

New Jersey Department of Environmental Protection Site Remediation Program

Report Certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites

These certifications are to be used for reports submitted for RCRA GPRA 2020, CERCLA, and Federal Facility Sites. The Department has developed guidance for report certifications for RCRA GPRA 2020, CERCLA, and Federal Facility Sites under traditional oversight. The "Person Responsible for Conducting the Remediation Information and Certification" is required to be submitted with each report. For those sites that are required or opt to use a Licensed Site Remediation Professional (LSRP) the report must also be certified by the LSRP using the "Licensed Site Remediation Professional Information and Statement". For additional guidance regarding the requirement for LSRPs at RCRA GPRA 2020, CERCLA and Federal Facility Sites see http://www.nj.gov/dep/srp/srra/training/matrix/quick_ref/rcra_cercla_fed_facility_sites.pdf.

Documents:

"Proposed Plan for Landfill Sites FTMM-03, FTMM-04, FTMM-05, FTMM-12, FTMM-14, FTMM-18, and FTMM-25 (February 2017)"

PERSON RESPONSIBLE FOR CONDUCTING THE REMEDIATION INFORMATION AND CERTIFICATION					
Full Legal Name of the Person Responsible for Conducting the Remediation: William R. Colvin					
Representative First Name: William Representative Last Name: Colvin					
Title: Fort Monmouth BRAC Environmental Coordinate)			
Phone Number: (732) 380-7064	Ext:				
Mailing Address: P.O. Box 148					
City/Town: Oceanport	State:	NJ Zip Code:	07757		
Email Address: william.r.colvin18.civ@mail.mil					
This certification shall be signed by the person responsib	le for co	nducting the remediation who is s	ubmitting this notification		
in accordance with Administrative Requirements for the F	Remedia	ition of Contaminated Sites rule at	N.J.A.C. 7:26C-1.5(a).		
I certify under penalty of law that I have personally examined and am familiar with the information submitted herein, including all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties. Signature: Date: 02 February 2017					
Name/Title: William R. Colvin, PMP, CHMM, PG BRAC Environmental Coordinator					
DIVAO ETVITOTITICITAT COGrantator					

U.S. Army Corps of Engineers, New York District and Engineering and Support Center, Huntsville, Alabama, Worldwide Environmental Restoration Services

PROPOSED PLAN FOR LANDFILL SITES FTMM-03, FTMM-04, FTMM-05, FTMM-12, FTMM-14, FTMM-18, AND FTMM-25

Fort Monmouth, Oceanport, Monmouth County, New Jersey

February 2017

INTRODUCTION

21

22

23

27

29

30

31

32

39 40

The U.S. Army Engineering and Support Center, Huntsville (USAESCH) and the Corps of Engineers New York District (the Corps) is presenting this **Proposed Plan*** for the public to review and comment regarding the preferred alternative 5 proposed for seven former landfills at Fort Mon-6 mouth (FTMM) in Oceanport, Monmouth County, 7 New Jersey: FTMM-03, FTMM-04, FTMM-05, FTMM-12, FTMM-14, FTMM-18, and FTMM-25. 9 10 The U.S. Army (Army) is the lead agency for 11 FTMM in accordance with Comprehensive En-12 vironmental Response, Compensation, and 13 Liability Act (CERCLA) and Executive Order 14 12580. New Jersey Department of Environmental 15 Protection (NJDEP) is the state support agency under the National Contingency Plan (NCP) for 17 FTMM.

Remedial investigations (RIs) performed in 18 2014 and 2015 concluded that risks to human 20 health and the environment from soil at the landfills are within acceptable ranges for the current and future intended land use which consists of passive open spaces, and therefore, no further action (NFA) is required under CERCLA. Although there is no CERCLA risk, and therefore no need for a CERCLA action, a vegetated soil cover 26 will be placed over the landfills to address safety concerns for future non-residential use and the soil cap will be placed consistent with the NJDEP Solid Waste requirements. Institutional Controls (ICs) to maintain the soil cap and prevent residential land use will be placed on each landfill.

This Proposed Plan describes the preferred alter-33 native as a vegetated soil cover installed to provide safety protection from future exposure to solid waste at the landfills for future non-residen-36 37 tial users, and provides the rationale for this pref-38 erence.

Dates to Remember: PLEASE MARK YOUR CALENDAR

PUBLIC COMMENT PERIOD:

February 8, 2017 - March 9, 2017

The Army will accept written comments on the Proposed Plan during the public comment period. Written comments may be postmarked or emailed by March 9, 2017 and sent to:

BRAC Environmental Coordinator OACSIM - U.S. Army Fort Monmouth

Attn: Mr. William Colvin

P.O. Box 148

Oceanport, NJ 08641

Email: william.r.colvin18.civ@mail.mil

Phone: (732) 380-7064

PUBLIC MEETING:

March 2 2017

The Army will hold a public meeting to explain the Proposed Plan and the proposed remedial alternative. Oral and written comments will also be accepted at the meeting. The meeting will be held at 7:00 pm at Building 455 at Fort Monmouth, Oceanport Ave, Oceanport, NJ.

More information can be found at http://www.pica.army.mil/ftmonmouth/ or please see the Administrative Record at the following location:

Monmouth County Library, Eastern Branch 1001 Route 35, Shrewsbury, NJ 07702

Phone: (732) 683-8980

Hours: Mon-Thurs, 9am-9pm; Fri-Sat, 9am-

5pm; and Sun, 1pm-5pm

In addition, Land Use Controls (LUCs) to main-42 tain the vegetated soil cap and prevent residential 43 44 land use will be implemented at the landfills

- through a LUC Implementation Plan (LUCIP) to 45 document the ICs, location of the engineering
- control (EC) and identify procedural responsibili-47
- ties including landfill cover inspections, monitor-48
- ing and reporting, and long-term management re-
- quirements.

41

* Words or phrases shown in **BOLD** are defined in the glossary at the end of this document.

> February 2017 Page 1

PUBLIC INVOLVEMENT PROCESS

2 As the lead agency for implementing the environmental response program at FTMM, the Army 3 has prepared this Proposed Plan in accordance 4 with CERCLA Section 117(a) and Section 5 300.430(f)(2) of the NCP to continue its commu-7 nity awareness efforts and to encourage public participation. After the public has the opportunity 8 to review and comment on this Proposed Plan, 9 the Army will summarize and respond to the comments received during the public comment period 11 at a public meeting. Information on the times and 12 places for public comment and the public meeting 13 are shown in the box on Page 1. 14

Local community members and other interested 15 16 parties are encouraged to review this Proposed Plan and submit comments. The Army will care-17 fully consider all comments received from the 18 19 public and provide responses which will be compiled into a Responsiveness Summary. The deci-20 sion on which action is appropriate for the landfills 21 will be detailed in a **Decision Document**, which 22 will include the Responsiveness Summary. 23

This Proposed Plan summarizes information that 24 can be found in greater detail in the RI Reports for the individual landfill sites and other docu-26 ments contained in the Administrative Record 27 file for FTMM. The Army encourages the public to 28 review these documents to gain a more compre-29 hensive understanding of the landfills and activities conducted at them.

SITE BACKGROUND

32

FTMM is located in the central-eastern portion of 33 New Jersey in Monmouth County, approximately 45 miles south of New York City, New York, 70 35 miles northeast of Philadelphia, Pennsylvania, 36 and 40 miles east of Trenton, New Jersey. The 37 Atlantic Ocean is approximately 3 miles to the 38 east. FTMM was comprised of three areas: the Main Post (MP), the Charles Wood Area (CWA). 40 shown on Figure 1, and the Evans Area (EA) (not 41 shown). FTMM's MP and CWA were selected for 42 closure by the Base Realignment and Closure 43 (BRAC) Commission in 2005, and officially closed 44 45 on September 15, 2011. (The EA was closed under BRAC in 1998 and has since been transferred from FTMM.)

Figure 1: Fort Monmouth Location

49

50

53

54

55

57

58

65

Suspected hazardous waste sites were initially identified at FTMM in a report prepared in May 1980 (U.S. Army Toxic and Hazardous Materials Agency [USATHAMA]). Thirty-seven sites at the MP, CWA, and EA were identified as having known or suspected waste material. It was recommended that FTMM perform surface water and groundwater sampling at the Installation's landfills.

A study was conducted in 1980 at locations that were considered to be major landfill areas. The 60 locations of the landfills are shown on Figure 2. 62 with the exception of FTMM-25 which is shown on Figure 3. A timeline of significant events 63 including the years of operation since FTMM opened nearly 100 years ago is provided on 66 Figure 4. During the 1980 study, groundwater and surface water samples were collected and 67 analyzed for compliance with National Primary and Secondary Drinking Water Standards. The study concluded that the targeted chemicals were not found at high enough concentrations to 71 cause degradation to ground or surface water. 72 73 but it was recommended that FTMM submit a landfill registration statement to the NJDEP 74 (USATHAMA, 1988). 75

76 A follow-up evaluation was completed in 1988 to determine if environmental/hazardous waste disposal conditions at FTMM (including the 79 landfills) had changed since the assessment in 1980. Based on an assessment of available 80 data, it was recommended that USATHAMA not 81 conduct a site investigation (SI), but that 83 surface water and groundwater sampling at the landfills (USATHAMA. 84 continue 1988). Numerous investigations were conducted at 85 86 FTMM including the landfills over the past 30

Page 2 February 2017

- 1 years. The most recent RI report for each landfill
- is a compilation of previous investigations, and
- an evaluation of a available analytical data
- collected from each site.

SITE CHARACTERIZATION 5

- Major vegetation zones at FTMM consist of 6
- landscaped areas, wetlands, riparian areas, 7
- upland forests, and old field habitats. Much of
- the upland areas of the MP and CWA consist of
- extensive areas of regularly mowed lawns and
- Detailed landscaped areas. vegetation 11
- information can be found in the Baseline
- Ecological Evaluation Report (Shaw, 2012). 13
- FTMM is situated on Coastal Plain deposits which
- 15 are unconsolidated material that has not been
- 16 cemented or compacted. Soil encountered at
- FTMM is comprised of brown, fine to coarse sand
- with fine gravel and root fragments and 18
- 19 green/gray/black sandy silt and clay with varying
- amounts of sand and gravel. 20
- Groundwater is typically encountered at the MP 21
- and in the surrounding areas at shallow depths 2 22
- to 9 feet below ground surface (bgs), and at 23
- depths of approximately 7 to 14 feet bgs at the
- 25 CWA. Groundwater elevations fluctuate with the
- tidal action in area creeks (AECOM, 2013). New 26
- Jersey Ground Water Quality Standards 27
- 28 (GWQS) classify groundwater for FTMM as Class
- II-A: potable water with secondary uses
- including agricultural and industrial (NJDEP, 30
- 2010). 31
- Since the landfills have been inactive since 1971 32
- 33 (see Figure 4), there has been steady growth and stabilization of vegetation (grass, trees, and
- bushes) at each site. The anticipated future land 35
- use for the seven landfill sites included in this 36
- Proposed Plan is passive open space (Edaw, 37 Inc., 2008). Land planned for use as "open space" 38
- is expected to remain undeveloped, with only
- occasional maintenance activities (e.g., grounds 40
- associated 41 keeping), utility work with 81

- underground or overhead utilities that may be
- present within the site boundary, and recreational 43
- activity (e.g., hiking and biking on established
- trails). 45
- To 46 determine the nature and extent of contamination at each landfill site, detected 47
- chemical concentrations measured durina
- previous landfill SIs were compared to Federal 49
- 50 (U.S. Environmental Protection Agency
- 51 [USEPA]) and State (NJDEP) residential, non-
- 52 residential, and Impact to Groundwater (IGW)
- 53 screening criteria as well as FTMM-specific
- background concentrations for metals. NJDEP 54
- 55 comparison criteria included:
- 56 Residential Direct Contact Soil Remediation
- 57 Standards (RDCSRS), Non-Residential Di-58
- rect Contact Soil Remediation Standards 59 (NRDCSRS), and IGW screening levels (SLs)
- for soils and sediments; 60
- GWQS for groundwater; and 61
- Surface Water Quality Standards (SWQS) for 62 • 63 surface water.
- USEPA Regional Screening Levels (RSLs) for
- soil and groundwater were used for comparison
- purposes because the Army is tasked with
- completing a CERCLA-compliant RI (including 67
- human health risk assessment [HHRA]).
- Therefore, RSLs were used to identify those
- chemicals that are contaminants of potential 70
- 71 concern (COPCs). COPCs were then evaluated
- 72 in an HHRA. No COPCs were determined to be
- contaminants of concern (COCs) at the seven 73
- 74 landfills.
- 75 The following subsections describe site
- characterization activities for soil, groundwater,
- surface water, and sediments for each of the
- 78 seven landfill sites covered by this Proposed
- Plan. The results of the HHRAs for each site are
- presented following site characterization.

Page 3 February 2017

Parkers Creek Parkers Creek FTMM-18 FTMM-08* Oceanport Creek FTMM-05 FTMM-04 FTMM-14 FTMM-03 FTMM-02* Creek *FTMM-02 and FTMM-08 will be addressed in a separate document.

Figure 2 - Main Post Landfill Locations

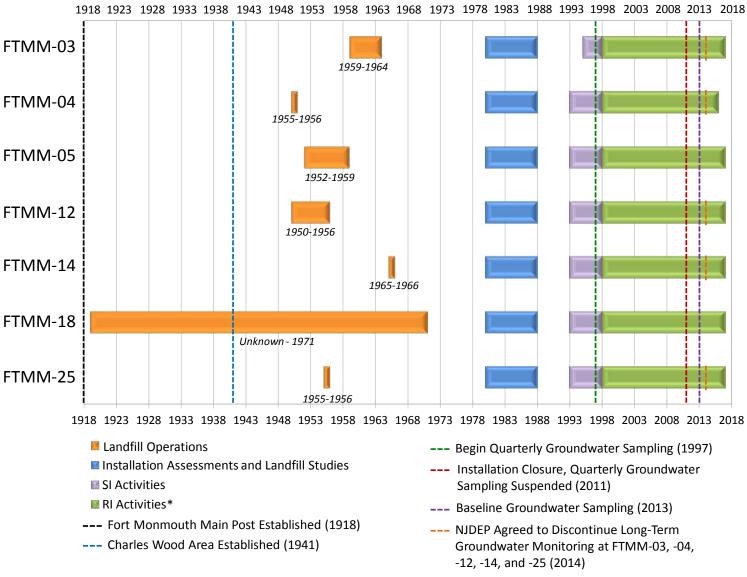
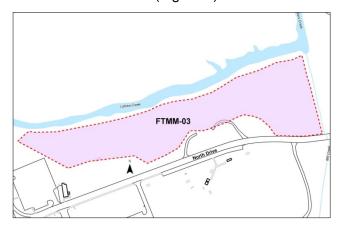

Page 4 February 2017

Figure 3 - Charles Wood Area Landfill Location

Page 5 February 2017


Figure 4 - Timeline of Significant Events

^{*}End date denotes NJDEP acceptance or anticipated acceptance of RI Report.

FTMM-03

2 FTMM-03 landfill, which is in the western portion
3 of the MP and has an area of approximately 8.0
4 acres. The site is bordered by Lafetra Creek to
5 the north, Mill Creek to the east, and North Drive
6 to the south and west (Figure 5).

8 Figure 5 - FTMM-03 Site Boundary and Layout

9 FTMM-03 was in operation from approximately 10 1959 to 1964 and was reportedly used for the 11 general disposal of domestic and industrial wastes. The landfill soil cover material ranges in 13 thickness from 0 to 48 inches bgs and averages 14 20 inches thick. Previous investigations at 15 FTMM-03 are summarized below, and the Final 16 RI Report was submitted to NJDEP in February 2016.

18 Soils

7

A total of 425 near-surface soil samples were 20 collected from 205 borings from September to November 1998. The samples were collected 21 between 6 and 12 inches bgs except for the vol-22 23 atile organic compounds (VOCs) samples, which were collected at approximately 24 inches 24 bas. Concentrations of four VOCs, seven semivolatile organic compounds (SVOCs), six 26 pesticides, one polychlorinated biphenyl 27 (PCB), and 16 metals exceeded their current 28 NJDEP RDCSRS and/or USEPA RSL in at least one soil sample.

31 Groundwater

32 Between 1995 and 2010, 13 groundwater 33 monitoring wells were installed at FTMM-03 to 34 investigate and monitor contaminants in 35 groundwater. From 1997 through 2011, 36 groundwater samples were analyzed for VOCs,

37 SVOCs, pesticides, PCBs, and metals. Upon

8 approval from the NJDEP, analysis for SVOCs,

pesticides, PCBs, and metals was discontinued 40 beginning in 2005 because contaminant concentrations were consistently below NJDEP 41 GWQS. The wells continued to be sampled quarterly for VOCs between 2005 and 2009. 43 44 then VOCs and metals through 2011. The sampling data from the most recent eight 45 guarters (November 2009 to August 2011), the August 2013 Baseline Sampling Event (BSE), 47 and the 2014 Annual Sampling Event (ASE) 48 were evaluated as being representative of 49 recent conditions. NJDEP subsequently agreed to discontinue the groundwater long-term monitoring (LTM) program (NJDEP letter dated February 5, 2015).

54 Surface Water

To determine whether site-related contamination had impacted nearby surface waters, quarterly sampling was performed from October 1996 to September 2010. During the most recent eight quarters of surface water sampling (December 2008 to September 2010), tetrachloroethene (PCE) was the only VOC that exceeded NJDEP SWQS. However, it was determined that the PCE concentrations exceeding the SWQS originated from an offsite source and upstream of FTMM-03.

66 Sediment

67 Sediment sampling was conducted in April 2000 68 in Lafetra Creek to evaluate PCB-related 69 impacts to stream sediments associated with 70 FTMM-03. No PCBs were detected in the 25 71 samples collected.

72 **FTMM-04**

FTMM-04 is located on the MP and is bounded by North Drive to the north, Avenue of Memories to the south, and Wilson Avenue to the east (Figure 6). Mill Creek bisects the west-central portion of the landfill.

78 FTMM-04 was in use as a landfill between 1955 79 and 1956, and was reportedly used for the 80 disposal of building demolition debris.

Page 7 February 2017

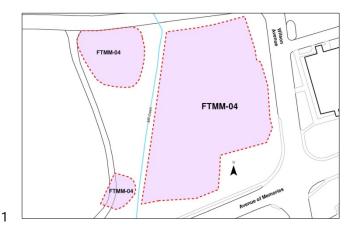


Figure 6 - FTMM-04 Site Boundary and Layout

3 The landfill soil cover material ranges in 4 thickness from 6 to 46 inches bgs and averages 5 32 inches thick. Previous investigations at 6 FTMM-04 are summarized below, and the Final 7 RI Report was submitted to NJDEP in July 2014.

8 Soils

A total of 66 near-surface soil samples were collected from 63 borings in March 1998. The samples were collected between 6 and 12 11 inches bgs except for the VOCs samples, which 12 were collected at approximately 24 inches bgs. 13 No VOCs exceeded NJDEP RDCSRSs or 14 15 USEPA RSLs. Concentrations of seven SVOCs, nine metals, and two pesticides 17 exceeded their current NJDEP RDCSRS and/or USEPA RSL in at least one soil of 66 soil samples. SVOCs, metals, and pesticides were 19 evaluated as COPCs in soil in the HHRA, and 20 none were identifed as COCs. 21

22 Groundwater

23 Between 1994 and 1999, four groundwater monitoring wells were installed at FTMM-04 to 25 investigate and monitor contaminants in aroundwater. From 1997 through 26 groundwater samples were analyzed for VOCs, 27 28 SVOCs, pesticides, PCBs, and metals. Upon approval from the NJDEP, analysis for VOCs, 29 SVOCs, pesticides, and PCBs was discontinued beginning in 2005 because contaminant 31 concentrations were consistently below NJDEP 32 33 GWQS. The wells continued to be sampled quarterly for metals between 2005 and 2011. 34 The sampling data from the most recent eight quarters (November 2009 to August 2011) and August 2013 BSE supported the conclusion that 37 concentrations detected of metals 38 representative of background conditions despite

NJDEP and/or **USEPA** exceedances of 40 comparison criteria. Following 41 the 42 recommendations in the August 2013 BSE results (Parsons, 2013), NJDEP subsequently agreed to discontinue the groundwater LTM 44 45 program (NJDEP letter dated July 3, 2014).

46 Surface Water

To determine whether site-related contamination 47 had impacted nearby surface waters, quarterly sampling was performed from October 1996 to September 2010. During the most recent eight 50 quarters of surface water sampling (March 2007) to September 2010), tetrachloroethene (PCE) 52 was the only VOC that exceeded NJDEP 53 54 SWQS. However, it was determined that the 55 PCE concentrations exceeding the SWQS originated from an offsite source and upstream 56 of FTMM-04. 57

58 Sediment

59 Sediment samples collected from Mill Creek, 60 adjacent to FTMM-04 in 2000 and 2010, and 61 analyzed for PCBs and VOCs, SVOCs, 62 pesticides, PCBs, and metals resulted in no 63 detections above the NJDEP RDCSRS.

64 **FTMM-05**

FTMM-05 is located in the western portion of the MP, north of FTMM-04 and south of the FTMM-08 landfill site (not included in this Proposed Plan) (Figure 7). FTMM-05 is bounded to the south by North Drive, to the north by an unpaved road, Wilson Avenue to the east and Mill Creek and Parkers Creek to the west. A portion of Mills Creek is adjacent to the bounds of the western side of the site.

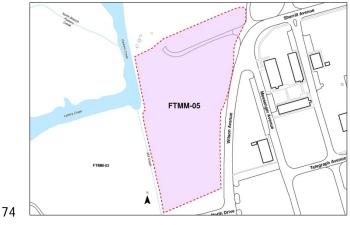


Figure 7 - FTMM-05 Site Boundary and Layout

6 FTMM-05 was in use as a landfill between 1952 7 and 1959, and was reportedly used for domestic

Page 8 February 2017

1 and industrial wastes. The landfill soil cover

- material at FTMM-05 ranges in thickness from 0
- to 72 inches bgs and averages 24 inches thick.
- Previous investigations at FTMM-05
- summarized below, and the Final RI Report was
- submitted to NJDEP in October 2015.

7 Soil

8 Soil investigations were conducted in 1998 and samples were analyzed for VOCs, SVOCs, pesticides, PCBs, and/or metals. Concentrations 10 of two VOCs, eight SVOCs (all of which are 11 polyaromatic hydrocarbons [PAHs]), seven pesticides, one PCB, and 15 metals exceeded 13 their current NJDEP RDCSRS and/or USEPA 15 RSL in at least 1 of 183 samples. These COPCs 16 were further evaluated in the Concentrations of five PAHs, two pesticides, one 17 PCB, and eight metals exceeded their NJDEP 18 19 NRDCSRS and/or USEPA Industrial RSL in at least one soil sample, and were evaluated as 20 COPCs in the HHRA. No COPCs were determined to be COCs.

Groundwater

43

Two groundwater wells were initially installed at 25 FTMM-05 in 1994 as part of a 1995 SI (Weston, 26 1995). Based on the results of the SI, the Army implemented a groundwater LTM program. 27 28 Quarterly groundwater monitoring occurred from 29 1997 to 2011, and in August 2013 and December 2014 using a network of up to 13 30 31 monitoring wells. Following recommendations from the August 2013 BSE 32 results, NJDEP agreed to continue sampling four select wells for VOCs annually at FTMM-05 (NJDEP, 2014). The August 2013 groundwater 35 monitoring results also indicated that one or 36 more sources of PCE groundwater 37 38 contamination exist to the east of FTMM-05 but the specific location(s) of the PCE source areas 39 are unknown since the source is not FTMM-05. 40 An investigation will be conducted in the future 41 42 to identify the source of PCE contamination in groundwater east of FTMM-05.

Injections of Hydrogen Releasing Compound (HRC®) were performed in seven distinct areas 45 in and around FTMM-05 where elevated 46 concentrations of PCE were detected in shallow 47 groundwater. The purpose of this interim 48 remedial measure was 49 to enhance degradation PCE concentrations of in 50 51 groundwater using naturally occurring 52 microorganisms already present in the 53 subsurface. The injections were performed over multiple 3- to 6-month time periods in 2000, 54 55 2002, 2003, 2004, and 2005 to facilitate the enhanced anaerobic degradation of PCE in 56 groundwater.

Data from eight quarters of groundwater 58 monitoring (November 2009 to August 2011) and August 2013 and December 2014 sampling 60 events were evaluated during the RI. During this 61 period, concentrations of six VOCs and 17 metals exceeded the NJDEP GWQS and/or 63 64 USEPA Tapwater RSL in at least one sample. Given the small number of background 65 exceedances, detected concentrations of metals 66 were considered representative of background conditions at FTMM-05 and were not considered 68 to be COPCs. SVOCs, pesticides and PCBs 69 were previously eliminated from the sampling program in 2003 with NJDEP concurrence, and therefore were not COPCs in groundwater for FTMM-05. 73

Surface Water 74

57

Surface water samples were collected from upstream and downstream sampling locations from 1996 to 2010, and analyzed for VOCs, pesticides, PCBs, and metals. Eight quarters of 78 surface water monitoring data (from December 2008 to September 2010) were evaluated during 80 the RI. VOCs and metals detected at an 81 upstream sampling location indicated that they 82 originated from an offsite source (i.e., they did 83 not originate at FTMM-05). No COPCs were identified in surface water. 85

Sediments 86

To determine potential PCB-related impacts to sediments in Mill Creek associated with FTMM-05, 16 surface and near-surface sediment samples were collected in Mill Creek in April 2000 at six locations along the creek that borders FTMM-05. The April 2000 sediment 92 93 sampling resulted in no detections above the NJDEP RDCSRS. No COPCs were identified in 94 95 sediment.

96 **FTMM-12**

97 FTMM-12 is located on the central portion of the MP, and is bordered by Husky Brook to the north, Murphy Drive to the east, multiple build-99 ings to the south, and Todd Avenue to the west 100 (Figure 8). 101

Page 9 February 2017

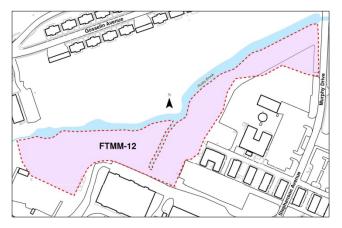


Figure 8 - FTMM-12 Site Boundary and Layout

FTMM-12 was in use as a landfill between 1950 and 1966, and was reportedly used for the disposal of automobiles, domestic and industrial wastes. The landfill soil cover material ranges in thickness from 0 to 48 inches bgs and averages 24 inches thick. Previous investigations at FTMM-12 are summarized below, and the Final RI Report was submitted to NJDEP in August 2015.

12 Soils

1

Soil samples collected in 1998 and 1999 were 13 analyzed for VOCs, metals, SVOCs, pesticides, and PCBs. Concentrations of two VOCs, six 15 SVOCs (all of which are PAHs), two pesticides, 16 17 and 13 metals exceeded their current NJDEP RDCSRS and/or USEPA RSL in at least 1 of 193 18 soil samples. Concentrations of five PAHs and 19 four metals exceeded their NJDEP NRDCSRS 20 and/or USEPA Industrial RSL in at least one soil 21 sample, and were evaluated in the HHRA. No COPCs were determined to be COCs. 23

24 Groundwater

Three groundwater wells were initially installed at FTMM-12 as part of the 1995 SI. Based on the results of the SI, the Army implemented a groundwater LTM program at the site. Quarterly groundwater monitoring occurred from 1997 to 2011 from a network of up to 16 wells and in August 2013. Historic exceedances of metals except for lead are attributed to background water quality. The August 2013 sampling was conducted for lead analysis only, and lead was not detected. Following the recommendations in August **BSE NJDEP** the 2013 results. subsequently agreed to discontinue groundwater LTM program (NJDEP, 2014).

40 Surface Water

Quarterly surface water sampling 41 was conducted at four locations in Husky Brook associated with FTMM-12 from October 1996 through September 2010. The most recent eight quarters of surface water monitoring data were 45 determined to be representative of recent conditions. Concentrations of VOCs and metals 47 detected upstream of FTMM-12 were similar to concentrations detected at the downstream edge of the site. This comparison indicated that 50 51 FTMM-12 is not significantly impacting VOC or metal concentrations in Husky Brook. 52

53 Sediment

54 One PCB was detected in 1 of 25 sediment samples collected for the FTMM-12 and FTMM-14 sites in April 2000 at a concentration slightly above the NJDEP RDCSRS and the USEPA 57 Residential RSL for soil. The detected PCB 58 concentration does not exceed the NJDEP 59 NRDCSRS or USEPA Industrial RSL for soil. 60 The PCB detection occurred upstream of 61 FTMM-12 and FTMM-14, and is not associated 62 with this site. 63

FTMM-14

64

69

65 FTMM-14 is located on the MP, and is bordered 66 by houses along Gosselin Avenue to the north, 67 by Husky Brook to the south, and by Murphy 68 Drive to the east (Figure 9).

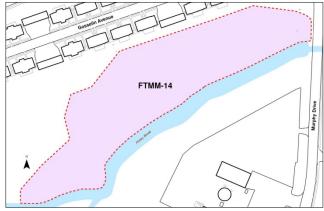


Figure 9 - FTMM-14 Site Boundary and Layout

FTMM-14 was in use as a landfill between 1965 and 1966, and was reportedly used as a general purpose disposal area for building rubble and was later covered with dredged material from Husky Brook Lake. The landfill soil cover material ranges in thickness from 6 to 78 inches bgs and averages 30.6 inches thick. Previous investigations at FTMM-14 are summarized

26 27

28

29 30

31

32

35

36

- 1 below, and the Final RI Report was submitted to
- NJDEP in July 2015.
- Soil 3
- Soil samples collected in 1998 were analyzed for 4
- VOCs, metals, SVOCs, pesticides, and PCBs.
- Concentrations of seven SVOCs (all of which 6
- were PAHs), one pesticide, and seven metals 7
- exceeded their current NJDEP RDCSRS and/or
- USEPA Residential RSL in at least 1 of 124 soil
- samples. These COPCs were further evaluated 10
- in the HHRA, however none were determined to 11
- be COCs.
- Groundwater
- Quarterly groundwater sampling was performed
- from June 1997 to August 2011 based on the
- recommendations from the 1995 SI. 16
- (1,4-Concentrations of VOC 17 one
- dichlorobenzene) and 18 metals exceeded their 18
- NJDEP GWQS and/or the USEPA Tapwater
- 20 RSL in at least one sample collected between
- November 2009 to August 2011 and in August 21
- 2013. The August 2013 sampling was 22
- conducted for VOCs. No VOCs exceeded 23
- GWQS. Following the recommendations based
- on the August 2013 BSE results, NJDEP 25
- subsequently agreed to discontinue the
- 26
- groundwater LTM program (NJDEP, 2014). 27
- The 2015 RI determined that all detected metals 28
- were considered representative of background
- conditions. Therefore no metals were identified
- as COPCs in groundwater. 1,4-dichlorobenzene 31
- was not identified as a COPC because it 32
- exceeded the USEPA Tapwater RSL in only 2 of 33
- 81 samples collected from November 2009 to
- August 2011, was not detected during the
- August 2013 BSE, and the exceedances were
- very slightly above the RSL. 37
- Surface Water 38
- 39 Quarterly surface water sampling was
- 40 conducted at four locations in Husky Brook
- associated with FTMM-14 from October 1996 41
- through September 2010. The most recent eight 42
- quarters of surface water monitoring data were
- evaluated as being representative of recent 44
- conditions. Concentrations of VOCs and metals 45
- detected upstream of FTMM-14 are similar to 46
- concentrations detected at the downstream 47
- edge of the site. This comparison indicated that
- FTMM-14 is not significantly impacting VOC or
- 50 metal concentrations in Husky Brook.

- Sediment
- 52 Sediment sampling at FTMM-14 is discussed
- above with FTMM-12. 53

FTMM-18

54

- 55 FTMM-18 is located on the northern part of the
- MP, between Parkers Creek to the north and
- multiple buildings and Sherrill Avenue to the 57
- south (Figure 10). 58

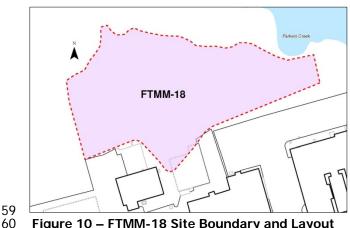


Figure 10 - FTMM-18 Site Boundary and Layout

The period of operation for FTMM-18 is unknown, however past use of the site 62 reportedly consisted of both landfill and non-63 landfill-related components. building 64 Α demolition debris disposal area is located in the 65 southern portion of FTMM-18, just north of 66 67 Building 293. The landfill soil cover material 68 ranges in thickness from 0 to 60 inches bgs and averages 28 inches thick. Previous 69 70 investigations at FTMM-18 are summarized below, and the Final RI Report was submitted to NJDEP in October 2015.

Soil 73

61

- Soil samples collected in 1999 were analyzed for
- 75 VOCs, metals, SVOCs, pesticides, and PCBs.
- 76 Concentrations of six SVOCs (all of which are
- PAHs) and six metals exceeded their current
- 78 NJDEP RDCSRS and/or USEPA RSL in at least
- 1 of 65 soil samples. Concentrations of four
- PAHs, and one metal exceeded their exceeded
- their NJDEP
- NRDCSRS and/or USEPA 81
- Industrial RSL in at least one soil sample.
- 83 COPCs in soil that were evaluated in the HHRA
- included six PAHs and five metals (Parsons,
- 2015). No COPCs were determined to be COCs.
- Groundwater 86
- Quarterly groundwater sampling was performed
- from June 1997 to August 2011 and in August

February 2017 Page 11

1 2013, using a network of up to 10 monitoring 2 wells. In that time, concentrations of six VOCs 3 and 17 metals exceeded the NJDEP GWQS 4 and/or the USEPA Tapwater RSL in at least one 5 sample. Following the recommendations based 6 on the August 2013 BSE results, NJDEP agreed 7 to continue to sample four select wells for VOCs 8 annually at FTMM-18 (NJDEP, 2014).

9 Surface Water

10 Quarterly surface water samples were collected 11 upstream, adjacent to, and downstream of 12 FTMM-18 from October 1996 to September 13 2010. PCE concentrations that exceeded the 14 NJDEP SWQS were detected upstream of 15 FTMM-18, and therefore were determined not to 16 be site-related.

17 Sediment

18 Sediment sampling was conducted in Parkers Creek in April 2000 to evaluate PCB-related impacts to stream sediments associated with 20 FTMM-18. One PCB (Aroclor 1254) was 21 22 detected in two of eight samples, with one sample concentration slightly above than the 23 NJDEP RDCSRS for total PCBs and the USEPA 25 Residential RSL for Aroclor 1254. The other 26 detected PCB concentration was below comparison criteria. There are multiple storm 27 28 sewer outlets at Parkers Creek upstream of the two sample locations that may be a source of PCBs. However, the detection could not be 30 31 definitively attributed to upstream sources, and therefore was considered a sediment COPC that 32 33 is potentially site-related and was evaluated in the HHRA. 34

35 **FTMM-25**

FTMM-25 is located in the CWA. It is bounded by Pearl Harbor Avenue to the west, Shrewsbury Creek to the north, a wooded area to the east and the Pulse Power Facility Building to the south (Figure 11). FTMM-25 currently consists of a partially wooded lot with tall grass to the center and trees to the north, east and west.

Figure 11 – FTMM-25 Site Boundary and Layout

FTMM-25 was in use as a landfill between 1955 45 and 1956, and was reportedly used for the 46 disposal of debris from the demolition of 47 buildings at CWA. The landfill soil cover material 48 49 ranges in thickness from 1 to 30 inches bgs and averages 20 inches thick. Previous 50 investigations at FTMM-25 are summarized 51 below, and the Final RI Report was submitted to NJDEP in August 2016

54 Soil

43

55 Soil samples collected in 1998 were analyzed for VOCs, metals, SVOCs, pesticides, and PCBs. Concentrations of six SVOCs (all of which are 57 PAHs), two pesticides, two PCBs, and 10 metals 58 exceeded their current NJDEP RDCSRS and/or 60 USEPA RSL in at least one soil sample. Concentrations of four PAHs and two metals 61 62 exceeded their NJDEP NRDCSRS and/or USEPA Industrial RSL in at least one soil 63 sample. COPCs in soil that were evaluated in the 64 HHRA included six PAHs, two PCBs, and five metals. No COPCs were identified as COCs. 66

67 Groundwater

Groundwater monitoring occurred at FTMM-25 from December 1997 to July 2011 using a 69 network of up to four monitoring wells; and 70 additional baseline monitoring was performed in 71 August 2013. Eleven metals were detected at concentrations exceeding their NJDEP GWQS 73 and/or the USEPA Tapwater RSL and also the 74 75 maximum background concentration established by Weston (1995). Following the 76 recommendations based on the August 2013 BSE results, NJDEP subsequently agreed to discontinue the groundwater LTM program (NJDEP, 2014). 80

Two metals were evaluated as COPCs in the HHRA during the 2015 RI. Concentrations of the

Page 12 February 2017

- 1 other detected metals were considered to be
- 2 representative of background conditions and/or
- 3 are essential human nutrients.
- 4 Surface Water
- 5 A surface water sampling event conducted at
- 6 Shrewsbury Creek was performed in June 2010.
- 7 The PAHs detected were likely not related to the
- 8 landfill, and detected metal concentrations were
- 9 similar to those found in background samples.
- 10 Surface water quality did not pose an
- 11 unacceptable risk based on available data and
- 12 therefore was not evaluated further during the
- 13 2015 RI.
- 14 Sediment
- 15 Sediment sampling conducted in April 2000 in
- 16 Shrewsbury Creek to evaluate potential PCB-
- 17 related impacts to sediments showed no PCBs
- 18 detected in the samples collected at and
- 19 downstream of FTMM-25.

20 SCOPE AND ROLE OF 21 RESPONSE ACTION

- 22 A vegetated soil cover will be placed over the
- 23 landfill area to address safety concerns for non-
- 24 resident use from future exposure to solid waste
- 25 at the landfills and will control surface water run-26 off and erosion. LUCs to maintain the soil cap
- 27 and prevent residential land use will be imple-
- 27 and prevent residential faild use will be imple
- 28 mented at the landfills.
- 29 Containment is considered by USEPA to be a
- 30 highly effective way to remediate historic landfills
- 31 in many cases. USEPA has identified
- 32 containment as a presumptive remedy for
- 33 historic landfills because it repeatedly has been
- 34 shown to be effective at treating similar wastes
- 35 at other CERCLA sites. USEPA developed
- 36 presumptive remedies to streamline the 37 selection of cleanup methods for certain
- 38 categories of sites by narrowing the
- 39 consideration of cleanup methods to treatment
- 40 technologies or remediation approaches that
- 41 have a proven track record in the Superfund
- 42 program. The Army, as lead agency, has
- 43 determined that it is appropriate to apply the
- 44 presumptive remedy of capping for these seven
- 45 landfills based on the soil and contaminant
- 46 characteristics found at the site, and the
- 47 guidance provided in the directive. Presumptive
- 48 Remedy for CERCLA Municipal Landfill Sites,
- 49 EPA OSWER Directive No. 9355.0-49FS

- (September 1993). Further information on the
- 51 selection of presumptive remedies for landfills at
- 52 military installations is presented in the directive,
- 53 Application of the CERCLA Municipal Landfill
- 54 Presumptive Remedy to Military Landfills, EPA
- 55 OSWER Directive No. 9355.0-67FS.

SUMMARY OF SITE RISKS

- 57 A HHRA evaluation of the potential risk from
- 8 human exposure to contaminants in soil, surface
- 59 water, sediment, and groundwater was
- 60 conducted as part of the RI at each landfill. No
- 61 COPCs were identified in surface water at any of
- 62 the landfill sites included in the RI. Therefore,
- 63 further evaluation of surface water in the HHRAs
- 64 was not conducted and no unacceptable risks
- are expected from human exposure to surface
- 66 water.
- 67 The HHRAs evaluated exposure of
- 68 current/future outdoor workers, future utility
- 69 workers, and future recreational users to COPCs
- 70 in soil, groundwater, and sediment through
- 71 dermal contact, incidental ingestion, and
- 72 inhalation of particulates. The HHRA used an
- 73 exposure point concentration based on the 74 analytical results from soil, groundwater, and
- 75 sediment samples at all seven landfill sites.
- 76 Site groundwater is not used as a drinking water
- 77 source by current outdoor workers or indoor
- 78 workers, because municipal water is provided
- 79 for use. Therefore, there are no current
- 80 exposures to groundwater.
- 81 Risks to Current/Future Outdoor Workers,
- 82 Utility Workers, or Future Recreational Users
- 83 Exposed to Soil. No unacceptable potential
- 84 non-carcinogenic or carcinogenic effects to
- 85 current/future outdoor or utility workers or future
- 86 recreational users are expected from exposure
- 87 to soil through dermal contact, incidental
- 88 ingestion, and inhalation of particulates.
- 89 Risks to Future Utility Workers Exposed
- 90 Groundwater for Non-Drinking Water
- 91 **Purposes**. No unacceptable potential non-
- 92 carcinogenic or carcinogenic effects to
- 93 current/guture utility workers are expected from
- 94 exposure to soil through dermal contact or 95 incidental ingestion.

WHAT IS RISK AND HOW IS IT CALCULATED?

Human Health Risk Assessment:

A Superfund baseline HHRA is an analysis of the potential adverse health effects caused by hazardous substance releases from a site in the absence of any actions to control or mitigate these under current- and future-land uses. A four-step process is utilized for assessing site-related human health risks for reasonable maximum exposure scenarios.

Hazard Identification: In this step, the COPCs at the site in various media (i.e., soil, groundwater, and air) are identified based on such factors as toxicity, frequency of occurrence, and fate and transport of the contaminants in the environment, concentrations of the contaminants in specific media, mobility, persistence, and bioaccumulation.

Exposure Assessment: In this step, the different exposure pathways through which people might be exposed to the contaminants in air, water, soil, etc. identified in the previous step are evaluated. Examples of exposure pathways include incidental ingestion of and dermal contact with contaminated soil and ingestion of and dermal contact with contaminated groundwater. Factors relating to the exposure assessment include, but are not limited to, the concentrations in specific media that people might be exposed to and the frequency and duration of that exposure. Using these factors, a "reasonable maximum exposure" (RME) scenario, which portrays the highest level of human exposure that could reasonably be expected to occur, is calculated. The USEPA has established standard RME exposure scenarios for residents and commercial/industrial receptors that are used to calculate the RSLs (i.e., concentrations of COPCs in environmental media that are protective of human health).

Toxicity Assessment: In this step, the types of adverse health effects associated with chemical exposures, and the relationship between magnitude of exposure and severity of adverse effects are determined. Potential health effects are chemicalspecific and may include the risk of developing cancer over a lifetime or non-cancer health hazards, such as changes in the normal functions of organs within the body (e.g., changes in the effectiveness of the immune system). Some chemicals are capable of causing both cancer and noncancer health hazards.

Risk Characterization: This step provides a quantitative assessment of site risks for all COPCs. Exposures are evaluated based on the potential risk of developing cancer and the potential for non-cancer health hazards. Concentrations of COPCs at the site are compared to the concentrations that are protective of the standard RME scenarios established by the USEPA to quantify the risk or hazard that may be expected. The likelihood of an individual developing cancer is expressed as a probability. For example, a 10⁻¹ ⁴ cancer risk means a "one-in-ten-thousand excess cancer risk"; or one additional cancer may be seen in a population of 10,000 people as a result of exposure to site contaminants under the conditions identified in the Exposure Assessment. Current Superfund regulations for exposures identify the range for determining whether remedial action is necessary as an individual excess lifetime cancer risk of 10⁻⁴ to 10⁻⁶, corresponding to a one-in-ten-thousand to a one-ina-million excess cancer risk. For non-cancer health effects, a "hazard index" (HI) is calculated. The key concept for a non-cancer HI is that a threshold (measured as an HI of less than or equal to) 1) exists below which non-cancer health hazards are not expected to occur. Chemicals that exceed a 10⁻⁴ cancer risk or an HI of 1 are typically those that will require remedial action at the site and are referred to as COCs in the final remedial decision or Decision Document.

Risks to Current/Future Outdoor Workers. 4 Utility Workers, or Future Recreational Users 5 Exposed to Sediment. No unacceptable 6 potential non-carcinogenic or carcinogenic effects to current/future outdoor workers or future recreational users are expected from exposure to sediment through dermal contact, 10 incidental ingestion, and inhalation particulates.

2

7

12 In summary, the HHRAs concluded that soil, groundwater, and sediment do not pose an 13 unacceptable risk to human health and the 15 environment for current and future intended land 16 use. HHRAs are included in each landfill site's 17 respective RI Report.

18 SUMMARY OF PREFERRED 19 ALTERNATIVE

20 To address safety concerns, a vegetated soil 21 cover will be placed over the landfill area after 22 the landfill is regraded to provide safety 23 protection for future non-residential use. The 24 conceptual design for the vegetated soil cover is

shown on Figure 12. The vegetated soil cover will be placed consistent with the NJDEP Solid 2 Waste regulations (New Jersey Administrative Code [N.J.A.C.] 7:26-2A). Additional soil will be added to the existing soil cover to provide a "two" feet minimum of soil between the ground 6 surface and landfilled debris. The use of a 7 vegetated soil cover will offer safety protection to non-residents from future exposure to solid 9 waste at the landfill and will also control surface 10 11 water runoff and erosion.

12 LUCs to maintain the soil cap and prevent residential land use will also be implemented at 13 the landfills. The Army will prepare a LUCIP to 14 implement the institutional controls, document the location of the EC, and identify the 16 procedural responsibilities including landfill 17 cover inspections, monitoring and reporting, and 18 19 long-term management requirements, etc.

20

21

22

23

24

26

27

28

29

30

31

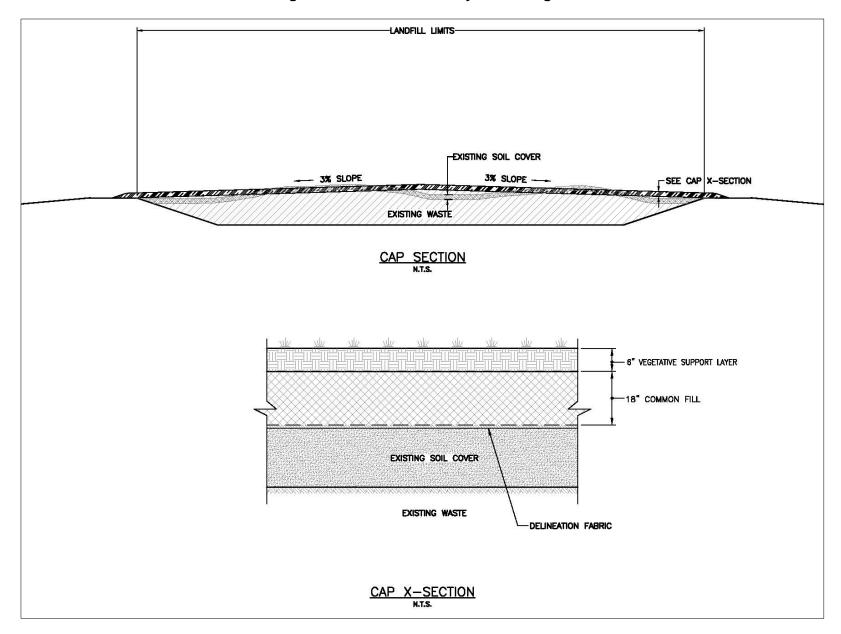
32

33

34 66

The Army will be responsible for documenting and implementing the LUCs, which is expected to occur through the filing of a deed notice at the time of property transfer, and would also be responsible to conduct reviews to ensure that the LUCs remain protective of human health and the 25 environment. When the property is transferred out of federal control, the LUCs would be incorporated into the title and the new owner would be responsible for complying with the LUCs. Although the Army may later transfer its procedural responsibilities to another party by contract, property transfer agreement, or through other means, the Army would retain ultimate responsibility for remedy integrity.

In addition, Classification Exception Areas (CEAs) will be established at FTMM-05 and 36 FTMM-18 pursuant to NJDEP's Technical Requirements for Site Remediation (TRSR) 38 (N.J.A.C. 7:26E) and Administrative 39 40 Requirements for the Remediation Contaminated Sites (N.J.A.C. 7:26C). IC in the form of a CEA will be implemented and it will remain in place until NJDEP GWQS are 43 achieved at the site. 44


COMMUNITY PARTICIPATION

46 Public participation is an important component of remedy selection. The Army is soliciting input 47 from the community on the preferred alternative 48 identified for the landfills. The comment period 49 includes a public meeting at which the Army will 50 present this Proposed Plan. Both oral and writ-51 ten comments will be accepted at this meeting. 52 53 The Army and the NJDEP encourage the public 54 to gain a more comprehensive understanding of the site and the remedial activities that have 55 been conducted at the landfills. The dates for the 56 public comment period; the date, location, and 57 time of the public meeting; and the locations of 58 the Administrative Record files are provided on 59 60 the front page of this Proposed Plan.

Comments made at the meeting will be tran-61 scribed. A copy of the transcript will be included 62 in the Decision Document and will be added to 63 the FTMM Administrative Record file and infor-64 65 mation repositories.

February 2017 Page 15

Figure 12 - Landfill Cover System Design

Page 16 February 2017

REFERENCES

1

- AECOM. 2013. Final Vapor Intrusion Site Investigation Report Main Post and Charles Wood Area,
 OACSIM U.S. Army Fort Monmouth, Oceanport, New Jersey. Prepared for the U.S. Army Corps of Engineers, Baltimore District. January.
- 5 EDAW, Inc. 2008. Fort Monmouth Reuse and Redevelopment Plan, Final Plan. Prepared for Fort Mon-6 mouth Economic Revitalization Planning Authority. August 22.
- NJDEP. 2010. Groundwater Quality Standards. New Jersey Administrative Code Title 7 Chapter 9C. July 22.
- 9 NJDEP. 2014. Final Baseline Groundwater Sampling Report (August 2013) Remedial Investigation/Feasi-10 bility Study/Decision Documents. July 3, 2014.
- Parsons. 2013. Final August 2013 Baseline Groundwater Sampling Report, Fort Monmouth, Oceanport,
 Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center,
 Huntsville, Alabama. January.
- Parsons. 2014. Final Remedial Investigation / Feasibility Study Report for Site FTMM-04, Fort Monmouth,
 Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support
 Center, Huntsville, Alabama. July.
- Parsons. 2015. Final Remedial Investigation Report for Site FTMM-14, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Huntsville, Alabama. July.
- Parsons. 2015. Final Remedial Investigation Report for Site FTMM-12, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Huntsville, Alabama. August.
- Parsons. 2015. Final Remedial Investigation Report for Site FTMM-05, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Huntsville, Alabama, October.
- Parsons. 2015. Final Remedial Investigation Report for Site FTMM-18, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Huntsville, Alabama. October.
- Parsons. 2016. Final Remedial Investigation Report for Site FTMM-25, Fort Monmouth, Oceanport, Monmouth County, New Jersey. Prepared for the U.S. Army Engineering and Support Center, Hunts-ville, Alabama. August.
- Shaw. 2012. Final Baseline Ecological Evaluation, Fort Monmouth Main Post & Charles Wood Area. Monmouth County, New Jersey. May.
- U.S. Army Toxic and Hazardous Materials Agency (USATHAMA). 1980. Installation Assessment of Fort Monmouth, Report No. 171. U.S. Army Toxic and Hazardous Material Agency. May.
- USATHAMA. 1988. Update of the Initial Installation Assessment of Fort Monmouth and Subinstallations:
 Charles Wood Area and Evans Area. Prepared by J.D. Bonds, J.K Sherwood, and K.A. Decker,
 Environmental Science and Engineering, Inc., Prepared for U.S. Army Communications-Electronics Command, Fort Monmouth, NJ, and U.S. Army Toxic and Hazardous Material Agency, Aberdeen Proving Ground, MD. June.
- Weston. 1995. Final Site Investigation Main Post and Charles Wood Areas, Fort Monmouth, New Jersey,
 December.

GLOSSARY OF TERMS

- 2 Administrative Record A file that contains all information used by the lead agency to make its decision
- 3 on the selection of a response action under CERCLA. A copy of this file is to be available for public review
- 4 at or near the site, usually at the information repository.
- 5 Classification Exception Area (CEA) A NJDEP designation established whenever groundwater stand-
- 6 ards in a particular area are not met. It ensures the use of the groundwater in that area is restricted until
- 7 standards are achieved.
- 8 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, otherwise
- 9 known as Superfund) A federal law that addresses the funding for and remediation of abandoned or
- uncontrolled hazardous waste sites. This law also establishes criteria for the creation of key documents
- such as the Remedial Investigation, Feasibility Study, Proposed Plan, and Decision Document.
- 12 Chemical of Concern (COC) COCs are defined as the COPCs (see below) that are present at sufficient
- concentrations to pose a risk to human health or the environment.
- 14 **Contaminant of Potential Concern (COPC)** A chemical that is identified as a potential threat to human
- health or the environment and is evaluated further in the baseline risk assessment.
- Decision Document A report documenting the final action, approved by the regulatory agencies, that is
- 17 required at CERCLA sites.
- 18 **Groundwater** Water found beneath the earth's surface that fills pores between materials such as sand,
- soil, or gravel. In aquifers, groundwater occurs in sufficient quantities that it may be used for drinking water,
- 20 irrigation, and other purposes.
- 21 Ground Water Quality Standards (GWQS) NJDEP GWQS, N.J.A.C 7:9C, establish the designated
- 22 uses of the State's groundwater and specify the water quality (criteria) necessary to attain those designated
- uses. The ground water quality criteria are numerical values assigned to each constituent (pollutant) dis-
- charged to groundwater of the State. The GWQS also contain technical and general policies to ensure that
- 25 the designated uses can be adequately protected. Groundwater is classified according to its hydrogeologic
- 26 characteristics and designated uses.
- 27 **Hydrogen Releasing Compound (HRC®)** A proprietary technology from Regenesis Bioremediation
- Products, Inc. HRC® is a chemical which, upon hydration, undergoes chemical reactions to ultimately gen-
- erate hydrogen, which is used by microorganisms to degrade chlorinated compounds in groundwater.
- 30 Human Health Risk Assessment (HHRA) An evaluation of the potential threat to human health due to
- 31 environmental COPCs.
- 32 **Institutional Control (IC)** A mechanism used to provide notice of residual contamination and the need
- to limit human activities at or near a contaminated site. This may include land use restrictions, well re-
- 34 striction areas, deed notices, and declarations of environmental restrictions. Land use controls consists of
- both institutional controls and engineering controls.
- 36 Impact to Groundwater (IGW) A NJDEP soil cleanup standard that is applied in soil above the ground-
- water table that is designed to be protective of groundwater quality.
- 38 Land Use Control (LUC) Physical, legal, or administrative mechanisms that restrict the use of, or limit
- 39 access to, real property in order to manage risks to human health and the environment. Physical mecha-
- 40 nisms include physical barriers to limit access to real property, such as fences or signs, providing potable
- 41 water, as well as a variety of engineered remedies to contain or reduce contamination. Legal mechanisms
- 42 include zoning, permits, and deed restrictions on property; for example, allowing only commercial or in-
- dustrial use of a property where contaminants have not been remediated to residential levels.

- 1 Land Use Control Implementation Plan (LUCIP) Documents the LUCs required during and after im-
- 2 plementation of the preferred alternative.
- 3 National Contingency Plan (NCP) National Oil and Hazardous Substances Pollution Contingency Plan,
- 4 "National Contingency Plan" (40 CFR 300). Provides the organizational structure and procedures for pre-
- 5 paring for and responding to discharges of oil and releases of hazardous substances, pollutants, and con-
- 6 taminants.
- 7 New Jersey Administrative Code (N.J.A.C.) The collection of all rules and regulations made by the
- 8 executive branch agencies of the State of New Jersey.
- 9 Old Field Habitats Old field habitats include formerly mowed areas where the vegetation includes
- 10 grasses, forbes and often immature trees. Old field habitats at the MP include grasses, many forbes
- including Queen Ann's lace (Daucus carota), pokeweed (Phytolacca americana), goldenrod (Solidago sp.),
- milkweed (Asclepias syriaca), and sparse saplings of tree species including eastern red cedar (*Juniperus*
- 13 *virginiana*) and winged sumac (*Rhus copallinum*).
- Polycyclic Aromatic Hydrocarbons (PAH) A group of compounds formed as a result of the incomplete
- 15 combustion of hydrocarbons. PAHs commonly occur in the environment, originating from both natural and
- 16 man-made sources.
- 17 **Polychlorinated Biphenyls (PCB)** A group of persistent chemicals used in transformers and capacitors
- for insulating purposes and in gas pipeline systems as a lubricant.
- 19 **Potable Water** Water of a quality suitable for drinking
- 20 Primary and Secondary Drinking Water Standards Primary Drinking Water Standards limit the allow-
- 21 able concentrations of contaminants which may affect consumer health. Secondary Drinking Water Stand-
- ards were developed to address the aesthetic qualities of drinking water (e.g., color, taste, odor).
- 23 **Preferred Alternative(s)** The alternative(s) that, when compared to other potential alternatives,
- 24 was/were determined to best meet the CERCLA evaluation criteria and is proposed for implementation at
- 25 a MRS.
- 26 **Proposed Plan** A plan that identifies the preferred remedial alternative(s) for a site, and is made availa-
- 27 ble to the public for comment.
- 28 **Public Education** A variety of methods to educate the public regarding potential hazards at the site,
- 29 including, but not limited to, fact sheets, letters, newspaper notices, meetings, and website.
- 30 Regional Screening Level (RSL) USEPA Screening levels are risk-based concentrations derived from
- 31 standardized equations combining information assumptions with EPA toxicity data. RSLs are considered
- 32 by the EPA to be protective for humans over a lifetime.
- Remedial Action Objective (RAO) Cleanup objective that specify the level or area of cleanup ore at-
- 34 tainment.
- Remedial Investigation (RI) Exploratory inspection conducted at a site to define the nature and extent
- of contamination present, and to assess potential related hazards and risks.
- 37 **Responsiveness Summary** A component of the Record of Decision that summarizes information about
- 38 the comments and views of the public and support agency regarding both the remedial alternatives and
- 39 general concerns about the site submitted during the public comment period. It also documents in the
- 40 record how public comments were integrated into the decision-making process.
- 41 **Riparian** Riparian areas are ecosystems adjacent to a river or waterway that, in an undisturbed state,
- 42 provide habitat for wildlife and help improve water quality. Riparian areas are usually transitional zones
- 43 between wetland and upland areas and are generally comprised of grasses, shrubs, trees, or a mix of
- 44 vegetation types that exist within a variety of landscapes (e.g., natural, agricultural, forested, suburban,
- 45 and urban).

- 1 Semivolatile Organic Compounds (SVOC) An organic compound which has a boiling point higher than
- 2 water and which may vaporize when exposed to temperatures above room temperature. SVOCs include
- 3 phenols and polynuclear aromatic hydrocarbons (PAH).

- 4 Volatile Organic Compound (VOC) Organic chemical compound whose composition makes it possible
- for it to evaporate under normal indoor atmospheric conditions of temperature and pressure.

ACRONYMS AND ABBREVIATIONS

ACRONYM	DEFINITION
μg/L	microgram(s) per liter
Army	U.S. Army
bgs	below ground surface
BRAC	Base Realignment and Closure
CEA	Classification Exception Area
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
COCs	Chemicals of Concern
COPC	Constituent of Potential Concern
the Corps	Corps of Engineers New York District
CWA	Charles Wood Area
EA	Evans Area
EC	engineering control
FTMM	Fort Monmouth
GWQS	Ground Water Quality Standard(s)
HHRA	Human Health Risk Assessment
HI	Hazard Index
HRC	Hydrogen Releasing Compound
IC	institutional control
IGW	Impact to Groundwater
LTM	Long-Term Monitoring
LUC	Land Use Controls
LUCIP	Land Use Controls Implementation Plan
MP	Main Post
NCP	National Contingency Plan
NFA	No Further Action
N.J.A.C.	New Jersey Administrative Code
NJDEP	New Jersey Department of Environmental Protection
NRDCSRS	Non-Residential Direct Contact Soil Remediation Standard
PAH	Polynuclear Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PCE	Tetrachloroethene
RAO	Remedial Action Objective
RDCSRS	Residential Direct Contact Soil Remediation Standard
RI	Remedial Investigation
RME	Reasonable Maximum Exposure
RSL	Regional Screening Level
SI	Site Investigation
SL	Screening Level
SVOC	Semivolatile Organic Compound
SWQS	Surface Water Quality Standard
TCE	Trichloroethene
TRSR	Technical Requirements for Site Remediation

ACRONYM	DEFINITION
USACE	U.S. Army Corps of Engineers
USAESCH	U.S. Army Engineering and Support Center, Huntsville
USATHAMA	U.S. Army Toxic and Hazardous Materials Agency
USEPA	U.S. Environmental Protection Agency
VOC	Volatile Organic Compound
WERS	Worldwide Environmental Restoration Services

USE THIS SPACE TO WRITE YOUR COMMENTS 1

- Your input on the Proposed Plan for the Sites FTMM-03, FTMM-04, FTMM-05, FTMM-12, FTMM-14, FTMM-18, and 2
- 3 FTMM-25 is important to the Army. Comments provided by the public are valuable in helping the Army select a
- remedy for the FTMM landfills. 4
- 5 You may use the space below to write your comments. Comments must be postmarked by March 17, 2017. Mailed
- comments should be sent to Mr. William Colvin, at the address listed on Page 1. If you have any questions about 6 the comment period, please contact Mr. Colvin at (732) 380-7064. Those with electronic communications capabilities 7
- 8 submit their comments to the Army via Internet at the following e-mail
- 9 william.r.colvin18.civ@mail.mil.

10	Name:	
11	Address:	
12	City:	
13	State and Zip:	
	•	

15 **Comments:**