U.S. Army GarrisonFort Monmouth, New Jersey

Underground Storage Tank Closure Report

Main Post – Building 906A Courier Ave.

NJDEP UST Registration No. 81533-146

February 2008

UNDERGROUND STORAGE TANK REPORT

MAIN POST -BUILDING 906A NJDEP UST REGISTRATION NO. 81533-146

FEBRUARY 2008

PREPARED FOR:

U.S. ARMY GARRISON, FORT MONMOUTH, NJ DIRECTORATE OF PUBLIC WORKS BUILDING 167 FORT MONMOUTH, NJ 07703

PROJECT NO. 06-34950

PREPARED BY:

TECOM-VINNELL SERVICES, INC. P.O. BOX 60 FT. MONMOUTH, NJ 07703

TABLE OF CONTENTS

EXE	CUTIV	VE SUMMARY	IV				
1.0	UNDERGROUND STORAGE TANK SITE INVESTIGATION ACTIVITIES						
	1.1	Overview	1				
	1.2	Site Description	1				
		1.2.1 Geological/Hydrogeological Setting	1				
	1.3	Health and Safety	3				
2.0	SITE INVESTIGATION ACTIVITIES						
	2.1	Overview	4				
	2.2	Field Screening/Monitoring	4				
	2.3	Soil Sampling	5				
	2.4	Groundwater Sampling	5				
3.0	CON	CLUSIONS AND RECOMMENDATIONS	6				
	3.1	Soil Sampling Results	6				
	3.2	Groundwater Sampling Results	6				
	3.3	Conclusions and Recommendations	6				

TABLE OF CONTENTS (CONTINUED)

FIGURES

Figure 1	Site Location Map
----------	-------------------

Figure 2 Historical Site Location Map

Figure 3 Sampling Location Map

TABLES

Table 1	Summary of Laboratory Analysis
Table 2	Summary of Laboratory Analytical Results-Soil-TPH
Table 3	Summary of Laboratory Analytical Results-Soil-VOA
Table 4	Summary of Laboratory Analytical Results-Groundwater-VOA, SVOA

APPENDICES

Appendix A Certifications

Appendix B Soil and Groundwater Analytical Data Package

EXECUTIVE SUMMARY

UST Closure

A single wall steel underground storage tank (UST) was closed by removal in accordance with the New Jersey Department of Environmental Protection (NJDEP) guidelines on June 26, 1990. The UST was located on the southwest side of Building 906A in the Main Post area of Fort Monmouth. UST No. 81533-146 was a 1,000-gallon tank containing No. 2 heating oil.

Site Assessment

This site assessment was performed by TECOM-Vinnell Service (TVS) personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E) and the NJDEP *Field Sampling Procedures Manual*.

During the time of UST removal, no closure soil samples were collected. Soil sampling was not required at the time. However, in order to confirm that the tank did not leak, this subsurface investigation was conducted. On January 4, 2006, a Geoprobe was utilized to collect soil samples 906AC, 906AE, 906AW and 906AC (groundwater) from a total of three (3) locations along the tank centerline bottom. All soil samples were analyzed for total petroleum hydrocarbons (TPH). Groundwater was encountered at approximately four (4.0) feet below surface grade in the borings. A sample of it was collected and analyzed for volatile organic analysis (VOA) and semi-volatile organic analysis (SVOA).

Findings

The closure soil samples collected from the location associated with UST No. 81533-146, contained TPH concentrations below the NJDEP health based criterion of 10,000 milligrams per kilogram (mg/kg) for total organic contaminants (N.J.A.C. 7:26E and revisions dated February 3, 1994). Soil samples 906AC, 906AE and 906AW contained TPH concentrations of 5634 mg/kg, 6699 mg/kg and 195 mg/kg, respectively. Contingent VOA analysis was conducted on soil samples 906AC and 906AE in which there were no compounds detected above the NJDEP Residential Direct Contact Soil Cleanup Criteria.

Conclusions and Recommendations

Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants are not present in the location of the UST. A groundwater sample, analyzed for volatile organic analysis and semi-volatile organic analysis, did contain several compounds above the analytical method detection limits. However, all detected compounds were below the NJDEP Class II Groundwater Quality Criteria.

No Further Action is proposed in regard to the closure and site assessment of UST No. 81533-146 at Building 906A.

1.0 UNDERGROUND STORAGE TANK CLOSURE SOIL SAMPLING ACTIVITIES

1.1 OVERVIEW

One underground storage tank (UST), New Jersey Department of Environmental Protection (NJDEP) Registration No. 81533-146, was closed at Building 906A located on the Main Post at the U.S. Army Garrison, Fort Monmouth, New Jersey. Refer to site location map on Figure 1. This report presents the results of soil and groundwater sampling analysis to confirm that the tank did not leak. The UST was a 1,000-gallon, single-wall steel tank containing No. 2 heating oil. The UST was installed in 1954 and the removal was done on June 26, 1990. Archived documents including Removal Procedures, Site Assessment Compliance Statement, NJDEP Standard Reporting Form along with the NJDEP UST Site Investigation Report Form are included in Appendix A.

This UST Closure Report has been prepared by TVS to assist the U.S. Army Garrison DPW in complying with the NJDEP - Underground Storage Tanks regulations. The applicable NJDEP regulations at the date of closure were the *Closure of Underground Storage Tank Systems* (N.J.A.C. 7:14B-9 et seq. December, 1987 and revisions dated April 20, 2003).

This report was prepared using information required by the *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E) (*Technical Requirements*). Section 1 of this UST Closure Report provides a summary of the UST site. Section 2 of this report describes the site investigation activities. Conclusions and recommendations, including the results of the soil sampling investigation, are presented in Section 3 of this report.

1.2 SITE DESCRIPTION

Building 906A, Courier Ave., is located in the central portion (900 Area) of the Main Post of Fort Monmouth, as shown on Figure 1. A historical map, Figure 2, was used to determine the location of the UST at Building 906A. UST No. 81533-146 was located on the southwest side of Building 906A.

1.2.1 Geological/Hydrogeological Setting

The following is a description of the geological/hydrogeological setting of the 900 Area. Included is a description of the regional geology of the area surrounding Fort Monmouth as well as descriptions of the local geology and hydrogeology of the Main Post area.

Regional Geology

Monmouth County lies within the New Jersey Section of the Atlantic Coastal Plain physiographic province. The Main Post, Charles Wood and the Evans areas are located in what may be referred to as the Outer Coastal Plain subprovince, or the Outer Lowlands.

In general, New Jersey Coastal Plain formations consist of a seaward-dipping wedge of unconsolidated deposits of clay, silt, sand and gravel. These formations typically strike northeast-southwest with a dip ranging from 10 to 60 feet per mile and were deposited on Precambrian and lower Paleozoic rocks (Zapecza, 1989). These sediments, predominantly derived from deltaic, shallow marine, and continental shelf environments, date from Cretaceous through the Quaternary Periods. The mineralogy ranges from quartz to glauconite.

The formations record several major transgressive/regressive cycles and contain units which are generally thicker to the southeast and reflect a deeper water environment. Over 20 regional geologic units are present within the sediments of the Coastal Plain. Regressive, upward coarsening deposits are usually aquifers (e.g., Englishtown and Kirkwood Formations, and the Cohansey Sand) while the transgressive deposits act as confining units (e.g., the Merchantville, Marshalltown, and Navesink Formations). The individual thicknesses for these units vary greatly (i.e., from several feet to several hundred feet). The Coastal Plain deposits thicken to the southeast from the Fall Line to greater than 6,500 feet in Cape May County (Brown and Zapecza, 1990).

Local Geology

Based on the regional geologic map (Jablonski, 1968), the Cretaceous age Red Bank and Tinton Sands outcrop at the Main Post area. The Red Bank sand conformably overlies the Navesink Formation and dips to the southeast at 35 feet per mile. The upper member (Shrewsbury) of the Red Bank sand is a yellowish-gray to reddish brown clayey, medium-to coarse-grained sand that contains abundant rock fragments, minor mica and glauconite (Jablonski). The lower member (Sandy Hook) is a dark gray to black, medium-to-fine grained sand with abundant clay, mica, and glauconite.

The Tinton sand conformably overlies the Red Bank Sand and ranges from a clayey medium to very coarse grained feldspathic quartz and glauconite sand to a glauconitic coarse sand. The color varies from dark yellowish orange or light brown to moderate brown and from light olive to grayish olive. Glauconite may constitute 60 to 80 percent of the sand fraction in the upper part of the unit (Minard, 1969). The upper part of the Tinton is often highly oxidized and iron oxide encrusted (Minard).

Hydrogeology

The water table aquifer in the Main Post area is identified as part of the "composite confining units", or minor aquifers. The minor aquifers include the Navesink formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, Piney Point Formation, and the basal clay of the Kirkwood Formation.

Based on records of wells drilled in the Main Post area, water is typically encountered at depths of 2 to 9 feet below ground surface (bgs). According to Jablonski, wells drilled in the Red Bank and Tinton Sands may produce 2 to 25 gallons per minute (gpm). Some well owners have reported acidic water that requires treatment to remove iron.

Due to the proximity of the Atlantic Ocean to Fort Monmouth, shallow groundwater may be tidally influenced and may flow toward creeks and brooks as the tide goes out, and away from creeks and brooks as the tide comes in. However, an abundance of clay lenses and sand deposits were noted in borings installed throughout Fort Monmouth. Therefore, the direction of shallow groundwater should be determined on a case by case basis.

Shallow groundwater is locally influenced within the Main Post area by the following factors:

- tidal influence (based on proximity to the Atlantic Ocean, rivers and tributaries)
- topography
- nature of the fill material within the Main Post area
- presence of clay and silt lenses in the natural overburden deposits
- local groundwater recharge areas (e.g., streams, lakes)

Due to the fluvial nature of the overburden deposits (e.g., sand and clay lenses), shallow groundwater flow direction is best determined on a case-by-case basis. This is consistent with lithologies observed in borings installed within the Main Post area, which primarily consisted of fine-to-medium grained sands, with occasional lenses or laminations of gravel silt and/or clay.

Building 906A is located approximately 400 feet south of Husky Brook, the nearest water body, which flows into Oceanport Creek and then into the Shrewsbury River. Based on the Main Post topography, the groundwater flow in the area of Building 906A is anticipated to be to the north.

1.3 HEALTH AND SAFETY

Work site health and safety hazards were minimized during all site investigation activities. All areas which posed a vapor hazard were monitored by a qualified individual utilizing a calibrated photo-ionizer detector: Thermo Instruments Organic Vapor Monitor (OVM) — Model #580-B. The individual ascertained if the area was properly vented to render the area safe, as defined by OSHA. All work areas were properly vented to insure that there were no contaminants present in the breathing zone above permissible exposure limits (PEL's).

2.0 SITE INVESTIGATION ACTIVITIES

2.1 OVERVIEW

The Site Investigation was managed and carried out by U.S. Army DPW personnel. All analyses were performed and reported by Fort Monmouth Environmental Testing Laboratory, a NJDEP-certified testing laboratory. All sampling was performed by a NJDEP Certified Subsurface Evaluator according to the methods described in the NJDEP Field Sampling Procedures Manual (1992). Sampling frequency and parameters analyzed complied with the NJDEP document *Technical Requirements for Site Remediation*, 7:26E-3.9 (December 17, 2002 and revisions dated February 3, 2003) which was the applicable regulation at the date of the investigation. All records of the Site Investigation activities are maintained by the Fort Monmouth DPW Environmental Office.

The following Parties participated in Closure and Site Assessment Activities.

• Ft. Monmouth Directorate of Public Works-Environmental Division

Contact Person: Joseph Fallon Phone Number: (732) 532-6223

Subsurface Evaluator: Frank Accorsi

Employer: TECOM-Vinnell Services, Inc. (TVS)

Phone Number: (732) 532-5241 NJDEP License No.: 0010042

TVS - NJDEP License No.: US252302

Analytical Laboratory: Fort Monmouth Environmental Testing Laboratory

Contact Person: Jacqueline Hamer Phone Number: (732) 532-4359

NJDEP Laboratory Certification No.: 13461

2.2 FIELD SCREENING/MONITORING

Field screening of the soils was performed by a NJDEP certified Subsurface Evaluator using an OVM and visual observations to identify potentially contaminated material of which none were found.

2.3 SOIL SAMPLING

On January 4, 2006, closure soil samples 906AC (shallow), 906AC (deep), 906AE and 906AW were collected from a total of three (3) locations along the tank centerline bottom of the UST. Groundwater was encountered at approximately four (4.0) feet below surface grade in the borings. All soil samples were analyzed for TPH. A soil sample location map is provided on Figure 3.

The site assessment was performed by TVS personnel in accordance with the NJDEP *Technical Requirements for Site Remediation* and the NJDEP *Field Sampling Procedures Manual*. A summary of sampling activities including parameters analyzed is provided on Table 1. The soil samples were collected into laboratory prepared glassware using properly decontaminated stainless steel trowels. After collection, the samples were immediately placed on ice in a cooler and delivered to Fort Monmouth Environmental Testing Laboratory for analysis.

2.4 GROUNDWATER SAMPLING

On January 4, 2006, groundwater sample 906AC-GW was collected from soil borehole 906AC to assess the groundwater quality in the location of the tank. A temporary PVC piezometer was installed in the borehole for sample collection. The sample was collected into laboratory prepared glassware using a disposable teflon bailer. The sample was analyzed for volatile organic analysis (VOA) and semi-volatile organic analysis (SVOA).

3.0 CONCLUSIONS AND RECOMMENDATIONS

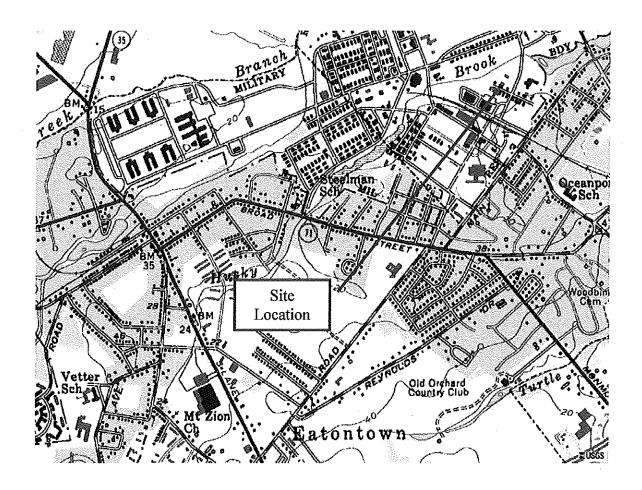
3.1 SOIL SAMPLING RESULTS

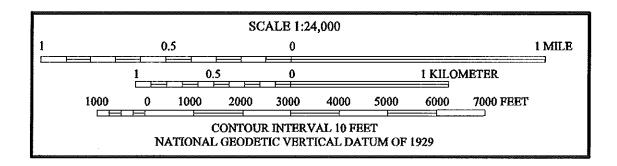
Closure soil samples were collected from a total of three locations on January 4, 2006 to evaluate soil conditions in the location of the UST. All samples were analyzed for TPH. The closure soil sample results were compared to the NJDEP health based criterion of 10,000 mg/kg for total organic contaminants (N.J.A.C. 7:26D and revisions dated February 3, 1994). A summary of the analytical results and comparison to the NJDEP soil cleanup criteria is provided on Table 2. The analytical data package, including associated quality control data, is provided in Appendix B.

Closure soil samples collected on January 4, 2006 from UST 81533-146 contained no concentrations of TPH above the NJDEP health based criterion of 10,000 mg/kg total organic contaminants. Soil samples 906AC, 906AE and 906AW contained TPH concentrations of 5634 mg/kg, 6699 mg/kg and 195 mg/kg, respectively. Contingent VOA analysis was conducted on soil samples 906AC and 906AE. The only compounds detected above the method detection limits were in sample 906AE. Detected were ethylbenzene at 0.6 mg/kg and total xylenes at 0.8 mg/kg, which are below the NJDEP Residential Direct Contact Soil Cleanup Criteria of 1,000 mg/kg and 410 mg/kg, respectively.

3.2 GROUNDWATER SAMPLING RESULTS

One groundwater sample was collected via temporary PVC piezometer installed in soil borehole 906AC. There were two compounds detected above the method detection limits for the volatile organic analysis. Detected were ethylbenzene at 4.7 ug/L and total xylenes at 3.2 ug/L which are below the NJDEP Class II Groundwater Quality Criteria of 700 ug/L and No Limit Established, respectively. There were five compounds detected above the method detection limits for the semi-volatile organic analysis. Naphthalene was detected at 95.1 ug/L, which is below the regulatory level of No Limit Established. 2-Methyl-naphthalene was detected at 169.4 ug/L, which is below the regulatory level of No Limit Established. Phenanthrene was detected at 189.2 ug/L, which is below the regulatory level of No Limit Established. Pyrene was detected at 77.9 ug/L, which is below the regulatory level of 200 ug/L. Bis(2-Ethylhexyl)phthalate, a common laboratory contaminant, was detected at 13.8 ug/L which is below the regulatory level of 30 ug/L.

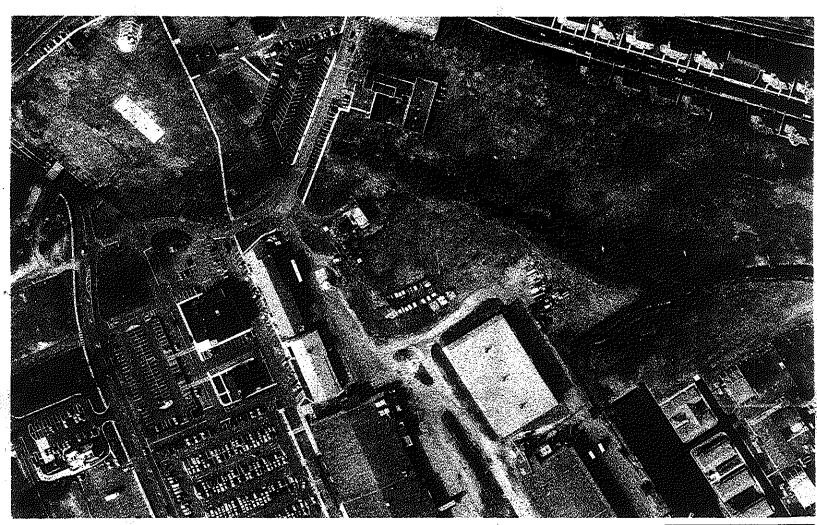

3.3 CONCLUSIONS AND RECOMMENDATIONS


The analytical results for all soil and groundwater samples collected from the UST closure assessment at UST No. 81533-146 were below the regulatory limits.

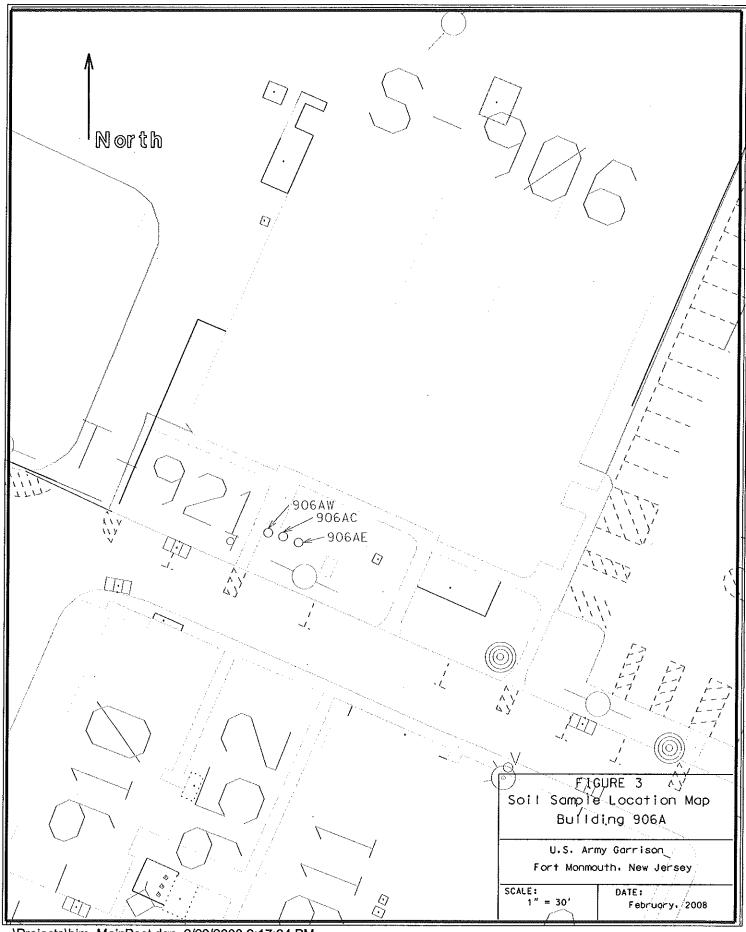
Based on the closure soil sampling results, soils with TPH concentrations exceeding the NJDEP health based criterion for total organic contaminants of 10,000 mg/kg are not present at the location of UST No. 81533-146.

No Further Action is proposed in regard to the closure and site assessment of UST No. 81533-146 at Building 906A.

FIGURES



SOURCE: USGS 7½-MINUTE SERIES (TOPOGRAPHIC) LONG BRANCH QUADRANGLE, NEW JERSEY, 1981.


FIGURE 1

BUILDING 906 UST NO. 81533-146 FT. MONMOUTH, NJ

DIRECTORATE OF ENGINEERING & HOUSING Fort Monmouth, New Jersey CAN ARMY COMMUNITY OF EXCELLENCE"

1" = 50' PHOTO MAP
Fort Monmouth Area
(MAIN POST) Photo Date 12/20/01
Flying Height 3000
Food Length of
USF 2008/513 - TALL
Drawing No. BCL. 2016
AT DEP COPY
DO N=T DUPLY COPY

...\Projects\bim_MainPost.dgn 2/29/2008 2:17:24 PM

SUMMARY OF LABORATORY ANALYSIS

FT. MONMOUTH, BUILDING 906A, UST No. 81533-146 4 January 2006

SAMPLE ID	LABORATORY SAMPLE ID	SAMPLE DATE	SAMPLE MATRIX	ANALYTICAL PARAMETER	ANALYTICAL METHOD
906AC	6000701	4-Jan-06	SOIL	ТРН	OQA-QAM-25
906AC	6000702	4-Jan-06	SOIL	TPH	OQA-QAM-25
906AE	6000704	4-Jan-06	SOIL	TPH	OQA-QAM-25
906AW	6000703	4-Jan-06	SOIL	TPH	OQA-QAM-25
906AC- Groundwater	6000705	4-Jan-06	AQUEOUS	VOA, SVOA	SW-846, EPA 625
Trip Blank	6004806	4-Jan-06	AQUEOUS	VOA	SW-846
Trip Blank	6004807	4-Jan-06	METHANOL	VOA	SW-846

ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons, Method NJDEP OQA-QAM-25

VOA = Volatile Organic Analysis, EPA SW-846 Method 8260

SVOA = Semi-Volatile Organic Analysis in Water, EPA Method 625

SUMMARY OF LABORATORY ANALYTICAL RESULTS-SOIL

FT. MONMOUTH, BUILDING 906A, UST No. 81533-146 4 January 2006

TOTAL PETROLEUM HYDROCARBONS

SAMPLE ID	LABORATORY	SAMPLE LOCATION	SAMPLE	MATRIX	ТРН
	SAMPLE ID		DEPTH		RESULTS
			(in feet)		mg/kg
906AC	6000701	CENTER UST	3.5 – 4.0	Soil	693
906AC	6000702	CENTER UST	6.0 – 6.5	Soil	5635*
906AE	6000704	EAST END UST	3.5 – 4.0	Soil	6699*
906AW	6000705	WEST END UST	6.0 - 6.5	Soil	195

ABBREVIATIONS:

mg/kg = milligrams per kilogram = parts per million

ND = Compound Not Detected

NA = Compound Not Analyzed

*= Further Analyzed for Volatile Organic Compounds

Notes:

Gray shading indicates exceedance of NJDEP

health based criterion of 10,000 ppm total organic contaminants

SUMMARY OF LABORATORY ANALYTICAL RESULTS-SOIL

FT. MONMOUTH, BUILDING 906A, UST No. 81533-146 4 January 2006

VOLATILE ORGANIC COMPOUNDS

SAMPLE ID	LAB SAMPLE ID	Benzene	Toluene	Ethylbenzene	Xylenes (total)
UNITS		mg/kg	mg/kg	mg/kg	mg/kg
906AC	6000702	ND	ND	ND	ND
906AE	6000703	ND	ND	0.6	0.8
Trip Blank		ND	ND	ND	ND
NJDEP Criteria	Residential	1	1,000	1,000	410

ABBREVIATIONS:

mg/kg = milligrams per kilogram = parts per million (ppm)

ND = Compound Not Detected

NA = Compound Not Analyzed

Notes

Gray shading indicates exceedance of NJDEP Residential Direct Contact Soil Cleanup Criteria

SUMMARY OF LABORATORY ANALYTICAL RESULTS-GROUNDWATER

FT. MONMOUTH, BUILDING 906A, UST No. 81533-146

4 January 2006

VOLATILE ORGANIC COMPOUNDS

SAMPLE ID	LAB SAMPLE ID	Benzene	Ethyl- benzene	Toluene	Total Xylenes
	UNITS	ug/L	ug/L	ug/L	ug/L
906AC- Groundwater	6000705	ND	4.7	ND	3.2
Trip Blank		ND	ND	ND	ND
NJDEP Criteria	Ground Water Quality Crireria	1	700	1000	NLE

SEMI-VOLATILE ORGANIC COMPOUNDS

SAMPLE ID	LAB SAMPLE ID	Naphtha- lene	2-Methyl- naphthalene	Phenan- threne	Pyrene	Bis(2Ethylhexyl) phthalate
UNITS		ug/L	ug/L	ug/L	ug/L	ug/L
906AC- Groundwater	6000705	95.1	169.4	189.2	77.9	3.2
NJDEP Criteria	Ground Water Quality Crireria	NLE	NLE	NLE	200	30

ABBREVIATIONS:

ug/L = Micrograms Per Liter = parts per billion

ND = Compound Not Detected

NA = Compound Not Analyzed

NLE= No Limit Established

Notes:

Gray shading indicates exceedance of NJDEP Class II Ground Water Quality Criteria

APPENDIX A CERTIFICATIONS

Bldy 901

For State Use Only					
)	*•				
Date Rec'd.					
Auth					
Routing	<u> </u>				
UST NO.					

11/3

	6	Štute o	f New	Jersey		
DEPA	RTMENT	OF EN	/IRON	MENTAL	PROTEC	TION
	PA LL LL	-	WATER	DECAUDO	\Ee	

CH 028
TRENTON, NEW JERSEY 08625
ATTN: BUST Program
(609) 984-3156

STANDARD REPORTING FORM	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	n academic of court for gradual statements
Installation/Abandon/Remove/Sale-Transfer/Substantia	ni Modification disas storage seekteet beer storage suit viceage an
Circle Only One — Use One Form Per Activity	Y
(More than one tank can be listed per ta	nk activity)

Transport of the department of the contract of	ニー・ファル・アイ・アイ・ストスト(1967年2月) リモルタ かいり マー	and the second business of the second of	
and the second of the contract	and the second of the second o	Salary Burney at Same	
A CECT OF BRINE EXCERSED. YEAR	- 1 (本) 25 (20) 「おびけ りょうにし	Lifting Control of the Control of th	
	and an artificial factor of the control of the cont		
Answer questions 1 through 5 and others	as addiicadie:		
Wild Mail Grant College Introduction of the College	#4 #PP		
· · · · · · · · · · · · · · · · · · ·			

1.	Company name and a	•	(as it	-
	appears on registratio	n quest	ionnaire)	ļ

OEH Bldg. # 167 OHn SELFM-EH Fort Monmouth NJ 07703

2. Facility name and location:(if different from above)

U.S. army Fort Monmouth Main Past West

3. Contact person for this activity:

Telephone Number: (908) 532-6223

4. The identification number of the affected tank as it appears in Question Number 12 on the Registration Questionnaire: 1an K No. 58, 88, 95, 104, 110, 113, 146, 148, 158, 4, 163

Bdys. 283A, 614, 622, 676, 692, 701A, 906, 910, 1004, 1103

5. Registration Number (if known): UST - 単 00 8 15 33

6. FOR TRANSFER OF	OWNERSHIP:	\$757.045		•
New Company Nam	e			
New Facility Name .	A Section 1	1. A. V.	Parent	
Address	hysolist is		grand way haven	
	\$ 940 S. S. S.	- Maria Maria Cara Cara Cara Cara Cara Cara Cara	TO SECURITION TO A SECURITION OF THE SECURITIES OF THE SECURITION OF THE SECURITIES OF THE SECURITION	
New owner/operato	r (print)		Comment of the second	· · · · · ·
Signature			5072-480 (00g)	
7. For ABANDONMENT		nich ertablish		designing in figures with which
	posed procedure in detail	on an attached she	eL	
5 - 2 Test - 17 - 18 1905-174	1. 生物學學學學學學學	A CONTRACTOR OF THE PARTY OF TH	cotting will form white	
c. Date abandoned	or(removed)	Prement heine	CONTRACTOR STATE TO THE	MICT ha
8. For SUBSTANTIAL M	Comple	ted and return	ed within 90 days of tank clo	osure. (per GFR: 280:72) "
on an attached st	iest	grade (stable and selection).	Dosed procedure to be used # 84) #855 1946 194	ne shauning
b. Specify the produ	ct presently stored in the	tank		
c. Specify the produ	ct to be stored in the tank	And the second second		
For NEW OR REPLACE	EMENT INSTALLATIONS	the state of the s		
a. Attach the specific	ations as required by the	attached instructio	15.	
	ct (s) to be stored in the ta		a barrer and	a Minana (1) Williama (1)
OTE: All appropria and/or federa the above sta	l agency must be ob	ermits, license tained separate CERTIFICATION	s and certificates from any. ly from this notification as	local; state required by
*** This registration forms acility. (7:14B-2.3 (a) 1). **	shall be signed by the high	•	al at the facility with overall responsib	ility for that
here are significant civil at and/or imprisionment."	w that the information production and criminal penalties for so	vided in this docume ubmitting false, inac	nt is true. accurate and complete. I am curate or incomplete information, incl	aware that uding lines
Signature:	JAMES OTT			- 10 to 10 t
itle:	Acting Director Dir, Engineering and	d Housing Date	22 NOV 1991	4 *

 ${}^{c}C_{C},$

STATE OF NEW JERSEY DEPARTM OF ENVIRONMENTAL PROTECT Bureau of Underground Storage Tanks CN-029, Trenton, NJ 08625

Date Re	c'd
Auth Routing	
UST NO.	20/07 20/04/2005

BITE ABBESSHENT COMPLIANCE STATEMENT

Supplement to the New Jersey Standard Reporting Form (Complete for ALL regulated UST abandonments or Zemovals)

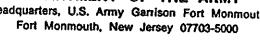
Within ninety (90) days of completing the UST closure of any State or Federally-regulated tank, the owner or operator must submit this completed form to the NJDEP Bureau of Underground Storage Tanks. If the facility is located in one of the counties listed on the back, a copy of this form must also be sent to the Health Agency indicated.

The owner or operator of any Federally-regulated tank must also comply with the following:

40 CFR Part 280.72 Assessing the site at closure or change-in-service

"(a) Before permanent closure or a change-in-service is completed, owners and operators must measure for the presence of a release where contamination is most likely to be present at the UST site. In selecting sample types, sample locations, and measurement methods, owners and operators must consider the method of closure, the nature of the stored substance, the type of backfill, the depth to ground water, and other factors appropriate for identifying the presence of a release."

release	waters serential as as as the	germina houselle
PACILIT	v U.S. Ormy Fort Monmonth por 00815	33 Tank No
	ff the following items as appropriate for the site.	58, 88, 95,
i	The UST facility is only regulated by State law, there	(14/2)148 150
	The UST facility is regulated by Federal law and a site	163.
The res	ults of the site assessment indicate:	the same substitution
	There was NO release from the UST system.	
Фримскорийштехничногорийного	There was a release from the UST system and it reported to the DEP Environmental Hotline (609-292-71)	
the De	The results of the site assessment are not to be sul P or Bealth Agency unless requested to do so. The re available for inspection at the UST facility.	mitted to saults are


Questions can be directed to the Bureau at (609) 984-3156.

*** This registration form shall be signed by the highest ranking facility (7:14B-2.3 (a) 1). ***	20 20.
"I certify under penalty of law that the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties for submitting false, inaccurate or incomplete information, including times and/or imprisonment. SACS-2,1/89	IAMES OTT Acting Director Local Date Jir, Engineering and Housing (Title)

DEPARTMENT OF THE ARMY

Headquarters, U.S. Army Garrison Fort Monmouth Fort Monmouth, New Jersey 07703-5000

REPLY TO ATTENTION OF

Directorate of Engineering and Housing

22 NOV 1991

SUBJECT: Removal Procedure:

U.S. Army Fort Monmouth Main Post West Site Registration #0081533 Tank #58, 88, 95, 104, 110, 113, 146, 148, 158, 163 POC: Joseph M. Fallon (908) 532-6223

The remaining product inside each tank was removed for disposal by Lionetti Oil Recovery Co., Inc. Lionetti is a licensed hazardous waste transporter and treatment, storage, and disposal facility (USEPA ID #NJD084044064).

The top of each tank was excavated and cut open across the entire length of the tank. In addition, the inside of each tank was hand cleaned and thoroughly wiped down. The soil from the top of each excavation was visually inspected and analyzed using a HNU Model PI-101 photoionizer. No contamination was detected.

After each tank was cleaned, a visual inspection was made inside the tanks for signs of leakage. No corrision was found inside the tanks.

Each tank was then removed from the ground and disposed of through a metal recycler. No contamination was discovered at the sites upon removing the tanks.

Each site was then backfilled with the excavated soil to close out the project.

APPENDIX B

SOIL AND GROUNDWATER ANALYTICAL DATA PACKAGE

FORT MONMOUTH ENVIRONMENTAL

TESTING LABORATORY

DIRECTORATE OF PUBLIC WORKS

PHONE: (732) 532-4359 FAX: (732) 532-6263

WET-CHEM - METALS - ORGANICS - FIELD SAMPLING CERTIFICATIONS: NJDEP #13461, NYSDOH #11699

ANALYTICAL DATA REPORT

Fort Monmouth Environmental Laboratory ENVIRONMENTAL DIVISION

Fort Monmouth, New Jersey PROJECT: BLDG. 906A

Bldg. 906A

Field Sample Location	Laboratory Sample ID#	Matrix	Date and Time of Collection	Date Received
906A C 3.5-4.0'	6000701	Soil	04-Jan-06 13:44	01/04/06
906A C 6.0-6.5'	6000702	Soil	04-Jan-06 13:54	01/04/06
906A E 3.5-4.0'	6000703	Soil	04-Jan-06 14:18	01/04/06
906A W 6.0-6.5'	6000704	Soil	04-Jan-06 14:35	01/04/06
906A C	6000705	Aqueous	04-Jan-06 15:02	01/04/06

ANALYSIS:

FORT MONMOUTH ENVIRONMENTAL LAB VOA+15, BN+15, TPHC, % SOLIDS

ENCLOSURE: CHAIN OF CUSTODY RESULTS

Daniel Wright/Date

Laboratory Director

The enclosed report relates only to the items tested. The report may not be reproduced, except in full, without written approval of the U.S. Army Fort Monmouth Directorate of Public Works.

Table of Contents

Section	Page No.
Chain of Custody	1-5
Method Summary	6-8
Laboratory Chronicle	9-10
Conformance/Non-Conformance Summary	11-14
Volatile Organics (Aqueous) Qualifier Codes Results Summary Calibration Summary Method Blank Summary Surrogate Results Summary MS/MSD Results Summary Internal Standard Summary Raw Sample Data	15 16 17-22 23-26 27-28 29-30 31 32-33 34-39
Volatile Organics (Soil) Results Summary Calibration Summary Method Blank Summary Surrogate Results Summary MS/MSD Results Summary Internal Standard Summary Raw Sample Data	40 41-52 53-55 56 57 58 59 60-67
Semi-volatile Organics Results Summary Calibration Summary Method Blank Summary Surrogate Results Summary MS/MSD Results Summary Internal Standard Summary Raw Sample Data	68 69-76 77-84 85 86 87-88 89-90 91-96
Total Petroleum Hydrocarbons Result Summary Calibration Summary Surrogate Results Summary MS/MSD Results Summary Raw Sample Data	97 98 99-103 104 105-106 107-116
Laboratory Deliverable Checklist	117
Laboratory Authentication Statement	118

CHAIN OF CUSTODY

Fort Monmouth Environmental Testing Laboratory

Bldg. 173, SELFM-PW-EV, Fort Monmouth, NJ 07703
Tel (732)532-4359 Fax (732)532-6263 EMail:wrightd@mail1.monmouth.army.mil
NJDEP Certification #13461

Chain of Custody Record

Customer: John	McCarthy	Project No:	06-34	880				Anal	ysis P	aram	eters			Comments:	
Phone: X2 6	224	Location:			-4			λ_{λ}							
()DERA ()OMA	()Other:	(For	mer US	ST)		+	77	7							
Samplers Name / C	ompany: George Be			Sample	#	d	† Ø	BN+15							
LIMS/Work Order#	Sample Location	Date	Time	Туре	bottles	7	>	Q						Remarks / Pres	ervation Method
(00007 01	906AC 35-4.0		1344	Soil	2	X								4397	across anater
U O O	906 AC 6.0-6.5		1354		2_	X								4398	Stained
1 1/3	906AF 35-4.0		1418	·) ·	2	X								4399	Across Water
04	906AW 60-6.5		1435	1	2	X								4400	
-05	906AC	1	1502	AR	3		X	X							
· · · · · · · · · · · · · · · · · · ·															
	<u>, , , , , , , , , , , , , , , , , , , </u>														
		ļ. <u>.</u>													
				,											
	••		ļ									·			
			ļ								·				
	• .									-					
								<u> </u>							
	·														
Refuguished by (signal)		Received by	<i>(n / ,</i>	111	Relino	quished	by (sig	nature)	:	Date	Time:	Recei	ved by	(signature);	
		AL		M			**************************************								
Relinquished by (signat	nure): Date/Time:	Received by	(signature):		Relino	_		mature)						(signature):	
Report Type: ()Full, (Reduced, ()Standard, ()Scre	en / non-certifi	ed, (_)EDD			Rema	rks: V	10+	-10	0 n S	5%	>10	00 0	PPM TP 95 ALILEO	Н
Turnaround time: USta	ndard 3 wks, ()Rush_ Days,	()ASAP Ver	balHrs.			5	hai	red	T;	Rip	ω	;+L	62	95 Al 1/20	ar.
•										<u> </u>)		/ / //	

SAMPLE RECEIPT FORM

Date Received:	1-	4-00	. Work Order	I D#: _	OUNT
Site/Proj. Name	:Blu	ly/ 906A U	T Cooler Temp	(°C):	3.0°
Received By: (Print name)	VI	LECHIA	Sign:	W	yelled
		Check the app	ropriate box	A.	/
1. Did the sample	es com	e in a cooler?	,	Z yes	s□ no □ n/a
•		n good condition?		Z yes	s □ no
		tody filled out correc		Ø yes	s □ no
		tody signed in the ap		1 yes	s □ no
		with the chain of cus		☑ yes	; □ no
· ·		tainers/preservatives	/ ·	₽ yes	; □ no
		unt of sample supplie	ed?	☑ yes	:□ no
	-	sent in VOA vials?			i⊿no □ n/a
9. Were samples			. /	•	□ no
10. Were analyze	-imme	diately tests perform	within 15 minutes l	□ yes	□ noj□ n/a
	llowi	ing table for eac	ch sample bottl	e	
					1 mm. 4.7
Lims ID	рН	Preservative	Sample ID	pH	Preservative
Lims ID	рН	Preservative	Sample ID	pH_	Preservative
Lims ID	рН	Preservative	Sample ID	pH	Preservative
Lims ID	pH	Preservative	Sample ID	pH	Preservative
Lims ID	pH	Preservative	Sample ID	pH	Preservative
Lims ID	pH	Preservative	Sample ID	pH	Preservative
Lims ID	pH	Preservative	Sample ID	pH	Preservative
Lims ID	pH	Preservative	Sample ID	PH	Preservative
Lims ID	pH	Preservative	Sample ID	PH	Preservative
Lims ID	pH	Preservative	Sample ID	PH	Preservative
Lims ID	pH	Preservative	Sample ID	PH	Preservative
LIMS ID	pH	Preservative	Sample ID	PH	Preservative
Lims ID	pH	Preservative	Sample ID	PH	Preservative
Lims ID	pH	Preservative	Sample ID	PH	Preservative
LIMS ID	pH	Preservative	Sample ID	PH	Preservative
	pH	Preservative	Sample ID	PH	Preservative
Comments:	pH	Preservative	Sample ID	PH	Preservative
	pH	Preservative	Sample ID	PH	Preservative
	pH	Preservative	Sample ID	PH	Preservative

Change of Chain of Custody

 Was sufficient Are samples 	d:	ests indicated? ysis?	1000(, 1)10/0(, 1)
Sample ID#	New Analysis	Sample ID#	New Analysis
(000702	1001 + 15	12"	24141333
	VUP (- 1.5		
03			
	100		1 (3 7
AISO T	M Wexpanol L	B 6000	0606
	•		
	,		
	-		
			-
	*		
	·		
		, ,	
Comments:			

	,		

Former UST 906A Sample Location GPS Positions

US State Plane 1983 New Jersey (NY East) 2900 NAD 1983 (Conus) Geoid 96 (Conus)

(In US Survey Feet)

Position	Northing (Y Coord.)	Easting (X Coord.)
906A E	539090.168	621094.799
906A C	539088.953	621099,520
906A W	539087.046	621104.447

METHOD SUMMARY

Methodology Summary

EPA Method 624 Gas Chromatographic Determination of Volatiles in Water

Surrogates and internal standards are added to a 5-ml aliquot of sample. The sample is then purged and desorbed into a GC/MS system. The organic compounds are separated by the gas chromatograph and detected using the mass spectrometer. Volatiles are identified and quantitated.

EPA SW-846 Method 8260 Gas Chromatographic Determination of Volatiles in Methanol

A 10-gram volume of soil is combined with 25-ml of Methanol and surrogates in the field. Internal standards are added and the sample is placed on a purge and trap concentrator. The sample as purged and desorbed into a GC/MS system. Volatiles are identified and quantitated. The final concentration is calculated using soil weight, percent moisture and concentration.

EPA Method 625 Gas Chromatographic Determination of Semi-volatiles in Water

Surrogates are added to a measured volume of sample, usually 1 liter, at a specified pH. The sample is serially extracted with Methylene Chloride using a separatory funnel. The extract is concentrated and internal standards are added. The sample is injected into a GC/MS system. Semi-volatiles are identified and quantitated.

NJDEP Method OQA-QAM-025 10/97 Gas Chromatographic Determination of Total Petroleum Hydrocarbons in Soil

Fifteen grams (15g) of soil is added to a 125-ml acid cleaned and solvent rinsed capped Erlenmeyer flask. 15g anhydrous Sodium Sulfate is added to dry the sample. Surrogate standard spiking solution is then added to the flask.

Twenty-five ml of Methylene Chloride is added to the flask and it is secured on an orbital shaker table. The agitation rate is set to 400 rpm and the sample is shaken for 30 minutes. The flask is removed from the table and the particulate matter is allowed to settle. The extract is transferred to a Teflon capped vial. A second 25-ml of Methylene Chloride is added to the flask and shaken for an additional 30 minutes. The flask is again removed and allowed to settle. The extracts are combined in the vial then transferred to a 1-ml auto-sampler vial.

The extract is then injected directly into a GC-FID for analysis. The sample is analyzed for Petroleum Hydrocarbons covering a range of C8-C42, including Pristane and Phytane. Total Petroleum Hydrocarbon concentration is determined by integrating between 5 minutes and 22 minutes. The baseline is established by starting the integration after the end of the solvent peak and stopping after the last peak. The final concentration of Total Petroleum Hydrocarbons is calculated using percent moisture, sample weight and concentration.

LABORATORY CHRONICLE

Laboratory Chronicle

Lab ID: 60007

Site: UST

Bldg. 906A

		Date	Hold Time
Date Sampled		01/04/06	NA
Re	ceipt/Refrigeration	01/04/06	NA
Ex	tractions		
1. 2.	BN TPHC	01/09/06 01/06/06	7 days 14 days
An	alyses		
1. 2. 3.	VOA BN TPHC	01/11,17/06 01/17/06 01/07/06	14 days 40 days 40 days

CONFORMANCE/ NONCONFORMANCE SUMMARY

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

			Indicate Yes, No, N/A
1.	Chromatograms labeled (Field samples and	l/Compounds identified method blanks)	yes
2.	Retention times for chro	omatograms provided	yes
3.	GC/MS Tune Specifica	tions	
		BFB Meet Criteria DFTPP Meet Criteria	yes yes
4.	GC/MS Tuning Frequent series and 12 hours for	ncy – Performed every 24 hours for 600 3000 series	yes
5.	analysis and continuing	itial Calibration performed before sample calibration performed within 24 hours of series and 12 hours for 8000 series	<u>yes</u>
6.	GC/MS Calibration requ	irements	
		alibration Check Compounds Meet Criteria ystem Performance Check Compounds Meet Criteria	<u>yes</u> <u>yes</u>
7.	Blank Contamination -	If yes, List compounds and concentrations in each blank:	No
	b. B	OA Fraction /N Fraction cid Fraction	
3.	Surrogate Recoveries M	eet Criteria	<i>NO</i>
	If not met, list those outside the acceptal	compounds and their recoveries, which fall le range:	
	b. B	OA Fraction OA Fraction OA Fraction OA Fraction OA Fraction	
	If not met, were the as "estimated"?	calculations checked and the results qualified	<u>yes</u>
€.		ke Duplicate Recoveries Meet Criteria npounds and their recoveries, which fall nge)	_00_
	C. A	OA Fraction <u>Naphhalene</u> M5+M5D low N Fraction Benziane M5D low RPD high	
	٧	Nious out on Soil VOA see form	

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT (cont.)

		Indicate Yes, No, N/A
10.	Internal Standard Area/Retention Time Shift Meet Criteria (If not met, list those compounds, which fall outside the acceptable range)	yes
	a. VOA Fraction	
	b. B/N Fraction	
	c. Acid Fraction	-
11.	Extraction Holding Time Met	<u>yes</u>
	If not met, list the number of days exceeded for each sample:	• - -
12.	Analysis Holding Time Met	<u> yes</u>
	If not met, list the number of days exceeded for each sample:	<u></u>
Add	itional Comments:	-
Labo	oratory Manager: Date: 1-27 -0	<u> </u>

TPHC CONFORMANCE/NON-CONFORMANCE SUMMARY REPORT

		Indicate Yes, No, N/A
1.	Method Detection Limits Provided	405
2.	Method Blank Contamination – If yes, list the sample and the corresponding concentrations in each blank	<u>NO</u>
3.	Matrix Spike Results Summary Meet Criteria (If not met, list the sample and corresponding recovery which falls outside the acceptable range)	yes
4.	Duplicate Results Summary Meet Criteria	yes
5.	IR Spectra submitted for standards, blanks and samples	_NA_
5.	Chromatograms submitted for standards, blanks and samples if GC fingerprinting was conducted	yes
7.	Analysis holding time met (If not met, list number of days exceeded for each sample)	yes
Addıt	ional comments;	
Labor	atory Manager:Date:	_

VOLATILE ORGANICS (AQUEOUS)

US ARMY FT. MONMOUTH ENVIRONMENTAL LABORATORY NJDEP CERTIFICATION # 13461

Definition of Qualifiers

- U: The compound was analyzed for but not detected.
- B: Indicates that the compound was found in the associated method blank as well as in the sample.
- J: Indicates an estimated value. This flag is used:
 - (1) When the mass spec and retention time data indicate the presence of a compound however the result is less than the MDL but greater than zero.
 - (2) When estimating the concentration of a tentatively identified compound (TIC), where a 1:1 response is assumed.
- D: This flag is used to identify all compounds (target or TIC) that required a dilution.
- E: Indicates the compound's concentration exceeds the calibration range of the instrument for that specific analysis.
- N: This flag is only used for TICs. It indicates the presumptive evidence of a compound. For a generic characterization of a TIC, such as unknown hydrocarbon, the flag is not used.

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

-Data File Operator Date Acquired VB021318.D

Skelton

11 Jan 2006 8:48 pm

Sample Name Field ID

MB 11Jan2006 MB 11Jan2006

Sample Multiplier

CAS#	Compound Name	R.T.	Response	Result	Regulatory Level (ug/l)*	MDL	RL	Qualifier
107028	Acrolein			not detected	5	2.01 ug/L	5.00 ug/L	
107131	Acrylonitrile			not detected	. 5	1.23 ug/L	5.00 ug/L	
75650	tert-Butyl alcohol			not detected	. 100	5.70 ug/L	10.00 ug/L	
1634044	Methyl-tert-Butyl ether			not detected	70	0.21 ug/L	2.00 ug/L	
108203	Di-isopropyl ether			not detected	20000	0.26 ug/L	2.00 ug/L	
75718	Dichlorodifluoromethane			not detected	1000	0.20 tig/L	2.00 ug/L	
74-87-3	Chloromethane			not detected .	nle	0.24 ug/L	2.00 ug/L	
75-01-4	Vinyl Chloride			not detected	1	0.23 ug/L	2.00 ug/L	
74-83-9	Bromomethane			not detected	10	0.26 ug/L	2.00 ug/L	
75-00-3	Chloroethane	,		not detected	nle	0.29 ug/L	2.00 ug/L	
75-69-4	Trichlorofluoromethane			not detected	2000	0.23 ug/L	2.00 ug/L	
75-35-4	1,1-Dichloroethene		 	not detected	1	0.19 ug/L	2.00 ug/L	
67-64-1	Acetone			not detected	5000	0.36 ug/L	2.00 ug/L	
75-15-0	Carbon Disulfide	***************************************	1	not detected	700	0.24 ug/L	2.00 ug/L	
75-09-2	Methylene Chloride			not detected		0.24 ug/L	·	
156-60-5	trans-1.2-Dichloroethene				3		2.00 ug/L	
75-34-3	1,1-Dichloroethane			not detected	100	0.24 ug/L	2.00 ug/L	
108-05-4	Vinyl Acetate	W.W	 	not detected	50	0.24 ug/L	2.00 ug/L	
78-93-3			<u> </u>	not detected	7000	0.20 ug/L	2.00 ug/L	
	2-Butanone		 	лоt detected	300	0.26 ug/L	2.00 ug/L	
156-59-2	cis-1,2-Dichloroethene		·	not detected	70	0.20 ug/L	2.00 ug/L	
67-66-3	Chloroform			not detected	70	0.22 ug/L	2.00 ug/L	
71-55-6	1,1,1-Trichloroethane			not detected	30	0.20 ug/L	2.00 ug/L	
56-23-5	Carbon Tetrachloride	<u> </u>		поt detected	1	0.24 ug/L	2.00 ug/L	
71-43-2	Benzene			not detected	1	0.24 ug/L	2.00 ug/L	
107-06-2	1,2-Dichloroethane		ļ	not detected	2	0.23 ug/L	2.00 ug/L	
79-01-6	Trichloroethene		-	not detected	1	0.26 ug/L	2.00 ug/L	
78-87-5	1,2-Dichloropropane			not detected	1	0.24 ug/L	2.00 ug/L	
75-27-4	Bromodichloromethane			not detected	1	0.22 ug/L	2.00 ug/L	
110-75-8	2-Chloroethyl vinyl ether			not detected	nlé	0.23 ug/L	2.00 ug/L	
10061-01-5	cis-1,3-Dichloropropene			not detected	1	0.22 ug/L	2.00 ug/L	
108-10-1	4-Methyl-2-Pentanone			not detected	nle	0.35 ug/L	2.00 ug/L	
108-88-3	Toluene			not detected	1000	0.26 ug/L	2.00 ug/L	
10061-02-6	trans-1,3-Dichloropropene			not detected	1	0.25 ug/L	2.00 ug/L	
79-00-5	1,1,2-Trichloroethane			not detected	3	0.28 ug/L	2.00 ug/L	
127-18-4	Tetrachloroethene	*****		not detected	1	0.20 ug/L	2.00 ug/L	
591-78-6	2-Hexanone			not detected	nle	0.43 ug/L	2.00 ug/L	
124-48-1	Dibromochloromethane			not detected	1	0.22 ug/L	2.00 ug/L	
108-90-7	Chlorobenzene			not detected	50	0.28 ug/L	2.00 ug/L	
100-41-4	Ethylbenzene			not detected	700	0.27 ug/L	2.00 ug/L	
1330-20-7	m+p-Xylenes			not detected	nle	0.43 ug/L	4.00 ug/L	
95-47-6	o-Xylene		1	not detected	nle	0.43 ug/L	2.00 ug/L	
100-42-5	Styrene		 	not detected	100	0.21 ug/L	2.00 ug/L	
75-25-2	Bromoform			not detected		0.27 ug/L	2.00 ug/L	
79-34-5	1,1,2,2-Tetrachloroethane			not detected	4	0.45 ug/L	2.00 ug/L 2.00 ug/L	
541-73-1	1,3-Dichlorobenzene				1 1		''''	
			 	not detected	600	0.36 ug/L	2.00 ug/L	
106-46-7	1,4-Dichlorobenzene			not detected	75	0.35 ug/L	2.00 ug/L	
95-50-1	1,2-Dichlorobenzene		L	not detected	600	0.45 ug/L	2.00 ug/L	

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

MDL = Method Detection Limit NLE = No Limit Established

R.T. = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Interim Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD ID:

Lab Name:	FMETL			NJDEP	#: 13461		MB 11Jan	2006
Project:	0634880	0 Cas	e No.: 60007	Loca	tion: 906A	SD	G No.: UST	
Matrix: (soil/v	water)	WATER	-		Lab Sample	_ ID:	MB 11Jan200)6
Sample wt/vo	ol:	5.0	(g/ml) ML		Lab File ID:	,	VB021318.D	
Level: (low/n	ned)	LOW			Date Receiv	ed:	1/4/2006	
% Moisture:	not dec.		·		Date Analyz	ed: 1	1/11/2006	
GC Column:	RTX50	02. ID: 0.2	5 (mm)		Dilution Fact	or:	1.0	
Soil Extract V	/olume:		_ (uL)		Soil Aliquot \	/olum	ne:	(uL)
			(CONCENTR	RATION UNI	TS:		
Number TICs	s found:	1	-	(ug/L or ug/k	(g) <u>UG/</u>		·	
CAS NO.		COMPOU	ND NAME		RT	EST	CONC.	Q
1. 000079	9-20-9	Acetic acid	methyl ester		12.47		1	1NI

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

Data File Operator Date Acquired VB021320.D

Skelton

11 Jan 2006 10:10 pm

Sample Name Field ID

6000606 Trip Blank

Sample Multiplier

CAS#	Compound Name	R.T.	Response	Result	Regulatory Level (ug/l)*	MDL	RL	Qualific
107028	Acrolein			not detected	5	2.01 ug/L	5.00 ug/L	
107131	Acrylonitrile		,	not detected	5	1.23 ug/L	5.00 ug/L	
75650	tert-Butyl alcohol	•		not detected	100	5.70 ug/L	10.00 ug/L	
1634044	Methyl-tert-Butyl ether			not detected	70	0.21 ug/L	2.00 ug/L	
108203	Di-isopropyl ether			not detected	20000	0.26 ug/L	2.00 ug/L	
75718	Dichlorodifluoromethane			not detected	0001	0.20 ug/L	2.00 ug/L	
74-87-3	Chloromethane			not detected	nla	0.24 ug/L	2.00 ug/L	
75-01-4	Vinyl Chloride			not detected	I	0.23 ug/L	2.00 ug/L	
74-83-9	Bromomethane			not detected	10	0.26 ug/L	2.00 ug/L	1
75-00-3	Chloroethane			not detected	nle	0.29 ug/L	2.00 ug/L	
75-69-4	Trichlorofluoromethane	<u></u>		· not detected	2000	0.23 ug/L	2.00 ug/L	
75-35-4	1,1-Dichloroethene			not detected	1	0.19 ug/L	2.00 ug/L	
67-64-1	Acetone			not detected	6000	0.36 ug/L	2.00 ug/L	
75-15-0	Carbon Disulfide			not detected	700	0.24 ug/L	2.00 ug/L	· · · · · · · · · · · · · · · · · · ·
75-09-2	Methylene Chloride			not detected	3	0.21 ug/L	2.00 ug/L	
156-60-5	trans-1,2-Dichloroethene			not detected	100	0.24 ug/L	2.00 ug/L	
75-34-3	1.1-Dichloroethane			not detected	50	0.24 ug/L	2.00 ug/L	
108-05-4	Vinyl Acetate			not detected	7000	0.20 ug/L	2.00 ug/L	
78-93-3	2-Butanone			not detected	300	0.26 ug/L	2.00 ug/L	
1.56-59-2	cis-1,2-Dichloroethene			not detected	70	0.20 ug/L	2.00 ug/L	
67-66-3	Chloroform			not detected	70	0.20 ug/L	2.00 ug/L	
71-55-6	I, I, I-Trichloroethane	-		not detected	30	0.20 ug/L	2.00 ug/L	— —
56-23-5	Carbon Tetrachloride	4		not detected	1	0.24 ug/L	2.00 ug/L	
71-43-2	Benzene			not detected	1	0.24 ug/L	2.00 ug/L	
107-06-2	1,2-Dichloroethane			not detected	2	0.23 ug/L		
79-01-6	Trichloroethene	,					2.00 ug/L	
78-87-5	1,2-Dichloropropane			not detected	1 1	0.26 ug/L	2.00 ug/L	
75-27-4	Bromodichloromethane			not detected	1 1	0.24 ug/L	2.00 ug/L	
1 10-75-8				not detected	1	0.22 ug/L	2.00 ug/L	
10061-01-5	2-Chloroethyl vinyl ether		+	not detected	nle	0.23 ug/L	2.00 ug/L	
	cis-1,3-Dichloropropene			not detected	1 1	0.22 ug/L	2.00 ug/L	
108-10-1	4-Methyl-2-Pentanone			лоt detected	nle	0.35 ug/L	2.00 ug/L	
108-88-3	Toluene			not detected	1000	0.26 цу/L	2.00 ug/L	
10061-02-6	trans-1,3-Dichloropropene			not detected	1	0.25 ug/L	2.00 ug/L	
79-00-5	1,1,2-Trichloroethane			not detected	3	0.28 ug/L	2.00 ug/L	
127-18-4	Tetrachloroethene			not detected	1 1	0.20 ug/L	2.00 ug/L	
591-78-6	2-Hexanone			not detected	nle	0.43 ug/L	2.00 ug/L	
124-48-1	Dibromochloromethane			not detected	11	0.22 ug/L	2.00 ug/L	
108-90-7	Chlorobenzene			not detected	50	0.28 ug/L	2.00 ug/L	
100-41-4	Ethylbenzene			not detected	700	0.27 ug/L	2.00 ug/L	
1330-20-7	m+p-Xylenes			not detected	nie	0.43 ug/L	4.00 ug/L	
95-47-6	o-Xylene			not detected	nle	0.21 ug/L	2.00 ug/L	
100-42-5	Styrene			not detected	100	0.21 ug/L	2.00 ug/L	
75-25-2	Bromoform			not detected	4	0.27 ug/L	2.00 ug/L	
79-34-5	1,1,2,2-Tetrachloroethane			not detected	1 1	0.45 ug/L	2.00 ug/L	
541-73-1	1,3-Dichlorobenzene			not detected	600	0.36 ug/L	2.00 ug/L .	
106-46-7	1,4-Dichlorobenzene		'	not detected	. 75	0.35 ug/L	2.00 ug/L	
95-50-1	1,2-Dichlorobenzene		· · · · · · · · · · · · · · · · · · ·	not detected	600	0.45 ug/L	2.00 ug/L	-

*Results between MDL and RL are estimated values

*Higher of PQL's and Interim Criteria as per N.J.A.C. 7:9C 07Nov2005

Qualifiers

B = Compound found in related blank E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

MDL = Method Detection Limit NLE = No Limit Established

R.T. = Retention Time

R.L. = Reporting Limit

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name;	FMETL		NJDEP#: 13461	Trip B	lank
Project:	0634880	Case No.: 60006	Location: 637	SDG No.: US	Γ
Matrix: (soil/	water) <u>WAT</u>	ER	Lab Sample ID	: 6000606	
Sample wt/vo	ol: <u>5.0</u>	(g/ml) ML	Lab File ID:	VB021320.D	
Level: (low/n	ned) <u>LOW</u>		Date Received:	1/4/2006	
% Moisture: i	not dec.		Date Analyzed:	1/11/2006	
GC Column:	RTX502. ID	0.25 (mm)	Dilution Factor:	1.0	
Soil Extract V	/olume:	(uL)	Soil Aliquot Vol	ume:	(uL)
Number TICs	s found:		ONCENTRATION UNITS: g/L or ug/Kg) UG/L	<u> </u>	
CAS NO.	сом	POUND NAME	RT E	ST. CONC.	Q
1. 000079	9-20-9 Acetic	acid, methyl ester	12.47	4	JN

Volatile Analysis Report U.S. Army, Fort Monmouth Environmental Laboratory NJDEP Certification #13461

Data File Operator Date Acquired VB021321.D

Skelton

11 Jan 2006 10:51 pm

Sample Name Field ID 6000705 906AC

Regulatory

Sample Multiplier

fultiplier 1

CAS#	Compound Name	R.T.	Response	Result	Regulatory Level (ug/l)*	MDL	RL	Qualifiers
107028	Acrolein		I	not detected	5	2.01 ug/L	5.00 ug/L	Quantiers
107131	Acrylonitrile			not detected	5	1.23 ug/L	5.00 ug/L	
75650	tert-Butyl alcohol			not detected	100	5.70 ug/L	10.00 ug/L	
1634044	Methyl-tert-Butyl ether			not detected	70	0.21 ug/L	2.00 ug/L	
108203	Di-isopropyl ether			not detected	20000	0.26 ug/L	2.00 ug/L	<u> </u>
75718	Dichlorodifluoromethane			not detected	1000	0.20 ug/L		
74-87-3	Chloromethane		 	not detected			2.00 ug/L	
75-01-4	Vinyl Chloride				nle	0.24 ug/L	2.00 ug/L	
74-83-9	Bromomethane			not detected	1	0.23 ug/L	2.00 ug/L	
75-00-3	Chloroethane .			not detected	10	0.26 ug/L	2.00 ug/L	
75-69-4	Trichlorofluoromethane			not detected	nle	0.29 ug/L	2.00 ug/L	
75-35-4				not detected	2000	0.23 ug/L	2.00 ug/L	
	1,1-Dichloroethene		 	not detected	1	0.19 ug/L	2.00 ug/L	
67-64-1	Acetone		4	not detected	6000	0.36 ug/L	2.00 ug/L	<u> </u>
75-15-0	Carbon Disulfide			not detected	700	0.24 ug/L	2.00 ug/L	
75-09-2	Methylene Chloride			not detected	3	0.21 ug/L	2.00 ug/L	<u> </u>
156-60-5	trans-1,2-Dichloroethene			not detected	100	0.24 ug/L	2.00 ug/L	
75-34-3	1,1-Dichloroethane			not detected	50	0.24 ug/L	2.00 ug/L	
108-05-4	Vinyl Acetate			not detected	7000	0.20 ug/L	2.00 ug/L	
78-93-3	2-Butanone			not detected	300	0.26 ug/L	2.00 ug/L	
156-59-2	cis-1,2-Dichloroethene			not detected	70	0.20 ug/L	2.00 ug/L	
67-66-3	Chloroform			not detected	70	0.22 ug/L	2.00 ug/L	
71-55-6	1,1,1-Trichloroethane			not detected	30	0.20 ug/L	2.00 ug/L	
56-23-5	Carbon Tetrachloride	-		not detected	1	0.24 ug/L	2.00 ug/L	
71-43-2	Benzene			not detected	1	0.24 ug/L	2.00 ug/L	
107-06-2	1,2-Dichloroethane			not detected	2	0.23 ug/L	2.00 ug/L	
79-01-6	Trichloroethene			not detected	1	0.26 ug/L	2.00 ug/L	1
78-87-5	1,2-Dichloropropane			not detected	1	0.24 ug/L	2.00 ug/L	
75-27-4	Bromodichioromethane			not detected	i	0.22 ug/L	2.00 ug/L	
110-75-8	2-Chloroethyl vinyl ether			not detected	nle	0.23 ug/L	2.00 ug/L	
10061-01-5	cis-1,3-Dichloropropene			not detected	1	0.22 ug/L	2.00 ug/L	
108-10-1	4-Methyl-2-Pentanone		· · · · · · · · · · · · · · · · · · ·	not detected	nle	0.35 ug/L	2.00 ug/L	
108-88-3	Toluene			not detected	1000	0.26 ug/L	2.00 ug/L	
10061-02-6	trans-1,3-Dichloropropene			not detected		***************************************		
79-00-5	1,1,2-Trichloroethane			not detected	1	0.25 ug/L	2.00 ug/L	
127-18-4	Tetrachloroethene				3	0.28 ug/L	2.00 ug/L	
591-78-6	2-Hexanone		 	not detected	1	0.20 ug/L	2.00 ug/L	
124-48-1	Dibromochloromethane		1	not detected	nle	0.43 ug/L	2.00 ug/L	
108-90-7			 	not detected	1	0.22 ug/L	2.00 ug/L	
108-90-7	Chlorobenzene	05.70	0.55.55	not detected	50	0.28 ug/L	2.00 ug/L	
1330-20-7	Ethylbenzene	25.72	865653	4.71 ug/L	700	0.27 ug/L	2.00 ug/L	
95-47-6	m+p-Xylenes	26.01	70702	1.05 ug/L	nle	0.43 ug/L	4.00 ug/L	
4.	o-Xylene	26.84	299933	2.16 ug/L	nle	0.21 ug/L	2.00 ug/L	
100-42-5	Styrene			not detected	100	0.21 ug/L	2.00 ug/L	
75-25-2	Bromoform			not detected	4	0.27 ug/L	2.00 ug/L	ļ
79-34-5	1,1,2,2-Tetrachloroethane			not detected	1	0.45 ug/L	2.00 ug/L	
541-73-1	1,3-Dichlorobenzene			not detected	600	0.36 ug/L	2.00 ug/L	
106-46-7	1,4-Dichlorobenzene			not detected	75	0.35 ug/L	2.00 ug/L	
95-50-1	1,2-Dichlorobenzene		1	not detected	600	0.45 ug/L	2.00 ug/L	

^{*}Results between MDL and RL are estimated values

Qualifiers

B = Compound found in related blank

E = Value above linear range

D = Value from dilution

PQL = Practical Quantitation Limit

MDL = Method Detection Limit

NLE = No Limit Established

R.T. = Retention Time

R.L. = Reporting Limit

^{*}Higher of PQL's and Interim Criteria as per N.J.A.C. 7:9C 07Nov2005

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FI	EL	D I	D
----	----	-----	---

Lab Name:	FMETL	·	<u>, </u>	NJDEP#: 13461	906AC	
Project:	063488	0	Case No.: 60006	Location: 637 S	DG No.: UST	
Matrix: (soil/	water)	WATE	R	Lab Sample ID:	6000705	
Sample wt/vo	ol:	5.0	(g/ml) ML	Lab File ID:	VB021321.D	
Level: (low/r	ned)	LOW	····	Date Received:	1/4/2006	_
% Moisture:	not dec.			Date Analyzed:	1/11/2006	_
GC Column:	RTX5	02. ID:	<u>0.25</u> (mm)	Dilution Factor:	1.0	_
Soil Extract \	Volume:		(uL)	Soil Aliquot Volu	me:	_ _ (uL
			CC	NCENTRATION UNITS:		

(ug/L or ug/Kg) UG/L

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 000526-73-8	Benzene, 1,2,3-trimethyl-	29.36	39	JN
2. 000496-11-7	Indane	30.51	77	JN
3. 000933-98-2	Benzene, 1-ethyl-2,3-dimethyl-	31.14	15	JN
4. 000527-84-4	Benzene, 1-methyl-2-(1-methylet	31.32	25	JN
5. 000767-58-8	Indan, 1-methyl-	31.59	29	JN
6. 000095-93 - 2	Benzene, 1,2,4,5-tetramethyl-	32.12	13	JN
7. 000095-93-2	Benzene, 1,2,4,5-tetramethyl-	32,23	23	JN
8. 000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	32.69	20	JN
9. 002039-89-6	Benzene, 2-ethenyl-1,4-dimethyl-	33.09	67	JN
10. 000119-64-2	Naphthalene, 1,2,3,4-tetrahydro-	33,42	19	JN

Number TICs found:

10

(mm)

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK **BROMOFLUOROBENZENE (BFB)**

Lab Name: **FMETL** NJDEP#: 13461 Project: 0634880 Case No.: 60006 Location: 637 SDG No.: UST Lab File ID: VB021310.D BFB Injection Date: 1/11/2006 Instrument ID: GCMS#2 BFB Injection Time: 15:23 GC Column: RTX502.2 ID: 0.25

		% RELATIVE		
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE		
50	8.0 - 40.0% of mass 95	22.0		
75	30.0 - 66.0% of mass 95	56.5		
95	Base peak, 100% relative abundance	. 100.0		
96	5.0 - 9.0% of mass 95	6.6		
173	Less than 2.0% of mass 174	0.0 (0.0)1		
174	50.0 - 120.0% of mass 95	73.1		
175	4.0 - 9.0% of mass 174	5.4 (7.4)1		
176	93.0 - 101.0% of mass 174	71.0 (97.2)1		
177	5.0 - 9.0% of mass 176	4.7 (6.7)2		

¹⁻Value is % mass 174

2-Value is % mass 176

Heated Purge: (Y/N)

Ν

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	FIELD ID:	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01[VSTD010	VSTD010	VB021311.D	1/11/2006	16:01
02	VSTD005	VSTD005	VB021312.D	1/11/2006	16:42
03	VSTD002	VSTD002	VB021313.D	1/11/2006	17:23
04	VSTD050	VSTD050	VB021314.D	1/11/2006	18:04
05	VSTD020	VSTD020	VB021315.D	1/11/2006	18:45
06	MB 11JAN2006	MB 11JAN2006	VB021318.D	1/11/2006	20:48
07	637C	6000605	VB021319.D	1/11/2006	21:29
08[TRIP BLANK	6000606	VB021320.D	1/11/2006	22:10

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: **FMETL** NJDEP#: 13461 Project: 0634880 Case No.: 60007 Location: 906A SDG No.: UST Lab File ID: VB021310.D BFB Injection Date: 1/11/2006 Instrument ID: GCMS#2 BFB Injection Time: 15:23 GC Column: RTX502.2 ID: 0.25 Heated Purge: (Y/N) (mm) Ν

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	22.0
75	30.0 - 66.0% of mass 95	56.5
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	73.1
175	4.0 - 9.0% of mass 174	5.4 (7.4)1
176	93.0 - 101.0% of mass 174	71.0 (97.2)1
177	5.0 - 9.0% of mass 176	4.7 (6.7)2

¹⁻Value is % mass 174

2-Value is % mass 176

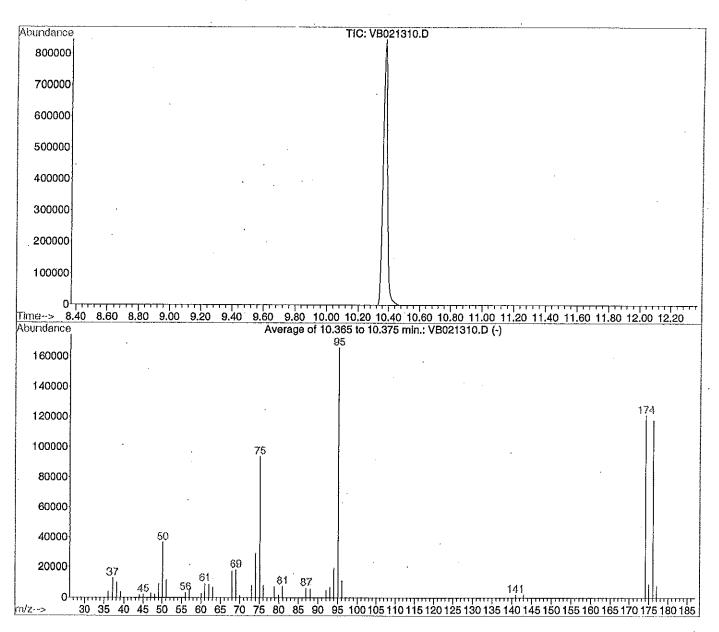
THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	FIELD ID:	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD010	VSTD010	VB021311.D	1/11/2006	16:01
02	VSTD005	VSTD005	VB021312.D	1/11/2006	16:42
03	VSTD002	VSTD002	VB021313.D	1/11/2006	17:23
04	VSTD050	VSTD050	VB021314.D	1/11/2006	18:04
05	VSTD020	VSTD020	VB021315.D	1/11/2006	18:45
06	MB 11JAN2006	MB 11JAN2006	VB021318.D	1/11/2006	20:48
07	906AC	6000705	VB021321.D	1/11/2006	22:51

Data File : C:\HPCHEM\1\DATA\060111\VB021310.D

Acq On : 11 Jan 2006 3:23 pm

: 11 Jan 2006 3:23 pm : BFB Tune Operator: Skelton Inst : GC/MS Ins


Vial: 1

Misc : BFB Tune Multiplr: 1.00

MS Integration Params: TBA.P

Sample

Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 624/8260/TCLP

AutoFind: Scans 148, 149, 150; Background Corrected with Scan 139

Target	Rel. to	Lower	Upper	Rel.	Raw	Result	
Mass	Mass	Limit%	Limit%	Abn%	Abn	Pass/Fail	
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	15 30 100 5 0.00 50 595	40 60 100 9 2 100 9 101	22.0 56.5 100.0 6.6 0.0 73.1 7.4 97.2 6.7	36501 93693 165909 10963 0 121272 8945 117840 7849	PASS PASS PASS PASS PASS PASS PASS PASS	

Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator) Title : Volatile Organics by GC/MS Method 624/8260/TCLP
Last Update : Thu Jan 12 07:46:23 2006
Response via : Initial Calibration

Calibration Files

50 =VB021314.D 20 =VB021315.D 10 =VB021311.D

5 =VB021312.D 2 =VB021313.D

_			Compound	50	20	10	5	2	Avg	%RSD
	11	~ -	Decora - h l common de la com-				~~~			
	1) 2)	I tm	Bromochloromethane Acrolein		0 097				0.095	12.03
	3)	tm	Acrylonitrile						0.880	7.71
	4)	tm	tert-Butyl alcohol	0.126	0.120	0.102	0.107	0.111	0.113	8.63
	5)	tm	Methyl-tert-Butyl eth	6.128	5.255	4.809	4.574	4.318	5.017	14.16
	6)	tm	Di-isopropyl ether	2.175	1.916	1.796	1.595	1.313	1.759	18.53
_	7)	Tm	Dichlorodifluorometha	2.855	2.629	2.942	3.022	3.056	2.901	5.89
	_ 8)		Chloromethane	3.281	3.128	3.291	3.300	3.259	3.252	2.18
	9)		Vinyl Chloride	3.329	3.177	3.278	3.343	3.254	3,276	2.03
	10)	Tm	Bromomethane	1.744	1.757	1.801	1.855	1.892	1.810	3.47
	11)	Tm	Chloroethane	2.065	2.150	2.155	2.199	2.158	2.146	2.28
	12)	Tm	Trichlorofluoromethan	5.535	5.256	5.309	5.478	5.291	5.374	2.31
	13) 14)	MC Tm	1,1-Dichloroethene Acetone	3,946	3.648	3.380	3.403	3.180	3.512	8.38
	15)	Tm	Carbon Disulfide	0.013	0.581	0.819	0.81/	1.106	0.787	26.67
	16)	Tm	Methylene Chloride	2 601	7.593	7.332	7.205	0.851	7.434	6.72
	17)		trans-1,2-Dichloroeth	3 730	3 500	3 206	2.0/3	2,750	2.000	2.42 7.63
	18)		1.1-Dichloroethane	4 846	4 570	4 379	1 380	1 112	1 157	6.09
_	19)	Tm	1,1-Dichloroethane Vinyl Acetate	1.945	1.596	1.424	1 353	1 275	1 519	17.53
	20)	Tm	2-Butanone		0.759					9.85
	21)	Tm	cis-1,2-Dichloroethen	3.912	3.634	3.404	3.265	3.055	3.454	9,59
	22)	TCm	Chloroform	4.781	4.572	4.509	4.530	4.395		3.10
	23)	Tm	1,1,1-Trichloroethane	4.196	3.871	3.547	3.461	3.165	3.648	10.87
	24)		Carbon Tetrachloride	3.574	3.235	2.986	3.002	2.826	3.125	9.30
	25)	S	1,2-Dichloroethane-d4	3.472	3.308	3.333	3.287	3.217	3.324	2.82
	26)	I	1,4-Difluorobenzene			т				
	27)	TM	Benzene		1.387					5.61
	28)	Tm	1,2-Dichloroethane		0.485					2.03
	29)	TM	Trichloroethene		0.334					7.06
	30)	TCm	1,2-Dichloropropane		0.341			0.311	0.335	5.68
	31)	Tm	Bromodichloromethane		0.432				0.423	7.42
	32)	Tm	2-Chloroethyl vinyl e							18.59
	33)	Tm	cis-1,3-Dichloroprope							15.81
_	34)	Tm	4-Methyl-2-Pentanone	0.092	0.079	0.068	0.070	0.069	0.076	13.65
	35) 36)	S TICM	Toluene-d8 Toluene		1.249					9.25
		I CEI	Totale	1.020	1.523	1.494	1.450	1.302	1.4/9	8.03
	37)	I	Chlorobenzene-d5							
	38)	.Tm	trans-1,3-Dichloropro							18.33
	39)	Tm	1,1,2-Trichloroethane							3.80
	(10)	Tm	Tetrachloroethene		1.344					4.73
_	41)	Tm	2-Hexanone		0.476					9.91
	42)	Tm	Dibromochloromethane		1.036				1.015	10.35
	43)		Chlorobenzene		3.513					2.74
	44)		Ethylbenzene		6.199					6.58
	45)	Tm	m+p-Xylenes		2.314					11.25
	46)	Tm	o-Xylene	5.473	4.968	4.703	4.262	3.652	4.012	15.02
	47) 48)	Tm TDm	Styrene Bromoform		3.483					17.69
	48)	TPM S	Bromoform Bromofluorobenzene		0.672					10.59
	50)		1,1,2,2-Tetrachloroet	1.924	1 199	1.700	1 150 1 150	1 1/F	1 162	9.55
	51)	Tm	1,3-Dichlorobenzene		2.286					3.31 7.04
	52)	Tm	1,4-Dichlorobenzene	2.550		2.286				8.40
	53)	Tm	1,2-Dichlorobenzene	2.150		1.937				6.12
	54)	Tm	Naphthalene		0.920					26.60
	:	••	•					• -	-,	

4A

VOLATILE METHOD BLANK SUMMARY

FIE		ID
-----	--	----

Lab Name:	FMETL		_ NJDEP#: <u>1</u> 3461	MB 11Jan2006
Project:	0634880	Case No.: 60006	Location: 637	SDG No.: UST
Lab File ID:	VB02131	8.D	Lab Sampi	e ID: MB 11Jan2006

Date Analyzed: 1/11/2006 Time Analyzed: 20:48

GC Column: RTX502. ID: 0.25 (mm) Heated Purge: (Y/N) N

Instrument ID: GCMS#2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	FIELD ID:	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	637C	6000605	VB021319.D	21:29
02	TRIP BLANK	6000606	VB021320.D	22:10

COMMENTS:	•		
		•	

VOLATILE METHOD BLANK SUMMARY

FIELD ID:

MB 11Jan2006

Lab Name:

FMETL

NJDEP#: 13461

Project:

0634880

Case No.: 60007

Location: 906A

SDG No.: UST

Lab File ID:

VB021318.D

Lab Sample ID: MB 11Jan2006

Date Analyzed: 1/11/2006

Time Analyzed: 20:48

GC Column:

RTX502. ID: 0.25

Heated Purge: (Y/N)

Ν

Instrument ID: GCMS#2

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

		LAB	LAB	TIME
	FIELD ID:	SAMPLE ID	FILE ID	ANALYZED
01	906AC	6000705	VB021321.D	22:51

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

 Lab Name:
 FMETL
 NJDEP#:
 13461

 Project:
 0634880
 Case No.:
 60006
 Location:
 637
 SDG No.:
 UST

	FIELD ID:	SMC1 DCE #	SMC2 TOL #	SMC3 BFB #	TOT
01	MB 11JAN2006	82	90	86	0
02	637C	83	91	87	0
03	TRIP BLANK	83	91	87	0

QC LIMITS

 SMC1
 DCE
 =
 1,2-Dichloroethane-d4
 (70-120)

 SMC2
 TOL
 =
 Toluene-d8
 (70-120)

 SMC3
 BFB·
 =
 Bromofluorobenzene
 (70-120)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: **FMETL** NJDEP#: 13461 Project: 0634880 Case No.: 60007 SDG No.: UST Location: 906A

	SMC1	SMC2	SMC3	ТОТ
FIELD ID	DCE #	TOL #	BFB #	OUT
01 MB 11JAN2	006 82	90	86	0
02 906AC	83	90	91	0

QC LIMITS

SMC1 DCE

1,2-Dichloroethane-d4

(70-120)

SMC2 TOL SMC3

Toluene-d8

(70-120)

BFB Bromofluorobenzene

(70-120)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

FORM II VOA-1

6/99

Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator) Title : Volatile Organics by GC/MS Method 624/8260/TCLP
Last Update : Thu Jan 12 07:46:23 2006
Response via : Initial Calibration

Non-Spiked Sample: VB021335.D

Spike Spike

Sample Duplicate Sample

File ID: VB021336.D Sample: 6002305 MS Acq Time: 12 Jan 2006 9:06 am VB021337.D 6002305 MSD

12 Jan 2006 9:47 am

Acrolein 0.0 50 46 46 93 92 1 20 Acrylonitrile 0.0 50 49 49 97 98 1 20 tert-Butyl alcohol 0.0 100 84 87 84 87 3 20	59-137 68-127 17-167 74-116
	17-167 74-116
tert-Butyl alcohol [0.0 100 84 87 84 87 3 20	74-116
Methyl-tert-Butyl et 0.0 10 9 9 88 90 2 20	•
Di-isopropyl ether 0.0 10 9 9 91 94 3 20	77-117
- Dichlorodifluorometh 0.0 10 7 8 72 76 6 20	50-131
Chloromethane 0.0 10 8 9 80 86 7 20	65-123
Vinyl Chloride 0.0 10 8 8 78 82 5 20	63-125
Bromomethane 0.0 10 8 9 80 86 8 20	72-118
- Chloroethane 0.0 10 9 9 86 90 6 20	64-127
Trichlorofluorometha 0.0 10 8 8 79 84 5 20	60-122
1,1-Dichloroethene 0.0 10 8 8 77 83 8 20	68-116
Acetone 0.0 10 8 8 76 77 1 20	2-148
Carbon Disulfide 0.0 10 8 8 79 84 7 20	69-117
Methylene Chloride 0.0 10 9 10 90 95 6 20	79-110
trans-1,2-Dichloroet 0.0 10 8 9 80 86 7 20 1,1-Dichloroethane 0.0 10 9 9 88 93 5 20	73-113
	77-112
	52-127
2-Butanone 0.0 10 9 9 86 85 1 20 cis-1,2-Dichloroethe 0.0 10 9 9 87 92 5 20	12-162 74-114
Chloroform 0.0 10 9 9 89 94 6 20	79-110
1,1,1-Trichloroethan 0.0 10 8 8 79 84 7 20	73-114
Carbon Tetrachloride 0.0 10 8 8 78 84 7 20	69-115
Benzene 0.0 10 9 9 86 91 5 20	78-112
1,2-Dichloroethane 0.0 10 9 10 93 95 2 20	78-115
Trichloroethene 0.0 10 8 9 82 86 5 20	74-114
1,2-Dichloropropane 0.0 10 9 9 88 93 5 20	77-113
Bromodichloromethane 0.0 10 9 9 88 92 5 20	77-113
2-Chloroethyl vinyl 0.0 10 8 9 84 86 2 20	67-117
cis-1,3-Dichloroprop 0.0 10 8 9 82 87 5 20	75-116
4-Methyl-2-Pentanone 0.0 10 9 9 87 88 1 20	33-146
Toluene 0.0 10 9 9 89 93 5 20	80~113
trans-1,3-Dichloropr 0.0 10 8 9 83 86 3 20 1,1,2-Trichloroethan 0.0 10 9 10 94 95 2 20	75-117
1,1,2-Trichloroethan 0.0 10 9 10 94 95 2 20 Tetrachloroethene 0.0 10 8 8 80 83 4 20	78-116 73-115
2-Hexanone 0.0 10 8 8 80 83 3 20	30-147
Dibromochloromethane 0.0 10 9 9 91 93 3 20	77-115
Chlorobenzene 0.0 10 9 9 88 92 4 20	78-112
Ethylbenzene 0.0 10 8 9 85 90 5 20	77-113
m+p-Xylenes 0.0 20 17 18 85 89 4 20	76-115
o-Xylene 0.0 10 9 9 86 91 5 20	74-118
Styrene 0.0 10 9 9 89 92 3 20	77-116
Bromoform 0.0 10 9 9 90 91 1 20	72-116
1,1,2,2-Tetrachloroe 0.0 10 9 9 92 94 2 20	73-120
1,3-Dichlorobenzene 0.0 10 8 9 84 89 5 20	75-114
1,4-Dichlorobenzene 0.0 10 9 9 87 92 6 20	75-116
	76-115
Naphthalene 0.0 10 5 6 52# 63# 19 20	70-120

^{# -} Fails Limit Check

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

NJDEP#: 13461 Lab Name: **FMETL** Project: 0634880 Case No.: 60006 Location: 637 SDG No.: UST Lab File ID (Standard): VB021311.D Date Analyzed: 1/11/2006 Instrument ID: GCMS#2 Time Analyzed: 16:01 GC Column: RTX502.2 ID: 0.25 Heated Purge: (Y/N) (mm) Ν

		IS1BCM AREA #	RT #	IS2DFB AREA #	RT #	IS3CBZ AREA #	RT #
	12 HOUR STD	477172	16.43	3603875	19.62	939180	25.65
	UPPER LIMIT	954344	16.93	7207750	20.12	1878360	26.15
	LOWER LIMIT	238586	15.93	1801938	19.12	469590	25.15
			3833				
	FIELD ID:						
01	MB 11JAN2006	457185	16.43	3387692	19.63	892840	25.65
02	637C	451875	16.43	3328281	19.63	881634	25.66
03	TRIP BLANK	450293	16.43	3314080	19.63	878455	25.66

IS1 BCM

= Bromochloromethane

IS2 DFB

= 1,4-Difluorobenzene

IS3 CBZ

= Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

^{*} Values outside of contract required QC limits

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: FMETL NJDEP#: 13461

Project: 0634880 Case No.: 60007 Location: 906A SDG No.: UST

Lab File ID (Standard): VB021311.D Date Analyzed: 1/11/2006

Instrument ID: GCMS#2 Time Analyzed: 16:01

GC Column: RTX502.2 ID: 0.25 (mm) Heated Purge: (Y/N) N

	IS1BCM AREA #	RT #	IS2DFB AREA #	RT #	IS3CBZ AREA #	RT #
12 HOUR STD	477172	16.43	3603875	19.62	939180	25.65
UPPER LIMIT	954344	16.93	7207750	20.12	1878360	26.15
LOWERLIMIT	238586	15.93	1801938	19.12	469590	25.15
FIELD ID:					-	
MB 11JAN2006	457185	16.43	3387692	19.63	892840	25.65
906AC	447930	16.44	3400184	19.63	902392	25.65

IS1 BCM = Bromochloromethane

IS2 DFB = 1,4-Difluorobenzene

IS3 CBZ = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

Data File : C:\HPCHEM\1\DATA\060111\VB021318.D

Acq On : 11 Jan 2006 8:48 pm

Operator: Skelton : MB 11Jan2006 Inst : GC/MS Ins Multiplr: 1.00

Vial: 8

Misc : MB 11Jan2006 MS Integration Params: TBA.P

Quant Time: Jan 12 7:49 2006 Quant Results File: M2VO222.RES

Quant Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator) Title : Volatile Organics by GC/MS Method 624/8260/TCLP
Last Update : Thu Jan 12 07:46:23 2006
Response via : Initial Calibration

DataAcq Meth : M2VO222

Sample

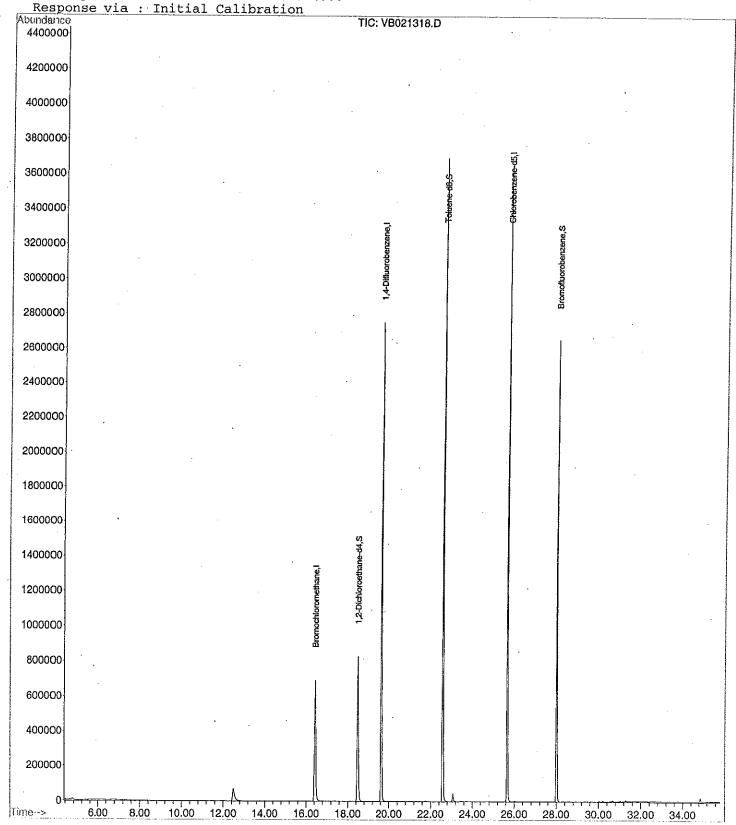
	Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
_	1) Bromochloromethane 26) 1,4-Difluorobenzene 37) Chlorobenzene-d5	16.43 19.63 25.65	128 114 119	457185 3387692 892840	30.00 30.00 30.00	ug/L	0.00
-	System Monitoring Compounds 25) 1,2-Dichloroethane-d4	18.47	65	1247698	24.63	na/L	0.00
	Spiked Amount 30.000	Range 70		Recover			0.00
	35) Toluene-d8	22.58	98	3672657	_		0.00
	Spiked Amount 30.000	Range 70	- 120	Recover	:y =	89.80%	
	49) Bromofluorobenzene	28.00	95	1312101	25.94	ug/L	0.00
	Spiked Amount 30.000	Range 70	- 120	Recover			
	Target Compounds			•		Ova	lue

^{(#) =} qualifier out of range (m) = manual integration VB021318.D M2V0222.M Thu Jan 19 13:51:43 2006

Data File : C:\HPCHEM\1\DATA\060111\VB021318.D

Acq On Sample

: 11 Jan 2006 : MB 11Jan2006 : MB 11Jan2006 8:48 pm Operator: Skelton Inst : GC/MS Ins Multiplr: 1.00


MS Integration Params: TBA.P Quant Time: Jan 12 7:49 2006

Misc

Quant Results File: M2VO222.RES

Vial: 8

Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 624/8260/TCLP
Last Update : Thu Jan 12 07:46:23 2006

Data File : C:\HPCHEM\1\DATA\060111\VB021320.D

: 11 Jan 2006 10:10 pm : 6000606

Vial: 10 Operator: Skelton : GC/MS Ins

Multiplr: 1.00

: Trip Blank Misc MS Integration Params: TBA.P

Quant Time: Jan 12 7:46 2006 Quant Results File: M2VO222.RES

Quant Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator)
Title : Volatile Organics by GC/MS Method 624/8260/TCLP
Last Update : Thu Jan 12 07:46:23 2006
Response via : Initial Calibration
DataAcq Meth : M2VO222

Sample

	Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
	1) Bromochloromethane 26) 1,4-Difluorobenzene 37) Chlorobenzene-d5	16.43 19.63 25.66	128 114 119	450293 3314080 878455	30.00 30.00 30.00	ug/L	0.00
_	System Monitoring Compounds 25) 1,2-Dichloroethane-d4	18.47	65	1246352	24.98	ua/L	0.00
	Smileod Amount 30 000	Range 70		Recove			
	35) Toluene-d8	2,2.57	98	3626845	27.20	ug/L	0.00
_	a spiked Amount 50.000	Range 70	- 120	Recove	ry =	90.67%	
	49) Bromofluorobenzene	28.00	95	1293796	26.00	ug/L	0.00
	Spiked Amount 30.000	Range 70	- 120	Recove	ry =	86.67%	
_	Target Compounds				-	Qv	alue

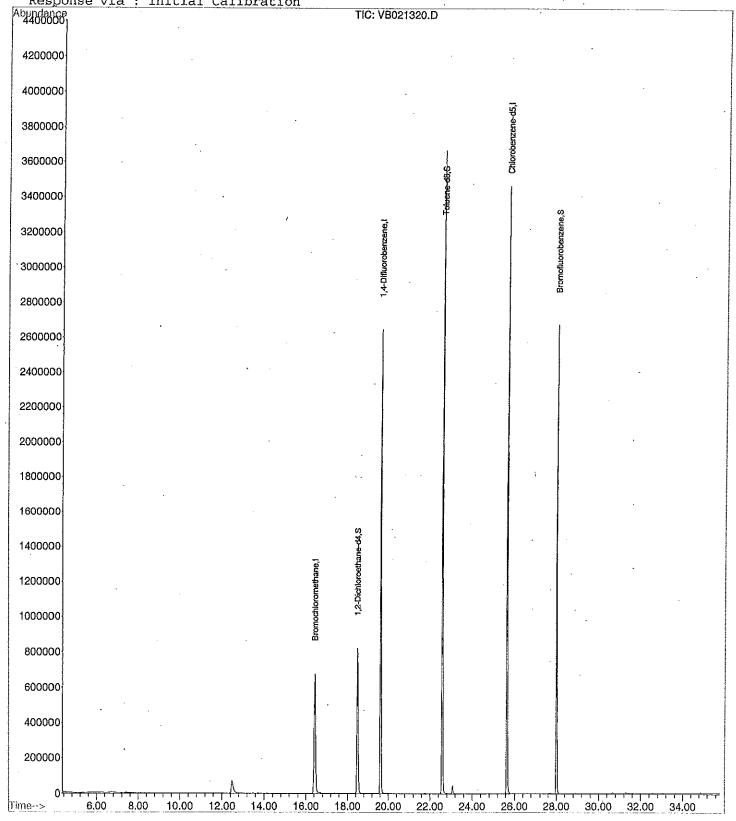
Data File : C:\HPCHEM\1\DATA\060111\VB021320.D

: 11 Jan 2006 10:10 pm Sample

: 6000606 : Trip Blank

MS Integration Params: TBA.P Quant Time: Jan 12 7:46 2006

Misc


Vial: 10 Operator: Skelton Inst : GC/MS Ins

Multiplr: 1.00

Quant Results File: M2VO222.RES

Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator) Title : Volatile Organics by GC/MS Method 624/8260/TCLP

Last Update : Thu Jan 12 07:46:23 2006 Response via : Initial Calibration

Data File : C:\HPCHEM\1\DATA\060111\VB021321.D

Acq On : 11 Jan 2006 10:51 pm

Sample : 6000705

Inst : GC/MS Ins Multiplr: 1.00

: 906AC Misc

MS Integration Params: TBA.P Quant Time: Jan 12 7:47 2006

Quant Results File: M2VO222.RES

Vial: 11 Operator: Skelton

Quant Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator) Title : Volatile Organics by GC/MS Method 624/8260/TCLP
Last Update : Thu Jan 12 07:46:23 2006
Response via : Initial Calibration

DataAcq Meth : M2V0222

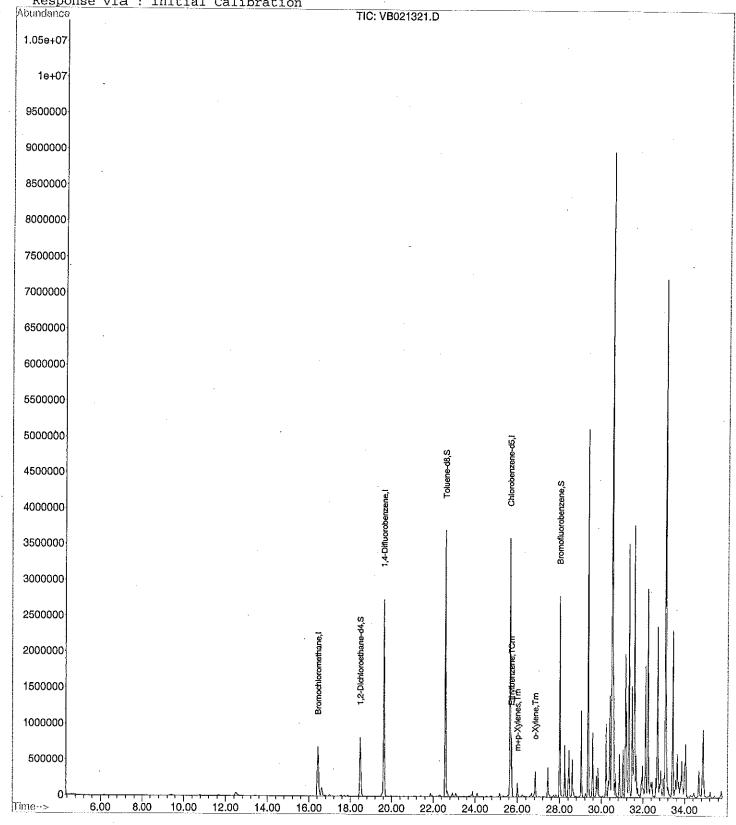
	Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
_	1) Bromochloromethane 26) 1,4-Difluorobenzene 37) Chlorobenzene-d5	16.44 19.63 25.65		447930 3400184 902392	30.00 30.00 30.00	ug/L	0.00
_	System Monitoring Compounds 25) 1,2-Dichloroethane-d4 Spiked Amount 30.000 35) Toluene-d8 Spiked Amount 30.000 49) Bromofluorobenzene Spiked Amount 30.000	18.47 Range 70 22.57 Range 70 28.00 Range 70	- 120 98 - 120 95	3683698	ery = 26.93 ery = 27.18	83.40% ug/L 89.77% ug/L	0.00
	Target Compounds 44) Ethylbenzene 45) m+p-Xylenes 46) o-Xylene	25.72 26.01 26.84	91 106 91	865653 70702 299933	1.05	Qv ug/L ug/L ug/L	ralue 99 99 99

Data File : C:\HPCHEM\1\DATA\060111\VB021321.D

Acq On : 11 Jan 2006 10:51 pm

Sample : 6000705 Misc : 906AC

MS Integration Params: TBA.P Quant Time: Jan 12 7:47 2006


Vial: 11 Operator: Skelton Inst : GC/MS Ins Multiplr: 1.00

Quant Results File: M2VO222.RES

Method : C:\HPCHEM\1\METHODS\M2VO222.M (RTE Integrator) Title : Volatile Organics by GC/MS Method 624/8260/TCLP

Last Update : Thu Jan 12 07:46:23 2006

Response via : Initial Calibration

VOLATILE ORGANICS (SOIL)

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID:

MB 17Jan2006

Lab Name: **FMETL** NJDEP#: 13461 Project: 0634880 Case No.: 60007 SDG No.: UST Location: 906A Matrix: (soil/water) SOIL Lab Sample ID: MB 17Jan2006 Sample wt/vol: 10.0 (g/ml) G Lab File ID: VB021392.D Level: (low/med) MED Date Received: 1/4/2006 % Moisture: not dec. Date Analyzed: 1/17/2006 GC Column: RTX502. ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: 25000 Soil Aliquot Volume: 125 (uL) (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
107028	Acrolein	1000	U
107131	Acrylonitrile	1000	Ü
75650	tert-Butyl alcohol	1000	Ū
1634044	Methyl-tert-Butyl ether	100	Ū
108203	Di-isopropyl ether	100	Ū
75718	Dichlorodifluoromethane	100	Ū
<u>74-</u> 87-3	Chloromethane	100	Ū
75-01-4	Vinyl Chloride	100	U
74-83-9	Bromomethane	100	U
75-00 - 3	Chloroethane	100	U
_75-69-4	Trichlorofluoromethane	100	U
<u>75-35-4</u>	1,1-Dichloroethene	100	U
67-64-1	Acetone	100	U
75-15-0	Carbon Disulfide	100	U
75-09-2	Methylene Chloride	100	U
156-60-5	trans-1,2-Dichloroethene	100	U
75-34-3	1,1-Dichloroethane	100	U
108-05-4	Vinyl Acetate	100	U
78-93-3	2-Butanone	100	U
<u> 156-59-2</u>	cis-1,2-Dichloroethene	100	U
67-66-3	Chloroform	100	U
71-55-6	1,1,1-Trichloroethane	100	U
56-23-5	Carbon Tetrachloride	100	U
71-43-2	Benzene	100	U
107-06-2	1,2-Dichloroethane	100	U
79-01-6	Trichloroethene	100	U
78-87-5	1,2-Dichloropropane	100	U
75-27-4	Bromodichloromethane	100	U
110-75-8	2-Chloroethyl vinyl ether	100	U
10061-01-5	cis-1,3-Dichloropropene	100	· U
108-10-1	4-Methyl-2-Pentanone	100	U
108-88-3	Toluene	100	U
10061 - 02-6	trans-1,3-Dichloropropene	100	U
79-00-5	1,1,2-Trichloroethane	100	U
127-18-4	Tetrachloroethene	100	U
591-78-6	2-Hexanone	100	U
124-48-1	Dibromochloromethane	100	U
108-90-7	Chlorobenzene	100	U
100-41-4	Ethylbenzene	100	U

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID:

MB 17Jan2006

Lab Name: **FMETL** NJDEP#: 13461 Project: 0634880 Case No.: 60007 Location: 906A SDG No.: UST Matrix: (soil/water) SOIL Lab Sample ID: MB 17Jan2006 Sample wt/vol: 10.0 (g/ml) G Lab File ID: VB021392.D Level: (low/med) MED Date Received: 1/4/2006 % Moisture: not dec. 0 Date Analyzed: 1/17/2006 GC Column: RTX502. ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: 25000 (uL) Soil Aliquot Volume: 125 (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
1330-20-7	m+p-Xylenes	200	l II
95-47-6	o-Xylene	100	Ü
100-42-5	Styrene	100	Ü
75-25-2	Bromoform	100	li i
79-34-5	1,1,2,2-Tetrachioroethane	100	1)
541-73-1	1,3-Dichlorobenzene	100	11 .
106-46-7	1,4-Dichlorobenzene	100	U
95-50-1	1,2-Dichlorobenzene	100	Ü
91-20-3	Naphthalene	100	- i i

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD ID:

Lab Name:	FMETL	·		NJDEP	#:	13461		MB 17Jan	2006
Project:	063488	0	Case No.: 6000	D7 Loca	tion:	906A	SI	DG No.: UST	
Matrix: (soil/v	water)	SOIL		-	Lab (Sample	ID:	MB 17Jan2006	3
Sample wt/vo	ol:	10.0	(g/ml) <u>G</u>	·	Lab I	File ID:		VB021392.D	
Level: (low/n	ned)	MED			Date	Receiv	ed:	1/4/2006	<u>-</u>
% Moisture: r	not dec.	0	· .	J	Date	Analyz	ed:	1/17/2006	
GC Column:	RTX5	02. ID:	0.25 (mm)	l	Diluti	on Fac	tor:	1.0	
Soil Extract V	/olume:	25000	(uL)		Soil A	Aliquot '	Volun	ne: 125	 (uL)
Number TICs	s found:	0		CONCENTR (ug/L or ug/k		ON UNI UG/			
CAS NO.		СОМЕ	OUND NAME			RT	EST	T. CONC.	Q

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID:

Lab Name:	FMETI	<u> </u>		NJDEP#: 13461	Trip Blank
Project:	06348	80	Case No.: 60007	Location: 906A SD	G No.: UST
Matrix: (soil/	water)	SOIL		Lab Sample ID: 6	000606
Sample wt/v	ol:	10.0	(g/ml) <u>G</u>	Lab File ID: V	B021393.D

Level: (low/med) MED Date Received: 1/4/2006
% Moisture: not dec. 0 Date Analyzed: 1/17/2006

GC Column: RTX502. ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: 25000 (uL) Soil Aliquot Volume: 125 (uL)

CONCENTRATION UNITS:

CONCENTRATION UNITS:						
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q		
107028	Acrolein		1000	U		
107131	Acrylonitrile		1000	U		
75650	tert-Butyl alcoho	ol	1000	T U		
1634044	Methyl-tert-Buty		100	Ü		
108203	Di-isopropyl eth		100	U		
75718	Dichlorodifluoro		100	U		
74-87-3	Chloromethane		100	υ		
75-01-4	Vinyl Chloride		100	U		
74-83-9	Bromomethane		100	Ü		
75-00-3	Chloroethane	•	100	Ü		
75-69-4	Trichlorofluorom	nethane	100	Ü		
75-35-4	1,1-Dichloroethe		100	U		
67-64-1	Acetone		440	 		
75-15-0	Carbon Disulfide	9	100	U		
75-09-2	Methylene Chlor		100	Ü		
156-60-5	trans-1,2-Dichlo		100	Ü		
75-34-3	1,1-Dichloroetha		100	Ŭ		
108-05-4	Vinyl Acetate		100	Ü		
78-93-3	2-Butanone		100	Ŭ		
156-59-2	cis-1,2-Dichloro	ethene	100	Ü		
67-66-3	Chloroform		100	Ŭ		
71-55-6	1,1,1-Trichloroet	thane	100	Ü		
56-23-5	Carbon Tetrachl	oride	100	Ü		
71-43-2	Benzene		100	Ū		
107-06-2	1,2-Dichloroetha	ine	100	Ŭ		
79-01-6	Trichloroethene		100	Ü		
78-87-5	1,2-Dichloroprop	pane	100	Ü		
75-27-4	Bromodichlorom		100	Ü		
110-75-8	2-Chloroethyl vir	nvl ether	100	Ű.		
10061-01-5	cis-1,3-Dichlorop		100	Ū		
108-10-1	4-Methyl-2-Penta		100	Ü		
108-88-3	Toluene		100	Ü		
10061-02-6	trans-1,3-Dichlor	ropropene	100	Ü		
79-00-5	1,1,2-Trichloroet		100	Ü		
127-18-4	Tetrachloroether		100	Ü		
591-78-6	2-Hexanone		100	Ü		
124-48-1	Dibromochlorom	ethane	100	Ü		
108-90-7	Chlorobenzene		100	Ü		
100-41-4	Ethylbenzene		100	U		

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD ID:

Lab Name:	FMETL			NJDEP#: 13461	Trip Blank
Project:	063488	0	Case No.: 60007	Location: 906A	SDG No.: UST
Matrix: (soil/w	vater)	SOIL		Lab Sample ID:	6000606
Sample wt/vo	ol:	10.0	(g/ml) <u>G</u>	_ Lab File ID:	VB021393.D
Level: (low/m	ned)	MED		Date Received:	1/4/2006
% Moisture: r	not dec.	0		Date Analyzed:	1/17/2006
GC Column:	RTX50	<u>)2.</u> ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract V	olume:	25000	(uL)	Soil Aliquot Volu	ıme: 125 (u

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG		Q
1330-20-7	m+p-Xylenes			200	11
95-47-6	o-Xylene			100	- i i
100-42-5	Styrene			100	II.
75-25-2	Bromoform			100	11
79-34-5	1,1,2,2-Tetrachlo	roethane		100	II
541-73-1	1,3-Dichlorobenz			100	
106-46-7	1,4-Dichlorobenz			100	
95-50-1	1,2-Dichlorobenz			100	<u>U</u>
91-20-3	Naphthalene			100	<u>U</u>

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FIELD ID:

Lab Name: FMETL		NJDEP#: 13461	Trip Blank
Project: <u>0634880</u>	Case No.: 60007	Location: 906A SE	DG No.: UST
Matrix: (soil/water) SOIL		Lab Sample ID:	6000606
Sample wt/vol: 10.0	(g/ml) <u>G</u>	Lab File ID:	VB021393.D
Level: (low/med) MED		Date Received:	1/4/2006
% Moisture: not dec. 0		Date Analyzed:	1/17/2006
GC Column: RTX502. ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 25000	(uL)	Soil Aliquot Volun	ne: <u>125</u> (uL)
	(CONCENTRATION UNITS:	
Number TICs found: 2	(ug/L or ug/Kg) UG/KG	
		· · · · · · · · · · · · · · · · · · ·	

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 000079-20-9	Acetic acid, methyl ester	12.50	330	JN
2. 001112-39-6	Silane, dimethoxydimethyl-	17.39	460	JN