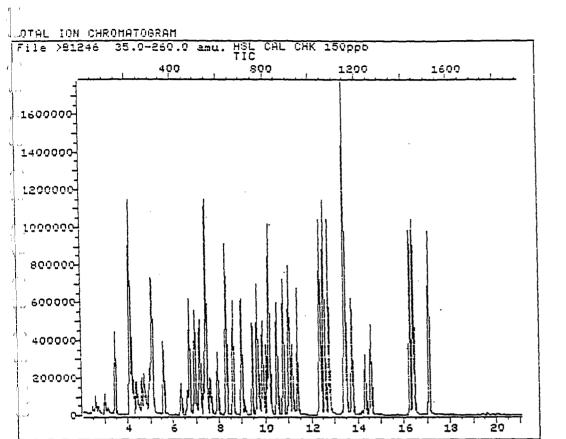
Operator ID: MANAGER

Quant Time: 930823 11:34 Injected at: 930823 11:00

Quant Output File: ^B1245::D4

Data File: >B1245::06
Name: HSL CAL CHK 100ppb

Misc:


Id File: ID0401::SC

Title: USEPA 624 VOLATILES Last Calibration: 930823 12:02

Operator ID: MANAGER

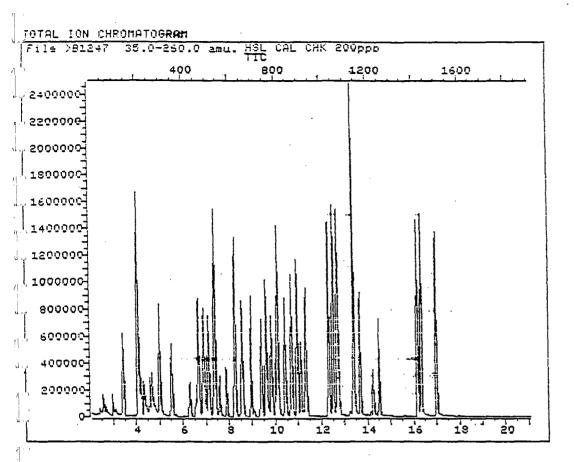
Quant Time: 930823 12:28 Injected at: 930823 12:01

·· 00057

Data File: >B1246::D6 Name: HSL CAL CHK 150ppb

Misc:

Id File: ID0401::SC


Title: USEPA 624 VOLATILES

Last Calibration: 930823 12:02

Operator ID: MANAGER

Quant Time: 930823 13:00 Injected at: 930823 12:34

Quant Output File: ^B1246::D4

Quant Output File: ^B1247::D1

Data File: >B1247::D6 Name: HSL CAL CHK 200ppb

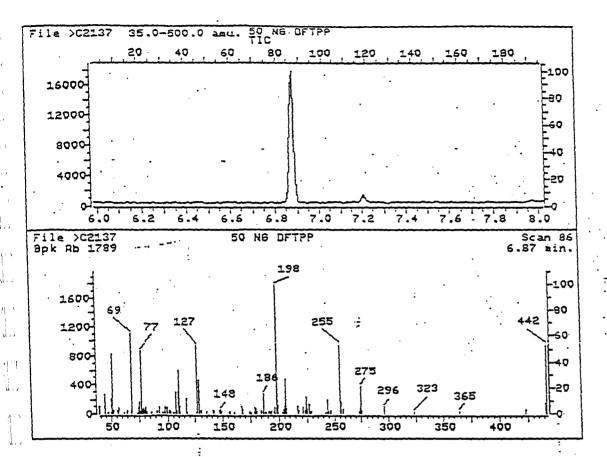
Misc:

Id File: ID0401::SC

Title: USEPA 624 VOLATILES Last Calibration: 930823 12:02

Operator ID: JEFF

Quant Time: 930823 14:05 Injected at: 930823 13:39


· ((0**5**9

21st Century Environmental Inc.

SCA'S STANDARD DECAFLUOROTRIPHENYLPHOSPHINE(DFTPP) TUNE CRITERIA FOR SEMIUDILATILES Fling

DATE AND TIME OF INJECTION: 9/08/93 8:40 INSTRUMENT ID: 5970

INC	THUMENT ID: 59/0	- 0		. •	
DAT	TA RELEASE AUTHORIZED BY	Rul	and.	w Dim	<u>\</u>
			•	he Upringançe	٠.,
	Ion Abundance		Base	Appropriate	٠.
œ∕z	Criteria		Psak	Peak	Status
					
	30-60% of mass 198		46.17		Ok
68	Less than 2% of mass 69		0.00		Ok ·
69	(reference only)		61.93		Ok
70	Less than 2% of mass 69	:	0.00	•	0k
127	40-60% of mass 198		52.66		Ok
197	Less than 1% of mass 198		0.00		, Ck
198	Base peak, 100% relative	abundance			ΰk
199			7.10		· Ok
275	10-30% of mass 198		21.13	21.13	Ük
365	Greater than 1% of mass	198	2.01	2.01	Ωk
	0-100% of mass 443		. 8.33	<i>7</i> 9.26	Ük
442	Greater than 40% of mass	198	55.16	55.16	Ok
443			: 10.51	19.77	Ck
	THIS PERFORMANCE AFFECTS A	ll samples	. •	•	
;	Standards and Blanks Liste	D BELOW			
•		• •		•	
1	SAMPLE ID I	ILAB ID		I DATE	TIME
ì		1	[1	
Į	>C2137::041	150 NG DFTPF	3 1	1 9/08/	93 8:401
1	>C2138::D41	150 PPH BNA	STD	1 9/18/	93 8:581
. 1	>C2140::E41	180 PPM BNA	STD	11 9/08/	93 10:351
. 1	>C2141::031	1120 PPH BN	A STD ·	11 9/08/	93 11:281
1	DC2142::051	1160 PPM BN	A STD	11 9/08/	93 12:041
	1>C2145::051			11 9/08/	93 12:491
•	1>02144::051	1A3879 CLM	9/8	11 9/08/	93 13:351
- '	1>Ç2145::051			11 9/08/	93 14:201
	1>C2146::051	_1A3891 CUM	9/8	11 9/08/	/93 15:051.
	1>02147::051	_1A3897 CM	9/8	1 9/88/	
	1302148::051			1 9/08/	/93 16:361
	1>C2149::051			11 9/08/	

>C2137 50 NG DFTPP 86 NRM

. F	ile:	>C2137 S	can ‡:	86	Retn.	time:	6.87			
	.m/z	Int.	/ m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
	38.35	1.397	80.00	2.683	128.95	25.489	186.05	15.484	227.00	7.211
	39.05	4.248	180.90	5.087	130.05	2.795	186.75	3.130	228.00	. 894
	39.95	5.702	82.10	1.453	135.00	1.845	188.90	1.062	228.90.	1.621
	44.05	14.925	85.90	.950	141.00	2.739	191.80	1.342	241.85	.671
•	46.85	.838	90.95	-1.956	141.90	1.901	192.10	1.230	2,43.90	11.124
	50.00	11.962	92.95	5.887	146.95	2.571	192.90	1.901	244.90	1.789
	51.10	46.171	96.05	1.174	147.95	3.186	196.00	5.254	246.00	2.515
,	52.00	2.795	97.95	ラ.08 フ	148.85	1.397	197.90	180.000	254.98	52.990
	56.00	2.739	99.05	4.975	155.15	2.068	198.90	7.899	255.90	9.111
	57.00	4.528	100.95	2.348	156.85	2.012	202.95	.727	257.75	J.689
	61.90	559	102.85	1.621	159.95.	1.118	203.95	3.577	272.80	1.342
	64.99	2.348	104.90	1.238	167.00	5.981	204.95	5.869	273.98	4.304
	68.95	61.934	186.98	16.546	148.00	3.298	205.95		275.00	21.129
	73.15	7.727	107.90	2.683	173.90	1.342	206.95		275.90	2.683
•	73.45	.559	109.90	33.203	174.95		216.10		295.85	5.590
	74.19	5 4.919	110.90	5.702	176.05	.615	216.90		323.05	1.340
	75.0	5 8.944	117.80	12.018	176.35	.671	217.78		364.90	2.012
į. i	フラ・ブ	5 1.062	117.90	1.006	178.95	4.639	220.90	4.639	423.00	3.130
1	76.D	5 • 1.565	125.15	.671	179.95	3:857			7 // 1 00	4 300

061

تصالأ

지 :: 합교

Mil

Case No: Instrument ID: 5970C Contractor: 21st Century Envir Calibration Date: 09/08/93 Contract No: Minimum RF for SPCC is 0.050 Maximum % RSD for CCC Laboratory ID: >C2143 >C2138 >02148 >02141 >02142 RF · RF RF RF : Compound 20.00 50.00 -80.00 120.00 RRT # RSD 160.00 7.419 .73090 .61832 .74305 .72615 .298 .69881 Pyridine .67563 .60253 n-Mitrosodimethylamine .59126 .50711 .57684 .54288 .302 . 56412 6.909 2-Fluorophenol .89953 .71842 .85435 .84707 .50574 .76502 28.894 (Conc=100.0,100.0,100 .667 Pheno 1-d5 1.09442 .86758 1.14627 1.13775 .68938 .947 .98708 28,418 (Conc=100.0,100.0,100 Phenoi 1.15048 .93627 1.21702 1.11321 1.02866 .951 1.08913 10.029 bis(-2-Chloroethyl)Ether 1.82575 .83614 1.00430 .96090 .91689 .956 .94879 7.967 .91937 .75659 .90919 .83613 .78378 .954 .84181 8.659 2-Chlorophenol 1,3-Dichlorobenzene .98595 .84853 .95680 .88839 .81290 .988 .89851 8.059 .88037 .96055 .90139 .84741 1.4-Dichlorobenzene .98867 1.004 .91567 6.333 Benzyl Alcohol .46277 .43269 -.56863 .58421 .55091 1.063 .51984 13,026 ..92622 1.2-Dichlorobenzene .96341 .83448 .87369 .82825 1.054 .88521 6.623 2-Methylphenol .81996 .65648 1.82243 .80529 .74070 1.108 .76895 9.252 bis(2-Chloroisopropyl)ether .94536 .69695 .88974 .88789 .88614 1.106 .86122 11.048 .66761 .82130 .78071 1.155 .78643 (Conc=40.0,100.0,160. 4-Methylphenal .8145B -.84813 8.981 .79029 N-Nitroso-Di-n-propylamine .86981 .72151 .90383 .81499 .64150 1.148 13.676 Hexach lorge than e .49494 .41576 .47772 .45405 .43350 1.136 45480 6.977 Ni trobenzene-d5 .52978 .48808 .53039 .53654 .54248 .52545 4.096 (Conc=50.0,50.0,50.0,5 .861 Mitrobenzene .52788 .47165 .50786 .50408 .50243 .865 .50278 4.011 Isophorone 1.03348 .90369 1.03410 1.02721 1.01479 .917 1.00266 5.572 _21890 2-Mitrophenol .21782 .24588 .24691 .26028 .931 .23796 7.890 .32962 2.700 2,4-Dimethylphenal .33353 .31521 .33909 . . 33146 .32881 .957 Benzoic Acid .11266 .13719 .20153 .22535 .22528 1.002 .18039 28,977 5.004 bis (-2-Chloroethoxy) Methane .50997 44881 .49885 .974 .49221 .50041 .50298 2,4-Dichlorophenol .28026 .30679 .29764 .29425 3,256 .29261 .29393 -983 1,2,4-Trichlorobenzene .31932 .31830 .995 .32052 3.070 .33747 .31477 .31275 1.11929 1.10871 1.11407 Naphtha lene 1.19791 1.09759 1.004 1.12751 3.562 4-Chloroaniline .39340 .38681 .44659 1.029 .42195 7,242 .45253 .43122 Hexachlorobutadiene .19319 .18146 1.17994 .17253 .16906 1.049 .17924 5.211 .37500 5.011 4-Chloro-3-eethylphenol .38222 .35100 .39815 .38249 .36114 1.140 .70523 2.601 2-Methylnaphthalene .72866 .73047 .72256 .68664 1.149 71471

RF - Response Factor (Subscript is amount in ug/l)

RRT - Average Relative Retention Time (RT Std/RT Istd)

RT - Average Response Factor

ARSD - Percent Relative Standard Deviation

⁻ Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

				·							•
Contractor: 21st Century Envir		alibrat	ion Dat	e: 09/08 ———	3/93 ·	·	-	•			
Contract No:	·							•	-		
	•		•	•							
Minimum RF for SPCC is	0.050	Maxiaum	¥ RSD f	or att	is 30%			•			· · · · · ·
Laboratory ID:	>C2145 >C	2138 >0	2140 >	C2141	C2142		•			•	
	RF (∶	RF	RF "	RF	RF .		_	• •	•		
Compound	20.00 5	0.00	30.00 1	120.00	160.00	RRT	RF '	* RSD	\overline{x}	SPCC	
Hexachlorocyclopentadiene.	.23258 .	26104	.29812	.31555	.34627	.878	.29071	15.399		++	
2,4,6-Trichlorophenal	.37817 .	37956	.40566	.40706	.42667	.893	.39942	5.148	ŧ		·
2,4,5-Trichlorophenol	.36947 .	40303	.42669	.42275	.42115	.898	.40862	5.801			
2-Chloronaphthalene	1.32638 1.					.914	1.32190	3.369	•		
2-Fluorobiphenyl	1.38171 1.	.36840 1	.45571	1.56603	1.65138	905	1.48464	8.206	•		(Conc=50.0,50.0,50.0
2-Hitroaniline			.41915	.41868	. 42956	.940	.42046	1.548			
Dimethyl Phthalate	1.76551 1.					.979	1.47621	14.114			
Acenaphthylene	2.00989 1.	.88610 1	92268	1.98486	1.87675	.976	1.91606	2.890			
3-Nitroaniline	.24134	.23925	.22123	.20616	.19894	1.004	.22138	8.609	-		•
Acenaphthene	1.42137 1		L.32576		1.29154	1.005	1.33563	3.747			. :
2,4—Dinitrophenol		. 19673	.10999	.10397	.10776	1.020	. 19355	26.994	-	**	-
4-Nitrophenol		.15914	.17669	.17172		1.039	.15308	22.607		#	_
Dibenzofuran	1.86741 1	.78719	1.88602	1.81959	1.80811	1.030	1.83366	2.264			
2,4-Dinitrotoluene	.34861	.36904	.31497	.28296	.27090	1.043	.31730				
2,6-Dinitrataluene		.31714	.29549	.27325		.986	.29443	8.311			•
Diethylphthalate	1.99654 1	70410	1.48077	1.24204	1.17156	1.887					
4-Chlorophenyl-phenylether	.64987	.61093		.57825		1.088	.59972				•
Fluorene	1.42489 1						1.30652				•
4-Hitroaniline	.14904	.16863	.17266			1.098					
4,6-Dinitro-2-methylphenol	.07290	.10179	.13049			.905					. •
N-Hitrosodiphenylamine	.69176	.68056	.82423			.908					
2,4,6-Tribromophenol	.19546	.09811	.12245			.919				•	(Conc=100.0,100.0,
4-Bromophenyl-phenylether	.24601	.25380	.30083			.950					
Hexachlorobenzene	.25987	.26015	.27454			.964					•
Pentach Loropheno L	.08494				2 .12323	.989				. #1	•
Phenanthrene					1 1.17774		1.1965			•	
Anthracene	_				4 1.12233		1.1248				• • •
Di-n-Butylphthalata					5 1.32676		4 1.4495		_		•
Fluoranthene					4 .70906		.7065			ŧ	
Pyrene .	2.41255	2.33/55	2.0024	7 1.8719	7 1.99112	.88	5 2.1231	3 11.16	6		

RF - Response Factor (Subscript is amount in ug/1)

RRT - Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

[#]RSD - Percent Relative Standard Deviation

CC - Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Instrument ID: 5970C

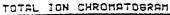
Case No:

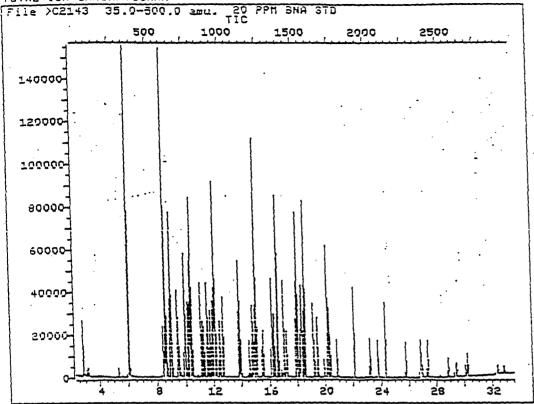
ر ل

M.

14 ,4

Contractor: 21st Century Envir Calibration Date: 09/08/93 Contract No: Minimum RF for SPCC is 0.050 Maximum % RSD for CCC is 30% Laboratory ID: >C2143 >C2138 >02140 >02141 > 12142 RF : RF RF RF Compound -28.00 50.00 80.00 120.00 RRT * RSD COOR SPECE 160.00 .02490 Benzidine .01749 .03552 .05130 .883 .03649 45.261 . 05326 Terphenyl-d14. 1.40587 1.39008 1.19225 1.19027 1.23176 .907 1.28204 8.366 (Conc=50.0,50.0,50.0 1.10913 1.00798 1.09099 1.06541 1.09403 3.713 Butylbenzylphthalate .960 1.07351 .28284 3,3'-Dichlorobenzidine .21334 .20850 .30354 .31209 1.002 .26406 18.820 1.19227 1.13411 1.20893 1.20612 1.22056 .999 1.19240 - 2.868 Benzo(a)Anthracene Bis (2-Ethylhexyl)Phthalate 1.36825 1.17601 1.35096 1.36008 1.37577 1.020 1.32621 6.370 4.259 Chrysene 1.19307 1.10298 1.08645 1.07298 1.13124 1.002 1.11734 2.19785 2.16480 2.59768 2.62085 2.64266 9.870 Di-n-octyl phthalate .956 2.44477 Senzo(b)fluoranthene 1.25450 1.21059 1.27995 1.26976 1.28578 .975 1.26008 2.391 Benzo (k) Fluoranthene .975 1.32074 4.110 1.37252 1.23395 1.35210 1.33962 1.30550 Benzo(a)Pyrene 1.15005 1.09835 1.22132 1.14982 1.17552 .996 1.15901 3.859 1.10436 1.07357 1.22071 1.22752 1.21425 Indeno(1,2,3-cd)Pyrene 1.870 1.16808 6.266 Dibenzo (a,h)Anthracene .81177 .97729 .99961 .98030 1.072 .92520 9.171 5.825 Benzo(g,h,i)Perylene .94266 .98440 1.07025 1.07743 1.05804 1.086 1.02656


RF - Response Factor (Subscript is amount in ug/1)


RRT - Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

^{*}RSD - Percent Relative Standard Deviation

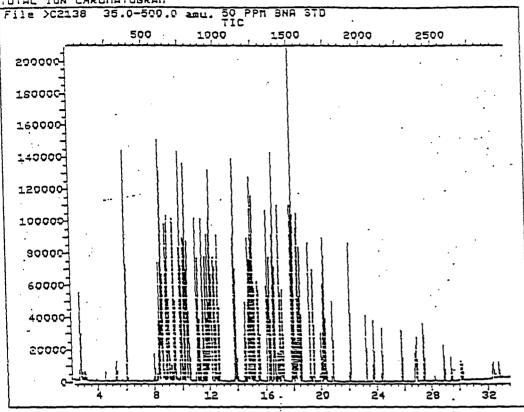
⁻ Calibration Check Compounds (*) SPCC - System Performance Check Compounds (**)

Data File: >C2143::05

Name: 20 PPM BNA STD

Misc:

Quant Output File: ^C2143::QT


Id File: ID831C::D3 Title: hSL BNA STD

Last Calibration: 930830 11:19

Operator ID: JEFF

Quant Time: 930908 13:25 Injected at: 930908 12:49 BTL# 5

TOTAL ION CHROMATOGRAM

Data File: >C2138::D4 Name: 50 PPM BNA STD

Misc:

Quant Output File: ^C2138::QT

Id File: ID831C::D3 Title: hSL BNA STD

Last Calibration: 930830 11:19

Operator ID: JEFF

Quant Time: 930908 09:35 Injected at: 930908 08:58 BTL‡ 2

Data File: >C2140::E4

Name: 80 PPM BNA STD

Misc:

Quant Output File: ^C2140::QT

BTL# 2

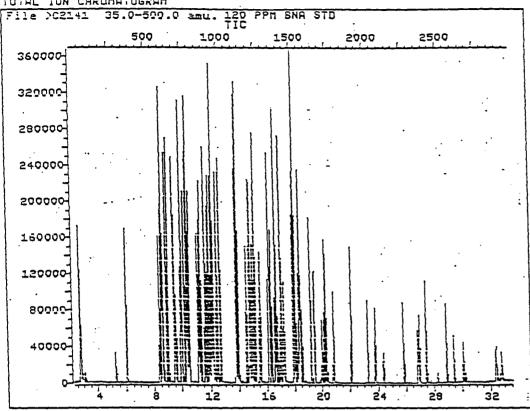
Id File: ID831C::D3 Title: hSL BNA STD

Last Calibration: 930830 11:19

Operator ID: JEFF

Quant Time: 930908 11:11 Injected at: 930908 10:35

TOTAL ION CHROMATOGRAM


 $\eta \cdot \tau$

ų.

f] :

 $\eta \to$

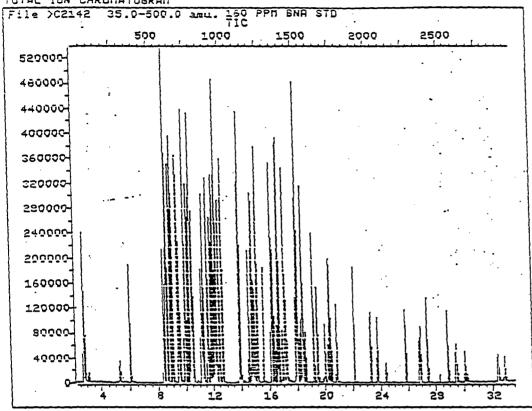
Va.

Data File: >C2141::D3 Name: 120 PPM BNA STD

Misc:

Id File: ID831C::D3 Title: hSL BNA STD

Last Calibration: 930830 11:19


Operator ID: JEFF

Quant Time: 930908 12:02 Injected at: 930908 11:20 Quant Output File: ^C2141::QT

BTL# 3

ri i

Quant Output File: ^C2142::QT

Data File: >C2142::D5

Name: 160 PPM BNA STD

Misc:

Id File: ID851C::D3

Title: hSL BNA STD

Last Calibration: 930830 11:19

Operator ID: JEFF

Quant Time: 930908 12:41 Injected at: 930908 12:04

90070

BTL# 4

VOLATILE METHOD BLANK SUMMARY

Lab Name: BRIDGEPORT ENVIRONMENTAL Inc. Contract No.:

Lab Code:

Case No: SAS No.:

SDG No.:

LAB ID FILE (BLANK): >81626

DATE ANALYZED: 09/14/93

INSTRUMENT ID: 8

TIME ANALYZED: 01:58

Matrix: SOIL Level:(low/med) LOW Column:(pack/cap)

Sample ID: BLANK

THIS BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

_				
· 1	LAB	I LAB	DATE I	TIME
1	SAMPLE ID	I FILE ID	ANALYZED I	ANALYZED I
; } ~				
- , -	M-OU OU		00 /1 / /07	
11	MeOH BLK	>B1627	09/14/93	02.33
21	A4024	l >B1630	l 09/14/93 i	04:02
<i>3</i> l	A2990	1 >81633	09/14/93	05:32
41	A2997	l >B1634	09/14/93	06:03
51	A3000	l >B1635	09/14/93	06:33
61		1	. : !	
フィー		1		
81		1	·	
		·	·	' , _
· · · -		·¦	' ———— '	·
		· · · · · · · · · · · · · · · · · · ·	<u>, </u>	·
		• !	! 	
		·!	!	!
131_		·		
141_	 _		1	·
151		_	1	l
161		_	I	i
171			1	l
181	/ -		1	1
191		1	· ·	1
281		-	·	·
211		- ' - 	' 	'
		-¦	·¦	<u>'</u>
•		-	. }	·
231		!	.!	!
241	 	_!	.	·
251		1	1	1

COMMENTS:	

21st Century Environmental Inc. UOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER
SAMPLE NUMBER
BLANK
DILLUTION FACTOR
1.00

CLIENT ID
091493 METHOD BLANK
DATE ANALYZED
09/14/93

COMPOUND	UG/KG	MDL	COMPOUND	UG/KG	MDL
Acrolein	סא	 50	2-Chloroethylvinylether	ND	10
Acrylonitrile	ND	50	2-Hexanone	ИD	10
Chloromethane	HD	10	trans-1,3-Dichloropropene	ND	5
Bromomethane	ND -	10	Toluene	ND	. 5
Vinyl Chloride	ND	19	cis-1,3-Dichloropropene	ND	5
Chloroethane	ND	10	1,1,2,2-Tetrachloroethane	ND	5
Acetone	5.1 J	10	1,1,2-Trichloroethane	ND	5
1,1-Dichloroethene	ND	5	4-Methyl-2-pentanone	ND	10
Carbon Disulfide	ND	10	Tetrachloroethene	NED	5
Methylene Chloride	2.4 J	5	Dibromochloromethane	ND	5
1,2-Dichloroethene(trans)	МĐ	5	Chlorobenzene	NO	5
1,1-Dichloroethane	ИD	5	Ethylbenzene	ИD	5
Vinyl Acetate	ND	5	m&p-Xylenes	СВИ	5
2-Butanone	ND	10	o-Xylene	ND	5
Chloroform	ИD	5	Styrene	ND	5
1,1,1-Trichloroethane	ND	5	Bromoferm	ИD	5
Carbon Tetrachloride	ND	5	m-Dichlorobenzene	ND	9
1,2-Dichlorgethane	ИD	5	p-Dichlorobenzene	ИD	5
Benzene	ND	5	o-Dichlorobenzene	ND	5
Trichloroethene	ИD	5	Methyl Tertiary Butyl Ether	ИD	10
1,2-Dichloropropane	ND	5	Tertiary Butyl Alcohol	MD	50
Bromodichloromethane	КD	5	-		

SURROGATE COMPOUNDS	% RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	102	70 - 121	OK
Tolúene-d8	94.6	81 - 117	0K
Bromof Luorobenzene	99.5	74 - 121	OK

Percent Solid of 100. is used for all Target compounds.

- (J) Indicates detected below MDL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Code:

Case No.: N/A

Lab Name: 21st Century Environmental Contract: N/A

SAS No.: N/A

SDG No.: N/A

Matrix: (soil/water) SDIL

Lab Sample ID: BLANK

Sample wt/vol:

(g/mL) g

Lab File ID:

>B1626

Level: (low/med) LOW

Date Received: NA

% Moisture: NA

Date Analyzed: 09/14/93

Column: DB-624

Number TICs found:

Dilution Factor:

CONCENTRATION UNITS

(ug/L or ug/Kg) ug/Kg

I CAS NUMBER	COMPOUND NAME	l RT		
	No Unknowns	\		! ;
1				` `
		<u> </u>		:
		\	1	' !
				<u>'</u>
	1	'		\

FORM I VOA-TIC

1/87 Rev.

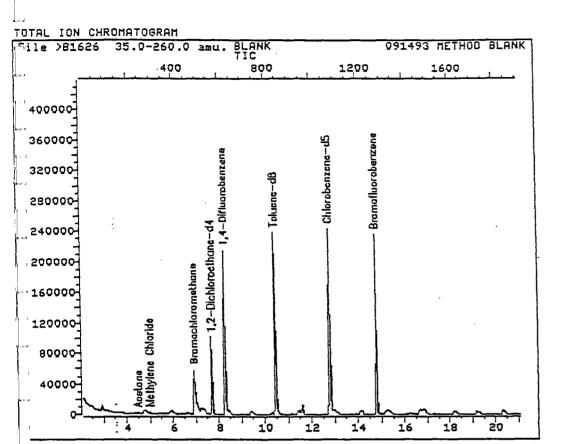
QUANT REPORT

perator ID: MANAGER Quant Rev: 6 Quant Time: 930914 04:26 Output File: ^81626::D4 930914 01:58 Injected at: a File: >B1626::D6

Dilution Factor: 1.00000

Na s: BLANK 1isc: 091493 METHOD BLANK

5m1


D File: ID0401::SC

Fire: USEPA 624 VOLATILES

ast Calibration: 930914 02:58

سنأ	Compound	, R.T.	Scan♯	Area	Conc	Units	P
1 5 3	*Bromochloromethane	6,92	482	56726M	50.00	UG/L	100
9	Acetone	4.49	237	4292	5.07	UG/L	
	Methylene Chloride	4.98	287	3378	2.39	UG/L	72
2 3 ,),	1,2-Dichloroethane-d4	7.68	559	135293	50.83	UG/L	100
24	*1,4-Difluorobenzene	8.27	618	31 <i>7</i> 354	50.00	UG/L	100
334	Toluene-d8	10.43	836	307831	47.30	UG/L	100
3 5)	*Chlorobenzene-d5	12.75	1070	265147	50.00	UG/L	100
48 '	Bromofluorobenzene	14.76	1272	156670	49. <i>7</i> 5	UG/L	100

^{*} Compound is ISTD

Quant Output File: ^B1626::D4

5ml

Data File: >81626::D6

Name: BLANK

Misc: 091493 METHOD BLANK

Id File: ID0401::SC

Title: USEPA 624 VOLATILES Last Calibration: 930914 02:58

Operator ID: MANAGER

Quant Time: 930914 04:26 Injected at: 930914 01:58

.. 00075

21st Century Environmental Inc. VOLATILE ORGANIC ANALYSIS DATA

JOB NUMBER MATRIX Soil
SAMPLE NUMBER MeOH BLK DILLITION FACTOR 50.00
CLIENT ID EXTRACTION BLANK QA BATCH
DATA FILE >81627 DATE ANALYZED 09/14/93

COMPOUND	ug/kg	MDL_	COMPOUND	ug/kg	MDL
************	*********	*****			
Acrolein	ND	2500	Bromodichloromethane	ND	250
Acrylonitrile	ND	2500	2-Chloroethylvinylether	NO	500
Chloromethane	ND	500	2-Hexanone	ND	500
Bromomethane	NO	500	trans-1,3-Dichloropropene	ИD	250
Vinyl Chloride	. ND	500	Toluene	ND	250
Chloroethane	ЖD	500	cis-1,3-Dichloropropene	MD	250
Acetone -	248 J	500	1,1,2,2-Tetrachloroethane	NO	250
1,1-Dichlorgethene	ND	258	1,1,2-Trichloroethane	מא (258
Carbon Disulfide	ND	500	4-Methyl-2-pentanone	ИD	500
Methylene Chloride	87 J	250	Tetrachloroethene	ND	250
1,2-Dichloroethene(trans)	ND	250	Dibromochloromethane	ND	250
1,1-Dichloroethane	ND	250	Chlorobenzene	ND	250
Vinyl Acetate	ND	250	Ethylbenzene	ND	250
2-Butanone	ND .	500	m&p-Xylenes	ND	250
Chloroform	ND	250	o-Xylene	ND	250
1,1,1-Trichloroethane	ND	250	Styrene	ND	250
Carbon Tetrachloride	МD	250	Bromoform -	ND	250
1,2-Dichloroethane	ND	250	m-Dichlorobenzene	ND	250
Benzene	ND	250	p-Dichlorobenzene	ND	250
Trichloroethene	ND	250	o-Dichlorobenzene	KD	251
1,2-Dichloropropane	ND	250	-		

SURROGATE COMPOUNDS	* RECOVERY	LIMITS	STATUS
1,2-Dichloroethane-d4	103	70 - 121	OK.
To luene-d8	96.5	81 - 117	_DK
Bromofluorobenzene	99.5	74 - 121	OK

Percent Solid of 100. is used for all Target compounds.

- (J) Indicates detected below MDL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

BLANK	

Lab Name:21st Century Environmental Contract:N/A

lab Code:

Case No.: N/A SAS No.: N/A

SDG No.: N/A

Matrix: (soil/water) SOIL

Lab Sample ID: BLANK

Sample wt/vol: .1 (g/mL) q

Lab File ID:

>B1627

Level: (low/med) LOW

Date Received: NA

Date Analyzed: 09/14/93

Moisture: NA

Dilution Factor:

Column: DB-624

CONCENTRATION UNITS

Number TICs found: (ug/L or ug/Kg) ug/Kg

l l	COMPOUND NAME			
i.	 INo Unknowns	İ	Í	ii
1.		<u></u>	1	<u> </u>
1.0.7				
1 1		! !		
L 1			1	!!
	 l	! !		!
		!	!	!!

FORM I VOA-TIC

1/87 Rev.

QUANT REPORT

perator ID: MANAGER

Quant Rev: 6

Quant Time: 930914 04:31

utput File: ^B1627::D4

Injected at: 930914 02:33

at File: >B1627::D6

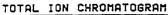
Dilution Factor:

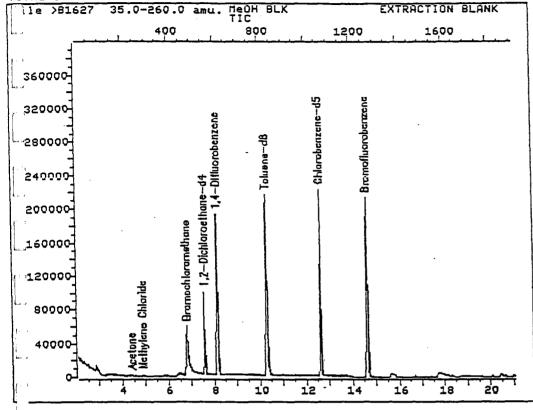
1.00000

an : MeOH BLK

100ul/5ml

isc: EXTRACTION BLANK


O ile: ID0401::SC


itie: USEPA 624 VOLATILES

ast Calibration: 930914 02:58

<i>.</i>	Compound	R.T.	Scan#	Area	Conc	Units	P
1.] '	*Bromochloromethane	6.78	473	52284M	50.00	UG/L	100
9	Acetone	4.38	231	3800	4.87	UG/L	81
5)	Methylene Chloride	4.86	28.0	2276	1.75	UG/L	78
3 }	1,2-Dichloroethane-d4	7.54	550	125935	51.34	UG/L	100
4	*1,4-Difluorobenzene	8.12	608	288217	50.00	UG/L	100
3 5	Toluene-d8	10.27	825	285050	48.23	UG/L	100
5)	*Chlorobenzene-d5	12.59	1059	247617	50.00	UG/L	100
8∫	Bromofluorobenzene	14.60	1261	146295	49.74	UG/L	100

^{*} Compound is ISTD

Quant Output File: ^B1627::D4

100ul/5ml

Data File: >B1627::D6

Name: MeOH BLK

Misc: EXTRACTION BLANK

Id File: ID0401::SC

Title: USEPA 624 VOLATILES

Last Calibration: 930914 02:58

Operator ID: MANAGER

Quant Time: 930914 04:31 Injected at: 930914 02:33

- 00079

4B SEMIVOLATILE METHOD BLANK SUMMARY

Lab Name: 21st Cen	tury Environmental		Contract No.:
Lab Code:	Case No:	SAS No.:	SDG No.:
LAB ID FILE (BLANK	(): >C2265		DATE ANALYZED: 09/16/9
INSTRUMENT ID: C			TIME ANALYZED: 14:20
Matrix: SOIL	Level:(low/med)	LOW	Column:(pack/cap)
Date Extracted: 09	/14/93	Extractio	n:(Sepf/Cont/Sonc) SONC
Sample ID: NA BLAN	ık ·		
THIS BLANK APPLIES	TO THE FOLLOWING SA	MPLES,MS A	IND MSD
	·		

	I LAE D I FILE	ID I ANALY	E I TIME I ZED I ANALYZED I
•			4/93_ 16:46
31 41			
61			
81			

COMMENTS:	
	·

21st Century Environmental Inc. SEMIVOLATILE ANALYSIS DATA

JOB NUMBER	US ARMY, FT. MONMOUTH, NJ	MATRIX	Soil	
SAMPLE NUMBER	NA BLANK	DILUTION FACTOR	1.00	
CLIENT ID	BLDG 2700	COMMENTS	NONE	
DATA FILE	>C2265	DATE ANALYZED	09/16/93	

*30055555555555555555555555555555555555						
COMPOUND	UG/KG	MDL	COMPOUND	UG/KG	MDL	
***********************************					*****	
N-Nitrosodimethylamine	ND	330	2,6-Dinitrotoluene	CBM	330	
bis(-2-Chloroethyl)Ether	ND	330 ·	Diethylphthalate	ND	330	
1,3-Dichlorobenzene	ND	330	4-Chlorophenyl-phenylether	ИD	330	
1,4-Dichlorobenzene	ND	330	Fluorene	ND .	330	
Benzyl Alcohol	ND	330	4-Nitroaniline	ND	1600	
1,2-Dichlorobenzene	ND	330	N-Nitrosodiphenylamine	ND	330	
bis(2-chloroisopropyl)Ether	ND	330	4-Bromophenyl-phenylether	ND	330	
N-Nitroso-Di-n-Propylamine	ND	330	Hexach lorobenzene	ND	330	
Hexachloroethane	ND	330	Phenanthrene	ND	330	
Ni trobenzene	ND	330	Anthracene	DM	330	
Isophorone	ND	330	Di-n-Butylphthalate	ИD	<i>3</i> 30	
Benzoic Acid	MD	1600	Fluoranthene	ND	330	
bis(-2-Chloroethoxy)Methane	ND	330	Pyrene	ND	330	
1,2,4-Trichlorobenzene	ND	330	Butylbenzylphthalate	ND	330	
Naphtha lene	ИD	330 [3,31-Dichlorobenzidine	ND	668	
4-Chloroaniline -	ND	330	Benzo(a)Anthracene	ND	330	
Hexachlorobutadiene	ND	330 -	Bis(2-Ethylhexyl)Phthalate	42 J	330	
2-Methylnaphthalene	ND	330	Chrysene	ND ·	330	
Hexachlorocyclopentadiene	ND	330	Di-n-Octyl Phthalate	ND	330	
2-Chloronaphthalene	ИD	330	Benzo(b)Fluoranthene	ND	330	
2-Nitroaniline	ND	1600	Benzo(k)Fluoranthene	ΝĐ	330	
Dimethyl Phthalate	ND	<i>3</i> 30	Benzo(a)Pyrene	ND	330	
Acenaphthylene	ND	330	Indeno(1,2,3-cd)Pyrene	ЯD	. 330	
3-Nitroaniline	ND	1600	Dibenzo(a,h)Anthracene	ИD	330	
Acenaphthene	MD	330	Benzo(g,h,i)Perylene	МD	330	
Dibenzofuran	ND	330	Benzidine	ИD	660	
2,4-Dinitrotoluene	ND	330			•	

Percent Solid of 100. is used for all Target compounds.

- (J) Indicates detected below MDL
- (B) Indicates also present in blank
- (ND) Indicates compound not detected

Let at					
	1F LE ORGANICS ANALYSIS ATIVELY IDENTIFIED O		1	EPA SAMPL	E NO.
L b Name: 21ST CENTURY ENVIRONMENTAL			1	BLDG 270	0 i
Çlient: US ARMY FT.	MONMOUTH, NJ				
Metrix: (soil/water)	SOIL	Lab Sa	imple ID:	NA BLANK	
Simple wt/vol: 3	0 ·(g/mL) G	•	le ID:		÷.
Level: (low/med)	-	Date f	Received:	NA	
Moisture: NA		Date 8	Extracted	:09/16/93	
Extraction: (Sepf/C	ont/Sonc) SONC	Date (Analyzed:	09/14/93	,
C Cleanup: (Y/N)	N	Dilut	ion Facto	r: 1	
Number TICs found:	1	CONCENTRATION (ug/L or ug.			··•
· 1		•			1
• •	COMPOUND NAME	i I R		ST. CONC.	Q i
1	NKNOMN	128.9	=== ==== 7	170	
1l_L 2l_	NKNOMN		9!	170	
1	NKNOWN	28.9 28.9	9 	170	
1	NKNOMN	28.9	9 	170	
1	NKNOMN	28.9	7	170	
1	NKNOWN	28.9	7	170	
1.	NKNOWN	28.9	7	170	
1.	NKNOWN	28.9	7	170	
1.	NKNOWN	28.9	7	170	
1.	NKNOWN	28.9		170	
1.	NKNOWN	128.9		170	
1.	NKNOWN	128.9		170	
1.	NKNOWN	128.9		170	
1.	NKNOWN	128.9		170	
1.	NKNOWN	128.9		170	
1.	NKNOWN	128.9		170	
1.	NKNOWN	128.9		170	

QUANT REPORT

perator ID: JEFF ut ut File: ^C2265::DA ata File: >C2265::D5

Quant Rev: 6

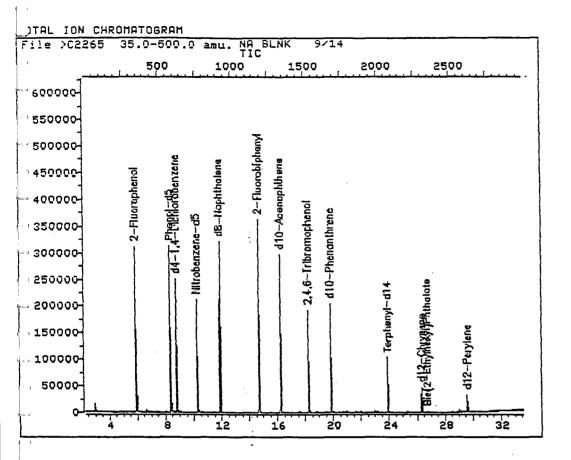
Quant Time: Injected at:

930916 14:57 930916 14:20

Dilution Factor:

1.00000

ame: NA BLNK 9/14


BTL# 4

D File: ID916C::D5 it 'e: hSL BNA STD

as Calibration: 930916 11:28

Compound	R.T.	Scan#	Area	Conc	Units.	P
1 *d4-1,4-Dichlorobenzene	8.72	613	117128	40.00	UG/L	98
4) 2-Fluorophenol	5.80	334	166404	88.63	UG/L	88
5 Phenol-d5	8.29	572	234537	92.66	UG/L	8 9
.8 wd8-Naphthalene	11.83	911	261532	40.00	UG/L	90
.9) Nitrobenzene-d5	10.18	<i>7</i> 53	126783	46.20	UG/L	83
53일 *d18-Acenaphthene	16.18	1328	127250	40.00	UG/L	96
8 2-Fluorobiphenyl	14.64	1180	212335	45.16	UG/L	92
350 *d10-Phenanthrene	19.76	1671	158385	40.00	UG/L	99
(6) 2,4,6-Tribromophenol	18.16	1517	30965	59.25	UG/L	88
34 *d12-Chrysene	26.30	2297	32648	40.00	UG/L	92
7 Terphenyl-d14	23.86	2063	62515	64.57	UG/L	89
71) Bis(2-Ethylhexyl)Phthalate	26.71	2336	1398	1.27	UG/L	93
⁷³ *d12-Perylene	29.57	2610	27046	40.00	UG/L	96

Compound is ISTD

Quant Output File: ^C2265::DA

Data File: >C2265

Name: NA BLNK 9/14

Misc:

Id File: ID916C::D5

Title: hSL BNA STD

Last Calibration: 930916 11:28

Operator ID: JEFF

Quant Time: 930916 14:57 Injected at: 930916 14:20

00084

BTL# 4